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A NOTE ON STATIC SPACES AND RELATED PROBLEMS

JIE QING AND WEI YUAN

Abstract. In this paper we study static spaces introduced in [10, 12, 9, 13, 7]
and Riemannian manifolds possessing solutions to the critical point equation
introduced in [1, 11, 3, 4]. In both cases on the manifolds there is a function
f satisfying the equation

fRic = ∇
2f + Φg.

With a similar idea used in [6, 5], we have made progress in solving the classify-
ing problem raised in [9] of vacuum static spaces and in proving the conjecture
made in [1] about manifolds admitting solutions to the critical point equation
in general dimensions. We obtain even stronger results in dimension 3.

1. Introduction

Static space-times are the special and important global solutions to Einstein
equations in general relativity. In this paper we are concerned with static space-
times that carry a perfect fluid matter field as introduced in [10] [12]. One may
include a cosmological constant to maintain mass-energy density to be nonnegative.
A static space-time metric ĝ = −f2dt2 + g satisfies the Einstein equation

(1.1) R̂ic−
1

2
R̂ĝ + Λĝ = −8πGT,

for the energy-momentum-stress tensor T = −µf2dt2 − pg of a perfect fluid, where
µ and p are nonnegative, time-indepdendent mass-energy density and pressure of
the perfect fluid respectively.

A complete Riemannian manifold (Mn, g) is said to be a static space (with
perfect fluid) if there exists a smooth function f (6≡ 0) on Mn such that f solves
the following static equation:

(1.2) ∇2f − (Ric−
R

n− 1
g)f −

1

n
(

R

n− 1
f +∆f)g = 0.

Particularly, (Mn, g) is said to be a vacuum static space if (1.2) reduces to

(1.3) ∇2f − (Ric−
R

n− 1
g)f = 0.

It is very interesting to notice that the vacuum static equation (1.3) are also
considered by Fischer and Marsden [9] in their study of the surjectivity of scalar
curvature function from the space of Riemannian metrics (cf. [13, 18, 7]).

Key words and phrases. Static space-times, static spaces, critical point equations, Bach flat,
warped metrics.
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For static spaces, in [12], Kobayashi and Obata (cf. [16] for n = 3) showed that,
nearby the hypersurface f−1(c) for a regular value c, a static metric g is isomet-
ric to a warped metric of a constant curvature metric, provided that g is locally
conformally flat. In [9], Fischer and Marsden raised the possibility of identifying
all compact vacuum static spaces. In fact one now knows in dimension 3, besides
flat tori T 3 and round spheres S3, S1 × S2 is also a compact vacuum static space.
Later, in [8], other warped metrics on S1 ×r S

2 were found to be vacuum static.
The open conjecture is that those, possibly moduli some finite group, are all the
compact vacuum static spaces. Please refer to [13, 18, 14, 15] for progresses made
in solving the classifying problem raised in [9]. In short the classifying problem is
solved [13, 15] for locally conformally flat static spaces. But an easy calculation
shows that S1( 1√

n−2
) × En−1 for Einstein manifolds En−1 with scalar curvature

(n− 1)(n− 2) are compact vacuum static spaces, which are not locally conformally
flat and therefore not accounted in [13], when n > 3.

The critical point equation is introduced for the Hilbert-Einstein action on the
space of conformal classes represented by Riemannian metrics with unit volume
and constant Ricci scalar curvature in [1] in an attempt to more efficiently identify
Einstein metrics in two steps. Formally the Euler-Lagrangian equation of Hilbert-
Einstein action on the space of Riemannian metrics with unit volume and constant
Ricci scalar curvature is

Ric−
1

n
Rg = ∇2f − (Ric−

1

n− 1
Rg)f.

It may look more apparent that it is related to the static equations (1.2) and (1.3)
if we replace f by f − 1 and consider the equation

(1.4) ∇2f − (Ric−
1

n− 1
Rg)f −

1

n(n− 1)
Rg = 0.

A complete Riemannian manifold (Mn, g) (n ≥ 3) of constant Ricci scalar
curvature is said to be CPE if it admits a smooth solution f (6≡ 0) to the critical
point equation (1.4) (cf. [1, 11, 3, 4]). In [1] it conjectured that a CPE metric is
always Einstein.

Conjecture 1.1. A CPE metric is always Einstein.

