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Abstract
Background.  Glioblastoma is the most common primary brain malignancy, yet treatment options are limited, and 
prognosis remains guarded. Individualized tumor genetic assessment has become important for accurate prog-
nosis and for guiding emerging targeted therapies. However, challenges remain for widespread tumor genetic 
testing due to costs and the need for tissue sampling. The aim of this study is to evaluate a novel artificial intelli-
gence method for predicting clinically relevant genetic biomarkers from preoperative brain MRI in patients with 
glioblastoma.
Methods. We retrospectively analyzed preoperative MRI data from 400 patients with glioblastoma, IDH-wildtype 
or WHO grade 4 astrocytoma, IDH mutant who underwent resection and genetic testing. Nine genetic biomarkers 
were assessed: hotspot mutations of IDH1 or TERT promoter, pathogenic mutations of TP53, PTEN, ATRX, or 
CDKN2A/B, MGMT promoter methylation, EGFR amplification, and combined aneuploidy of chromosomes 7 and 
10. Models were developed to predict biomarker status from MRI data using radiomics features, convolutional 
neural network (CNN) features, and a combination of both.
Results.  Combined model performance was good for IDH1 and TERT promoter hotspot mutations, pathogenic 
mutations of ATRX and CDKN2A/B, and combined aneuploidy of chromosomes 7 and 10, with receiver operating 
characteristic area under the curve (ROC AUC) >0.85 and was fair for all other tested biomarkers with ROC AUC 
>0.7. Combined model performance was statistically superior to individual radiomics and CNN feature models for 
prediction chromosome 7 and 10 aneuploidy, MGMT promoter methylation, and PTEN mutation.
Conclusions.  Combining radiomics and CNN features from preoperative MRI yields improved noninvasive genetic 
biomarker prediction performance in patients with WHO grade 4 diffuse astrocytic gliomas.

Key Points

	•	 We evaluated artificial intelligence models for predicting glioblastoma genetics from MRI.

	•	 We assessed 9 different genetic biomarkers that are relevant for treatment or prognosis.

	•	 Combining radiomics and convolutional image features yielded improved performance.

Combining radiomics and deep convolutional neural 
network features from preoperative MRI for predicting 
clinically relevant genetic biomarkers in glioblastoma
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Glioblastoma is the most common primary brain malig-
nancy but remains difficult to treat despite advances in 
surgical, radiation, and medical therapies.1,2 The recent 
discovery that histologically defined glioblastoma en-
compasses several distinct tumor entities has accelerated 
progress in precision therapy targeting specific molecular 
biomarkers.3,4 However, challenges remain for widespread 
tumor genetic testing due to costs and the need for ade-
quate tissue sampling. In addition, in rare cases where bi-
opsy is not possible or declined by the patient, glioblastoma 
is treated presumptively based on imaging alone, which 
precludes genetic testing. As our understanding of glio-
blastoma genetics improves, there is an increasing need 
for reliable, noninvasive methods for predicting genetic 
biomarkers relevant to prognosis and guiding targeted 
therapies.

Several prior studies have demonstrated that various 
clinically relevant glioblastoma genetic biomarkers can 
be inferred based on preoperative MRI using image anal-
ysis techniques. Most prior work has focused on image 
features extracted using radiomics or convolutional 
neural networks (CNNs) as the primary image-based pre-
dictors.5–9 Radiomics features are a set of human-defined 
morphologic, grayscale, and pattern-based features that 
can be applied across multiple different imaging modal-
ities and have proven useful for many different medical 
image-based inference tasks.10 Radiomics features are 
relatively straightforward to define, conceptualize, and in-
terpret, and are both standardized and reproducible.11,12 In 
contrast, CNN-based features are abstract and often diffi-
cult to interpret multiscale features that are “learned” au-
tomatically using CNNs. CNN features are unique to each 
input dataset, which allows considerable versatility but 
also introduces susceptibility to overfitting and lack of re-
producibility.13 Relatively few prior studies have evaluated 
a combination of radiomics and CNN features for onco-
logic inference tasks14–16 and studies specifically assessing 
genetic biomarker prediction in glioblastoma are lacking.

