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Wireless ear EEG to monitor drowsiness

Ryan Kaveh 1,2 , Carolyn Schwendeman1,2 , Leslie Pu1, Ana C. Arias1 &
Rikky Muller 1

Neural wearables can enable life-saving drowsiness and health monitoring for
pilots and drivers. While existing in-cabin sensors may provide alerts, wear-
ables can enable monitoring across more environments. Current neural
wearables are promising but most require wet-electrodes and bulky electro-
nics. This work showcases in-ear, dry-electrode earpieces used to monitor
drowsiness with compact hardware. The employed system integrates additive-
manufacturing for dry, user-generic earpieces, existing wireless electronics,
and offline classification algorithms. Thirty-five hours of electrophysiological
data were recorded across nine subjects performing drowsiness-inducing
tasks. Three classifier models were trained with user-specific, leave-one-trial-
out, and leave-one-user-out splits. The support-vector-machine classifier
achieved an accuracy of 93.2% while evaluating users it has seen before and
93.3% when evaluating a never-before-seen user. These results demonstrate
wireless, dry, user-generic earpieces used to classify drowsiness with com-
parable accuracies to existing state-of-the-art, wet electrode in-ear and scalp
systems. Further, this work illustrates the feasibility of population-trained
classification in future electrophysiological applications.

Drowsiness and fatigue while operating heavy machinery can be life-
threatening. It is estimated that over 16.5% of fatal vehicle accidents in
the United States include a drowsy driver resulting in over 8000
deaths and $109 billion in damages1–3. In addition to private and
commercial (trucking) accidents, the National Safety Council has also
cited drowsiness as the most critical hazard in construction and
mining. While these deaths may be prevented with common risk
assessments, fatigued individuals are often unable to recognize the full
extent of their impairmentbefore it is too late4. Drowsinessmonitoring
solutions use camera-based eye-tracking, steering trajectory sensors,
or electrophysiological recording devices5–7. While they can be a good
fit in automotive scenarios, eye tracking is obscured by sunglasses and
other obstructions while steering sensors can be susceptible to false
alarms on rough roads. User-centered recording modalities such as
body-worn cameras, photoplethysmography (PPG), electrodermal
activity, electrocardiography (ECG), electrooculography (EOG), and
electroencephalography (EEG) are becoming increasingly popular
because they are highly portable and adaptable to professional
work environments8–11. These modalities have been incorporated
into multiple form-factors such as eye-tracking glasses12, PPG/ExG

tracking helmets7, and in-ear ExG sensors13,14. Of these methods, ExG
generally achieves the highest drowsiness detection accuracies15.

Surface EEG is a safe, non-invasive method of monitoring the
brain’s electrical activity from the scalp. Clinically, the most prevalent
use of EEG is themonitoring anddiagnosis of stereotypedneurological
disorders related to sleep and epilepsy. These clinical systems gen-
erally use large, scalp-based, gold (Au) and silver/silver chloride (Ag/
AgCl) electrode arrays16–18. Au forms a capacitive interface due to its
inert nature, while Ag/AgCl forms a faradaic interface between Ag and
skin. The AgCl is a slightly soluble salt that quickly saturates the skin
and forms a stable electrode-skin interface. To maintain a low-
impedance electrode-skin interface, contact is improved with skin
preparation from an overseeing technician. While suitable for occa-
sional, short-termmonitoring, existing wet electrode arrays tend to be
large and delicate for everyday use. Additionally, prolonged use of
devices that require skin abrasion can result in skin irritation and
lesions, further limiting their long-term use19,20. To promote use out-
side the lab and simplify clinical measurements, recent wearable EEG
monitoring systems have focused on using smaller form-factor wet
electrode arrays (e.g., cEEGgrid)21 and dry electrodes that eliminate the
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use of hydrogels, integrating electronics and electrodes into a headset
form factor, and softwarepackages that allow for use inmore everyday
applications. The improved wet electrode systems (e.g., the cEEG grid)
can provide unobtrusive EEG monitoring for 7+ h, but still requires
hydrogel application (limiting day-to-day use). Dry electrode systems
for research (e.g., CGX systems and Emotiv), commercial (e.g., Muse
headband and Neurosity), and hobbyist (e.g., OpenBCI and Brainbit)
have similarly demonstrated impressive EEG recordings of sponta-
neous and evoked neural signals and enabled disease monitoring,
brain-computer interfaces (BCIs) and meditation guidance. As these
commercial systems’ popularity increases, more and more wireless
EEG systems are being developed and deployed across different
environments22–25. The least cumbersome systems employ dry elec-
trodes that minimize set-up time but generally still require skin
cleaning and electrode surface treatments. Furthermore, the asso-
ciated software packages require training to use23,24. Lastly, headset
electronics are better suited for research and clinical environments as
opposed to public, everyday use.

Discreet, multi-channel EEG recordings from inside the ear canal
have been demonstrated26–28 with recent advancements focusing on
earpiece design, electrode materials, and multi-sensor arrays. The ear
canal is an ideal sensor location due to its inherentmechanical stability
and wealth of potential recording modalities. In-ear sensors and elec-
trodes arewell situated to record temporal lobe activity, blood oxygen
saturation, head movement, and masseter muscle activity making it
ideal for multi-modal sensing if high spatial coverage is not
required29,30. While some applications may treat muscle activity or ear
canal deformation as interference signals, these signals can be useful
for other general ExGworkloads. It is also important to note that in and
around-the-ear EEG is inherently limited in gathering spatially encoded
brain-activity relative to broader scalp arrays27–31. Many successful
designs have leveraged hydrogel coated on flex-pcb arrays or user-
customized earpieces to record ExG features such as EOG, low-
frequency EEG (1–30Hz), and evoked potentials (40–80Hz)26–28,32,33.
These wet-electrode based, custom earpiece systems established the
feasibility of in-ear monitoring for attention monitoring, seizure
monitoring, whole night sleep monitoring, and sleep stage
classification34–37. Due to their user customized approach, earpieces
require a case-by-case integration schemes to minimize earpiece
volume resulting in variable electrode positioning. The required skin-
preparation and hydrogel also can lead the conductive bridging
between electrodes, limit-user-comfort, and reduced electrode
lifetime38. The next step to more scalable deployment of in-ear ExG
recordings would be the utilization of one-size-fits-most (user-generic)
earpiece designs, dry electrodes, wireless electronics, and electrode
materials that do not require maintenance.

