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ABSTRACT OF THE DISSERTATION 

 

Image-Based Multiscale Modeling of Poroelastic Biological Materials 

with Application to Bones 

 

by 

 

Judy Ping Yang 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2012 

Professor Jiun-Shyan Chen, Chair 

 

Biot’s theory has been widely used to construct the poroelasticity models for describing the 

mechanical behavior of biological materials. This phenomenological framework, however, does 

not take the explicit microstructural configuration and the corresponding solid-fluid coupling 

into consideration. This work investigates how the microstructural configuration and material 

properties of porous materials constitute the macroscopic poroelastic material behavior described 
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by the classical Biot’s theory. We introduced an asymptotic based homogenization method to 

correlate the macro- and micro-mechanical behaviors of poroelastic materials, where an elastic 

solid and Newtonian fluid of low viscosity are considered. Through this homogenization process, 

the generalized Darcy’s law, homogenized macroscopic continuity equation, and homogenized 

macroscopic equilibrium equation were obtained, where the homogenized macroscopic 

continuity and equilibrium equations reassemble the governing equations in Biot’s theory.  

For an effective modeling of microstructures, a numerical solution for PDEs based on a strong 

form collocation that employs image pixels as the discretization points is proposed.  To achieve 

this objective, a gradient reproducing kernel collocation method (G-RKCM) formulated based on 

the partition of nullity and gradient reproducing conditions was developed. This approach 

reduces the order of differentiation to the first order when solving second order PDEs with strong 

form collocation. We showed that the same number of collocation points and source points can 

be used in G-RKCM for optimal convergence, unlike other strong form collocation methods. In 

addition, same order of convergence rate in the solution and its first order derivative are achieved, 

owing to the imposition of gradient reproducing conditions. The computational complexity of G-

RKCM is also shown to be an enhancement over other strong form collocation methods, such as 

the reproducing kernel collocation method (RKCM). 

In this work, we introduced the active contour model based on variational level set formulation 

for interface identification and boundary segmentation for the discretization of microstructures 

based on medical images. Using pixel point discretization, we introduced the RKCM and G-

RKCM to solve the level set equation. In particular, the G-RKCM has been shown be effective 

since the second derivatives of the level set function involved in the regularization term are 
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approximated by the first order differentiations of the gradient RK shape functions. We further 

showed that a B-spline kernel function with lower continuity can be preferably used to avoid the 

oscillation of level set functions in the two-color images. 

The image based G-RKCM was applied to model trabecular bone microstructures with complex 

geometry for both solid and fluid phases. The corresponding numerical issues such as interface 

discretization and kernel function support size selection have been addressed. The investigation 

on the proper choice of unit cell dimension and image resolution has been performed, which 

provides guidance in the image-based trabecular bone modeling. The validation of the proposed 

image based multiscale modeling framework has been carried out by comparing the numerical 

prediction of effective material properties with experimental data of trabecular bone in the 

literature and solving a macroscopic trabecular bone problem using the homogenized material 

constants.  
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Chapter 1 Introduction 

 

1.1 Motivation of the Proposed Work 

The biological materials, such as those in bones existing in all living creatures, are structures 

with heterogeneous material properties and complex microstructural topology. For instance, the 

human skeleton consisting of bones roughly comprises one fifth of an individual body weight. 

The main functions of bones are to support and protect organs, perform exercises and make 

movements, and produce the blood cells, etc. As far as the macroscopic composition of bones is 

concerned, the bones can be classified as cortical bone (also known as the compact bone) and 

trabecular bone (also called the cancellous bone or spongy bone). With reference to Figure 1-1 (a) 

for a femur long bone, the cortical bone constitutes about 80% of the human skeleton mass and 

forms an outer layer of bones, while the trabecular bone fills the interior with a porous and 

cancellous structure, as can be observed in the corresponding microstructure of the femur long 

bone in Figure 1-2 (b). In general, the cortical bone is stiffer, harder, and denser than the 

trabecular bone so that it has the ability to protect organs, support the body for movement, and 

transmit chemical components. In contrast, the trabecular bone has a larger surface area and 

lower density and stiffness than those of the cortical bone, and it has higher porosity as 

exemplified by the fact that the value of porosity is usually greater than 30%. Owning to the 

porous nature of the trabecular bone, there exists room for the blood vessels and bone marrow to 

flow inside the spongy structure, as can be seen from the CT scan of the trabecular bone 

microstructure in Figure 1-2. As such, the bone materials can be characterized as porous media 
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of solid skeleton with the pores filled by fluid. The fluid saturated porous material has been 

introduced to describe the constitutive behavior of biomaterials. 

 

 

Figure 1-1 Macrostructure of bone: (a) A femur long bone; (b) Cortical and trabecular bones 
(adapted from http://academic.kellogg.edu/herbrandsonc/bio201_mckinley/skele tal.htm) 

 

 

Figure 1-2 Microstructure of bone (adopted from http://www.scanco.ch/) 
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Recently, much attention has been drawn to investigate how the morphology of biological 

materials influences the deformation pattern of tissues. To study how the microscopic material 

properties in the solid skeleton and fluid affect the macroscopic mechanical properties, an 

asymptotic expansion based homogenization method has been introduced to provide a systematic 

analysis paradigm for multiscale homogenization of poroelastic materials. It is noteworthy that 

the homogenization yields macroscopic results that resemble the Biot’s theory, but with 

embedded microscopic response. Nevertheless, the finite element based numerical investigation 

of the biological materials is ineffective for creation of the geometric representation of biological 

materials and the associated microstructures. For biological materials, the macroscopic topology 

and microscopic geometry are typically obtained from medical images. The transformation from 

image data to geometry representation by computer aided engineering (CAE) to a finite element 

mesh is extremely cumbersome. More specifically, the topological change through the cross 

sections of the biological materials has been the major bottleneck in mesh generation. A 

computational framework that can effectively model biological materials with complex 

geometric configuration, heterogeneity, and material incompressibility is of an urgent need for 

advancement of bioscience. 

 

1.2 Objective and Scope 

The main objectives of this research are two-fold: (1) derivation of a multiscale constitutive 

formulation for poroelastic biological materials, and (2) development of a computational 

framework based on the strong form with direct collocation for modeling the microscopic 
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structures and analyzing the multiscale behavior of poroelastic biological materials with 

application to bones. The specific achievements of this research are summarized as follows: 

(1) Mathematical homogenization of poroelastic materials 

Biological materials are typically poroelastic in nature with complicated microstructural 

configurations and high degree of material heterogeneity. As such, a multiscale 

homogenization method with asymptotic expansion is introduced to characterize the macro- 

and micro-mechanical behaviors of poroelastic materials, where the Stokes equation, 

continuity equation, and equilibrium equation are considered. Through the homogenization 

process, the generalized Darcy’s law, homogenized macroscopic continuity equation, and 

homogenized macroscopic equilibrium equation were derived. In particular, the coarse-scale 

solid displacement and fluid pressure are shown to be independent of the microscopic 

coordinates, whereas the coarse-scale fluid velocity is related to the microscopic coordinates. 

The characteristic functions are used in calculating the homogenized poroelastic material 

parameters in the generalized Darcy’s law, macroscopic equilibrium and continuity 

equations.  

(2) A gradient reproducing kernel collocation method (G-RKCM) formulation for solving 

boundary value problems 

A gradient approximation is introduced in the reproducing kernel collocation method 

(RKCM) for solving the second order PDEs. Based on the partition of nullity and derivative 

reproducing conditions, a gradient reproduction kernel approximation was proposed to 

reduce the order of differentiation of the PDEs to the first order for solution by RKCM with 
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strong form. We also showed that the same number of collocation points and source points 

can be used, which is different from the typical strong form collocation method for optimal 

convergence. The complexity analysis and convergence study have been investigated. The 

numerical examples are given to verify the analytical prediction. 

 (3) Level set formulation based on strong form collocation for interface and boundary 

identification 

      The reproducing kernel collocation method has been introduced to solve the level set 

equation based on the point discretization. It was demonstrated that the medical image 

obtained from CT scan with blurry objects can be segmented successfully by using the 

collocation method to solve the level set equation. For images with two color data, an 

investigation on the continuity of the kernel function showed that a B-spline kernel function 

with lower continuity can be preferably used to avoid the oscillation of level set functions. 

(4) Gradient reproducing kernel collocation method (G-RKCM) for solving level set equation 

      The gradient reproducing kernel collocation method has been introduced to solve the level 

set equation efficiently due to the fact that the second derivatives in the regularization term 

are approximated by the first order differentiations and a determined system can be used 

instead of an overdetermined system. 

(5) Simplified strong form collocation method for solving level set equation 

When using the reproducing kernel collocation method to solve the level set equation in the 

image process, the consistency condition in construction of the RK shape function can be 
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released such that the kernel function is used directly in the approximation for computational 

efficiency. For images presented by two colors, the direct collocation method is introduced 

to solve the degenerated level set equation with no regularization term, in which the 

transformation matrix is no longer needed, thereby making the numerical algorithm very 

efficient.  

(6) Strong form collocation method for solving unit cell problems 

Inspired by the point discretization of medical images obtained from CT scan or MRI, the 

strong form collocation method was introduced to solve the unit cell problems, where the 

microstructure models were constructed directly on the basis of image segmentation 

preprocessed by the level set method. In this manner, no mesh is needed to construct the 

complex topology of the microstructure.  

(7) Verification and validation of microstructural modeling and trabecular bone analysis 

Solving unit cell problems by G-RKCM was verified by comparing the numerical results 

with analytical solutions. For modeling microstructures with complex geometry, the 

corresponding numerical issues including interface approximation, unit cell size effect, and 

image resolution for image-based strong form methods were investigated. Furthermore, a 

parametric study comparing the numerically predicted trabecular bone material properties 

with experimental data and a macroscopic modeling of trabecular bone using homogenized 

material constants were conducted to demonstrate the developed computational framework 

in multiscale modeling of trabecular bones.  
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This remaining part of the dissertation is organized as follows. Chapter 2 gives a literature 

review of the theories of poroelasticity, associated multiscale homogenization of poroelastic 

materials, and advanced numerical methods applicable to bone mechanics. Chapter 3 presents the 

theory of poroelasticity based on Biot’s theory. Chapter 4 introduces the asymptotic based 

homogenization for poroelastic materials along with the homogenized material parameters, the 

latter are computed in terms of the characteristic functions defined for the unit cells. In Chapter 5, 

the gradient reproducing kernel collocation method (G-RKCM) is proposed for solving the 

boundary value problems. In Chapter 6, the specific active contour model in the level set method 

is first introduced. Then, the strong form collocation methods including RKCM, G-RKCM, 

simplified collocation method, and direct collocation method are introduced for solving the level 

set equation computationally more efficiently. Chapter 7 demonstrates the proposed image-based 

computational framework by solving microstructural problems with heterogeneous feature and 

comparing the numerical results with experimental data. Chapter 8 concludes this research 

conducted in this dissertation with future work highlighted. 



8 

 

Chapter 2 Literature Review 

 

2.1 Poroelasticity 

A porous medium has biphasic nature due to the composition of the solid skeleton and fluid. 

When the poroelastic material is subjected to external loads, the solid skeleton and fluid in the 

pores interact with each other. There are two well-known theories of poroelasticity, i.e., theory of 

porous media (TPM) (de Boer, 1988; Schanz and Diebels, 2003) and Biot’s theory (Terzaghi, 

1925; Biot, 1941; Biot, 1955; Biot, 1956; Biot, 1961), both providing a coupled description of 

the system interaction. It is noted that both theories have been initiated in geomechanics. Due to 

different subjects of multiphase continuum mechanics, the two theories have been developed and 

used to date.  

The pioneering work on porous media should be attributed to Fillunger (1913). In 1913, 

Fillunger tried to solve the buoyancy problem of barrages and developed a formula to calculate 

the uplift in fluid-saturated porous solids. Starting from his work, the theory of porous media, 

known as TPM, has been developed based on the continuum and thermodynamic theories of 

mixtures. In 1976, Bowen extended the mixture theory by the concept of volume fractions which 

distributes the mass of the solid skeleton and the mass of the fluid in the total control space. It is 

noted that the distribution relies on the porosity which serves as a constraint to fix the volume 

ratios of constituents to the control space, under the assumption that the pores are statically 

distributed over the control space. The concept of volume fractions leads to a smeared continuum 

which can be treated with the mixture theory.  
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Another important theory on the behavior of porous media is based on the work by Terzaghi, 

which is known as the one-dimensional soil consolidation theory (Terzaghi, 1925). In this theory, 

the grains or particles of soil constitute a porous medium represented by a unit cubic element. By 

using the phenomenological approach, Biot extended Terzaghi’s theory to a three-dimensional 

theory and gave a theoretical description of isotropic poroelastic materials saturated with fluid 

(Biot, 1941), known as the quasi-static Biot’s theory. The generalization of the theory is 

applicable to anisotropic porous solids and poroelastodynamics, where acoustic propagation in 

the poroelastic solid skeleton with viscous fluid is considered (Biot, 1955; Biot, 1956; Biot 1962). 

In particular, the inclusion of inertia effect leads to the dynamic version of Biot’s theory. One 

contribution of the dynamic theory was the identification of three different types of waves, i.e., 

two compressive waves and one shear wave, in a three-dimensional continuum. Both the quasi-

static and dynamic versions of Biot’s theory are applicable to compressible and incompressible 

constituents, while the dynamic formulation of TPM is only established for incompressible 

constituents as pointed out by Schanz (2009). Because of this reason, Biot’s theory will be 

adopted in this study. 

Recently, much attention has been paid to the modeling of porous media, as evidenced by the 

fact that its application has been extended from geomechanics to material science and 

biomechanics, such as composite materials, foam materials, and biological tissues, etc. It is 

noteworthy that biological tissues are viewed as fluid-saturated porous materials, where fluid 

plays an important role. Simon et al. (1996) derived a poroelastic finite element formulation to 

include transport and swelling in soft tissues. Huyghe and Janssen (1997) computed the quasi-

static finite deformation of swelling incompressible porous media by the mixture theory and 

showed that their result is consistent with Biot’s theory in the limiting case. 
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2.2 Multiscale Homogenization Method 

One of the major driving forces of research in homogenization is due to the composite material 

technology invented in the 1950s. The main objective is to find the effective mechanical 

properties of the overall composite materials and determine their dependency on microscopic 

components, where the local structures are defined by the representative volume element (RVE). 

The methodology called homogenization was introduced by Babuska (1976), in which the 

asymptotic behavior of the structural system is characterized by a scale parameter   taken as the 

representative size of the microstructures. Here, the microstructures are considered as relatively 

small compared to the dimensions of the overall system such that they can be assumed to be 

periodically arranged. The mathematical formulations for heterogeneous media based on the 

asymptotic expansion can be found in a series of publications by Benssousan et al. (1978), 

Sanchez-Palencia (1980), Lions (1981), Bakhvalov and Panasenko (1989), Guedes and Kikuchi 

(1990), among others. The basic feature of multiscale homogenization lies in that the 

microscopic characteristics are implied in the macroscopic behavior with material heterogeneity 

taken into consideration.  

The homogenization method has been applied to a variety of mechanics problems for composite 

materials. In this study, we shall focus our attention on multiscale homogenization of poroelastic 

materials based on Biot’s theory. It was known that the behavior of a Stokes flow in porous 

media is governed by Darcy’s law, a characterization of the influence of microstructural 

configuration on fluid flow at the microscopic level. Based on the constitutive relation used, the 

specific scaling of parameters in the asymptotic expansion leads to different homogenization 

results (Hornung, 1997; Terada et al., 1998; Rohan et al., 2006). The extension of multiscale 
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homogenization to composite materials with large deformation and nonlinear composite 

materials has been dealt with the updated Lagrangian formulation (Takano et al., 2000; Rohan et 

al., 2006). A total Lagrangian formulation for homogenization of composite materials was given 

by Zhang et al. (2006), though intended for polycrystalline materials. Recently, the multiscale 

homogenization of porous materials has been introduced to biological tissues. Rohan and Lukes 

(2004) have applied this approach to simulating arterial walls, where the solid skeleton is 

modeled by the neo-Hookean material. Rohan (2006) and Rohan et al. (2006) have utilized the 

specific scaling of the hydraulic permeability tensor to account for the viscoelastic behavior 

observed as the hereditary creep at macroscopic scale by parallel computing. It is noteworthy 

that most of the aforementioned works have been carried out using the weak form based finite 

element method. For complicated structural systems with complex microstructures such as 

biological tissues, mesh construction becomes a critical issue. 

 

2.3 Reproducing Kernel Collocation Method 

In the past few decades, meshfree methods have been developed as a mature tool for solving the 

partial differential equations (PDEs) based on the Galerkin weak form formulation. The 

approximation functions with a compact support, such as the moving least-squares (MLS) and 

reproducing kernel (RK) shape functions, have been commonly adopted in the weak form 

formulation. In particular, the local feature in the approximation leads to a well-conditioned 

discrete system and the monomial basis gives the algebraic convergence property. Nonetheless, 
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the background mesh in the domain integration with quadrature rules and Dirichlet boundary 

imposition is a complex process of the weak form meshfree methods.  

On the other hand, the strong form based meshfree methods with direct collocation have been 

introduced to solve PDEs recently. The collocation method relies on the point discretization, 

which not only eliminates the quadrature integration in the domain but also simplifies the 

imposition of boundary conditions. One distinguishable feature of the method is that the number 

of collocation points enforcing zero residuals is larger than the number of source points to ensure 

accuracy of the solution, as pointed out by Zhang et al. (2001) and Hu et al. (2007). The resulting 

over-determined system is generally solved by the least-squares method. Furthermore, as pointed 

out by Chen and his co-workers (Hu et al., 2007), the standard collocation method shows large 

solution errors near the boundaries. The unbalanced residuals in the least-squares functional 

associated with domain and boundary can be better improved when the boundary collocation 

equations are properly weighted.  

There are two approximation functions widely used under the strong form framework, the radial 

basis functions (RBFs) and the reproducing kernel (RK) shape functions. The former global 

functions offer exponential convergence, while their nonlocal character yields a full and ill-

conditioned discrete system. The latter local functions mitigate the aforementioned drawback 

besides having algebraic convergence. In the reproducing kernel (RK) approximation, the 

locality and smoothness of shape function are defined in the kernel function with a compact 

support, while the correction function is composed of basis functions with certain order of 

completeness. Although the RK approximation yields algebraic convergence, it leads to a well-

conditioned system that is as stable as the finite element method (FEM). A detailed investigation 
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of the convergence and stability of the RK approximation was given by Hu et al. (2011), which 

indicates that the degree of monomial bases used in the RK approximation needs to be larger 

than one for convergence.   

 

2.4 Level Set Method for Image Segmentation and Boundary 

Identification 

The level set method originally devised by Osher and Sethian (1988) is a widely adopted 

numerical technique for tracking the topological changes, such as merging and breaking. It has 

been extensively applied in many practical research areas. A review of the method was given by 

Osher and Fedkiw (2001), in which the application of the method can be found in computer 

graphics, image processing, optimization, and computational fluid dynamics.  

Methods based on energy minimization and variational principle have been devoted to image 

segmentation and boundary identification vigorously since the late 1980s. The classical active 

contour models (snakes) invented by Kass et al. (1988) utilizes the evolution of a parameterized 

curve subjected to constraints from a given image, in which the internal energy and external 

constraints with respect to contour smoothness and edge-detection stopping criteria are 

considered. However, the snakes methods have the drawback of being sensitive to initial 

conditions. Osher and Sethian (1988) initiated the curvature-dependent algorithm for the level set 

method, in which the formation of sharp cusps in the moving fronts associated with the 

topological changes are captured accurately, providing that the boundaries of the objects are 

defined by the gradient on a fixed rectangular grid. As for objects whose boundaries are not 
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defined by the gradient of the image, Chan and Vese (1999, 2001) proposed an active contour 

model on the basis of the Mumford-Shah functional for image segmentation with a level set 

formulation. With this model, the minimization of the energy functional leads to the evolution of 

the active contour, which will stop on the desired boundary of a particular segmentation of the 

image. That is, the deviation of the image information inside and outside the curve of the object 

governs the evolving interface, and the minimum condition is reached when the boundary of the 

object is detected. Chan and his co-workers extended the model to deal with vector-valued 

images, where the objects having some missing parts can still be detected successfully (Chan et 

al., 2000). The novel technique with active contours for image segmentation and boundary 

identification has been recognized as the Chan-Vese model in the past decade with the following 

notable features: The model can detect objects with and without gradients; it can automatically 

detect the interior contours of an object without noise removal and stops at the place without an 

edge-function; and the initial curve can be placed anywhere in the image regardless of whether it 

touches the object or not. Later, Vese and Chan (2002) extended the active contour model to 

multi-level set formulation to segment images and denoise signal with more than two phases. 

The application to dealing with medical images having more than two segments was presented 

by Chan and Vese (2002). 

The level set method has been extensively adopted to capture the interfacial evolution since its 

inception. However, one major drawback with this method is that it embeds the interface as the 

zero level set of a function which is one dimension higher, and thus results in expensive 

computational cost. As such, many efforts have been made to improve the efficiency. 

Adalsteinsson and Sethian (1995) proposed a technique to adapt the mesh close to the 

propagating interface, while performing computation only on these points at each step. Peng et al. 
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(1999) developed a fast local level set method by using the information from the level set 

function and dismissing the need to find explicit location of the interface in space, in which the 

computational effort has been reduced by one order of magnitude. Song and Chan (2002) 

approached the Chan-Vese model directly by checking if the energy decreases at each point 

when changing a point inside the level set to outside and vice versa. In this way, a PDE is not 

required to be solved and the gradient of the functional is not needed. Recently, Gibou and 

Fedkiw (2005) made a connection between the Chan-Vese model and k-Means clustering type 

partitioning, in which the interface evolution processes until no changes of mean image intensity 

occurring inside and outside the level set function. The k-Means and nonlinear diffusion 

preprocessor controlling interface smoothness constitute the hybrid k-Means level set algorithm 

for image segmentation. Using these two methods, the sign of the level set function is considered 

rather than its value, and this reduces the computational cost.  

 

2.5 Multiscale Modeling of Porous Bone Materials 

Trabecular bone is a hierarchical structure with complicated morphology and material 

heterogeneity due to its porous nature. In the past decades, it has become a subject widely 

studied in the area of orthopedics and dentistry including bone remodeling and adaptation, age-

related bone fracture, and bone implant design, etc. In particular, the mechanical properties of 

trabecular bones, such as elastic stiffness and strength, have been recognized to vary according to 

the sampling site, age, and density of the bone selected. The microscopic investigation of 

trabecular microstructures as a kind of porous composition by considering the variation of solid 
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skeleton and pores provides opportunities for accurately predicting the macroscopic behavior of 

trabecular bones. Concerning the microstructure of trabecular bones, the scale of pore size is 

typically about 1 mm, and the scale of solid skeleton (trabecula) is about one order less than that 

of the pore. The associated microstructural organization leads to the anisotropic material 

property of trabecular bones, in which the largest elastic stiffness and strength occur in the 

principal directions. Some recent reviews of bone poroelasticity and trabecular bone mechanics 

can be found in Cowin (1998) and Keaveny et al. (2001).  

Owning to complex topology of the trabecular bone microstructure, previous attempts to 

simulate the multiscale response from the microstructures have been made on the basis of 

simplified and idealized models (Williams and Lewis, 1982; Gibson, 1985; Hollister et al., 1991). 