In this study, we present a hybrid approach for preopera-
tive MRI-based glioblastoma genetic biomarker prediction, 
which combines both radiomics features and CNN fea-
tures into a single unified artificial intelligence architecture. 
Our method leverages the strengths of both predefined 
radiomics features and learned CNN features to provide 
improved prediction performance. Predictive models were 
evaluated using a relatively large (n = 400) patient cohort 
with a diverse set of genetic biomarkers, many of which 
are useful either for determining prognosis or for guiding 
investigational targeted therapies.

Materials and Methods

Patient Population

All studies were performed in accordance with appli-
cable guidelines and regulations and were approved by 
an institutional review board with a waiver for informed 
consent. The retrospective study cohort consisted of 
400 adult patients with CNS WHO grade 4 diffuse as-
trocytic gliomas that had a final integrated diagnosis of 
either “Glioblastoma, IDH-wildtype” or “Astrocytoma, IDH-
mutant” using the 2021 World Health Organization (WHO) 
Classification of Central Nervous System Tumors. All pa-
tients underwent preoperative MRI, initial tumor resection, 
and tumor genetic testing at the University of California 
San Francisco medical center between 2015 and 2021. The 
study cohort was identified by searching radiology and pa-
thology databases (Nuance mPower) for all patients who 
received a preoperative planning MRI and had subsequent 
surgical pathology report within the following month with 
a final integrated diagnosis of glioblastoma, IDH-wildtype 
or astrocytoma, IDH-mutant, CNS WHO grade 4. Exclusion 
criteria included any prior history of brain tumor resection 
(n = 18) and incomplete or technically inadequate imaging 
studies (n = 28).

Genetic Biomarker Testing

Nine different pathogenic glioblastoma genetic bio-
markers were evaluated: mutations or deletions of IDH1, 
TP53, PTEN, ATRX, TERT, and CDKN2A/B, MGMT promoter 
methylation, EGFR copy number amplification (including 
accompanying EGFRVIII rearrangement), and combined 
aneuploidy of chromosomes 7 and 10 (most commonly as 
the combination of trisomy 7 and monosomy 10).17 Genetic 
biomarkers were chosen based on prevalence in the study 
cohort as well as their utility for determining tumor type 
(eg, IDH1, ATRX), informing chemotherapeutic manage-
ment (eg, MGMT), determining prognosis (eg, IDH, PTEN), 
and/or guiding targeted therapies (eg, CDKN2A/B, EGFR). 
Gold standard molecular characterization was performed 
as part of routine clinical care at the time of diagnosis 
without knowledge of the imaging predictors developed 
during this study. Methods varied during the study period 
depending on the test availability and insurance reimburse-
ment. Three hundred and five cases in the cohort were char-
acterized with a capture-based targeted next-generation 

Importance of the Study

Accurate radiogenomic assessment of preop-
erative brain MRI has the potential to improve 
care of patients with glioblastoma and could be 
particularly useful for helping to guide the use 
of emerging targeted therapies. This study dem-
onstrates accurate preoperative radiogenomic 
assessment of several common glioblastoma 

genetic biomarkers including some that are 
relevant to investigational therapies. We further 
demonstrate that combining information from 
radiomics and deep learning feature extraction 
methods can lead to improved radiogenomic 
prediction accuracy compared to using either 
type of feature alone.
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DNA sequencing panel as previously described.18 For the 
remaining cases, molecular characterization was accom-
plished  by fluorescence in situ hybridization (PTEN, EGFR) 
and immunohistochemical staining (IDH1, ATRX, TP53).19,20 
All IDH mutations identified by immunohistochemistry 
were confirmed by genetic sequencing. MGMT promoter 
methylation status was determined using a quantitative 
methylation sensitive PCR assay.21

Image Acquisition

A standardized preoperative brain tumor MRI protocol was 
performed at 3.0 Tesla (Discovery 750, GE Healthcare) with 
a dedicated 8-channel head coil (Invivo). The imaging pro-
tocol included 6 3D sequences: T2-weighted, T2-weighted 
FLAIR, susceptibility-weighted (SWI), pre- and postcontrast 
T1-weighted images, and arterial spin labeling (ASL) perfu-
sion images, as well as 2 2D sequences: isotropic diffusion-
weighted images (DWIs) and 55-direction high angular 
resolution diffusion imaging (HARDI). Complete param-
eters for the standardized MRI protocol are provided else-
where.22 Some image data from this study are publicly 
available via the 2021 BraTS challenge, and we plan to 
share the remainder as a separate collection.23,24