Recent user-generic earpieces equipped with wet electrodes, dry
electrodes39–42, PPG, and/or chemical sensors have achieved high
degrees of accuracy for brain-state and activity classification39,40,43–46.
Additionally, dry-electrode based in-ear ExG have recorded low fre-
quency neural rhythms, evoked potentials, and EOG comparable to
wet-electrode. While potentially more susceptible to noise due to
higher electrode-skin impedance (ESI) interfaces47, dry electrodes
eliminate the use of hydrogel, simplify the earpiece application pro-
cess, and can improve user comfort. To achieve a middle ground
between comfort and low ESI, state-of-the-art dry electrodes employ a
wide range of solutions ranging from exotic materials, conductive
composites, capacitive interfaces, solid-gels, and high-surface area 3D
electrodes (microneedles, fingers, and nanowires)20,40,41,48–56. PED-
OT:PSS and IrO3 are commonly used in the small-scale production of
rigid electrodes due to their superior conductivity and faradaic
interfaces57–59. Both materials promote charge transfer by leveraging
doped surfaces and high effective surface areas. Conductive, flexible
composites, such as silvered-glass silicone and carbon-infused

silicone, are not as conductive as PEDOT:PSS and IrO3 but offer sig-
nificantly greater comfort. Conductive composites are made from
polymers or elastomers that can be molded into arbitrary shapes for
anatomically fit electrodes and use added conductive particles to
achieve a desirable ESI. The more conductive particles that are added
will ultimately limit polymer cross-linking and may lead to cracking
over time60. The clinical and industry standard materials are silver/
silver chloride (Ag/AgCl) and gold due to their cost, biocompatibility,
and electrical properties. Ag/AgCl can be painted on 3D electrodes to
form consistent, faradaic, low-impedance interface through hair and
grime. Furthermore, Ag/AgCl is also popular for consumable electro-
des since the conductive particles deplete over time61. Gold electrodes
are more inert, can be repeatedly reused, and form a capacitive
interface that is not reliant on added conductive ions.While potentially
more susceptible to motion artifacts and interference, gold’s lifetime
and chemical properties make it ideal for long-lasting ExG recording
systems. Most commercial wearables and existing in-ear ExG systems
use Ag/AgCl, Au, or conductive composite electrodes24,62–64.

Electrodes are just one piece of signal acquisition. Neural
recording hardware is required to digitize neural signals and transmit
them to a processing unit/base-station for offline processing. Neural
recording hardware for more consumer-facing products tend to be
tailor-made with low bandwidth, noise, and power specifications65–67.
Thesedevices usually have bandwidths around 100Hz and can achieve
ultra-lower power operation (<100μW67). Research focused devices,
however, utilizing high resolution and bandwidth hardware enables
greater investigation outside the original project description. Such
versatile systems generally support higher channel counts (16–64+),
commercial wireless protocols (bluetooth or Wi-Fi), higher sampling
rates (500–1000Hz), and can take advantage of different signal
modalities (e.g., EMG) at the cost of higher power (>50mW)42,46,68. Low-
noise and high-resolution systems allows for greater flexibility, repe-
ated interpretable signal processing (frequency analysis, time-domain
averaging, etc.) and algorithm development to illuminate different
feature classes, mitigate interference, and discover new potential
applications. Such systems have been used to build brain-machine
interfaces with P300 responses and steady-state evoked
potentials27,29,34,69,70. When adapting existing electronics for use with
wearable dry electrodes, increased ESI, system noise, and interference
susceptibility bear important considerations for power requirements
and any downstream machine learning algorithm71,72. Employing ver-
satile, higher power electronics with more interpretable, light weight
classical algorithms (e.g., logistic regression, support vectormachines,
random forest) is an important first step for future sensor and power
optimizations. To this effect, this work uses an existing, high channel
count, high bandwidth system to enable studying the relationship
between the employed ExG electrode technology and drowsiness
detection.

In addition to systemoptimisation, the choice ofmachine learning
algorithm determines system functionality from the perspective of
training, data, and processing requirements. Every-day ExG systems
would ideally work out of the box, improve over time, and continue to
provide feedback when wireless connectivity is poor and there is
unreliable access to large processingpower (construction sites, planes,
and trucks). Classical algorithms such as logistic regression, SVMs, and
random forest have demonstrated impressive success in classifying
neural signals with limited datasets15,25,73,74. Neural network-based
algorithms have also achieved impressive results75–77, and are good
candidates for further research. Neural network-based algorithms, on
average, requiremore training data than SVMs, logistic regression, and
random forest,making themdifficult toworkwith on smaller data sets.
Furthermore, interpretable algorithms such as logistic regression and
SVMs enable greater visibility into which types of features have suffi-
cient SNR for classification and could potentially be applied to
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different applications. Lastly, algorithms such as SVMs, logistic
regression, and random forest generally require less processing power
than similarly performing neural net or perceptron-based archi-
tectures, making them ideal for low-power, edge-based deployments
on existing microcontrollers. Additionally, while existing in-ear ExG
BCIs have achieved high classification accuracies with user-specific
training and validation35,43,76,78,79, ideal in-ear ExG wearables would
leverage pre-trained algorithms so never-before-seen users can use
these devices without time-consuming training. This user-generic
classification has been explored in scalp-based drowsiness monitoring
with great success but not yet with in-ear ExG15.

