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1 Introduction

The LHC collaborations have recently discovered the Higgs boson at around 125 GeV [1, 2],

but have yet to find any of the particles which should have appeared below the TeV scale as

required to solve the hierarchy problem [3]. This suggests that if supersymmetry (SUSY) is

present at the TeV scale, it deviates from its most naive implementations. There are many

suggestions as to how Nature could be supersymmetric but still avoid the bounds applied
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by the LHC. In particular, there has been a lot of interest in substituting the R-parity

of the Minimal Supersymmetric Standard Model (MSSM) for a continuous R-symmetry,

(U(1)R) [4, 5] (see [6–26] for recent work in this direction).

One interesting feature of imposing a U(1)R symmetry is that it allows the ordinary

down-type Higgs to be in a supermultiplet with one of the charged-lepton doublets,

H ≡ (H, `L) (1.1)

and still avoid phenomenological bounds. This intriguing possibility has been discussed

in several recent papers: see [16, 19, 27] for model building, [28] for stop phenomenology,

and [29] for a suggested explanation of the recent eejj, eνjj excess [30, 31] as well as further

discussion on light squark phenomenology. For the purpose of this work we will focus on the

possibility that the Higgs doublet is identified with the selectron doublet, though much of

our discussion will be more general. This is motivated in section 2 as it naturally explains

the smallness of the electron mass.

While it is more economical to construct SUSY models where the Higgs is identified

with a slepton, usually this causes phenomenological difficulties due to violation of lepton

number. In particular, the Kähler potential generates electroweak-scale Dirac masses be-

tween the partner neutrino (defined as the neutral fermionic component of Le) and the

gauginos. As a result the partner neutrino generically becomes too heavy. This problem

can be avoided by introducing a global symmetry to forbid Majorana neutralino masses,

and adding additional adjoint chiral superfields as Dirac partners of the gauginos. This en-

sures a massless physical neutralino that can be identified with the neutrino. However, due

to the smallness of neutrino masses, it is important that the symmetry be preserved under

electroweak symmetry breaking. This requires that the global symmetry be an R-symmetry

such that the neutrino be charged under the U(1)R but still leave the Higgs uncharged.

One may wonder why there aren’t additional constraints from the many experiments

probing lepton flavor number violation. This is because these models generically only have

lepton number violation for one flavor (in our case the electron). The stringent limits from

lepton number changing processes rely on violation of at least two lepton flavor numbers

(most notably µ→ eγ, which requires muon and electron number violation).

In this work we explore how Higgs-as-slepton models can be further probed in sev-

eral different ways. A generic feature of these models is a mixing between the electron

doublet and the gauginos, resulting in the physical electron doublet no longer equal to

the corresponding gauge eigenstate. This mixing puts bounds on the size of the wino and

bino masses. Previous papers have emphasized the corresponding bounds from the high

energy frontier through neutral and charged current universality measurements. In this

work we explore the limits from low energy measurements of GF . We find these to be more

stringent then the high energy constraints for bounds on the bino masses and competitive

with bounds on the wino masses. Furthermore, we look at the discovery potential of the

future e+e− collider program. Intriguingly, we find that such a machine has the potential

to probe this variant of supersymmetry up to O(10 TeV).

Another aspect of the model which we will examine is the breaking of R-symmetry

through Planck-scale effect, naturally generating a small parameter in the theory. This is
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responsible for generating neutrino masses which would otherwise be zero, but may also

lead to effects such as proton decay.

Experimentally, there has recently been significant development in the neutrino sector.

The differences in the squares of the neutrino masses and the three neutrino mixing angles

have been measured [32]. Having the Higgs be part of a supermultiplet with the lepton

has crucial implications in terms of neutrino phenomenology, the consequences of which

we will explore. Planck-scale suppression of R-symmetry breaking effects lead to naturally

small neutrino masses. Assuming this is the only source of neutrino masses, we find that in

order to obtain the large mixing angles measured by neutrino oscillation experiments, the

model typically requires a low cutoff scale of at most O(10 TeV). In other words, a generic

minimal supersymmetric model with the Higgs playing the role of a slepton requires a low

ultraviolet (UV) completion scale.

In addition to contributing to neutrino masses, R-symmetry breaking can also lead to

proton decay if the gravitino mass is very heavy. Neutrino mass measurements suggests

a gravitino mass range between O(10 eV)–O(10 keV) assuming generic gravity-mediated

R-breaking. With such masses the model could have rapid proton decay which restricts

the possible UV completions of the model.