Image Preprocessing

All image data were deidentified and converted to NIfTI 
format using dcm2niix v1.0 (https://github.com/rordenlab/
dcm2niix) using default parameters. HARDI data were eddy 
current corrected and processed using the Eddy and DTIFIT 
modules from the Functional MRI of the Brain Software 
Library (FSL) version 6.0.2 yielding mean diffusivity (MD), 
axial diffusivity (AD), radial diffusivity (RD), and fractional 
anisotropy (FA) images.25 All images were registered and 
resampled to the 3D space defined by the T2/FLAIR image 
(1-mm isotropic resolution) using automated nonlinear regis-
tration (Advanced Normalization Tools 2.3.5).26,27 Resampled 
coregistered data were then skull stripped (including face re-
moval) using a previously described and publicly available 
method (https://github.com/ecalabr/brain_mask).22 Finally, 
all images underwent N4 coil bias correction and intensity 
normalization.28 Processing time varied from approximately 
18 min to approximately 35 min per study using a standard 
desktop computer with a 16-core processor, 128 GB of RAM, 
and an Nvidia RTX Titan graphics processing unit.

Deep Learning-Based Automated Tumor 
Subcompartment Segmentation

A previously validated deep learning algorithm was used 
to generate automated 3D segmentations of 3 key compo-
nents of glioblastoma that are seen on MRI: enhancing and 
central nonenhancing/necrotic tumor (together comprising 
the tumor core) and the surrounding T2/FLAIR abnormality 
typically referred to as “edema,” which may also contain 
infiltrative nonenhancing tumor outside of the tumor 
core.29,30 All segmentations were manually corrected by a 
group of trained radiologists with varying experience (in-
cluding authors EC and JR) using ITK-SNAP v3.8.031 and 

subsequently approved by 2 attending neuroradiologists 
with >15 years of experience each as part of the 2021 BraTS 
challenge.24 Manual annotators were not provided any mo-
lecular characterization data.

Radiomics Feature Extraction

Radiomics features were extracted using PyRadiomics 
2.2.0 command line tools with default extraction param-
eters.32 Input images included 11 image contrasts: T1 pre, 
T1 post, T2, T2/FLAIR, SWI, DWI, ASL, MD, AD, RD, and 
FA. Input segmentations included 5 different tumor com-
ponents: whole tumor, tumor core, and each of the 3 in-
dividual tumor compartments. The default set of shape 
features (n  =  26), first-order grayscale features (n  =  19), 
and higher-order grayscale features (n = 75) were extracted 
yielding 5300 radiomics features per patient.

Radiomics Feature Selection

An automated radiomics feature selection process was 
employed to select the 32 best features for inference using 
scikit-learn 0.24 with a 5-fold cross-validation approach to 
reduce selection bias. First, univariate feature selection 
with mutual information was used to select the 1024 best 
correlated features. Next, the best features for each cross-
validation fold were ranked using recursive feature elimi-
nation with a random forest classifier, and the 32 features 
with the best average rank across folds were selected as 
the final feature set. Parameters for recursive feature elim-
ination included 1000 estimators for the random forest 
classifier and a step size of 16 features for each feature 
elimination step.

Network Architecture

A CNN classifier (CNN limb) was constructed using 
TensorFlow 2.4. The CNN limb consisted of a 3D multiscale 
deep convolutional autoencoder with 1, 1, 2, and 2 bottle-
neck residual blocks per level, respectively, and a max-pool 
down-sampling layer (pool size =  [2, 2, 2]) between each 
level.33 Bottleneck blocks included leaky ReLU activation, 
batch normalization, and 40% feature dropout. The number 
of features per layer was set at 32 for the top level and 
doubled after each pooling step. A parallel random forest 
classifier limb was constructed for radiomics feature infer-
ence (radiomics limb) using scikit-learn 0.24. The random 
forest classifier parameters included 32 input features and 
1000 estimators. Each limb yielded a single output logit, 
which was converted to a probability using the sigmoid 
logistic function. The 2 output probabilities (1 from the 
CNN limb and 1 from the radiomics limb) were averaged 
to create a final combined model probability. A probability 
threshold of P ≥ .5 was used to determine a positive result.

