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ABSTRACT OF THE DISSERTATION

Bamboo: Automatic Translation of MPI Source into a Latency-Tolerant Form
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Communication remains a significant barrier to scalability on distributed-memory

systems. At present, the trend in architectural system design, which focuses on enhancing

node performance, exacerbates the communication problem, since the relative cost of

communication grows as the computation rate increases. This problem will be more

pronounced at the exascale, where computational rates will be orders of magnitude faster

than that of the current technology. Communication overlap is an efficient method to

hide communication by masking it behind computation. However, existing overlapping

techniques not only require significant programming effort but also complicate the
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original program.

This dissertation presents a source-to-source translation framework that can

realize communication overlap in applications written in MPI, a standard library for

distributed-memory programming, without the need to intrusively modify the source

code. We explore a strategy based on re-interpreting MPI, which executes the application

under a data-driven model that can hide communication overheads automatically. We

reformulate MPI source into a task dependency graph representation, in which vertices

represent tasks containing computation code and edges represent data dependencies

among tasks. The task dependency graph maintains a partial ordering over the execution

of tasks, enabling the program to execute in a data-driven fashion under the guidance

of an external runtime system. To automate the code translation process, we develop

Bamboo, a source-to-source translator. Bamboo supports a rich set of MPI routines,

including point-to-point, collective, and communicator splitting operations.

We show that, for a variety of applications, Bamboo is able to hide communica-

tion overheads on a wide range of platforms including traditional clusters of multicore

processors, as well as platforms based on accelerators (NVIDIA GPUs) and coprocessors

(Intel MIC). Specifically, we translate applications taken from three different application

motifs: dense linear algebra, structured and unstructured grids. In all cases, Bamboo

significantly reduces communication delays while requiring only modest amounts of

programmer annotation. The performance of applications translated with Bamboo meets

or exceeds that of labor-intensive hand coding. The translator is more than a means of

hiding communication costs automatically; it also serves as an example of the utility of

semantic level optimization against a well-known library.
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Chapter 1

Introduction

Code optimization is always a costly phase in software development, and opti-

mizing High Performance Computing (HPC) applications is no exception. At present,

distributed-memory systems have evolved to a sophisticated level that requires appli-

cations to be heavily optimized to harness all resources provided by the hardware. We

argue that the overheads of communication, especially off-node communication, have to

be carefully addressed in tandem with improvements in computational rates. The reason

is as follows. The programmer tends to uncover as much parallelism in the application

as possible to leverage all computational capability of the system. In addition, the pro-

grammer generally can manage the memory hierarchy to take advantage of data locality,

thereby mitigating on-node communication. However, the effect of these optimizations

is to increase the relative overhead of off-node communication due to the following

reasons. First, on-node optimizations normally do not reduce the amount of off-node

communication. Second, the entire system is mostly idle when nodes communicate.

Thus, the lower the cost of computation the higher the cost of communication, relative to

the total execution time. Another motivation for tolerating communication delays is that

computing performance has been growing faster than bandwidth and latency for several

years. Indeed, Top500 lists [6] over the past few years indicate that the peak performance

of the fastest system doubles every year, whereas bandwidth and latency can only double

1
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every 3 to 4 years [7]. With the current technological trend focusing on node architecture

[8–10], i.e. enhancing computing nodes with accelerators such as Graphics Processing

Units and Intel’s Many-Integrated Core, this gap is expected to grow. Thus, tolerating

communication delays is increasingly important, given that the ratio of communication

(in bytes) over computation (in flops) is independent of hardware.

MPI, the de facto standard library for distributed-memory programming, has

been used for more than 20 years 1 to develop applications running on high-end systems.

However, MPI applications are often written under the Bulk Synchronous Parallel model

[12], which does not offer support for writing latency-tolerant code. Split-phase coding

[13–15] is a common technique for masking communication overheads under useful

computation. This technique divides computation into smaller pieces, some of which are

independent of current communication. Thus, the programmer can schedule independent

computation and communication at the same time. Although overlapping communication

with computation increases the performance by at most a factor of 2, it can provide other

significant benefits when applied at scale (e.g. energy consumption). Implementing

overlap via the split-phase coding technique, however, requires aggressive modifications

to application data structures and control flow. This requirement poses a significant

burden on the programmer, who may be a user focusing on domain science.

Source-to-source translation can be an efficient means of automating complicated

optimizations on communication. For example, Physics [16] is a translation frame-

work that allows the programmer to extend serial C applications to generate multiGPU

code. This framework is designed to support only stencil computations [17–20], so the

communication pattern is known beforehand. This knowledge enables the translator to

generate split-phase code that overlaps communication with computation. In particular,

the translator splits the computation into 2 parts: the first part performs stencil operations

1Message passing has been used for more than 30 years [11]
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at the inter-process boundaries that depend on remote data, whereas the other works on

an inner region, which is independent of communication. Therefore, the latter portion

can be scheduled in parallel with the communication phase [21]. Similar to Physics,

many other prior works that automate the communication overlap are often ad-hoc and

thus does not support a wide range of applications [22–24].

1.1 Research contributions

The goal of this dissertation is to develop a source-to-source translation tech-

nique to address obstacles to realizing communication overlap on high-end systems. As

opposed to previous approaches, the technique presented in this dissertation is a general-

purpose translation framework that transforms MPI applications previously written under

a synchronous programming model into a data-driven form that can overlap commu-

nication with computation automatically. In addition, unlike other direct approaches

which offer an explicit data-driven execution model [25, 26], we exploit the information

of communication operations embedded in an MPI program to reason about the data

dependencies among processes. Incorporating such knowledge with a modest amount

of user annotation, we are able to reformulate MPI source into a task dependency graph

representation. Such a graph maintains a partial ordering over the execution of tasks of

the graph, enabling the program to execute in a dataflow-like fashion under the guidance

of an external runtime system.

This translation framework, which we call Bamboo, includes a programming

model and a source-to-source translator. Bamboo employs a directive-based programming

model, enabling the programmer to quickly annotate their code. The directive-based

approach isolates software development from technological changes and allows the

original code to be maintained and studied in a familiar form. Given an annotated MPI

program, the Bamboo translator reformulates the source code to represent the application
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in a task dependency graph form. The Bamboo software stack comprises 2 layers: core

message passing and utility layers. The core message passing layer transforms a minimal

subset of MPI routines, whereas the utility layer implements MPI high-level routines by

translating them into their point-to-point components, which will be then translated by

the core message passing layer. Such a multi-layer design allows one to customize the

implementation of MPI high-level routines.

We demonstrated that Bamboo is able to improve performance on a wide range

of applications taken from three important application motifs [27]: dense linear algebra

(matrix multiplication and LU factorization), structured grid (a Jacobi solver for Poisson’s

equation and a geometric multigrid solver for Helmholz’s equation) and unstructured

grid (a hydro solver to the Sedov blast wave problem [28]). Moreover, we validated

Bamboo on a variety of computational platforms. In particular, we ran experiments

at scale on CrayXC30 and CrayXE6 systems at NERSC (National Energy Research

Scientific Computing Center). We also tested Bamboo on advanced node architectures,

which accelerate node performance by offloading compute-intensive kernels to devices

such as NVIDIA’s GPU and Intel’s MIC. We compared Bamboo against the basic MPI

and hand optimized code variants. In all cases Bamboo realized a significant reduction

in communication delays of the basic MPI variant with only modest amounts of user

annotation. The performance of Bamboo meets or exceeds that of the hand optimized

code variant.

We also noticed that task scheduling plays an important role in balancing irregular

workloads arising in some applications. Bamboo supports non-preemptive task prior-

itization, enabling tasks of the graph to work more cooperatively, thereby improving

the performance. In particular, when task prioritization is enabled, tasks can volunteer

to yield the processor at the time of their choosing. Thus, hardware resources can be

efficiently shared among tasks at possibly lower scheduling costs (e.g. task switching
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cost) than using a preemptive scheduling system. We validated this support using two

applications taken from the dense linear algebra motif: SUMMA matrix multiply [2] and

matrix factorization [56]. Experimental results demonstrated that we gained significant

performance benefits by employing simple prioritizing algorithms.

1.2 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 reviews

background on parallel programming models. Chapter 3 presents the Bamboo source-

to-source translation framework. Chapter 4 presents the design and implementation of

Bamboo’s source-to-source translator. Next, chapters 5, 6, and 7 show experimental

validation using applications taken from 3 HPC motifs: dense linear algebra, structured,

and unstructured grids. Chapter 8 presents the support of Bamboo on advanced node

technologies. Finally, chapter 9 concludes the dissertation and presents future work.



Chapter 2

Background

2.1 Overview

A programming model abstracts the underlying hardware and software architec-

ture of a computing system and provides the programmer with high-level functionality,

which is likely to be difficult to implement directly with low-level primitives. For ex-

ample, a multiprocess-based programming model may provide a high-level data motion

routine to transfer data from one process to another, hiding the low-level protocol control-

ling the data transfer that is transparent to the programmer. This chapter reviews parallel

programming models, which are useful to understand discussions on source-to-source

translation techniques presented in the remainder of the dissertation.

2.2 Synchronous model

2.2.1 Bulk Synchronous Parallel

BSP (Bulk Synchronous Parallel) [12] is an abstract model for parallel systems,

including both shared-memory and distributed-memory platforms. A program written

under the BSP model executes as a set of processes, which proceed through a sequence of

supersteps, each consisting of computation, communication and a barrier synchronization

as shown in Fig. 2.1. Processes communicate with each other explicitly. At any given

6
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time, all processes are either computing or communicating, but not both. Two consecutive

supersteps are separated by a barrier synchronization point. Data communicated during

one superstep becomes visible during the following step.

!"#$%&#$"'( )&*+""( ,*-./*/'#&#$"'( 0&.$1&#$"'( 21%&'3/1(4/35( 6"'3.78$"'(
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Figure 2.1. A BSP program consists of multiple processes, executing supersteps. Within
each superstep, processes compute, communicate, and synchronize. The communication
among processes is explicit.

Performance modeling under the BSP model is simple due to the barrier syn-

chronization [12, 29]. In particular, the cost of a BSP program can be calculated by

accumulating the cost of each superstep. The running time of a superstep is expressed in

terms of a few parameters as follows:

TsuperStep = w+gh+ l (2.1)

where

• w: the maximum time to perform local operations by any processor

• h: maximum number of messages sent or received by any processor

• g: 1/g is the available bandwidth per processor



8

• l: overhead of the global synchronization

BSPlib [30, 31] is a communication library for BSP programming. The library

contains a routine to separate supersteps. In addition, it provides communication routines,

including both one-sided communication using remote direct memory access (RDMA)

and two-sided message passing communication.

PVM (Parallel Virtual Machine) [32] and MPI [33] (Message Passing Interface)

are two common libraries that can be used to develop BSP programs. PVM abstracts

all heterogeneous hosts into a single virtual machine. Based on this virtual machine,

PVM provides a programming interface and runtime support to develop and execute

applications.

MPI aims to provide a standard interface for inter-process communication. The

primary goals of MPI are portability and performance. Beside point-to-point primitives,

MPI also provides communicator for process grouping and collective operations. We

will be presenting more details about MPI in the next chapter.

2.2.2 LogP

LogP [1] is a parallel model that describes a parallel architecture using four

parameters: latency (L), overhead (o), gap (g), and number of processors (P). Under the

LogP model, a processor can be either stalling or operational. A processor is stalling

when it is submitting a message to the communication medium. o is the number of

clock cycles required by the processor to prepare for a message. This processor becomes

operational when the submitted message is accepted by the medium. When operational,

a processor can perform computation or submit/acquire a message. The behavior of the

communication medium is modeled by two parameters g and L. In particular, g clock

cycles must elapse between consecutive submissions or consecutive acquisitions by the

same processor. In addition, the communication medium can deliver a message to its
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destination at most L clock cycles after its acceptance. The LogP model assumes that the

network has a finite capacity. Thus, it requires that at any time there are no more than L/g

messages in transit for the same destination. Fig. 2.2 shows a tree-based implementation

of the broadcast operation. The performance is predicted using the LogP model.
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Figure 3: Optimal broadcast tree for 8 6 4 2 (left) and the activity of each processor
over time (right). The number shown for each node is the time at which it has received the datum and can
begin sending it on. The last value is received at time 24.

schedule for the summation problem. The pattern of communication among the processors again forms a
tree; in fact, the tree has the same shape as an optimal broadcast tree[20]. Each processor has the task of
summing a set of the elements and then (except for the root processor) transmitting the result to its parent.
The elements to be summed by a processor consist of original inputs stored in its memory, together with
partial results received from its children in the communication tree. To specify the algorithm, we first
determine the optimal schedule of communication events and then determine the distribution of the initial
inputs.

If 2 , the optimal solution is to sum 1values on a single processor, since there is not sufficient
time to receive data from another processor. Otherwise, the last step performed by the root processor (at time

1) is to add a value it has computed locally to a value it just received from another processor. The remote
processor must have sent the value at time 1 2 , and we assume recursively that it forms the root of
an optimal summation tree with this time bound. The local value must have been produced at time 1 .
Since the root can receive a message every cycles, its children in the communication tree should complete
their summations at times 2 1 2 1 2 1 2 . The root
performs 1 additions of local input values between messages, as well as the local additions before it
receives its first message. This communication schedule must be modified by the following consideration:
since a processor invests cycles in receiving a partial sum from a child, all transmitted partial sums must
represent at least additions. Based on this schedule, it is straight-forward to determine the set of input
values initially assigned to each processor and the computation schedule. Notice that the inputs are not
equally distributed over processors. (The algorithm is easily extended to handle the limitationof processors
by pruning the communication tree.)

The computation schedule for our summation algorithm can also be represented as a tree with a
node for each computation step. Figure 4 shows the communication schedule for the processors and the
computational schedule for a processor and two of its children. Each node is labeled with the time at which
the step completes, the wavy edges represent partial results transmitted between processors, and the square
boxes represent original inputs. The initial work for each processor is represented by a linear chain of
input-summing nodes. Unless the processor is a leaf of the communication tree, it then repeatedly receives
a value, adds it to its partial sum and performs a chain of 1 input-summing nodes. Observe that
local computations overlap the delivery of incoming messages and the processor reception overhead begins
as soon as the message arrives.

7

Figure 2.2. Modeling the performance of a tree-based broadcast operation using the
LogP model [1]

BSP and LogP are substantially equivalent since they can efficiently simulate

the other. In particular, BSP can simulate LogP with constant slowdown and LogP can

simulate BSP with at most logarithmic slowdown [29]. Though LogP is more descriptive,

BSP is preferable due to its simplicity and portability.

2.3 Partitioned Global Address Space

Due to the global address space, some programmers prefer to retain the shared-

memory interface even when the underlying architecture is distributed-memory. Doing

so, however, compromises performance due to the lack of locality and poor performance

of short messages. PGAS languages (Partitioned Global Address Space (PGAS)) offer a

shared-memory like programming interface but add control over data layout to maintain

performance.

Unified Parallel C (UPC) [34] is a parallel extension to C, and is perhaps one of

the most popular PGAS languages. Under UPC, each program spawns a fixed number of
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UPC threads, and every thread runs the same code in a SPMD manner (Single Program

Multiple Data). Each thread has private space for local memory and shared space for a

partition of the global memory. The task of a UPC programmer is to explicitly control

this data layout, though the mapping of threads and their data onto physical processors is

handled by the UPC runtime system. In addition, a pointer or reference to shared space

must be statically distinguishable from those to private space. UPC employs a 1-sided

communication model, and there is no explicit send-receive matching (e.g. as in MPI).

Thus, data communication can be processed without any matching and synchronizing

overhead. This feature is important for fine-grained communication; however, it does

not benefit long message transfers. Beside UPC, there are also many other PGAS

languages. Co-array Fortran [35] and Titanium [36] are extensions to Fortran and Java,

respectively. Although each of these languages is influenced by their base serial language,

they share many similar features. Particularly, these languages are SPMD and support

static parallelism, meaning that the number of threads is fixed during the course of

computation. Again, references to private and shared spaces must be statically distinct.

This feature is to avoid expensive memory checks when a local pointer is dereferenced.

HPCS (High Productivity Computing System) languages such as Fortress [37],

Chapel [38], and X10 [39] are PGAS languages that aim to exploit emerging high per-

formance computing systems. Whereas X10 is a parallel extension to Java, Fortress and

Chapel are not extensions of any existing serial language. Rather, these two languages

provide abstractions to describe high-level parallelism. Fortress also employs a hier-

archical notion of partitioning to better support hierarchical parallelism and hardware.

Compared to the traditional PGAS languages, HPCS languages provide dynamic par-

allelism and more sophisticated synchronization mechanisms. For example, a Fortress

program consists of a set of threads (activities in X10) and memory locations (places in

X10 and locales in Chapel). Threads are spawned on the fly, hence the term dynamic par-
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allelism. In multithreading models and traditional PGAS languages, threads coordinate

via a global barrier. To better support synchronization under dynamic parallelism, X10

provides a clock. A clock is basically a barrier, but is deadlock-free and may consist of a

subset of threads.

2.4 Dataflow

Dataflow has been used in compilers to achieve implicit instruction-level par-

allelism [40–42]. For example, in 1967 Tomasulo proposed a dynamic scheduling

algorithm (AKA Tomasulos algorithm) to enable out-of-order instruction execution. This

algorithm first eliminates anti-dependences between instructions through renaming. It

then maintains and schedules a dependency graph of instructions based on the availability

of operands and functional units.

Dataflow was then found to be applicable to user-level parallelism. Blumofe et al.

presented Cilk [43, 44], an extension to C that employs user-level dataflow. Under Cilk

the programmer specifies application parallelism using keywords such as spawn and sync.

It is the responsibility of Cilk to dynamically assign computational tasks to processors.

Internally each Cilk program is represented as a DAG (directed acyclic graph) that can

unfold as the program executes. This DAG is a control-flow and dataflow graph where

each vertex is a sequence of instructions that do not contain Cilk keywords and edges

represent ordering constraints between vertices. One of the most interesting ideas in Cilk

is the work-stealing concept. A processor that runs out of work can steal computational

tasks from the task queue of another victim processor. This mechanism balances the

workload among processors. Internally each processor maintains a double-ended queue

of suspended tasks such that the dequeue operation can work in both ends. The processor

that owns the queue can insert and remove tasks from one end while other processors can

steal tasks from the opposite end. Blumofe et al. also presented a performance model
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to predict the execution time of a Cilk program. This model is based on the concepts of

T1 and T∞ , where T1 is the total work and T∞ is the critical path. Given the maximum

performance on p processors provided by a greedy scheduler Tp = T1/p+T∞ [45], the

authors introduced an empirical performance model as the following: Tp = T1/p+ c∞T∞

where c∞ is a small constant. Cilk performs well on shared-memory architectures and

has been commercialized to Intel Cilk Plus. However, it is costly to support Cilk on

distributed-memory architectures due to high overheads of dynamic scheduling and task

migration on multiple nodes.

PLASMA [46] (Parallel Linear Algebra for Scalable Multi-core Architectures) is

a library for solving dense linear algebra problems on systems of multicore processors.

Unlike synchronous implementations of dense linear algebra routines such as LAPACK,

PLASMA hides communication overheads by dynamically scheduling a task graph. To

explore parallelism, the graph structure unfolds dynamically during execution. However,

due to resource constrain, PLASMA handles only a small portion of the graph at a time

using sliding window. PLASMA employs QUARK [47], a runtime system built on the

POSIX thread library, to schedule the task graph.

2.5 Actors

Instead of specifying a list of actions that each task has to do, actors models

consider a task as an object called actor [48, 49]. Each actor has its own state, and it

can send messages to other actors. In response to a message, an actor can change its

state, send messages, terminate, and even create other actors. A useful observation is

that actors models can support communication-computation overlap with the help of

virtualization. In particular, when there are more actors than physical processors, the

dependency between actors can be represented by messages. A scheduler will select an

actor that satisfies all dependencies to execute when other actors are communicating.
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Charm++ is a distributed-memory programming model based on actors [50].

Under Charm++, actors communicate with each other by calling methods of their

partners. These methods are asynchronous and can be invoked from actors on remote

processors. Charm++ offers communication and computation overlap by virtualization.

Specifically, the number of actors will be larger than the number of processors. A runtime

system will schedule actors based on the availability of processors and necessary data.

Further, Charm++ supports load-balancing by allowing task migration.

Tarragon [52–54] is an actor-like programming model, therefore it can support

communication-computation overlap. Each object in Tarragon is called a task, which can

exchange messages with other tasks. Tasks are connected through edges to create a task-

dependency graph. Each task has a local state which is recognized by the runtime system.

Once all messages are received, the task can be scheduled to run. An interesting feature

of Tarragon is that it supports iterative programming decomposition. This technique can

help Tarragon reuse space, which increases the scalability of the model. Note that large

projects can have up to millions of lines of code, which is not practical to build a full

dataflow graph for these programs.

2.6 Summary

Table 2.1 summarizes the programming models presented in this chapter. We

classify these models based on a few criteria: memory address space, communication

model, and latency hiding support.

BSP based models such as BSPlib, PVM, and MPI require the programmer to

explicitly program the movement of data among processes. Such requirement is to

leverage locality, enabling the high efficiency of local computation. In addition, these

models allow the programmer to easily analyze the performance due to the synchronous

execution model. However, the drawback of the synchronous execution model is that it
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does not support automatic latency hiding.

PGAS based models provide a global address space that allows the user to pro-

gram with a shared memory interface regardless the underlying platform. However,

these models retain the explicit communication model to allow the programmer to take

advantage of locality (e.g. get() and put() in UPC). Thus, an efficient program written

in a PGAS based model resembles a program written under the BSP model. A notable

feature of PGAS based models is that they support the one-sided communication model.

Compared to the two-sided communication model, this model reduces the communication

startup overhead. However, this advantage is at the cost of more complicated synchro-

nization (e.g. lock, semaphore) which must be written manually by the programmer. In

addition, PGAS based models do not support automatic latency hiding.

Under dataflow and actors models, the programmer does not need to explicitly

handle the data communication. Instead, the programmer provides information about

the data dependency among tasks/actors. A runtime system is responsible for handling

communication and scheduling the execution of tasks/actors depending on the avail-

ability of data. Thus, these models automatically support latency hiding by scheduling

computation and independent communication at the same time.
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Table 2.1. Characteristics of different programming models (SM: shared memory, DM:
distributed memory)

Name Model Address Space Data Communication Latency

2-sided 1-sided implicit Hiding

BSPlib BSP DM X X

PVM BSP DM X

MPI BSP DM X X

UPC PGAS DM X

Fortress PGAS DM X

Chapel PGAS DM X

X10 PGAS DM X

Cilk Dataflow SM X X

PLASMA Dataflow SM X X

Charm++ Actors DM X X

Tarragon Actors DM X X



Chapter 3

Bamboo

3.1 Overview

This chapter presents the code translation framework provided by Bamboo. Sim-

ilar to other automation initiatives, Bamboo aims to produce delay-tolerant code that

automatically hides communication overheads by overlapping communication with

computation. However, unlike other approaches which directly offer a data-driven

programming model, Bamboo exploits the information of communication operations

embedded in an MPI program to reason about the data dependencies among processes.

By incorporating such knowledge with a simple, directive-based programming model,

Bamboo is able to reformulate MPI source into a task dependency graph representation.

The task dependency graph maintains a partial ordering over the execution of tasks of

the graph, enabling the program to execute in a data-driven fashion under the guidance

of an external runtime system. This approach alleviates the effort that would otherwise

be needed to migrate extremely large legacy code bases to a communication-tolerant

form. In addition to the programming model, the Bamboo translation framework also

includes a communication model that specifies how data is exchanged among tasks and

an execution model that describes task execution behavior.

16
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3.2 MPI: challenges in hiding latency

3.2.1 Bulk synchronous MPI

An MPI program executes as a group of processes, each assigned a unique rank.

MPI processes work on disjoint partitions of the application’s data. In order to easily

manage the set of processes, MPI introduces the concept of a communicator. Upon the

initialization of the MPI environment (i.e. via MPI Init), a global, pre-defined commu-

nicator called MPI COMM WORLD is constructed. This communicator contains all

processes of the program, which can be then optionally split into smaller communicators.

During the course of execution, MPI processes explicitly communicate with each other

via messages. MPI programmers rely on send and receive primitives to express the

inter-process communication. Message passing algorithms must obey a matching rule as

follows. Whenever a process posts a send request, exactly one process must post a receive

request matching that send. In addition, messages between a given sender and a receiver

will not overtake, meaning that they will arrive in the order that they are sent. This

model is often referred to as a two-sided communication model as it requires both sender

and receiver to be involved in the communication process. MPI also offers a one-sided

communication model, which excludes the receiver from the communication. However,

this dissertation considers only the two-sided communication model as it accounts for

the vast majority of MPI applications.

To support communication operations involving multiple processes of a commu-

nicator, MPI introduces the concept of a collective. A collective operation requires all

processes within the communicator to participate. A collective routine also specifies

the input and output of each individual process participating in the operation. MPI

includes a plentiful set of collective routines in order to capture a variety of collective

communication patterns arising in practice. The algorithm for each collective routine,
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however, varies among MPI implementations. Thus, MPI programmers may also use

send and receive primitives to implement their own collective routines with algorithms

customized for their specific applications.

Recall from Section 2.2 that Bulk Synchronous Parallel (BSP) [12] is a program-

ming model commonly used for developing MPI applications. We call MPI programs

written under the BSP model bulk synchronous MPI. Such MPI programs execute a

sequence of computation and communication phases. The effect of the bulk synchronous

execution model is that, at a particular time, each MPI process performs either communi-

cation or computation, but not both simultaneously. Specifically, in the communication

phase the program execution at the receiver site blocks until the expected data has arrived.

Thus, BSP can incur significant performance penalties, as processors sit idle during the

communication phase. Nevertheless, this model has been widely used for decades due to

its simplicity in programming, and in analyzing and predicting the performance.

We anticipate that MPI will continue to play an important role in the future of high

performance computing due to the following reasons. First, MPI enables the programmer

to express data locality explicitly, which has been proven to be extremely crucial to

realizing high performance at scale. Second, the well-defined set of communication

routines included in MPI is always attractive to the programmer due to its complete-

ness and usability. However, the future of high performance computing, e.g. exascale

computing, exposes many challenges for which MPI applications written under the BSP

model have to be highly optimized or rewritten in a latency-tolerant form. One of the

challenges is that the performance gap between compute nodes and the interconnection

network is increasing. As a consequence, communication can become a bottleneck when

computation no longer dominates. Another challenge is that strong scaling will be more

commonplace at exascale since memory capacity is not expected to continue to grow as

it has been in the past, due to a power consumption constraint. Under strong scaling, a
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fixed problem size is maintained as the number of processes increases. Thus, the relative

overhead of communication can quickly grow as the computing time decreases.

3.2.2 Split-phase coding

Hiding communication overheads by overlapping with computation is an effective

means of tolerating communication delays lying on the critical path of a bulk synchronous

MPI program. Split-phase coding is a well-known optimization technique for overlapping

communication with computation [13–15]. To enable this optimization, the programmer

needs to identify computations that can be split into smaller parts, some of which are

not dependent on communication. This technique exposes more parallelism so that the

communication among MPI processes can be hidden. Once the computation has been

split, the programmer must also statically co-schedule communication with portions of

the computation that are independent of communication. Writing split-phase code is

challenging for the following reasons.

1. In most applications, it is nontrivial to identify finer-grained computations that do

not depend on communication. In addition, exploiting fine-grained parallelism

improperly may hurt locality, which in turn reduces computing rates.

2. The programmer needs to restructure the code to enable communication to be

pipelined with computation. Restructured code is both complicated and error-

prone. As a result, split-phase coding complicates any efforts to develop and

optimize the application further.

High Performance Linpack (HPL) benchmark [55–57] is a typical example that

shows the challenge of applying the split-phase coding technique. HPL is a direct

solver for systems of linear equations using the Gaussian elimination method. The most

important kernel of HPL is LU factorization, which decomposes an input matrix into
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lower- and upper-triangular matrices. The input matrix is first partitioned into small

submatrices called panels, which are then distributed to a two-dimensional grid of MPI

processes in a cyclic fashion.

To overlap computation with communication, HPL splits the computation into

2 parts: the first part depends on the arrival of a remote panel while the other does

not. HPL then starts the communication of the following panels while at the same time

performs the second part, which is indepedent of the communication. Embedding such a

scheduling policy into an MPI program complicates the code structure, slowing down the

application development and maintenance. In order to enhance the chance to overlap,

MPI processes also have to frequently poll for the arriving of messages at many places in

the program in order to forward arrived messages to neighbors in a timely manner. In

addition, since each process is responsible for both performing computation and handling

communication, HPL has to further splits the computation into smaller chunks so that

the MPI process can quickly response to the arrival of messages. We deem that such a

polling algorithm makes the code much more difficult to read. It is a strong evidence to

show that communication policies shouldn’t be embedded in an MPI program. Instead,

they should be handled by an independent communication handler.