This project is the first integration and demonstration of wireless,
dry-electrode in-ear ExG sensors used for drowsiness classification. To
this effect, a novel in-ear EEG sensor manufacturing method coupled
to a pre-existing wireless data acquisition platform is presented and
verified with open-source machine learning classification on
9-subjects. A fabrication process for dry, gold-plated electrodes sui-
table for repeated, comfortable, low-impedance earpieces is intro-
duced and tested over the course of months of electrode use. This
electrode technology provides a unique method for the rapid proto-
typing of reusable, Au electrodes that remain stable over 12 months of
use. These electrodes can replace existing solutions that rely on
shorter-lifespan Ag/AgCl electrodes or expensive materials such as
platinum or IrO3. The earpieces are then coupled with wireless, dis-
creet electronics capable of taking uninterrupted, low-noise neural
measurements for over 40 h46 to form a wearable, in-ear ExG system.
The resulting Ear ExG BCI is then demonstrated with a nine-subject
drowsiness monitoring study. Low-complexity temporal and spectral
features are extracted from the recorded ExG data and used to train
multiple, offline machine learning models for automated drowsiness
detection. The best-performing model utilizing a support vector
machine achieved an average drowsy-event detection accuracy of
93.2% when evaluating on users it has seen before and 93.3% when
evaluating never-before-seen users. This system and its use of offline
classifiers lay the groundwork for future, discreet, fully wireless, long
term, longitudinal brain monitoring (Fig. 1).

Results: ear ExG drowsiness monitoring platform
Modular electrode design, fabrication, and assembly
Earpiece design. Easy-to-use neural wearables require a user-generic
earpiece and electrode scheme designed for recording across multiple
demographics and for comfortable, long-term wear. To achieve these
requirements, electrode and earpiece designs were derived from refs.
46,80 and resulted in a small, medium, and large size of a single design
with modular electrodes. Electrodes are positioned near the ear canal
such that they do not pass the isthmus of the ear canal, which tends to
develop a corkscrew shape as individuals age. This earpiece is designed
to account for these age-related changes. Previous studies30,41, have
highlighted high value electrode locations that minimize channel-to-
channel correlation while maximizing mechanical stability. To also
maximize electrode surface area across different individuals, small,
medium, and large sized earpiecesweredesignedwith slightly differing
electrode sizes. The final “medium-sized” earpiece is comprised of four
60mm2 electrodes inside the ear canal and two 3 cm2 electrodes on the
ear’s concha cymba and concha cavity (Fig. 2a). The in-ear electrodes
are cantilevers that apply gentle outward pressure to achieve lower ESI
over previous iterations (370 kΩ to 120 kΩ at 50Hz46) and improve
mechanical stability. The out-ear electrodes act as fiducial guideposts
to ensure the electrodes contact the same surface with each wear.
Furthermore, electrodes outside the ear are good reference and
ground candidates due to their increased distance from the brain or
any muscle. To improve the earpiece assembly and further increase
comfort over46, a soft earpiece body with a manifold in-ear design was
3D printedwith a clearmethacrylate photopolymer (Fig. 2a). Each rigid
electrode is attached to this soft, elastic substrate and moves inde-
pendently from the other electrodes to fit in a subject’s ear (Fig. 2b).
This new, modular assembly properly demonstrates the capabilities of
the manifold earpiece fabrication process.

Electrode fabrication. A low-cost, fully electroless plating process was
developed to enable rapid prototyping of arbitrary shaped electro-
physiological sensors. Electrodes were 3D printed with a clear
methacrylate polymer (Fig. 2c) and sandblasted to increase surface

EEG

EOG
α

power

δ
power

Time

!

Drowsy!

Fig. 1 | Envisioned Ear ExG Wearable. Envisioned systems could be discreetly worn throughout the day to comfortably record neural signals from inside the ear canal,
perform drowsiness detection, and provide feedback.
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roughness. Samples were then submersed in different catalyst baths to
develop copper, nickel, and gold metal layers. Lastly, tinned copper
wires are soldered directly to the electrode surface for integrationwith
theneural recording front end. This plating process is expandedon45,81,
with the addition of a nickel layer that limits grain-boundary diffusion
of copper and significantly extends electrode lifetime81–83. Further-
more, the nickel-plating step removes the need for repeated electro-
less palladium plating and the overall number of fabrication steps.
While other in-ear electrodes use expensive materials like IrO3 or
hydrogels39,40, this improved layer stack-up (Cu, Ni, Au) is reminiscent
of printed-circuit-board fabrication and enables similar levels of scale
for electrode prototyping. The final surface contains at least 0.5 µm of

copper, 0.5 µm of nickel, and 0.25 µm of gold and is suitable for dry
electrode recording.

Plating process characterization
Material acid dip tests and tape tests. The final electrode surfaces
were physically and chemically robust. Kapton tape was applied
around the entire electrode surface and then removed. No visible gold,
nickel, or copper was removed with the tape indicating strong adhe-
sion to the methacrylate substrate81,84. Electrode samples were also
dipped in nitric acid baths to test the porosity and continuity of the
gold surface. While concentrated and dilute nitric acid will readily
dissolve copper and nickel, respectively, neither will etch gold. No

Fig. 3 | Plated surface characterization. aRepresentative lightmicroscopy images
of plated surfaces showcasing the roughness resulting from sandblasting. b Stylus
Profilometer measurements of a flat sample after each plating step. c Absolute
sheet resistance measurements, mean (red circle), and standard deviation (error

bars) immediately after plating. d In-ear electrode-skin impedance magnitude,
phase, and magnitude fit. Standard deviation of electrode magnitude shown in
shaded green region. e Constant phase element electrode model used for fitting.