Network Inputs and Training

Network training was implemented with 5-fold cross-
validation and a train/test split of 80%/20%. Separate 

https://github.com/rordenlab/dcm2niix
https://github.com/rordenlab/dcm2niix
https://github.com/ecalabr/brain_mask
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networks were trained for each genetic biomarker. 
CNN limb inputs consisted of 96  ×  96  ×  96 voxel cubes 
encompassing the whole tumor (including surrounding 
FLAIR abnormality) after scaling to fit with a 5-voxel margin 
in each dimension. Data augmentation included random 
dimension swaps and rotations of ±0–90 degrees in each 
of the cardinal axes. Training data were sampled such that 
each batch consisted of an equal number of positive and 
negative cases. Model weights were initialized using the 
Glorot initializer.34 Training comprised 40 epochs with a 
batch size of 10 cases on an Nvidia DGX-2 system. Neither 
training validation nor early stopping were used. Binary 
cross entropy loss between predictions and genetic bio-
marker results was minimized using the Adam optimizer.35 
Radiomics limb inputs consisted of the 32 best radiomics 
features identified during feature selection. Radiomics data 
were balanced using SMOTE feature synthesis.36 Training 
was accomplished using the built in “fit” method from the 
sci-kit learn RandomForestClassifier class.

Network Performance Evaluation

Genetic biomarker prediction was evaluated using re-
ceiver operating characteristic (ROC) analysis as well as 
several different scalar metrics for the ROC best point: 
sensitivity, specificity, accuracy, precision, the F1 statistic, 
the Matthews correlation coefficient (MCC), and Youden’s 
index. Statistically significant differences between ROC 
curves were assessed using DeLong’s method with a 
threshold of P < .05.37,38

Results

Genetic Biomarker Testing

Genetic biomarker testing was not uniform across the pa-
tient cohort. Gene test frequency, included variants, and 
prevalence in the study cohort are presented in Table 1.17,39,40 

In addition to the listed biomarkers, all cases were also 
tested for IDH2 p.R172 mutations, however, none were iden-
tified in the study cohort. Of note, 29 of 400 patients in the 
cohort had tumors with IDH1 p.R132 hotspot mutations cor-
responding with an integrated diagnosis of “Astrocytoma, 
IDH-mutant, CNS WHO grade 4”. While these tumors are 
now classified independently of IDH-wildtype glioblast-
omas in the 2021 WHO Classification of CNS Tumors, they 
were included in the study cohort to allow prediction of IDH 
mutations.

Image Preprocessing, Segmentation, and 
Radiomics Feature Extraction

Figure 1 shows a schematic flow chart of the relevant 
image preprocessing, tumor segmentation, and radiomics 
feature extraction steps including all instances where user 
input was required. All study data were successfully pro-
cessed through all steps of the pipeline. Data processing 
time varied depending on the amount of manual input re-
quired, but automated steps were accomplished in approx-
imately 30 min per case.

Deep Neural Network Architecture

A graphical representation of the deep CNN architec-
ture used for genetic biomarker inference is provided in 
Supplementary Figure 1. The total number of trainable 
parameters was 3 564 279 for each CNN instance. Identical 
models were trained for each of the evaluated genetic 
biomarkers. Code for the CNN limb is available at https://
www.github.com/ecalabr/gliomarad.

Model Inputs and Outputs

Example image inputs and genetic biomarker prediction 
outputs for a single patient are shown in Supplementary 
Figure 2. Image inputs included 3D image volumes of the 

  
Table 1.  Genetic biomarker testing details for the study cohort

Genetic biomarker Positive/
tested 

Male/ 
female 

Age ± 
Std. 

Variants included 

IDH1 29/400 241/159 60 ± 13 Any p.R132 hotspot mutation (most often p.R132H)

MGMT 209/381 233/148 60 ± 13 Methylation of ≥2/17 promoter CpG sites

TP53 174/398 239/159 60 ± 13 Any pathogenic mutation or deletion

PTEN 210/399 240/159 60 ± 13 Any pathogenic mutation or deletion

ATRX 34/396 238/158 60 ± 13 Any pathogenic mutation or deletion

TERT 239/305 178/127 60 ± 14 Either c.-146C>T or c.-124C>T promoter hotspot mutation

CDKN2A/B 200/305 178/127 60 ± 14 Homozygous/biallelic deletion of CDKN2A and CDKN2B

EGFR 101/399 240/159 60 ± 13 Focal gene amplification (including accompanying EGFRVIII 
structural rearrangement)

Chromosomes 7 
and 10

221/305 178/127 60 ± 14 Combined polysomy of 7 and monosomy of 10

For each biomarker, the number of positive cases and total number of tested cases are listed along with patient sex and average age. Specific 
genetic variants that were considered are listed in the far-right column.