We next present a novel approach taken by Bamboo, which aims to produce

latency-tolerant code without complicating the application software.

3.3 Bamboo programming model

3.3.1 Bamboo’s approach

Bamboo does not use split-phase coding. It employs a different approach to

tolerate communication overheads. First, Bamboo factors work scheduling out of the

program execution. It reformulates MPI source into a form so computation can be
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efficiently scheduled by an external runtime scheduler. In fact, Bamboo reformulates

MPI source into a new representation called task dependency graph, which will be

presented in detail in the next part of this section. At the high level, such a graph

maintains a partial ordering over the execution of tasks of the graph, enabling a runtime

scheduler to schedule tasks based on the availability of data. Second, Bamboo factors out

communication decisions as follows. The MPI application contains only fundamental

knowledge about the flow of data among processes. Once this basic MPI application is

rewritten under the form of a task dependency graph, it is the responsibility of runtime

communication handlers to service the communication among tasks. In particular, a

communication handler at the sending site may buffer messages before sending them into

the network. At the receiving site, a communication handler is listening for incoming

messages, and this handler may buffer arrived messages before injecting them into tasks.

In addition, communication handlers may need to make routing decisions if each compute

node is connected to the interconnection network via multiple end-points. Details of the

services that a task dependency graph expects from a communication handler will be

presented at the end of this chapter.

Decoupling scheduling and communinication decisions from software develop-

ment is an appealing approach since it helps isolate the application from future technolog-

ical changes in node architectures and interconnection networks. However, rewriting MPI

application from scratch, in the form of a task dependency graph requires significant effort

from the programmer. To deal with this drawback, Bamboo employs a source-to-source

translator that automates the code transformation process. The translator treats MPI as

an embedded domain specific language and MPI data types and methods as language

primitives. Although most of the transformation phases are fully automatic, the translator

requires a modest amount of user annotations in order to generate high quality code.

Bamboo introduces a programming model, including the definition of a task dependency
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graph and the description of a programming interface upon which the programmer relies

to annotate MPI code. In the remainder of this chapter, we present the programming

model provided by Bamboo. Implementation details of the source-to-source translator

will be presented in the next chapter.

3.3.2 Task dependency graph

Task and dependency

The code produced by Bamboo is a Task Dependency Graph (Task Graph for

short) representation in which vertices are tasks containing computation code and edges

represent data dependencies among tasks. Incoming edges of a task represent input data

needed for task execution, whereas outgoing edges correspond to output data produced by

task computation. Tasks do not share any data. Rather, they work on disjoint data, and the

edge is the only means for communicating data among tasks. There is no restriction on the

number of tasks and edges in a graph, though a graph instance maintains a fixed number

of tasks throughout its lifetime. Edges, however, may change during the execution of a

graph. At a particular time, edges represent the data requirement of a sequence of code

that the task is about to execute.

Figure 3.1 shows a snapshot of a task graph instance consisting of 16 tasks. Edges

represent the data dependencies among tasks at the moment, which may be changed

later on. In this snapshot, we note that there is a task containing 2 incoming edges from

another task. It is totally legal to have, at a time, two or more edges connecting two

tasks, as edges can be labeled as shown in Figure 3.1. This notation is useful when a task

simultaneously requires multiple inputs from another task. Of course, such edges may be

safely fused into a single edge representing for the aggregation of individual inputs from

the same task. Likewise, a single edge may be dynamically split into smaller ones, each

assigned a different label.
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Figure 3.1. A task dependency graph snapshot. Vertices are tasks and edges are data
dependencies among tasks. If there exist two or more edges between two tasks, edges
will be labled.

Task state

Each task is augmented with a state, which is visible to the scheduler. The

scheduler can use state to make scheduling decisions. Only a task can modify its state,

and a task is not able to directly modify the state of another task. In particular, the state

alternates between WAIT and EXEC during the lifetime of a task. When a task needs to

wait on data from others, it changes the state into WAIT. When an input is available, task

may change its state to EXEC. A task is called runnable if its state is EXEC, as it is an

indication that the scheduler can pick the task for executing.

Graph-based, data-driven execution

The execution of a task graph is driven by the availability of data as follows.

Tasks are runnable (i.e. state = EXEC) if they have received all input data and are

inactive (i.e. state = WAIT) otherwise. Runnable tasks can line up to be executed.

During the execution of runnable tasks, communication can be handled by independent
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communication handlers. Thus, automatic latency hiding can be realized by scheduling a

task dependency graph. Neither task scheduling nor communication handling is a part of

the graph. Rather, they can be treated independently of the task definition. This is true

even in the case of irregular applications, where computation and communication vary

among tasks. Indeed, irregular tasks can simply be augmented with meta-data, high-level

discriptions that help guide an external scheduler towards intelligent scheduling decisions.

Details of how a task graph executes will be presented in the Bamboo execution model at

the end of the chapter. We next present how a task graph can be constructed from an MPI

program.

3.3.3 Reformulating MPI source into a task graph form

Given an MPI application programmed under the BSP model, one may wonder

if there exists a formula to construct the task graph described previously. A task graph

consists of tasks and edges. Thus, constructing a task graph entails two phases: i) defining

the task and ii) defining the data dependency.

Task

MPI applications employ processes to partition a global problem across process-

ing domains. Under the BSP model, processes hold processing resources during the

whole program lifetime, even while waiting for data. Such an execution model pre-

vents communication from being overlapped with computation. In order to hide latency,

Bamboo employs a task-based, time-sharing execution model such that some tasks can

execute on the processors while communication is executing simultaneously.

Process virtualization (AKA oversubscription) is a common technique to realize

task parallelism from a process-based parallel program [58, 59]. This technique applies

the same work-partitioning pattern employed in the original parallel program, but at a
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finer granularity. Figure 3.2 shows how MPI processes can be virtualized to run with

multiple tasks per MPI process. As in the original MPI program, a graph consists of a

fixed number of tasks upon construction, each assigned a task ID. The amount of work

assigned to a task is then based on its unique ID and the work-partitioning algorithm used

in the original MPI program. Communication patterns among MPI processes remain

unchanged under process virtualization.
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Figure 3.2. Virtualizing MPI processes to finer-grained tasks. Communication patterns
remain unchanged under the virtualization technique.

In virtualizing MPI processes, Bamboo may also realize an additional benefit

in improving cache locality. This additional benefit makes it difficult to evaluate the

individual benefit of hiding latency. Cache blocking is a well-known optimization

technique to improve locality. Instead of fetching the entire contiguous row (row major)

or column (column major) of an array, this technique loads a small 2D or 3D block at a

time so that loaded data can be heavily reused. The parameters of a blocking algorithm

include the cache size, which varies with memory subsystems, and the stride access

which depends on both application and problem size. Since the cache size and stride

access often vary, implementing the blocking optimization is challenging. Tasks of a

graph, on the contrary, own smaller portions of the global data. The higher number of

tasks the finer data partitions owned by tasks. Thus, if the cache blocking optimization is
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not present in the original MPI program, cache locality is automatically obtained when

we use a substantial number of tasks.

An important question then arises is that whether one could estimate the individual

benefit of hiding latency based on profiling measurements at the task level only. In

addition, such an estimation should be independent of the effect on cache locality. If

this is possible, which metric should be used to evaluate the overlapping technique? To

answer these questions, consider a queuing system as follows. For each process, one can

configure a queue of runnable tasks. The size of the runnable task queue is bounded by

the number of tasks per process. Tasks in the queue will be eventually served by a worker

thread. Tasks arrive in the queuing system once they have received all data needed to

become runnable. Tasks leave the system when they need more data to continue the

execution. Equation 3.1 presents Little’s law, which establishes a relation between the

system occupancy and the averaged number of runnable tasks per second, given the

response time.

Occupancy = RequestRate∗RepsonseTime (3.1)

where occupancy represents the averaged workload assigned to the worker thread relative

to the peak amount of workload that it can handle, RequestRate is the rate that tasks

become runnable, and ResponseTime is the time needed to execute a task.

It can be seen that one can measure RequestRate and RepsonseTime experimen-

tally by integrating a performance profiler into the task scheduler to collect the task

arrival rate and the response time of the worker thread. To illustrate the priciple, we

consider a queuing system with 10 tasks/process, where each task requires 0.001 seconds

to complete one iteration. These 10 tasks enter, leave, re-enter the system and so on. If

the performance profiler observes only 900 runnable tasks/second, the occupancy is 900
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x 0.001 = 90%. Thus, each task needs to become runnable at least 1000/10=100 times

per second to yield 100% occupancy. An intuitive explanation for this number is that the

queue must receive at least one runnable task every 0.001 second so that it can keep the

worker thread busy. We can see that, without communication, each task can be served

by the worker thread at the rate 1/0.001 = 1000 times per second. Thus, the remaining

900 times can be used for tolerating the communication overheads without any loss in

performance.

Little’s law is also useful in performance modeling, where we are also interested in

IdleTime, which is the interval that starts when a task leaves and ends when it re-enters the

system. RequestRate may depend on the IdleTime if the time for executing other runnable

tasks is smaller than IdleTime. Consider, for example, a matrix multiplication operation,

where each task owns NxN submatrices, performs 2∗N3 floating point operations and

moves 2 ∗ 8 ∗N2 bytes of double-precison data. Assume that the computing rate of a

worker thread is 16 GFLOP/s and the bandwidth of remote memory access is 1GB/s.

If the queuing system is configured with only one task per process, there is no other

task to tolerate the IdleTime. Thus, RequestRate = 1/(ResponseTime + IdleTime). As

a result, Occupancy is always less than 100% in this case. In addition, the higher the

IdleTime, the lower Occupancy. Indeed, assume that N = 28, Response time in this case

should be 2∗N3/(16 GFLOP/s)= 2−9 seconds and IdleTime is roughly 2∗8∗N2/ (1GB/s)

= 2−10. Thus, the occupancy is (2−9 + 2−10)−1 * 2−9 = 67%. When there are 4 tasks

per process, the problem size of each task is smaller (27). The new Response time is

2∗N3/(16 GFLOP/s)= 2−12 and the new IdleTime is 2∗8∗N2/ (1GB/s) = 2−12. Thus,

if one can sketch a scheduling plan (either algorithmicaly or by simulation) such that

the IdleTime can be hidden by the computation of at least 1 task, RequestRate will be

1/ResponseTime, resulting in an 100% Occupancy.

While reformulating MPI processes into tasks is straightforward, reinterpreting
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MPI communication calls as input and output is more involved. We next discuss how

Bamboo defines the input and output of a task.

Input and output

The execution of a task comprises a sequence of phases, each consisting of 3

modules: input, compute, and output. Unlike MPI processes, which explicitly pass

messages, tasks do not communicate directly. Instead, input and output specify a flow of

data from one task to another as follows. Input defines the data that a task needs from

others, as well as how and when such data can be safely injected into the internal data

structures of the task so that it can proceed to the execution. Output defines the data

produced by task’s computations as well as when the data is ready to be sent to another

task.

A question then arises is that whether or not the communication information

embedded in an MPI program is sufficient to express input and output. Information that

may be useful includes arguments for send and receive primitives such as message source

and destination, message size, tag, etc. In addition, the circumstances under which the

send and receive occur are also important. To answer this question, consider a simple

MPI example shown in Fig. 3.3, a common implementation of MPI Reduce based on a

Binomial tree structure. Each of the P processes has a parent and log(P) children. Except

for leaf nodes, processes have to wait for data from each child, compute a new localValue,

and at the end send the final localValue to the parent.

It is likely that one will express each individual Recv as input and the following

reduction operation as computation. This scheme, however, may not work efficiently

since a task comprises just a few instructions to perform the reduction operation. After

that, this task needs to yield the processor if the next input is not yet available (i.e. data

from the next child). Task switches are much more costly than the reduction operation.
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1 i f ( l e a f N o d e s ) MPI Send ( l o c a l V a l u e , p a r e n t )
2 e l s e
3 {
4 f o r ( s m a l l e s t c h i l d t o l a r g e s t c h i l d )
5 {
6 MPI Recv ( remoteValue , from a c h i l d )
7 l o c a l V a l u e = ReduceOp ( l o c a l V a l u e , r emoteVa lue )
8 }
9 i f ( h a s P a r e n t ) MPI Send ( l o c a l V a l u e , p a r e n t )

10 }
11 Computa t i ons . . .

Figure 3.3. A tree-based reduction, where each of the P processes has a parent and log(P)
children. Leaf nodes simply send data to their parent. Other nodes receive data from
each child, update local value, and send the final value to their parent.

Thus, the performance could be affected by the overhead of many task switches.

1 i f ( l e a f N o d e s ) MPI Send ( l o c a l V a l u e , p a r e n t )
2 e l s e
3 {
4 f o r ( s m a l l e s t c h i l d t o l a r g e s t c h i l d )
5 {
6 MPI I recv (& remoteVa lue [ c h i l d ] , from a c h i l d )
7 }
8 M P I W a i t a l l ( a l l c h i l d r e n )
9 f o r ( s m a l l e s t c h i l d t o l a r g e s t c h i l d )

10 l o c a l V a l u e = ReduceOp ( l o c a l V a l u e , r emoteVa lue [ c h i l d ] )
11 }
12 i f ( h a s P a r e n t ) MPI Send ( l o c a l V a l u e , p a r e n t )
13 }
14 Computa t i ons . . .

Figure 3.4. Buffering messages to eliminate anti-dependencies between Recvs

Consider the improved implementation of reduction shown in Figure 3.4. We

use a buffering technique that can eliminate the dependencies among MPI Recv calls,

thereby enabling multiple receive requests to happen at any order. If one express this

program into a task graph, each task defines multiple inputs, each corresponding to

Irecv a call. Once a task receives all inputs, it performs the reduction operations, makes

output available, and continues the computations after the reduction without yielding the

processor.

From this example, we can see that the programmer can express input in different

ways, which result in various execution behaviors. Unfortunately, static analysis is unable
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to reason about the pros and cons of each option. In addition, modifying the MPI source

code as shown in Fig. 3.4 should be avoided as it complicates the source code and

may change the performance of the original program. As a result, Bamboo provides

a programming interface based on user directives so that the programmer can design

the input in their own way. With this programming interface, the programmer does

not require to intrusively modify the MPI source code. Such programming model must

also be simple enough so that the programmer does not feel like working with a direct

data-driven programming model.

3.3.4 Programming interface

Bamboo presents a directive-based interface that allows the programmer to

quickly annotate an MPI application without intrusively modifying the original pro-

gram. To construct a task graph we first locate evaluation points, where tasks determine

when they have received all inputs so they can execute. In addition, Bamboo also de-

termines input windows, each covering a set of inputs that a task needs to check at an

evaluation point. Inputs within an input window enable not only the computations within

the window but all computations residing between the current and the next evaluation

points. To support the extraction of evaluation points and input windows, Bamboo

provides code region. Each code region defines an evaluation point and an input window,

which we next present.

Olap-region

A Bamboo program is a legal MPI program, augmented with one or more code

regions called olap-regions as shown in Fig. 3.5. An olap-region is a section of code

containing communication to be overlapped with computation. Olap-regions can be

nested. The entry into an olap-region is the evaluation point where a task either continues
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or it returns control to the scheduler because the required input data is not yet available.

Receive operations residing within an olap-region will be included in the input window

corresponding to the evaluation point of the olap-region. Bamboo preserves the execution

order of olap-regions, which a task runs sequentially, one after the other. However, there

is no implicit barrier at the exit of an olap-region. This allows a task to exit an olap-region

and continue the execution until it meets the following olap-region, where it can enter as

long as all inputs defined by the corresponding evaluation point and input window are

ready.

1 # pragma bamboo o l a p
2 {
3 . . .
4 # pragma bamboo o l a p
5 {
6 }
7 . . .
8 }
9 . . . Compu ta t i ons . . .

10 # pragma bamboo o l a p
11 { . . . }

Figure 3.5. An MPI program annotated with olap-regions

Communication blocks

Within an olap-region, send and receive calls are grouped in communication

blocks. There are two kinds of communication blocks: send and receive. A send block

contains Sends only. In most cases, a receive block contains Recvs only, except for the

following situation. If a Send consumes data obtained from a prior Recv (read after write

dependence), then it has to reside within an appropriate receive block, either the same

block as the Recv, or a later one. Communication blocks specify a partial ordering of

communication operations at the granularity of a block, including associated statements

that set up arguments for the communication routines, e.g. establish a destination process,

pack and unpack message buffers. While the statements within each block are executed in
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order, the totality of the statements contained within all the send blocks are independent

of the totality of statements contained within all the receive blocks. This partial ordering

enables Bamboo to reorder send and receive blocks. For example, Bamboo can move all

send blocks up front and outside of the olap-region, enabling all outputs to be sent out to

fulfill inputs from the current olap-region onwards. Bamboo does not reorder blocks of

the same type. However, it is worth noting that inputs can arrive in any order, as they

can be buffered upon arrival and then injected into task in the order specified by the

programmer.

1 # pragma bamboo o l a p
2 {
3 # pragma bamboo send
4 { . . . }
5 # pragma bamboo r e c e i v e
6 { . . . }
7 # pragma bamboo send
8 { . . . }
9 # pragma bamboo r e c e i v e

10 { . . . }
11 . . .
12 }

Figure 3.6. Annotation showing a single olap-region with enclosed send and receive
blocks

Computation block

In addition to communication blocks, an olap-region may contain a single compu-

tational block (AKA compute block). The compute block is optional and may contain

other olap-regions. The introduction of compute block does not provide any performance

benefit. Rather, it provides a means of merging 2 olap-regions as shown in Fig.3.7. The

semantics of the compute block is as follows. The compute block depends on all prior

communication blocks, and it has to be executed before successive communication blocks.

This implies that Bamboo cannot reorder communication blocks across the compute

block.
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1 # pragma bamboo o l a p
2 {
3 # pragma bamboo send
4 { . . . }
5 # pragma bamboo r e c e i v e
6 { . . . }
7 . . .
8 # pragma bamboo compute
9 {

10 c o m p u t a t i o n s
11 / / May ho ld olap−r e g i o n s
12 }
13 . . .
14 # pragma bamboo send
15 { . . . }
16 # pragma bamboo r e c e i v e
17 { . . . }
18 }

Figure 3.7. Optional computation block within an olap-region

3.3.5 Examples

We now present intuitive examples containing widely used communication pat-

terns arising in MPI applications. These examples demonstrate how existing MPI applica-

tions can be transformed into equivalent task graphs with no aggressive code modification

but only a modest amount of user annotations.

The first example is a Jacobi iterative solver for 3-dimensional Poisson’s equation.

This code repeatedly sweeps a 7-point stencil operator over a 3-dimensional mesh, each

updating a data element in the mesh using 6 neighboring values. This code also frequently

computes the residual error of the solution. The mesh update goes on until the residual

error is lower than a small threshold or a pre-defined number of iterations have elapsed,

whichever comes first. Owing to the dependency on nearest neighbor data, processes

communicate with others at the interface of their respective subdomains. We annotate

the MPI source code with an olap-region as shown in Fig. 3.8 (lines #4 to #24). The

translation of MPI Allreduce (line #27) will be handled automatically by Bamboo.

The olap-region annotated in the 3D Jacobi solver is for the 7-point stencil update,

where processes communicate with nearest neighbors at every mesh sweep. Since each
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process sends and receives different data, these 2 activities are independent of each other.

Thus, all MPI Isend calls are grouped in a send block while all MPI Irecv calls reside in

a receive block. Each process can start the local grid update and grid swapping once it has

received all data from its 6 neighbors. Thus, these instructions can be placed in a compute

block. Recall that compute block is optional. Thus, these instructions can be also appear

outside of the olap-region. There is no implicit barrier between the olap-region and the

MPI Allreduce operation. Thus, a task can start the Allreduce operation once it finishes

the update without coordinating with other tasks. Likewise, after having globalErr, which

is the maximum error among all tasks, a task can check the loop condition and go back to

the mesh update phase if this error still larger than threshold or it hasn’t reached maxIters

iterations.

1 f o r ( i t e r =0 ; i t e r <m a x I t e r s && g l o b a l E r r>t h r e s h o l d ; i t e r ++)
2 {
3 r e q c n t =0;
4 # pragma bamboo o l a p
5 {
6 # pragma bamboo r e c e i v e
7 {
8 i f ( e a s t N e i g h b o r ) MPI I recv ( . . . , e a s t N e i gh b o r I D , . . . , &r e q [ r e q c n t ++] ) ;
9 . . . west , n o r t h , sou th , up , . . .

10 i f ( downNeighbor ) MPI I recv ( . . . , downNeighborID , . . . , &r e q [ r e q c n t ++] ) ;
11 }
12 # pragma bamboo send
13 {
14 i f ( e a s t N e i g h b o r ) MPI Isend ( . . . , e a s t N e i gh b o r ID , . . . , &r e q [ r e q c n t ++] ) ;
15 . . . west , n o r t h , sou th , up , . . .
16 i f ( downNeighbor ) MPI Isend ( . . . , downNeighborID , . . . , &r e q [ r e q c n t ++] ) ;
17 }
18 # pragma bamboo compute
19 {
20 M P I W a i t a l l ( r e q c n t , r e q ) ;
21 u p d a t e ( Uold , Un ) ;
22 swap ( Uold , Un ) ;
23 }
24 }
25 i f ( i t e r % f r e q u e n c y ==0){ / / r ed uc e e r r o r e v e r y ” f r e q u e n c y ” i t e r a t i o n s
26 e r r = E r r o r ( Uold ) ;
27 MPI Al l r educe (& e r r , &g l o b a l E r r , . . . ) ;
28 }
29 }

Figure 3.8. First example: a 3D Jacobi iterative solver. Each process exchanges ghost-
cells with its 6 neighbors.
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1 # pragma bamboo o l a p
2 {
3 # pragma bamboo send
4 {
5 i f ( i s L e a f ( myRank ) )
6 MPI Send ( sbuf , . . . , p a r e n t , . . . ) ;
7 }
8 # pragma bamboo r e c e i v e
9 {

10 f o r ( c h i l d i n myChi ldren ) {
11 MPI Recv ( r e c v b u f + o f f s e t ( c h i l d ) , . . . , c h i l d , . . . ) ;
12 r e d u c e o p ( r e c v b u f ) ;
13 }
14 i f ( myRank != r o o t && i s L e a f ( myRank ) ==0)
15 MPI Send ( r e c v b u f , . . . , p a r e n t , . . . ) ;
16 }
17 }

Figure 3.9. Second example: an implementation of MPI Reduce using the binomial tree
algorithm. MPI Send called by non-leaf nodes are grouped into a receive block with
the MPI Recv calls since the send operation must wait for the completion of all receive
operations.

The second example is an implementation of the MPI Reduce operation using a

binomial tree-based algorithm as follows. The root node of the tree has log(P) children

and no parent. Leaf nodes of the tree only have a single parent and no children. Other

nodes are called internal nodes and have exactly one parent and log(P) children. In this

algorithm, each left node sends data to its parent. Other nodes receive data from children

and compute the local reduction operation. Except for the root node, processes send the

interim results to the parent. Since MPI Send called by leaf nodes are indepdent of other

activites, we place it in a send block. The MPI Send called by interal nodes has to wait

for the result of MPI Recv. Thus, we place these 2 calls in a receive block.

3.4 Task graph execution

Bamboo translates an annotated MPI program into a task graph. An instance of

such a graph comprises a set of tasks executing and communicating in a different manner

compared to the original MPI program. This section presents the Bamboo’s execution

and communication models, which explain the execution behaviors of tasks as well as the
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relation between the task execution and the communication handler and task scheduler.

3.4.1 Communication

Traditional communication models use handshake protocols to send messages

from source to destination. For example, a communication transaction of the 3-phase

handshake protocol begins with a request-to-send signal from the sender, followed by a

clear-to-send signal from the receiver, and ends with a data-transfer event from the sender.

During the communication, computations are blocked at the sender and receiver. Thus,

the program execution suffers from latencies caused by request-to-send and clear-to-send

signals and the time for data-transfer due to network bandwidth.

Bamboo, on the contrary, employs a non-imperative communication model by

relying on communication handlers that can operate independently of task computations.

Bamboo tasks communicate via messages, each corresponding to an edge of the task

graph. Thus, we also call the communication handler that services the communication

between tasks message handler. At the sender side, whenever an output is available, task

wraps it up into a message so the message handler can send the data to the destination.

The message handler maintains a buffer of messages. Thus, tasks do not have to wait for

a response of the message handler. Rather, tasks can immediately continue the execution.

At the receiver side, there is a message handler that listens for incoming messages. This

message handler also works concurrently with task execution. Thus, it does not matter

whether the receiving task is in the WAIT or EXEC state, or is executing when a message

arrives. The message handler may buffer incoming messages, and tasks will consume

buffered messages when they require inputs. Similar to MPI, messages will arrive at the

destination in the same order that they are sent. At the task graph level, each message

includes a fixed-size header 1 and a variable-length field for data. The header of each

1The message handler and lower layers of the network software stack may insert additional headers
into the message that they service.
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message consists of the information of source and destination, as well as a sequence

number. Sequence numbers are simply integers that are used to distinguish messages

between the same source and destination.

In addition to the tuple (source, destination, sequence number), the message

header may also contain performance meta-data that can be seen by the message handler

for optimization purposes. For example, aggregation is a flag indicating that the message

handler should bundle messages that have the same destination into a single message

to save the startup cost of sending small messages. A more sophisticated example is

that messages can have a flag indicating that they contain only the address of data.

Communicating by addresses is an effective optimization on computer platforms that

have a deep memory hierarchy such as GPU. On such platforms, tasks execute on the

GPU but communicate via the host. If tasks residing in the same GPU communicate

raw data, we will waste bandwidth of the PCIe connection between GPU and the host

memory. Thus, a task can simply send a message containing the address of data, with the

appropriate flag turned on so that the destination can interpret the message correctly.

3.4.2 Task scheduling

Based on the task dependency graph defined by Bamboo, the programmer can

exploit task-grained parallelism by instantiating a graph with more tasks than worker

threads. In the scenario of having a limited amount of resource (i.e. available worker

threads) compared to the actual computing demand (i.e. runnable tasks), task scheduling

plays an important role in realizing good performance. As a result, it is essential to

construct an execution model that clearly describes how tasks can be scheduled and the

task behavior during the execution of the graph.
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Task schedulers

The task graph’s runtime system employs a thread-pool model to execute tasks. In

particular, within a single memory address space, the runtime system can be configured

with one or multiple worker threads that run to completion. There is also a pool of

runnable tasks. This task pool can be implemented as a single queue or be split into

multiple queues, at the choice of the user. Each worker thread operates a scheduler,

which dynamically selects tasks in a task queue to execute. While each worker thread

is permanently bound to a processor, tasks can move among worker threads to balance

computations among processors.

Message-driven execution model

Fig.3.10 presents the message-driven execution model employed by Bamboo.

Unlike in the BSP model, where processes execute a sequence of communication and

computation phases, Bamboo tasks do not explicitly wait on communication. Rather, a

task runs until it meets the entrance of an olap-region (i.e. evaluation point), where it

checks whether or not all inputs are ready to advance the execution. If some input is not

available, the task returns control back to the scheduler corresponding to the processor

on which the task is running. Upon a task return, the scheduler selects another runnable

task to execute on the processor.

As previously mentioned, a task has an associated state, which is recognized by

the scheduler. Task’s state alternates between EXEC, WAIT, and an intermediate state

called firing rule evaluation as shown in Fig. 3.11. In this state transition diagram, circles

are states and arrows represent events. Firing rule can be considered as an object with

internal data and a method that a task uses to make the decision on state transition. Data

of the firing rule object includes arrived messages that have not been claimed by tasks.

The firing rule method returns true if the corresponding task has received all required
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messages defined within the current input window, otherwise it returns false. The state

transition is as follows. A task is runnable if and only if its state is EXEC. When a

task executes and meets an evaluation point, it invokes the firing rule method. If this

method returns false, task changes its state from EXEC to WAIT. Moreover, task has to

return control back to the scheduler due to lack of input data. In response to an incoming

message, a task that is the recipient of the message changes its state to EXEC if and only

if the current state is WAIT and the firing rule returns true. Once a task is already in the

EXEC state, it will not change state upon message arrivals. Rather, the firing rule object

memorizes message arrival events in its internal data.
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Figure 3.10. A message-driven execution model. Runnable tasks are scheduled to
execute until they require more data from others. Tasks do not wait on communication
but return control back to the schedulers. Upon message arrivals, idle tasks may become
runnable again.