Fig. 2 | Earpiece assembly, fit, and manufacturing process. a The final earpieces
are composed of four in-ear electrodes and two out-ear electrodes. Manifold 3D-
printed earpieces are assembled by plugging rigid, gold-plated earpieces into a
soft, flexible skeleton. b The out-ear electrodes press against the ear’s concha
cymba and concha bowl, while the in-ear electrodes contact the ear canal’s aper-
ture. In-ear electrodes only enter the first 10mm of the ear canal. c Diagram and

photographs of electrode fabrication: i) Electrodes are 3D printed or molded. ii)
The bare electrodes are sandblasted and cleaned. iii) The electrodes are electroless
copper plated via exposure to surfactant, catalyst, and copper sulfate solutions in
sequence. iv) A nickel layer is electroless plated. v) A final gold layer is electroless
deposited.
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noticeable differences were observed after dipping gold-plated elec-
trodes into a 1Mnitric acid bath. Control samples of copper and nickel,
however, were quickly etched down to the bare methacrylate surface.
The acid dip tests and subsequent microscope inspections (Fig. 3a)
found no micro or nano cracks that may affect the electrode’s surface
or electrical properties.

Surface roughness characterization. Light microscopy photographs
and stylus profilometry measurements were used to assess surface
roughness between each step of the plating process on a single flat
sample. Figure 3b plots the normalized surface topography of the
sample during each plating step. The reported Rp values are the
standard deviation of the plotted lines. Though surface roughness
decreases slightly with each subsequent plating step, the final gold
surface is still much rougher than a simple, planar surface. This
increases electrode surface area, promotes better film adhesion, and
reduces ESI50,81,84,85.

Sheet resistance. Sheet resistance was characterized by a 4-point
probe immediately after plating. 40 sheet resistance measurements
were taken of each copper-, nickel-, and gold-plated samples. As pre-
pared, copper-plated samples, nickel-plated samples, and gold-plated
samples exhibited an average sheet resistance of 177.9 ± 109, 95.5 ± 13,
and 30.3 ± 3.7mΩ□−1, respectively (Fig. 3c). With each subsequent
metal layer, the sheet resistance stabilized, and the surfaces became
more conductive.

Bioimpedance of In-ear electrodes across multiple users. Impe-
dance spectroscopy was used to assess in-ear electrode-skin impe-
dance. Four subjects took impedance measurements (20 total
measurements) between the in-ear electrodes and the out-ear cymba
electrode. To account for future, real-life conditions with cerumen and
oil, no skin preparation was performed before each trial, and mea-
surements were repeated until all four electrodes in the ear canal were
measured. Since the ESImeasurements include twodry electrodes, the
plotted valuesweredivided by two to demonstrate the average ESI of a
single dry electrode. All measurements were performed with an LCR
meter (E4980 A, Keysight) powered by a wall outlet and arranged as a
two-point probe where a single electrode is considered a single probe.
The LCR meter was configured with a current limit of 0.5mA to pre-
vent sensation or injury. While the LCR meter is designed to achieve
high accuracy (within 3%) even in the presence of powerline inter-
ference, electrode cables were shielded by ground wires to further
minimize interference. All impedance results were fitted to an
equivalent circuit model (spectra shown in Fig. 3d, circuit model
shown in Fig. 3e) to better understand motion artifact settling times
associated with the phase elements of the electrode skin interface and
provide reference for future analog front-end designs. At 50Hz, the
interface has an average impedance of 120 kΩ and phase of −33°.

Lightweight ExG recording system
ExG was recorded using an existing compact, wireless recording
platform affixed to a headband (Fig. 4a). The platform, known as
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Fig. 4 | Experimental setup, recordings, and labeling scheme. a Subjects sit
beside a laptop displaying a basic reaction time measuring game. A head-worn
WANDmini, secured in a 3D-printed enclosure, records and transmits ExG from
contralaterally worn earpieces to a base station via BLE while the subject plays the
game. All captured ExG can be live plotted for the trial overseer while the game
records subject’s reaction times and Likert survey responses. b Recorded ExG,

reaction times, and Likert items are used to generate features and labels for a brain-
state classifier. Drowsy events, shaded in green, are determined when a subject’s
reaction time and Likert response cross a drowsiness threshold that is determined
per subject. Using both the reaction time and Likert scores enables robust label
creation that is agnostic to temporary user error.
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WANDmini, is a wireless neural recording frontend built for and
already deployed in previous in-ear EEG studies46. It is adapted from a
system originally designed for electrocorticography and comprises a
custom neural recording circuit68,86, (NMIC86, Cortera Neurotechnol-
ogies, Inc.), a microcontroller, and a Bluetooth radio for wireless
transmission. TheNMICdigitizes up to64, fully differential channels of
electrophysiological activity with a sampling rate of 1 kSps.WANDmini
arranges the NMIC’s channels in a monopolar montage with a single
reference electrode. This arrangement is it suitable for EEG, EOG, and
EMG recording and provides enough sampling and channel count
headroom to remove any recording electronics related bottlenecks.
An onboard microcontroller and radio packetizes and streams digi-
tized neural data to a base station connected to a host machine over
Bluetooth Low Energy (BLE) (Fig. 4a). System power is dominated by
the microcontroller and Bluetooth transmission (98.3%) thus making
unused channels immaterial from a power perspective. With the NMIC
and WANDmini power consumptions, 700 μW and 46mW, respec-
tively, a 3.7 V 550mA battery can provide ~44 h of runtime. In sum-
mary, the NMIC’s significantly lower power than common commercial

neural frontends (e.g., ADS1298/1299), high channel count, and suffi-
ciently low noise floor makes it ideal for use in modular in-ear EEG
prototypes. NMIC and WANDmini specifications are listed in Table 1
and further detailed in Supplement section II.h. The hostmachine uses
a custom graphical user interface (GUI) that plots and saves all
incoming data and cues for the trail overseer. This custom GUI is
unique to this work and provides the test subject with a reaction time
game, auditory cues, and visual alerts during experiments. More
information about the GUI is available in section 2h of the supplement.