  

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac060#supplementary-data
https://www.github.com/ecalabr/gliomarad
https://www.github.com/ecalabr/gliomarad
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac060#supplementary-data
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entire tumor region for each of the 11 MRI contrasts in-
cluded in the study. Outputs consist of probabilities of 
each individual genetic biomarker being present from the 
radiomics and CNN models, respectively, as well as a com-
bined probability.

Genetic Biomarker Prediction Performance

ROC curves for each genetic biomarker are shown in Figures 
2–4, and a summary of evaluation metrics is provided in 
Table 2. Both radiomics and CNN methods were able to pre-
dict each genetic biomarker with performance that could 
not be explained by chance alone. For some genetic bio-
markers, such as CDKN2A/B homozygous deletion, the CNN 
feature-based model showed better performance by all met-
rics, while for others, such as TERT promoter mutation, the 
radiomics feature-based model showed better performance. 
Combined model receiver operating characteristic area 
under the curve (ROC AUC) was highest for ATRX (0.97) and 
IDH1 (0.96) mutations; however, these biomarkers had the 

lowest prevalence in the study cohort and therefore may be 
better assessed using metrics that account for class imbal-
ance such as precision (0.42 and 0.65, respectively) or MCC 
(0.60 and 0.64, respectively). Combined model ROC AUC was 
lowest for MGMT promoter methylation (0.77) and PTEN 
mutation/deletion (0.77).

Comparison With Isolated Radiomics or CNN 
Feature-Based Models

The combined radiomics and CNN feature model showed 
improved ROC AUC compared to either the radiomics or 
CNN models individually for all evaluated genetic bio-
markers. Combined model ROC AUC was statistically supe-
rior (DeLong’s P < .05) to at least one of the individual models 
(radiomics or CNN) for all genetic biomarkers except for 
IDH1 mutations and was superior to both individual models 
(radiomics and CNN) for combined chromosome 7 and 10 an-
euploidy, MGMT promoter methylation, and PTEN mutation/
deletion. Combined model performance by other metrics 

  

Co-registration to 
T2/FLAIR 

Manual
evaluation

MD, AD, RD, FA
INPUT

OUTPUT

Multi-modal MRI (n = 400)

Skull stripping 

Coil bias correction 

Tumor segmentation 

Diffusion tensor
processing 

Image data 
augmentation 

Radiomics feature 
extraction 

Convolutional neural 
network model 

pCNN

pRadiomics

Probability
averaging

Final
predictions

Random forest 
model 

Manual
correction

Figure 1.  Flow chart of image processing steps. MR images (INPUT) were passed through several sequential automated image processing steps 
(rounded boxes) with minimal human input (diamond boxes). Each limb of the prediction model (convolutional neural network and radiomics) yields 
a single output logit, which is transformed into a probability using the sigmoid function. Final predictions (OUTPUT) were generated by averaging 
probabilities from the 2 limbs. Diffusion tensor derived contrasts include: mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and frac-
tional anisotropy (FA).
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was variable but generally better than or comparable to the 
better of the 2 individual models. In some cases, select com-
bined model metrics were slightly worse than the better of 
the 2 individual models (eg, the precision metric for ATRX).

Discussion

In this study, we evaluated an artificial intelligence archi-
tecture that combines both radiomics and CNN image fea-
tures into a single model for predicting genetic biomarkers 

in glioblastoma. We found that combining these 2 types of 
image features resulted in significantly improved genetic 
biomarker prediction performance in most cases and syn-
ergistic improvement in some cases. In our dataset, pre-
diction performance of the individual radiomics and CNN 
models varied significantly between genetic biomarkers 
with the radiomics model performing better in some 
cases and the CNN model performing better in others. This 
highlights the fact that radiomics and CNN feature rele-
vance may vary significantly depending on the specific 
inference task. One potential advantage of the proposed 
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Figure 2.  Fivefold cross-validation receiver operating characteristic curves for radiomics, convolutional neural network, and combine models for 
predicting pathogenic alterations in ATRX, IDH1, and chromosomes 7 and 10. Best points are indicated with an outlined star. Average area under 
the curve is included in the legend of each subfigure. P values for DeLong’s test for ROC curve difference between the combined model and the 
radiomics (prad) and CNN (pcnn) models, respectively, are reported with “*” denoting statistical significance. CNN, convolutional neural network; 
ROC, receiver operating characteristic.
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combined approach is that it can balance the contribution 
of radiomics and CNN features and can perform equally 
well for tasks that are better suited for either type of image 
feature.