Although these microstructural models originated from trabecular deformation, they did not 

predict the experimental results consistently. In particular, the predicted stiffness of trabecular 

bones was reported to be greater than that of the experimental data (Hollister et al., 1991; 

Hollister et al., 1994). On the other hand, it has been generally accepted that the microstructural 

organization affects the strength and stiffness of trabecular bones. This indicates that the 

trabecular bone stiffness may be overestimated due to reasons such as the simplification in 

trabecular microstructures and the associated assumptions made in the idealized models. 

Therefore, a realistic microstructural model considering the variation of solid skeleton and pores 

should provide a more rational way for simulating the mechanics of trabecular bones.   

In the past decades, high resolution digital imaging techniques such as micro-computed 

tomography (micro-CT) and micro-magnetic resonance imaging (micro-MRI) have evolved to 

the point where the microstructures of trabecular bones can be surveyed more precisely, 
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generating the trabecular bone images necessary for a detailed investigation of the associated 

mechanical properties. One of the major challenges in the unit cell modeling of porous bone 

materials is the numerical defects introduced by using the finite element method (FEM). For 

instance, the image-based finite element method converts the pixels into elements in construction 

of the topology for microstructures, where the jagged interface and sharp corner between 

different phases may lead to the localized responses, such as stress concentration and solution 

oscillation on the boundary (Hollister and Riemer, 1993; Hollister and Kikuchi, 1994). When the 

finite element model is constructed based on the input geometry of images, mesh reconstruction 

is always required to avoid highly distorted elements and to achieve a smooth mesh, which is 

commonly done by a mesh decimation method (Hoppe et al., 1993; Podshivalov et al., 2009; 

Podshivalov et al., 2011) or interpolation between nodes (Ulrich et al., 1998). Furthermore, when 

reconstructing microstructural models from high-resolution medical images, the images 

generally come with background noise and fuzzy objects which increase difficulty in the 

reconstruction process. If the reconstructed models appear to lack representative information, the 

resulting analysis may lose reliability, thereby leading to incorrect predictions and diagnoses. 

This points out another critical issue, thresholding in image segmentation, to convert the pixel 

density from images to the material points for model reconstruction (Hollister and Riemer, 1993; 

Hollister and Kikuchi, 1994; Podshivalov et al., 2011). Consequently, mesh reconstruction, 

smoothing solutions, and thresholding techniques are usually unavoidable in the finite element 

modeling owning to the complexity in geometry encountered. Smoothing procedures such as the 

Gaussian filter technique (Hollister and Riemer, 1993) and post-processing filtration method 

(Charras and Guldberg, 2000) have been used to reduce local solution errors in the finite element 

procedure. The thresholding technique based on the pixel density was given by Kuhn et al. 
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(1990). An investigation on threshold selection suggested that it is important for the mechanical 

properties to be accurately predicted (Hara et al., 2002). 
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Chapter 3 Mechanics of Poroelasticity 

 

3.1 Introduction 

There are two branches of theories of poroelasticity, the theory of porous media (TPM) and 

Biot’s theory. TPM is based on the axioms of continuum theories of mixtures, whereas Biot’s 

theory describes the poroelastic response based on stress equilibrium and mass conservation. The 

quasi-static Biot’s theory will be adopted as the poroelasticity framework in this thesis, and it 

will be reviewed and discussed in the following sections. 

 

3.2 Quasi-Static Biot’s Theory 

In the quasi-static Biot’s theory, several assumptions have been made. The fluid-saturated porous 

medium is composed of the solid skeleton and fluid as shown in Figure 3-1, in which the 

interconnected pores are assumed to be fully saturated with fluid, and the sealed pores are 

regarded as part of the solid skeleton. Both the solid skeleton and fluid in the pores are assumed 

to be uniformly distributed. A unit cubic element is introduced to represent the porous medium, 

which is large enough compared to the size of pores so that the element can be viewed as 

homogeneous. In the meanwhile, the size of the element is considered to be small enough 

compared to the scale of macroscopic phenomena so that the element can be treated as 

infinitesimal in the mathematical formulation (Biot, 1941).  
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Figure 3-1 Microscopic cubic element of porous materials 
 

 

Considering Hooke’s law for a body made of isotropic elastic materials with Young’s modulus 

E  and Poisson’s ratio  , the stress-strain relation is described by  

 
1

ij ij kk ijE E

    
   (3.1)  

Let the strain in the porous medium and the variation in fluid content be denoted by ij  and  , 

respectively. By adopting the assumption of small strain and fluid variation, the stress-strain 

relation of the porous medium can be taken as linear. Further, by using the fluid pressure p  to 

represent the fluid effect, the strain ij  
in the porous medium can be expressed as  

 
1

3ij ij kk ij ij

p

E E H

     
    (3.2) 

where H  is a material constant similar to the bulk modulus, which is related to a measure of 

compressibility of the porous medium and will be described in more detail later on. An essential 

property of the fluid pressure in (3.2) is that it contributes only to the normal strain components 
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( 11 , 22 , and 33 ) of the porous medium. In a similar way, the general form of the variation in 

fluid content can be written as  

   1

3H
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
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

22

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R
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where 1H  and R  are material constants having similar function as the bulk modulus, as will be 

interpreted later. Assuming that there exists a potential energy density function, and the work 

done to bring the porous medium to its final state is independent of the path. In this conservative 

field, the potential energy density function can be expressed as  

  1

2 ij ijU p     (3.4) 

Considering (3.2) and (3.3) and taking derivatives of U  with respect to ij  and p  separately 

lead to  
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Furthermore, differentiating ij  with respect to p  and differentiating   with respect to  ij  yield 
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From (3.5) and (3.6), it is observed that 
2 2

ij ij

U U

p p 
 


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. This gives rise to  

 1H H  (3.7) 

as was pointed out by Biot (1941). Through the use of (3.7), (3.3) can be rewritten as  

 
1

3 kk

p

H R
    (3.8) 

By the use of (3.2) and (3.8), one can derive the stress ij  in the porous medium and the 

variation in fluid content   in terms of the strain ij  and fluid pressure p  as 

 
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p

M
    (3.10) 

where G  is the shear modulus, and the remaining material parameters are defined as 
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 (3.11) 

 
1 1

M R H


   (3.12) 

in which   is interpreted as the ratio of fluid volume variation to the volume change of the 

porous medium; 1 M
 
is a measure of the amount of fluid that can be forced into the porous 

medium under pressure, while the volume of the porous medium is kept constant. To interpret 

the material constants R  and H , let us consider a porous medium enclosed in a thin rubber bag 
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such that the stress applied to the porous medium is zero. Then, the fluid will be drained from the 

porous medium, and a negative pressure ( p ) is applied to the sample. Under this condition, the 

variation in fluid content (3.8) becomes  

 
p

R
    (3.13) 

where 1 R  is a measure of the change in fluid content under a given change in fluid pressure. 

The corresponding volume change of the porous medium in (3.2) reduces to  

 kk

p

H
    (3.14) 

where 1 H  is a measure of compressibility of the porous medium under a change in fluid 

pressure. The interpretations of the material constants such as 1 M , 1 R , and 1 H  were given 

by Biot (1941). From (3.12), (3.13), and (3.14), 1 M
 
can be better interpreted as a combination 

of the compressibility of the porous medium and the compressibility of fluid as a consequence. 

 

3.3 Terzaghi’s Effective Stress  

The total stress of the porous medium consists of the stresses from two constituents. One is 

caused by the effective stress in the porous medium, and the other is caused by the hydrostatic 

pressure of the fluid filling the pores. By defining the total stress of the porous medium as  

 2 2
1 2

t kk
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

 (3.15) 
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One can obtain from (3.9) the effective stress of the porous medium as 

 
ij
eff 

ij
t  p

ij
 (3.16) 

where t
ij

 
is defined as positive for tension, while the fluid pressure p  in the pores is defined as 

positive for compression, and   is the effective stress coefficient defined in (3.11). By 

considering the drained and undrained responses of the porous medium and adopting the 

micromechanical approach, Detournay and Cheng (1993) derived the effective stress coefficient 

  and 1 M
 
in terms of the bulk moduli of materials. The effective stress coefficient is given by  

 1
s

K

K
    (3.17) 

where K  and sK  are the bulk moduli of the drained porous medium and the solid skeleton, 

respectively. Rewriting (3.10) in terms of the displacement field iu  of the porous medium yields 

 ,

1
i iu p

M
    (3.18) 

where   
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 (3.19) 

in which fK  is the bulk modulus of the fluid, and   is the porosity defined as the volume of the 

fluid in the interconnected pores per unit bulk volume. It is worth noting that the case of 

1sK K   accounts for the incompressible solid skeleton and the case of 1fK K   accounts for 
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the incompressible fluid, respectively. If both constituents are incompressible, it can be shown 

that incompressible solid skeleton and fluid gives rise to 1   and 1 0M   based on (3.17) and 

(3.19), which are consistent with the results presented by Biot (1961). As a consequence, the 

effective stress in the porous medium has the following form:  

 eff t
ij ij ijp     (3.20) 

and the variation in fluid content (3.18) reduces to 

 ,i iu   (3.21) 

 

3.4 Governing Equations in Poroelasticity 

3.4.1 Equilibrium Equation of a Porous Medium 

To describe the transient phenomenon of a porous medium, the effective stress in the porous 

medium must satisfy the equilibrium equation given by  

 , 0eff
ij j   (3.22) 

where the effective stress is defined in (3.16). Substituting (3.16) into (3.22) leads to 

 , , 0t
ij j ip    (3.23) 

which is the equilibrium equation of the porous medium. In poroelasticity, the porous medium is 

assumed to be composed of a linear elastic material with the constitutive law described by 
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  ,
t
ij ijkl kl ijkl k lC C u    (3.24) 

where ijklC  is the elasticity tensor.  

From (3.23), it is observed that there are three equilibrium equations with four unknown 

variables 1u , 2u , 3u , and p . Apparently, one more equation that relates fluid pressure p  to the 

fluid motion is needed to describe the system of poroelasticity.  

 

3.4.2 Darcy’s Law for a Porous Medium 

In a porous medium, the behavior of fluid is described by Darcy’s law that governs the flow of 

fluid. The quasi-static Darcy’s law is derived herein. Consider the equation of motion for the 

fluid:   

 ,
F i
ij j i

dv
b

dt
     (3.25) 

where   is the density; ib  and iv  are the body force and velocity of fluid, respectively. For the 

purpose of describing the fluid motion, we define the stress F
ij

 
for a Newtonian fluid  as 

  F
ij ij ijp f D     (3.26) 

where p  is the hydrostatic pressure and  ijf D  is the deviatoric viscous stress defined by the 

rate of deformation ijD  expressed as 
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1

2
ji

ij
j i

vv
D

x x

 
     

 (3.27) 

The general form of the stress for the Newtonian fluid is given by  

 2F
ij ij ij kk ijp D D         (3.28) 

where   is a viscous coefficient and   is the dynamic viscosity. Substituting (3.28) into (3.25) 

leads to the generalized Navier-Stokes equation of motion for fluid  

  , , , 0i
i k ki i kk i

dv
p v v b

dt
            (3.29) 

In (3.29), the first term represents the pressure gradient force, the second and third terms 

represent the viscous resisting forces, the forth term is the body force, and the last term denotes 

the inertia force, respectively. If the fluid is assumed to be incompressible (i.e., , 0k kv  ), (3.29)  

can be simplified to 

 , ,
i

i i kk i

dv
p v b

dt
       (3.30) 

which is the Navier-Stokes equation of motion for an incompressible fluid. Further, by assuming 

stationary flow, the Navier-Stokes equation (3.30) gives rise to the Stokes equation 

 , , 0i i kk ip v b      (3.31) 

Let the body force be denoted by the gravity ig . Rewrite (3.31) as  
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 , , 0i i kk ip v g      (3.32) 

Recall that the second term in (3.32) is the viscous resisting force, which is assumed to be 

proportional to the velocity and opposite in direction, as given by 

 ,i kk iv v
k

    (3.33) 

where   is the porosity and k  is the absolute permeability for isotropic materials. Substituting 

(3.33) into (3.32) leads to Darcy’s law as follows: 

  ,i i i

k
q p g


    (3.34) 

where iq  is the flux (also called the rate of flow or filtration velocity) defined as i iq v  with 

unit  m s . Based on (3.34), by neglecting the gravity, the quasi-static Darcy’s law for 

anisotropic materials can be expressed as 

 ,i ij jq K p   (3.35) 

where ijK  is the hydraulic permeability tensor defined as  

 ij
ij

k
K


  (3.36)  

where ijk  is the absolute permeability tensor. It is noteworthy that Darcy’s law is valid for slow 

and viscous flow, in which the fluid behavior is described as steady flow, and the fluid flux is 

caused by the pressure gradient. The next step is to relate the fluid pressure gradient to the 
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deformation of the porous medium via mass conservation (continuity), which will be described 

in the next section. 

 

3.4.3 Continuity Equation of a Porous Medium 

To connect the behaviors of the two phases of the solid skeleton and fluid in a porous medium, 

the continuity condition on the boundary of a representative cubic element as shown in Figure 

3-2 is considered. The derivation of the continuity equation is based on the conservation of mass 

(Malvern, 1969). 

 

Figure 3-2 Flux across a surface 
 

 

As shown in Figure 3-2, a flux crossing a surface with an outward normal n  is assumed to be in 

the positive direction. The volume of fluid flowing through the infinitesimal surface area dS  in 

time dt  is equal to the volume of the cylinder with base dS  and slant height vdt  parallel to the 

fluid velocity v . The height of the cylinder is dtv n  and the volume of fluid is dtdSv n . The 

volume of the flux is defined as  

 i iS S
dS v n dS  v n  (3.37) 
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which represents the volume per unit time flowing through dS . The mass flux (rate of mass 

outflow) is obtained by multiplying the fluid density   given by  

 i iS
v n dS  (3.38) 

For a continuous medium of density   filling the volume V  in space at time t , the total mass is 

V
M dV  . The rate of increase of the total mass in the volume is defined as  

 
V

M
dV

t t

 


   (3.39) 

If there is no mass created or diminished in V , the rate of mass increment must equal the rate of 

mass inflow through the surface. By using the divergence theorem, (3.38) can be rewritten as  

  ,i i i iS V
v n dS v dV      (3.40) 

Applying the rule of conservation of mass and equating (3.39) to (3.40) lead to  

  ,
0i iV

v dV
t

       (3.41) 

which gives rise to the continuity equation as follows:  

  ,
0i i

v
t

 
 


 (3.42) 

In a similar way, the continuity equation for a porous medium can be derived. Let   denote the 

fluid density and recall the variation in fluid content   (a non-dimensional parameter). The total 
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mass of fluid in a porous medium is 
V

M dV  . The rate of increase of fluid mass is 

expressed as  

 
 

V

M
dV

t t




   (3.43) 

The rate of mass inflow can be defined by the flux as  

  ,i iV
q dV  (3.44) 

By the conservation of mass, one can equate (3.43) to (3.44),  leading to  

 
   ,

0i iV
q dV

t




 
   

  (3.45) 

which implies  

 
   ,

0i i
q

t





 


 (3.46) 

For constant fluid density, the continuity equation is given by  

 , 0i iq
t


 


 (3.47) 

which states that the rate of fluid content must equal the volume of fluid entering the surface of 

the unit cubic element per second. Substituting the expressions for variation in fluid content in 

(3.18) and Darcy’s law in (3.35) into (3.47) yields  
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   ,
, ,

1
0i i

ij j i

u p
K p

t M t

 

  
 

 (3.48) 

which is the general form of the continuity equation of a porous medium. This equation relates 

fluid pressure to the deformation of the porous medium, and thus provides additional equation in 

addition to the equilibrium equations (3.23) to solve for the complete field and state variables 1u , 

2u , 3u , and p  in a porous medium.  

 

3.5 Poroelasticity Boundary Value Problem 





1x

2x

3x
 

Figure 3-3 A porous medium with domain   and boundary   
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In the quasi-static Biot’s theory, a poroelastic medium has been depicted as a homogeneous 

medium in Figure 3-3, in which   and  represent the total domain and boundary of the 

medium, respectively. It is noted that no assumption has been made on the compressibility of the 

constituents. The general governing equations of porous materials and the associated solid and 

fluid boundary conditions are summarized in this section. 

The equilibrium equation is based on the effective stress of the porous medium in equilibrium, 

which can be expressed in terms of the total stress and the fluid pressure as  

 , , 0  in t
ij j ip     (3.49) 

Assuming that the flow is at sufficiently low velocity and the gravity is negligible, Darcy’s law 

can be deduced from the Navier-Stokes equation. Considering Darcy’s law and continuity 

condition of the medium, the continuity equation is given by  

   ,
, ,

1
0   in i i

ij j i

u p
K p

t M t

 

   
 

 (3.50) 

For the equilibrium equation, the displacement field boundary conditions are 

 
          on 

     on 

i i u

eff
ij j i t

u u

n t

 

 
 (3.51) 

where u  and t  denote the prescribed displacement and traction boundaries, respectively. 

Forthe continuity equation, the pressure field boundary conditions are 

 
,

         on 

  on 

p

ij j i q

p p

K p q

  

  
 (3.52) 
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in which p  and q  denote the prescribed fluid pressure and flux boundaries, respectively. The 

whole boundary is denoted by   and the following relation applies 

  (3.53) 

The initial conditions for the transient problem of the porous medium are given by 

 
 
 

0

0

0    in 

0     in 

i iu t u

p t p

  

  
 (3.54) 
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Chapter 4  Multiscale Homogenization of Poroelastic 

Materials  

 

4.1 Introduction 

The mathematical theory of homogenization offers an effective and rigorous way to describe 

media having high degree of material heterogeneity. For the fluid-saturated poroelastic materials 

composed of solid skeleton and fluid in the pores, the homogenization can be achieved by 

considering the explicit field equations of each constituent and the associated geometric details. 

The theory of homogenization was popularized in the 1970s where the applications of composite 

materials with consideration of microstructural effects began to gain attention. Specifically, the 

main interest is to determine the effective mechanical properties of composite materials by 

linking the local features of microstructures to the macroscopic responses. The asymptotic 

expansion theory was termed the homogenization method and investigated from the aspect of 

computation by Babuska (1976). Bensoussan and his co-workers (1978) introduced the periodic 

structures, the so-called unit cells, to the asymptotic analysis. Sanchez-Palencia (1980) applied 

the mathematical framework to many physics-related problems. Lions (1981) investigated 

homogenization analysis from the viewpoint of mathematical convergence. Guedes and Kikuchi 

(1990) introduced weak form formulation to the homogenization method for numerical analysis. 

The homogenization method was first applied to composites in solid mechanics. Extension was 

made to porous materials leading to the generalized Darcy’s law that describes the behavior of a 
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flux flowing through a porous medium. In the homogenization of porous media, fluid viscosity is 

the key component affecting the interaction between the solid and fluid in the microstructures 

and their scaling to the macroscopic poroelastic behavior. Different choices of the scaling 

parameters in the asymptotic homogenization method have been discussed by Sanchez-Palencia 

(1980) and Hornung (1997) in the literature.  

The method of asymptotic expansion relates the microscopic characteristics to the macroscopic 

behavior of the poroelastic media, and yields leading order equations at different length scales. 

The procedure of asymptotic expansion based homogenization for the quasi-static deformation of 

a poroelastic medium with fluid of low viscosity will be detailed in the following sections. The 

boundary value problem governing the coupled solid and fluid phases in the microstructure is 

discussed in Section 4.2. The procedure for multiscale homogenization of a poroelastic medium 

is presented in Section 4.3. A summary of the homogenization results is given in Section 4.4. 

 

4.2 Microscale Poroelasticity 

4.2.1 Constitutive Relation in Poroelastic Materials 

Consider a porous medium composed of a linearly elastic solid and Newtonian fluid. In 

particular, the medium is assumed to have interconnected canals filled with incompressible fluid 

of low viscosity. For a linear elastic material in the solid phase, the stress in the solid is given by 

  ,
S
ij ijkl kl ijkl k lC C u    (4.1) 
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where iu  is the displacement of the solid skeleton. Recall the general form of the stress for the 

Newtonian fluid defined in Chapter 3 as 

 2F
ij ij ij kk ijp D D          (4.2) 

where p  is the fluid pressure;   and   are used herein to denote the bulk viscosity and dynamic 

viscosity,  respectively; and ijD  is the rate of deformation defined in terms of fluid velocity iv  

given as 

  ,

1

2
ji

ij i j
j i

vv
D v

x x

 
      

 (4.3) 

Assuming that the fluid is incompressible, the stress in fluid reduces to 

  ,2F
ij ij i jp v      (4.4) 

 

4.2.2 Governing Equations in Microscale Poroelasticity 

To describe a two-phase poroelastic medium, we consider the following boundary value problem 

with reference to Figure 4-1:  

 

, 0   in 

               on 

         on 

S S S
ij j i S

i i Su

S S S
ij j i St

b

u u

n t

 



  

 

 

 (4.5) 

which is the equilibrium equation for the solid phase. 
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,

,

0   in 

0                 in 

                 on 

         on 

F F F
ij j i F

i i F

i i Fv

F F F
ij j i Ft

b

v

v v

n t

 



  

 

 

 

 (4.6) 

which are the steady-state Stokes equation and continuity equation for the incompressible fluid 

phase.  

Let I  denote the solid-fluid interface, the corresponding interface equilibrium condition can be 

expressed as 

 
           on 

   on 

i
i I

F F S S
ij j ij j I

u
v

t

n n 


 

 

 (4.7) 

where F S
j jn n   on I . With superposed “S’ denoting the solid phase and superposed “F” 

denoting the fluid phase, the parameters used in (4.5)-(4.7) are defined as follows: S
ij  and F

ij  

are the stress tensors, S  and F  denote the density, S S
ib  and F F

ib  represent the body force 

vectors, iu  is the solid displacement with the prescribed displacement iu  on 
Su

, iv  is the fluid 

velocity with the prescribed velocity iv  on 
Fv

 , S
it  and F

it  are the surface tractions on St  and  

Ft , respectively, and S
jn  and F

jn  are the unit normals on the boundaries.  
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I

S
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F Fv Ft

I

   
   






 

Figure 4-1 A two phase porous medium with boundary and interface conditions 

 

4.2.3 Weak Form Formulation for Poroelastic Materials 

The following is a formulation of the weak form expression for the porous medium. 

Given the prescribed surface traction S
it  on St  and F

it  on Ft , the prescribed solid 

displacement iu  on Su , the prescribed fluid velocity iv  on Fv , the elastic tensor ijklC  for the 

solid skeleton, and the dynamic viscosity   for the fluid, find 1
iu H , i iu u  on Su , 1

iv H , 

i iv v  on Fv , 0p H , for all 0
iw H , 0i   on Su  and 0iw   on Fv , and 1H , such that 

  , ,,2
F F F Ft I

F F F S S
i i i j i i i i ij j ii jpw d v w d b w d t w d n w d  

    
              (4.8) 

 , 0
F

i iv d


   (4.9) 
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    , ,
S S St I

S S S F F
ijkl i i i i ij j ik l i jC u d b d t d n d     

   
           (4.10) 

where    , ,, 2i j j ii ju u u  . The coupling effect between the solid and fluid phases has been 

introduced on the interface I  as in (4.8) and (4.10). 