Non-preemptive, prioritizable task execution

The execution of Bamboo tasks is non-preemptive, meaning that the scheduler

cannot suspend the execution of a task. Once a task is scheduled, it will run until its

state changes to WAIT or the program has finished. This design choice was made in the
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Figure 3.11. The transition between EXEC and WAIT states

interests of maintaining cache locality and reducing the number of task switches.

However, for irregular applications, where the amount of computation and com-

munication significantly varies among tasks, a task prioritization model is needed to

load balance the computation and overlap communication more efficiently. To this end,

Bamboo provides the programmer with a scheme to prioritize tasks as follows. Each

task has a priority that can be seen by the scheduler. The priority of a task is specified

by the programmer and may change during the task execution. The parameters of a task

scheduling algorithm now include both task state and task priority. Specifically, runnable

tasks within a memory address space will line up in a priority queue. Among these tasks,

the one with highest priority will be scheduled first.

To enhance the ratio of irregular communication that can be overlapped, Bamboo

provides a task cooperation scheme. In this scheme, a task may cooperatively yield

control even when it has enough data to continue the execution. The effect is to reduce

the response time for tasks with high priorities, at the cost of possible increases in cache

miss rate.
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Figure 3.12. Among runnable tasks, the one with highest priority is scheduled. Tasks
with negative priority return control even when they are runnable

3.5 Related work

Similar to Bamboo, Adaptive MPI (AMPI) [58] also applies the virtualization

technique, but with a block-and-yield approach. In particular, multiple virtual processors

(VPs) are spawned within an MPI process. Each VP is mapped into an OS thread.

Whenever a running VP meets MPI Recv, it blocks the execution and yields the physical

processor to another VP. If data required by a VP has arrived, this VP can be rescheduled

to continue its execution. The limitation of the block-and-yield technique is that the

overhead of a large number of context switches may become a bottleneck. AMPI is

implemented on top of Charm++ [60], which is built on top of MPI. Thus, AMPI can take

advantage of the process migration capability supported by Charm++, thereby enabling

dynamic load balancing. Like AMPI, Fine-grained MPI (FG-MPI) [59] applies the

virtualization technique with a similar block-and-yield approach. However, FG-MPI

integrates its runtime system into MPICH2, a popular MPI implementation. To enable

faster context-switching and lower communication and synchronization overheads, the
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runtime system of FG-MPI employs a light-weight coroutine library, which provides

more efficient yield for switching context between coroutines. FG-MPI, however, does

not support process migration. By comparison, Bamboo does not employ the block-and-

yield technique. Instead, Bamboo relies on a task dependency graph, where dependencies

carry information of flows of data among tasks rather than an individual MPI call. In

addition, instead of mapping a task to an OS thread, a Bamboo task is a user-defined

thread. Thus, the task and data dependency representation of Bamboo allow a runtime

system to schedule tasks more efficiently. Bamboo does not yet support task migration

across processes. However, the prioritized task execution model in Bamboo supports

dynamic load balancing to some extent.

Marjanovi et al. presented MPI/SMPSs [25], a hybrid model of MPI and dataflow

that can overlap communication among MPI processes. In this hybrid model, the pro-

grammer taskifies MPI calls, specifying task inputs and outputs. As noted by the authors,

taskifying communication may introduce potential deadlock. To resolve this issue, the

scheduler forces the execution of tasks in the same order of creation, which may cause

a negative effect in the application performance. HCMPI (Habanero-C MPI) employs

a similar approach that requires the programmer to taskify MPI calls [26]. These two

programming models do not employ any knowledge of MPI. By comparison, Bamboo

relies on a translator to construct the task graph automatically, using domain specific

knowledge of the MPI interface.

PLASMA [23] optimizes dense linear algebra applications such as LU factor-

ization by dynamically scheduling a DAG (directed acyclic graph). DAGuE [61] is a

framework that schedules a DAG on distributed memory. DPLASMA [24] is a distributed-

memory implementation of linear algebra factorizations (Cholesky, LU, QR), and uses

DAGuE. Although a DAG can be automatically translated from a serial code, efficiently

distributing DAG tasks requires addition input from the user. DAGuEs user specifies a
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modifier, telling DAGuE how to transfer data from one task to another. By comparison,

we utilize dependence information inherent to MPI code bases, where locality is already

well considered. As a result, the programmer does not need to modify the translated code

(which is often complicated) before executing it, though they do have to specify a modest

amount of annotation.

3.6 Summary

1. Message Passing Interface (MPI) is a de facto standard for distributed-memory

communication. Bulk Synchronous Parallel (BSP) is a programming model com-

monly used to develop MPI applications. However, programs written under the

BSP model have to be highly optimized to deliver expected performance rates at

large scales. For example, split-phase coding is a popular optimization technique

that overlaps communication with computation. However, optimizing MPI code

using split-phase coding is challenging since it requires non-trivial scheduling and

communication policies to be embedded in the program, complicating the code

and making it error-prone.

2. Bamboo factors scheduling issues out of the program execution by reformulating

MPI code into a task dependency graph in which vertices are tasks containing

computation code and edges are data dependencies between tasks. The graph

maintains a partial ordering over the execution of tasks of the graph, enabling

an external scheduler to run tasks based on the availability of data. In addition,

Bamboo factors communication decisions out of the program execution by having

a runtime communication handler to service the communication among tasks. To

automate the translation from MPI source into the form of a task dependency graph,

Bamboo employs a source-to-source translator. Though most of the transformation
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phases are fully automatic, the translator requires a modest amount of user annota-

tions in order to generate high quality code. Bamboo introduces a directive-based

programming model so the programmer can quickly annotate MPI code.

3. Bamboo also introduces communication and execution models to describe task

behavior at runtime. Tasks communicate via messages, serviced by message

handlers that can run concurrently with the task. The execution of tasks is driven

by messages. A task becomes runnable once all required messages have arrived.

Tasks run until they need to wait for messages from others, at which time they

return control back to the scheduler. Though task execution is non-preemptive,

tasks can cooperatively yield control by setting a low priority.
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Chapter 4

Design and implementation

4.1 Software stack overview

Bamboo relies on a source-to-source translator to automatically transform an

annotated MPI program into an equivalent graph-based, latency-tolerant form presented

in Chapter 3. Although MPI offers hundreds of routines, a small subset of them can be

used to implement the rest. For the sake of portability, we split the Bamboo translator into

2 software layers as shown in Fig. 4.1. The bottom layer handles a minimal set of MPI

point-to-point primitives. We call this layer core message passing. An implementation of

this layer highly depends on a runtime system that executes the generated graph program.

Since the number of MPI routines supported by the core message passing layer is small

(fewer than 10), porting this layer to similar runtime systems should not pose a big

challenge. While the core message passing layer supports only basic primitives, the top

layer of the Bamboo software stack supports the translation of complete MPI programs,

which are commonly seen in practice. As a result, this layer supports a substantially richer

set of MPI routines, including communicator splitting and collective operations. For that

reason, we call it utility layer. This top layer divides into a few sublayers. Unlike the

core message passing layer, the upper layers are independent of the underlying runtime

system.

45



46

!"#$%&#$"'( )&*+""( ,*-./*/'#&#$"'( 0&.$1&#$"'( 21%&'3/1(4/35( 6"'3.78$"'(

)&*+""(9/8$:'(

! ;."+
&.(-"$

'#<#"<
-"$'#

((

"  =#71
>(?@?

(!?,(
-A$*$

#$%/8(
#"(1/B

$'/(#5
/(3"AA

/8-"'
1$':(

#&8C(:
A&-5(

"D(&'(
!?,(&

--.$3&
#$"'(

"  !?,
E6F!

!EGF
HI9(

"  J7/
A>(#5/

(A7'#$
*/(8>

8#/*(

! =7+3
"**

7'$3&
#"A(.&

>/A((

"  2'($*
-./*

/'#&#
$"'("D

(!?,E
6"**

E8-.$#
(

! )&*
+""K8

(3"../
3#$%/(

(

"  6"../
3#$%/(

$8(+A"
C/'(1

"L'($
'#"(?

@?(

! M8/A
<1/B$'

/1(87
+-A":

A&*8
(

"  2('"
A*&.(

!?,(-
A":A&

*(

N44?OPP)2!)FFQM6=9QR9M( JM2I6F!!(STP@UP@SVW(( @U(

)&*+""($*-./*/'#&#$"'(
"D(3"../3#$%/(A"7#$'/8(

RX#/A'&.(H7'#$*/(=>8#/*(

6"A/(*/88&:/(-&88$':(

6"../3#$%/(
"D(3"../3#$%/(A"7#$'/8(

=7+3"**7'$3&#"A(

4&AA&:"'(
Y6$3"##$(&'1()&1/'Z(S[\Y6$3"##$Z(VV\(

M8/A<1/B$'/1(87+-A":A&*8(

M
#$
.$#
>(
(

Figure 4.1. The software stack of the Bamboo source-to-source translator. The core
message passing layer employs services provided by a runtime system. On top of this
layer are implementations of MPI high-level routines, which are independent of the
runtime system.

Currently the core message passing layer of the Bamboo software stack relies

on services provided by Tarragon [52–54], a runtime system designed and developed by

Pietro Cicotti. The reason for choosing Tarragon is that this runtime system has strongly

demonstrated its ability to overlap communication with computation via scheduling a task

dependency graph [52–54, 62, 63]. A Tarragon program generated by Bamboo comprises

codes to define, construct, launch, and destruct a task dependency graph. However, this

chapter will discuss only the code that defines the graph behavior, which must be derived

from a specific application. The codes for constructing, launching, and destructing a task

graph will not be presented as they are fairly simple and generic.

We employ the ROSE compiler framework [64] to implement the source-to-

source translator. This framework comprises afrontend, a middle-end, and a backend

as shown in the first column of Fig. 4.2. The frontend parses standard C source and

generates an Intermediate Representation (IR), which is an in-memory Abstract Syntax

Tree (AST). The middle-end translates the program via modifying the IR. Finally, the

back-end completes the translation process by converting the IR back to source code.

Fundamental modules of Bamboo are built on top of the middle-end of the ROSE
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compiler framework. Bamboo also includes an auxiliary module called MPI Extractor,

sitting between the frontend and middle-end to extract information about the parameters

passed to MPI functions, since the frontend considers the MPI calls as ordinary C

function calls. The second and third columns of Fig. 4.2 describe fundamental modules

of Bamboo, which are as follows. The annotation handler extracts information from each

Bamboo directive along with the corresponding location within the IR. The analyzer and

transformer modify the IR to reinterpret the program behavior. The optimizer applies

various transformations to improve the quality of the generated source code.
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Figure 4.2. Bamboo is built on top of the ROSE compiler framework, which includes
frontend, middle-end, and backend. Bamboo focuses in the middle-end, transforming and
optimizing an intermediate representation generated by the frontend.

The remainder of this chapter presents implementation details of the Bamboo

translator, starting with a brief overview of the Tarragon runtime system.

4.2 Tarragon in a nutshell

Tarragon is a library for implementing distributed-memory applications using

an explicit task-dependency graph. The library includes an interface for developing the
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graph program and a run-time system for operating its execution. This section briefly

presents the abstract model and implementation of Tarragon, as well as a few extensions

to the runtime system investigated in this dissertation.

4.2.1 Tarragon interface

The Tarragon programmer explicitly constructs a task-dependency graph using

an abstract interface provided by Tarragon, including four basic classes: Graph, Task,

Dependency, and Map. Graph is a container of user-defined Tasks, which encapsulates

application-dependent code. Dependency defines data dependencies between Tasks

(AKA edges of the graph). The programmer explicitly connects Tasks, and Tarragon

will automatically create Dependency objects for these connections. Map defines a

multi-dimensional coordinate system, representing the Task topology.

The behavior of Tasks is defined by the programmer via 3 methods: vinit(),

vexecute(), and vinject(). Vinit() initializes task data, and this method runs only for once

at the beginning of the graph program. Vexecute() defines computation and may produce

outputs for other tasks via messages. Tarragon pre-defines put(), a method to produce

output. Put() is the sole data motion primitive defined by the Tarragon Task interface.

This method will notify the Tarragon runtime system that a message is ready to be sent.

Put() is asynchronous and hence a task can immediately continue its execution without

waiting for a response from the runtime system. Vinject() is a lightweight method that

defines a task’s response on the arrival of messages. Although the programmer defines

3 methods vinit(), vexecute(), and vinject() of Task, they do not explicitly invoke these

methods. Rather, it is the runtime system that executes tasks (by invoking vinit() and

vexecute()) and handles communication among tasks (by invoking vinject()). We next

present the implementation of the runtime system and the interaction between tasks and

components of the runtime system.
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4.2.2 Tarragon runtime system

Tarragon employs a distributed-memory runtime system for task graph program

execution. The Tarragon runtime system comprises a task scheduler and a communication

handler, built on a threading library (Pthreads) and communication library (MPI), re-

spectively. Specifically, the runtime system is a distributed-memory program comprising

multiple processes, each split into multiple threads. The main thread instantiates graphs

and works as a communication handler. Thus, we also call this thread a message handler

thread. Other threads operate as worker threads. Message handler threads communicate

with each other using MPI send and receive primitives. Worker threads, however, do not

communicate. Instead, these threads put messages into a buffer, which will be consumed

by the message handler thread. Since there may be multiple worker threads within a

process, the message buffer needs to be locked before a worker thread can safely insert a

message. Both message handler and worker threads run to completion.

Shown in Fig. 4.3 is the execution of a task graph program, beginning with the

initialization of the Tarragon runtime system. The runtime system then instantiates tasks

of the graph. These tasks are executed by worker threads. Messages among tasks are

handled by the message handler thread. Tasks cannot occupy worker threads when

waiting for messages. Rather, tasks yield control when they require data from others.

The communication handler of the runtime system delivers messages from source to

destination. Upon the arrival of a message, the runtime system invokes vinject() of

the receiver. This method determines whether the task has received all the messages

necessary to become runnable. The interaction between tasks and the runtime system

components (i.e. communication handler and scheduler) is via state. Specifically, each

task maintains a state that can be seen by the runtime system. The task state can be

recognized by the scheduler of the runtime system, enabling the scheduler to invoke



50

!""#$%%&'(&))*+,-.*/.+0 '0"'120'"01'34/5,/0&/42/1/605'"7)5'101'&)4'")460
89%:;%<8:=00

7>?@?AB?CD0"AEEAFG>0 7>?@?AB?CD0"AEEAFG>0

(#70HEGIDJJ080 (#70HEGIDJJ0>K:0

,EDA@D0FEAHL0 ,EDA@D0FEAHL0

M?>AB?CD0"AEEAFG>0 M?>AB?CD0"AEEAFG>0

N0

N0

&-
#0

OE
AH
L0

&-
#0

7>?@?AB?CD%DPDIQ@D0OEAHL0
N0

OE
AH
L0

7>?@?AB?CD%DPDIQ@D0OEAHL0
N0

&-
#0 R?>SDI@TU0

3'7"0 /V/,0

.)5/0

RDPDIQ@DTU0
RDPDIQ@DTU0

RDPDIQ@DTU0

R?>SDI@TU0
3'7"0 /V/,0

RDPDIQ@DTU0
RDPDIQ@DTU0

RDPDIQ@DTU0

N0

N0
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vexecute() when the state is runnable. After executing vexecute(), if the task needs to wait

for data from other tasks, it changes the state to wait and yields control. The scheduler

will swap in another task and invoke the vexecute() method of the new task. Each worker

thread maintains a task scheduler, dequeuing one task at a time from a queue of runnable

tasks. To support task priority, each task queue can be configured as a priority queue.

Worker threads can only see task meta-data, including task state and priority. These

threads cannot write to task’s data, nor suspend the execution of a task. Once a task

finishes executing, it exits the graph mode and return control to the runtime system to

launch another graph or to finalize the application.

4.2.3 Extensions to the runtime system

To obtain specific optimizations required by a few classes of applications and

platforms, this dissertation proposes a few extensions to the design and implementation

of the Tarragon runtime system as follows.

First, Tarragon was originally built for SMP (Symmetric Multiprocessing) clusters.

Thus, the Tarragon communication handler can process messages stored in processor

memory only. For applications that offload compute-intensive work and corresponding

data to accelerators such as Graphics Processing Units (GPUs), the occupying task

suspends its execution when transferring data between host memory (i.e. processor

memory) and device memory, preventing the resulting delay from being hidden by any

computations on the host and device. Thus, we extended the communication handler so

that data transfer between host and device is transparent to the programmer and can be

overlapped with computation. In particular, the incoming and outgoing message buffers

can now store data in device memory. We next extended the communication handler to

handle data transfer between host and device. In addition, if a message is to be transferred

to the device memory, the runtime system will not invoke the vinject() method until
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this data transfer completes. This extension factors host-device transfer out of the task

execution. Thus, it allows task computations (on host, device, or both) to be overlapped

with data transfer between host and device.

Second, the Tarragon scheduler was originally designed to keep tasks executing

as long as they are runnable. Even when a task is willing to relinquish control in the

middle of its execution (which can be done by unconditionally jumping over the last

instruction of the vexecute() method), it will be immediately rescheduled by the scheduler.

In certain situations, tasks should work more cooperatively by yielding control to other

tasks. To this end, we extended the Tarragon scheduler to allow a task to return control at

the time of its choosing. In particular, the value of task priority is divided into positive

and negative domains. We modified the scheduler so that when it observes an occupying

task leaving with a negative priority, it will put the task back to the task queue and select

another task with the highest priority to execute. With this scheme, a task can relinquish

control at any time by setting its priority to a negative value, save the latest instruction,

and return from the vexecute() method.

4.3 Translation: core message passing layer

We translate MPI applications into the form of a task dependency graph operating

under the control of the Tarragon runtime system. MPI consists of a small set of funda-

mental point-to-point primitives and a predefined process set called MPI COMM WORLD

communicator. Based on this minimal set of MPI primitives, the MPI programmer can

implement any application. The core message passing layer of the Bamboo translator

reformulates an MPI application programmed with these primitives into its equivalent

task dependency graph. In particular, the core message passing layer supports rank

and size queries (MPI Comm rank and MPI Comm size), point-to-point communication

routines (MPI Send, MPI Isend, MPI Recv, MPI Irecv, MPI Wait, and MPI Waitall),
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and MPI COMM WORLD communicator. In this section, we present the implementation

of this layer, relying on the Tarragon runtime system as shown in Fig. 4.4. The implemen-

tation of the Bamboo utility layer, which is independent of Tarragon, will be presented in

the next section.
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Figure 4.4. The core message passing layer queries services provided by Tarragon
runtime system

4.3.1 Block reordering

As presented in Chapter 3, the input source of the Bamboo translator is annotated

with olap-regions, each consisting of communication blocks classified into send and

receive blocks, which further contain MPI function calls. Due to the differences between

MPI and Bamboo’s interpretation, Bamboo performs a simple code transformation called

block reordering. In particular, Bamboo will reorder certain communication blocks in

certain situations. For example, the left side of Tab. 4.1 shows a common communication

pattern used in MPI applications that will be restructured by Bamboo. Specifically, Sends

(in the send block) issued by a process match up with receives (in the receive block) of

the other process encoded in the same iteration. Bamboo has to reorder the send block

due to the following reason. A task is runnable only when all necessary data is available.

If we place the corresponding send within the same iteration as the corresponding receive,

data sent in one iteration will not be received until the next. But, the algorithm needs
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to receive data within the same iteration. To cope with this timing problem, Bamboo

reorders the send block, advancing it in time so that the sending and receiving activities

reside in different iterations. Bamboo will set up a pipeline, replicating the send block to

the front of, and outside, the iteration loop. It also migrates the existing call to the end of

the loop body, adding an appropriate guard derived from the loop iteration control logic.

After reordering, the transformed code appears as shown in the right side of Tab. 4.1.

The send and receive blocks now reside in different iterations, preserving the meaning of

the original code.

Table 4.1. Left: a typical MPI program that requires code reordering. Sends within the
send block of a process match with receives within the receive block of another process
in the same iteration. Right: The same code with send reordered.

Before reordering After reordering

1 # pragma bamboo o l a p

2 f o r ( i =1 ; i<= n I t e r s ; i ++){

3 Rece ive b l o c k

4 Send b l o c k

5 Compute b l o c k

6 }

1 i =1

2 i f ( i<= n i t e r s ) Send b l o c k

3 # pragma bamboo o l a p

4 f o r ( ; i<= n I t e r s ; ) {

5 Rece ive b l o c k

6 Compute b l o c k

7 i ++

8 i f ( i<= n i t e r s )

9 Send b l o c k

10 }

4.3.2 Code outlining

As described in Sec. 4.2, Tarragon provides an abstract class called Task. Bamboo

derives a concrete Task class from this abstract class, implementing the three methods

of Task: vinit(), vexecute(), and vinject(). Code outlining is the technique that Bamboo

uses to generate code for these methods. Lines 1 to 10 of Fig. 4.5 show a code snippet

containing an olap-region in a universal form where both loop and conditional statement
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(in the loop) present.

Olap-regions that contain either loop or conditional statement, or none of them

can be treated as special cases of this form. The code outlining is as follows. Code

prior to the first olap-region is simply outlined to vinit() without being modified. The

remainder, including olap-regions and unannotated codes, is outlined to vexecute() as

shown by lines 14 to 49 of Fig. 4.5. Receive blocks in olap-regions are also processed

further to implement vinject(), which will be presented later on. Each olap-region will

be split into olap-init and olap-body portions. Olap-init contains send blocks of the

first iteration of the loop, which enable the input for the first iteration of the current

olap-region. Since send blocks in olap-init of an olap-region correspond to outputs of

the prior olap-region, it is not neccessary to check if the data is available to be sent as

they are definitely ready. The olap-body code, however, requires all inputs to be available

before it can execute. Note that before a task executes the olap-body code, it returns

control back to the scheduler whether or not all inputs have been received. If some inputs

are not ready, the task changes its state to WAIT before returning, and the scheduler will

pick another task to execute. If all inputs are ready, task state will remain EXEC, and

the scheduler will immediately reschedule it. Although in the latter case we may waste

a few clock cycles for 2 unconditional jump instructions and a method invocation, the

scheduler can obtain important information about the task execution, e.g. information

that can benefit performance profiling and enable smart scheduling algorithms for load

balancing.

4.3.3 MPI transformation

Once the program has been outlined to vinit() and vexecute(), MPI routines are

either translated directly into Tarragon equivalent routines, or analyzed for valuable

information, or simply removed.
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1 p r i o r codes
2 # pragma bamboo o l a p
3 f o r ( i n t i t e r =0 ; i t e r <m a x I t e r s ; i t e r ++){
4 # pragma bamboo send
5 {}
6 # pragma bamboo r e c e i v e
7 {}
8 # pragma bamboo compute{}
9 }

10 s u c c e s s i v e codes
11
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13
14 v e x e c u t e ( ) {
15 goto o l a p I n i t / Body . . . ; / / e i t h e r I n i t or Body
16 . . .
17 p r i o r codes
18 o l a p I n i t N :
19 i t e r = 0 ;
20 i f ( i t e r <m a x I t e r s )
21 {
22 # pragma bamboo send
23 {
24 }
25 i f ( i n p u t R e a d y == f a l s e ) s t a t e = WAIT;
26 goto e x i t ;
27 }
28 olapBodyN :
29 i f ( i t e r <m a x I t e r s )
30 {
31 # pragma bamboo r e c e i v e
32 {
33 }
34 # pragma bamboo compute
35 {
36 }
37 i t e r ++;
38 i f ( i t e r <m a x I t e r s )
39 {
40 # pragma bamboo send
41 {
42 }
43 i f ( i n p u t R e a d y == f a l s e ) s t a t e = WAIT;
44 }
45 goto e x i t ;
46 } e l s e { u p d a t e C u r r e n t O l a p ( ) ;}
47 s u c c e s s i v e codes . . .
48 e x i t : / / i f s t a t e i s EXEC , t a s k w i l l be r e s c h e d u l e d i m m e d i a t e l y
49 }

Figure 4.5. Bamboo outlines an annotated MPI program into vexecute(). Before program
execution can enter the body of an olap-region, the status of all inputs corresponding to
the olap-region is checked to determine the task state.
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MPI comm rank and MPI Comm size

The core message passing layer supports the MPI COMM WORLD communica-

tor. Thus MPI comm rank and MPI Comm size routines return the rank of a process and

the total number of MPI processes in this communicator, respectively. Under the form of

a task dependency graph, we also have task ID and graph size. Since the virtualization

from MPI process to task does not change the communication pattern, Bamboo simply

rewrites the calls to MPI Comm rank() and MPI Comm size() to corresponding method

invocations that return the task ID and number of tasks in the graph, respectively.

MPI point-to-point communication primitives

Bamboo currently supports the following 6 point-to-point communication primi-

tives: MPI Send, MPI Isend, MPI Recv, MPI Irecv, MPI Wait, and MPI Waitall. The

translation of these functions is as follows.

• MPI Send and MPI Isend (send): each send is translated to a task output. In

particular, Bamboo creates a message and fills the message header with information

that can help the Tarragon communication handler deliver the output data from the

task to the destination. Then Bamboo copies communicated data from the outgoing

buffer of send into the data buffer of the message. Finally, Bamboo generates an

invocation of put(), notifying the communication handler of the Tarragon runtime

system that the output data is ready to be shipped.

• MPI Recv and MPI Irecv (recv): Tasks do not explicitly invoke any method to

receive data from other tasks. Instead, the message handler thread receives and

buffers incoming messages. When a destination task stops its execution, the

worker thread will invoke vinject() of the task to hand over the message to task.

This method also determines whether the task can change its state from WAIT
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to EXEC. Bamboo uses all recv calls within an olap-region, together with any

conditional statements connected with them, to implement vinject(). Details of

vinject() implementation will be discussed in Sec. 4.3.4. It’s worth noticing that

vinject() can be invoked by the runtime system even when task state is EXEC but

the task has not been scheduled to execute. In this case the task will remain at the

EXEC state. However, it may happen that a task over-receives data that are required

by multiple executions of vexecute(). Thus, Bamboo has to generate code so that

each task can keep track of these messages for later uses. In addition, when a task

is about to leave vexecute() after one execution, it only changes state to WAIT if

input data for the next execution is not ready, as shown in the code inlining. If

tasks fail to do so, they will be idle forever since vinject() was already invoked

when task over-received messages and thus can’t be invoked again. Details of how

Bamboo handles this case will be also discussed in Sec. 4.3.4.

• MPI Wait and MPI Waitall: Recall that each olap-region requires all inputs to be

available before it can execute. Due to this characteristic, waiting at MPI Wait and

MPI Waitall is no longer necessary. As a result, Bamboo simply removes these

function calls.

4.3.4 Firing rule and yielding rule

During execution, the task state cycles between WAIT and EXEC. Whereas the

task state can change from EXEC into WAIT via vexecute(), it can move from WAIT to

EXEC via vinject(). The condition that determines when vinject() can enable a transition

from WAIT to EXEC is called the firing rule. The formula that vexecute() uses to reverse

the state transition from EXEC into WAIT is called the yielding rule. Bamboo extracts

information from MPI receive calls and associated conditional statements to generate

firing and yielding rules.
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Let m and C be, respectively, a message possibly received by a process in an

olap-region and the associated conditional statements. Whether a particular process

should wait for message m or not is subject to the evaluation of the condition C. Thus,

the firing rule for an olap-region can be written in the conjunctive normal form.

∧
(¬Ci

∨
mi) (4.1)

The yielding rule, on the contrary, can be presented in the disjunctive normal

form.

∨
(Ci

∧
¬mi) (4.2)

Where i ranges from 1 to the number of messages possibly received by a process

in an olap-region and mi is true means that message i has arrived.

Lines 1 to 12 in Fig. 4.6 present an MPI example containing an olap-region

where each process receives messages from multiple processes. The implementation of

the firing rule is shown at lines 15 to 34 in Fig. 4.6, where a task changes its state into

EXEC if and only if all required messages are available. This requires the communication

handler of the runtime system to invoke vinject() every time a message arrives. Bamboo

reuses the code from line 17 to line 27 for implementing the yielding rule, as a task

can run this code for only once to determine whether or not it needs to yield control to

another task.