In addition to presenting a new method for genetic bi-
omarker prediction in glioblastoma, this study provides 
new insight into the feasibility of image-based genetic pre-
diction for several genetic biomarkers that have not pre-
viously been well evaluated. For example, our model was 
able to predict CDKN2A/B homozygous deletion with a ROC 
AUC of 0.86 and accuracy of 79%. This genetic biomarker 

is present in approximately 60% of IDH-wildtype glioblast-
omas, and can be targeted using small molecule inhibitors 
of CDK4/6, which have shown promise for treating other 
tumor types and are currently being evaluated in glioblas-
toma.41,42 These results suggest that image-based genetic 
inference may be useful for a variety of different glioblas-
toma genetic biomarkers beyond IDH1 and MGMT, which 
have largely dominated prior related work. However, 
image-based genetic inference can only be accurate if the 
target biomarker produces an imaging phenotype. It is 
conceivable, that some genetic alterations may not yield 
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Figure 3.  Fivefold cross-validation receiver operating characteristic curves for radiomics, convolutional neural network, and combine models for 
predicting pathogenic alterations in CDKN2A/B, TERT promoter, and EGFR. Best points are indicated with an outlined star. Average area under 
the curve is included in the legend of each subfigure. P values for DeLong’s test for ROC curve difference between the combined model and the 
radiomics (prad) and CNN (pcnn) models, respectively, are reported with “*” denoting statistical significance. CNN, convolutional neural network; 
ROC, receiver operating characteristic.
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discernable imaging phenotypes and therefore may not 
be amenable to image-based inference. By similar logic, 
genetic alterations that frequently occur together may be 
difficult to distinguish. For example, in our study cohort, 
only 8 patients had either ATRX or IDH1 mutation, but not 
both, and the combined model was only able to identify 4/8 
(50%) of these discordant mutations. The low prevalence of 
these genetic biomarkers also highlights the issue of class 
imbalance, which can lead to overly optimistic ROC AUC 
values. For example, the best ROC AUC values in our study 
were achieved for biomarkers with the lowest prevalence 

(ie, ATRX, IDH1). Model performance on biomarkers with 
low prevalence may therefore be better evaluated using 
metrics that account for class imbalance such as precision 
or MCC.

One major limitation of this study is the lack of external 
validation. Unfortunately, glioblastoma genetic testing is 
still not widely adopted, particularly for newer less studied 
genetic biomarkers. In addition, there is wide variation in 
preoperative brain tumor MR imaging protocols in terms 
of sequences, field strength, and acquisition dimension-
ality. As result, many publicly available glioblastoma MRI 
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Figure 4.  Fivefold cross-validation receiver operating characteristic curves for radiomics, convolutional neural network, and combine models for 
predicting pathogenic alterations in TP53, MGMT, and PTEN. Best points are indicated with an outlined star. Average area under the curve is 
included in the legend of each subfigure. P values for DeLong’s test for ROC curve difference between the combined model and the radiomics (prad) 
and CNN (pcnn) models, respectively, are reported with “*” denoting statistical significance. CNN, convolutional neural network; ROC, receiver op-
erating characteristic.

  



9Calabrese et al. Glioblastoma genetic biomarker prediction from MRI
N

eu
ro-O

n
colog

y 
A

d
van

ces

datasets do not provide genetic data and/or include only a 
limited number of MRI sequences (typically T1, T2, FLAIR, 
and postcontrast imaging). For these reasons, there are no 
publicly available datasets that could reasonably be used 
to externally validate the models proposed in this study. It 
should be noted that recent efforts to create a generalizable 
model for MGMT promoter methylation status prediction 
in a multi-institution glioblastoma MRI dataset yielded rel-
atively poor performance, which is presumed to be related 
to data heterogeneity and/or the limited variety of available 
MRI sequences.24 Given these findings, presented results 
should be interpreted as “best case scenario” as perfor-
mance on external data would almost certainly be worse. 
However, as the clinical importance of glioblastoma genetics 
continues to grow and preoperative MRI protocols continue 
to improve, it seems likely that data relevant to this study will 
become more widely available in the future. To this end, the 
codebase for this study has been made publicly available at 
https://www.github.com/ecalabr/gliomarad and image data 
are publicly available via the 2021 BraTS challenge.23,24