It is clear that (Mn, g) is Einstein if it admits a trivial solution f ≡ −1. Other
CPE metrics with constant function f are Ricci flat metrics. g is isometric to a
round sphere metric if it is a Einstein CPE metric with a non-constant function f .
Hence Conjecture 1.1 really says that a CPE metric with a non-constant solution f

to (1.4) is isometric to a round sphere metric. Lafontaine in [15] verified Conjecture
1.1 when assuming metrics are locally conformally flat. Recently Chang, Hwang,
and Yun in [4] verified Conjecture 1.1 for metrics of harmonic curvature.

Recently in [6, 5] the authors studied Bach flat gradient Ricci solitons. Based
on the similar idea from [6, 5] we are able to solve the classifying problem raised in
[9] for Bach flat vacuum static spaces in general dimensions. It is worth to mention
that we will include in our list the vacuum static spaces S1( 1√

n−2
) × En−1 that

were not accounted in the lists given in [12, 13] when n > 3. In the mean time, we
are also able to verify Conjecture 1.1 for Bach flat CPE metrics.
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Particularly in dimension 3, we establish an intriguing integral identity

(1.5)

∫

M3

fpC = −
p

4

∫

M3

fp|C|2

where C = C
ijk

ijk, is the complete divergence and Cijk is the Cotton tensor, on a

compact 3-manifold (M3, g) admitting non-constant solution f to the equation

(1.6) fRij = fi,j +Φgij

for some function Φ. Therefore we are able to obtain stronger results for both
static metrics and CPE metrics in dimension 3. For vacuum static spaces, based
on the solutions to the corresponding ODE given in [13], we are able to solve the
classifying problem raised in [9].

Theorem 1.2. Suppose that (M3, g) is compact vacuum static space with no
boundary with nonnegative complete divergence C of the Cotton tensor. Then it
must be one of the following up to a finite quotient:

• Flat 3-manifolds;
• S3;
• S1 × S2;
• S1 ×r S

2 for g = ds2 + r2(s)gS2 , where r(s) is a periodic function given in
Eample 4 in [13].

Regarding Conjecture 1.1, based on [15, 4], we prove the following:

Theorem 1.3. Conjecture 1.1 holds for compact Riemannian 3-manifold with no
boundary with nonnegative complete divergence C of the Cotton tensor.

The organization of this paper is as follows: In section 2 we introduce Cotton
tensors and Bach tensors on Riemannian manifolds. More importantly we introduce
an augmented Cotton tensor and prove an integral identity to allow us to most
efficiently use the equation (1.6). In section 3 we use the vanishing of the augmented
Cotton tensor to establish the local splitting property. Then we give a complete
classification for Bach flat vacuum static and verify Conjecture 1.1 for Bach flat
CPE manifolds in general dimensions. In section 4 we focus on dimension 3 and
establish (1.5) and prove Theorem 1.2 and Theorem 1.3.

2. Preliminaries

In this section we will use Bach flatness to force the vanishing of the augmented
Cotton tensorD as the authors did for gradient Ricci solitons in [6, 5]. To introduce
the Bach curvature tensor of a Riemannian manifold (Mn, g), we recall the well
known decomposition of Riemann curvature tensor.

(2.1) Rijkl = Wijkl +
1

n− 2
(Sikgjl − Silgjk − Sjkgil + Sjlgik)

where Rijkl is the Riemann curvature tensor, Wijkl is the Weyl curvature tensor,

Sij = Rij −
1

2(n− 1)
Rgij

is Schouten curvature tensor, Rij = R
j

ijk is Ricci curvature tensor, and R = R i
i is

the Ricci scalar curvature. Then the Cotton tensor C is given as:

(2.2) Cijk = Sjk,i − Sik,j .
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The following consequence of Bianchi identity is often useful:

(2.3) W l
ijkl, = −

n− 3

n− 2
Cijk

when n ≥ 4. We are now ready to introduce the Bach curvature tensor on a
Riemannian manifold (Mn, g) as follows:

(2.4) Bjk =
1

n− 3
W li

ijkl, +
1

n− 2
SilWijkl ,

when n ≥ 4. Using (2.3) we may extend the definition of Bach tensor in dimensions
including 3 as follows:

(2.5) Bjk =
1

n− 2
(−C i

ijk, + SilWijkl).