4.3.5 Interprocedural translation

The code transformation and analysis modules of Bamboo may need to run across

procedures. For instance, Fig. 4.7 presents an example where the source codes of olap-

region and communication blocks (i.e. send block and receive block) reside in different
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1 # pragma bamboo o l a p
2 {
3 # pragma bamboo r e c e i v e
4 {
5 f o r ( i n t i =0 ; i<n u m P a r t n e r s ; i ++){
6 i f ( c o n d i t i o n ( i ) )
7 MPI Recv ( . . . , i , . . . ) ;
8 }
9 }

10 # pragma bamboo send
11 . . .
12 }
13
14 −−−−−−−−−−−−−−−−−−−−
15 void t a s k : : v i n j e c t ( message msg ) {
16 messsage . push ( msg . sou rce , msg ) ;
17 bool f i r e a b l e = t rue ;
18 f o r ( i n t i =0 ; i<n u m P a r t n e r s ; i ++){
19 i f ( c o n d i t i o n ( i ) )
20 i f ( message [ i ] == NULL) {
21 f i r e a b l e = f a l s e ;
22 goto e x i t ;
23 }
24 }
25 e x i t :
26 i f ( f i r e a b l e ) s t a t e = EXEC;
27 e l s e s t a t e = WAIT;
28 }
29
30 whi le ( t rue ) { / / run by t h e communica t ion h a n d l e r
31 l i s t e n f o r a message
32 i n t d e s t = message . d e s t i n a t i o n ;
33 t a s k G r a p h [ d e s t ] . v i n j e c t ( message ) ;
34 }

Figure 4.6. Lines 1-12: an MPI code annotated with olap-region. Lines 15-34: the
firing rule code for the olap-region. The yielding rule can be obtained by simply reusing
vinject() code.
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procedures. To generate firing and yielding rules for the olap-region, the translator needs

information in the receive block. Inlining is a technique that exposes the calling context

to the procedure’s body and the procedure’s side effect on the caller. Bamboo performs

inlining, and the process is as follows. If a procedure other than main() directly or

indirectly invokes MPI calls, Bamboo registers it as an MPI-invoking procedure. Bamboo

will subsequently inline all MPI-invoking procedures from the lowest to the highest

calling levels. The inlining process is transparent to the programmer and does not require

any annotation. Moreover, since Bamboo inlines MPI-invoking procedures only, the

amount of code requiring inlining is small. Our inlining strategy, however, currently does

not support recursive procedures.
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Figure 4.7. A multigrid solver with call chains containing MPI invocations. Bamboo
registers procedures that directly or indirectly invoke MPI calls as an MPI-invoking
procedure. It then inlines all MPI-invoking procedures from the lowest to the highest
calling levels.

4.3.6 Message buffer recycling

Under the data-driven model that Bamboo supports, tasks do not directly commu-

nicate with each other. Instead, they produce output for other tasks via messages, which
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will be delivered by the communication handler of the runtime system. The overhead of

allocating and deallocating memory for messages is significant, especially when tasks

communicate with many small messages. To avoid such overheads, the communication

handler of the Tarragon runtime system and tasks of the graph maintain their own message

pool. The memory buffer allocated for each message is fixed, enabling it to be reused

for data input/output of any size. For each incoming input, the communication handler

extracts a message from its message pool to buffer the data. This message will be passed

to the destination task. After this task reads the data of the message, it will not delete the

message but keep it in the message pool for later use as follows. When the task produces

output for another task, it will extract the message from the message pool and copy data

to the message buffer. This message will be passed to the communication handler via

the put() method. Thus, we can see that tasks and the communication handler maintain

a circulating message system, where after a certain point of the program execution no

further message creation is required. The overheads of allocating initial messages will be

amortized by the total execution time of the program.

With the current implementation of the message buffer recycling mechanism, the

buffer size is fixed and must be at least equal to the size of the largest message used in the

program. Thus, if at some phase in the application, tasks communicate on many small

messages with high degree of parallelism, we may run out of memory. For example, in

the LU factorization algorithm the largest message can be 512MB or even larger. If we

run the corresponding task graph with 220 tasks, each task needs to buffer log220

2 *512MB

= 10GB when the program performs a barrier operation. This memory demand is not

affordable as a compute node may contain many tasks. An efficient remedy for this

problem is that when the size of a message is larger than a pre-defined threshold, we

split it into multiple chunks. The threshold can be significant so that the startup costs are

negligible. Currently this capability is not yet supported by Bamboo, since we haven’t
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employed that many tasks. However, we will implement this approach in a near future.

4.4 Translation: utility layer

On top of the core message passing substrate, hundreds of high-level routines

can be built. These routines include collective functions and communicator support.

This section presents a library-based approach that allows system vendors and MPI

programmers to easily translate a custom implementation of these routines into a task

graph form. Bamboo also includes its own implementation of commonly used routines.

4.4.1 Collective

While MPI specifies the interface of collective operations, it does not insist on a

particular implementation of these functions. Thus, the programmer is free to implement

the collectives according to the needs of the hardware and the application. Bamboo also

includes its own implementation of collective functions. In particular, Bamboo maintains

a library implementing widely used collective functions, by breaking them down into

their point-to-point components. The source-to-source translator will automatically detect

non-point-to-point MPI function calls in the MPI input source and inline corresponding

implementations into the program’s source code before translating these codes together

into a task graph form.

Bamboo employs the AST merge mechanism provided by the ROSE compiler

framework as shown in Fig. 4.8. This merge mechanism allows the ASTs generated

from source codes in different files to be merged into a single AST. In order to avoid any

possible conflict between MPI and Bamboo libraries, all routines in the Bamboo library

start with the prefix Bamboo instead of MPI. For example, the MPI Barrier() routine in

the MPI collective interface corresponds to the Bamboo Barrier() implementation in the

Bamboo library. Collective calls in the MPI program, however, do not have to be modified.
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Bamboo automatically renames the MPI prefix of collective calls (e.g. MPI Allreduce

to Bamboo Allreduce), then it inlines the code of Bamboo-prefixed functions into the

application. We call this mechanism plug-and-translate since the programmer can easily

incorporate a custom implementation of collective operation into the library and translate

it with the application.
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int Bamboo_Barrier(MPI_Comm comm){ 
  #pragma bamboo olap  
  for (int step = 1; step < size; step<<=1) { 
      MPI_Send(1 byte to (rank+step)%size, comm) 
      MPI_Recv(1 byte from (rank-step+size)%size, comm) 
  } 
   return SUCCESS; 
}  
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  comm_0 = comm 
  #pragma bamboo olap  
  for (int step = 1; step < size; step<<=1) { 
      MPI_Send(1 byte to (rank+step)%size, comm_0) 
      MPI_Recv(1 byte from (rank-step+size)%size, comm_0) 
  } 
  error = SUCCESS; 
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Figure 4.8. The multi-file translation framework using the AST merge mechanism

Fig. 4.9 shows an implementation of the MPI Scatter operation. Similar to

the implementation of MPI Reduce previously shown in Chapter 3, the MPI Scatter

operation employs the Binomial Tree algorithm. For the scatter case, each process has

a parent and log(P) children. The root distributes portions of the scatter buffer to its

children (starting with the smallest child), including extra data that it requests the children

to forward deeply downward to the leaves of the process tree. During the time that a

parent is scattering data at the level of its children, these children also forward parts of

the data to their children. The scattering process continues until all leaves of the Binomial

Tree have received data. Since the width and the height of the Binomial Tree are both

log(P), the cost of MPI Scatter using this algorithm is log(P). Tab. 4.2 shows algorithms

that Bamboo uses to implement common collective operations and the corresponding
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latency and bandwidth costs.

1 i n t M P I S c a t t e r ( void ∗ sbuf , i n t s c n t , MPI Data type s t y p e , void ∗ rbu f , i n t r c n t ,
MPI Data type r t y p e , i n t r o o t , MPI Comm comm)

2 i n t myRank , commSize ;
3 MPI Comm rank (comm , &myRank ) ;
4 MPI Comm size (comm , &commSize ) ;
5 char∗ tempbuf ;
6 i f ( myRank== r o o t ) tempbuf = ( char ∗ ) s b u f ;
7 e l s e tempbuf = ( char ∗ ) m a l lo c ( s c n t ∗commSize∗ s i z e o f ( s t y p e ) / 2 ) ;
8 # pragma bamboo o l a p
9 {

10 # pragma bamboo send
11 {
12 i f ( myRank== r o o t )
13 f o r ( c h i l d i n myChi ldren )
14 MPI Send ( s b u f + o f f s e t ( c h i l d ) , count , d type , c h i l d , t ag , comm)
15 }
16 # pragma bamboo r e c e i v e
17 {
18 MPI Recv ( tempbuf + r e c v O f f s e t , count , d type , p a r e n t , t ag , comm , s t t )
19 i f ( myRank != r o o t && i s L e a f ( myRank ) ==0)
20 f o r ( c h i l d i n myChi ldren )
21 MPI Send ( tempbuf + o f f s e t ( c h i l d ) , count , d type , c h i l d , t ag , comm)
22 }
23 }
24 }
25 memcpy ( rbu f , tempbuf , r c n t ∗ s i z e o f ( r t y p e ) ) ;

Figure 4.9. An implementation of MPI Scatter using the Binomial tree algorithm.

Since Bamboo break collectives into their point-to-point components, the commu-

nication delays incurred by these operations can be overlapped with available computation.

However, the costs may increase as the number of tasks increases. Fig. 4.10 shows the

performance of MPI Scatter as we increase the number of tasks in the absence of useful

computation. It can be seen that with a small scatter size, the communication time is

dominated by startup costs. In this scenario, using more tasks will increase the commu-

nication costs. However, we can see that as the scatter size grows the communication

time is dependent on the available bandwidth. Thus, we can increase the virtualization

factor without harming the performance as the total volume of data is independent of the

number of tasks.
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Table 4.2. Default implementation algorithms of collective operations. The αβ cost
model is used to estimate the cost of collective operations, where α is latency and β is
inverse bandwidth [5].

Collective API Algorithm Complexity

MPI Barrier Bruck’s algorithm dlgPeα

MPI Bcast Binomial Tree dlgPe(α + sβ )

MPI Reduce Binomial Tree dlgPe(α + sβ + size*opCost)

MPI Allreduce Recursive doubling dlgPe(α + sβ + size*opCost)

MPI Scatter Binomial Tree dlgPeα + totalSize*β

MPI Gather Binomial Tree dlgPeα + totalSize*β

MPI Allgather Bruck’s algorithm dlgPeα + totalSize*β

MPI Alltoall Bruck’s algorithm dlgPe(α + s
2β )

4.4.2 Communicator

An MPI Communicator is a namespace describing the set of MPI processes

that each process can communicate with for a particular MPI routine. The set of these

processes is an ordered list, ranging from 0 to P-1, where P is the number of processes

in the set. MPI COMM WORLD is the only predefined communicator in the MPI

environment, defining the order of all processes of an MPI program. Based on this

predefined communicator, MPI allows the programmer to derive new communicators to

realizing the following capabilities.

First, the programmer splits the process set into smaller subsets, which can be

further partitioned. For this purpose, communicator partitioning is effectively a means of

simplifying the code design rather than improving performance. For example, performing

a broadcast operation within a process row (or column) of a 2D process grid is commonly

seen in practice. The programmer can partition MPI processes into rows (or columns) so
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Figure 4.10. The effect of process virtualization on the scatter operation with various
scatter sizes (in bytes) on 64 processor cores.

each process only needs to communicate with others in the same group.

Second, MPI allows the programmer to create a new communicator that modifies

the order of MPI processes associated with the original communicator. In this scenario,

the application performance may change, since reordering MPI processes may change

the communication distance. For example, if process #0 frequently communicates with

process #P-1, these 2 processes should physically reside in neighboring locations (e.g.

compute nodes, processors). However, a default node allocation often creates a large

distance between processes #0 and #P-1. The programmer can reorder the original ranks

so that these 2 processes are physically close to each other. Another advantage of this

technique is that the programmer does not have to modify the parallel algorithm.

MPI provides MPI Comm split, a common routine that can split an existing

communicator into multiple disjoint groups, reorder MPI rank, or both. Its interface is as

follows.

int MPI Comm split(MPI Comm comm, int color, int key, MPI Comm *new-

comm)
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MPI Comm split employs a color-key filtering mechanism. Shown in Fig. 4.11 is

a 2-phase filter using color and key. In particular, color is a many-to-many mapping from

the task ID set into the color set: color = c(id), where the color set is normally smaller

than the task ID set. Key is a one-to-one mapping to sort tasks within a common color

set: newIDcolor = k(id). In the example shown in Fig. 4.11, the color and key mappings

are, respectively, c= id/2 and newId = id % 2.

Bamboo implements the MPI Comm split routine using MPI point-to-point prim-

itives as follows. All MPI processes in the existing communicator exchange information

of color, key, and the corresponding rank in MPI COMM WORLD. Eventually each pro-

cess holds information of the other processes. We use a tree-based algorithm that requires

each process to communicate with log(P) processes, where P is the number of processes

within the existing communicator. Based on the information retrieved from others, each

process filters out processes with the same color. Such processes will be sorted on key

before being assigned a new rank in the new communicator. Once the new communicator

has been created, a communicator name and a process rank within the communicator will

be sufficient to locate the corresponding rank in MPI COMM WORLD. This allows the

utility layer to employ the service provided by the core message passing layer.
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Figure 4.11. The MPI color-key filtering mechanism



69

4.5 Summary

1. The Bamboo source-to-source translator is layered as follows. The base layer of

Bamboo handles MPI point-to-point primitives, whereas the utility layer on top

of it supports MPI high-level routines. The implementation of the base layer is

subject to services provided by a runtime system.

2. Tarragon is a runtime system providing services to operate a task dependency

graph. Tarragon services include task scheduling and communication handling.

In order to use these services, the programmer is supposed to implement the task

behavior via overriding 3 methods defined by an abstract class called Task.

3. Bamboo employs the ROSE compiler framework to transform MPI code into a

task dependency graph. A majority of the original MPI program is outlined into

vinit() and vexecute() methods. The program control flow is reordered to conform

to the Bamboo execution model. Send and receive calls are transformed into task

inputs and outputs. Information associated with receive calls is also extracted to

implement vinject() method.

4. MPI high-level routines such as collective operations and communicator splitting

are broken down into point-to-point primitives. This approach allows the translation

of these routines to be independent of the underlying runtime system.
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Chapter 5

Dense linear algebra

5.1 Dense linear algebra in a nutshell

Dense linear algebra is a class of linear algebra computations on matrices where all

elements are stored explicitly. Dense linear algebra arises in many scientific domains such

as Quantum Chemistry [65, 66] and Computational Electromagnetics [67]. Typically this

class of applications is highly amenable to acceleration. Thus, the overall performance

will become much more sensitive to communication overheads as computing capability

is expected to be substantially increasing in years to come. In this chapter, we evaluate

Bamboo using matrix multiplication and matrix factorization, two operations commonly

used as building blocks in many dense linear algebra problems.

5.2 Matrix-matrix multiplication

Matrix-matrix multiplication is a ubiquitous operation in linear algebra. In

this dissertation, we consider inner and outer product formulations, two fundamental

approaches to computing matrix multiplication. The former is employed in Cannon’s

algorithm [68, 69], whereas the latter is used in the SUMMA algorithm [2]. For both

approaches, we rely on a serial matrix multiplication kernel called dgemm. The interface

of dgemm is specified at level 3 of the Basic Linear Algebra Subprograms (BLAS) [70],

71
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a standard API for linear algebra.

5.2.1 2D Cannon’s algorithm

Cannon’s algorithm employs a square process grid, such as the 4x4 grid shown

in Fig. 5.1(a), to compute the matrix product of two matrices C=A*B [68, 69]. Each

process owns a portion of the three matrices. The initial phase aligns sub-blocks of A and

B so that their product corresponds to a sub-block of C. Fig. 5.1(a) presents the matrix

alignment, which is also called matrix skewing. Under this alignment, Ai j is shifted

leftward i process columns and Bi j is shifted upward j process rows. The algorithm

then systematically rotates sub-blocks of A and B along process rows and columns in a

sequence of
√

P−1 steps, where P is the number of processes. For example, Fig. 5.1(b)

presents the matrix rotation performed by process P12 to produce the C12 sub-block.

Within each rotation step, as soon as a process receives the next sub-block of A and B, it

computes a partial matrix product to update the C partition that it owns (Ci j+= Aik ∗Bk j).
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Figure 5.1. 2D Cannon’s algorithm employs a square process grid to perform the matrix
product C=A*B. A and B submatrices are aligned so that their product corresponds to C.
The algorithm then systematically rotates A and B along process rows and columns.

Fig. 5.2 shows the basic MPI code of the 2D Cannon’s algorithm. We call this
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variant MPI-basic. In this variant, MPI processes explicitly shift A and B partitions to

neighbors using point-to-point messages. We annotated this code with Bamboo pragmas

as follows. We marked the body of the for loop over the matrix rotation as an olap-region.

Within this region, we placed Irecv calls in a receive block and Send calls in a send

block. The reason for such annotation scheme is that each process sends and receives

different data. The Bamboo code variant was generated by the Bamboo translator from

the annotated MPI code shown in Fig. 5.2. We also implemented MPI-olap, a hand coded

variant that overlaps communication with computation using a pipeline strategy. Fig. 5.3

shows the MPI-olap code, where we advanced MPI calls to enable overlap between the

dgemm computation in one step and the matrix rotation of the next. Finally, MPI-nocomm

code variant was obtained by suppressing all communication in the MPI-basic code.

1 dgemm (A, B , C) ;
2 # pragma bamboo o l a p
3 f o r ( i n t s t e p =1; s t e p < s q r t ( n p r o c s ) ; s t e p ++){
4 # pragma bamboo r e c e i v e
5 { MPI I recv ( rA from r i g h t ) ; MPI I recv ( rB from down ) ; }
6 # pragma bamboo send
7 { MPI Send (A t o l e f t ) ; MPI Send (B t o up ) ; }
8 # pragma bamboo compute
9 {M P I W a i t a l l ( ) ; swap (A, rA ) ; swap (B , rB ) ; dgemm (A, B , C) ;}

10 }

Figure 5.2. Annotated code for submatrix rotation in Cannon’s algorithm (MPI-basic).
This annotated code will be transformed into Bamboo. MPI-nocomm is MPI-basic with
MPI Irecv, MPI Send, and MPI Waitall excluded.

1 f o r ( i n t s t e p =0; s t e p < s q r t ( n p r o c s ) ; s t e p ++){
2 i f ( s t e p< s q r t ( n p r o c s )−1){
3 MPI I recv ( rA from r i g h t ) ; MPI I recv ( rB from down ) ;
4 MPI Isend (A t o l e f t ) ; MPI Isend (B t o up ) ;
5 }
6 dgemm (A, B , C) ;
7 i f ( s t e p< s q r t ( n p r o c s )−1){M P I W a i t a l l ( ) ; swap (A, rA ) ; swap (B , rB ) ;}
8 }

Figure 5.3. We obtain MPI-olap by advancing message passing calls and overlap them
with dgemm

We first conducted a weak scaling study on Hopper, a Cray XE6 cluster at
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NERSC. Each compute node of Hopper consists of two AMD Magny-Cours 12-core

processors, each including two 6-core sockets (see Appendix A for more specifications).

Since Cannon’s algorithm requires a square process grid, we ran with a square number

of processes (i.e. 16 per compute node, 4 per socket, and 1 per processor core). We

used aprun to launch jobs on Hopper. All MPI variants (MPI-basic, MPI-olap, and

MPI-nocomm) were run with the following command line arguments, where P is the

total number of cores: -n P -N 16 -S 4. To run the Bamboo variant, we employed P/4

MPI processes (one per socket), each containing 4 worker threads. The command line

arguments to run the Bamboo variant is as follows: -n P/4 -N 4 -S 1 -w 4. We used square

matrices of size up to 131,072x131,072.
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Figure 5.4. A weak scaling study on the 2D Cannon’s algorithm on up to 16,384
processor cores on Hopper

Fig. 5.4 shows the performance of different code variants on up to 16K processors.

From 1024 to 4096 cores, it can be seen that the communication cost increases steadily as

the core count increases. The reason is as follows. The number of communication steps

grows as
√

P. Since the wallclock time spent in dgemm remains constant, and the size of

the local sub-matrices A and B grow as P2/3, the communication to computation ratio
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grows as P1/6. In fact, the observed growth in communication is a bit higher as we have

ignored the increase in message starts, which also grow as
√

P. On 16,384 processor

cores, however, the communication time increases significantly. This is a result of

reducing pairwise communication bandwidth when the number of node increases. Under

these conditions of growing communication costs, Bamboo improves the performance of

the MPI-basic variant from 1.15 to 1.42 times, bringing performance closer to the upper

bound (MPI-nocomm).

On Hopper, we found that the 2D Cannon’s algorithm was not able to scale

beyond 16,384 processor cores. In addition, the results on 16,384 cores on Hopper

were quite sensitive to node allocation. As a result, we conducted another weak scaling

study on up to 65,536 processor cores on Edison, a Cray XC30 cluster at NERSC. Each

compute node of Edison consists of two 12-core Intel Ivy Bridge processors. Similar

to the previous study on Hopper, we ran with a square number of processes on Edison

(i.e. 16 per compute node, 8 per socket, and 1 per processor core). The MPI variants

(MPI-basic, MPI-olap, and MPI-nocomm) were run with the following command line

arguments, where P is the total number of cores: -n P -N 16 -S 8. To run the Bamboo

variant, we employed P/8 MPI processes (one per socket), each containing 8 worker

threads. The command line arguments to run the Bamboo variant is as follows: -n P/8 -N

2 -S 1 -w 8. We used square matrices of size up to 196,608x196,608.

Fig. 5.5 shows the performance of Bamboo and MPI variants on up to 65,536

processor cores. The results on Edison are much more stable than those on Hopper,

though we conducted experiments at larger scales on Edison. However, comparing the

performance of different code variants on Edison, we observed a similar trend that we had

seen on Hopper. Specifically, Bamboo hides almost all of the communication overheads

on 4096 and 16,384 processor cores, bringing performance closer to the upper bound

(MPI-nocomm). Bamboo improves the performance of the MPI-basic variant 8% and
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Figure 5.5. A weak scaling study on the 2D Cannon’s algorithm on up to 65,536
processor cores on Edison

12.5% in time on 4096 to 16,384 cores respectively. On 65,356 processor cores, the

communication time increases significantly to 37%. Bamboo increases the performance

of the MPI-basic variant 1.37 times, corresponding to 27% improvement in time. The

MPI-olap variant works well on up to 16,384 processors, but at 65,536 cores it cannot

compete with Bamboo. We believe that this is due to the ability of Bamboo to use

virtualization to better pipeline the communication.

5.2.2 2.5D Cannon’s algorithm

We have just demonstrated that Bamboo is able to mask communication arising

in multiplying large matrices. We next look at the 2.5D Cannon (AKA communication

avoiding) matrix multiplication algorithm [71], which targets small matrices. Small

matrix products arise, for example, in electronic structure calculations (e.g. ab-initio

molecular dynamics using planewave bases [72, 73]), a planned target of Bamboo.
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The 2.5D algorithm is interesting for two reasons. First, small matrix products

incur high communication costs relative to computation, especially at large scales, which

stress Bamboo’s ability to mask communication delays. Second, the 2.5D algorithm

introduces two new communication patterns: broadcast and reduction. Supporting these

new patterns broadens the scope of Bamboo.

At a high level, the 2.5D algorithm generalizes the traditional 2D Cannon algo-

rithm by employing an additional process dimension to replicate the 2D process grid as

shown in Fig. 5.6. The degree of replication is controlled by a replication factor called c.

When c=1, we regress to 2D Cannon. When c = cmax = nprocs1/3, we elide the shifting

communication pattern and employ only broadcast and reduction. This algorithm is

referred to as the 3D algorithm. The sweet spot for c falls somewhere between 1 and

cmax, hence the name 2.5D algorithm.
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Figure 5.6. The 2.5D Cannon algorithm employs an additional process dimension to
replicate the 2D Cannon process grid

As in the 2D algorithm, the 2.5D algorithm shifts data in the X and Y directions. In

addition, the 2.5D algorithm performs a broadcast and a reduction along the Z dimension.

Since broadcast and reduction are closely related, we show only the annotated code of the

broadcast routine, in Fig. 5.7. Whereas the 2D algorithm uses a 2D process geometry, the

2.5D algorithm uses a 3D process geometry. Broadcast is based on a min heap structure
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[74] constructed from the processes along the Z dimension. A min heap is a complete

binary tree in which the parent’s key (process ID in our case) is strictly smaller than

those of its children. The broadcast algorithm has 2 communication blocks: one receive

block and one send block. The receive block contains 1 Recv followed by 2 Sends. Since

Bamboo will not reorder sending and receiving activities within a communication block

it knows that the two Sends are dependent upon the completion of the Recv. However,

following previous discussions about the independence of send and receive blocks, we

infer from inspection that our annotations specify that all three point-to-point calls in the

receive block are independent of all the point-to-point calls in the send block.

1 # pragma bamboo o l a p
2 {
3 # pragma bamboo send
4 {
5 i f ( r o o t & h a s L e f t C h i l d ) MPI Send (A/ B , l e f t C h i l d ) ;
6 i f ( r o o t & h a s R i g h t C h i l d ) MPI Send (A/ B , r i g h t C h i l d ) ;
7 }
8 # pragma bamboo r e c e i v e
9 {

10 i f ( ! r o o t & h a s p a r e n t ) MPI Recv (A/ B , p a r e n t ) ;
11 i f ( ! r o o t & h a s L e f t C h i l d ) MPI Send (A/ B , l e f t C h i l d ) ;
12 i f ( ! r o o t & h a s R i g h t C h i l d ) MPI Send (A/ B , r i g h t C h i l d ) ;
13 }
14 }

Figure 5.7. Annotated code for the broadcast routine employed in the 2.5D Cannon’s
algorithm.

Through experimentation, we observed that, with the small matrices targeted by

the 2.5D algorithm, the hybrid execution model MPI+OMP yields higher performance

than a pure MPI implementation, which spawns only one MPI process per core. Therefore,

we used the following 3 variants: MPI+OMP, MPI+OMP-olap, and Bamboo+OMP.

All variants perform communication at the node level, using the OpenMP interface of

the ACML math library to multiply the submatrices (dgemm). MPI+OMP is the basic

MPI implementation without any overlap. MPI+OMP-olap is the optimized variant of

MPI+OMP that uses the pipeline strategy discussed previously for the 2D algorithm.
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Bamboo+OMP is the result of passing the annotated MPI+OMP variant through Bamboo.

As with the previous two applications, we also present results with communication

shut off in the basic variant, i.e. MPI+OMP-nocomm, which uses the same code as

MPI+OMP.

In the 2.5D algorithm the number of processes P = 2cq2 for integers c and q.

Thus, the number of cores is a power of 2, and we used 4 cores per NUMA node. All

variants spawned MPI processes at the NUMA-node level to take the advantage of node-

level parallelism using OpenMP. We ran all variants with the following aprun command

line arguments: -n p4 -N 4 -S 1 -d 4 -ss, where p4 = P/4. We set the environment variable

OMP NUM THREADS=4 in all runs.

We conducted a weak scaling study on 4K, 8K, 16K and 32K processors on

Hopper. We chose problem sizes that enabled us to demonstrate the algorithmic benefit

of data replication.
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Figure 5.8. A weak scaling study on the 2.5D Cannon algorithm. We ran codes on up to
32768 processor cores on Hopper. We used small matrices (N=20668 on 4096 cores).

Fig. 5.8 shows the results with the different variants. We measured the commu-

nication cost, which ranged from 35% to 61% (wallclock time). Both Bamboo+OMP
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Table 5.1. The effects of replication and virtualization. The MPI+OMP and MPI+OMP-
olap code variants have limited options for c. The boldface values within the curly braces
yield the highest performance.

#Cores 4096 8192 16384 32768

MPI+OMP c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}

MPI+OMP-olap c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}

Bamboo+OMP c=2, VF =8 c=2, VF=4 c=2, VF=2 c=4, VF=2

and MPI+OMP-olap deliver the same speedup over the MPI+OMP variant on up to 8K

processors. With 16K processors and more, Bamboo+OMP overtakes MPI+OMP-olap.

Although Bamboo+OMP is still faster than the other variants on 32K cores, the speedup

provided by Bamboo+OMP has dropped. We believe this behavior is the result of an

interaction between the allowable replication factor c, and the degree of virtualization.

To understand the interaction, we first look at Table 5.1, which shows the values

of c that maximize performance for the different variants. If we look into the performance

of MPI+OMP variant on 8K, 16K and 32K cores, we notice that the efficiency suddenly

drops on 16K cores but then increases again on 32K cores. This variation is likely the

effect of replication. Note that the 2.5D algorithm requires that the first two dimensions

of the processor geometry must be equal. For the two MPI variants (Table 5.1), the

available values for the replication factor c are limited while Bamboo+OMP has more

options due to the flexibility offered by virtualization. For example, on 8192 cores

MPI+OMP and MPI+OMP-olap can set c = 2 or c = 8, i.e. other values are illegal. On

16K cores, c can be 1, 4 or 16 while on 32K cores c can take on values of 2 or 8. For

Bamboo+OMP, performance depends not only on our choice of c but also on the degree

of virtualization. Thus, we choose a combination of replication and virtualization that is

optimal and cannot choose these parameters independently.
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5.2.3 SUMMA algorithm

Scalable Universal Matrix Multiplication Algorithm (SUMMA) is another well-

known parallel algorithm for matrix multiplication [2]. Unlike Cannon’s algorithm

and its variants, SUMMA does not require the process grid to be in any special shape.