 

4.3 Multiscale Homogenization of a Poroelastic Medium 

In the followings, the heterogeneous medium is assumed to be assembled from spatially repeated 

microstructures as shown in Figure 4-2, where Y  denotes the microscopic cell of the porous 

medium. The macroscopic coordinate x  and the microscopic coordinate y  are related by a scale 

parameter  as 

 x y  (4.11) 

To present the heterogeneous system, we shall use   to denote the total domain of the medium 

considering heterogeneity and the field variables with superscript   to denote the total scale of 

the fields. Rewrite the weak forms in (4.8)-(4.10) with heterogeneity considered as 

  , ,,2
F F F Ft I

F F F S S
i i i j i i i i ij j ii jp w d v w d b w d t w d n w d

  

   
    

              (4.12) 

 , 0
F

i iv d





   (4.13) 

    , ,
S S St I

S S S F F
ijkl i i i i ij j ik l i jC u d b d t d n d

 

      
   

           (4.14) 
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Figure 4-2 Macroscopic and microscopic coordinate systems 

 

4.3.1  Asymptotic Expansion 

Based on the assumption of Y-periodicity in a heterogeneous medium, the fields of variables can 

be expressed as functions of multiple spatial scales to account for the existence of 

microstructures. By the concept of two-scale decomposition, the unknown variables can be 

expressed in an asymptotic form as: 

      0 1, , , , ,i i iu t u t u t  x x y x y   (4.15) 

      0 1, , , , ,i i iv t v t v t  x x y x y  (4.16) 

      0 1, , , , ,p t p t p t  x x y x y  (4.17) 

where each expanding term is assumed to be a periodic function with respect to the microscopic 

coordinate y .  Without loss of generality, it is assumed that at a fixed point x  at the macroscale, 
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the composition of microstructures varies in a periodic way. Variables with superscript “0” and 

“1” are coarse and fine scale components of the variable with superscript “ ”, respectively. 

 

4.3.2  Multiscale Decomposition of Equilibrium Equation 

Due to low viscosity assumption, we have S S F
ij j ij jn p n   on the interface. Therefore, the 

interface traction in (4.14) can be written as 
I

F
i ip n d 


 . Rewriting (4.14) yields 

    , ,
S S St I

S S S F
ijkl i i i i i ik l i jC u d b d t d p n d

 

     
   

           (4.18) 

By applying the asymptotic expansion given in (4.15), one can derive from  (4.18) the following: 

 
         
       

0 1 0 1
, , , ,

0 1 0 1 0 1 0 1

S

S St I

ijkl k l k l i j i j

S S S F
i i i i i i i i i

C u u d

b d t d p p n d





  

       



  

  

        


  

 (4.19) 

Under the multiscale framework, the spatial derivative of a function can be derived by the chain 

rule as follows: 

    1
,

i i ix x y
  

  
  

x y  (4.20) 

Applying the multiscale decomposition in (4.20) to (4.19) leads to 
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       

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1
S

S St I

k k k k i i i i
ijkl

l l l l j j j j

S S S F
i i i i i i i i i

u u u u
C d

x y x y x y x y

b d t d p p n d





    
 

       



  

         
                  

        



  
 (4.21) 

The first term in (4.21) can be expanded as the following: 

 

0 0 0 0 1 0 0 0 0 1

2

1 0 0 0 1 0 0 1 0 1 1 1

1 1

          

S

k i k i k i k i k i
ijkl

l j l j l j l j l j

k i k i k i k i k i k i

l j l j l j l j l j l j

u u u u u
C

y y x y y y y x y y

u u u u u u

x y x x y x y x x y y y



    
 

     



           
                 

           
     

           



1 0 0 1 1 1 1 1 1 1
2          k i k i k i k i k i
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 (4.22) 

For a Y-periodic function  y , it is assumed that the volume average of  y  is extended to 

all the volume covered by the unit cell, as described by the following: 

 lim
0


x








d
 

1

Y
 y dY d

Y  (4.23) 

  
0

1
lim

Y

x
d y d d

Y


   

      
     (4.24) 

where   is the union of the surface of voids; Y  is the unit cell volume; Y  denote the unit cell 

domain and Y  denotes the union of the surface of voids in a unit cell, respectively.  

Applying the averaging process over the unit cell (4.24) to the last term on the right hand side of 

(4.21) yields 
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            (4.25) 
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            (4.26) 

To ensure that the first term on the right hand side of (4.25) is finite, the admissible space for 0
i  

needs to be divergence free in Y . Based on periodicity and divergence theorem, it can be shown 

that 1 0p   from (4.26) (Sanchez-Palencia, 1980; Terada et al., 1998).  

By substituting 1 0p  , (4.22), and (4.25) into (4.21), collecting terms with the same order   

together and treating 0
iu , 1

iu , and 0p  as independent variables, one can rearrange (4.21) as 
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 (4.27) 

By taking the limit as 0   in (4.27),  this equation can be decomposed into three sub-

equations at different length scales as follows: 

 
0 0

2

1
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k i
ijkl

l j

u
C d

y y


 

 
 

   (4.28) 

which is known to be the microscale equation. 
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which is the scale-coupling equation. 
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 (4.30) 

which is the macroscale equation.  

By introducing (4.23) to average over the unit cell in (4.28), the microscale equation (4.28) 

becomes 
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 
   

    (4.31) 

where SY  denotes the unit cell domain in solid phase. Since 0
i  is arbitrary, we can let 

 0 0 ,i i t  y . Then, 
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u
C dY V

Y y y

  
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   (4.32) 

which yields 

  0 0 ,i iu u t x  (4.33) 
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By using  0 0 ,i iu u t x  and applying the averaging process (4.23) to (4.29), the scale-coupling 

equation (4.29) becomes 
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   (4.34) 

where  0 0 ,i i t  x  is satisfied. 

The averaging process (4.23) together with the fact  0 0 ,i iu u t x  and (4.25) for the interfacial 

traction enable us to express the macroscale equation (4.30) as 
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 (4.35) 

Letting  0 0
i i  x , one can write 
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 (4.36) 

The macroscopic and microscopic equations can be separated from (4.36) as 
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and 
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4.3.3  Characteristic Functions and Unit Cell Problems 

To relate the coarse-scale and fine-scale variables, the characteristic functions are introduced to 

describe the coupling response of the deformation at different length scales. Due to the linearity 

of the problem in (4.38), the solution 1
iu  can be related to the macroscopic variables as (Hornung, 

1997; Terada et al., 1998): 

          
0

1 0,
, , ,kkl

i i i
l

u t
u t p t

x
 


  


x

x y y y x  (4.39) 

where  kl
i y and  i y  are the characteristic functions, namely, the scale-coupling functions. 

Introducing (4.39) to the microscopic equation (4.38) leads to 
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which can be arranged as 
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    (4.41) 

By collecting all the terms with the same unknown variables 0
ku  and 0p  together, (4.41) can be 

decomposed into two unit cell problems for the scale-coupling functions as follows: 
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in which the domain of the solid phase within a unit cell is denoted by SY . 

Substituting (4.39) into the macroscopic equation in (4.37) gives rise to  
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Based on (4.44), define the homogenized elasticity tensor ijklC , the homogenized effective stress 

tensor ij , and the average body force of the solid phase S
if  are defined as follows: 
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 (4.46) 

 
1
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sS S S S S
i i iY

Y
f b dY b

Y Y
    (4.47) 

With the definitions of the homogenized material parameters in (4.45)-(4.47), the homogenized 

macroscopic equilibrium equation (4.44) can be recast in its final form as 
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4.3.4  Multiscale Decomposition of Stokes Equation 

To establish scale decomposition of the stokes equation, we substitute (4.16) and (4.17)  into 

(4.12) to give 
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For fluid with low viscosity, the scale factor 2  for the fluid viscosity   to account for the 

viscous effect in comparison with the inertia effect has been introduced (Sanchez-Palencia, 1980; 

Hornung, 1997; Terada et al., 1998). In addition, it is assumed that the fluid shear stress is 

negligible due to low viscosity when imposing equilibrium with the solid traction on the 

interface. 

Introducing the multiscale decomposition in (4.20) to (4.49) yields 
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Expanding the second term in (4.50) gives 
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 (4.51) 

Substituting (4.51) back into (4.50) leads to 
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 (4.52) 

Applying the averaging process over the unit cell (4.24) to the last term in (4.52) gives 

 

 
0 0

0 1 0

0
1

1 1

1
                                             

I I

I

S Sk k
ijkl j i i ijkl j iY

l l

Sk
ijkl j iY

l

u u
C n w w d C n w d d

x Y x

u
C n w d d

Y x


  

 

 
    

 


  



  

 
 (4.53) 



51 

 

 

 
0 0

0 1 0
2

0
1

1 1 1

1 1
                                                  

I I

I

S Sk k
ijkl j i i ijkl j iY

l l

Sk
ijkl j iY

l

u u
C n w w d C n w d d

y Y y

u
C n w d d

Y y


 



  

 

 
    

 


  



  

 
 (4.54) 

 

 
1 1

0 1 0

1
1

1

1
                                                

I I

I

S Sk k
ijkl j i i ijkl j iY

l l

Sk
ijkl j iY

l

u u
C n w w d C n w d d

x Y x

u
C n w d d

Y x

 



  

 

 
    

 


  



  

 
 (4.55) 

 

 
1 1

0 1 0

1
1

1 1

1
                                             

I I

I

S Sk k
ijkl j i i ijkl j iY

l l

Sk
ijkl j iY

l

u u
C n w w d C n w d d

y Y y

u
C n w d d

Y y


  

 

 
    

 


  



  

 
 (4.56) 

To ensure that the first terms in (4.53), (4.54), and (4.56) be finite, the admissible space for 0
iw  

needs to be divergence free in Y .  

Substituting (4.53)-(4.56) into (4.52), collecting terms with the same order   together, and 

treating 0
iv  , 0p  and 1p  as independent variables render the following equation: 
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 (4.57) 

Assuming that the functions in (4.57) are smooth enough so that the terms with the same order of 

  are removed as 0  .  
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 (4.58) 

Therefore, (4.58) can be decomposed into equations at different length scales as follows: 
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 (4.60) 

Applying the averaging process over the unit cell to (4.59) yields 
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where FY  is the domain of the fluid phase within a unit cell. Using the fact  0 0 ,i iu u t x  in (4.33), 

(4.61) implies 

  0 0 ,p p t x  (4.62) 

Substituting 1 0p   into (4.60) yields 

 

0 1 0 0
0 0

0
0 0 1

1 1
0 1

2

1

1 1

F

F Ft I

I I

i i i i

i i j j

F F F Sk
i i i i ijkl j iY

l

S Sk k
ijkl j i ijkl j iY Y

l l

w w v w
p p d

x y y y

u
b w d t w d C n w d d

Y x

u u
C n w d d C n w d d

Y x Y y











   

   

     
           


      



 
     

 



   

   

 (4.63) 

which can be separated by the following macroscopic and microscopic equations: 
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and 

 
1 0 1

0 1 11 1
F I I

S Si k k
ijkl j i ijkl j iY Y

i l l

w u u
p d C n w d d C n w d d

y Y x Y y    

  
      

        (4.65) 

Applying the averaging process over the unit cell to (4.64)  yields  
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where the far field traction prescribed on the heterogeneous medium vanishes in the unit cell. Let 

 0 0
i iw w y  , (4.66) becomes 
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Applying the divergence theorem to the last term in (4.67) yields 
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where 0
iw  satisfies the divergence free condition in FY . Substituting the expression for 1

ku  in 

(4.39) into (4.68) gives 
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where we assume that the last force term in (4.69) can be mainly attributed to the pressure 

gradient in the fluid domain. Therefore, the linearity of the problem in (4.69) implies a solution 

of the following form (Terada et al., 1998): 
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where  ij y  is the characteristic function related to the hydraulic permeability. Recall the 

interface condition i iv u t    in (4.7), the second term on the right hand side of (4.70) can be 

viewed as the relative velocity of fluid with respect to the solid phase, which is zero on the 

interface and in solid. Substituting (4.70) into (4.69) leads to 
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 (4.71) 

which is the unit cell problem, and  ij y  is a function characterizing the steady-state Stokes 

flow within the cell, which is Y-periodic and divergence free. 
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By averaging over the unit cell on the relative velocity in (4.70), the homogenized macroscopic 

velocity is given by the generalized Darcy’s law 
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 (4.72) 

where the macroscopic permeability tensor ijK  and the generalized pressure gradient jP x   are 

defined as follows: 
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4.3.5  Multiscale Decomposition of Continuity Equation 

Introducing the asymptotic expansion of the fluid velocity in (4.16) and the multiscale 

decomposition in (4.20) to (4.13) yields 
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Taking the limit as 0   and substituting 0
iv  in (4.70) into (4.75) gives the macroscopic 

continuity equation: 
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Applying average over the unit cell and assuming    x  lead to 
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where the last term in (4.76) can be shown to be zero by periodicity. Based on the definitions of 

the permeability tensor ijK  and the generalized pressure gradient jP x   in (4.73) and (4.74), 

respectively, the final form of the homogenized macroscopic continuity equation (4.77) is 
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4.3.6  Homogenized Macroscopic Stress  

From the homogenized macroscopic equilibrium equation in (4.48), the corresponding strong 

form of the homogenized macroscopic equilibrium equation can be derived as 
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 (4.79) 

from which the homogenized macroscopic stress for the porous medium is given by 
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  
0 0

,ij ijkl ijk lC u p    (4.80) 

It is noteworthy that the form of the homogenized macroscopic stress in (4.80) resembles the 

concept of the effective stress in Biot’s theory (Chapter 3). 

 

4.4 Summary of Multiscale Homogenization of Poroelastic Materials 

A poroelastic medium composed of an elastic solid and Newtonian fluid of low viscosity has 

been analyzed by the two-scale asymptotic expansion method. The concept of homogenization 

provides the homogenized macroscopic equations for describing the behavior of the overall 

structure, in which the micromechanical response of the interaction between the solid and fluid is 

considered. In particular, the viscous fluid flow within the microstructure is described by Stokes 

equation, and the homogenization of Stokes equation leads to the generalized Darcy’s law. The 

homogenized governing equations of poroelastic materials are summarized as follows: 

The generalized Darcy’s law is given by 

 
 0 ,i

i ij
j

u t P
v K

t x

 
 

 
x

 (4.81) 

The homogenized macroscopic continuity equation is 

 
   0 0,

0i F F
j ij

i i j

u t p
d b K d

x t x x
  

 

    
             

 
x x

 (4.82) 

and the homogenized macroscopic equilibrium equation is 
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0 0 0

0 0 0

St

S Sk i i
ijkl ij i i i i

l j j

u
C d p d f d t d

x x x

   
   

  
     

       (4.83) 

As shown in (4.81)-(4.83), the macroscopic behavior of a poroelastic medium is governed by the 

generalized Darcy’s law and macroscopic equilibrium equation together with the macroscopic 

continuity equation, in which an incompressible medium is taken into consideration. 

Furthermore, (4.81)-(4.83) have a form similar to that of the governing equations in Biot’s theory, 

as discussed in Chapter 3. 

The corresponding homogenized material parameters are defined in the following way:  

  1
F

ij ijY
K dY

Y
  y  (4.84) 

 
 0

F F
j

j j

pP
b

x x


 
      

x
 (4.85) 

 
 1

S

kl
m

ijkl ijkl ijmnY
n

C C C dY
Y y

 
  

 


y
 (4.86) 

 
 1

S

k
ij ijklY

l

C dY
Y y








y

 (4.87) 

 SS S S
i i

Y
f b

Y
  (4.88) 

Here ijK  is the macroscopic permeability tensor, jP x  is the generalized pressure gradient, 

ijklC
 
the homogenized elasticity tensor, ij  the homogenized effective stress tensor, and S

if  the 

average body force of the solid phase.  
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Chapter 5 A Gradient Reproducing Kernel 

Collocation Method for Boundary Value Problems  

 

5.1 Introduction 

In the past two decades, significant advancement has been achieved in the development of 

meshfree methods for solving partial differential equations (PDEs) based on the Galerkin weak 

formulation. The approximation functions with compact support such as moving least-squares 

(MLS) (Lancuster and Salkauskas, 1981; Belytschko et al., 1996, 1994) and reproducing kernel 

(RK) (Liu et al., 1995; Chen et al., 1996) functions are commonly adopted in Galerkin meshfree 

methods. With monomial reproducing properties in compactly supported MLS and RK, algebraic 

convergence rates are obtained (Babuska and Melenk, 1997; Han and Meng, 2001) and the 

discrete systems are well-conditioned. Nonetheless, domain integration of the weak equation 

adds substantial difficulties and complexities to the Galerkin meshfree methods (Beissel and 

Belytschko, 1996; Bonet and Kulasegaram, 2000; Chen et al., 2009; Puso et al., 2008; Babuska 

et al., 2009). 

On the other hand, meshfree methods formulated based on the strong form with direct 

collocation have also been proposed (Kansa, 1992a, 1992b; Onate et al., 1996; Aluru, 2000; Kim 

and Kim, 2003; Zhang et al., 2001; Hu et al., 2007). This approach reduces the complexities 

associated with domain integration and the imposition of boundary conditions. The radial basis 

functions (RBFs) (Hardy, 1971, 1990; Franke, 1982; Madych, 1992) are commonly used in the 
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strong form collocation method (Kansa, 1992a, 1992b; Hu et al., 2007), generally called the 

radial basis collocation method (RBCM). While the nonlocal RBFs with certain regularity offer 

exponential convergence in RBCM (Madych, 1992; Franke and Schaback, 1998; Wendland, 

1999), the linear system of RBCM is typically ill-conditioned (Hon and Schaback, 2001; Kansa 

and Hon, 2000). An alternative approach is the employment of smooth approximation with 

compact support such as the MLS or RK approximation in the strong form collocation method 

(Aluru, 2000; Onate et al., 1996; Kim and Kim, 2003; Hu et al., 2011; Hu and Lai, 2009).  The 

reproducing kernel collocation method (RKCM) offers a much better-conditioned discrete 

system than that of RBCM; nevertheless it converges algebraically (Hu et al., 2011; Hu and Lai, 

2009). The work in (Chen et al., 2008) shows that one can construct a localized RBF using a 

partition of unity function, such as the reproducing kernel enhanced radial basis function, to yield 

a local approximation while maintaining the exponential convergence in RBCM. This localized 

RBF, combined with the subdomain collocation method, has been applied to problems with local 

features, such as problems with heterogeneity (Chen et al., 2009) or cracks (Wang et al., 2010) 

that are difficult to be solved by RBCM. 

It is noteworthy that higher order derivatives of the approximation functions are needed in the 

strong form collocation method compared to the Galerkin method. While approximation 

functions such as RK and MLS can be arbitrarily smooth, taking derivatives of these functions is 

computationally costly, making RKCM less efficient. In particular, the high complexity in 

RKCM is caused by taking derivatives of the moment matrix inversion in the multi-dimensional 

RK shape functions, see the detailed complexity and error analysis of RKCM in (Hu and Lai, 

2009) and (Hu et al., 2011), respectively. Further, for optimal convergence in RBCM and 

RKCM, using the number of collocation points much larger than the number of source points is 
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needed, and this adds additional computational effort (Hu et al., 2007; Hu et al., 2011). 

Motivated by the above mentioned disadvantages in RKCM, a gradient RK approximation is 

introduced in solving second order PDEs with strong form collocation, termed the gradient 

reproducing kernel collocation method (G-RKCM). The gradient RK approximation is 

formulated based on partition of nullity and derivative reproducing conditions, where similar 

construction has been introduced in synchronized reproducing kernel approximation (Li and Liu, 

1998) and the implicit gradient approximation for localization problems (Chen et al., 2004). 

Different from (Chen et al., 2004; Li and Liu, 1998) where the gradient RK approximation is 

used as the enrichment of the standard RK approximation under Galerkin weak formulation, the 

present approach introduces gradient RK as the “assumed strain” field directly in the strong 

form. The convergence properties of this G-RKCM approach will be derived, and the complexity 

of this method in comparison with RKCM will also be analyzed in this chapter.  

The chapter is organized as follows. Section 5.2 reviews the basic equations and the fundamental 

properties of RK approximation and RKCM. In Section 5.3, the gradient RK approximation is 

introduced, and it application to the strong form to construct G-RKCM discrete equations is 

presented in Section 5.4. The error analysis of G-RKCM and the choice of collocation points are 

given in Section 5.5. The complexities of G-RKCM and RKCM are compared in Section 5.6. 

The numerical examples are given in Section 5.7 to demonstrate the effectiveness of the 

proposed method. The conclusion remarks of the proposed G-RKCM are presented in Section 

5.8.  
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5.2 Review of Reproducing Kernel Collocation Method 

 Consider the following boundary value problem: 

 

   in 

   on 

   on 
h h

g g

 
 
 

Lu f

B u h

B u g

 (5.1) 

where   is the problem domain, h  is the Neumann boundary, g  is the Dirichlet 

boundary, h g    , L  is the differential operator in  , and hB  and gB are the 

boundary operators on h  and g , respectively. To solve (5.1) by strong form collocation, 

the reproducing kernel approximation of u , denoted by v , is expressed as 

 u x   v x   
I

x aI
I1

Ns

  (5.2) 

where sN  is the number of source points, and  I x  is the reproducing kernel (RK) shape 

function expressed as 

      ;I I a IC    x x x x x x  (5.3) 

where  a I x x  is the kernel function, and  ; IC x x x  is the correction function: 

 
C x;x  x

I   b x  x  x
I 

 0

p

 ,   p  0

                    : HT x  x I b x 
 (5.4) 
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Here we introduce the multi index notation in d-dimension 1 2( , , , )d     , with the length of 

  defined as 
1

d

ii
 


 , x  x

1

1  x
2

2x
d

d , 1 2
1 2

d
I I I dIx x x   x  , 

       1 2

1 1 2 2
d

I I I d dIx x x x x x
      x - x  , and 

1 2, , , d
b b     . The vectors  T

IH x x and 

 Tb x
 
are the corresponding row vectors of   I

p



 
x x  and    

p
b  

x , respectively. The 

shape functions are required to satisfy p -th order reproducing conditions given as follows: 

   ,I I
I

p    x x x  (5.5) 

The coefficients  b x  are obtained by satisfying (5.5), and it yields the following RK shape 

function: 

           T 1
I I a I   x H 0 M x H x x x x  (5.6) 

and 

        T

1

sN

I I a I
I




   M x H x x H x x x x  (5.7) 

Introducing RK approximation of u  in (5.2) to the strong form in (5.1), and evaluating the 

differential equation and boundary conditions at the collocation points p

  , q


 

h
, and 

r

 

g
, we have the following collocation equations: 
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   
   
   

   , 1, ,

, 1, ,

  , 1, ,

p

h h q

g g r

N

N

N

    

    

    

Lv p f p p

B v q h q q

B v r g r r

  

  

  

 

 

 

 (5.8) 

Collection of the collocation equations yields the following linear system: 

 Aa = b  (5.9) 

where  and b  b f 
p

, h 
q

, g 
r

    p

  , q


 

h
, 

and r

 

g
. Note that the total number of collocation points N p  Nq  Nr  is typically much 

larger than the number of source points Ns  for optimal convergence, and hence yields an over-

determined system in (5.9). 