Finally, as in [12] and [6, 5], we define the following augmented Cotton tensor,
which will play an important role in the calculations in this paper.

(2.6) Dijk = f2Cijk − fWijklf
l.

It is easy to see that Dijk is anti-symmetric about the indices i and j. In fact the
following is a key observation (1.11) in [12]. In order to treat both static equations
(1.2) and critical point equation (1.4) in the same way we need to rewrite them in
a unified way. We first rewrite the static equation (1.2) as follows:

(2.7) fS = ∇2f −
1

n
(∆f −

n− 2

2(n− 1)
Rf)g.

We then rewrite the critical point equation (1.4) as follows:

(2.8) fS = ∇2f + (
Rf

2(n− 1)
−

R

n(n− 1)
)g.

In summary we will write both (2.7) and (2.8) in following form

(2.9) fS = ∇2f +Φg

for a function Φ (this Φ is different from that in (1.6)).

Proposition 2.1. Suppose that (Mn, g) is a Riemannain manifold admitting a
smooth solution f to the equation (2.9). Then

Dijk =
1

n− 2
Alt
i,j

{(n− 1)fi,kfj +Ψjgik},(2.10)

where Alt
i,j

means anti-symmetrizing with the indices i and j, and

(2.11) Ψj = −(n− 2)fΦj + fj,lf
l + nΦfj.

Proof. It is a straightforward calculation based on the equation (2.9) and the defini-
tion of Dijk (cf. [12]). For the convenience of readers we include some calculations
here. First we calculate

f2Cijk = f2(Sjk,i − Sik,j)

= f(fk,ji − fk,ij)− f(Sjkfi − Sikfj) + f(Φigjk − Φjgik)

Then recall the Ricci identity

fk,ji − fk,ij = flR
l
kji = Rijklf

l
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and conclude that

fk,ji − fk,ij = Wijklf
l +

1

n− 2
(Sjlgik − Silgjk)f

l +
1

n− 2
(Sikfj − Sjkfi).

Hence we obtain

(n− 2)(f2Cijk − fWijklf
l) = Alt

i,j
{(n− 1)fSikfj + gikΨ̃j}

for

Ψ̃j = −(n− 2)fΦj + fSjlf
l.

From here, using the equation (2.9), we complete the proof of (2.10). �

Remark 2.2. Note that

(2.12) Φ =
1

n
(

n− 2

2(n− 1)
Rf −∆f) and Ψj = fj,lf

l −∆ffj

for static metrics and

(2.13) Φ =
Rf

2(n− 1)
−

R

n(n− 1)
and Ψj = fj,lf

l −∆ffj

for CPE metrics. It is very intriguing to see that Ψ is the same for the both cases.

Then we can rewrite the Bach tensor as follows:

Proposition 2.3. Suppose that (Mn, g) is a Riemannian manifold admitting a
smooth solution f to the equation (2.9). Then

(2.14) (n− 2)Bjk = −∇i(
Dijk

f2
) +

n− 3

n− 2
Clkj

f l

f
+Wijkl

f if l

f2
.

Proof. It is straightforward to calculate that, from the definition (2.6),

(n− 2)Bjk = −C i
ijk, + SilWijkl = −∇i(Wijkl

f l

f
+

1

f2
Dijk) + SilWijkl

= −∇i(
Dijk

f2
)−W i

ijkl,

f l

f
+Wijkl(S

il −
f i,l

f
+

f if l

f2
)

= −∇i(
Dijk

f2
) +

n− 3

n− 2
Clkj

f l

f
+Wijkl

f if l

f2
.

�

Now, as a consequence of (2.14), we can state one of the key identities in this
paper. To state that we introduce some notations. We will denote the level set

Mc = {x ∈ Mn : f(x) = c}

and

Mc1,c2 = {x ∈ Mn : c1 < f(x) < c2}.

Proposition 2.4. Suppose that (Mn, g) is a Riemannian manifold admitting a
smooth solution f to the equation (2.9). Let c1 and c2 be two regular values for the
function f and two level sets Mc1 and Mc2 be compact. Then, for all p ≥ 2, we
have the following integral identity:

∫

Mc1,c2

fpBjkf
j,k =

1

2(n− 1)

∫

Mc1,c2

fp−2|D|2.(2.15)
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Proof. By the anti-symmetries of Wijkl , Cijk and Dijk, from (2.14) one gets

Bjkf
j,k = −

1

n− 2
D i

ijk,

f jfk

f2
.