Thus, let PxQ be the grid of processes performing the matrix multiplication. The data

decomposition of SUMMA is different from that of Cannon. In particular, matrices are

first decomposed into submatrices in a block fashion. Each submatrix is then further

decomposed into finer blocks called panels.

1 Ci j = 0
2 f o r ( k =0; k < K; k+= s ) {
3 b r o a d c a s t Aik t o Q−1 p r o c e s s e s i n t h e same p r o c e s s row
4 b r o a d c a s t Bk j t o P−1 p r o c e s s e s i n t h e same p r o c e s s column
5 Ci j+= Aik ∗Bk j
6 }

Figure 5.9. A high level description of SUMMA algorithm on a PxQ process grid
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Figure 5.10. SUMMA is a broadcast-based algorithm. SUMMA broadcasts A along
processes within the same row and B along processes within the same column.

Fig. 5.9 shows the high level description of SUMMA algorithm on this process

grid. SUMMA is a broadcast-based algorithm, which can be briefly described as follows.

The matrix multiplication CMN = AMK×BKN progresses through K/s steps, where s is

the panel size. In step k, processes owning column panel k broadcast their partition of

this column (i.e. Aik, i=0:P-1) to other processes in the same process row as shown in the
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left picture of Fig. 5.10. Likewise, processes owning row panel k broadcast their partition

of this row (i.e. Bk j, j=0:Q-1) to other processes in the same process column as shown in

the right picture of Fig. 5.10. Once a process Pi j receives column panel k and row panel

k, it performs the submatrix multiplication to update C: Ci j+= Aik ∗Bk j.

Code variants

The basic MPI implementation used in this dissertation was developed based

on the code provided by SUMMA’s authors [2], and is shown in Fig. 5.11. This code

employs ring broadcast operations as follows. A process broadcasting a panel does not

have to send this panel to many other processes. Instead, it sends the A panel to the

right neighbor and the B panel to the lower neighbor only. Receivers will help propagate

messages until all processes have received what they need. During the broadcast of a

panel, a process can perform the local submatrix update as long as all data required by

such computation are available.

Figure 5.11 shows how we annotated the MPI code with Bamboo pragmas.

Specifically, we marked the body of the for loop over the matrix multiplication as an

olap-region. Within this region, we placed the MPI Send calls performed by the roots

of A and B panels in a send block. Non-root processes received A and B panels and

forward them. Thus, the MPI Recv and the following MPI Send calls were co-located in

the same receive block.

To realize overlap with Bamboo, it is generally required to employ more tasks

than processor cores so that tasks can keep processor cores busy all the time. There

are many possibilities for ordering tasks. Some orderings result in good performance

while others result in poor performance. In SUMMA algorithm, a task after computing

a panel can advance its computation to the next panel that it owns. At the same time,

the neighboring task may have already received the message from this task. Thus, it is
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1 Ci j = 0
2 # pragma bamboo o l a p
3 f o r ( k =0; k < K; k+= s ) { / / s i s p a n e l W i d t h
4 # pragma bamboo send
5 {
6 i f ( I own Ak ) MPI Send Ak

i t o r i g h t
7 i f ( I own Bk ) MPI Send B j

k t o down
8 }
9 # pragma bamboo r e c e i v e

10 {
11 i f ( I d o n o t o w n A k ) MPI Recv Ak

i from l e f t
12 i f ( I d o n o t o w n B k ) MPI Recv B j

k from up
13 i f ( m y r i g h t n e i g h b o r d o e s n o t o w n A k ) MPI Send Ak

i t o r i g h t
14 i f ( my down ne ighbor does no t own B k ) MPI Send B j

k t o down
15 }
16 Ci j+= Ak

i ∗B j
k

17 u p d a t e P a n e l W i d t h (& s )
18 }

Figure 5.11. SUMMA algorithm employing ring broadcast operations [2]

also executable. In this situation, there is an advantage to schedule the neighboring task

first, since doing so allows a task to forward received panels in a timely manner, thereby

enabling other tasks. However, the task scheduler is oblivious to this information. Thus,

we prioritized tasks as follows. In the horizontal dimension, the right task has higher

priority than the left task. Likewise, in the vertical dimension, the lower task has higher

priority than the upper task.

We ran the MPI and Bamboo code variants on the Edison cluster. Fig. 5.12

presents weak scaling results on up to 16,384 processor cores. It can be seen that, without

prioritization, Bamboo slightly improves the performance of the MPI code variant. For

this Bamboo variant, we employed only one task per process. Thus, the performance

improvement can be attributed to the message buffering mechanism employed by Bamboo.

In particular, in the original code the receiver handles one message at a time, and the

next message has to wait until the local matrix multiplication completes. In Bamboo, the

sender can send messages to a receiver without coordinating with the receiver. These

messages will be buffered by the communication handler of the runtime system. Thus,

when the receiver finishes its computation, it can quickly retrieves the required message
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Figure 5.12. Weak scaling of SUMMA on up to 16,384 processor cores on Edison.
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Figure 5.13. Virtualizing an MPI process into 2 tasks
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from the message buffer to advance its execution.

When we use multiple prioritized tasks per MPI process (2, 4, and 8 tasks/process),

the performance increases significantly. Fig. 5.13 depicts a process that contains 2 tasks.

With the prioritization scheme presented ealier, a right task can have a better chance

to forward messages from a left task. Thus, it allows messages to be broadcast more

quickly.

5.3 Matrix factorization

5.3.1 LU factorization

LU factorization is a technique widely used to solve multiple systems of linear

equations with the same left hand size. Specifically, LU factorization decomposes an

input matrix A into a lower triangular matrix L and an upper triangular matrix U such

that A = LU. Given L and U components of a matrix A, we can solve a system of linear

equation Ax=b (i.e. LUx=b) by 2 steps: i) solve the lower triangular system Ly = b for

y by forward substitution and ii) solve the upper triangular system Ux=y for x by back

substitution. This dissertation uses a parallel blocked LU factorization algorithm with

partial pivoting [56, 75].

We begin with the unblocked serial algorithm, to facilitate discussion of the

blocked parallel algorithm. Fig. 5.14 presents the serial unblocked LU factorization code.

The serial algorithm consists of n-1 stages, each corresponding to a column of the input

matrix (line 2). A stage begins by identifying the element of the maximum magnitude in

the portion of the column below the diagonal, the called the pivot. The row containing

the pivot is then swapped with the current row i. Row i of matrix L and column i of

matrix U are set on lines 5 and 6, respectively. Finally, we update the trailing submatrix

below and to the right of the diagonal, expressed by a rank-1 update (line 7).
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1 f u n c t i o n [ L ,U] = LU(A)
2 f o r i = 1 : n−1
3 v = max ( abs (A( i : n , i ) ) ) %p i v o t
4 A( i , i : n ) ←→ A( v , i : n ) %swap 2 rows
5 L ( i : n , i ) = A( i : n , i ) /A( i , i )
6 U( i , i : n ) = A( i , i : n )
7 A( i +1 : n , i +1 : n ) =A( i +1 : n , i +1 : n ) − L ( i +1: n , i ) ∗U( i , i +1 : n )
8 end
9 end

Figure 5.14. Serial algorithm for LU factorization

To improve locality, we use the blocked algorithm shown in Fig. 5.15(a). Except

for pivot selection and row interchange, the blocked algorithm updates the L,U, and A at

the block granularity. Since the trailing submatrix of A shrinks as factorization proceeds

to the right, a parallel implementation maps the blocks cyclically to processes (blocked

cyclic decomposition) to balance the workload. As shown in Fig. 5.15(b), the matrix A is

decomposed into 8x8 blocks (AKA panels), which are then distributed cyclically onto a

2x4 process geometry. We next describe the distributed-memory algorithm for parallel

LU factorization, based on message passing.
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Figure 5.15. A blocked, right looking algorithm (a) and a blocked cyclic decomposition
of LU factorization on 8 processes
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5.3.2 High Performance Linpack

We used the High Performance Linpack benchmark (or HPL, or Linpack for short)

[55–57]. HPL is a well-known benchmark written in C that solves a dense system of

linear equations using LU factorization, and is often used to measure the performance of

newly constructed systems. The application employs a blocked cyclic data decomposition

scheme as previously discussed (see Fig. 5.15(b)).

The HPL benchmark comprises 2 code variants. Pdgesv0 does not make any

attempt to overlap communication with computation, whereas pdgesvK2 applies an

overlapping technique called lookahead. We applied Bamboo annotations to pdgesv0.

Details of the 3 code variants are as follows. The pseudo code for pdgesv0 appears in

Fig. 5.16. The code consists of 3 key operations: panel factorization (pFact on lines 11-

17), panel broadcast (pBcast on lines 18-26), and the trailing submatrix update (pUpdate

on lines 27-30). pFact finds the pivots in column panel c. This step is costly since we

have to factorize a skinny matrix over a subset of the processes that own the panel (the

regions D and Li in Fig. 5.15(a), including a sequence of row swap-broadcasts, one for

each pivot within a single columns of the panel. HPL provides various panel factorization

implementations, classified into recursive and non-recursive variants. We evaluated both

variants and observed no difference in performance. Thus, we used the non-recursive

variants. Once the panel has been factorized it must be broadcast to column processes

within the same row (pBcast). HPL provides many algorithms to perform the panel

broadcast. We used the HPL bcast 1ring broadcast algorithm for panel broadcast. This

is an efficient implementation that uses a ring broadcast algorithm, shifting data to the

right along column processes. The pUpdate operation swap-broadcasts U among row

processes and then performs a rank-1 update. It accounts for the lion’s share of LU’s

computational work, performing O(N3) multiply-adds.
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The pdgesvK2 variant applies lookahead [55, 76], a technique for overlapping

communication with computation that fills idle gaps in the execution of LU. Lookahead

utilizes the dependence structure of the blocked algorithm to orchestrate computation

and data motion. It uses split-phase coding [13], and may compute multiple iterations

in advance. Fig. 5.17 shows a simplified implementation of the lookahead algorithm

where the lookahead depth is one, and a simplified strategy is used to synchronize

communication. Once a process receives a panel, it performs a partial update so that it

can factorize the next panel. While the panel factorization step is communicating, and

during the panel broadcast of the next panel, the process can perform useful work in the

remaining update.

1 f u n c t i o n [ L , U] = nolookahead LU (A)
2 f o r c = 1 : co lumnPane l s
3 i f i sMyPane l ( c ) == t rue % i f I own t h e p a n e l c
4 L = p F a c t ( c , columnComm )
5 end
6 L= pBas t ( L , c , rowComm)
7 [A, U] = pUpdate (A, L , c )
8 end
9 end

10
11 f u n c t i o n L = p F a c t ( c , comm)
12 f o r j = 1 : p a n e l S i z e
13 f i n d p i v o t ( c , j , comm) %r e d u c e l o c a l p i v o t s i n comm
14 swap−b c a s t ( c , j , comm)
15 L [ j ] = u p d a t e L ( j )
16 end
17 end
18 f u n c t i o n L= pBc as t ( P , c , comm)
19 i f i sMyPane l ( c ) == t rue
20 s h i f t P t o t h e r i g h t n e i g h b o r
21 e l s e
22 r e c e i v e P from t h e l e f t n e i g h b o r
23 s h i f t P t o t h e r i g h t n e i g h b o r
24 end
25 L = P
26 end
27 f u n c t i o n [A, U] = pUpdate (A, L , c )
28 U= upda te U ( c ) %b r o a d c a s t among rows
29 u p d a t e t r a i l i n g s u b m a t r i x / / A = A − L ∗ U
30 end

Figure 5.16. Message passing implementation of LU factorization without lookahead.
The application divides into 3 separate operations: panel factorization, panel broadcast,
and the trailing submatrix update.
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1 f u n c t i o n [ L ,U] = LU lookahead (A)
2 i f i sMyPane l ( 1 ) == t rue
3 L1 = p F a c t ( 1 , columnComm )
4 s h i f t L1 t o t h e r i g h t n e i g h b o r
5 end
6 f o r c = 1 : co lumnPane l s − 1
7 i f i sMyPane l ( c ) == f a l s e
8 r e c e i v e Lc from t h e l e f t n e i g h b o r
9 s h i f t Lc t o t h e r i g h t n e i g h b o r

10 end
11 p a r t i a l p U p d a t e (A, Lc )
12 i f i sMyPane l ( c +1) == t rue
13 Pc+1 = f a c t o r i z e ( c +1) / / p i v o t i n g and u p d a t i n g L
14 s h i f t Pc+1 t o t h e r i g h t n e i g h b o r
15 end
16 r e m a i n i n g p U p d a t e (A, Lc )
17 end
18 i f i sMyPane l ( co lumnPane l s ) == f a l s e
19 r e c e i v e and f o r w a r d LcolumnPanels
20 end
21 pUpdate (A, LcolumnPanels )
22 end

Figure 5.17. A simplified parallel algorithm of LU factorization with lookahead (no
message probing and depth=1)

We annotated the pdgesv0 module and translated it with Bamboo. After the task

graph code has been generated we compiled and ran it like any conventional ordinary C++

program. We also added scheduling policies via task prioritization so that communication

could be overlapped with communication more efficiently. The common wisdom in

scheduling a non-preemptive task graph is that tasks should hold the processor/core

as long as they are still executable and only yield control when they need input from

other tasks. This greedy strategy is intended to maintain the high hit rates of caches and

TLB. However, scheduling LU factorization is an exception. Specifically, many tasks

are waiting for data from the root task so that they can begin executing. Moreover, if for

some reason the task that will become the next root is not scheduled soon, the next panel

broadcast will be delayed. If this happens, performance could be significantly penalized

since no overlap can be realized.

Bamboo’s olap-regions generally reside within an outer iteration, and HPL is no

exception. Bamboo handles overlap regions as follows. When control reaches the end of
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an overlap region, if the priority is negative, the task yields processor/core, even if inputs

are ready for the next iteration. To this end, we used 3 different values 0, -1, and 1 to

represent for the urgency of scheduling a task. Among runnable tasks, those with higher

priorities will be inserted at the top of the priority scheduling queue. Tasks with priority

of 0 or 1 will execute until they cannot continue, since they await data from other tasks

that haven’t yet completed. However, tasks with priority -1, must yield processor/core at

the end of the olap region, even if they have the data needed to continue executing. Note

that this scheme is not preemption. Neither the runtime system nor task can force another

task to yield control. Depending on the availability of the input and the current priority, a

task decides whether it should continue or yield processor/core to another task.

Fig. 5.18 shows how we prioritized LU tasks. By default all tasks have priority

0. At the panel bcast, the root sends out a message and reduces its priority. Finally, if a

task becomes the next root, it will increase its priority after the bcast message has been

transmitted to the next task in the row.

1 f u n c t i o n t a s k B c a s t I n i t ( Pane l , r o o t , comm)
2 i f t a s k I D == r o o t
3 p u t ( Pane l , r i g h t n e i g h b o r , comm)
4 s t a t e = EXEC % j u s t means t h a t t a s k i s r u n n a b l e
5 p r i o r i t y = −1 %r o o t i s no l o n g e r u r g e n t
6 e l s e
7 t a s k . p r i o r i t y = −1
8 i f t a s k . p r e v i o u s == r o o t % I w i l l become t h e new r o o t
9 Remember t o s e t my p r i o r i t y t o 1 once t h e i n t r a −node b c a s t i s done

10 end
11 s t a t e = WAIT %re turn t h e p r o c e s s o r / c o r e and w a i t f o r d a t a
12 end
13 end

Figure 5.18. Setting priorities in the task graph.

5.3.3 Performance evaluation

We performed experiments on Stampede [77], a system located at the Texas

Advanced Computing Center (TACC). Stampede consists of 6400 compute nodes, each
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equipped with two 8-core Sandy Bridge processors and one Intel Xeon Phi XE10P copro-

cessor (MIC). We only used the Sandy Bridge portion since sophisticated optimizations

are required to offload and execute code modules efficiently on MIC [78]. For more

specifications of this platform, see Appendix A.

Code variants and problem sizes

We evaluated 4 code variants of the HPL benchmark. The first 2 variants are

the original MPI code with and without the lookahead optimization (i.e. pdgesvK2 and

pdgesv0 respectively). The third and fourth variants are the result of passing pdgesv0

through the Bamboo translator. The fourth variant was obtained by making modest

changes to the third variant, that provide hints to the scheduler to prioritize tasks that result

in improved overlap. These changes come in the form of performance meta-data [79],

which are annotations to the task dependency graph that are seen by the controller. The

meta-data are abstract entities (i.e. integers) so the scheduler and application are unaware

of one another. Thus, the programmer is free to interpret the meaning of meta-data, which

provide convenient mechanism for exploring application specific scheduling.

Fig. 5.19 presents results of running different code variants on up to 128 compute

nodes on Stampede. For these experiments, we selected small enough problem sizes

so that the communication overhead is significant and thus we can see the benefit of

overlapping communication with computation. The insight of using small problem

sizes is that computation grows faster than communication (2/3 ∗ n3 as opposed to

1/2∗n2); thus, the smaller the problem size, the larger overhead of moving data relative

to computation. However, problem sizes also need to be large enough so that overheads

introduced by the compiler and its runtime system can be amortized.
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Panel size and process geometry

As mentioned in Section 5.3.1, the panel size has to be small enough to balance

the workload, but large enough to maintain the efficiency of local computations. We

manually tuned this parameter and found that a panel size of 96 delivered optimal

performance for the selected problem sizes we used on Stampede. The performance of

HPL is also sensitive to the process geometry. Specifically, if the width of the process

grid is too large (i.e. too many processes within a process row), the panel broadcast

will be costly. However, if the height of the process grid is too large, the overheads

of the panel factorization and U broadcast will be substantially increased. As a result,

we always choose a nearly square process grid with a constraint that the size of each

dimension is a power of 2. Note that in the task graph variant, we virtualized process

rows only. Thus, the width of the task graph is always 4 times as large as the height. The

reason is that our task scheduling algorithm is to overlap the panel broadcast, which lays

on the critical path.

Analysis of results

It can be seen in Fig. 5.19 that the lookahead and prioritized Task Graph variants

always outperform the no-lookahead one on every problem size and on any number of

nodes. For a fixed number of nodes, the performance improvement is more significant

with small problem sizes. On 32 nodes the benefit of overlap is 8% with the smallest

value of N but only 4% with the largest N. Similarly the benefit ranges from 10% to 6%

on 64 nodes and 8% to 5% on 128 nodes. Reducing the problem size further, however,

may decrease the performance benefit since we would not have enough computation to

overlap with communication. Fig. 5.19b shows the amount of computation (dgemm)

that can be used to hide communication. Dgemm computation accounts for 58%-73% of

the total execution time. These results also validate our earlier analysis, that the relative
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overhead of communication shrinks as the problem size grows.

The vital role of task prioritization is inevitable. Theoretically, if we use a random

scheduling algorithm and we repeat the experiment with the unprioritized Task Graph

variant for a large number of times, there is possibility that we experience the performance

of the prioritized Task Graph variant. However, the required number of experiments could

grow exponentially due to the enormous space of scheduling decisions. Specifically,

assuming that there are always at least 2 tasks (among many tasks per MPI process)

being ready to execute, the number of scheduling decision is O(2k∗N), where N is the

number of panel columns of the input matrix and k is the number of communication

events occurring with a particular N. We repeated experiments for a few times, but results

without task prioritization were far below the performance of lookahead. Compared to

the no-lookahead variant, the performance of the unprioritized task graph was at best

comparable and in some cases it was even lower. Fig. 5.19 shows that the performance of

the prioritized Task Graph variant meets and sometimes slightly exceeds the performance

of lookahead on most problem sizes. This result is likely to hold with larger problem

sizes and is independent of the number of nodes.

5.4 Summary

Dense linear algebra is an important class of scientific computation. This disserta-

tion employs two common operations of dense linear algebra to validate Bamboo: matrix

multiplication and matrix factorization. The results are as follows.

1. Bamboo significantly improves the performance of 2D Cannon’s algorithm, a

widely used matrix multiplication algorithm, on up to 16,384 processor cores on

Hopper and 65,536 processor cores on Edison. For the communication avoiding

(2.5D) variant of the Cannon’s algorithm, Bamboo is able to improve performance
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via overlapping communication with computation, even though the algorithm

avoids communication. Both techniques play an important role in highly scalable

computing, where we must take into account a variety of performance tradeoffs,

some of them algorithmic. For the SUMMA algorithm, Bamboo enables additional

overlap by providing the message buffering mechanism and task prioritization.

2. Hiding communication overheads arising in LU factorization is challenging due

to the cyclic decomposition and the broadcast-based algorithm. Lookahead is a

well-known technique for masking communication in matrix factorization arising

in linear algebra, but at a cost of added software complications. Bamboo allows

the programmer to translate MPI source without lookahead into a task graph

representation that can automatically overlap communication with computation.

The programmer can also embed scheduling heuristics into the program execution

via task priority. Experimental results demonstrated that scheduling the LU task

graph with task prioritization significantly increases the performance.
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Chapter 6

Structured grid

6.1 Overview

Structured grid (SG) methods employ regular patterns, called a grid, to discretize

a physical domain into a finite set of elements. Grids in SG methods often contain quadri-

lateral elements in 2D and hexahedral elements in 3D. Using a constructed structured

grid, one can approximate the solution of a partial differential equation (PDE) within the

domain. Such a grid may comprise not only a single block of identical elements but also

multiple blocks containing elements of different discretization spacing. When multiple

blocks are present, the method is called block structured grid. Whether structured grid or

block structured grid methods are used, the programmer has the flexibility to position the

grids to fill the physical domain. In this chapter, we use Bamboo to speed up a solver for

Poisson’s equation using the iterative Jacobi method on a single-block grid [17–20] and

a solver for Helmholtz’s equation using a multigrid method [3].

6.2 3D Jacobi solver

We use 3D-Jacobi, an iterative solver for Poisson’s equation in three dimensions

∇2u = f , subject to Dirichlet boundary conditions. The solver employs Jacobi’s method

with a 7-point central difference scheme that updates each point of the grid with the

96
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1 / / V , U, and r h s are N x N x N g r i d s
2 f o r s t e p = 1 t o n u m s t e p s {
3 f o r k = 1 t o N−2 / / Z
4 f o r j = 1 t o N−2 / / Y
5 f o r i = 1 t o N−2 / / X : t h e l e a d i n g d i m e n s i o n
6 V[ k , j , i ]= a l p h a ∗ (U[ k−1, j , i ]+U[ k +1 , j , i ]+U[ k , j −1, i ]+U[ k , j +1 , i ]+U[ k , j , i −1]+U[ k , j ,

i + 1 ] )−b e t a ∗ r h s [ k , j , i ]
7 swap (U,V)
8 }

Figure 6.1. Serial kernel of 3D Jacobi

average of the six nearest neighbor values in the Manhattan directions [17–20].

The main kernel of 7-point stencil comprises a 4-level nested loop as shown

in Fig. 6.1. The outermost loop enumerates on a discretized time domain whereas the

remaining three loops sweep the 7-point stencil operation over the 3D discretized spatial

domains with coordinates X, Y, and Z. The data consists of 3D arrays, stored in row

major order. We apply spatial blocking, dividing the discrete domain into many small

tiles so that the working set of each one fits on cache. In particular, we performed a 2D

spatial blocking for L2 cache along the Y and Z axes. We determined experimentally

that a 4x8 block size was optimal. Compared to other operations in the stencil family,

the 7-point stencil has a low flops/write ratio, which challenges the ability to overlap

computation with communication.

6.2.1 Code variants

In order to make fair performance comparisons, we compared several variants of

3D Jacobi. All variants share the same numerical kernels. The first variant, MPI-basic,

is the simplest. It does not overlap communication with computation and is the starting

point for the remaining variants. This code was previously shown in Fig. 3.8. The

second variant, MPI-olap, has been manually restructured to employ split-phase coding

to overlap communication with computation. Specifically, it employs a hierarchical

data decomposition, subdividing the mesh assigned to each core into 8 equal parts
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using a 3D 2x2x2 geometry. MPI-olap sets up a pipeline; within the outer iteration

it sweeps one-half of the 8 sub-problems while communicating ghost cells for the

others. The third variant, MPI+OMP, employs a hybrid execution model running 1 MPI

process on a set of processor cores. Each process unfolds a team of OpenMP threads

to perform the mesh sweep.This hybrid variant uses just a fraction, 1/T, of the MPI

processes used in the pure MPI variant, where T is the number of OpenMP threads per

process. Under these conditions communication occurs at the process level: the single

master thread exchanges ghost cells between processes leaving all but one core idle

during communication. The fourth variant, MPI+OMP-olap, combines the overlapping

technique used in the second variant with the hybrid model used in the third. This

variant takes advantage of both techniques, though the hierarchical control flow may

reduce the effectiveness of overlap. The fifth and the sixth variants, Bamboo-basic

and Bamboo+OMP, were obtained by passing the MPI-basic and MPI-OMP variants,

respectively, through the Bamboo translator. These codes run in data-driven fashion

under the control of the Tarragon runtime system. The Bamboo annotations used in 3D

Jacobi are similar to the code previously shown in Fig. 3.8. We also report performance

for MPI-nocomm. This is not a true variant and is the result of turning off all message

passing activity in MPI-basic. We use MPI-nocomm to establish an upper bound on

performance, which we may or may not be able to realize in practice. Since 3D Jacobi is

a memory bandwidth-bound application, the performance of MPI-nocomm is far below

the peak performance of the hardware.

6.2.2 Performance evaluation

We conducted a strong scaling study on Hopper, a Cray XE6 cluster at NERSC.

Strong scaling stresses communication overhead, though we still have sufficient computa-

tion to overlap with data motion. We maintained the problem size at 30723 as we increase
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the number of processors. All jobs were launched using the aprun command. The pure

MPI variants (MPI-basic and MPI-olap) ran with 1 process per core, while the others ran

with 1 process per NUMA node, each spawning an identical number of OpenMP threads.

Thus, the MPI variants were run with the following aprun command line arguments -n P

-N 24 -S 6, where P is the total number of cores and we run with 24 MPI processes per

Hopper node (-N 24) further organized into four groups of 6 processes per NUMA node

(-S 6). The other variants ran with one MPI process per NUMA node using the following

aprun command line arguments: -n p6 -N 4 -S 1, where p6 = P/6. For the hybrid variants

using OpenMP (MPI+OMP, MPI+OMP-olap, and Bamboo+OMP), we specified -d 6

to spawn 6 worker threads per NUMA node. For the Bamboo variants of the pure MPI

codes, the translator manages thread spawning via Tarragon. It configured Tarragon to

spawn 5 worker threads, each running on its own core, dedicating the remaining core to a

service thread. Lastly, we specified the -ss option of aprun, which restricts each thread to

use memory nearest to its NUMA node, improving performance.

Fig. 6.2a compares the results with different variants of 3D Jacobi. Notably,

Bamboo uniformly improves performance of both variants (MPI-basic and MPI+OMP)

at all levels of parallelism. For example, on 96K (98034) cores, Bamboo-basic realizes a

×1.27 speedup, hiding 52% of the communication delay in MPI-basic. More generally,

the speedups ranged from 1.07 to 1.27. With strong scaling, communication overhead

increases with the number of cores (from 13% to 41% over the range of 12K to 96K

cores), and this explains why the performance increase delivered by Bamboo grows with

the number of cores. Since the kernel is blocked for cache in all variants, we believe

that most of the benefits come from latency hiding. To gain insight into the performance

benefits of Bamboo, we next analyze the remaining two MPI variants.

The hybrid MPI+OMP variant demonstrates the benefits of multithreading which

is also enjoyed by the Bamboo variants. Though this hybrid variant provides only a
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modest improvement over MPI-basic on smaller numbers of cores, it provides a large

boost at 96K cores. We believe this is due to reduced communication delays achieved

by hybrid MPI-thread execution at scale, which is also exhibited by Bamboo. In our

strong scaling study, messages are shrinking from 192KB to 24KB as the number of

cores increases from 12228 to 98304. Since only 1 MPI process per NUMA node is

communicating, MPI+OMP and Bamboo+OMP variants aggregate the shorter messages

into a smaller number of longer messages, compared to 1 MPI process per core with the

pure MPI implementations. Since the network interface serializes messages longer than

the eager limit, it makes sense that aggregation should benefit performance. However,

why this effect appears suddenly at only at 96K cores is as yet unclear, and is currently

under investigation. An outstanding difficulty is that our 96K core jobs allocate 64% of

the machine, and long queue delays hamper experimentation.