EEG characterization and user-generic drowsiness detection
Drowsiness Study. To characterize the full system performance, 35 h
of Ear ExG data was recorded during a nine subject drowsiness study.
Subjects wore two earpieces with the electrodes organized in a con-
tralateral monopolar montage. Previous works have demonstrated
that electrodes on a single earpiece are sufficiently distant from each
other tomeasure ExG37,41, but greater signal amplitude canbe recorded
with electrodes placed across both ears39,45. To induce drowsiness,
subjects played a repetitive reaction time game. Every 60 s, a user was
prompted to press a random number between 0 and 9 and their
reaction time was recorded (Fig. 4a). Every 5min, the user was
prompted to enter a Likert itemaccording to the Karolinska Sleepiness
Scale (KSS). This scale is frequently used to evaluate subjective slee-
piness and ranges from 0= “extremely alert”, to 10 = “extremely
sleepy, fighting to stay awake”87. Queue intervals (60 s and 5min) were
selected based on initial experimentation and previous works that
demonstrated a balance between minimizing disturbances and fre-
quent datapoints45,88. All recorded ExG, cue timing, reaction times, and
Likert items are saved by a custom GUI for post-processing and
machine learningmodel training (Fig. 4b). Immediately after each trial,
reaction time and Likert items were thresholded per subject to auto-
matically generate alert/drowsy labels for each trial since behavior and
response time metrics are heavily correlated with drowsiness6,87,88. By
taking both an objective and a subjective drowsiness measurement,
high-confidence data labels could be generated in face of user-error
and user-bias (memory of previous KSS scores affecting subsequent
scores). Both objective and subjective measures must agree to classify

Table 1 | Relevant system, WANDmini, and NMIC
specifications

Maximum Recording Channels 64

Recording Channels Used 11

Reference Location Right Cymba

Ground Location Right Mastoid

Input Range 100mVpp

ADC Resolution 15 bits

ADC Sample Rate 1 kSps

Noise Floor 70 nV/√Hz

Wireless Data Rate 2Mbps

NMIC Power 700 µW

WANDmini Power 46mW

Battery Life 44 h
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an event as drowsy. Furthermore, as noted in previous works, reaction
times and likert scores are variable on a subject-to-subject basis. As a
result, each trial was thresholded on a per subject basis. Each trial
contained at least one drowsy event, and 65 drowsiness events were
recorded across 34 trials.

Drowsiness classification pipeline. The training pipeline for ExG data
consisted of post-processing, feature extraction, and model training
steps (Fig. 5a). ExG recordings were referenced to maximize spatial
covering, band pass filtered, and segmented into 50 s or 10 s windows.
If a window of data exhibited an artifact greater than 10mV (from
motion) it would be discarded. Thiswas happened very infrequently as
most artifacts were less than 1mV above the baseline rms voltage.
Temporal and spectral features relevant for ExG-based drowsiness
detection were implemented to target ocular artifacts and activity in
standard EEG frequency bands relevant to drowsiness detection: delta
(δ, 0.05–4Hz), theta (θ, 4–8Hz), alpha (α, 8–13Hz), beta (β, 13–30Hz),
and gamma (γ, 30–50Hz). Binary (alert/drowsy) classification was
performed with low-complexity logistic regression, support vector
machine (SVM), and random forest classifier models.

Three cross-validation techniques were used to estimate model
performance across varying usage scenarios: user-specific, leave-one-
trial-out, and leave-one-user-out. User-specific cross-validation trained
models on n − 1 trials for the subject, tested on their remaining trial,
and averaged the results after n independent iterations to determine
drowsiness detection accuracy for a single subject. Leave-one-trial-out
cross-validation trained models on 33 of the recorded trails, tested on
the remaining trial, and averaged results after all 34 independent
iterations to determine the study’s overall drowsiness detection
accuracy. Leave-one-user-out cross-validation trained on recordings
from eight subjects, tested on the remaining subject’s recordings, and
averaged results after all nine independent iterations. This evaluated
detection accuracywhen using population training and deploying on a
never-before-seen subject. Due to the inherent imbalance between
drowsy and alert classes, each classification model employed a bal-
ancing scheme where over-represented classes are given a smaller
class weight than under-represented classes. In the case of drowsy vs.
alert, alert epochs aregiven a classweight inverselyproportional to the
number of epochs. This allows classes to be treated more fairly across
all training/cross-validation regimes (since they will all have different

classbalances). During validation, classprobabilities returned from the
classifier models were filtered with a 3-tap Hamming window FIR filter
and thresholded to achieve final binary outputs (Fig. 5b).

Drowsiness classification results
Alpha modulation ratio. Alpha waves (8–12 Hz) are a spontaneous
neural signal that can reflect a person’s state of relaxation,
which makes them an important spectral feature in ExG-based drow-
siness classification15. A sample recording from a single user demon-
strating alpha wave modulation is presented in Fig. 6a. This
modulation is clear in the time–frequency spectrogram (Fig. 6a). To
assess the modulation ratio more quantitatively, Fig. 6a also plots the
average power across the entire alpha band while the subject opens
and closes their eyes every 30 s. The presented sample data’s mod-
ulation ratio was 2.001.