Applying integrating by parts, we get

(n− 2)

∫

Mc1,c2

fpBjkf
j,k =

∫

Mc1,c2

Dijk∇
i(fp−2f jfk).

Again, due to the anti-symmetries and trace-free properties of Cotton tensor C and
the augmented Cotton tensor D, we arrive at (2.15)

(n− 2)

∫

Mc1,c2

fpBjkf
j,k =

∫

Mc1,c2

fp−2Dijkf
i,kf j

=
n− 2

2(n− 1)

∫

Mc1,c2

fp−2|D|2.

�

Consequently we obtain the following important initial step to understand the
geometric structure of a Riemannain manifold admitting a smooth solution to the
equation (2.9).

Corollary 2.5. The augmented Cotton tensor D vanishes identically on a Bach
flat manifold admitting a smooth non-constant solution f to the equation (2.9),
provided that each level set f−1(c) is compact for any regular value c.

3. Bach flat cases

In this section, based on Corollary 2.5, we investigate geometric structure of a
Bach flat manifold admitting a smooth non-constant solution f to the equation
(1.2) or (1.4). To facilitate our local calculations we need to choose local frames
and set notations.

For a regular value c, we denote the level set f−1(c) as Σ, W := |∇f |2, and

en := ∇f
|∇f | as the unit normal to Σ. We then choose an orthonormal frame

{e1, e2, · · · , en−1, en}

along Σ. We will use Greek letters to denote the index from 1 to n− 1, while Latin
letters for the index from 1 to n. Then the second fundamental form of Σ is

hαβ = 〈∇eαeβ, en〉 = −〈eβ,∇eαen〉 = −
fα,β

|∇f |
,(3.1)

the mean curvature is

H = gαβhαβ = W− 1

2 (fn,n −∆f),(3.2)

and the square of the norm of the second fundamental form is

|A|2 = hαβh
αβ = W−1

n−1
∑

α,β=1

|fα,β|
2.(3.3)
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Furthermore

|∇ΣW |2 = 4W

n−1
∑

α=1

|fn,α|
2(3.4)

and

|∇nW |2 = 4W |fn,n|
2.(3.5)

Now we are ready to prove another key identity in this paper.

Proposition 3.1. Suppose that (Mn, g) is a Riemannian manifold admitting a
non-constant solution to either (1.2) or (1.4). Then the following identity holds:

|D|2 = 2
(n− 1)2

(n− 2)2
W 2|A−

H

n− 1
gΣ|2 +

n− 1

2(n− 2)
|∇ΣW |2.(3.6)

Proof. By Proposition 2.1, we have

(n− 2)2|D|2 = 2(n− 1)2|∇f |2|∇2f |2 + 2(n− 1)|Ψ|2 − 2(n− 1)2fk,if
ifk,jfj

+ 4(n− 1)(∆f∇f ·Ψ− fi,jf
iΨj)

= 2(n− 1)2|∇f |4|A−
H

n− 1
gΣ|2 + 2(n− 1)|∇f |4H2

+ 2(n− 1)2|∇f |2
n−1
∑

α=1

|fn,α|
2

+ 2(n− 1)|Ψ|2 + 4(n− 1)(∆f∇f ·Ψ− fi,jf
iΨj)

Because

|∇2f |2 =

n−1
∑

α,β=1

|fα,β|
2 + 2

n−1
∑

α=1

|fn,α|
2 + |fn,n|

2.

We also calculate, due to Remark 2.2,

|Ψ|2 = |∇f |2(

n−1
∑

α=1

|fn,α|
2 + |fn,n −∆f |2)

and

∆f∇f ·Ψ− fi,jf
iΨj = −|∇f |2(fn,n −∆f)(fn,n −∆f)

− |∇f |2
n−1
∑

α=1

|fn,α|
2

Therefore

(n− 2)2

n− 1
|D|2 = 2(n− 1)W 2|A−

H

n− 1
gΣ|2 +

n− 2

2
|∇ΣW |2

�

An immediate consequence is following:

Corollary 3.2. Suppose that (Mn, g) (n ≥ 3) is a Riemannian manifold admitting
a non-constant solution to either (1.2) or (1.4). And suppose that the augmented
Cotton tensor D vanishes. Then the level set Σ is umbilical and the mean curvature
H is constant.
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Proof. By the assumption we know that the solution f can not be a constant.
Therefore it follows from Lemma 3.1 that the level set Σ is umbilical and W is a
constant along Σ in the light of (3.6). In fact

|∇ΣW |2 =

n−1
∑

α=1

|∇αW |2 = 4W

n−1
∑

α=1

|fn,α|
2.