Bamboo and the hand optimized MPI-olap variants deliver similar performance

at up to 24K cores, but on 48K and 96K cores Bamboo’s advantage rises sharply. We

attribute the sudden change to how Bamboo handles decomposition. MPI-olap uses a

hardwired scheme of 8 tasks per core, splitting the mesh assigned a core along all 3

dimensions. Bamboo, on the contrary, has more flexibility than MPI-olap in selecting

task geometry as it can virtualize along any of the dimensions. We experimented with

many geometries and found that a virtualization factor of 2 tasks per core was optimal

(Fig. 6.2.)

Bamboo-basic generally outperforms Bamboo+OMP since the runtime services

run independently on one core while they have to share a processor with an OpenMP

thread in Bamboo+OMP. This is revealed in Fig. 6.2, which also shows that the ben-

efits of communication-computation overlap in Bamboo+OMP drop off more quickly

than Bamboo-basic as we increase the virtualization factor. Both variants benefit from

modest amounts of virtualization (2 tasks per core), which improves the pipelining of
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communication and computation, but higher levels of virtualization introduce increased

scheduling costs, overwhelming any improvements due to overlap.

6.3 Multigrid solver

6.3.1 Multigrid solver

Multigrid [80–82] is a family of methods to accelerate the convergence rate of

conventional iterative methods such as the Jacobi method used in Section 6.2. A multigrid

solver consists of multiple cycles. In each cycle the solver keeps restricting the problem

into coarser grids, then it conducts an iterative or exact solver at the bottom level before

interpolating the solution back to the finer grids. The cycle can be in V or W shape, or

can be truncated at a certain level where the bottom solver can perform efficiently. Figure

6.3 shows a truncated V-cycle, where the restriction process stops at the 4th grid level.

progress within V-cycle!

Fig. 1. The Multigrid V-cycle for solving Luh = fh. Superscripts represent
grid spacing. Restriction (coarsening) is terminated at 8h. Nominally, a high-
performance, iterative solver is employed at the bottom.

Figure 1 shows the three phases of the multigrid V-cycle
for the solve of Luh = fh. First, a series of smooths reduce
the error while restrictions of the residual create progressively
coarser grids. The smooth is a conventional relaxation such
as Jacobi, successive over-relaxation (SOR), or Gauss-Seidel,
Red-Black (GSRB) which we used in our study as it has
superior convergence properties. The restriction of residual
(fh − Luh) is used to define the right-hand side at the next
coarser grid. At each progressively coarser level, the correction
(e.g. u2h) is initialized to zero. Second, once coarsening stops
(the grid size reaches one or terminated for performance), the
algorithm switches to a bottom solver which can be as simple
as applying multiple relaxes or as complicated as an algebraic
multigrid or direct sparse linear solver. Finally, the coarsest
correction is interpolated back up the V-cycle to progressively
finer grids where it is smoothed.

Nominally, one expects an order of magnitude reduction
in the residual per V-cycle. As each level performs O(1)
operations per grid point and 1

8 the work of the finer grid,
the overall computation is O(N) in the number of variables in
u. The linear operator can be arbitrarily complex as dictated
by the underlying physics, with a corresponding increase in
run time to perform the smooth computation. Section IV-B
details the problem specification used in our study.

III. RELATED WORK

Throughout this paper, we leverage the 3C’s taxonomy
when referring to cache misses [14]. In the past, operations
on large structured grids could easily be bound by capacity
misses, leading to a variety of studies on blocking and tiling
optimizations [9], [10], [16], [21], [22], [28], [29]. However,
a number of factors have made such approaches progressively
obsolete on modern platforms. On-chip caches have grown
by orders of magnitude and are increasingly able to capture
sufficient locality for the fixed box sizes associated with typical
MG methods. The rapid increase in on-chip parallelism has
also quickly out-striped available DRAM bandwidth resulting
in bandwidth-bound performance.

Thus, in recent years, numerous efforts have focused on
increasing temporal locality by fusing multiple stencil sweeps
through techniques like cache oblivious, time skewing, or

wavefront [8], [11], [12], [17], [19], [24], [27], [30]–[32].
Many of these efforts examined 2D or constant-coefficient
problems — features rarely seen in real-world applications.

Chan et al. explored how, using an auto-tuned approach, one
could restructure the MG V-cycle to improve time-to-solution
in the context of a 2D, constant-coefficient Laplacian [5]. This
approach is orthogonal to our implemented optimizations and
their technique could be incorporated in future work.

Studies have explored the performance of algebraic multi-
grid on GPUs [1], [2], while Sturmer et al. examined geometric
multigrid [25]. Perhaps the most closely related work is
that performed in Treibig’s, which implements a 2D GSRB
on SIMD architectures by separating and reordering the red
and black elements [26], additionally a 3D multigrid on an
IA-64 (Itanium) is implemented via temporal blocking. Our
work expands on these efforts by providing a unique set of
optimization strategies for multi- and manycore architectures.

IV. EXPERIMENTAL SETUP

A. Evaluated Platforms

We use the following systems in all our experiments. Their
key characteristics are summarized in Table I.

Cray XE6 “Hopper”: Hopper is a Cray XE6 MPP at NERSC
built from 6384 compute nodes each consisting of two 2.1 GHz
12-core Opteron (Magny Cours) processors [15]. In reality,
each Opteron socket is comprised of two 6-core chips each
with two DDR3-1333 memory controllers. Effectively, the
compute nodes are comprised of four (non-uniform memory
access) NUMA nodes, each providing about 12 GB/s of
STREAM [18] bandwidth. Each core uses 2-way SSE3 SIMD
and includes both a 64KB L1 and a 512KB L2 cache, while
each socket includes a 6MB L3 cache with 1MB reserved for
the probe filter. The compute nodes are connected through the
Gemini network into a 3D torus.

Intel R� Xeon R� X5550-Infiniband Cluster “Carver”: The
Carver cluster at NERSC is built from 1202 compute nodes
mostly consisting of two 2.66 GHz, quad-core Intel R� Xeon R�

X5550 processors [4]. Thus, each compute node consists of
two NUMA nodes. Each quad-core Nehalem (NHM) socket
includes an 8 MB L3 cache and three DDR3 memory con-
trollers providing about 18 GB/s of STREAM bandwidth.
Each core implements the 2-way SSSE3 SIMD instruction
set and includes both a 32KB L1 and a 256KB L2 cache.
HyperThreading is disabled on Carver. The compute nodes are
connected through the 4X QDR Infiniband network arranged
into local fat trees and a global 2D mesh.

Intel R� Xeon R� E5-2670-Infiniband Cluster “Gordon”: The
Gordon cluster at the San Diego Supercomputing Center is
comprised of 1024 compute nodes each with two 2.6 GHz,
8-core Intel R� Xeon R� E5-2670 processors [13]. Each 8-core
Sandy Bridge (SNBe) processor includes a 20 MB L3 cache
and four DDR3-1333 memory controllers providing about
35 GB/s of STREAM bandwidth. Each core implements the 4-
way AVX SIMD instruction set and includes both a 32KB L1
and a 256KB L2 cache. This provides Gordon with four times

Figure 6.3. A truncated V-cycle for solving Luh = f h, where h is the grid spacing (image
source [3]).

6.3.2 Code variants

We translated a multigrid solver developed at Lawrence Berkeley National Lab-

oratory to solve Helmholtz equation [3]. This is an MPI+OpenMP code consisting of

4000 lines, 1000 of which are MPI code that need to be translated. This solver employs

truncated V-cycles. On the way down of each cycle, smooths are applied to reduce the
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error before restrictions are used to determine the right-hand side of the coarser grids.

Each smooth is a Gauss-Seidel Red-Black relaxation (GSRB), which delivers faster

convergence rate than other techniques of the same type such as Jacobi and Successive

Over-Relaxation [83]. V-cycle is truncated at the level of 43, and the bottom solver

consists of a significant number of GSRB sweeps. Finally, the solution is interpolated

and smoothed upward the V-cycle.

The multigrid solver that we translated [3] employs a 3 dimensional decom-

position. Each process keeps a block partition of the problem, which is then further

decomposed into multiple 3D blocks that fit well on cache. Fig. 6.4 presents the code

organization of the multigrid solver. The program spends the majority of its running time

on smooth operations, including GSRB sweeps and boundary exchange among processes.

The sweep kernel of the smooth operation has been heavily optimized by the authors

[3]. Specifically, all local optimizations such as prefetching, and deep DRAM avoiding

1 were applied efficiently. However, unlike the former optimization, DRAM avoiding

results in a major change in the communication pattern. In particular, beside doing a

traditional nearest neighbor communication, adjacent processes along the diagonals have

to communicate with each other. The effect of this optimization technique is that the

number of neighbors that a process communicates with increases from 6 to 26. The

resultant communication pattern is shown in Fig. 6.5.

In addition to point-to-point communication, this application also uses an allRe-

duce to compute the maximum error in each timestep and a few Barrier synchronizations

points to measure the execution time. However, we did not need to annotate these

collective calls. Fig. 6.6 shows how we annotated the smooth function with Bamboo

pragma. Note that in the MPI source code the authors inlined this smooth function into

the cycleMG procedure.

1DRAM avoiding keeps the results of multiple timesteps in the cache without writing back to DRAM
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main():  
for(r=0;  r<nRepetitions;  r++)  

MGSolve(domain)  

CycleMG():  
for(v=0;  v<nVcycles;  v++){  
        for(l=0;  l<nlevels;  l++){  
                    smooth();  //4  times  
                    restrictDown();  
          }  
          bottomSolve();//48  smooths  
          for(l=nlevels;  l>0;  l-‐-‐){  
                    interpolateUp();  
                    smooth();  //4  times  
          }  
    }  

MGSolve():  
CycleMG()  

Send_boundary():  
for(n=0;  n<maxNeighbors;   n++)  
              if(neighbor(n))  MPI_Send  

smooth():  
    send_boundary()  
    receive_boundary()  
    RB  Gauss-‐Seidel()  

Send_boundary():  
for(n=0;  n<maxNeighbors;   n++)  
              if(neighbor(n))  MPI_Recv  

Figure 6.4. MPI code of the multigrid solver. Note that the smooth() function is only
for the simplification purpose. In the original code, calls to smooth() are inlined into the
cycleMG() function.

Figure 6.5. A process communicates with 26 neighbors. The process together with its
neighbors form a 3D Rubric

1 # pragma bamboo o l a p
2 {
3 # pragma bamboo send
4 s e n d b o u n d a r y (&nSends , &s R e q u e s t s )
5 # pragma bamboo r e c e i v e
6 r e c v b o u n d a r y (&nRecvs , &r R e q u e s t s )
7 M P I W a i t a l l ( nSends , s R e q u e s t s , MPI ANY STATUS )
8 M P I W a i t a l l ( nRecvs , r R e q u e s t s , MPI ANY STATUS )
9 RBGaussSeide l ( ) ;

10 }

Figure 6.6. Annotating the smooth function with Bamboo pragmas
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6.3.3 Performance evaluation

Edison results

We first used Edison to validate the performance of Bamboo. We conducted

a weak scaling study, fixing the problem size per processor at 8x1283 boxes. We

configured MPI and Bamboo identically, performing computations on 8 physical cores

of each NUMA node and reserving an additional core for communication. Since the

MPI variant is a hybrid MPI+OpenMP code, we employed only 2 processes per compute

node (1 per socket), each spawning 8 OpenMP threads. Thus, the MPI variant was run

with the following command line arguments, where P is the total number of cores: -n

P/8 -N 2 -S 1 -d 8. To run the Bamboo variant, we employed P/8 MPI processes (one

per socket), each containing 8 worker threads. The command line arguments to run the

Bamboo variant is as follows: -n P/8 -N 2 -S 1 -w 8. We also performed tests to verify that

the virtualization technique employed by Bamboo would not improve the performance

via reducing capacity cache misses. We observed that the cache blocking optimization

applied by the code’s authors eliminated such cache effect.

The left part of Tab. 6.1 shows the execution time of modules of the MPI variant.

We can easily calculate that communication accounts for about 20% of the total execution

time, and that we have enough available computation to hide communication. While

the communication cost grows slightly as the number of cores increases, the execution

time for the other activities is quite stable. The right part of Tab. 6.1 shows the relative

overhead of communication at each grid level. It can be seen that communication

overhead increases by a factor of 2 from the finest grid L0 to L1, slowly increases (L1 to

L2 and L2 to L3), or saturates from L3 to the coarsest grids L4.

Fig. 6.7 compares the performance between MPI and Bamboo code variants in

a weak scaling study. We can see that both MPI and Bamboo are highly scalable (in a
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Table 6.1. Left: execution time in seconds of different modules in the multigrid solver.
Right: the relative cost of communication at each grid level (the smaller level, the finer
the grid).

Cores Comm Compute pack/unpack inter-box copy Comm/total time at each level

L0 L1 L2 L3 L4

2048 0.448 1.725 0.384 0.191 12% 21% 36% 48% 48%

4096 0.476 1.722 0.353 0.191 12% 24% 37% 56% 50%

8192 0.570 1.722 0.384 0.191 13% 27% 45% 69% 63%

16384 0.535 1.726 0.386 0.192 12% 30% 48% 53% 49%

32768 0.646 1.714 0.376 0.189 17% 28% 44% 63% 58%

weak sense) and that Bamboo improves the performance by up to 14%. These results are

promising, given that overlapping communication with computation on a multigrid solver

is challenging due to the following reasons. First, communication is effective at finest

grids only as the message size on these grid levels is still significant. In coarser levels,

the message size gets smaller and smaller, increasing the overhead of virtualization. In

addition, when moving from a fine to a coarser grid computation shrinks by a factor of

8 whereas communication reduces by only a factor of 4, reducing the efficiency of the

overlapping technique. Furthermore, the number of messages that each processor has to

communicate messages with its 26 neighbors is significant. This increases the processing

overhead of the runtime system.

The results in Fig. 6.7 were obtained with an incremental optimization as follows.

There are only 2 levels of buffering in the original source code: i) aggregating small

messages into a larger one and ii) a potential message buffering done by MPI runtime.

Since Bamboo uses active message 2, it issues an extra data copy from application data

buffer to the message payload and vice versa. In this application, such data copies are

redundant since we can use the payload as an application data buffer. We manually

2payload along with header information
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Figure 6.7. Weak scaling study on up to 32,768 processor cores on Edison. At the finest
level, each processor accounts for 8x1283 boxes. Thus, in each V-cycle the finest grid
size is 1283 and the coarsest grid size is 43.

perform this optimization and observe that its benefit accounts for up to 3% of the total

execution time.

Stampede results

The performance behavior of the multigrid application is complicated due to

various degrees of granularity across grid levels. Thus, it is important to make sure

that the results can be reproduced on different platforms. To this end, we repeated the

experiment on Stampede, a cluster at TACC (Texas Advanced Computing Center). Similar

to our experiment on Edison, we also conducted a weak scaling study on Stampede,

fixing the problem size per processor at 8x1283 boxes. We configured MPI and Bamboo

identically, performing computations on 7 physical cores of each NUMA node and

reserving 1 core for communication. Table 6.2 presents the results of the experimental

study. We can see that both MPI and Bamboo are also scalable. Bamboo improves the

performance by up to 10%.
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Table 6.2. Weak scaling study on up to 16,384 processor cores (2048 Sandy Bridge
processors) on Stampede. At the finest level, each processor accounts for 8x1283 boxes.

Sandy Bridge Procs TMPI(s) TBamboo(s) Speedup

64 2.45 2.24 1.09x

128 2.45 2.24 1.09x

256 2.47 2.29 1.08x

512 2.49 2.30 1.08x

1024 2.56 2.32 1.10x

2048 2.58 2.37 1.09x

6.4 Summary

1. Structure Grid methods employ regular communication and computation patterns

to discretize a continuous domain. Based on the grid, solution of partial differential

equations can be approximated using numerical computations.

2. We first employed 3D Jacobi, an iterative solver to Poisson’s equation that sweeps

a 7-point stencil operation across elements of a 3D mesh. We compared Bamboo

against many code variants, including the hand-written codes strongly optimized

to hide communication overheads. Experimental results on up to 98,304 processor

cores on Hopper demonstrate that Bamboo outperforms basic code variants and it

meets or exceeds the performance of hand optimized codes.

3. We also used a multigrid solver for Helmholtz equation. Hiding communication

overheads by overlapping with computation is challenging as the computation

reduces significantly on coarser grids. Nevertheless experimental results show

that Bamboo improved the performance of the MPI code variant by 14% on up to

32,768 processor cores on Edison and by 10% on up to 16,384 processor cores on
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Stampede.
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Chapter 7

Unstructured grid

7.1 Overview

Unstructured grid is a class of methods for solving problems on complex geome-

tries [84]. Unstructured grid methods employ an arbitrary set of elements to partition

a solution domain. Unstructured grid is also useful when employed in the numerical

solution of moving boundary problems. Thus, unstructured grid methods have become

commonplace in CFD (Computational Fluid Dynamics) [85, 86]. In this chapter, we em-

ploy LULESH [28, 87–89], a simplified version of ALE (Arbitrary Lagrangian Eulerian)

[90, 91], a method to solve moving boundary, multiple material problems.

7.2 LULESH

LULESH (Livermore Unstructured Lagrange Explicit Shock Hydrodynamics)

[28, 87–89] is a proxy application developed by the Co-design project at Lawrence Liver-

more National Laboratory (LLNL). LULESH employs the Lagrangian hydrodynamics

framework to simulate a physical problem governed by 3 conservation equations of mass,

momentum, and energy. The latest version of LULESH solves one octant of the spherical

Sedov blast wave problem [28] in three dimensions as shown in Fig. 7.1. The Sedov blast

wave problem is often used to simulate astrophysical problems such as core-collapse

110
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supernovae. This problem has been a standard test for hydrodynamic codes since it can

be easily verified by using an analytic solution. In addition, this solution can be scaled to

arbitrarily large problem sizes.

! " # $ % & ' ( ( ( ( ( )( ( ( ( ( * & " + ' ( ( ( ( ( )( ( ( ( ( , - , . / 0 '

LULESH: a DOE Proxy Application 

Copyright 2014 Cray Inc. 
64 

Goal: Solve one octant of the spherical Sedov problem (blast 
wave) using Lagrangian hydrodynamics for a single material 

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL 

Figure 7.1. LULESH solves one octant of the spherical Sedov blast wave problem using
Lagrangian hydrodynamics (Image source [4]).

7.2.1 Staggered 3D partial mesh

The solution domain employed by LULESH is a staggered mesh, in which

elements are hexahedrons that can be potentially distorted in three-dimensional space.

Fig. 7.2 depicts the mesh system. Dependent variables such as ρ , e, and p (i.e. density,

internal energy, and pressure) are represented by the element center, whereas kinematic

variables such as U, X, and F (i.e. velocity, position, and forces) are represented by
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element nodes. In Sec. 7.2.2, we will describe how these gradients can be approximated

using finite elements. Tab. 7.1 lists and describes all variables that will be used in the

remainder of the chapter.

!"!#!$%&

$'(!&

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element
centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh
for simplicity; a three-dimensional mesh representation is the obvious extension.

point at the element center. Kinematic variables such as
−→
X and

−→
U are defined at the element nodes.

The single-point quadrature mesh elements used in the challenge problem implementation, while less
accurate than alternatives, have a long history of demonstrated robustness for modeling realistic prob-
lems involving plastic flow and shock discontinuities. The spatial relationships among these variables
are illustrated in Fig. 1.2. Spatial gradients are computed using finite element approximations. The
reference code (see Section 1.3) uses specific computational operations to perform the finite element
approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
tn is advanced to time tn+1 = tn + ∆tn, where n is the step number and ∆tn = tn+1 − tn is the time
increment.

An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-
dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of

7

Figure 7.2. Elements of a staggered mesh are hexahedrons that can be potentially
distorted in three-dimensional space, each consisting of center and nodes.

Table 7.1. Node variables and element variables

Nodal variables description element variables description

~X = (x, y, z) position vector p pressure

~U = (Ux, Uy, Uz) velocity vector e internal energy

~A = (Ax, Ay, Az) acceleration vector q artificial viscosity

~F = (Fx, Fy, Fz) force vector V relative volume

m0 nodal mass lchar characteristic length

ε diagonal terms of

deviatoric strain

In order to simulate a problem with various materials, LULESH introduces the

notion of region. Each region is a subset of the mesh, and it simulates a material. For

the sake of simplicity, LULESH currently employs the same material (ideal gas) for
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all regions, but varies the size of the region. In addition, LULESH provides additional

costs for some regions to simulate the difference in computational costs associated with

material properties. Although the current simulation setup is sufficient to represent a

practical multi-material problem, the limitation of repeating a single material may be

lifted in later versions of LULESH.

7.2.2 Lagrange leapfrog algorithm

The solution of the Sedov blast wave problem is approximated by discretizing the

time domain into time steps. The discrete time increment ∆T = tn+1− tn is not a fixed

value but is re-calculated at every time step. The solution is updated from tn to tn+1 using

the Lagrange leapfrog algorithm [89], which consists of 3 phases to update the following

variables: nodal variables, center variables, and the time increment.

Advance nodal variables

The first phase of the Lagrange leapfrog algorithm updates nodal variables.

Initially, these updates are conducted locally, containing the following steps.

1. Calculate nodal forces: this is the most compute-intensive kernel of the code. A

volume force contribution is calculated within each mesh element by integrating

the volumetric stress contributions. The force in each element is used to distribute

a force contribution to each of its surrounding nodes.

2. Calculate nodal accelerations: the acceleration vector is calculated from the force

by simply applying Newton’s second law: ~F = m~A.

3. Apply acceleration boundary conditions as needed.

4. Updated nodal velocities: this module integrates the acceleration at each node to

advance the velocity at the node ~Un+1 = ~Un +~A∆tn. If the resulting velocity is
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smaller than a cut-off value, it will be set to zero.

5. Update nodal positions by integrating nodal velocities: ~Xn+1 = ~Xn +~Un+1∆t.

Force, velocity, and position variables on the surfaces of the solution domain are

then exchanged between neighbor processes. MPI point-to-point communication is used,

and each process communicates with up to 26 surrounding neighbors. Fig. 7.3 shows the

the code for exchanging the force variable between each process and its 26 neighbors.

The codes for exchanging velocity and position variables are similar.

1 void CommRecv ( Domain∗ domain , . . . )
2 {
3 f o r ( each s o u r c e i n 26 n e i g h b o r s ) / / 6 p lanes , 12 edges , and 8 v e r t i c e s
4 i f ( s h a r e d P l a n e | | ! s h a r e d P l a n e && sharedEdge | | ! s h a r e d P l a n e && ! sha redEdge &&

s h a r e d V e r t i c e s ) {
5 MPI I recv ( domain , . . . , s ou rce , . . . ) ;
6 }
7 }
8 void CommSend ( Domain∗ domain , . . . )
9 {

10 f o r ( each d e s t i n a t i o n i n 26 n e i g h b o r s ) / / 6 p lanes , 12 edges , and 8 v e r t i c e s
11 i f ( s h a r e d P l a n e | | ! s h a r e d P l a n e && sharedEdge | | ! s h a r e d P l a n e && ! sha redEdge &&

s h a r e d V e r t i c e s ) {
12 MPI Isend ( domain , . . . , d e s t i n a t i o n . . . ) ;
13 }
14 }
15 void CalcForceForNodes ( Domain∗ domain )
16 {
17 I n d e x t numNode = domain−>numNode ( ) ;
18
19 MPI Request r e q u e s t [ 5 2 ] ;
20 f o r ( I n d e x t i =0 ; i <52; ++ i ) {
21 r e q u e s t [ i ] = MPI REQUEST NULL ;
22 }
23 # pragma bamboo o l a p l a y o u t cubeRub ikConnec to r
24 {
25 # pragma bamboo r e c e i v e
26 CommRecv ( domain , . . . ) ;
27 # pragma bamboo send
28 CommSend ( domain , . . . ) ;
29 M P I W a i t a l l ( 5 2 , r e q u e s t , MPI STATUS IGNORE ) ;
30 }
31 }

Figure 7.3. Each process communicates with up to 26 surrounding neighbors to exchange
forces. Codes for exchanging position and velocity are similar.

Advance center variables

Center variables are advanced using updated nodal variables.
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1. Calculate kinematic element quantities: this step calculates terms in the total strain

rate tensor ε , which are used to compute the terms in the deviatoric strain rate

tensor.

2. Calculate artificial viscosity: this step calculates the artificial viscosity term q for

each element. For algorithm details and the mathematical aspect of the algorithm,

see [92].

3. Apply material properties: this step updates the pressure p and internal energy e.

The sound speed is then calculated based on p and e. The sound speed is useful in

computing time increment of the next time step.

4. Update element volumes: this step simply updates current relative volume V n to

the new volume V n+1.

Since these computations do not make use of remote data, this phase does not

contain MPI code.

Update the time increment

At every time step, the time increment is recalculated. However, the calculation

only applies to elements whose volume is changing. Courant and Hydro constraints

are used. The Courant constraint is calculated via dividing characteristic length for the

element by its change in volume. Hydro constraint is the maximum allowable volume

change divided by the change in volume. The new time increment is then calculated from

these constraints. It is important to find the minimum value of the time increment across

all processes. Thus, MPI Allreduce is used to perform this task as shown in Fig. 7.4.
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1 void TimeIncrement ( Domain∗ domain ) {
2 C a l c T i m e C o n s t r a i n t s F o r E l e m s ( domain ) ; / / c a l c u l a t e t h e Courant and Hydro

c o n s t r a i n t s
3 R e a l t d t = 1 . 0 e +20;
4 i f ( domain−>d t c o u r a n t ( ) < d t ) {
5 d t = domain−>d t c o u r a n t ( ) / 2 . 0 ;
6 }
7 i f ( domain−>d t h y d r o ( ) < d t ) {
8 d t = domain−>d t h y d r o ( ) ∗ 2 . 0 / 3 . 0 ;
9 }

10 MPI Al l r educe (& dt , &newdt , 1 , MPI DOUBLE , MPI MIN , MPI COMM WORLD) ;
11 domain−>d e l t a t i m e ( ) = newdt ;
12 }

Figure 7.4. MPI code to update the time increment

7.3 Performance evaluation

7.3.1 Hopper results

We first conducted a weak scaling study on Hopper, where we maintained the

number of data elements per process at 923. We evaluated 2 code variants: MPI is

the original code developed by the Co-design project at LLNL and Bamboo is the task

graph code generated by Bamboo. Throughout the experiment, we employed a cubic

number of MPI processes as required by the provided MPI code. All jobs were launched

using the aprun command. The MPI variant was run with the following command line

arguments: -n P -N 16 -S 4, where P is the total number of cores. Bamboo employed

only 4 MPI processes per compute node. Thus, it was run with the following command

line arguments: -n P/4 -N 4 -S 1. For LULESH, we used the default programming

environment (PGI) as it delivered the best performance.

Fig. 7.5 shows the results of the MPI and Bamboo variants on up to 32,768

processor cores. It can be seen that the execution time of the MPI variant grows as

the number of processor cores increases, though ideally this curve would be flat as we

maintain the same problem size per process. This upward trend in execution time can be

well explained by the growth in communication delays as more processor cores are used.
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Bamboo performance, however, is well maintained as a nearly flat rate over a wide range

of core counts (i.e. from 64 to 32,768). This result demonstrates the ability of Bamboo to

tolerate communication delays.

For all core counts, Bamboo used a fixed virtualization factor. In particular, the

number of tasks per worker thread (i.e. MPI process in respect to the MPI code variant)

was always 8. Since we must use a cubic number of tasks, the virtualization factor can be

1, 8, 64, 512, and so on. We found 8 to be optimal as it not only enables communication

overlap but also minimizes the overhead of over-decomposing the problem.
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Figure 7.5. Weak scaling results on Hopper. Local domain per process: 923 and number
of iterations: 10.

Though the MPI code variant can’t run with an arbitrary number of MPI processes,

this is not a constraint with Bamboo. Due to the execution model based on dynamic

scheduling, there is no restriction in the number of MPI processes nor the process

geometry. Rather, as long as Bamboo spawns a cubic number of tasks, these tasks will

be mapped and executed by MPI processes. This capability enabled us to quickly design
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a strong scaling study, as shown in Fig. 7.6. In this study, we fixed the problem size at

14723 while varying the core count from 4,096 to 32,768. Since the number of processor

cores is not always a perfect cube, the virtualization factor varies. Specifically, the

virtualization factor was set at 8, 4, 16, and 8 (tasks per MPI process) on 4K, 8K, 16K,

and 32K processor cores, respectively. It can be seen in Fig. 7.6 that Bamboo realizes

linear speedup. The importance of this result is that strong scaling is commonly used

in practice and hiding latency in strong scaling is very challenging as the computation

shrinks steadily.
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Figure 7.6. A strong scaling study on Hopper. We fixed the problem size at 14723.
Bamboo allows LULESH to be run on an arbitrary number of processes.

Another reason for the good results shown in Figures 7.5 and 7.6 is load balancing.