Classifier comparison across validation schemes. The overall aver-
age of the user-specific classification results ranged from 77.9% to
92.2% across all models and feature window sizes. In the user-generic
leave-one-trial-out case, average classification accuracywas higher and
ranged from 91.4% to 93.2% when cross-validating across the 34 trials.
This is most likely due to the increased amount of data available for
training. Lastly, the leave-one-user-out validation scheme achieved
average classification accuracies from 88.1% − 93.3% across all users,
window sizes, and models. Figure 6b–g showcases average model
accuracy and standard deviation where appropriate.

10 s vs 50 s windows. Two feature windowing schemes were investi-
gated, 10 s (Figs. 6b–d) and 50 s (Fig. 6e–g)windows. All training steps,
including feature selection, are performed independently. The 10 s
feature windows result in significant performance loss in the user-
specific validation scheme. For example, the average user-specific
logistic regression-based classifier performance increased from 77.9%
to 90.8% when increasing feature window sizes to 50 s. Minimal
accuracy loss, however, was observed when using leave-one-trial-out
and leave-one-user-out validation schemes with features from 10 s
windows. Thisminimal accuracy loss ismost likely due to the increased
amount of training data available (~30 trials) to the models relative to
the user-specific cases where individual models only train on a 1−4 of
trials.
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Classifier architecture comparison. Three low-complexity machine
learning models were used to promote the scalability and usability of
the drowsiness detection platform. All models were implemented in
Python 3.8 using scikit-learn packages. Logistic regression models
were implemented with a stochastic average gradient descent solver.
L1 regularization was used to add a penalty equal to the absolute value
of the magnitude of the feature coefficients. Support vector machines
were implemented with a radial basis function (RBF) kernel to account
for data thatmay not be lineally separable. The trainedmodels utilized
a maximum of 400 support vectors and a regularization parameter,
C = 1. Random forest models were implemented with 100 trees and a
maximum depth of five to prevent overfitting. These implementations
resulted in memory footprints that were estimated using python’s
pympler package. The logistic regression, SVM, and RF models
required 2.8 kB, 144.2 kB, and 63.8 kB respectively. These memory
requirements are well within the capacity of modernmicrocontroller’s
embedded memories (e.g., 32-bit ARM Cortex-M).

Since all three models achieve high accuracy, it is clear that
drowsiness is classifiable with in-ear eeg recording. No model shows
markedly greater performance or another. The logistic regression
model is more computationally efficient, requires significantly less
memory, and can be more easily trained/deployed with smaller data-
sets. It is important to verify that logistic regression continues to
perform as well across larger demographics, a topic for future studies.

Discussion
We have reported the design and fabrication of in-ear dry electrodes
along with the assembly and evaluation of a wireless, wearable, in-ear
ExG platform for offline drowsiness detection on never-before-seen
users. All aspects of this platform can be adapted to different use-
cases. The 3D printed and electroless Au-plated electrodes can be
rapidly augmented for any anatomically optimizedwearable and used/
re-used for long periods of time, WANDmini can support multi-day
electrophysiological monitoring, and the presented offline classifiers
demonstrate the potential for future dry-electrode based brain-state
classification. In contrast to other state-of-the-art in-ear recording

platforms (Table 2), the electrodes, wireless electronics, and light-
weight algorithms presented lay the groundwork for future large-scale
deployment of user-generic, wireless ear ExG brain-computer inter-
faces that use multiple machine learning algorithms.

Our results are promising for the development of the next gen-
eration of standalone wearables that can monitor brain and muscle
activity in work environments and in everyday, public scenarios. To
realize these standalone, wireless systems, future work requires inte-
grating these classifiers on-chip for real-time brain-state classification
andminiaturizing all the hardware into a pair of earbuds. Furthermore,
the hardware would need to support online classification to allow for
full-day, itinerant use. Lastly, it would be important to take this min-
iaturized hardware and implement a user-study with a wider demo-
graphic. By monitoring in-ear EEG across individuals aged 18–65+,
further age specific models can be investigated. If a monolithic model
is unable to classify drowsiness stereotypes across such a large age
range, it would be interesting to provide models with context such as
age, gender, known sleep disorders, and previous night’s sleep quality.
Furthermore, the feature selection performed in this work suggests
that simpler calculations such as bandpower ratios are sufficient for
drowsiness classification. If this remains the case across larger demo-
graphics, then feature extractors can ignore computationally expen-
sive features such as standard deviation, different entropy measures,
etc. to reduce power in embedded classification scenarios. With
aforementioned integration, a pair of ear ExG buds would significantly
enable long term, daily recording ExGwithout interrupting a user’s day
or stigma. These measurements would enable an entirely new era of
research for tracking long-term cognitive changes fromdisorders such
as depression, Alzheimer’s, narcolepsy, or stress.

Methods
Study approval and ethical consent
Theuser study, subject recruitment, and all data analysiswas approved
by UC Berkeley’s Institutional Review Board (CPHS protocol ID: 2018-
09-11395). Informed consent was received by all participants in the
study for their results to be included in presented figures/data.