Hence, according to the equation (2.9), we conclude that Rαn = 0, for α =
1, 2, · · · , n− 1. On the other hand, by contracting the Codazzi equations we get

0 = Rαn =
n− 2

n− 1
∇Σ

αH, α = 1, 2, . . . , n− 1.

Therefore the mean curvature H is constant along Σ. �

Next we show the constancy of R and ∆f along Σ.

Lemma 3.3. Suppose that (Mn, g) (n ≥ 3) is a static space or a CPE metric with
a non-constant function f . Then

∇ΣR = ∇Σ∆f = 0.(3.7)

Proof. The statement of this lemma is obviously true for a CPE metric. For a static
metric, taking divergence of the static equation (1.2), we have

d(Rf + (n− 1)∆f) =
n

2
fdR,(3.8)

which implies

(3.9) (
n

2
− 1)fdR = Rdf + (n− 1)d∆f.

Taking exterior differential of the two sides of the above equation, we get df∧dR = 0.
Hence, by Cartan’s lemma, there exists a smooth function φ such that dR = φdf ,
which implies ∇Σ

αR = ∇αR = φ∇αf = 0, i.e. ∇ΣR = 0. Consequently, in the light
of (3.9), one also gets ∇Σ∆f = 0. �

Consequently we know that the level set Σ is of constant scalar curvature if the
augmented Cotton tensor vanishes.

Corollary 3.4. Suppose that (Mn, g) (n ≥ 3) is a static space or a CPE metric
with a non-constant function f . And suppose that the augmented Cotton tensor D

vanishes identically. Then the level set Σ is of constant scalar curvature.

Proof. Recall Gauss equation

RΣ = R− 2Rnn +H2 − |A|2.

Hence it suffices to show that Rnn to be constant along Σ in the light of Corollary
3.2 and Lemma 3.3. To do that we first realize that fn,n is constant from (3.2).
Then the conclusion follows from the static equation (1.2) or critical point equation
(1.4). �

To work a bit harder we can show that in fact the level set Σ is Einstein when
the augmented Cotton tensor vanishes.

Proposition 3.5. Suppose that (Mn, g) (n ≥ 3) is a static space or a CPE metric
with a non-constant function f . And suppose that the augmented Cotton tensor D

vanishes identically. Then the level set Σ is Einstein.
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Proof. We start with the assumption that D = 0. Hence, from the definition (2.6),
we have

Wijklf
lf i = fCijkf

i.

On the other hand, from Bach flatness and Proposition 2.3, we also have

Wijklf
if l = −

n− 3

n− 2
fCijkf

i.

Therefore we can conclude that Wijklf
if l = 0, that is, Wnjkn = 0. Using the

Riemann curvature decomposition we derive

Rαnβn = Wαnβn +
1

n− 2
Rαβ +

1

n− 2
(Snn −

1

2(n− 1)
R)gαβ

=
1

n− 2
Rαβ +

1

n− 2
(Rnn −

1

n− 1
R)gαβ .

Meanwhile, from the equation (2.9), we obtain

Rαβ =
∇α∇βf

f
+

1

n
(R−

∆f

f
)gαβ

= −
|∇f |

f
hαβ +

1

n
(R−

∆f

f
)gαβ

= (
1

n
(R−

∆f

f
)−

H

n− 1

|∇f |

f
)gαβ .

Finally, using Gauss equation,

RΣ
αβ = Rαβ − Rαnβn +Hhαβ − hαγh

γ
β

we can conclude that Σ is Einstein by Schur’s lemma when n ≥ 4. Notice that
Corollary 3.4 implies the proposition when n = 3. Thus the proof is complete. �

We now summarize what we have achieved in the following local splitting result
for the geometric structure of a static metric or a CPE metric (cf. Theorem 3.1 in
[12]).