In particular, we configured the runtime system with 1 MPI process per NUMA node,

each running 4 worker threads (1 worker thread per processor core). Worker threads

within an MPI process do not maintain their own task queues. Rather, they share a

common task queue so that computations can be more evenly assigned to worker threads.
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For example, with a virtualization factor of 16 there are 16x4=64 tasks per MPI process

executed by 4 worker threads. These 4 worker threads will dynamically pull tasks from

the shared queue as long as they are not occupied and the task queue is not empty. The

dynamic task scheduling scheme and the single task queue configuration make sure that

the computations assigned to a NUMA node can be evenly divided into processor cores

and these cores never become idle unless the shared queue runs out of tasks.

7.3.2 Edison results

We also conducted a strong scaling study on Edison. We fixed the problem size

at 8963. As on Hopper, all jobs on Edison were launched using the aprun command. The

MPI variant was run with the following command line arguments: -n P -N 16 -S 8, where

P is the total number of cores. The MPI variant applied only when a cubical number of

processes was used. Bamboo employed only 2 MPI processes per compute node. Thus,

it was run with the following command line arguments: -n P/8 -N 2 -S 1.

Fig. 7.7 presents the performance of the MPI and Bamboo variants on up to

16,384 processor cores. We observed that Bamboo ran faster than MPI, though the

performance improvement was a little less significant than that on Hopper. On Edison,

the Bamboo execution model based on dynamic scheduling also worked well, enabling

Bamboo to run with an arbitrary number of MPI processes. It can be easily seen that

the execution time of the Bamboo variant was steadily reduced by a half every time we

doubled the number of cores.

7.4 Summary

1. This chapter presented results on LULESH, a proxy application of hydrodynamics

computation, which is an unstructured grid method. The application solves one

octant of the spherical Sedov blast wave problem in three dimensions.
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Figure 7.7. Strong scaling results on Edison. Problem size: 8953 and number of
iterations: 10.

2. Experimental results on up to 32,768 processor cores of Hopper demonstrate that

Bamboo is able to hide communication overheads, significantly increasing the

performance of the original MPI code. The effect is that the application can tolerate

communication delays and thus it becomes more scalable.

3. In addition to the performance advantage, Bamboo also demonstrates its flexibility

in configuring the process grid. In particular, the task graph execution model and

the dynamic task scheduling support allow processor cores to execute tasks based

on the availability of data. Thus, Bamboo is able to run the LULESH application

on any arbitrary number of processor cores, whereas the MPI input code requires a

perfect cube of MPI processes.
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Chapter 8

Advanced node technologies

8.1 Overview

At present, it appears that further improvements to HPC systems will mainly

come from enhancements at the node level [8–10]. Node architectures are changing

rapidly, and a heterogeneous design that uses a device (i.e. coprocessor or accelerator) to

amplify node performance is gaining traction. However, heterogeneous nodes challenge

the application programmer as follows. First, performance amplification significantly

raises communication costs relative to computation. Thus, we are required to tolerate

communication delays [23, 25, 53, 58, 62, 93–102], avoid them [71, 103–105], or both.

Second, processor mapping is challenging due to the heterogeneous design. This task

also requires significant application redesign to (1) work within the limitations of the

interface to the memory subsystems and (2) to use the interface in a way that utilizes

the resources efficiently. Third, the performance differential between devices and the

controlling processors introduces the need to solve a load-balancing problem within the

node. This is true even if the application has no inherent load-balancing problem. In

this chapter, we discuss the support of Bamboo on state-of-the-art computing platforms

employing advanced node technologies. We consider two emerging device architectures:

Graphics Processing Units (GPUs) and Many Integrated Core (MIC).

122
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8.2 Graphics Processing Unit

8.2.1 The GPU architecture

Graphics Processing Unit (GPU) has become a powerful means of accelerating

compute-intensive and bandwidth-intensive applications. Each GPU comprises many

simple processor cores AKA stream processors, each consisting fewer functional units

per core and operating at a lower clock rate compared to conventional single-core and

multi-core processors. These stream processors are organized into vector processors

AKA stream multiprocessors (SMs). Within a single SM, stream processors execute

SIMD instructions (single instruction mutiple data) in lockstep.

In this dissertation, we use NVIDIA K20 GPUs, a product of the Kepler architec-

ture [106]. Each K20 GPU consists of 2496 simple processor cores running at 706 MHz.

With the Kepler architecture, NVIDIA first introduces stream multiprocessors extreme

(SMX), an extension to the original SM architecture, which allows multiple groups of

SIMD instructions to execute at a time. The cores of a K20 GPU are organized into

13 SMXes. Each SMX contains 64KB of register and a 64KB configurable scratchpad

memory, which can be partitioned into L1 cache and a software-managed memory called

shared memory. L2 cache, however, is shared among SMXes and may not be configured.

A K20 GPU contains 5GB of device DRAM with a 208 GB/s of memory bandwidth.

8.2.2 CUDA and MPI+CUDA programming models

CUDA (Compute Unified Device Architecture) is a well-known parallel architec-

ture and programming model developed by NVIDIA. Under the CUDA programming

model, a program executes sequences of kernels, functions that run under the Single

Instruction Multiple Threads (SIMT) model. Each CUDA kernel runs a set of threads,

which are hierarchically organized into three-dimensional thread blocks. The program-
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ming model conceptually partitions these thread blocks into a two-dimensional grid.

CUDA dynamically assigns each thread block to a single stream multiprocessor. A

thread block is further broken down into a collection of multiple warps, each a group of

scalar threads that execute in SIMD fashion.
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Figure 8.1. The traditional MPI+CUDA programming model. Each GPU is a device
attached to a CPU called host. Devices communicate with each other via their hosts.
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K3 

K4 

Figure 8.2. Overlapping GPU kernels with host-to-device and device-to-host data
transfers. HD: host-to-device, K: kernel, DH: device-to-host.

MPI+CUDA is a hybrid programming model commonly used to parallelize

application across multiple GPUs. Under this model, each GPU works as a device

attached to a CPU called host, as shown in Fig. 8.1. Devices communicate with each

other via their hosts, requiring the programmer to use CUDA to program the data transfer

between host and device. There are two challenges associated with the MPI+CUDA

programming model. First, MPI only handles the communication among hosts. Thus, any
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attempt to optimize the hybrid code must treat MPI and CUDA components separately.

Second, hiding communication overheads is challenging. Indeed, Fig. 8.2 shows that the

programmer needs to pipeline the GPU kernel and data transfer to hide the communication

delays between host and device. It becomes even more complicated when the programmer

orchestrates host-host and host-device to overlap all communication delays arising in an

MPI+CUDA program.

To demonstrate that developing communication-tolerant code under the tradi-

tional MPI+CUDA programming model is non-trivial, we used 3D Jacobi as a motivating

example. The basic communication code of 3D Jacobi is similar to the one that has been

shown previously in Fig. 3.8, except for one additional step. That is, we added copying

instructions to explicitly transfer data between host and device before and after launching

the kernel that performs the mesh update on GPU. Based on this implementation, we man-

ually reformulated the application’s data structures and embedded a scheduling algorithm

to obtain a highly optimized code, which is able to hide both host-host communication

and host-device data transfer. In particular, we first over-decomposed the data partition

assigned to each GPU into multiple disjoint 3D blocks. The top row of Fig. 8.3 describes

how the application’s data is distributed to GPUs under a regular block decomposition

scheme. The bottom row of Fig. 8.3 shows how each partition is over-decomposed into

smaller 3D blocks. We then statically scheduled computation and communication with

the algorithm shown in Fig. 8.4, so that Host-Host communication cost is hidden by GPU

computation and Host-Device transfer is pipelined with the Host-Host communication.

8.2.3 GPU-aware MPI

Though we have no doubt that the optimization technique presented above can

improve performance, its implementation is time consuming and error-prone. In addition,

it complicates the original code, entangling further software development. Thus, one may
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Figure 8.3. 1, 2 and 3-D decomposition. a)Top: Problem size is distributed over GPUs
indexed in 3-D Cartesian coordinates b)Bottom: Subproblem at each GPU is divided into
smaller subsubproblems to increase the opportunity to hide latency.
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sition, only phases 000 and 100 are used. With 2-D decomposition, phases 000, 010, 100
and 110 are used. All phases are used in 3-D decomposition.
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think of translating MPI+CUDA code into its task dependency graph form by using the

Bamboo translator. Unfortunately, the resulting program can tolerate the communication

among hosts only. The reason is that the CUDA interface does not have any connection

with MPI. Thus, the data transfer between host and device can’t be factored out of the

task execution on the device.
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Figure 8.5. A new programming model allowing devices to exchange message directly

We propose GPU-aware MPI, a new programming model that allows MPI com-

munication routines to take device memory as buffer for sending and receiving data.

Fig. 8.5 presents this model. With GPU-aware MPI, the programmer can manage the

communication between devices without the need to explicitly route data via the hosts.

Instead, it is the responsibility of the compiler and runtime system to handle the data

transfer between host and device. Our proposal is similar to those proposed by MPI-ACC

[107, 108] and MVAPICH2-GPU [109]. However, we integrated GPU-aware MPI with

Bamboo and the Tarragon extension proposed in Chapter 3. The result is that we can

turn MPI+CUDA program into a proper task dependency graph form, where host-device
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transfer is factored out of task and is represented as edge of the graph. Thus, we can auto-

matically mask both host-host and host-device communication overheads. MPI-ACC and

MVAPICH2-GPU, on the contrary, cannot automatically hide communication overheads.

Another advantage of the GPU-aware programming model compared to the

traditional one is that it helps isolate the application from technological changes in

interconnection network. For example, GPUDirect is a promising interconnect technology

that is currently under development and deployment [110, 111]. GPUDirect enables

GPUs to communicate with each other directly without coordinating with hosts. In order

to take advantage of GPUDirect, however, applications developed under the traditional

MPI+CUDA programming model must be significantly rewritten. In addition, with

GPUDirect there are at least 2 paths from a GPU to another: a direct path connecting

2 GPUs and an indirect path via the hosts. A static routing approach is obviously not

suitable for this scenario. Due the GPU-aware programming model, communication

between devices and host-device data transfer can be factored out of the task execution.

As a result, the runtime system can decide on the fly the best path for a message based on

the source/destination information and the current traffic conditions on the compute node

and the network.

8.2.4 Performance evaluation

We evaluated the new programming model using the 3D Jacobi solver. We

compared 5 code variants. The first and second variants, MPI-basic and MPI-olap,

employ the traditional MPI+CUDA programming model. The third variant, Bamboo, is

the task graph program obtained by translating MPI-basic. The fourth variant, Bamboo-

GPU, is generated by the Bamboo translator from a basic MPI+CUDA code written under

the GPU-aware programming model. The fifth variant, MPI-nocomm, was obtained by

removing all host-host and host-device communication calls.
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We conducted a weak scaling study on Stampede. This cluster consists of a few

GPU queues, each containing up to 32 GPU nodes. Each GPU node is equipped with

one K20 GPU and two 8-core Sandy Bridge processors. GPU nodes are connected by

a Mellanox FDR InfiniBand interconnect. We evaluated all code variants with the base

problem size of 510x512x128 per GPU. We ran experiments on up to 32 GPUs. Due to

the small scale, we employed a 1D decomposition scheme.
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Figure 8.6. A weak scaling study on 3D Jacobi. We use up to 16 GPUs on Stampede.
Bamboo outperforms MPI-basic, though it runs a bit slower than the hand optimized
code.

Fig. 8.6 shows the performance in GFLOP/s of all code variants. It can be

seen that Bamboo-GPU and MPI-olap significantly outperform Bamboo and MPI-basic.

The reason is that Bamboo-GPU and MPI-olap can overlap both host-host and host-

device communication with the computation. Although Bamboo can overlap host-

host communication, host-device is not handled properly, significantly slowing down

the performance. In particular, even when tasks share the same device, they must
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communicate via their common host, creating unnecessary traffic on the PCI Express

bus. It is the result of not factoring host-device communication out of the computation.

We attribute the performance improvements of Bamboo-GPU compared to Bam-

boo and MPI-basic to the following optimizations.

• The knowledge of host-device transfer enables Bamboo-GPU to take advantage

of locality, such as tasks computing on the same GPU only exchange the header

information of messages. This optimization can save significant bandwidth of the

PCI Express bus connecting host and device. We found that this optimization is

very significant at small scales, where the bandwidth between host and device is

more critical than between hosts.

• Under the GPU-aware programming model, the runtime system has to optimize

host-device transfer. We reimplemented the runtime system so that it becomes

GPU-aware. Specifically, the new implementation of Tarragon employs pinned

memory to buffer messages. Using pinned memory can significantly increase the

bandwidth between host and device [112, 113]. Indeed, Volkov and Demmel found

that copying data at non-pinned rate realized only a half of the peak sustained

bandwidth [112].

• We used asynchronous memory copy variants to avoid implicit synchronization on

the GPU. We will discuss the effect of synchronous routines in Sec. 8.2.5.

• We pre-allocated messages, which includes both host memory and device memory

buffers, and recycled them during the program execution. Recycling memory is

important because allocating and deallocating device memory are not only costly

but also block the whole GPU, reducing overlap.

Compared to MPI-olap, the performance of Bamboo is a little lower (about 4%).
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The reason for this slight performance reduction is that task has to buffer out-going data

and the runtime system has to buffer incoming data. The cost for buffering data is often

small, since a GPU often has remarkably high DRAM bandwidth. Another reason is

that we conducted the performance study at a small scale, where the effects of network

congestion and processor performance variation are very modest. Thus, the benefits of

using a dynamic scheduling scheme are outweighed by its overheads.

8.2.5 Notes to the programmer

CUDA employs 3 different engines to service kernel calls and data transfer

requests (one for host-to-device and another for the reverse direction). These engines

run in parallel, except for the case that a special CUDA routine blocks the entire GPU.

For example, cudaDeviceSynchronize() blocks the GPU until all previous activities have

completed. To realize the expected communication overlap, the programmer should avoid

using CUDA routines that causes such a total synchronization on the GPU. Instead, the

programmer should use similar variants that block only the caller thread. For example,

cudaStreamSynchronize() can be used to replace cudaDeviceSynchronize(). We list

special CUDA routines that the programmer should avoid in Appendix D.

8.3 Many Integrated Core

8.3.1 The MIC architecture

Many Integrated Core (MIC) is a state-of-the-art many-core processor architecture

designed and developed by Intel. Intel refers to it as a co-processor. The MIC architecture

is based on simple, in-order, x86-like processor cores running at low clock speeds. It

supports legacy x86 codes, making application migration easier than on accelerators that

support vastly different ISA.The initial offering of the MIC architecture is the Intel Xeon

Phi with the code name Knights Corner (KNC). This coprocessor consists of 61 cores,
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each an Intel Pentium-like processor (2 pipe in-order superscalar design). However,

each core of KNC includes a 512-bit SIMD ALU that can perform 8 double-precision

floating-point operations per clock cycle. Processor cores communicate, and access

on-chip DRAM, via a 512-bit wide, bi-directional ring bus and 8 memory controllers. To

reduce the gap between register and memory, each core contains 32 KB of private L1

and a partitioned 512KB L2.

Since MIC is a shared-memory architecture with many processor cores crammed

on a chip, it supports both multithreading (Pthreads, OpenMP, Intel Threading Building

Blocks (TBB), and Cilk) and message passing (MPI only) programming models. A

hybrid approach is also supported, where multiple processes, each spawning multiple

threads, run on a single MIC. To hide latency due to data and instruction fetching, MIC

supports up to 4 hardware threads (AKA contexts) per core. The Intel documentation

states that a minimum of 2 contexts are required to maximize performance. Because MIC

supports familiar programming models, it provides a friendly programming environment

and high opportunities to port legacy code to accelerate the performance.

8.3.2 Execution modes on a MIC cluster

To validate the performance of Bamboo on the MIC architecture, we used Stam-

pede [77], one of the largest machines based on MIC built to date located at the Texas

Advanced Computing Center (TACC). This cluster consists of 6400 compute nodes, each

equipped with 1 Intel Xeon Phi XE10P coprocessor (KNC) and 2 Intel Xeon E5 8-core

processors (Sandy Bridge). Each compute node also contains 32GB (4 x 8GB DDR3) of

host memory (NUMA) and 8GB of on-board DDR5 device memory. The coprocessor

is connected with the host via a PCIe connection. Nodes communicate via a Mellanox

FDR InfiniBand interconnect with a 2-level fat-tree topology. Stampede supports many

compilers to build and run codes on hosts. However, it is currently mandatory to use
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Intel’s compilers (icc and IMPI) to compile and execute codes on MICs. We used the

Intel C++ Composer XE 2013 suite (version 13.0).

Stampede provides programmers with 5 execution modes: host-host, MIC-MIC,

symmetric, offload, and reverse offload. This dissertation considers the first three modes.

Host-host mode executes all computations on the hosts and doesn’t use the MICs at

all. In MIC-MIC mode, the program allocates data and performs computations locally

on MICs. Symmetric mode supports heterogeneous computing by considering MICs

and hosts as peers in one big SMP (symmetric multiprocessor) node. This dissertation

does not use either offload or reverse offload mode where one resource (device or host,

respectively) migrates computation to the other. This mode similar to how processors

accelerate currently, though accelerators support only offload mode.

8.3.3 Performance evaluation

We used 3D Jacobi to evaluate Bamboo on MIC. We employed the MPI+OpenMP

programming model. The basic MPI code of 3D Jacobi has been shown previously in

Fig. 3.8. We used OpenMP to parallelize the workload assigned to each processor/-

coprocessor. Unlike GPU, with MIC we are able to port the runtime sytem on both

the coprocessor and the host. We configured Tarragon as follows. We initialized MPI

processes with the THREAD FUNNELLED mode. Under this mode, each process

consists of multiple threads, but only the main thread can handle communication by

making MPI calls. We then bound the main thread (AKA message handler thread) to

core #0 on MIC using sched setaffinity(). We then created a set of 236 hardware threads

and map them to cores #1 to #59 in a block fashion (4 consecutive threads on each core).

We next created a worker thread for Tarragon and bound this thread to the set of 236

hardware threads. This worker thread runs one task at a time by mapping OpenMP

threads spawned in the task to hardware threads. Message handler and worker threads
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run until the program completes. OpenMP threads may or may not run to completion,

depending on the OpenMP implementation. We did not use core #60 to eliminate noise

due to the microOS of MIC. On host, there are 16 cores indexed from 0 to 15. As a

result, we created 2 MPI processes per host. We mapped the message handler threads of

these processes to cores #0 and #8, and 7 worker threads to cores #1 to #7 and #9 to #15,

respectively. All these setups are totally independent of the application program.

Weak scaling study

We first conducted a weak scaling study, fixing the problem size at 384x384x384

per node. Thus, we increased the problem size in proportional to the number of nodes.

Fig. 8.7 presents the results of 3D Jacobi with different modes on up to 64 nodes.

Consider the first 3 subfigures (8.7(a), 8.7(b), and 8.7(c)), we can see that MIC-MIC

performs well on 4 and 8 nodes but it does not scale as well as the other 2 modes. This

can be explained by looking at Fig. 8.7(d), where communication cost in the Host-Host

mode is much smaller than it is in the MIC-MIC mode. The symmetric mode provides

both impressive performance and scalability. By splitting workload across two Sandy

Bridge processors, we can take advantage of Xeon E5 processors and reduce the amount

of off-node communication. Results shown in Fig. 8.7(d) indicate that the percentage of

communication in the symmetric mode is twice as large as it is in the Host-Host mode.

However, the absolute time for communication in two modes is the same as the symmetric

mode runs twice as fast as the Host-Host mode.

We note that the performance benefit of using Bamboo on only a small number

nodes is modest in Host-Host mode. Yet, we still recover about half the communication

costs as we did when we used MIC.

The benefit of Bamboo is more significant in MIC-MIC and symmetric modes,

where the relative overhead of communication is large. By overlapping communication
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with computation, Bamboo improves the scalability of the MIC-MIC mode to the level

of Host-Host mode. On 64 nodes, Bamboo in both modes runs with 2 Tflops, yielding a

87% efficiency (relative to the performance on 1 node). The improvement of Bamboo

in the MIC-MIC mode is 33% on 16 MICs, 39% on 32 MICs, and 43% on 64 MICs.

With the symmetric mode, Bamboo also performs well. The communication overhead in

this mode is smaller in the MIC-MIC mode, so the relative improvement of Bamboo is

also smaller: 24% on 16 MICs and 20% on 32 MICs. However, recall that symmetric

mode runs roughly 2 times faster than MIC-MIC, making the absolute performance

improvement of Bamboo in this mode comparable to it is in the MIC-MIC mode.

Strong scaling study

While we used weak scaling to adapt to large problem sizes and maintain good

performance, strong scaling serves as a stress test for the performance of an application

when communication cost grows. To this end, we used 2 problem sizes 15363 and

10243 to conduct strong scaling studies. Fig. 8.8 presents results of strong scaling

studies. We observed that the performance with 10243 was lower than with 15363 in

most configurations. This is reasonable since a large problem size has a lower surface

over volume ratio than a smaller one, reducing the relative overhead of communication.

Compared to weak scaling study, Bamboo plays a more significant role in keeping

the application scalable, especially with the MIC-MIC and symmetric modes. For MIC-

MIC mode, Bamboo improves the performance by 44% with the large and 48% with

the small problem sizes (both correspond to the 32-node configuration). For symmetric

mode, MPI sync performs well with the large problem size. Bamboo does even better

when making this mode almost twice as fast as the MIC-MIC mode. Bamboo respectively

improves the performance of MPI sync by 25% and 41% on 16 and 32 nodes. Recall that

symmetric is much faster than MIC-MIC and Host-Host modes, making the improvement
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of Bamboo in symmetric mode much more significant if we convert to absolute values.

With the small problem size, MPI sync performs well on 8 nodes, operating 1.6X and 2X

faster than Host-Host and MIC-MIC modes, respectively. However, this variant slows

down on 32 nodes and does not realize good performance on 64 nodes. This problem is

due to a low device-to-host bandwidth that we will show in the next section. Bamboo

improves MPI sync by 32% on 16 nodes and 29% on 32 nodes. These results with small

and large problem sizes demonstrate that Bamboo can hide communication overhead in

both scalable and non-scalable situations. For Host-Host mode, similar to weak scaling

we observed the benefit of Bamboo when communication overhead is significant. For

example, we observed the improvement with Bamboo on 64-node configuration with

both problem sizes.

8.3.4 Load balancing

Although host and coprocessor coincidentally operate 3D Jacobi at comparable

rates on Stampede, this fact can change in other applications and on different systems,

such as Tianhe-2, which has 3 Intel Xeon Phi and 2 Ivy Bridge processors per node

[114]. In this section, we propose a new execution model to rectify the host-coprocessor

discrepancy so that we can continue using regular distribution effectively on both host

and coprocessor altogether.

Fig. 8.9(a) depicts the use of symmetric mode with 2 nodes, where hosts (H)

and MICs (M) serve as SMP nodes. The effectiveness of this configuration relies on the

assumption that host and coprocessor deliver similar performance. However, for reasons

stated above, this assumption may not hold.

Since the imbalance occurs within a single node only, we can avoid the costs of

migrating tasks, which is a more challenging solution to implement. Fig. 8.9(b) presents

a modified version of symmetric mode. This scheme employs only one MPI process
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Figure 8.9. Automatic load balancing in symmetric mode. Virtualization plays a signifi-
cant role in balancing regular workload on heterogeneous processors
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running on the host to communicate across nodes. Load balancing within node relies

on the virtualization provided by Bamboo and on the dynamic scheduling supported

by its runtime. In particular, Bamboo virtualizes MPI processes into many smaller

homogeneous tasks. The runtime system employs a single queue per node to handle

these tasks. This queue can be configured as a first-come-first-serve or a priority queue.

Coprocessor and host serve as workers and keep picking tasks until there is no available

task in the queue.

Implementing rectified symmetric mode requires that the host and co-processor

residing on the same node see a single unified address space. Implementing such a single

address space, either on hardware or by a software solution, requires significant efforts.

We next present our first step in demonstrating the proposed scheme via a simulation

using coprocessors only, which enables us to avoid the thorny implementation issues in

supporting the single address space, while demonstrating the utility of the approach.

To simulate the unified address space between host and coprocessor, we extracted

1/4 number of cores on each coprocessor to use as host. As a result, each simulated

coprocessor consists of 3-time cores more than its simulated host, a reasonable fraction

to distinguish multi- and many-core processors. To simulate the fact that each core of the

simulated host is faster than each core of the coprocessor, we dynamically added dummy

computations to tasks at the time they are scheduled on the simulated coprocessors. We

configured Tarragon with 4 worker threads, each spawning 60 OpenMP threads. We

used the notion slowdown factor σ to denote how slower a worker thread on coprocessor

is compared to that on the host. For σ = 1, all worker threads ran with the same rate,

meaning that coprocessor is 3-time faster than host. For σ = 6, the coprocessor ran at

only 3*(1/6)= 1/2 of the host’s rate.

Fig. 8.10(a) presents the task distribution on worker threads of simulated hosts and

coprocessors when the σ varies. We selected values for σ so that the coprocessor could be
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slower or faster than its host. We can see that when σ = 6, the host’s worker thread is very

fast compared to those of the coprocessor. In such a scenario, the scheduler dynamically

assigns more tasks to the host’s worker thread, thereby balancing the workload to maintain

good performance. It is important to note that the task scheduling is purely driven by

workload and the slowdown factor, and there is no intervention from the programmer.

We also observed that the task distribution results shown in Fig. 8.10(a) hold for both

single and multi-node configuration.

Fig. 8.10(b) demonstrates that latency hiding does not negatively impact load

balance, but rather works in synergy with load balancing activity to improve performance.

In particular, when σ = 1, entire performance benefit is due to latency hiding. With

higher values of σ the load-balancing scheme contributes additional benefit, increasing

the amount of performance improvement. In this study, we also observed the vital role

of virtualization in both hiding latency and balancing the workload. The degree of

virtualization is denoted by virtualization factor (VF), the total number of tasks divided

by the total number of worker threads. Fig. 8.10(b) shows that a virtualization factor of 2

is sufficient when the discrepancy between worker threads is not significant. However,

when the host’s worker thread becomes much faster, a virtualization factor of 4 is required.

This makes sense since we need more tasks to fill the larger performance gap among

worker threads.

8.4 Summary

1. Advanced node architectures allow the programmer to accelerate computation

kernels. However, this performance amplification in turn increases significantly

communication costs relative to computation. As a result, hiding communication

becomes more and more important than it was before. However, the complex mem-

ory hierarchy employed by advanced node architectures challenges any attempt to
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hide communication costs.

2. Graphics Processing Unit (GPU) is a device architecture commonly used to ac-

celerate not only computer graphics but also many scientific computing applica-

tions. MPI+CUDA is a dominating programming model to parallelize applica-

tions on multiple GPUs distributed across the network. However, the traditional

MPI+CUDA programming model requires the programmer to explicitly transfer

data between host and GPU in order to communicate among GPUs. We proposed

a new model that enables a peer-to-peer communication scheme between GPUs.

Integrating the new model with Bamboo and Tarragon extensions, we are able to

hide both host-host and host-device communication delays with computation.

3. Many Integrated Core (MIC) is a new processor architecture developed by Intel.

Intel Xeon Phi is the first product of MIC and is referred to as coprocessor. On

compute nodes consisting of both processors (e.g. Sandy Bridge processors) and

coprocessors, the programmer can employ many execution modes. Bamboo cur-

rently supports 3 modes: host-host, MIC-MIC, and symmetric. On these 3 modes,

we have demonstrated that Bamboo can significantly improve the performance

by overlapping communication with computation. Since host and coprocessor

can run at different speeds, we propose a new execution model to rectify the host-

coprocessor discrepancy occurring in the symmetric mode. This scheme employs

the host to communicate across nodes. Load balancing within node relies on the

virtualization provided by Bamboo and on the dynamic scheduling supported by

its runtime. Fig. 8.6 shows the performance in GFLOP/s of all code variants.
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Chapter 9

Conclusion and future work

9.1 Research contributions

This dissertation presented a novel interpretation of Message Passing Interface

to execute MPI applications under a data-driven model that can overlap communica-

tion with computation automatically. This interpretation factors scheduling issues and

communication decisions out of program execution. Specifically, by reformulating MPI

source into the form of a task dependency graph, which maintains the data dependency

among tasks of the graph, we can rely on a runtime system to schedule tasks based on

the availability of data and computing resources.

To implement our approach we developed Bamboo, a custom source-to-source

translator that transforms MPI code into the task dependency graph representation.

Bamboo treats the MPI API as an embedded domain specific language, and it requires

only a modest amount of programmer annotation. Bamboo comprises 2 software layers:

core message passing and utility layers. The core message passing layer transforms a

minimal subset of MPI point-to-point primitives, whereas the utility layer implements

high-level routines by breaking them into their point-to-point components, which will be

then translated by the core message passing layer. Such a multi-layer design allows one

to customize the implementation of MPI high-level routines. In addition, this design can

145
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reduce the amount of programming effort needed to port the core message passing layer

to a different runtime system.