Remake 5.1  

The collocation equations in (5.8) can be shown to be equivalent to the minimization of the 

following least-squares functional with quadrature (Hu et al., 2007), that is, to seek solution 


ur V  span 1,,Ns

 , such that 

 E ur   inf
vV

E v  (5.10) 

where 

 
E v   1

2
Lv  f T

Lv  f d
 

1

2
Bhv  h T

Bhv  h d
h



1

2
Bgv  g T

Bgv  g d
g


 (5.11) 
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By choosing the quadrature points in (5.11) the same as the collocation points in (5.8) in solving 

(5.9) by a weighted least-squares method, the equivalence between the solution by minimization 

of (5.11) and the solution of (5.9) can be established; see (Hu et al., 2007) for details. 

Remake 5.2  

To keep the balance of errors in the domain and boundary terms in the least-squares functional, 

a weighted least-squares functional has been proposed (Hu et al., 2007; Hu et al., 2011): 

 
E v   1

2
Lv  f T

Lv  f d
 

 h

2
Bhv  h T

Bhv  h d
h



 g

2
Bgv  g T

Bgv  g d
g


 (5.12) 

where the weights 1h   , g sN   , with 1   for Poisson problem and  max ,    

for elasticity for optimal convergence have been proposed. A set of equivalent collocation 

equations can be obtained: 

 

   
   
   

, 1, ,

, 1, ,

, 1, ,

p

h h h h q

g g g g r

N

N

N

 

 

    

    

    

Lv p f p p

B v q h q q

B v r g r r

  

  

  

 

 

 

 (5.13) 

This RKCM converges in the following norm (Hu et al., 2011): 

 
u  ur C u  v

2,
 u  v n 0,h

 u  v
0,g 

Ca p1 u
p1,

 (5.14) 

where C is a genetic constant and   is the overlapping number. 

This result indicates that for RKCM to converge, the RK approximation of degree p  2  needs to 

be used. 
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5.3 Gradient Reproducing Kernel Approximation 

Strong form collocation for second order differential equations requires taking second order 

differentiation on the RK shape functions of (5.6), which is time consuming, especially in 

calculating higher order derivatives of  1M x  at every evaluation point x. In this work, we 

consider the approximation of ,u  as follows: 

  ,
1

sN

I I
I


 



  u w x a  (5.15) 

where 

      ;I I a IC     x x x x x x  (5.16) 

and 1 2( , , , )d     , 
1

d

ii
k 


   for 

k
I C  . 

Here the correction functions in  (5.16) are constructed with monomial bases of degree q : 

 
     

   
0

T

; ,   0

                    :

q

I I

I

C b q
 








   

 

x x x x x x

H x x b x

 (5.17) 

The coefficients b
  are obtained from the following gradient reproducing conditions: 

 
1

, 0
sN

I I
I

D q    


    x x  (5.18) 
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where 1 1 2 2
1 2/ / /d d

dD x x x            . As shown in (Liu et al., 1997), (5.18) is 

equivalent to 

      
1

1
sN

I I
I

D
  



    x x H 0  (5.19) 

where 

    
!

!
D  

 



H x x  (5.20) 

and  

   !D
 H 0  (5.21) 

Substituting (5.17) into (5.19) gives rise to 

        1 D
  M x b x H 0  (5.22) 

where  M x  is the moment matrix given in (5.7). Consequently the gradient RK shape functions 

are obtained as 

            11 T
I I a ID

      x H 0 M x H x x x x  (5.23) 

It is noted that  M x  is the Gram matrix of basis functions  IH x x  with respect to 

 a I x x . The positivity of the kernel function  a I x x  ensures the positive definiteness of 

 M x . In this work,  a I x x  is chosen to be the quintic B-spline kernel function: 
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                                  1,

Is
a

s




  



 

x x
 (5.24) 

where s  is the normalized nodal distance.  

If equal order bases are used in the approximation of u and ,u , the term  1M x  is identical in 

all shape functions I  and I
 . Furthermore, by comparing the shape function for u in (5.6) and 

the shape functions for ,u  in (5.23), it appears that  TH 0  in (5.6) is replaced by 

   1 TD
  H 0  in (5.23), leading to a significant time saving in computing I

  compared to a 

direct differentiation of I .  

For sake of simplicity but without loss of generality, we consider two-dimensional problems in 

this study. The approximation of ,xu  and , yu  denoted as follows will be used in the following 

sections and the simplified derivation of x
I  and y

I  is given in Appendix A. 

 
 

 

,
1

,
1

s

s

N
x

x x I I
I

N
y

y y I I
I





  

  





u w x a

u w x a

 (5.25) 

Hence, the second order derivatives of u  is obtained by taking direct derivatives of xw  and yw , 

i.e., 
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 

 

, , ,
1

, , ,
1

s

s

N
x

xx x x I x I
I

N
y

yy y y I y I
I





  
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



u w x a

u w x a

 (5.26) 

 

5.4 Gradient Reproducing Kernel Collocation Method (G-RKCM) 

To introduce gradient RK approximation in the discretization of strong form, consider the 

following boundary value problem: 

 

1 2

1 2

in 

on 

on 

x y

h x h y h

g g

  

  

 

, ,

, ,

L u L u f

B u B u h

B u g

 (5.27) 

where 1L  and 2L  are the differential operators in  , 1
hB  and 2

hB  are the boundary operators on 

h , and gB is the boundary operator on g . The explicit forms of the operators and vectors 

for Poisson and elasticity problems in two-dimension are given in Table 5-1. The approximations 

of u, ,xu  and , yu are given as: 

 
T

T

T

,

,

x
x x

y
y y

 

 

 

u v a

u w a

u w a







 (5.28) 

where  , x , y , and a  are the vector forms of  I I1

Ns ,  I
x 

I1

Ns
,  I

y 
I1

Ns
and a

I  , 

respectively.  
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Table 5-1 Explicit forms of operators for Poisson and elasticity problems in two-dimension  
 

Operator Poisson's Problem Elasticity Problem 

1L  
x




 
 2

x y

y x

  

 

     
  

   

 

2L  y




 
 2

y x

x y

 

  

  
   

     

 

1
hB  xn  

 2 x y

y x

n n

n n

  
 
 

 
 

 

2
hB  yn   2

y x

x y

n n

n n

 
  
 
  

 

gB  1 
1 0

0 1

 
 
 

 

 

We define a least-squares functional associated with the boundary value problem in (5.27) with 

approximations , ,, ,x x y y  u v u w u w  as: 

 

E v,w
x
,w

y   1

2
L1w

x
L2w

y
 f T

L1w
x
L2w

y
 f d






h

2
B

h
1 w

x
B

h
2w

y
 h T

B
h
1 w

x
B

h
2w

y
 h d

h





g

2
B

g
u  g T

B
g
u  g d

g


 (5.29) 

Here the first term accounts for the least-squares residual of the differential equation in the 

domain, and the second and third terms account for the least-squares residuals of the Neumann 

and Dirichlet boundary conditions, respectively. Weights h  and g  are considered in the least-
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squares residual for the boundary constraints. Substituting (5.28) into (5.29) and considering the 

stationary condition lead to the variational discrete equation: 

   
 
   

T T T T

T T

T T

T 1 1 2 T 2 1 2

T 1 1 2

T 2 1 2 T

h

h g

x x y y x y

x x y
h h h h

y x y T
h h h h g g g

E d d

d

d d

  

 

   

 



 

      

   

      

 


 

a L L a L a f a L L a L a f

a B B a B a h

a B B a B a h a B B a g

     

  

    

 (5.30) 

Performing quadrature rules at the collocation points yields 

  (5.31) 

where p

,w



1 
1

N p
, q


,w



2 
1

Nq
, and r


,w



3 
1

Nr
 are the pairs of quadrature points and weights in   

and on h  and g , respectively. 

We can rewrite (5.31) as: 

   
     
 

T T

T T T

T 1 1 2 1 1 2 1 1 2 1

3 2 3 4 2 4 2 3 4 2 5 3 5 3

T T

        

      0

h h g

E 

  



     
        

    

a A W A a A a b A W A a A a b

A W A a A a b A W A a A a b A W A a b

a A W Aa b
  (5.32) 
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where   

 A 

A1  A2


h

A3  A4 


g
A5



















,    b 

b1


h
b2


g
b3



















,    W 
W1

W2

W3

















 (5.33) 

  (5.34) 

  (5.35) 

 

b1 

f p
1 

f p
2 


f p
N p

 























,    b2 

h q
1 

h q
2 



h q
Nq

 























,   b3 

g r
1 

g r
2 


g r
Nr

 























,

W1 

w
1
1



w
N p

1



















,    W2 

w
1
2



w
Nq

2



















,    W3 

w
1
3



w
Nr

3



















 (5.36) 

From (5.32), the discrete weighted least-squares equation has the following form:  

 T TA WAy A Wb  (5.37) 



74 

 

Eq. (5.37) is the weighted least-squares approximation of the linear system Ay b , that is 

 

A1  A2


h

A3  A4 


g
A5





















A
  

a 

b1


h
b2


g
b3



















b
  

 (5.38) 

The sub-matrices in matrix A , and the vectors a and b for Poisson and elasticity problems are 

summarized in  

Table 5-2.  

 

Table 5-2 Sub-matrices in discrete equations for Poisson and elasticity problems 
  

Sub-matrix Poisson's Problem Elasticity Problem 

1
IJA   ,

x
J x I  p  

     
   

, ,

, ,

2 x x
J x I J y I

x x
J y I J x I

  
 

   
    

p p

p p
 

2
IJA   ,

y
J y I  p  

   
     

, ,

, ,2

y y
J y I J x I
y y
J x I J y I

 
  
  
     

p p

p p
 

3
IJA   x

J I xn  q  
     

   
2 x x

J I x J I y
x x
J I y J I x

n n

n n

  
 

   
    

q q

q q

4
IJA   y

J I yn  q  
   
     2

y y
J I y J I x
y y
J I x J I y

n n

n n

 
  
  
     

q q

q q

5
IJA   J I  r  

 
 
0

0
J I

J I

 
  

r

r
 

 

 



75 

 

 

5.5 Convergence Study 

We first consider a two-dimensional Poisson boundary value problem (BVP) as a model 

problem: 

  (5.39) 

As discussed in Section 5.4, the strong form collocation can be related to the least-squares 

functional with quadrature. Based on the least-squares functional in (5.29) and considering the 

BVP in (5.39), E-norm is defined as follow: 

 v,w
x
,w

y E
 w

x ,x
 w

y ,y 0,

2


h

w
n 0,h

2


g
v

0,g

2 1/2

 (5.40)  

where 1 1n x yw w n w n  , and  

 

v  
I
a

I
I1

Ns

 , v V  span 
1
,

2
,

NS
 

w
x
 

I
xa

I
, w

x
W

x
 span 

1
x ,

1
x ,

NS

x 
I1

Ns



w
y
 

I
ya

I
I1

Ns

 w
y
W

y
 span 

1
y ,

1
y ,

NS

y 

 (5.41) 

Thus, we have: 
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 1/22 2 2

, , , , 0, 0,0,

, , 0, 0,0,

1 2 3

, ,
h g

h g

x x y y x x y y h n gE

x x y y h n g

u v u w u w w w f w h v g

w w f w h v g

E E E

 

 

 

 

         

      

  

 (5.42) 

Here E1 is the error from domain, E2 is the error from the Neumann boundary, and E3 is the error 

from Dirichlet boundary. The individual error norms are estimated as follows: 

 

1 , , 0,

, , , , 0,

, , , ,0, 0,

, ,1, 1,

1 1
1 , 2 ,0, 0,

x x y y

x x y y xx yy

x x xx y y yy

x x y y

x x y y

E w w f

w w u u

w u w u

w u w u

C a w u C a w u





 

 

 

 

  

   

   

   

   

 (5.43) 

 

2 0,

0,

3 , 4 ,1, 1,

1 1
3 , 4 ,0, 0,

h

h

h n

h n n

h x x h y y

h x x h y y

E w h

w u

C w u C w u

C a w u C a w u





 

 





 

 

 

 

 

   

   

 (5.44) 

 

3 0,

0,

5 1,

1
5 0,

g

g

g

g

g

g

E v g

v u

C v u

C a v u


















 

 

 

 

 (5.45) 

We further introduce the following properties of the reproducing kernel approximation of degree 

p in (5.5) and the gradient reproducing kernel approximation of degree q in (5.18): 
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1

0, 1,

, 1,0,

, 1,0,

p

p

q
x x q

q
y y q

u v Ca u

u w Ca u

u w Ca u


  

 

 

 

 

 

 (5.46) 

As can be seen, 1E  and 2E  are associated with the gradient reproducing kernel approximation       

( xw  and yw ) of the differential equation and the Neumann boundary condition, respectively. It 

appears that the errors 1E  and 2E  are in balance without the weight in 2E , thus the weight h  is 

unnecessary. The error term 3E  is associated with the reproducing kernel approximation ( v ), and 

its balance with the errors 1E  and 2E  requires the properties in (5.46). As such, the weights for 

imposition of boundary conditions in G-RKCM are selected as shown below 

    11 , q p
h gO O a      (5.47) 

Combining the properties in (5.46) and the weights in (5.47), we have 

  1
, , 9 101, 1,

, , q
x x y y q pE

u v u w u w a C u C u
   

      (5.48) 

Assuming the discrete bilinear form associated with the minimization of E-norm in (5.42) is 

bounded and coercive, by Lax-Milgram and Cea’s Lemmas, there exists an optimal estimate  

 

u  uh ,u
,x
 u

,x
h ,u

,y
 u

,y
h

E
C inf

vV
wxWx
wyWy

u  v,u
,x
w

x
,u

,y
w

y E

 aq1 C
11

u
q1,

C
12

u
p1, 

 (5.49) 

Further, considering the balance of errors in the E-norm, and the error properties in (5.43)-(5.45), 

we have: 
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 1 1
, , , ,1, 1, 1,

( ), ( )h q h h q
x x y yu u O a u u u u O a 

  
       (5.50) 

 , , , ,0, 0, 0,
( ), ( )h q h h q

x x y yu u O a u u u u O a
  

       (5.51) 

For elasticity, similar procedures are followed to obtain: 

 

1 1
1 1 , 2 ,0, 0,

1 1
2 3 , 4 ,0, 0,

1
3 5 0,

x x y y

h x x h y y

g

E C a w u C a w u

E C a w u C a w u

E C a v u

 

   



 

 

 

 




   

   

 

 (5.52) 

where  max ,  
. 

For balance of errors between 1E , 2E , and 3E , the following weights are 

selected: 

    11 , q p
h gO O a       (5.53) 

Similar convergence properties to the Poisson problem as given in (5.48)-(5.51) can be obtained 

for elasticity problems. 

Remark 5.3 

The results in (5.49) indicate that the convergence of this method is only dependent on the 

polynomial degree q in the approximation of ,xu  and , yu , and is independent of the polynomial 

degree p in the approximation of u . Further, 2q   is needed for convergence. 

Remark 5.4 

The collocation points in the strong form collocation method plays a similar role as the 
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quadrature points in the least-squares method as discussed in Section 5.3. For strong form 

collocation method based on approximation for u, such as the reproducing kernel collocation 

method (RKCM) (Chen et al. 2008; HU et al., 2011; Hu et al., 2009), it requires second order 

differentiation of the approximation functions. 

Typically, higher order differentiation in the approximation function requires higher order 

quadrature rule for sufficient accuracy in the solution process. Taking RKCM for a Poisson 

problem for example, we have: 

 
^

21 3

1,

r r
c svd vd Ch N v 


 

       (5.54) 

In the above, 
^

 denotes numerical integration, 1/c ch N , cN  and sN  are the numbers of  

collocation points and source points in one-dimension, respectively, and r  is the parameter 

related to the accuracy of numerical integration method, for example, 1r   for Trapezoidal rule. 

Here, v v    involves second order differentiation of the approximation in v. For the 

proposed GRKCM, v is replaced by [ , ]x yw w  which requires only first order differentiation 

of xw  and yw , and we have: 

 
^

21 1

1,
[ , ] [ , ] r r

x y x y c s nw w d w w d Ch N w 


 

         (5.55) 

where 1 2n x yw w n w n  . 

For RKCM, it requires    11 3 3 1rr r r
c s c sh N N N o      for integration error to be under control, 

and thus necessitates the use of more collocation points cN  than source points sN  in the 

collocation method, and that leads to an over-determined system in its collocation equations. 

For the proposed GRKCM, we need    11 1 1 1rr r r
c s c sh N N N o     , and thus allows the use of 
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c sN N  for sufficient accuracy as will be shown in the numerical examples. 

 

5.6 Complexity Analysis 

In this section, we analyze the complexity of RKCM and the proposed G-RKCM method.  For 

complexity comparison of RKCM and G-RKCM, consider the solution of the following Poisson 

problem: 

 g

n h

u f in

u g on

u h on

  
 

 

 (5.56) 

where      and nu u n . We consider the follow two formulations in the 

approximations 

      , , , , , ,
1 1 1

: , ,
s s sN N N

I I I I I I
I I I

RKCM u v a u v a u v a     
  

          x x x  (5.57) 

     , , , ,
1 1 1

: , ,
s s sN N N

I I I I I I
I I I

G RKCM u v a u w a u w a 
     

  

           x x x  (5.58) 

where 1, 2  ,  I x is the RK shape function of degree p, and I
  is the gradient RK shape 

function with degree q. Consider a set of collocation points: 

 �  p
 

1

N p , q
 

1

Nq , r
 

1

Nr  ,      p

, q




g
, r




h
 (5.59) 
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Introducing RK approximation in (5.57) into the strong form (5.56), and enforcing the residual to 

be zero at the collocation points to yield: 

  (5.60)(a), (b), (c) 

Note that for RKCM, the second order derivation on the shape function , ,I I xx I yy     is 

needed in (5.60)(a), while for G-RKCM, this term is replaced by , ,
x y

I I x I y   . Similarly in 

(5.60)(c), , ,[ , ]I I x I y     for RKCM, while [ , ]x y
I I I     for G-RKCM. It is therefore 

imperative to analyze the operating counts of I , ,I  , and I
 , 1, 2   as in the followings. 

We denote multiplication and division operations by M/D, and the addition and subtraction 

operations by A/S. For RKCM, operation counts following (Hu et al., 2011) are: 

 
I

M / D : S 3  2k 1 S 2  S 1

A / S : S 3  k  2 S 2  S 1






 (5.61) 

 
I ,

M / D : 3S 3  8k  4 S 2  3S  2

A / S : 3S 3  4k 5 S 2  S 1






 (5.62) 

 
I ,

M / D : 6S 3  20k 12 S 2  6S  4

A / S : 6S 3  10k 11 S 2  S 12






 (5.63) 
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where ( )!/ ( ! !)S p d p d  , p is the reproducing degree of RK approximation, d is the space 

dimension, and k is the kernel support overlapping number. For G-RKCM, the operating count 

for I  is the same as (5.61), and the operating counts for I
  and ,I


  are 

 
I


M / D : S 3  2k 1 S 2  S 1

A / S : S 3  k  2 S 2  S 1






 (5.64) 

 
I ,


M / D : 3S 3  8k  4 S 2  3S  2

A / S : 3S 3  4k 5 S 2  S 1






 (5.65) 

where S  (q d )!/ (q!d !) , and q is the reproducing degree of gradient RK approximation. Note 

that the complexity of I
  is the same as that for I , and the complexity of ,I


  is the same as 

that for ,I  , with p in S  replaced by q in S . The computational complexities of these shape 

functions in two-dimension for 2p q   are shown in Table 5-3 and Table 5-4, respectively. 

The kernel support overlapping number is based on normaliized kernel support of 4k S  in 

two-dimension. 

Table 5-3 Complexity comparison of shape function calculation in RKCM and G-RKCM in two-
dimension 

 
RKCM 2p  G-RKCM 2p q 


I

M / D
A / S

 1987 
1013 


I

M / D
A / S

 1987 
1013 


I ,

M / D
A / S

 7724 
3931 


I
 M / D

A / S
 1987 

1013 


I ,

M / D
A / S

 19048 
9558 


I ,
 M / D

A / S
 7724 

3991 
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Table 5-4 Complexity comparison of shape function calculation in RKCM and G-RKCM in 
three-dimension 

 
RKCM 2p  G-RKCM 2p q 


I

M / D
A / S

 17111 
8809 


I

M / D
A / S

 17111 
8809 


I ,

M / D
A / S

 67432 
34511 


I
 M / D

A / S
 17111 

8809 


I ,

M / D
A / S

 167264 
84922 


I ,
 M / D

A / S
 67432 

34511 

 

The collocation equations in (5.60) leads to a linear system 

 Aa b  (5.66) 

In (5.66), the matrix A is with dimension c sN N , where c p q rN N N N    is the total number 

of collocation points, sN  is the number of source points, c sN N  for RKCM, while c sN N  for 

G-RKCM. Thus, the solution time for solving the linear system (5.66) also favors G-RKCM in 

addition to its simplicity in shape function calculations as discussed above. Further, the 

computation time in constructing the linear system in G-RKCM is also considerably less than 

that in RKCM. For example, let pN , qN , and rN  be the counter parts of pN , qN , and rN  in G-

RKCM, and c p q r sN N N N N    . It can be shown that the construction times for the linear 

system of (5.66) are: 

 RKCM:  38096 1987 7724s p q rN N N N   (5.67) 

 G-RKCM:  15548 1987 1987s p q rN N N N   (5.68) 
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By considering that fact that p q r p q rN N N N N N     as discussed above, the CPU 

advantage in G-RKCM is trivial.  

 

5.7 Numerical Examples 

In the following numerical examples, both RK shape functions and gradient RK shape functions 

are constructed with the quintic B-spline kernel function. For comparison, the solutions of the 

proposed G-RKCM method are compared with analytical solutions and RKCM solutions. In the 

solution of BVPs, the boundary weights of 1h   , g sN   are used for RKCM following 

(Hu et al., 2007), while 1h   , 1q p
g a     are used for G-RKCM, with 1   for Poisson 

problem and  max ,    for elasticity as discussed in Section 5.5. 

 

5.7.1 Approximation of a Sine Function 

The RK shape functions and gradient RK (GRK) shape functions are employed to approximate 

   sin sinx y   and the associated derivative in the domain   0,1 0,1 , respectively. The L2 

error norms of the function approximation by RK shape function with 1p   and 2p   are 

shown in Figure 5-1 (a) while the L2 error norms of the approximation of sine function 

derivative with 1q   and 2q   are shown in Figure 5-1 (b). The same number of collocation 
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points as that of source points is used in this study. The convergence rates are in agreement with 

the theoretical values.  

  

(a)                                                       (b) 

Figure 5-1 Convergence of L2 norms in approximation a sine function and its derivative 

 

5.7.2 Two Dimensional Poisson Problem  

Consider a two-dimensional Poisson problem as follows: 

 
       

 

2 2,    in 0,1 0,1

,    on 

xy

xy

u x y x y e

u x y e

     

 
 (5.69) 

The numbers of source points and collocation points employed for RKCM in the convergence 

study are  10 10,15 15,20 20,25 25,30 30      and  19 19,29 29,39 39,49 49,59 59     , 

respectively, and the number of collocation points are the same as the number of source points 

 10 10,15 15,20 20,25 25,30 30    
 
for G-RKCM. Figure 5-2 compares L2 norms of u  and 

,u   obtained by the proposed G-RKCM with various degrees of bases, as well as RKCM with
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2p  . As predicted by the theory in Section 5.4, G-RKCM requires at least second order bases 

in the gradient RK approximation for convergence, similar to the convergence requirement for 

RKCM (Hu et al., 2011). The results also show that the rate of convergence in G-RKCM is 

determined by the degree of bases in the gradient RK approximation (q), although higher degree 

of bases in the RK approximation (p) improves the solution accuracy in u. The CPU comparison 

for RKCM and G-RKCM shown in Figure 5-3 demonstrates the effectiveness of the proposed G-

RKCM. 