Theorem 3.6. Suppose that (Mn, g) is a static space or CPE manifold with non-
constant function f and compact level set f−1(c) for a given regular value c. And
assume it is Bach flat. Then

g = ds2 + (r(s))2gE ,

nearby the level set f−1(c), where ds = df
|df | , (r(s))2gE = g|f−1(c) and gE is an

Einstein metric.

Consequently, based on the solutions to the corresponding ODE given in [13],
one gets the classification theorem for Bach flat vacuum static spaces. Notice that
the function f and the warping factor r still satisfy the same ODE system:

{

f ′′ + (n− 1) r
′

r
f ′ + R

n−1f = 0

r′f ′ − r′′f = 0

which is (1.9) in [13]. It is remarkable that Kobayashi was able to find the integrals
and completely solved it. The solutions depend on the constants R,

a = rn−1r′′ +
R

n(n− 1)
rn,
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and

k = (r′)2 +
R

n(n− 1)
r2 +

2a

n− 2
r2−n.

The horizontal slice E is Einstein with Ric = (n− 2)kgE here.

Theorem 3.7. Let (Mn, g, f) be a Bach flat vanuum static space with compact
level sets (n ≥ 3). Then up to a finite quotient and appropriate scaling,

(i) f is a non-zero constant if and only if M is Ricci flat;
(ii) f is non-constant if and only if M is isometric to

• Sn;
• H

n;
• the warped product cases.

In the warped product cases, we can divide again into compact and non-compact
ones. For the compact ones S1 ×r E with metric g = ds2 + (r(s))2gE, r(s) appears
to be one of the following:

• r(s) is a constant and E is an arbitrary compact Einstein manifold of pos-
itive scalar curvature without boundary (cf. Example 2 in [13]);

• r(s) is non-constant and periodic and E is an arbitrary compact Einstein
manifold of positive scalar curvature without boundary (cf. Example 4 in
[13]).

For the non-compact ones R×r E with metric g = ds2 + (r(s))2gE , r(s) appears to
be one of the following:

• r(s) is a constant and E is an arbitrary compact Einstein manifold without
boundary (cf. Example 1 in [13]);

• r(s) is non-constant and peroidic and E is an arbitrary compact Einstein
manifold of positive scalar curvature without boundary (cf. Example 3 in
[13]);

• r(s) is given in Proposition 2.5 in [13] and E is an arbitrary compact Ein-
stein manifold without boundary (cf. Example 5 in [13]) .

Remark 3.8. We would like to mention again, since we only assume Bach flatness,
our list includes the warped metric where the level sets are only Einstein instead of
constant curvature as in [13, 15] .

On the other hand, as a consequence of Theorem 3.6, a Bach flat CPE metric
turns out to be of harmonic Riemann curvature. Namely,

Lemma 3.9. Suppose the metric g is a CPE metric satisfying assumptions in
Theorem 3.6. Then the Cotton tensor C of g vanishes identically and therefore g

is of harmonic Riemann curvature.

Proof. We simply choose a local coordinate system {∂1, ∂2, · · · , ∂n−1, ∂n = ∂s} and
calculate directly. It is easily seen that

Cαβγ = Cαβn = Cnβn = 0.

The only term that needs some effort is Cnβγ , which in fact is seen to be zero from
(2.14) and the fact that both Bach tensor and the augmented Cotton tensor D are
identically zero. Notice that Wnjkn is known to be identically zero from the proof
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of Proposition 3.5. To see the harmonicity of Riemann curvature we calculate as
follows:

R l
ijkl, = W l

ijkl, +
1

n− 2
(Sikgjl − Silgjk − Sjkgil + Sjlgik)

l
,

= −
n− 3

n− 2
Cijk +

1

n− 2
(Sik,j − Sjk,i)

= −Cijk = 0

using the fact that the Ricci scalar curvature R is constant. �

Then, using the result in [4], we can verify Conjecture 1.1 for Bach flat manifolds.

Theorem 3.10. Suppose that (Mn, g) (n ≥ 3) is Bach flat CPE manifold ad-
mitting a non-constant solution to (1.4). Then (Mn, g) is isometric to a round
sphere.