We demonstrated that Bamboo improved performance on three important ap-

plication motifs: dense linear algebra, structured and unstructured grids. For dense

linear algebra, we translated two well-known algorithms for computing dense matrix

multiplication (Cannon and SUMMA algorithms). We also translated High Performance

Linpack, a well-known benchmark that solves systems of dense linear equations using LU

factorization. For structured grid, we translated an iterative solver for Poisson’s equation

and a geometric multigrid solver for Helmholtz’s equation. Finally, for unstructured

grid, we translated a hydrodynamics code to solve the Sedov blast wave problem. For all

applications, we have validated our claim that, by interpreting an MPI program in terms

of data flow execution, we can overlap communication with computation and thereby

improving the performance significantly. Moreover, Bamboo performance meets or

exceeds that of labor-intensive hand coding, at scale. Bamboo also improves performance

of communication avoiding matrix multiplication (2.5D Cannon’s algorithm). The result

on this application demonstrates that the translated code not only avoids communication,

but tolerates what it cannot avoid. We believe that this dual strategy will become more

widespread as data motion costs continue to grow.

We also validated Bamboo on advanced node architectures, which accelerate

node performance by offloading compute-intensive kernels to devices such as NVIDIA’s

GPU and Intel’s MIC. On GPU clusters, Bamboo not only improves performance of a

program written under the MPI+CUDA programming model, but also offers a simpler

interface that allows communication between GPUs to be transparent to the programmer.

On MIC-based clusters, Bamboo currently supports 3 execution modes. Experimental

results demonstrate that Bamboo can improve the performance of MPI significantly with

only a modest amount of programmer annotation.
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Lastly, but certainly not least, Bamboo allows the programmer to specify schedul-

ing hints as task priorities in order to optimize the scheduler. A task with higher priority

will have a higher chance to be scheduled quickly. Such task prioritization support is

important in applications that consist of irregular workloads. While Bamboo’s scheduler

employs a non-preemptive task scheduling [52–54], Bamboo allows tasks to voluntarily

yield the processor at the time of its choosing, enabling tasks of the graph to work in

a more cooperative manner. This dual scheduling scheme allows hardware resources

to be efficiently shared among tasks. We evaluated the task prioritization support using

two applications of the dense linear algebra motif: SUMMA matrix multiply and LU

factorization. Experimental results demonstrated that we gained significant performance

benefits by employing simple prioritization schemes.

9.2 Limitations

9.2.1 Unsupported MPI routines

Although the current implementation of Bamboo supports high-level routines

such as collectives and communicator splitting, it does not yet support MPI derived

datatypes (e.g. vector and indexed types) and virtual topologies (i.e. Cartesian grid

and Graph). Although it is not mandatory to use these routines for developing an MPI

program, such supports can make the programming task easier. Virtual topologies define

the shape of MPI processes. Thus, the programmer can have an intuitive idea about

how MPI processes are organized. In addition, the programmer can use many high-level

communication operators which are pre-built for a particular topology. For example, the

programmer can shift data along left-to-right edges of a one-dimensional process grid in

one operation. Derived datatypes provide a means of describing the shape of sent and

received data. Thus, derived datatypes reduce the need to marshal and demarshal data
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when communicating on scattered data sets.

9.2.2 Load balancing

Currently, Bamboo supports load balancing by virtualizing MPI processes into

tasks and leveraging the dynamic scheduling support of the Tarragon runtime system. In

Chapter 8, we have presented a simulation that shows a method to balance the workload

assigned to both Sandy Bridge and MIC, which generally operate at different rates, by

using dynamic scheduling. However, Bamboo hasn’t supported this capability on a real

platform. There are a few reasons for this limitation. First, host and accelerator/coproces-

sor often employ different ISAs. Second, the runtime system does not provide the work

stealing support, an important technique for load balancing.

The application itself is another source of load unbalance. Indeed, for appli-

cations such as adaptive mesh refinement (AMR) and unbalanced tree search (UTS),

computations are expected to be significantly unbalanced among processes. As a result,

inter-process task migration support is crucial to balance the workload and realize ex-

pected performance. Bamboo and Tarragon, however, do not yet support task migration

across memory address spaces. Tasks can migrate across worker threads residing in a

common process only. Bamboo can be extended to support more irregular applications.

This requires a stronger support from the runtime system, since task migration can be

very costly due to data attached with the migrated computation. Thus, future extensions

on Bamboo and its runtime system must be well designed to efficiently support task

migration.

9.3 Future work

We can extend Bamboo to support complicated, heterogeneous computer systems.

A future compute node may contain multiple types of multicore, or manycore processor,
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or both. Thus, processor cores may run at different speeds. Under this heterogeneous

environment, data partitioning and mapping are non-trivial to the programmer. Bamboo

alleviates these challenges by supporting process virtualization. However, in the future

Bamboo needs to provide auto-tuning support for finding optimal or near-optimal process

virtualization and task mapping. For irregular applications, hints from the programmer

may be useful to effective task migration.
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Testbed

A.1 Edison

Edison is a Cray XC30 system located at the National Energy Research Scientific

Computing Center (NERSC). Edison contains 133,824 cores, organized into compute

nodes each consisting of two 12-core Intel Ivy Bridge processors and 64GB of memory.

Compute nodes are interconnected via Cray Aries interconnect with Dragonfly topology.

All source code was compiled using the CC wrapper, with the O3 optimization option.

This wrapper is a front-end to MPI and we set it up to use the Intel compiler suite. High

performance matrix multiply (dgemm) was supplied by the MKL library.

A.2 Hopper

Hopper is a Cray XE6 system, and it is also located at NERSC. Hopper consists of

153,216 cores packaged as dual socket 12-core AMD Magny-Cours 2.1GHz processors,

which are further organized into two hex-core NUMA nodes. The 24-core compute nodes

are interconnected via Gemini interconnect (a 3D toroidal topology). Each compute node

contains 32GB of memory. Like on Edison, all source code was compiled using the CC

wrapper, with the following optimization options: -O3 -ffast- math. Unless we describe

explicitly, the reader can assume that we used the GNU compiler suite (GCC 4.6.1) on

150
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Hopper. High performance matrix multiply (dgemm) was supplied by ACML version

4.4.0.

A.3 Stampede

Stampede is a hybrid CPU/MIC system located at the Texas Advanced Computing

Center (TACC). This cluster consists of 6400 compute nodes, each equipped with two

8-core Sandy Bridge processors and one Intel Xeon Phi XE10P coprocessor (MIC). Each

compute node of Stampede contains 32GB of host memory (NUMA). Nodes communi-

cate via a Mellanox FDR InfiniBand interconnect with a 2-level fat-tree technology. We

compile code with the Intel C++ compiler version 13.0. We use Mvapich to communicate

among Sandy Bridge processors. To communicate among Sandy Bridge and MICs or

between MICs, we use Intel MPI.

Stampede also consists of a few hybrid CPU/GPU system queues, each employing

up to 32 GPU nodes. Each GPU node is equipped with a K20 GPU (Kepler) and two 8-

core Intel Xeon E5 (Sandy Bridge) processors. Each GPU node also contains 32GB host

memory and 5GB device memory. Nodes communicate via a Mellanox FDR InfiniBand

interconnect. We use the Intel compiler to compile code running on host and CUDA 5.5

to compile GPU kernel code. We use Mvapich to communicate among GPU nodes.
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Bamboo manual

B.1 Install ROSE and Bamboo

Bamboo is built on top of the ROSE compiler framework. Complete instructions

to install ROSE and its dependencies can be found on ROSE’s website [64]. Here

we include a small set of instructions required to install Bamboo, assuming that the

dependencies such as Boost, Java, and libtool are already available.

1 # Rose i n s t a l l a t i o n r o o t

2 s e t e n v ROSE INSTALL p a t h t o r o s e

3

4 # Lo ca t e b o o s t

5 s e t e n v BOOST ROOT p a t h t o b o o s t

6

7 # Lo ca t e Java

8 s e t e n v JAVA HOME / o p t / j a v a / j dk1 . 7 . 0 03 /

9

10 # S e t l o a d p a t h

11 s e t e n v LD LIBRARY PATH $BOOST ROOT / l i b : $LD LIBRARY PATH

12 s e t e n v LD LIBRARY PATH $JAVA HOME / j r e / l i b / amd64 / s e r v e r / : $LD LIBRARY PATH

13 s e t e n v PATH $JAVA HOME / b i n : $PATH

14

15 # 2 . Un ta r rose , cd in , and run . / b u i l d

16 # G e n e r a t e s a new s u b d i r e c t o r y c o n t a i n i n g t h e r o s e s o u r c e d i r e c t o r y

17 cd . .

18 mkdir b u i l d r o s e

19 cd b u i l d r o s e

152
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20

21 # 3 . c o n f i g u r e r o s e i n t o your u s e r s p a c e from t h e newly c r e a t e d b u i l d r o s e d i r

22 . . / r o se −0 .9 .5 a −2 0 5 8 4 / . / c o n f i g u r e −−p r e f i x =$ROSE INSTALL −−with−gcc−omp −−with−

g o m p o m p r u n t i m e l i b r a r y = / u s r / l i b −−with−b o o s t =$BOOST ROOT

23

24 # 4 . Compile Rose ( on 64− b i t machines , be s u r e t o modify −m32 t o −m64 )

25 make − j n u m b e r o f t h r e a d s

26

27 # 5 . ( o p t i o n a l ) Check Rose

28 make check

29 make i n s t a l l c h e c k

30

31 # 6 . I n s t a l l Rose

32 make i n s t a l l

33

34 #7 A f t e r b u i l d i n g Rose , f i n a l i z e p a t h s

35 s e t e n v PATH $PATH : $ROSE INSTALL / b i n

36 s e t e n v LD LIBRARY PATH $LD LIBRARY PATH : $ROSE INSTALL / l i b

37

38 # 8 . B u i l d Bamboo

39 t a r −xvf bamboo . t a r

40 # In f i l e c o n f i g u r e . in , u p d a t e p a t h s t o ROSE, BOOST, TARRAGON, and BAMBOO

41 make

42 make i n s t a l l

43

44 # S e t p a t h t o Bamboo e x e c u t a b l e

45 s e t e n v PATH $PATH :$BAMBOO HOME/ b i n

46

47 # T r a n s l a t e an MPI i n p u t s o u r c e

48 $BAMBOO HOME/ b i n / bambooCC p a t h t o i n p u t s o u r c e

B.2 Annotate an MPI program

B.2.1 Bamboo canonical form

When a Bamboo program has been appropriately annotated, it has a syntactical

structure called Bamboo Canonical Form. The annotations do not change the meaning of
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the program (other than, for example, to reorder floating point operations, which could

produce different results due to roundoff) but they enable Bamboo to interpret the order

of computatation and data motion differently from conventional MPI programs, in order

to improve performance.

We construct a Context Free Grammar for the canonical form based on point-

to-point communication primitives. Recall that we transform non-point-to-point com-

munication routines, e.g. collective and communicator splitting, into their component

sends and receives. The specific implementation of these communication algorithms is

not mentioned, and is assumed to be correct.

1 P → COC

2 C → CC | O | c | ε

3 O → ( E{C}E ) | ( E )

4 E → EE | [ S ] | <R> | ε

5 S → SS | s | w

6 R → RR | r | r S | w

The grammar can be interpreted as follows. A Bamboo conforming program P

consists of one or more olap-region O interspersed with executable statements c that are

free from MPI communication calls. Each O region may contain communication blocks

and a single computational block C that may appear at any place in the O region. This

computational block may contain other O regions. A communication block can be a send

block S or a receive block R. S and R are blocks that hold MPI primitives. S contains

Sends or iSends called s and Wait or Waitall called w. R contains Recv or iRecv called r,

w, and one or more r followed by one or more s. Note that s and r may associate with

affiliated code that sets up arguments to sends and receives, such as message destination

and source, but in the case of receives, may not be long running, in the sense of an active

message handler.

The Context Free Grammar only defines the syntax of Bamboo Canonical Form.
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To make sure that the program works in a proper way, we add the following semantic note

to this form. The totality of R blocks is independent of the totality of S Blocks. However,

the order of instructions within a communication block and between communication

blocks of the same type is preserved.

B.2.2 Bamboo directives

In the Bamboo Canonical Form, we used terminals (), {}, [], <> to mark olap-

regions, communication and computation blocks. In practice, the Bamboo programmer

annotates olap-regions and blocks with directives. All Bamboo directives begin with

#pragma bamboo, followed by a directive name and any clauses associated with the

directive. Bamboo provides two kinds of directives. The first kind treats olap-regions

and computation/communication blocks as described previously. The syntaxes for the

olap-region and the computation/communication blocks directives are as follows, where

we use regular expression syntax to specify alternatives.

1 # pragma bamboo o l a p

2 { . . . }

3 # pragma bamboo [ send | r e c e i v e ]

4 { . . . }

5 # pragma bamboo compute

6 { . . . }

Bamboo generates firing and yielding rules for an olap-region by extracting the

following information from all receive blocks residing in the region: i) source and tag

arguments of MPI Recv and MPI Irecv calls ii) associated statements that determine

the value of source and tag. The code snippet below shows a receive block, in which

MPI Recv calls are governed by for and if statements. The programmer can either

specify the expressions for calculating source and tag as arguments in MPI calls (line

#4), or place the statements to compute these arguments in a basic block annotated by

the includeStatementBlockInTheFiringRule pragma (lines #6 to #10). The programmer
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can place this pragma in the same or parent scopes of the receive routine.

1 # pragma bamboo r e c e i v e

2 {

3 f o r ( i n t i =0 ; i<maxNeighbors ; i ++){

4 i f ( i s N e i g h b o r ( i ) ) MPI Recv ( . . . , f o o s o u r c e ( i ) , . . . , f o o t a g ( i ) , . . . ) ;

5 i f ( i s N e i g h b o r ( i ) ) {

6 # pragma bamboo i n c l u d e S t a t e m e n t B l o c k I n T h e F i r i n g R u l e

7 {

8 s o u r c e = f o o s o u r c e ( i ) ;

9 t a g = f o o t a g ( i ) ;

10 }

11 MPI Recv ( . . . , sou rce , . . . , t ag , . . . ) ;

12 }

13 }

14 }

Bamboo allows receive calls to reside in a procedure. If this procedure takes

arguments that will be used to determine source and tag, the pragma includeState-

mentsAboveInTheFiringRule must be placed at the begining of the procedure. This

pragma includes all statements above it in the same scope, including arguments passed to

a procedure.

1 void r e c e i v e ( i n t ∗ ne ighbo r , i n t ∗ t a g ) ;

2 {

3 # pragma bamboo i n c l u d e S t a t e m e n t s A b o v e I n T h e F i r i n g R u l e

4 f o r ( i n t i =0 ; i<maxNeighbors ; i ++){

5 i f ( n e i g h b o r [ i ] ) MPI Recv ( . . . , n e i g h b o r [ i ] , . . . , t a g [ i ] , . . . ) ;

6 }

Directives of the second kind, called optimizations, specify optimizations that

may not be needed in all programs, though highly scalable programs will generally

require them.
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Communication layout clauses

Before a task dependency graph can run, the runtime system needs to know

graph topology, which defines how tasks communicate with each other during their life

time. This information will be maintained until the graph finishes its execution. By

default, Bamboo lets each task memorize the information of all other tasks of the graph.

However, the actual communication of a practical application can be very sparse. At

scale, the graph construction time and the memory space needed for graph topology

can explode, since we expect to have millions of tasks. Bamboo introduces the optional

communication layout, where the programmer can provide a hint on the communication

pattern used in each olap-region. This information will be used to reduce the time for

graph construction and the space to store graph topology only; no inference from this

information is made for optimizing the graph execution time.

The code snippet below shows the communication layout for a nearest neighbor

communication pattern on a 3-dimensional process grid. With this information, at the

graph construction time each task only contacts and memorizes information of 6 nearest

neighbors, 2 for each dimension. Table B.1 shows communication layouts commonly

used in practice. By default, the AllToAllConnector layout is used with a 1-dimensional

process grid. This layout works for every application since it creates a full mesh of tasks.

1 # pragma bamboo d imens ion 3

2 # pragma bamboo o l a p l a y o u t OneNeighborConnec tor 0 1 2

3 {

4 . . .

5 }
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Task prioritization

The programmer can assign different priorities to different tasks, or to the same

task but at different places of the program. The syntax to assign priority to a task is as

follows. The programmer can insert priority pragma in any procedure that directly or

indirectly contains olap-region.

1 # pragma bamboo p r i o r i t y v a l u e [ p r i o r i t y Value ] a p p l y I f [ i f−s p e c i f i e r ]

B.2.3 Library of collectives

The programmer has the freedom to customize the Bamboo implementation

of collectives. The default implementation of common collectives is stored in the

‘collectiveLib’ directory. The programmer can add their implementation of missing

routines or modify the implementation of current ones.

B.3 Configure the runtime system

The Tarragon runtime system can be configured in a few different ways [52]. This

section reviews notable options in configuring the runtime system.

B.3.1 Single-threaded and multi-threaded modes

Tarragon can be configured to run with either single-threaded or multi-threaded

mode. Let m be the number of available processor cores within a multi-core node. Under

the single-threaded mode, each MPI process is responsible for handling the communica-

tion and executing tasks. Thus, to configure the runtime system with the single-threaded

mode, we employ m MPI processes per node, one running on a processor core. Under the

multi-threaded mode, a processor core is dedicated to handle communication while the

remaining m-1 cores execute tasks, assuming that m > 1. Thus, to configure the runtime
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system with the multi-threaded mode, we employ only 1 MPI process per node and m

threads per process.

Tarragon sets the multi-threaded mode as the default mode. To switch to the

single-threaded mode, the user must enable the macro TGN SINGLE in the file ‘in-

clude/tgn config.h’.

B.3.2 Thread affinity

When using the multi-threaded mode, the Tarragon user can customize the bind-

ing of the communication handler thread and the worker threads. The binding of the

communication handler thread is set by the Worker::base variable in the file ‘system/tar-

ragon.C’. For example, ‘Worker:base = 0’ binds the communication handler thread to

processor core #0 of each compute node. The worker thread affinity is controlled by the

affinity variable in the file ‘system/worker.C’. For example, ‘ affinity = Worker:base +

Worker: id + 1’ binds worker threads (#0 to #W-1) to processor cores #1 to #W, dedicating

the processor core #0 to the communication handler.

B.3.3 Message buffer size

The communication handler of the Tarragon runtime system buffers messages.

In particular, it employs fixed size buffers to temporarily store incoming data before

injecting them to tasks. Thus, each buffer has to be able to hold the largest message used

in the application. The programmer can configure the message buffer size by modifying

the TGN BUF SIZE macro in the file ‘include/tgn config.h’.

B.4 Compile and link the task graph program

We now can compile and link the generated task graph code against the Tarragon

library. Below is a sample Makefile, in which mainfile.C is the code generated by Bamboo
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and otherfiles.C represents for other auxiliary files.

1 CXX = mpicxx

2 FLAGS += −O3 #and o t h e r f l a g o p t i o n s

3 TARRAGON HOME = p a t h t o t a r r a g o n

4 TARRAGON INC = −D MPI −I$ (TARRAGON HOME) / i n c l u d e

5 TARRAGON LIB = −L$ (TARRAGON HOME) / l i b − l t g n

6

7 a l l : exec

8 exec : m a i n f i l e . o o t h e r f i l e s . o

9 $ (CXX) $ (FLAGS) m a i n f i l e . o o t h e r f i l e s . o $ (TARRAGON LIB) −o exec

10

11 m a i n f i l e . o : m a i n f i l e . C

12 $ (CXX) $ (FLAGS) $ (TARRAGON INC) −c m a i n f i l e . C −o m a i n f i l e . o

13

14 o t h e r f i l e s . o : o t h e r f i l e s . C

15 $ (CXX) $ (FLAGS) −c o t h e r f i l e s . C −o o t h e r f i l e s . o

16

17 c l e a n :

18 rm exec

19 rm ∗ . o

B.5 Launch the executable

The task graph program generated by Bamboo remains an MPI program. Thus,

the programmer uses mpirun or another equivalent command such as aprun and ibrun

to launch it. However, since the Bamboo translator reformulates the execution behavior

of the original program, the arguments to launch the task graph program are slightly

different from those of the original one.

Here we show the commands to run the task graph program with the multi-

threaded and single-threaded modes. In the multi-threaded mode (command #1), we

employ W worker threads per MPI process. Thus, the number of MPI processes required

in this case is only P/W. In the single-threaded mode (command #2), we launch P

processes, one on each processor core. In both cases, the programmer can specify the
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number of tasks by setting Pi. In order to hide latency and balance the workload among

worker threads, Pi must be chosen such that Π
n−1
0 Pi is multiple of P.

1 mpirun −np P /W . / exec [ progArgs ] − t a r r a g o n P i P i −w W # i = 0 . . n−1

2 mpirun −np P . / exec [ progArgs ] − t a r r a g o n P i P i # i = 0 . . n−1

Where,

• P is the number of processor cores

• W is the number of worker threads per MPI process

• exec is the ELF file obtained by linking the compiled task graph program with the

Tarragon library

• progArgs represents arguments associated with the original MPI program

• n is the number of dimensions of the process grid employed by the original MPI

program

• Pi, i = 0..n−1 is the number of tasks on dimension i such that Π
n−1
0 Pi is multiple

of P
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Case study

C.1 2D Jacobi

In this chapter we use 2D Jacobi as a case study for the application of Bamboo.

The 2D Jacobi code that we use is a PDE solver that iteratively sweeps a 5-point stencil

operation over a 2D finite element mesh. Due to the data dependency of the stencil

operation, MPI processes exchange boundary data with their neighbors in the Manhattan

directions. Figure C.1 shows how an MPI process communicates with its neighbors. We

next present the MPI code for 2D Jacobi annotated with Bamboo pragmas.
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Figure C.1. 2D Jacobi solver using a 5-point stencil update scheme. Each MPI process
sends and receives different regions of data
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C.2 Annotate the 2D Jacobi code

1 P r o c e s s Gr id : P = Px ∗ Py / / i n p u t by t h e programmer

2 MPI Comm rank (MPI COMM WORLD, &rank ) ;

3 i n t r ankx = rank%px ;

4 i n t r anky = rank / px ;

5 enum D i r e c t i o n { l e f t =0 , r i g h t , up , down } ;

6 i n t n e i g h b o r [ 4 ] ;

7 n e i g h b o r [ l e f t ] = rankx > 0 ? rank − 1:−1;

8 n e i g h b o r [ r i g h t ] = rankx <(Px−1) ? r ank + 1:−1;

9 n e i g h b o r [ up ] = ranky <(Py−1) ? r ank + Px :−1;

10 n e i g h b o r [ down ] = ranky > 0 ? rank − Px :−1;

11 # pragma d imens ion 2

12 f o r ( i n t i t e r =0 ; i t e r <n I t e r s ; i t e r ++){

13 # pragma bamboo o l a p l a y o u t N e a r e s t N e i g h b o r C o n n e c t o r

14 {

15 # pragma bamboo r e c e i v e

16 {

17 Pack d a t a

18 i f ( n e i g h b o r [ l e f t ] ) MPI I recv ( b u f f e r L e f t r e c v , n e i g h b o r [ l e f t ] , leftTAG , . . . ) ;

19 i f ( n e i g h b o r [ r i g h t ] ) MPI I recv ( b u f f e r R i g h t r e c v , n e i g h b o r [ r i g h t ] , rightTAG , . . . ) ;

20 i f ( n e i g h b o r [ up ] ) MPI I recv ( b u f f e r U p r e c v , n e i g h b o r [ up ] , upTAG , . . . ) ;

21 i f ( n e i g h b o r [ down ] ) MPI I recv ( buf fe rDown recv , n e i g h b o r [ down ] , downTAG , . . . ) ;

22 }

23 # pragma bamboo send

24 {

25 i f ( n e i g h b o r [ l e f t ] ) MPI Isend ( b u f f e r L e f t s e n d , n e i g h b o r [ l e f t ] , leftTAG , . . . ) ;

26 i f ( n e i g h b o r [ r i g h t ] ) MPI Isend ( b u f f e r R i g h t s e n d , n e i g h b o r [ r i g h t ] , rightTAG , . . . ) ;

27 i f ( n e i g h b o r [ up ] ) MPI Isend ( b u f f e r U p s e n d , n e i g h b o r [ up ] , upTAG , . . . ) ;

28 i f ( n e i g h b o r [ down ] ) MPI Isend ( buf fe rDown send , n e i g h b o r [ down ] , downTAG , . . . ) ;

29 M P I W a i t a l l ( r e q u e s t c o u n t , r e q u e s t , MPI STATUS IGNORE ) ;

30 }

31 }

32 Upack d a t a

33 5−p o i n t s t e n c i l u p d a t e

34 swap ( Uold , Unew ) ;

35 }

36 l o c a l r e s i d u a l = r e s i d u a l ( Uold ) ;

37 MPI Reduce(& l o c a l r e s i d u a l , &g l o b a l r e s i d u a l , . . . ) ;
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In the MPI code above, MPI processes use point to point communication routines

to exchange data with their neighbors at every time step. Thus, we annotated these calls

with an olap-region. Since MPI processes send and receive different data, we placed send

calls in a send block and receive calls in a receive block. MPI Reduce is a collective call,

so we didn’t have to annotate it. The NearestNeighborConnector layout establishes a

connection between each task with its 4 nearest neighbors, reducing the space needed to

store the graph topology.

C.3 Launch the 2D Jacobi code variants

C.3.1 MPI

With pure MPI, we spawn P MPI processes running on P processor cores, orga-

nized in a PX × PY process grid where P = PX * PY (command #1). If the programmer

employs OpenMP (or another multithreading library) to parallelize the in-node computa-

tion, the number of MPI processes will be reduced to the number of nodes. Specifically,

with MPI+OpenMP we spawn N MPI processes running on N nodes, organized in a NX

× NY process grid where N = NX * NY (command #2).

1 mpirun −np P . / Jac MPI −px PX −py PY

2 mpirun −np N . / Jac MPIOpenMP −px Nx −py Ny

C.3.2 Bamboo

Bamboo always employs 1 process per node (or per socket if each compute node

contains multiple sockets). Each process spawns P/N worker threads, where P is the

total number of available processor cores and N is the number of compute nodes. If

the compute node does not have an extra processor core to host the runtime system,

the programmer should spawn only P/N - 1 worker threads per process, dedicating

one core to the runtime system. Command #1 shows command-line arguments that
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don’t employ virtualization. With this command, there are only P tasks executed by

N * (P/N) = P worker threads. In this scenario, if each task does not use any finer

grain decomposition and pipeline algorithm (such as the SUMMA algorithm shown in

Sec. 5.2.3), no communication overlap can be realized. The common case, therefore,

is to use virtualization to realize communication overlap automatically. Command #2

shows how we can employ (kx*PX ) * (ky*PY ) tasks that will be run by P worker threads,

where kx*ky is larger than 2. Commands #3 and #4 show command-line arguments for

Bamboo+OpenMP without and with virtualization, respectively. In these scenarios, each

process employs only 1 worker thread.

1 mpirun −np N . / Jac bamboo −px Px −py Py − t a r r a g o n P 0 Px − t a r r a g o n P 1 Py −w P /N

2 mpirun −np N . / Jac bamboo −px kx∗Px −py ky∗Py − t a r r a g o n P 0 kx∗Px − t a r r a g o n P 1 ky∗Py −

w P /N

3 mpirun −np N . / Jac bambooOpenMP −px Nx −py Ny − t a r r a g o n P 0 nx − t a r r a g o n P 1 ny −w 1

4 mpirun −np N . / Jac bambooOpenMP −px kx∗Nx −py ky∗Ny − t a r r a g o n P 0 kx∗Nx − t a r r a g o n P 1

ky∗Ny −w 1



Appendix D

Side effects of CUDA routines

Tasks sharing the same device may call to some routines that have side effects on

each other or on the runtime system. The side effects can lead to either correctness or

performance issues. Table D.1 lists CUDA calls commonly used by the programmer that

can cause such side effects. Except for cudaDeviceReset, other routines listed in the table

may lead to performance reduction if they are invoked during the course of computation.

The reason is that a call to these routines will block the whole device. As a result, data

transfer operations between host and device issued by the communication handler and

GPU kernel calls issued by worker threads have to wait until these calls complete.

Multiple calls to cudaDeviceReset cause segmentation fault since a call to this

routine deallocates all resources on the device. Thus, we recommend that the programmer

should not use this routine. To deallocate memory, cudaFree is a better solution since

this routine revokes only the memory previously allocated to the caller task.
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