 

Figure 5-2 Convergence of L2 norms of u  and ,u   in two-dimensional Poisson problem  

 

 

Figure 5-3 CPU comparison of RKCM and G-RKCM 
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5.7.3 Infinite Long Cylinder under Internal Pressure 

 

Figure 5-4 An infinite long cylinder subjected to an internal pressure 

 

 

                                                (a)                                                      (b) 

Figure 5-5 (a) Quarter model and (b) distribution of source points and collocation points for 
RKCM 

 

An infinite long elastic cylinder subjected to an internal pressure is depicted in Figure 5-4 , 

where a plane strain condition in the out of plane direction is assumed. Due to symmetry, only a 

quarter of the domain is modeled by G-RKCM as shown in Figure 5-5 (a). The corresponding 

boundary value problem is 

 

 Source Points

Collocation Points



88 

 

 , =0   in ij j   (5.70) 

 

1

2 1 2

3

1 2 4

   on 

0,    0   on 

0   on 

0,    0   on 

i i

i

h Pn

u h

h

u h

  

  
 

  

 (5.71) 

where ( , )=C uij ijkl k l  and i ij jh n . The analytical solutions to this problem are given by 

 

         

 

 

2 2

22 2

2 2

2 2 2

2 2

2 2 2

1 1 2 1

1

1

r

rr

Pa r b
u r

rE b a

Pa b
r

b a r

Pa b
r

b a r

  





 
       

 
    

 
    

 (5.72) 

where P  is the internal pressure, b  and a  are the outer and inner radii of the cylinder, 

respectively. The distribution of source points and collocation points for RKCM is shown in 

Figure 5-5 (b). Five levels of discretization with source points  66,222,469,808,1238  are 

employed in the convergence study. The number of collocation points is approximately four 

times the source points for the RKCM whereas the collocation points are the same as the source 

points for G-RKCM. As shown in Figure 5-6, disregarding the degree of basis p, the G-RKCM 

with quadratic basis q=2 achieves the similar rate of convergence as the RKCM with quadratic 

basis while it yields better accuracy than RKCM in this problem. The errors in the G-RKCM 

with q=2 along the radial direction are also compared with those in the RKCM in Figure 5-7. In 

general, the stress results obtained by G-RKCM are less oscillatory in comparison with those by 

RKCM. The results also show that for G-RKCM, the solution is predominated by the order of 
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basis functions (q) in the gradient RK shape functions, and is nearly independent to the order of 

basis functions (p) in the RK shape functions. 

 

 

   (a)             (b) 

Figure 5-6 Convergence of L2 norms of u  and ,u   in the cylinder problem  
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      (b)              (c) 

Figure 5-7 Displacement and stresses along radial direction of the cylinder 

 

5.7.4 Beam Under Shear Load 
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Figure 5-8 Cantilever problem statement 

 

Consider a plane-strain elastic cantilever beam subjected to a tip shear traction, P, shown in 

Figure 5-8. The corresponding boundary value problem and boundary conditions are given as 

 , =0,   0< < ,   2 2ij j x L D y D     (5.73) 
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 

     0

 (5.74) 

The analytical solutions to the problem are 

 

     
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2
2

1

2
2 2

2
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6 4

Py D
u x y L x x y

EI

P D x
u x y L x x y L x

EI



 

  
       

  
 

      
 

 (5.75) 

where 3 12I D  ,  2/ 1E E   , and  / 1    .  

Six discretizations are performed in the convergence study with source points 

 17 5,25 7,33 9,41 11,49 13,57 15       and collocation points in both G-RKCM and RKCM 

are the same as the source points in this problem. The L2 norms of u  and ,u   obtained by the 

proposed G-RKCM with various degrees of bases are compared with those obtained by RKCM (

2p  ) in Figure 5-9. Again, almost independent of the degree of basis p, the G-RKCM with 

quadratic basis q=2 achieves the similar rate of convergence as the RKCM with quadratic basis. 

The comparison of shear stress solutions along 2x L  obtained by G-RKCM with q=2 and 

RKCM with p = 2 is shown in Figure 5-10, where 25 7sN    is used.  The results of shear stress 

obtained by G-RKCM are less oscillatory compared to that obtained by RKCM. 
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              (a)          (b) 

Figure 5-9 Convergence of L2 norms of u  and ,u   in cantilever problem 

 

 

Figure 5-10 Comparison of shear stress along 2x L  in cantilever problem  

 

5.8 Summary 

While RKCM using direct RK approximation of strong form has shown an enhanced 

conditioning and sparsity in its discrete system compared to RBCM using radial basis 
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approximation of strong form, and it also resolved the domain integration issues in the weak 

form based Galerkin meshfree method, the method suffers from the high level of complexity 

involved in computing the second order derivatives of RK shape functions and the need of using 

the number of collocation points much larger than the number of source points for optimal 

convergence. To resolve these issues, in this work we propose a gradient reproducing kernel 

collocation method (G-RKCM) by formulating the derivatives of RK shape functions directly 

based on the partition of nullity and discrete derivative reproducing conditions to eliminate the 

need of taking second derivatives of the Gram matrix involved in RKCM for solving second 

order PDEs.  

We also showed that in the proposed G-RKCM the number of collocation points needs not to be 

greater than that of source points required in RKCM. The error analysis showed that the rate of 

convergence in G-RKCM is determined by the polynomial degree in the gradient RK 

approximation, and is independent to the polynomial degree in the RK approximation. Further, 

G-RKCM yields the same convergence rates in L2 norms of u  and ,u  . The complexity analysis 

provided precious operating counts of both RKCM and G-RKCM and clearly demonstrated the 

significant computational efficiency of G-RKCM over RKCM. The numerical results confirmed 

with the analytical predictions, and showed that the proposed G-RKCM yields similar 

convergence property as the RKCM in both L2 norms of u  and ,u  , yet it is roughly 10 times 

computationally more efficient than RKCM.  
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Chapter 6 Strong Form Collocation Method for Active  

Contour Model 

 

6.1 Introduction 

The level set method originally devised by Osher and Sethian (1988) was intended to track the 

topological changes such as merging and breaking. The level set technique has been extensively 

applied in many practical research areas such as computer graphics, image processing, 

optimization, and computational fluid dynamics. By this method, the front propagation of a 

physical quantity is described by an auxiliary function, which is known as the level set function.  

The essential idea of the level set method is to track the evolution of a surface in 1N   

dimensions presented by the level set function with N  dimensions in space. Consequently, the 

motion of boundary, is governed by the evolution of the level set function. One advantage of the 

level set method is the implicit representation of the curve through the geometric parameters, 

which facilitates the control of the moving interfaces with changing topology effectively in the 

process of evolution.  

A curvature-dependent algorithm for the level set method was initiated by Osher and Sethian 

(1988). With this method, the functional contains constraint terms, which depend on the gradient 

of the image and are effective for images with sharp gradient. As for objects whose boundaries 

are not defined by the gradient of the image, Chan and Vese (1999, 2001) proposed an active 
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contour model for image segmentation based on the Mumford-Shah functional with a level set 

formulation. The minimization of the energy functional leads to the evolution of interface, and 

the boundary of the object is detected when the deviation of the image information inside and 

outside the contour of the object reaches the minimum. This novel technique for image 

segmentation and interface identification was known as the Chan-Vese model, which has the 

following notable features: The model can detect objects with and without gradients, such as 

objects with smooth boundaries or discontinuous boundaries; it can automatically detect the 

interior contours of an object with background noise and stop even if there is no edge-function; 

and the initial trial interface can be placed anywhere in the image no matter it touches the object 

or not. 

The level set equation in the active contour model is usually solved by the finite difference 

methods (FDM), where the inputs of the image, known as pixels, are discretized uniformly on 

the grid points. Nevertheless, for problems of objects whose boundaries evolve in response to the 

physical process, such as contact and penetration problems, a numerical algorithm based on a 

Lagrangian grid is needed to avoid the background mesh. Chi (2009) introduced a strong form 

collocation method, the Reproducing Kernel Collocation Method (RKCM), to discrete the level 

set equation, and it has been shown that the regularization term becomes less important. Further, 

to solve the level set equation efficiently without taking the second order derivative of the 

reproducing kernel shape functions in RKCM, the Gradient Reproducing Kernel Collocation 

Method (G-RKCM) has been introduced in Chapter 5 to carry out the numerical simulation. To 

further enhance the computational efficiency of the procedure in this research, a modified 

RKCM is introduced to the active contour model based on partition of unity. In addition, we 
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introduce the direct collocation method to solve the level set equation without regularization 

terms.  

The outline of this chapter is arranged as follows. The level set function and the associated 

implicit geometric representation are reviewed in Section 6.2. The Chan-Vese model, active 

contours without edges, is presented in Section 6.3. The strong form collocation method for 

solving the level set equation is introduced in Section 6.4, where the image segmentation can be 

reached directly by the Reproducing Kernel Collocation Method (RKCM) on a Lagrangian grid. 

To deal with the regularization terms efficiently in the level set equation, the Gradient 

Reproducing Kernel Collocation Method (G-RKCM) is proposed in Section 6.5 to avoid taking 

the second order derivatives of the RK shape functions. The modified RKCM without 

reproducing conditions for level set equation is introduced in Section 6.6. To further speed up the 

procedure in solving the level set equation with no regularization term, a direct collocation 

method is adopted in Section 6.7. A summary of the study is given in Section 6.8. 

 

6.2 Implicit Level Set Function 

 , 0t x

 , 0t x

   : , 0t t x







 

Figure 6-1 Level set function 
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Consider a closed moving interface  t  enclosed by an open region   with the boundary   

in nR . Let the region   be associated with an auxiliary function  ,t x , known as the level set 

function, which is Lipschitz continuous and satisfies the following conditions: 

 

   
   
   

, 0   if  is inside  

, 0   if  is on       

, 0   if  is outside 

t t

t t

t t





 
  
  

x x

x x

x x

 (6.1) 

where nRx  as shown in Figure 6-1. The geometric representation of the interface  t  

includes the unit outward normal n , the mean curvature  , the area A  inside  t , the area A  

outside  t , and the length of  t , which can be expressed in terms of  ,t x  as follows: 

 




 


n  (6.2) 

 




    


n  (6.3) 

   ,A H t d


  x x  (6.4) 

    1 ,A H t d


  x x  (6.5) 

       , ,Length t t d  


   x x x  (6.6) 

where the one-dimensional Heaviside function  H   and Delta function     are defined as 

  
1,    0

0,    0

z
H z

z


  

 (6.7) 
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    dH z
z

dz
   (6.8) 

Let the level set function  ,t x  be a signed distance function to the interface  t . We define 

  
 

 
 

  if  is inside  

, 0     if  is on       

   if  is outside 

d t

t t

d t


 
 
 

x

x x

x

 (6.9) 

where 

  min    for all d t  x y y  (6.10) 

The evolution of the moving interface  t  presented by the zero level set, i.e,  , 0t x , is 

related to the velocity field v which governs the physical law as 

 0t   v  (6.11) 

which is the general equation of the level set evolution. It is noted that the level set function 

 ,t x  is updated by the time integration in (6.11). During the updating process, the level set 

function may deviate from a signed distance function, which may lead to numerical instability 

and inaccurate interface tracking. To prevent the aforementioned deviation of the level set 

function in (6.11) from becoming too flat or steep, the reinitialization of the level set function to 

an approximately signed distance function is considered so that the level set function can reach a 

steady state with accuracy. The equation of reinitialization with associated initial condition is 

given as follows (Sussman et al., 1994): 
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       

   

,
, 1 ,

,0 ,

t
sign t

t


  

  


  




x
x x

x x

 (6.12) 

where  , x  is the solution at time  , and  , t x  is the reinitialized  , x  such that  , t x  

has the same zero level set as  , x . Away from the interface,  , t x  will converge to 

 , 1t x . The detailed derivation of the numerical algorithm for the reinitialization for 

evolving (6.12) to a steady state is summarized in Appendix A, with reference to the work by 

Sussman et al. (1994).  

 

6.3 Active Contour Model 

 
(a) 

 
(b) 

Figure 6-2 Active contour model for image segmentation 
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Consider a closed evolving interface   in   and a given image presented by an image color 

code  C x  in   as illustrated in Figure 6-2 (a). Assume that the color code  C x  contains two 

regions, i.e., the object to be detected and the remaining region outside the object in the image. 

The object, an apple, is represented by i  and the rest area of the image is represented by o , a 

functional considering the inside and outside parts of the object can be defined as 

        2 2

1 2inside outside 
C c d C c d

 
      x x x x  (6.13) 

where   is the trial boundary of the object, and constants 1c  and 2c  are the averages of  C x  

inside and outside  , respectively. For a given initial trial boundary 0 , the minimization of 

(6.13) drives 0  toward the true boundary of the object i . 

Based on the Mumford-Shah functional for image segmentation (Mumford and Shah, 1989), two 

terms, called the regularization terms, including the length of   and the area inside  , have 

been added to (6.13) to yield the following energy functional  1 2, ,c c   (Chan and Vese, 1999, 

2001): 

 
     

     
1 2

2 2

1 1 2 2  

, ,  

                  
inside outside

c c Length Area inside

C c d C c d

 

 
 

       

    x x x x
 (6.14) 

where 0  , 0  , and 1 2, 0    are constant coefficients. The first two regularization terms 

control the smoothness of the detected boundary while the last two constraints drive the trial 

interface toward the true boundary of the object. As suggested by Chan and Vese (2001) and 

Osher and Fedkiw (2002), the values 0   and 1 2     are adopted in this study. Moreover, 
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a scale factor defined as    controls the resolution of the image segmentation. In general, only 

large objects are to be detected when    is large. For example, if the object is formed by 

scattering data, only the large object, not the small pieces, is of interest, and a large    is 

required. The initial trial interface breaks into pieces, for which small objects are to be detected, 

when    is small. 

To implicitly represent the moving interface  t , introducing the level set function  ,t x  to 

(6.1) and the associated geometric representation in (6.4)-(6.6) to the functional  1 2, ,c c   in 

(6.14) gives rise to 

 
     

          
1 2

2 2

1 1 2 2

, ,

                  1

c c d H d

C c H d C c H d

     

   
 

 

    

    

 
 

x x

x x x x
 (6.15) 

where H is the heaviside function, and 

 

   
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  
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2

1

1

C H d
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c

H d






























x x

x

x x

x

 (6.16) 

The stationary of functional  1 2, ,c c   yields 
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   
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 


  



x x

x x

n

 (6.17) 

where n  is the outward normal to the boundary   and   is the steady state solution of (6.17).  

A regularization function H  is introduced to the Heaviside function  H   with the following 

form:  

   1 2
1 arctan

2

z
H z  

        
 (6.18) 

where   is a positive parameter. The corresponding Delta function   
 
defined in (6.8)  

becomes 

  
12

1
1

z
z  


        

 (6.19) 

The finite difference method (FDM) is usually employed to solve (6.17) numerically for image 

segmentation. An implicit finite difference scheme is given as follows: 
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 (6.20) 

where h  is the nodal distance, and the superscript n and the subscript j denote the time step and 

space step, respectively. 

 

6.3.1 Numerical Examples 

In this section, two examples will be presented using the active contour model. The finite 

difference scheme is employed to solve the level set equation in (6.17), in which one level set 

function is used in each example. The numerical test demonstrates that the level set method 

presented is able to segment the image into two phases and detect the boundary effectively. 
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6.3.1.1 Boundary Identification 

 

(a) Initial 

 

(b) 30 steps 

 

(c) 120 steps 
 

Figure 6-3 Boundary identification of an object with different colors 

 

The image presented in Figure 6-3 (a) contains a colorful object with random background noise. 

The parameters used in solving the level set equation are selected as follows: 20  , 0  , 

0.5  , and 1 2 1   .  A steady state solution is obtained after 120 steps with the time step 

size 0.01dt  , and there is no reinitialization involved in this example. The boundary evolution 

process is shown in Figure 6-3 (a)-(c). Interestingly, as the ratio    decreases, the number of 

time steps required to retrieve the real boundary of the object decreases as well, where 20 

and 0.01dt   are set as the reference. Table 6-1 shows the comparison of the scale factor    

versus the number of time steps.  
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Table 6-1    vs. the number of time steps (based on 20  and 0.01dt  ) 
 

   1 10 20 

steps 11 60 120 

 

6.3.1.2 Image Segmentation 

 

(a) Initial 

 

(b) 10 steps 

 

(c) 30 steps 
 

Figure 6-4 Segmentation of image with complex geometry 

 

Figure 6-4 (a) shows a simplified geometry for a unit cell of the bone tissue, in which two phases, 

the solid skeleton depicted in red and the fluid in the pores depicted in blue, need to be 

segmented apart. The parameters 100  , 0  , 0.5  , and 1 2 20    are used in solving 

the level set equation.  A time step size 0.01dt   with total 30 steps gives the steady state 

solution, where the dissimilar phases are segmented completely. No reinitialization is required in 

this example. The process of interfacial evolution is given in Figure 6-4 (a)-(c). 
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6.4 Strong Form Collocation Method for Active Contour Model 

Inspired by the image pixels such as the microstructures of biological bone materials given on 

uniformly distributed grid, we introduce the strong form collocation method to deal with images 

directly based on point discretization. However, the original level set equation (6.17) is generally 

solved by the FDMs as expressed in (6.20).  

When the interface evolution is a consequence of the physical process, i.e., the object to be 

detected is changing as a function of time, a background Eulerian grid is required to project the 

material points onto the nearest grid points (Chi, 2009). Therefore, the parameter   associated 

with the regularization term in the level set equation needs to be large to retrieve interface with 

enough smoothness, and the time step size needs to be small so that the Courant-Friedrichs-Lewy 

(CFL) condition is satisfied, which make the finite difference scheme time-consuming. As such, 

the strong form collocation method is introduced to formulate the level set equation on a 

Lagrangian grid, in which the influence of the interface regularity becomes less important and 

the parameter associated with the regularization term becomes small as well. Based on the 

collocation formulation, the biological microstructures with complex geometry can be 

constructed directly and easily. 

 

6.4.1 Strong Form Collocation Method 

Consider the general strong form of the level set equation as follows: 
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    0

      in 

,0    in 

               on 

L f
t

B h

 

 



  


 

 

x x  (6.21) 

where L  and B  are the differential operators in the domain   and on the boundary  , 

respectively. f  and h  are the source term in   and the prescribed boundary condition on  , 

respectively, and 0  is the initial condition. In the process of image segmentation for boundary 

and interface identification, the main purpose is to identify the boundary and interface of the 

object represented by the zero level set function 0   rather than to find   exactly. As a 

consequence, the real boundary condition on   has insignificant influence on the solution   

close to 0  , and it can be neglected in the numerical scheme for computational efficiency.  

By introducing the strong form collocation method to solve the level set equation in (6.21), the 

level set function   is approximated by h  as  

        T

1

,    
sN

h
I I

I

t t 


     x a x a x   (6.22) 

and 

 T T
1 1, , ,    , ,

s sN Na a        a =   (6.23) 

where sN  is the number of source points,  I x  is the shape function, and Ia  is the generalized 

coefficient. It is noted that in the reproducing kernel collocation method (RKCM),  I x  is the 

reproducing kernel (RK) shape function as presented in Chapter 5. 
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By substituting the approximation of the level set function in (6.22) into the level set equation in 

(6.21), and evaluating the differential equation and initial condition at the collocation points 

  p  with 1,2,......, cN , the semi-discrete collocation system is derived as follows:  

 

 
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00

t  
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Na L f
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Ba x h



 (6.24) 

where 
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 (6.25) 

Denote the level set function evaluated at the collocation point Ip  by  h T
I I  p a , the explicit 

form of the component IL  in matrix L  is given by 

          2 2

1 1 2 2
h h

I I I I IL C c C c             
 

p p  (6.26) 

where 
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 (6.27) 

and 
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where IdA  is the weight in the integration presented by the area of a Voronoi cell with respect to 

the collocation point Ip . In the level set based image segmentation, a unit area for IdA  is 

adopted herein.  

By employing the forward Euler’s method, the collocation equations in (6.24) become 

  
 1

0
0

n n nt   



N a a L

Na φ
 (6.30) 

in which the superscript denotes the n -th time step and t  is the time step size. In the 

collocation method, the number of collocation points with zero residuals enforced is usually 

taken to be larger than the number of source points to form an overdetermined system, while 

ensuring the solution accuracy, as pointed out by Zhang et al. (2001) and Hu et al. (2007). 
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However, the overdetermined system may make the level set method become computationally 

inefficient especially for images of high resolution. Therefore, it is recommended that the same 

number of collocation points and source points be used. The unknown 1na  can be obtained by 

the following incremental formulation at 1t n  : 

 1 1n n nt  a a N L  (6.31) 

 0 1
0

a N φ  (6.32) 

Based on the direct strong form collocation, the numerical algorithm for solving the level set 

equation in the active contour model is given as follows: 

(1) Compute the shape functions I  from a set of source points and evaluate I  at the 

collocation points to form the transformation matrix N  and its inverse 1N .  

(2) Form an initial trial level set function 0φ  and calculate 0a  by using (6.32). 

(3) Compute 1c , 2c  , and nL  at t n . 

(4) Calculate 1na  at 1t n   by using (6.31). 

(5) If    1 1 1 1
1 1 2 2 1 2
n n n nc c c c c c tolerance      , stop the procedure. Otherwise, go to step (1) 

and continue. 

Here we modify the residual as    1 1 1 1
1 1 2 2 1 2
n n n nc c c c c c     . 
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6.4.2 Numerical Examples 

6.4.2.1 Investigation of the RK Properties on Image Segmentation  

In this example, we shall investigate the influences of different orders of RK bases and kernel 

functions on the RK support size in the image segmentation based on RKCM. The image 

simulated by a set of 47 38  discrete points with two different colors is shown in Figure 6-5, 

where each point occupies a single pixel in the image. For computational efficiency in detecting 

the boundary of the object, the collocation points cN  are chosen to be the same as the source 

points sN  in RKCM. The parameters for solving the level set equation are selected as follows: 

1  , 0  , 1 2 1   , 0.01dt  , the residual is set as 310  and   equals twice the RK 

support size a . A quintic B-spline kernel function and a quadratic B-spline kernel function with 

two different order bases, the linear basis and the quadratic basis, used in constructing the RK 

shape functions will be investigated.  

When a high order kernel function such as the quintic B-spline kernel function is used in RKCM 

to approximate a discontinuous image color code, a very large support size is needed even for a 

linear basis in the RK shape function, in order to avoid the oscillation of the level set function. In 

contrast, the use of a low order kernel function like the quadratic B-spline kernel function can 

resolve the oscillation of the level set function with a “proper” support size with respect to the 

order of basis in the RK shape function. In Table 6-2, the corresponding RK support sizes a  

with respect to the order of RK bases and kernel functions are summarized. The steady state 

solutions obtained by the quintic B-spline and quadratic B-spline kernel functions with different 
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bases are shown in Figure 6-5 (a)-(b) and (c)-(d), respectively; the corresponding residuals and 

total time steps are summerized in Table 6-3.  