As the clinical potential of glioblastoma radiogenomics 
continues to mature, there is increasing need for new pre-
dictive modeling methods that can better utilize available 
image data. Our results suggest that there may be a role 
for combining radiomics and CNN features for improved 
genetic biomarker prediction accuracy in glioblastoma. 
This approach has shown promise for other radiologic/on-
cologic inference tasks and may ultimately prove to be an 
important step toward integration of image-based genetic 
inference into clinical workflows. Future work will be nec-
essary to evaluate the optimal architectures for combining 
radiomics and CNN features and for assessing generaliza-
bility and portability to other datasets.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.

  
Table 2.  Performance metrics for the, radiomics, convolutional neural network (CNN), and combined models for each genetic biomarker

Biomarker Model AUC pcombined Sens.  Spec.  Acc.  Prec.  F1 MCC Youden 

ATRX Radiomics 0.93 .083 0.80 0.95 0.94 0.59 0.68 0.65 0.75

CNN 0.95 .001* 1.00 0.83 0.84 0.34 0.51 0.53 0.83

Combined 0.97  0.97 0.88 0.89 0.42 0.59 0.60 0.85

IDH1 Radiomics 0.89 .108 0.83 0.93 0.92 0.47 0.60 0.59 0.76

CNN 0.96 .107 1.00 0.83 0.84 0.30 0.47 0.50 0.83

Combined 0.96  0.86 0.94 0.93 0.52 0.65 0.64 0.80

Trisomy 7  
Monosomy 10

Radiomics 0.79 .004* 0.69 0.76 0.71 0.88 0.77 0.40 0.45

CNN 0.79 <.001* 0.71 0.75 0.72 0.88 0.78 0.41 0.45

Combined 0.86  0.74 0.87 0.77 0.94 0.82 0.55 0.60

CDKN2A/B Radiomics 0.76 <.001* 0.70 0.71 0.70 0.82 0.76 0.39 0.41

CNN 0.85 .476 0.74 0.79 0.76 0.87 0.80 0.51 0.53

Combined 0.86  0.82 0.73 0.79 0.85 0.84 0.54 0.55

TERT Radiomics 0.87 .504 0.84 0.75 0.82 0.92 0.88 0.54 0.59

CNN 0.75 <.001* 0.71 0.68 0.70 0.89 0.79 0.33 0.38

Combined 0.85  0.87 0.67 0.83 0.90 0.89 0.52 0.54

EGFR amplification Radiomics 0.77 .124 0.70 0.74 0.72 0.59 0.64 0.42 0.44

CNN 0.72 <.001* 0.68 0.66 0.66 0.51 0.58 0.32 0.33

Combined 0.80  0.77 0.71 0.73 0.58 0.66 0.45 0.47

TP53 Radiomics 0.75 .115 0.68 0.73 0.71 0.50 0.58 0.37 0.40

CNN 0.71 <.001* 0.54 0.78 0.71 0.50 0.52 0.31 0.32

Combined 0.79  0.75 0.68 0.70 0.48 0.59 0.39 0.42

MGMT promoter 
methylation

Radiomics 0.70 <.001* 0.63 0.70 0.66 0.77 0.69 0.32 0.33

CNN 0.73 .005* 0.72 0.63 0.68 0.75 0.73 0.34 0.34

Combined 0.77  0.70 0.74 0.72 0.81 0.75 0.43 0.44

TEN Radiomics 0.74 .014* 0.73 0.69 0.71 0.72 0.73 0.42 0.42

CNN 0.69 <.001* 0.68 0.62 0.65 0.66 0.67 0.30 0.30

Combined 0.77  0.75 0.69 0.72 0.72 0.74 0.44 0.44

Acc., accuracy; F1, F1 statistic; MCC, Matthew’s correlation coefficient; Prec., precision; ROC AUC, receiver operating characteristic area under 
the curve; Sens., sensitivity; Spec., specificity; pcombined: P value for DeLong’s test for ROC curve difference compared to the combined model. “*” 
denotes P < .05.
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