Table 2 | Comparison of this work with other in-ear drowsiness monitoring works

Hwang ‘16 Nakamura ‘17 Hong ‘18 Barua ‘19 Gangadharan ‘22 This Work

Setup # Users 13 4 16 30 18 9

# Recordings 13 4 16 312 18 34

Recording length (min) 60−90 45 55−75 30 40 40−50

Electrodes Format In-ear In-ear In-ear Scalp Muse Headband In-ear

Single/both ears single Single Single - - Both

Sense/Ref Electrodes Wet Wet Wet Wet Dry Dry

Ground Electrode Wet Wet Wet Wet Dry Wet

# Channels 1 2 1 30 4 11

Generic Yes Yes Yes Yes Yes Yes

Assembly material Metallic Foam Silicone Metallic Plastic 3D printed polymer

Electrode -- Ag/AgCl wire Ag + Cu -- Au Au

System Wired/wireless Wired Wired Wired Wired Wireless Wireless

Data rate - - - - 1 Mbps+ 1.96 Mbps

Power - - - - - 46 mW

Battery life - - - - 5 h 44h

Algorithm Model SVM SVM SVM SVM SVM LR

Window size 5s 30s 60s 60s 4s 50s

Sensitivity - - - 94%+ 78.95% 95.60%

Specificity - - - 92%+ 77.64% 93.00%

Accuracy 88.30% 82.90% 93.50%a 93% 78.30% 93.30%
a99% when evaluating on 230s epoch of EEG, ECG, and PPG features
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Electrode fabrication
Both the electrodes and earpiece were printed with a stereo-
lithography (SLA) 3D printer (Formlabs Form 3 printer) with a stan-
dard, clear methacrylate photopolymer (Fig. 2c). An SLA printer was
used due to its increased precision over standard filament deposition
modeling (FDM) based printers. In SLA printers, thin layers of photo-
sensitive polymer are cured by a laser. The resulting printed surfaces
must be washed and cured in UV to achieve the final 3D part.

The original 3D printed surface is highly anisotropic due to the
structure’s uniformly printed layers. To create a more heterogenous
surface, electrode structures were sandblasted with 100 grit white
fused aluminum oxide blasting media (Industrial Supply, Twin Falls,
ID) to remove the regular surface pattern leftover from the printing
process while also increasing the effective surface area. The sand-
blasted samples were then sonicated in a bath of Alconox cleaning
solution for ~10min and rinsed with DI water. Lastly, the electrode
structures were treated in a bath of 1% benzalkonium chloride (Sigma
Aldrich 12060-100G) surfactant solution for 10min. These surface
treatment steps ensure a cleanplating surfacewith high surfaceenergy
and lead to improved catalyst/metal layer adhesion.

The samples are then submersed in catalyst and plating baths.
First, the electrodes are submerged in a beaker of palladium-tin cata-
lyst for 10min followed by a copper plating solution for aminimum of
sixhours. This initial plating step results in a thick copper layer thatwill
oxidize if left out in ambient atmosphere. As a result, samples would
then be quickly rinsed, dried, and placed in a nickel-plating bath for
~10min (Sigma Aldrich 901630). Afterwards, the electrodes are placed
in an electroless gold plating solution for approximately 15min. In
betweenplating steps, the sampleswere rinsedwithDIwater and dried
thoroughly.

WANDmini: ExG recording hardware
The WANDmini board contains a neural recording frontend (NMIC), a
SoC FPGA with a 166MHz Advanced RISC Machine (ARM) Cortex-M3
processor (SmartFusion2 M2S060T from Microsemi), and low-energy
radio (nRF51822 from Nordic Semiconductor). The SoC FPGA forms a
custom-designed 2Mb/s digital signal and clock interface with a single
NMIC, aggregates all data and commands intopackets, then streamsall
the packets to the 2Mb/s 2.4 GHz low-energy radio.

WANDmini also contains a 20MHz crystal oscillator as a clock
source, on-board buck converters (TPS6226x from Texas Instruments),
a battery charger circuit (LTC4065 from Linear Technology), and a
6-axis accelerometer and gyroscope (MPU-6050 from InvenSense).
While WANDmini can record up to 64 channels of electrophysiological
data and motion information from the accelerometer, the drowsiness
detection application only uses 11 channels for ExG monitoring. Future
applications may integrate real-time motion artifact cancellation and
classification directly into the WANDmini’s SoC FPGA.

Subject selection and earpiece application
Nine subjects (7male, 2 female, ages 18–27) volunteered for this study.
Subjects were requested not to exercise or drink caffeine before any
trial. Prior to the first experiment, subjects tried out small, medium,
and large earpieces and selected the pair they felt were most com-
fortable and secure in ear. During this onboarding session, subjects
also familiarized themselves with the GUI.

At the start of the drowsiness trials, subjects were given their
preferred ear EEG earbuds to wear, as well as an electronics headband
with a fully charged Li-Po battery and the WANDmini recording hard-
ware. To maintain a realistic daily use scenario, the subjects did not
cleanor prepare their skin and no hydrogel or salinewas applied to the
earpiece dry electrodes. The trial hosts also did not help subjects don/
doff the headband or earpieces unless explicitly requested. After the
experiments, the earpieces were cleaned with 70% isopropyl alcohol
since they would be later used by other subjects.

Electrophysiological recording setup
Each earpiece has six electrodes, four inside the ear canal and two
outside the ear canal. The default recording arrangement employs two
contralaterally worn earpieces to maximize spatial coverage and
recorded signal power27,39. These two earpieces provide up to 11 ExG
channels with a common reference. Either of the concha cymba elec-
trodes can be used as a reference (the un-used one can be used as an
additional sense electrode). After initial experimentation, it was
determined that the right concha cymba electrode was sufficient as a
reference electrode across all subjects. As a result, each ExG channel is
referenced against the right concha cymba electrode in a monopolar
montage (electrode Y in Fig. 2a). A single wet Ag/AgCl electrode was
applied to the subject’s rightmastoid and connected tobattery ground
for interference reduction.