 

 

(a) Linear basis with 3.8a   

 

(c) Linear basis with 2.4a   

 

(b) Quadratic basis with 4.0a   

 

(d) Quadratic basis with 2.4a   
 

Figure 6-5 Boundary identification of an object obtained by using different kernel functions and 
bases; Quintic B-spline kernel function with (a) Linear basis and (b) Quadratic basis; Quadratic 
B-spline kernel function with (c) Linear basis and (d) Quadratic basis 
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Table 6-2 RK support sizes vs. RK bases and kernel functions for 0   
 

Kernel 
 

Basis  

Quintic  
B-spline  

Quadratic  
B-spline  

Linear 3.8 2.4 

Quadratic 4.0 2.4 

 

Table 6-3 Comparison of residuals and total time steps 
 

Kernel Quintic B-spline Quadratic B-spline 

Basis Linear Quadratic Linear Quadratic 

Residual 9.8309e-004 9.8121e-004 9.7932e-004 9.7928e-004 

Total Steps 60 62 46 46 

 

6.4.2.2 Interface Identification of a Microstructure 

A three-dimensional image of sheep vertebrae shown in Figure 6-6 is adopted from the website 

of SCANCO Medical, in which the trabecular bone image is obtained by Xtreme-CT with 

nominal resolution of 41 µm. Specifically, the Xtreme-CT is designed to perform a three-

dimensional peripheral quantitative-computed tomography (pQCT), which measures both the 

bone density and bone structure, and yields cross-sectional images of the bones in vivo with 

high-resolution. As shown in Figure 6-7 (a), one slice of the trabecular bone image is composed 

of 1024 973 pixels with a maximum scan size 126mm 150mm in the plane. The corresponding 

microstructural image of a unit cell with 75 75  pixels is given in Figure 6-7 (b), where the unit 

cell location is specified in Figure 6-7 (a). 
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Figure 6-6 Three-dimensional image of sheep vertebrae (adopted from SCANCO Medical) 

 

 

 

 

(a) (b) 
 

Figure 6-7 Trabecular bone image of sheep vertebrae (adopted from SCANCO Medical) 

 

For medical images obtained from CT or MRI, the images are in general presented in grayscale 

with background noise such as the one shown in Figure 6-7 (a) and (b). To retrieve a smooth 

interface of a microstructure, a large   is preferred. The corresponding parameters in the level 

set equation are 1000  , 0  , 1 2 3500   , 0.1dt  , 2a  , and the residual is set to be 
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65 10 . The collocation points are chosen to be the same as the source points ( c sN N ). A 

quadratic basis and a quadratic B-spline kernel function are adopted in the construction of RK 

shape functions, and the support size of RK shape function is 2.4. For the image shown in Figure 

6-7 (b), the initial trial interface and final evolved interface are presented in Figure 6-8 (a) and 

(b), respectively. The steady state solution is reached after 55 steps with the residual 4.4537e-006. 

 

(a) Initial 

 

(b) 55 steps 
 

Figure 6-8 Interface identification of a microstructure by RKCM; (a) Initial trial interface; (b) 
Final evolved interface 

 

6.4.2.3 Two-Phase Segmentation 

Consider a microstructure presented by two colors as shown in Figure 6-9 (a) with 50 50  pixels, 

the parameters for solving the level set equation are 0   , 1 2 1   , 0.1dt  , 2a  , and 

residual 45 10 . The collocation points are selected the same as the source points, and the RK 

shape functions are constructed by a constant basis and a linear spline kernel function. The 

support size of RK shape function is chosen as 0.51a  . The interface evolution process is 

shown in Figure 6-9 (b) and (c), the solid phase and fluid phase are segmented after 18 steps, 

where the pink points denote the solid skeleton while the blue points denote the fluid phase. It is 

noted that when 0  , the level set equation degenerates to an ordinary differential equation 
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(ODE), which can be solved easily by function approximation, providing that the image does not 

have background noise. 

 

 (a) Initial 

 

(b) 2 steps 

 

(c) 18 steps 
 

Figure 6-9 Interface identification in the microstructure with two phases by RKCM 

  

6.5 Gradient Reproducing Kernel Collocation  Method for Active 

Contour Model 

In Chapter 5, we proposed the gradient reproducing kernel collocation method (G-RKCM) for 

solving the boundary value problems, which has been demonstrated to be less computationally 

expensive owing to the gradient approximation introduced to avoid taking the second derivatives 

of reproducing kernel (RK) shape functions. Based on this concept, the proposed G-RKCM is 

introduced to solve the level set equation in the active contour model, where nonzero   is 

considered herein to detect a smooth boundary of the object.  
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6.5.1 Gradient Reproducing Kernel Approximation 

In the gradient reproducing kernel approximation, the derivatives of the level set function   are 

approximated by the shape functions directly as follows: 

 

       

       
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




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 (6.33) 

and 

 

T T

T

1 2 1 2

T
1 2 1

... ,    ... ,    

... ,    , ,

s s

s s

x x x x y y y y
N N

z z z z
N Na a

             

         a = 

 


 (6.34) 

where  m
I x  is the gradient RK shape function in G-RKCM, which satisfies the gradient 

reproducing kernel conditions presented in Chapter 5.  

Introducing the approximation of   in (6.22) and the corresponding gradient approximation in 

(6.33) to the level set equation in (6.21), and evaluating the governing equations at the 

collocation points    1,2,......, cN  p   lead to the semi-discrete collocation system in (6.24). 

The explicit expression for the component IB  in matrix B  has been given in (6.26), while the 

operator   in G-RKCM has the following form: 
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 (6.35) 

 

6.5.2 Numerical Examples 

6.5.2.1 Interface Identification of a Microstructure 

To investigate the computational efficiency of the proposed gradient reproducing kernel 

collocation method in the interface and boundary identification process, we consider the same 

microstructure shown in Figure 6-7 (b), which is presented by 75 75  pixels in Figure 6-10 (a). 

The corresponding parameters for solving the level set equation are given as follows: 1000  , 

0  , 1 2 3500   , 0.1dt  , and   is set to be twice the RK support size a . The same 

numbers of collocation points and source points ( c sN N ) are adopted, and the residual is set to 

be 65 10 . 

Without loss of generality, the standard RKCM with a quadratic basis RK shape function ( 2p  ) 

is compared with the G-RKCM with equal-order quadratic bases ( 2p q  ), in which the level 

set function   is approximated by the p -th order basis RK shape function while the derivative 

  is approximated by the q -th order basis in the gradient RK shape function. The RK support 

size is chosen as 2.4, and a quadratic B-spline kernel function is adopted in construction of both 

the RK and gradient RK shape functions. The interface detected by G-RKCM is shown in Figure 

6-10 (b), and the related residual and CPU time are summarized in Table 6-4, in which the 
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detected interface by RKCM can be referred to section 6.4.2.2. As can be observed from Figure 

6-10 (b), G-RKCM with equal-order quadratic bases ( 2p q  ) can detect the interface with 

representative contours clearly. By examining the quadratic basis ( 2p  ) in RKCM and G-

RKCM with equal-order quadratic bases ( 2p q  ), G-RKCM is computationally more 

efficient than RKCM ( 2p  ), in that the CPU time is reduced by about 16%. 

 

(a) Initial 

 

(b) 55 steps 
 

Figure 6-10 Interface identification of a microstructure by G-RKCM: (a) Initial trial interface; (b) 
Final evolved interface 

 

Table 6-4 Comparison of residuals and total steps with different collocation methods 
 

Method 
 

RKCM 
2p   

G-RKCM  
2p q   

Residual 4.4537e-006 4.4725e-006 

Total Steps 55 55 

Time (sec.) 244.0059 205.1419 

CPU saving (%) - 15.9275 
Note: Time is calculated on the basis of constructing shape functions 
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6.5.2.2 Investigation of G-RKCM on Image Segmentation 

Consider the same microstructure shown in Figure 6-7 (b), it is presented by 50 50  pixels in  

Figure 6-11 (a) with two colors. The parameters 1000  , 0  , 1 2 3500   , 0.1dt  , and 

2a   are adopted in the level set equation, and the residual is 510 . The collocation points are 

adopted to be the same as the source points ( c sN N ). Two cases with a quadratic B-spline 

kernel function are considered: standard RKCM with a quadratic basis shape function ( 2p  ), 

and G-RKCM with equal-order quadratic bases ( 2p q  ). The RK support size 2.4a   is 

adopted in the construction of both RK and gradient RK shape functions.  

The detected interfaces of the microstructures are shown in  

Figure 6-11 (b) and (c). Table 6-5 compares the residuals obtained after 43 steps and the 

corresponding CPU time. Similarly, both methods with quadratic basis ( 2p  ) evolve and can 

identify the interfaces in the same trend, while G-RKCM with equal-order quadratic bases 

( 2p q  ) is computationally less expensive by saving CPU time about 17.40%, in comparison 

with RKCM ( 2p  ). 

 
Table 6-5 Comparison of residuals and CPU time with different collocation methods 

 

Method 
 

RKCM 
2p   

G-RKCM  
2p q   

Residual 9.7555e-006 9.7538e-006 

Total Steps 47 47 

CPU Time (sec.) 45.9816 37.9808 

CPU Saving (%) - 17.40 

Note: Time is calculated on the basis of constructing shape functions 
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(a) Initial 

 

(b) RKCM 2p   

 

(c) G-RKCM 2p q   
 
Figure 6-11 Interface identification in the microstructure with two phases by RKCM and G-
RKCM: (a) Initial trial interface; (b) Interface detected by RKCM ( 2p  ); (c) Interface detected 
by G-RKCM ( 2p q  ) 

 

6.6 Modified Reproducing Kernel Collocation  Method for Active 

Contour Model 

When solving a PDE by RKCM and G-RKCM, one requires the shape functions to satisfy the 

2nd order consistency to ensure convergence, in which the basis function requires to achieve the 

associated order of completeness. However, in the image process of boundary and interface 
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identification, the constraints, controlling the difference of average color codes inside and 

outside the contour, play the major role in driving the moving interface toward the true boundary 

of the object, which make the regularization terms less important. As a consequence, the 

consistency condition in constructing the RK shape function can be further loosened to solve the 

level set equation computationally efficiently. In the following section, the kernel function is 

directly employed as the shape function in the strong form collocation method to solve the level 

set equation and identify the boundary. A quadratic B-spline kernel function is given below: 

  

2

2

3 9 1
,                0 ,

4 4 3
9 9 9 1

,       1,     
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0,                                 1,
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   
      





x x
 (6.36) 

 

6.6.1 Numerical Examples 

6.6.1.1 Interface Identification of a Microstructure 

Consider the microstructure presented by 75 75  pixels in Figure 6-12 (a). The parameters for 

solving the level set equation are given as follows: 1000  , 0  , 1 2 3500   , 0.1dt  , 

and   is set to be twice the RK support size a . The collocation points are adopted the same as 

the source points ( c sN N ), and the residual is set to be 65 10 . A quadratic kernel function is 

used, and the support size is 1.2. The steady state solution is obtained at 52 steps with residual 

2.8656e-006 as shown in Figure 6-12 (b).  
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(a) Initial 

 

(b) 52 steps  

Figure 6-12 Interface identification of a microstructure by modified RKCM: (a) Initial trial 
interface; (b) Final detected interface 

 

6.7 Direct Collocation Method for Solving Ordinary Differential 

Level Set Equation 

As illustrated in previous sections, when the image has background noise, the parameter   in 

the regularization term needs to be large in order to detect a smooth interface and boundary, 

especially for those images obtained from CT scan and MRI. Nevertheless, when dealing with 

microstructures composed of two phases, the solid skeleton and pores, the microstructural 

images available for numerical investigation may be presented in two colors. In this case, the 

influence of the interface regularity becomes less important and the parameter associated with 

the regularization term can be small as well. When the regularization is set to be zero, the level 

set equation degenerates to an ordinary differential equation (ODE), and can be solved with a 

larger time step. In this section, we introduce the direct collocation method to further solve the 

level set equation computationally more efficiently, in which the level set function is 

approximated at each collocation point. In this way, the transformation matrix composed of the 

shape functions is no longer needed in the strong form collocation method, and the calculation of 
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the inverse of the transformation matrix in each time step can be avoided, which makes the 

incremental level set algorithm simpler and more efficient. 

 

6.7.1 Direct Collocation Method 

In the case when the parameter   is set to be zero, the level set equation degenerates to an ODE: 
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 (6.37) 

which can be written in the general strong form as follows: 
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 (6.38) 

where f  is a function of the level set function   in the domain  , and 0  is the initial condition. 

Introducing the direct collocation method to the general level set equations in (6.38), and 

evaluating the differential equation and initial condition at collocation points  J x  with 

1,2,......, cJ N , yield the semi-discrete collocation equations:  

 
 
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a L
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
 (6.39) 

where 



125 

 

 
        

     

T

1 2

T

0 0 1 0 2 0

, ,......,

, ,......,

c

c

h h h
N

N

f f f  

  

   

   

L x x x

φ x x x
 (6.40) 

Denote the level set function evaluated at collocation point Jx  by  h
J Ja t  , the explicit 

expression of the component JL  in the matrix L  is 
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and  
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where the weight of integration JdA  is the area of a Voronoi cell with respect to the collocation 

point Jx , which is set to be unity in the collocation method herein.  

Introducing the forward Euler’s method to the semi-discrete collocation system in (6.39) leads to 
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 (6.43) 



126 

 

in which the superscript n  and t  are the time step number and its size, respectively. As a 

consequence, the incremental algorithm for calculating the unknown 1na  at 1t n   with initial 

condition is given by 

 
1

0
0

n n nt   



a a L

a φ
 (6.44) 

where the proposed incremental formula in (6.44) is neat and efficient. Moreover, unlike the one 

in (6.31) and (6.32), there is no need to calculate the transformation matrix and its inverse at each 

time step. The detailed incremental algorithm was given in Section 6.4. 

 

6.7.2 Numerical Examples 

6.7.2.1 Boundary Identification of an Object on a Lagrangian Grid 

 

(a) Initial 

 

(b) 30 steps 

 

(c) 170 steps 
 
Figure 6-13 Boundary identification of an object by direct collocation method; (a) Initial trial 
interface; (b) and (c) are the evolving interface at 30 steps and 170 steps, respectively 
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Consider the image with 47 38  pixels shown in Figure 6-13 (a). To solve the ordinary 

differential level set equation in (6.37), the parameters are chosen as 0  , 1 2 1   , 

0.001dt  , 0.5  , and the residual is set to be 55 10 . The boundary evolution of the object is 

shown in Figure 6-13 (b)-(c), where the object is detected with 170 steps and the residual is 

4.9875e-005. Although more time steps are needed for desired accuracy in this approach 

compared to that based on RKCM, the fact that no solution of a linear system is needed results in 

a significant time saving.  

 

6.7.2.2 Two-Phase Segmentation 

 

(a) Initial 

 

(b) 2 steps 

 

(c) 70 steps 
 

Figure 6-14 Interface identification of a microstructure by direct collocation method; (a) Initial 
trial interface; (b) and (c) are the evolving interface at 2 steps and 70 steps, respectively 

 

The microstructure shown in Figure 6-14 (a) is discretized by 50 50  pixels. The following 

parameters are adopted to solve the ordinary differential level set equation: 0  , 1 2 1   , 

0.1dt  , 0.5  , and the residual is set as 410 . The evolution of the interface is shown in 
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Figure 6-14 (b) and (c), and the detected interface is obtained at 70 steps when the residual 

reaches 9.9688e-005. 

 

6.8 Summary 

Based on the variational formulation of the level set functional, the active contour model has 

been applied to the processing of images, in particular, the boundary identification and image 

segmentation of images with background noise and complex geometry. Inspired by the image 

data presented by the pixels, we introduce the strong form collocation method to directly deal 

with images obtained from CT scan or MRI, which are discretized uniformly on grid points.  

With the RKCM, an investigation of the RK parameters in solving the level set equation has 

been carried out to give some insights into the choice of parameters with respect to different 

orders of bases and kernel functions. On the other hand, when using the strong form collocation 

method to solve the level set equation, the regularization term with parameter 0   makes the 

numerical algorithm cumbersome and less efficient. In this regard, we introduced the proposed 

G-RKCM described in Chapter 5 to avoid taking the second derivatives of the approximation 

function. The proposed G-RKCM has been demonstrated to be an efficient means for solving the 

level set equation with the regularization terms in the collocation method. Since the influence of 

regularization term is less than the constraints for interface marching, the consistency condition 

in the RK shape function can be further released to enhance the computational efficiency. A 

modified RKCM for active contour model is investigated. For image with two color data, we 

proposed a direct collocation method to solve the degenerated level set equation (when the 
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parameter 0  ), which is an ODE with no regularization terms. In this method, the 

transformation matrix and the inverse of the matrix at each time step is no longer needed, which 

make the incremental algorithm much more efficient than the conventional strong form 

collocation method. 
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Chapter 7 Image-Based Strong Form Collocation  

Method for Multiscale Modeling of Porous Bone  

Materials 

 

7.1 Introduction 

Trabecular bone is a hierarchical structure with complicated morphology and heterogeneity, and 

it has been widely studied in the area of orthopedics and dentistry in the past decades. Due to its 

porous composition, the investigation of trabecular microstructures by considering the variation 

of solid skeleton and pores provides opportunities to accurately predict the macroscopic behavior 

of trabecular bones, since the bone microstructures and the associated macroscopic mechanical 

properties alter in different sampling sites, ages, and density. Specifically, the macroscopic 

material properties of trabecular bones have been recognized as orthotropy or transverse isotropy 

with the largest elastic stiffness and strength occurring in the principal directions.  

Some idealized models with simplified geometry have been applied to simulating microstructural 

responses (Williams and Lewis, 1982; Gibson, 1985; Hollister et al., 1991). However, the 

predicted stiffness of trabecular bones was reported to overestimate the experimental data 

(Hollister et al., 1991; Hollister et al., 1994). Since it has been generally accepted that the 

microstructural organization affects the strength and stiffness of trabecular bones, a realistic 
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microstructural model considering the biphasic variation should provide a rational way to 

investigate the mechanics of trabecular bones.   

As high resolution digital imaging techniques emerge, such as the advancement of micro-scale 

tomography (micro-CT) and micro-magnetic resonance imaging (micro-MRI), the investigation 

of trabecular bone mechanical properties can be estimated more precisely. In the unit cell 

modeling of bone materials, major challenges related to numerical defects introduced by using 

the finite element method (FEM) exist. To model the microstructural topology by converting the 

image pixels into elements, the jagged interface and sharp corner due to the piecewise 

approximation in the 0C  FEM may lead to artificial localized responses such as stress 

concentration and solution oscillation on the boundary (Hollister and Riemer, 1993; Hollister and 

Kikuchi, 1994). When the finite element model is constructed from the input geometry of images, 

mesh reconstruction is always needed to avoid highly distorted elements and to achieve desired 

mesh topology (Hoppe et al., 1993; Ulrich et al., 1998; Podshivalov et al., 2009; Podshivalov et 

al., 2011). Another issue arises from the model reconstruction process based on high-resolution 

medical images is the background noise and blurred objects, where the numerical analysis may 

lead to incorrect predictions and diagnoses if the reconstructed models lack representative 

information to convert the pixel density from images to the material points (Kuhn et al., 1990; 

Hollister and Riemer, 1993; Hollister and Kikuchi, 1994; Charras and Guldberg, 2000; Hara et 

al., 2002; Podshivalov et al., 2011). Consequently, the aforementioned drawbacks including 

mesh reconstruction, smoothing solutions, and thresholding techniques make the finite element 

simulation complicated and time-consuming owning to the complex microstructural geometry 

encountered.  
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To investigate the influence of microstructural topology and material properties on the effective 

material parameters and the load transmission in bone at tissue level, the reliability of the 

homogenized material parameters in the multiscale bone modeling remain challenging. Many 

factors such as sampling position of unit cells, sampling size of unit cells, and resolution of 

microstructural images contribute to the accuracy of the homogenized macroscopic material 

behavior and associated structural response predictions. 

In the proposed image-based strong form collocation numerical method presented in Chapter 5 in 

conjunction with the mathematical homogenization framework discussed in Chapter 4, one 

critical feature for an effective numerical prediction is the ability to effectively identify 

microstructural material interface and segment phases based on images with jagged edges and 

blurry boundaries, in which the level set method in Chapter 6 has been introduced. This 

framework allows effective microstructural modeling directly based on images without 

thresholding techniques for phase segmentation. In addition, the strong form collocation method 

enables us to solve problems with complex geometry based on point discretization without 

complexities resulting from mesh reconstruction and smoothing solutions. The proposed 

numerical framework will be employed to simulate the trabecular bone microstructures and 

calculate the associated macroscopic mechanical properties aiming to a seamless integration of 

imaging technology and patient specific computer aided diagnosis for osteoporosis applications.  

The arrangement of this chapter is as follows: Section 7.2 describes the image based modeling of 

solving unit cell problems by the strong form collocation method. The numerical issues for G-

RKCM image based modeling are discussed in Section 7.3. The investigation of unit cell size 

and image resolution on mechanical properties and the validation of the proposed method are 
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given in Section 7.4. The summary of the proposed image based computational framework for 

modeling porous bone materials is provided in Section 7.5. 

 

7.2 Multiscale Poroelasticity Modeling  

7.2.1 Unit Cell Problems in Strong Form 

Based on the framework of multiscale homogenization with the two-scale asymptotic expansion 

introduced in Chapter 4, we have formulated the unit cell problems for poroelastic materials 

composed of an elastic solid and Newtonian fluid of low viscosity, in which the microstructural 

response is embedded in the characteristic functions. To solve the unit cell problems directly by 

the image-based strong form collocation method, the corresponding unit cell problems are 

revisited in strong form herein. The strong form of the unit cell problem for the Y-periodic 

characteristic function χ  in the solid domain is  
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where ijklC  is the elastic tensor of the solid skeleton and S
jn  is the unit normal on the inner 

boundary of the cell. The strong form of the unit cell problem for the Y-periodic characteristic 

function η  in the solid domain is 
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The strong form of the unit cell problem for the Y-periodic and divergence free κ  in the fluid 

domain is  
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where v  is the fluid viscosity. The inner boundary conditions of unit cells on SY  and FY  are 

stated in (7.2), (7.4) and (7.6), respectively, while the periodic boundary conditions are imposed 

on the outer boundaries of unit cells. 

After obtaining the characteristic functions, the following homogenized material parameters can 

be determined to represent the material properties of the overall macrostructure, which are  
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in which ijklC  is the homogenized elasticity tensor, ij  is the homogenized effective stress tensor, 

and ijK  is the homogenized permeability tensor, respectively. In addition, the upper and lower 

bounds for ii  are  0 2 1ii    , which are presented in Appendix C by modifying the work 

of Lydzba and Shao (2000). 

 

7.2.2 G-RKCM for Solving Unit Cell Problems 

Recall the general weighted strong form collocation equations of boundary value problems 

introduced in Chapter 5: 

  
1 2 1

3 4 2

35

h h

gg

 


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where A  constitutes matrices associated with the differential operators and b constitutes vectors 

related to the source terms, respectively, and h  is the weight on h  and g  is the weight 

on g .  

For the χ -unit cell problem given in (7.1)-(7.2), the gradient RK approximation χ  in two-

dimension are introduced as 
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where  
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in which I  and  Ia  are the matrix and vector composed of the RK shape functions and the 

generalized coefficients, respectively.  

The corresponding matrices in A  and b  for solving the χ -unit cell problem are given as  
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and 
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Here we use the property kmn knm  , and   and   are Lame’ constants. 