4. In dimension 3

In dimension 3 we recall that the Bach tensor is given as the divergence of the
Cotton tensor in (2.5). What we will do in this section is to establish another
integral identity on compact manifold with a static metric or a CPE metric. Then
we will be able to conclude that the full divergence B

ij
ij, of the Bach tensor (the

full divergence C
ijk

ijk, of the Cotton tensor) vanishes if and only if the Cotton
tensor vanishes in dimension 3 for a static metric as well as a CPE metric on a
compact manifold.

Proposition 4.1. Suppose that (Mn, g) (n ≥ 3) is a compact Riemannian man-
ifold with no boundary admitting a non-constant smooth solution to (2.9). Then,
for any p ≥ 2, we have the following integral identity:

(4.1)

∫

M

fpB
ij

ij, = −
p(n− 4)

2(n− 1)(n− 2)

∫

M

fp−2D · C.

Proof. First, applying integrating by part twice, we get

(4.2)

∫

M

fpBijf
if j =

1

(p+ 1)(p+ 2)

∫

M

fp+2B
ij

ij, −
1

p+ 1

∫

M

fp+1Bijf
i,j.

Then we use Proposition 2.3 to calculate the second term in the right hand side of
the above equation. Namely,

(n− 2)

∫

M

fp+1Bijf
i,j = −

∫

M

fp+1∇k(
Dkij

f2
)f i,j +

n− 3

n− 2

∫

M

fpCkijf
kf i,j

+

∫

M

fp−1Wikljf
kf lf i,j .

Now we deal with each term separately. For the first term, we perform once again
integrating by part and get:

∫

M

fp+1∇k(
Dkij

f2
)f i,j =

(n− 2)(p+ 2)

2(n− 1)

∫

M

fp−2|D|2 −
1

2

∫

M

fpD · C.

For the second term we simply use Proposition 2.1:
∫

M

fpCkijf
i,jfk = −

n− 2

2(n− 1)

∫

M

fpD · C.
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And for the last term, we use the definition of Bach tensor and again perform more
integrating by part:

∫

M

fp−1Wkijlf
kf lf i,j = (n− 2)

∫

M

fpBijf
if j −

n− 2

2(n− 1)

∫

M

fpD · C.

Combining all the three terms together, we get
∫

M

fp+1Bijf
i,j = −

n− 4

2(n− 1)(n− 2)

∫

M

fpD · C − (p+ 1)

∫

M

fpBijf
if j ,(4.3)

where we have applied Proposition 2.4. Going back and rewriting (4.2) as follows:

1

p+ 2

∫

M

fp+2B
ij

ij, = (p+ 1)

∫

M

fpBijf
if j +

∫

M

fp+1Bijf
i,j,

which implies, from (4.3),

1

p+ 2

∫

M

fp+2B
ij

ij, = −
n− 4

2(n− 1)(n− 2)

∫

M

fpD · C.

So the proof is complete. �

In particular, when n = 3, we obtain

Corollary 4.2. Suppose that (M3, g) is a compact Riemannian manifold with no
boundary admitting a non-constant smooth solution to (2.9). Then, for any p ≥ 2,

(4.4)

∫

M

fpC
ijk

ijk, = −
p

4

∫

M

fp|C|2.

Hence we have improved Theorem 3.6 in dimension 3.

Theorem 4.3. Suppose that (M3, g) is a compact Riemannian manifold with
no boundary with a static metric or CPE metric and non-constant function f .

If C
ijk

ijk, vanishes identically, then the Cotton tensor vanishes identically and
therefore Theorem 3.6 holds.

More interestingly we have the improved version of Theorem 3.7, which gives a
partial answer to the Fischer-Marsden’s problem (cf. [9]).

Theorem 4.4. Suppose that (M3, g) is a compact vacuum static space with C
ijk

ijk,

vanishing identically. Then the vacuum static space must be one of the following
up to a finite quotient and appropriate scaling,

(i) Flat space;
(ii) Sn;
(iii) S1 × S2;
(iv) S1 ×r S

2 with warped metric g = ds2 + r2(s)gS2 , where r(s) is a periodic
function given in Example 4 in [13].

Similarly we have the improved version of Theorem 3.10 as follows:

Theorem 4.5. Conjecture 1.1 holds for compact 3-manifold (M3, g) with no

boundary satisfying C
ijk

ijk, = 0.
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