Drowsiness trial overview
Subjects participated inmultiple drowsiness trials to enable both user-
specific and user-generic training. Subjects were not familiar with the
ear EEG work when selected. No more than five trials were recorded
per subject to maintain a diverse data pool. Prior to the trials, subjects
were informed of the study purpose and requested to have a ‘normal
night’s rest’ (subjectively) andnotdrink caffeineprior to the trial. Trials
took place in a quiet, indoor office space between 8 a.m. and 5 p.m.
when the lights were on. After donning the ear eeg system, the subject
was left alone in the trial space until the end of the recording session.
During the trial, the subject would sit at a desk in front of a laptop with
a custom GUI. Subjects were instructed to only perform the reaction
game task and not look at personal devices for the extent of the trial.
Subjects were allowed to move their heads, readjust in their seat, and
move their arms, but were asked to stay seated during the entire ses-
sion (tominimize motion artifacts). Each trial was 40–50min in length
and was self-ended by the subject to prevent the interruption of a
drowsy event. At the end of the trial, the subjects removed the head-
band and earpieces themselves. They were instructed to wait at least
24 h before participating in subsequent drowsiness trials to maximize
variation between trials.

Label generation
Recording both objective and subjective drowsiness measures made
the label generation process robust to user-error momentary distrac-
tions (when an alert user looks away from the laptop). Ear ExG samples
were labeled as “drowsy” if theuser reportedadrowsiness Likert item>5
and if their reaction time was more than double the average from the
first 5min of recording. The labels were then passed through a 3-sample
rolling average filter and thresholded to achieve a binary label.

Re-referencing and filtering
ExG re-referencing was used to maximize spatial covering across
contralateral earpieces. Each in-ear electrode was re-referenced to the
left concha cymba electrode and processed with the 11 EEG channels
recorded with the right concha cymba electrode. To remove power-
line interference (60Hz in North America) while maintaining as much
EEG activity as possible, both the recorded and re-referenced EEG
channels were bandpass filtered from 0.05–50Hz. Filters were imple-
mented with a 5th order butterworth high pass filter (corner of
0.05Hz) and a 5th order Butterworth low pass filter (corner of 50Hz).
Both filters were implemented in python but can also be implemented
with infinite impulse response (IIR) filters with 16 bit registers for use in
FPGA/embedded applications.

Data segmentation
Filtered ExG was segmented to remove ExG artifacts related to
decision-making and motor planning in response to GUI cues. Each
epoch began 10 s after a reaction time cue and ended when the next
reaction time cue was provided. When using the maximum window
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size, features were calculated for these 50 s epochs. When using a
reduced window size, each 50 s epoch and its corresponding label
were divided into five 10 s windows. To focus classification on drow-
siness onset, epochs were considered “sleep” if a subject’s rection time
exceeded 10 s. These epochs were excluded from the study.

Feature extraction and selection
Temporal and spectral features were extracted in Python 3.8 from
the segmented ExG data. Low-complexity features were calculated
for each window of ExG data and across all the recorded and re-
referenced channels. Voltage standard deviation and maximum
peak-to-peak voltage amplitude were calculated in the time-domain
to target eye blink artifacts and motion. Welch’s method (using a
1000-point Fourier transform, 500 sample overlap, and Hamming
window) was used to calculate the power spectral density (PSD)
and attain frequency characteristics that relate attention and
relaxation. The following spectral features were calculated prior to
training: maximum PSD, peak frequency, and PSD variance were
calculated for δ, θ, α, β, γ EEG bands. Absolute and relative band
powers were also calculated for the following bands and ratios: δ, θ,
α, β, γ, α/β, θ/β, (α + θ)/β, and (α + θ)/(α + β). Relative bandpower
is the specific band relative to the total PSD from 0.5–50 Hz. Fur-
thermore, features of the previous epoch were included to
account for changes in ExG activity, since temporal and spectral
features relate to characteristics that changes during the onset
of drowsiness such as attention and eye movement. A complete
table of features used in offline training (prior to feature selection) is
in Table 3.

All features were scaled by subtracting the median and scaling
according to their interquartile range. To reduce input feature count,
feature selection using an analysis of variance (scikit-learn Python 3.8)
was performed to determine the top 20 features (total) that minimize
redundancy and maximize class variation during training. Only these
20 features are included during model training and validation. This
feature selection also implicitly selected best performing electrodes
across users (most likely due to some electrodes fitting better than
others). The same feature type was also selected for multiple channels
(e.g., the top 20 features would include alpha band power from
channels 1, 5, and 10). Contralateral channels (where sense and

reference electrodes are indifferent ears)were alwaysweighted higher
than ipsilateral channels. The most used features (in order of impor-
tance) are shown in Table 4.

Spectral features associated with eye movement, relaxation, and
drowsiness were the most important for model training. Furthermore,
the previous epoch’s features were also generally important. This is
corroborated by results from other works on scalp data in refs.
14,15,79. All feature extraction was performed in Python using numpy.
For implementation into an embedded/FPGA environment, these fea-
tures can be calculating using a coarse fast-Fourier transform, look-up-
tables, and the CORDIC algorithm.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Experimental Ear EEG data collected in this study is available at
https://github.com/MullerGroup/EarEEG_Drowsiness. Due to IRB
restrictions, access may be restricted to any raw EEG data. If there are
any issues accessing the repository, please contact ryanka-
veh@berkeley.edu, cschwendeman@berkeley.edu or rikky@berke-
ley.edu. Example code and a deployable notebook can be found in the
GitHub repository. Source data used in all figures are provided with
this paper. Source data are provided with this paper.

Code availability
The source code used for offline model validation and analysis of
results is available at https://github.com/MullerGroup/EarEEG_
Drowsiness.
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