For the η -unit cell problem in two-dimension, consider 
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The corresponding matrices in A  and b  for solving the η-unit cell problem are given as follows: 
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In a similar way, for the κ -unit cell problem, we introduce the following approximation: 
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The associated matrices in A  and b  are given by 
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7.3 Image Based G-RKCM for Unit Cell Modeling 

The accurate prediction of mechanical properties of materials with complex geometry relies 

largely on the numerical model’s geometry representation ability. In microstructure modeling, 

how to locate and represent material interface configuration and construct discretization 

following the material heterogeneity is of critical importance in the image based modeling. In 

this section, we will investigate these numerical issues and verify the effectiveness of the 

proposed image based numerical methods for microstructure modeling. 

 

7.3.1 Image Segmentation and Interface Points Generation 

The proposed method constitutes three steps in the discretization of microstructures for solving 

unit cell problems using medical images: (1) the level set segmentation, (2) the interface points 
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generation, and (3) the interface reconstruction. To demonstrate the proposed image based 

discretization of microstructures for solving the unit cell problems, consider the microstructural 

image of trabecular bone shown in Figure 7-1 presented by 25 25  pixels. For the level set 

image segmentation, the parameters for the level set equation are chosen as follows: 0   , 

1 2 10000   , 0.1dt  , 2a  , residual= 65 10 , and the gradient reproducing kernel 

collocation method (G-RKCM) is introduced for the discretization of level set equation ((6.17) in 

Chapter 6). The RK shape function is constructed by the quadratic bases with a quadratic kernel 

function using the support size 2.4a  . With the level set segmentation technique, the interface 

is identified with residual 1.3494e-06 at the 15-th step, and the results are depicted in Figure 7-2 

(a). Next, the interface points are constructed using the level set function values at the pixels. To 

proceed, we introduce linear interpolation of level set functions in both x  and y  directions in the 

neighboring points where the level set function changes sign. In other words, if two neighboring 

points contain opposite signs of level set function values, the interpolation is performed to locate 

the interface point with zero level set value. An example of x-direction interpolation of interface 

point is shown in Figure 7-3. The interface points obtained by the linear interpolation are shown 

in Figure 7-2 (b).  

 

Figure 7-1 Microstructural image of trabecular bone presented by 25 25  pixels 
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                                 (a)                                                                        (b) 

Figure 7-2 (a) Level set method for interface identification; and (b) Interface approximation at 
additional collocation points 
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Figure 7-3 Illustration of linear interpolation in interface approximation 

 

7.3.2 Interface Reconstruction 

As shown in Figure 7-4, the domain points (blue points) and the interface points (black points) 

have been identified in Section 7.3.1. Based on the shortest distance between two adjacent 

interface points, the interface points can be connected in sequence to form a closed loop. To 

avoid identification of two adjacent points with the shortest distance while not belonging to the 

interface, we further identify the sign of inner product of the surface normals of the candidate 

interface points having shortest distance. In other words, when the inner product of surface 



142 

 

normals of the two interface points identified with shortest distance is less than zero, these two 

points are treated as interface points on different interfaces and will not be connected in the 

interface construction. As shown in Figure 7-4 (a) and (b) presented by 20 20  pixels and 

25 25  pixels, respectively, it is expected that the results of interface reconstruction is resolution 

dependent as shown in Figure 7-5 and Figure 7-6, where the implicit representation is zero level 

set and the explicit representation is reconstructed interface. For the same microstructures with 

higher resolution such as 45 45  pixels shown in Figure 7-7 (a), the explicit representation of 

interface points agrees with the implicit representation in Figure 7-7 (b).   

 

(a) 

 

(b) 

Figure 7-4 Domain and interface points for unit cells presented by (a) 20 20  pixels; and (b) 
25 25  pixels  
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(a) 

 

(b) 

Figure 7-5 Microstructure with 20 20  pixels: (a) implicit representation; and (b) explicit 
representation 

 

 

(a) 

 

(b) 

Figure 7-6 Microstructure with 25 25  pixels: (a) implicit representation; and (b) explicit 
representation 
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(a) 

 

(b) 

Figure 7-7 Microstructure with 45 45  pixels: (a) implicit representation; and (b) explicit 
representation 

 

The proposed algorithm for interface discretization and reconstruction is summarized as follows: 

Algorithm 7.1 

Given a set of intN  interface points  
int1 2, ,......, N  S x x x Ω Ω  on the pixel based uniform 

xy grid with the corresponding set of unit normals  
int1 2, ,......, NN n n n  in the domain Ω . Note 

that image pixels are uniformly distributed with constant nodal distances x  and y  in the x- 

and y- directions, respectively. 

(1) Arbitrarily select the first point NGP=1 in the first interface point group NG=1. Set the initial 

shortest distance as short 2d x y   . 

(2) For each point Ix , find the interface candidate points adjx  from S  that are located inside the 

square with dimension 2 2x y    and centered at Ix and is closest to Ix .  
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(3) If 
adj, shortI

d dx x , set 
adjshort ,I

d d x x  until the closest point close adjx x  is found.  

(4) If close 0I  n n , omit closex  and find the next closest interface point until close 0I  n n and 

'
close adjx x . Update NGP=NGP+1. 

(5) If adj 1x x  or adj x Ω , one connected interface is completed. Update NG=NG+1. 

(6) Repeat (1) to (5) until all points in S  are identified. 

 

7.3.3 Interior Points Identification 

 

Figure 7-8 Illustration of partitioning points inside the interface 

 

After explicitly connecting the interface points, identification of the points inside these loops 

leads to an inside-outside problem. For illustration purposes, here we show identification of the 

fluid points inside each interface loop as illustrated in Figure 7-8, in which the blue points denote 

the points needed to be partitioned while the black points denote the connected 

interface/boundary points obtained in Section 7.3.2. To find the uniformly distributed grid points 
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enclosed by the boundary, we begin with the two boundary points Ix  in one interface group with 

the same minimum y coordinate while having the maximum distance in x  coordinates. The 

inside points are found if they have the same y coordinate while having x  coordinates in-

between the two boundary points Ix . The corresponding algorithm for interior points 

partitioning is given as follows:  

 Algorithm 7.2 

Given a set of uniformly distributed dN  domain (grid) points  1 2, ,......,
d

d d d d
N  S x x x Ω Ω

 

and a set of NG  connected interface groups  int int int int
1 2, ,......, NG  S s s s Ω Ω , with each 

interface group int
Is containing NGP  points in I-th group  int int int int

1 2, ,......,I I I INGPs x x x  in Ω . 

(1) For a given interface group NG I , find all interface points with the same y-coordinate and 

order their corresponding x-coordinates as int int int int
1 2 (2 1) (2 )...I I I n I nx x x x   . Note that there are 

even number of interface points in each interface group that have the same y-coordinate. 

Group the pairs of the interface points  int int
(2 1) (2 ),I i I ix x  , where 1 i n  . 

(2) For each pair of interface points  int int
(2 1) (2 ),I i I ix x , find all domain point d

Jx  such that 

int int
(2 1) (2 )

d
I i J I iy y y    and int int

(2 1) (2 )
d

I i J I ix x x   , and assign these domain points d
Jx  as the 

member of interior points associated with the interface group I.  

(3) Repeat (1)-(2) for all interface pairs in s
Is . Advance to next group NG=NG+1. 

(4) Remove identified interior points from the domain points. Repeat (1)-(3) for all interface 

groups in intS . 
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7.3.4 Verification Example 

 

(a) 

 

(b) 

Figure 7-9 Unit cell geometry for porosity 0.25  : (a) Unit cell with interface; and (b) Unit cell 
with approximated interface points 

 

For a porous elastic material described by an elastic body composed of periodically distributed 

voids, the analytical derivation of effective moduli was given by Nemat-Nasser et al. (1982) as 

the extension of Eshelby inclusion problems (1957). In this example, a unit cell with a circular 

void inclusion of varying porosity   from 0.15 to 0.25 in plane strain condition is considered, 

where the material constants for the solid matrix are 1000E   and 0.3  . It is noted that the 

analytical estimates of effective moduli are derived for porosity up to 0.5  , but the analytical 

estimates are reported to best fit experimental data for different materials when 0.3   as 

compared by Nemat-Nasser et al. (1982). In the study, the unit cell is discretized by 31 31  grid 

points, and the solid domain and interface location are depicted in Figure 7-9 (a), and the 

interface points construction based on the algorithms discussed in Section 7.3.1 are shown in 

Figure 7-9 (b). The geometry shown in Figure 7-9 is for the case of porosity 0.25  . The G-
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RKCM is employed with equal-order quadratic bases and a quintic B-spline kernel function. 

Based on the discretization, the numerical prediction of elastic moduli and material constants 

obtained by G-RKCM is compared with the analytical values in Table 7-1. As can be shown, the 

numerical prediction of the homogenized material properties converges to the analytical 

solutions as the porosity reduces.  

                                                 

Table 7-1 Effective moduli for the unit cell with different porosity   

 

Porosity   0.15  0.20 0.25  

Material 

Constants 

Analytical 

Estimates 

Numerical

Results  

Analytical

Estimates 

Numerical

Results  

Analytical 

Estimates 

Numerical

Results  

 1111 2222C C   875.0000 876.0423 771.3462 775.3003 678.4615 691.3444 

 1122 2211C C  323.6538 323.5311 268.2692 265.0028 218.6538 218.9385 

E  700.2176 701.5263 632.8942 640.2887 571.8766 586.0275 

  0.2700 0.2697 0.2580 0.2547 0.2437 0.2405 

 

7.3.5 Influence of Basis Functions in G-RKCM 

Due to the convergence requirement of the gradient RK approximation, G-RKCM with equal-

order quadratic bases is adopted for solving unit cell problems. Nevertheless, the interface points 

can become non-uniformly distributed, and the selection of kernel support in the RK shape 

functions to be large enough to ensure a non-singular moment matrix and yet small enough to 
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properly represent the fine resolution of microstructures can be contradicting. To resolve this 

difficulty, we introduce Shepard functions (Appendix D) as the RK shape functions near the 

interface points to allow the use of small kernel support for proper discretization of 

microstructural heterogeneity. Note that the employment of Shepard function is equivalent to RK 

shape function with zero-th order basis. To understand the influence of Shepard functions on the 

solution accuracy in G-RKCM, consider a two-dimensional Poisson problem as follows: 

 
       

 

2 2,    in 0,1 0,1

,    on 

xy

xy

u x y x y e

u x y e

     

 
 (7.26) 

Here, the domain is discretized by 25 25  source points while the boundary conditions are 

imposed at 51 collocation points per side as shown in Figure 7-10. The influence of the 

employment of Shepard functions on the L2 error norms of u  and ,u   obtained by G-RKCM is 

presented in Figure 7-11. The results show that the employment of less than 10% Shepard 

functions at the source points would yield less than 0.1% error in L2 error norms of u  and ,u    

compared to the case without using any Shepard functions. 

 

Figure 7-10 Discretization in Poisson problem 
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(a) 

 

(b) 

Figure 7-11 Convergence of L2 norms of u  and ,u   in Poisson problem with respect to the % of 

Shepard functions used at source points 

 

7.4 Investigation of Trabecular Bone Mechanical Properties 

The accuracy of the homogenized material parameters depends greatly on the accuracy of the 

characteristic functions such as χ , η , and κ to be solved from the unit cell problems, the 

representative unit cell size, and the resolution of microstructural image. In this section, we will 

first investigate the size effect of the unit cell and image resolution on the reliability of the 

predicted mechanical properties. Then, the proposed numerical framework will be employed to 

investigate the human trabecular bone mechanical properties.  

In the following numerical examples, G-RKCM with equal-order quadratic bases and a quintic 

B-spline kernel function is employed to solve unit cell problems, and the same source points and 

collocation points are adopted in strong form collocation, while the interface points are used as 

the boundary collocation points. The homogenized material constants are obtained by solving the 
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characteristic functions first and then by using Gauss quadrature with 4 integration points in each 

triangle to carry out the calculation of homogenized material properties. Due to the orthotropy in 

the trabecular bones, the homogenized elastic tensor is then transformed to the orthotropic 

direction (Appendix E) to obtain the effective Young’s moduli and Poisson ratios. 

 

7.4.1 Investigation of Unit Cell Dimension on Homogenized Mechanical 

Properties 

 

Figure 7-12 Images of a mammalian vertebra with specified unit cell locations: reference unit 
cell (depicted by a red square), unit cells with 120%, and 140% of the reference cell sizes 
(depicted by a blue square, and yellow square, respectively) 

 

To investigate the dimension of unit cell and its influence on the mechanical properties, three 

unit cells with different representative unit cell dimensions are considered. As shown in Figure 

7-12, the trabecular bone image of a sheep vertebra ( 1024 973  pixels), adopted from the 

website of SCANCO Medical (http://www.scanco.ch/), is obtained by Xtreme-CT (a high-
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resolution peripheral quantitative-computed tomography, HR-pQCT) with nominal resolution of 

41 m  and a maximum scan size 126 mm 150 mm  in the plane. In Figure 7-12, a reference unit 

cell is specified by a red square, with 10 mm  10 mm . Based on this reference unit cell 

dimension, two unit cells with enlarged dimensions equivalent to 120% and 140% of the 

reference cell are extracted from the same location depicted by a blue square and yellow square 

in Figure 7-12, respectively. The microstructures of three unit cells are shown in Figure 7-13, 

and they are discretized by 25 25  pixels, 30 30  pixels, and 35 35  pixels. 

The following parameters are adopted to solve the level set segmentation equation: 0   , 

1 2 10000   , 0.1dt  , 2a  , with the residual 65 10 . In the interface identification 

process, the RK shape functions are constructed using a quadratic basis and a quadratic kernel 

function, and the RK support size is set as 2.4a  . The microstructures with reconstructed 

interfaces and partitioned domain are shown in Figure 7-14. The material properties of the 

trabecular ovine bone are given as follows: the Young’s modulus is 1.192GPa  (Nafei et al., 

2000), the Poisson’s ratio is 0.3 (Brown, 1988), and the blood viscosity in the adult sheep is 

 3 24.373 10 secPa s N m    (Windberger et al., 2003). 
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(a) (b) (c) 

Figure 7-13 Images of unit cells: (a) Reference unit cell; (b) 120% of reference cell; (c) 140% of 
reference cell; and the corresponding principal direction of unit cells 

 

 

   

(a) (b) (c) 

Figure 7-14 Connected interface and partitioned domain for unit cells with different sizes: (a) 
Reference unit cell; (b) 120% of reference cell; and (c) 140% of reference cell 
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The effective Young’s moduli and Poisson ratio, the homogenized effective stress coefficient ij , 

and the homogenized permeability tensors ijK  for the three unit cells are summarized in Table 7-

2, Table 7-3, and Table 7-4, respectively. The percentage of points using Shepard functions is 

less than 10%. It is observed that the homogenized material constants obtained from the unit 

cells with different representative sizes exhibit converging behavior as the dimension of the unit 

cell increases. 

Recall that the effective stress coefficient   in Biot’s theory accounts for the effective stress 

effect eff t
ij ij ijp      as described in Chapter 3. The homogenized effective stress coefficient 

ij  plays a similar role in the homogenized macroscopic stress  
0

0k
ij ijkl ij

l

u
C p

x
 

 


 in 

poroelastic materials as presented in Chapter 4, which determines the influence of pore pressure 

on the effective stress. In addition, ij  indicates the degree of anisotropy. For anisotropic 

materials, 11 22   in general, which is observed in Table 7-3. In particular, the angle between 

the principal direction of the trabecular bone and the global x  direction varies from 64.97  to 

86.37  as depicted in Figure 7-13, where only one angle is calculated for 2D images and the 

counterclockwise direction is defined as positive direction. For the selected microstructure of a 

trabecular bone, this numerical study suggests that representative cell dimension needs to be 

carefully selected for homogenization analysis to ensure that the microstructural feature is 

captured while the degrees of free representing the model size are not too big for computational 

efficiency. 
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Table 7-2 Effective Young’s moduli and Poisson ratio obtained from unit cells with different 
sizes 
 

Material 
Constants

 

Reference  

Unit Cell 

120% of  

Reference Cell 

140% of  

Reference Cell 

 11E MPa
 281.5300 312.7431 317.3712 

 22E MPa
 382.6884 370.3672 361.0187 

12  0.1487 0.1573 0.1615 

21  0.2021 0.1901 0.1837 

 

Table 7-3 Components of homogenized effective stress coefficient tensor obtained from unit 
cells with different sizes 
 

ij
 

Reference  

Unit Cell 

120% of 
Reference Cell 

140% of 
Reference Cell 

11  0.2333 0.2425 0.2461 

22  0.2240 0.2480 0.2596 

 

Table 7-4 Components of homogenized permeability tensor obtained from unit cells with 
different sizes 
 

 4610ij
mK N s



  

Reference  

Unit Cell 

120% of 
Reference 

Cell 

140% of 
Reference 

Cell 

11K  5.44 4.74 4.53 

22K  4.55 4.20 4.09 
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7.4.2 Investigation of Image Resolution on Mechanical Properties 

To study the influence of image resolution on the homogenized material parameters, the 

reference unit cell with 25 25  pixels is further presented by 35 35  pixels and 45 45  pixels 

as shown in Figure 7-15. The microstructures with connected interfaces and the corresponding 

segmented domains are shown in Figure 7-16.  

 

 

x

y x'

y' 78.07o

  

(a) (b) (c) 

Figure 7-15 Images of the unit cell discretized by (a) 25 25  pixels; (b) 35 35  pixels; (c) 
45 45  pixels; and the corresponding principal direction of unit cells 

 

The homogenized material constants obtained by unit cells with different resolution are shown in 

Table 7-5, Table 7-6, and Table 7-7, which exhibit converging behavior as the resolution 

increases. In this study, the percentage of points using Shepard functions is within 10%. The 

porosity   of the microstructure gradually increases from 0.5280 to 0.5620 in accord with the 

image resolution. For the homogenized permeability tensor ijK  given in Table 7-7, the 

permeability is converging as the resolution of image increases. For 2D images, the angle 

between the principal direction of the trabecular bone and the global x  direction is observed to 
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be 64.97  ~ 85.61  with the counterclockwise direction defined as positive direction shown in 

Figure 7-15. This study shows that the resolution of the microstructure images needs to be 

properly selected for desired accuracy in homogenization analysis. 

 

(a) 

(b) 

 

(c) 

Figure 7-16 Connected interface and partitioned domain for unit cells with different resolution: 
(a) 25 25  pixels; (b) 35 35  pixels; and (c) 45 45  pixels 
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Table 7-5 Effective Young’s moduli and Poisson ratio obtained from unit cells with different 
resolution  
 

Material 
Constants

 
25 25  pixels 35 35  pixels 45 45  pixels 

 11E MPa
 281.5300 316.6133 318.5854 

 22E MPa
 382.6884 351.4823 342.7927 

12  0.1487 0.1625 0.1714 

21  0.2021 0.1907 0.1844 

 

Table 7-6 Components of homogenized effective stress coefficient tensor obtained from unit 
cells with different resolution 
 

ij
 25 25  pixels 35 35  pixels 45 45  pixels 

11  0.2333 0.2500 0.2571 

22  0.2240 0.2471 0.2545 

 

Table 7-7 Components of homogenized permeability tensor obtained from unit cells with 
different resolution 
 

 4610ij
mK N s



  
25 25  pixels 35 35  pixels 45 45  pixels 

11K  5.44 6.07 6.41 

22K  4.55 5.02 5.19 
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7.4.3 Investigation of Mechanical Properties in Human Trabecular Bones 

In this section, the proposed numerical framework for interface identification and solution of 

microstructural problems will be employed to investigate the human trabecular bone mechanical 

properties. Unless otherwise mentioned, the G-RKCM is employed to solve unit cell problems, 

and the parameters for RK shape functions and for level set equation are adopted the same as 

those given in Section 7.4.1. In this study, the percentage of points using Shepard functions is 

within 15%. 

The microstructural images of trabecular bone used herein are obtained from human femora, 

human tibias, and human vertebrae available in the literatures, from which the unit cells are 

extracted (Kuhn et al., 1990; Genant et al., 2000; Pothuaud et al., 2000; Kim and Al-Hassani, 

2002; Kinney et al., 2005; Bauer et al., 2006; Bauer et al., 2007) as shown in Figure 7-17, where 

the unit cell length is taken as 5 mm  per side. Based on the investigation of image resolution in 

Section 7.4.2, the unit cells are presented by 40 40  pixels such that the distribution of solid 

skeleton and pores are captured properly. The material properties of human trabecular bone are 

given as follows. The Young’s modulus and Poisson’s ratio are 5 GPa  and 0.3, respectively 

(Mente and Lewis, 1989; Choi et al., 1990; Hollister et al., 1994). The viscosity of human bone 

marrow is taken as  20.04 secPa s N m   at 37 C  (Bryant et al., 1989; Grimm and Williams, 

1997). 
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(a) Femur 

 

(b) Femur 

 

(c) Femur 

 

(d) Femur 

 

(e) Femur 

 

(f) Femur 

 

(g) Femur 

 

(h) Tibia 

 

(i) Tibia 
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(j) Tibia 
 

(k) Vertebra 

 

(l) Vertebra 

 

(m) Vertebra 

 

(n) Unknown 

 

Figure 7-17 Microstructures of human trabecular bones segmented by the proposed image-based 
strong form collocation method 

 

Since trabecular bones have been recognized as anisotropic materials, the homogenized elasticity 

tensor ijklC  needs to be transformed to the symmetry coordinate system in order to compare with 

the experimental data (Cowin and Mehrabadi, 1987; Hollister et al., 1991; Podshivalov, 2011). 

Following the original work done by Cowin and Mehrabadi (1987), the homogenized elasticity 

tensor is transformed to the principal planes where trabecular bones exhibit orthotropy. The 

corresponding procedure adopted from Cowin and Mehrabadi (1987) for tensor transformation is 

given in Appendix E. 
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The reported experimental data for trabecular bone material properties such as modulus-density 

relations have shown substantial difference from different literatures (Keaveny et al., 2001; 

Zysset 2003; Hellmich et al., 2004; Helgason et al. 2008). It still remains unclear whether such 

difference can be entirely attributed to methodological discrepancy. For example, machine errors, 

specimen size and geometry, and anatomic site are all factors affecting the experimental results 

(Keaveny et al., 2001; Helgason et al., 2008).  

For the effective Young’s moduli obtained from the microstructures, the numerical 

experimentation is compared with the reported experimental data summarized by Helgason et al. 

(2008), in which the experiments were conducted on human trabecular bones with various 

anatomical sites including femur, tibia, and vertebra, etc. Further, only experimental results 

obtained from direct mechanical testing were adopted to exclude errors from different measuring 

techniques such as ultrasound or indentation, and only the highest values of moduli in principle 

direction were considered. Among these studies, two normalization criteria have been made for 

quantitative comparison, the different definitions of density have been unified as the apparent 

bone density, and the experimental data have been normalized with respect to the strain rate 

(Helgason et al., 2008). The original sources of data are referred to the following work: Carter 

and Hayes (1977), Lotz et al. (1990), Hodgskinson and Currey (1992), Dalstra et al. (1993), 

Keller (1994), and Li and Aspden (1997).  

In this study, we also investigate the principal direction for human trabecular bones as given in 

Table 7-8. Based on these 2D images, the range of directional angle between the principal 

direction of the trabecular bone and the global x  direction lies between 1.85  and 75.30 , where 

the counterclockwise direction is defined as the positive direction. The wide span of principal 
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direction change suggests the anisotropic property of trabecular bone and the need of reliable 

analysis to predict the associated mechanical behavior. 

 

Table 7-8 Principal direction of human trabecular bones 

Image Case (a) (b) (c) (d) (e) (f) (g) 

Direction (degree) 35.51 75.30 19.55 58.25 70.54 54.89 25.83 

Image Case (h) (i) (j) (k) (l) (m) (n) 

Direction (degree) 1.85 49.70 14.35 8.63 62.40 51.18 45.99 

 

  

Figure 7-18 Comparison of effective Young’s moduli with experimental data 
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Figure 7-19 Comparison of homogenized permeability with experimental data 

 

The elastic property of trabecular bones is primarily related to the apparent bone density. The 

apparent bone density app  is defined as the product of volume fraction of bone and trabecular 

tissue density, in which the definition of volume fraction is bone volume divided by the total 

volume (BV/TV) of specimen, while the trabecular tissue density typically has a constant value 

around 2 3g cm (Keaveny et al., 2001; Helgason et al., 2008). In this study, the trabecular tissue 

density is adopted as 2 3g cm , and the apparent bone density app  is calculated by 

  3
app 2 1 g cm   , in which   is the porosity. Figure 7-18 compares the numerical results of 

effective Young’s moduli with experimental data. As observed, the numerical prediction lies in 
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the range where most experimental data are reported. This indicates that the proposed numerical 

framework is capable of predicting the bone tissue behavior through multiscale homogenization.  

On the other hand, for the permeability measured in the trabecular bones, the reported range of 

bone permeability in literature has a wide span from 810  to  14 210 m , in which the values of 

human trabecular bone are around 810  to  11 210 m  (Grimm and Williams 1997; Nauman et al., 

1999; Baroud et al., 2004). Based on the experimental results, the explanation for the variation 

may attribute to flow direction, bone porosity, and microstructural morphology such as 

trabecular architecture and separation for various anatomical sites. In addition, the measurement 

of permeability in mechanical tests still poses a technical challenge, which requires specimen 

control such as maintaining a constant pressure gradient and degassing the fluid (Nauman et al., 

1999). From our multiscale numerical simulation, the predicted permeability is in agreement 

with the experimental data as shown in Figure 7-19, where the largest value of permeability 

component is used in the comparison. Nevertheless, it should be reminded that the porosity 

obtained from two-dimensional images might be underestimated since the inter connection of 

pores in three dimension is not modeled when a two-dimensional microstructure is considered.  

 

7.4.4 Validation of Macroscopic Trabecular Bone Modeling 

Consider a trabecular bone microstructural image presented by 45 45  pixels shown in Figure 7-

20, with unit cell size 10 mm 10 mm . The parameters adopted to solve the level set equation are 

0   , 1 2 10000   , 0.1dt  , 2a  , with the residual 65 10 . In the interface 
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identification process, the RK shape functions are constructed by a quadratic basis and a 

quadratic kernel function, and the RK support size is set as 2.4a  .  

 

 

Figure 7-20 Images of the unit cell 

 

 

Figure 7-21 Undrained uniaxial strain testing 
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Figure 7-22 Two-dimensional poroelastic model of the cylindrical trabecular bone specimen 

 

Table 7-9 Material properties for bovine trabecular bone (Lim and Hong, 2000) 

 E MPa  225.6714 

  0.242 

 v Pa s   0.1 

 

A material testing system designed for cylindrical specimens under uniaxial strain tests (Lim and 

Hong, 2000) is shown in Figure 7-21, where a compression force 2N  was defined as zero load 

in the testing machine. The fluid pressure generated during deformation was recorded with a 

pressure transducer located below the specimen in the undraincd condition. The measured data 
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were recorded at 10Hz . Since the stress-strain relation for the trabecular bone is limited within 

the elastic range, the numerical experimentation is conducted within the axial strain of 0.6% 

(Keaveny et aI., 1994; Hong et al., 2001). Therefore, the specimen is subjected to maximum 

strain 0.6% at a given strain rate 0.0001 sec  under displacement control. The material properties 

of the bovine trabecular bone obtained from the experiment are summarized in Table 7-9, where 

E  is Young’s modulus,   is Poisson ratio of the solid skeleton, and v  is the viscosity. To 

numerically simulate a cylindrical specimen subjected to the uniaxial strain rate, a two-

dimensional axisymmetric poroelastic model is developed for trabecular bone modeling as 

depicted in Figure 7-22, where the specimen has 10D mm  in diameter and 20L mm  in length 

(Hong et al., 2001). The corresponding boundary conditions and initial conditions for the 

axisymmetric specimen model are 
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 (7.27) 

which are boundary conditions. The initial conditions are 

 
 
   

0

0 0
1 2

, , 0 0

, , 0 , , 0 0

p x y t

u x y t u x y t

 
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 (7.28) 
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Recall the strong form of the homogenized macroscopic continuity and equilibrium equations 

derived in Chapter 4 are 
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and 
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with the initial conditions given by 
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In the numerical experimentation, the G-RKCM with equal-order quadratic bases and a quintic 

B-spline kernel function is employed. The domain is discretized by the same source and 

collocation points, i.e., 11 21  points. To solve the quasi-static system in (7.29)-(7.31), we 

employ the forward Euler scheme and have the following discretization: 
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in which the superscript n  denotes the time step at nt t .  

The approximation for 0u  and 0p  are given by 
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where the gradient reproducing kernel approximation is employed. Denote the general form for 

solving the quasi-static system by G-RKCM in (7.32) as 
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with 

        
T

1 1 1 1
1 2

n n n n
I I Ia a b      a  (7.35) 

where  1nA  and  nA  constitute matrices associated with the differential operators and  1nb  and 

 nb  constitute vectors related to the boundary operators at 1nt t   and nt t , respectively, and 

h  is the weight on h  and g  is the weight on g .  
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The corresponding operators in (7.34) are given as follows:  
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which are operators for solving the homogenized macroscopic equilibrium equation. Since 

trabecular bone is typically recognized as orthotropic or transversely isotropic materials, it is 

assumed that the material constant in circumferential direction is the same as the one in radial 

direction. 
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which are the matrix operators for the homogenized macroscopic continuity equation. 

We first compare out numerical prediction with the experimental result (Lim and Hong, 2000) as 

shown in Figure 7-23, which is performed under constant strain rate 0.0001 sec . With the 

consideration of solid and fluid interaction in the microstructure, the predicted pressure-strain 

relation shows lower pressure prediction in comparison with the experimental result, where the 

average pressure is averaged over the whole domain in the numerical simulation. The reduction 

of pore pressure reflects the material anisotropy resulting from the microstructure. Nevertheless, 

it should mention that the reported material properties are measured based on the assumption of 

uniformly distributed pores in the trabecular bone. The lack of consideration of solid-fluid 

variation in the trabecular bone specimens is the limitation of the experiments as pointed out by 

Lim and Hong (2000). Therefore, the employment of multiscale modeling considering 

microstructural geometry, solid and fluid interaction, and material anisotropy provides a chance 

to investigate the trabecular bone behavior precisely.  

To understand the influence of viscosity on the variation of fluid pressure, we conduct numerical 

experimentation by varying the order of viscosity from 1.0Pa s  to 0.01Pa s  to consider the 

common range of viscosity for trabecular bones. Table 7-10 and Table 7-11 summarize the 

effective Young’s moduli and the components of the homogenized permeability tensor obtained 

from our numerical framework for multiscale modeling. Figure 7-24 predicts the pore pressure-
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axial strain relation for trabecular bones under constant strain rate 0.0001 sec  with different 

viscosity of fluid. For the given trabecular bone image, it is observed that the nonlinear behavior 

of fluid pressure becomes obvious as the viscosity increases. Especially, among the predicted 

pore pressure-axial strain curves, the lowest value of viscosity exhibits the most linear relation. 

The decrease of fluid pressure in accordance with the increase of viscosity is observed, which is 

the consequence of the increase of permeability induced by the microstructural geometry.  

 

Figure 7-23 Pore pressure-axial strain relation 

 

Table 7-10 Effective Young’s moduli 
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Table 7-11 Components of homogenized permeability tensor obtained by different viscosity 
 

Viscosity  Pa s  1.0 0.1 0.01 

  2
11K m Pa s  71.3391 10  71.0131 10  85.6485 10  

  2
22K m Pa s  71.2679 10 71.0098 10 85.4502 10  

 

 

Figure 7-24 Pore pressure and axial strain relation under constant strain rate with different 
viscosity of fluid 
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7.5 Summary 

To model poroelastic bone materials having high degree of material heterogeneity, we 

introduced the asymptotic-based multiscale homogenization method to retrieve the 

microstructural response. To employ the microstructural images for construction of the unit cell 

model directly, we introduced the strong form collocation method for image segmentation based 

on level set method. With the proposed image-based strong form collocation method for the level 

set interface and boundary identification, the threshold in the process of phase segmentation in 

several commonly used methods such as FEMs is unnecessary, even for dissimilar phases with 

jagged edges and blurry boundaries. Once the solid and fluid phases are segmented, the 

microstructural models can be constructed directly from the image pixels and consequently 

solved by the strong form collocation methods. In contrast to the finite element modeling, there 

is no issue about mesh quality and mesh reconstruction in the proposed strong form collocation 

methods. 

In this chapter, we showed that in the proposed G-RKCM for solving unit cell problems, the 

same collocation points and source points can be used while the interface condition is imposed 

by the collocation points. For non-uniform geometry of microstructures, where the employment 

of small kernel support to properly represent microstructural heterogeneity could lead to 

singularity in the moment matrix of RK shape functions, the Shepard functions were introduced 

to some source points, and the influence of this approach on the solution accuracy was 

investigated. In the unit cell study, the influences of microstructural dimension and image 

resolution on the accuracy of the predicted homogenized material properties were investigated 

through the real trabecular bone images. A numerical experimentation using human trabecular 
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bone images gave good agreement with experimental data. The numerical studies show that the 

proposed image-based multiscale computational framework demonstrated the capability of 

predicting the trabecular bone tissue macroscopic behavior using microstructural information. 
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Chapter 8 Conclusions and Future Work 

 

This dissertation aims for the development of effective and robust computational methods for 

modeling poroelastic biological materials with high degree of material heterogeneity and 

complicated geometry. The efforts are motivated by two unresolved fundamental issues in bio-

material modeling: (1) a computational model that is capable of discretizing the geometric 

configuration of biological materials and the associated microstructures based on medical images, 

and (2) a numerical method that is effective in modeling microstructures and predicting the 

macroscopic behavior of poroelastic bone materials. 

 

8.1 Summary of Developments 

The Biot’s theory has been commonly used as the classic description of poroelasticity, in which a 

fluid-saturated porous medium is assumed and composed of the solid skeleton and fluid. In the 

quasi-static Biot’s theory, two governing equations are considered, the equilibrium equation 

based on the effective stress and the continuity equation described by Darcy’s law. This work 

investigates how the microstructures and material properties of porous materials constitute the 

macroscopic poroelastic material behavior described by the classical Biot’s theory. We 

introduced an asymptotic based multiscale homogenization method to correlate the macro- and 

micro-mechanical behaviors of poroelastic materials, where an elastic solid and Newtonian fluid 

of low viscosity are considered. Through this homogenization process, the generalized Darcy’s 
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law, homogenized macroscopic continuity equation, and homogenized macroscopic equilibrium 

equation were obtained, where the homogenized macroscopic continuity and equilibrium 

equations reassemble the governing equations in the Biot’s theory.  

The earlier work in the development of direct strong form collocation methods, such as the 

reproducing kernel collocation method (RKCM), addressed the domain integration issue in the 

Galerkin type meshfree method, such as the reproducing kernel particle method (RKPM), but 

with increased computational complexity due to taking higher order derivatives of the 

approximation functions and the need of using large number of collocation points for optimal 

convergence.  In this work, we intended to address the computational complexity in RKCM 

while achieving optimal convergence by introducing a gradient reproduction kernel 

approximation. The proposed gradient reproducing kernel collocation method (G-RKCM) 

reduces the order of differentiation to the first order for solving second order PDEs with strong 

form collocation. We also showed that, different from the typical strong form collocation method 

where a significant large number of collocation points than the number of source points is 

needed for optimal convergence, the same number of collocation points and source points can be 

used in G-RKCM. We also showed that the same order of convergence rates in the primary 

unknown and its first order derivative is achieved, owing to the imposition of gradient 

reproducing conditions. The numerical examples were given to verify the analytical prediction. 

To effectively construct microstructures with multiple phases from medical images, we 

introduced the active contour model based on variational level set formulation for interface 

identification and boundary segmentation. Inspired by the images with pixel point discretization, 

we introduced the RKCM and G-RKCM to solve the level set equation. In particular, the G-
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RKCM has been shown effective since the second derivatives of the level set function involved 

in the regularization term are approximated by the first order differentiations of the gradient RK 

shape functions. By introducing the active contour model, the proposed G-RKCM was employed 

to solve the level set equation by direct collocation. For images with two-color data, an 

investigation on the continuity of the kernel function showed that a B-spline kernel function with 

lower continuity can be preferably used to avoid the oscillation of level set functions. 

When using RKCM to solve the level set equation in the image segmentation, it is shown that the 

consistency conditions imposed in construction of the RK shape function can be relaxed. 

Specifically, the kernel function can be directly used as the shape function in the strong form 

collocation method for computational efficiency. For images with two colors, the direct 

collocation method has been introduced to solve the degenerated level set equation without 

regularization term, and the transformation matrix is no longer needed in RKCM for solving the 

active contour model, thereby making the numerical algorithm very efficient. 

To deal with medical images obtained from CT scan or MRI, we introduced the proposed G-

RKCM to solve the unit cell problems, where the microstructures were first segmented by the 

level set method and then discretized directly using image pixels without the need of CAD 

procedures in mesh based methods. The associated discretization of governing equations for unit 

cell problems have been performed based on G-RKCM. Furthermore, some numerical issues 

related to microstructure modeling such as the interface discretization and influence of basis 

functions were investigated. 

To validate the developed image-based multiscale computational framework for biological 

materials such as bone tissue, we first verified the proposed G-RKCM for solving unit cell 
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problems. Then, we investigated the size effect and image resolution of the unit cells for 

trabecular bone modeling. Further, we conducted numerical experimentation based on medical 

images available from literature to compute the macroscopic mechanical properties of a 

trabecular bone, and made a comparison of the predicted macroscopic material properties with 

experimental data. We demonstrated that the developed computational framework is capable of 

modeling microstructures with complicated configurations and predicting the associated 

macroscopic mechanical behavior accurately. 

 

8.2 Suggestions for Future Research 

We conclude this research by suggesting future directions for the image-based computational 

framework in bio-material modeling as follows: 

(1) Extension of the image-based multiscale computational framework in three-dimension 

The developed image-based bio-material modeling framework can be directly extended to three-

dimensional modeling. With a series of image scans available elsewhere, a three-dimensional 

computational model can be constructed to simulate the bio-material behavior and predict the 

associated mechanical properties more accurately.  

 (2) Strong form collocation method for incompressible problems 

In this study, we have shown that the proposed strong form collocation method, G-RKCM, for 

solving boundary value problems efficiently. Due to assumed strain nature and least-squares 

formulation, it is worth of further theoretical investigation of incompressibility. 
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(3) Investigation trabecular bone mechanical properties in different anatomical sites 

Since the homogenized material properties of the trabecular bone obtained from the 

microstructures are representative near the location of the real bone where the samples are 

extracted, the homogenized material parameters are applicable to the bone model with similar 

geometric composition. As such, the mechanical properties of human trabecular bones can be 

better understood when different portions of bones such as femora, tibias, and vertebrae are 

investigated individually. Furthermore, a comparison of trabecular bone material properties with 

associated experimental data in the same anatomical site will help to accurately predict bone 

tissue behavior. Thus, the extension of the validity of the homogenized material properties can be 

done by sampling more areas of the bony microstructures obtained from CT or MRI. 

(4) Extension of Image-based modeling in biomechanics  

The multiscale homogenization of poroelastic materials provides a way to investigate the two-

phase phenomenon such as solid and fluid. For bone materials, the investigation of the 

relationship between the increase of porosity in bones and bone mass density (BMD) in humans, 

in particular, requires nondestructive and non-invasive experiments and modeling techniques for 

clinical research. The developed computational framework will offer further assistance to the 

research in the bio-medical related fields. 
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Appendix A 

 

Gradient Reproducing Kernel Approximation in Two-Dimension 

Consider the approximation of ,xu  and , yu  in two-dimension as follows: 
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For demonstration purposes, consider a case with linear bases 1q   in two-dimension:  
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where the coefficients b12

i x   are determined by satisfying the partition of nullity and first 

order derivative reproducing conditions shown below: 
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From (A4), multiplying (A4a) by x  and subtracting (A4b) leads to 
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Similarly, multiplying (A5a) by y  and subtracting (A5c) yields 
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Applying the same procedures to (A7), we have 
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The first order derivative reproducing conditions in (A6) and (A7) can be equivalently written as 
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From which we can express the first order derivative reproducing conditions (A10) and (A11) as: 
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Substituting (A2) and (A3) into (A12) and (A13) give rise to 
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      2
,y M x b x H 0  (A15) 

where  M x  is the moment matrix given in Chapter 5. Consequently the gradient RK shape 

functions are obtained as 

 
         
         

T 1
,

T 1
,

x
I x I a I

y
I y I a I









    

    

x H 0 M x H x x x x

x H 0 M x H x x x x
 (A16) 
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Appendix B 

 

Derivation of the Numerical Algorithm for the Reinitialization 

Recall the reinitialization equation: 

 
         ,

, , ,
t

sign t sign
t


    


  


x

x x x  (B.1) 

which can be written as 

 
      ,

, ,
t

t sign
t


  


  


x

w x x  (B.2) 

where 

  sign







w   (B.3) 

By using the iterative method, (B.2) can be updated as follows: 

    1
, , , ,
n n n
i j i j i j i jdtS G       (B.4) 

where  ,i jS   is the signed function defined as 

   ,
, 2 2

,

i j
i j

i j

S




 



 (B.5) 

and 
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  

         
         

2 2 2 2

,

2 2 2 2

, ,

max , max , 1,    if 0

max , max , 1,    if 0

     0,                                                                     otherwise

i j

i j i j

a b c d

G a b c d



 

   

   

   

   





 (B.6) 

where the superscripts “+” and “–” denote the positive and negative parts in a , b , c , and d , 

which are expressed as 

 

 
 
 
 

, 1,

1, ,

, , 1

, 1 ,

i j i j

i j i j

i j i j

i j i j

a h

b h

c h

d h

 

 

 

 









 

 

 

 

 (B.7) 

where h  is the nodal distance. 

The stopping criterion is 

 1 2
, ,
n n
i j i jerror dt h      (B.8) 

with 10dt h  and h   in S  suggested by Sussman et al. (1994). 
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Appendix C 

 

Derivation of the Bound on the Homogenized Effective Stress 

Tensor 

The weak form of the unit cell problems for χ  and η  are  

 
S S

kl
i m i

ijmn ijklY Y
j n j

v v
C dY C dY

y y y

  


     (C.1) 

 
S S

i k i
ijkl ijY Y

j l j

v v
C dY dY

y y y

   


     (C.2) 

The bilinear form of the variational formulation can be expressed as 

  ,
S

i k
i i ijklY

j l

v w
B w v C dY

y y

 


    (C.3) 

The corresponding bilinear expressions for kl
i  and i  are 

  ,
S

kl i
i i ijklY

j

v
B v C dY

y
 


  (C.4) 

  ,
S

i
i i Y

i

v
B v dY

y
 


  (C.5) 

Recall the homogenized effective stress tensor: 

 
1

S

k
ij ijklY

l

C dY
Y y

 


  (C.6) 
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For linear elastic materials of solid skeleton, the constitutive law is 

  ijkl ij kl ik jl il jkC           (C.7) 

Substituting (C.7) into (C.6) and taking summation on i  lead to 

 
  

1

1 2 1 S

i
ii Y

i

E
dY

Y y


 




    (C.8) 

which is valid for 2D unit cell problems. Based on (C.5), consider the following bilinear form:  

  , 0
S

i
i i Y

i

B dY
y

  
 

  (C.9) 

From (C.8) and (C.9), we have 

 0ii   (C.10) 

Similarly, substituting (C.7) into (C.4) and taking summation on k  yield 

     
,

1 2 1 S

kk i
i i Y

i

vE
B v dY

y


 



    (C.11) 

Considering the bilinear form of  ,i iB v  in (C.5), (C.11) can be written as 

     
, ,

1 2 1
kk
i i i i

E
B v B v 

 
 

     
 (C.12) 

which implies 

 
  1 2 1

kk
i i

E 
 


 

 (C.13) 

Recall the homogenized elasticity tensor: 



189 

 

   1
1

S

kl
m

ijkl ijkl ijmnY
n

C C C dY
Y y

 
  

  (C.14)

  

Introducing (C.7) to (C.14) and taking summation on k  lead to 

 
     1

1
1 2 1 S

m
ijkk ij ijmnY

n

E
C C dY

Y y

 
 

 
      

  (C.15) 

Taking summation on i  and substituting (C.6) into (C.15) give rise to 

 
    2 1
1 2 1iikk ii

E
C  

 
     

 (C.16) 

From (C.16), the upper bound for ii  is 

  2 1ii    (C.17) 

By combining (C.10) and (C.17), the bound for ii  in 2D is 

  0 2 1ii     (C.18) 
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Appendix D 

 

Shepard Function 

In the numerical examples, the G-RKCM is adopted with equal-order quadratic bases for 

construction of RK shape functions and gradient RK shape functions. Nevertheless, for 

microstructures with irregular configuration, a shepard function is employed whenever the 

singularity of the moment matrix is encountered at a point, which is given by 

    

 
1

s

a I
I N

a J
J







 



x x
x

x x

 (D.1) 

where it satisfies the zero-th consistency condition or the partition of unity. The associated 

correction function and moment matrix are defined as   

    1; IC  x x x M x  (D.2) 

    
1

sN

a I
I




 M x x x  (D.3)  

When a shepard function is used, the corresponding support size is reduced to the distance h  

between two grid points, i.e., 1.001a h . 
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Appendix E 

 

Tensor Transformation 

Consider the general form of the homogenized elasticity tensor representing an anisotropic 

material: 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

  
 
 
 
  

 (E.1) 

To find the planes of symmetry, the following two matrices are defined:  

 
11 12 13 16 26 36 15 25 35

16 26 36 12 22 23 14 24 34

15 25 35 14 24 34 13 23 33

ijkk

C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C

      
        
       

 (E.2) 

 
11 55 66 16 26 45 15 46 35

16 26 45 22 44 66 24 34 56

15 46 35 24 34 56 33 44 55

ikkj

C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C

      
        
       

 (E.3) 

If the eigenvectors of these two matrices are the same and the eigenvalues are different, then the 

orthotropic planes of symmetry exist as shown by Cowin and Mehrabadi (1987).  With the 

transformation matrix Q  formed by the eigenvectors, the orthotropic elasticity tensor can be 

determined by 
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 pqrs pi qj rk sl ijklC Q Q Q Q C   (E.4) 

where 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ijkl

C C C

C C C

C C C
C

C

C

C

   
    

   
    

 
 

  

 (E.5) 
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