This paper is structured as follows. We begin by outlining general properties of the

Higgs-as-slepton models in section 2. We then proceed to study the constraints on gaugino

masses from the lepton-gaugino mixing in section 3. Phenomenological implications on

future e+e− colliders are covered in section 4. Implications of the lepton mixing angles on

these models are discussed in section 5. We move on to bounds on the gravitino mass from

proton decay and neutrino mass measurements in section 6. We conclude in section 7 with

a summary of our main results.

2 The basics of Higgs-as-slepton models

We consider the most minimal version of the Higgs-as-slepton model from a bottom-up

perspective, in which the only additional fields added to the Higgs-less Standard Model

(SM) and their supersymmetric partners are the Dirac partners of the gauginos. Table 1

lists the superfields and their gauge and U(1)R representations. As mentioned earlier we

have chosen the Higgs to be in Le. In places where we generalize our discussion to other

choices of lepton flavor, this will be stated in the text. The R-charges are chosen so that

left-handed (LH) and right-handed (RH) quarks and leptons form R-symmetric Dirac pairs,

and that the Higgs vacuum expectation value (VEV) does not break R-symmetry.

Note that we keep B and L as free parameters, and thus they are not identified with the

usual baryon and lepton numbers. Based on our assignments, the quarks have R-charges

B, the muon and tau −L, while the electron always carries R-charge −1. Moreover, the

normalization of L and B is not determined such that different normalization result in

different models with different phenomenology. We learn that B and L are parameters

that determine the R-charge of the quarks and the second- and third-generation lepton

superfields. No significant change in phenomenology arises from different choices of B,

except for B = 1/3 or 1 which lead to rapid proton decay and are hence forbidden (see
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(SU(3)C , SU(2)L)Y U(1)R

H ≡ Le (1, 2)−1/2 0

Ece (1, 1)1 2

Lµ,τ (1, 2)−1/2 1− L
Ecµ,τ (1, 1)1 1 + L

Q1,2,3 (3, 2)1/6 1 +B

U c1,2,3 (3̄, 1)−2/3 1−B
Dc

1,2,3 (3̄, 1)1/3 1−B
W aα (8, 1)0 + (1, 3)0 + (1, 1)0 1

Φa (8, 1)0 + (1, 3)0 + (1, 1)0 0

Table 1. Superfields in the minimal low energy model with the Higgs doublet identified with

the selectron doublet. The U(1)R charges are parameterized with two unknown variables L and

B, which gives the most general assignment consistent with the requirement of the existence of

Yukawas, R-charge conservation after electroweak symmetry breaking, and supersymmetry. The

U(1)R in the table refers to the scalar component of the superfield.

section 6). Therefore, in our discussion we only consider the generic B case. On the other

hand, viable models can be built for several choices of L. In particular we will consider the

L = −1, L = 0, L = 1 and the generic L case, that is L 6= −1, 0, 1. Each of these four choices

result in distinct lepton phenomenology and hence can be regarded as a separate model.

For a generic assignment of B and L, the superpotential consistent with the sym-

metries is

W =

3∑
i,j=1

yd,ijHQiD
c
j +

∑
i,j∈{µ,τ}

ye,ijHLiE
c
j . (2.1)

For the B = 1/3 or L = 1 cases there are extra terms, but we do not discuss them here.

In the case L = 1, the details of which can be found in [19, 28].

The Higgs-as-slepton model faces a number of difficulties and here we discuss two of

them. First is the fact that supersymmetry forbids a mass term for the up-type quarks. This

problem can be solved by introducing non-renormalizable SUSY-breaking Kähler terms

suppressed by a UV cutoff scale, Λ, ∫
d4θ

X†

M

H†QU

Λ
, (2.2)

where M is the R-symmetric mediation scale and X is the spurion whose vacuum expecta-

tion value 〈FX〉 corresponds to the SUSY breaking scale. Perturbativity of the couplings

requires the cutoff scale to be at most 4πTeV. Thus the model requires a low-scale UV

completion. In principle, one can avoid this by introducing an additional pair of Higgs

doublets [16, 19], which then allows top masses to be generated by the tree-level superpo-

tential. However, as we will show in section 5, reproducing the correct lepton mixing angles

also requires a low cutoff if we assume neutrino masses arise from generic R-breaking. This

requirement holds even with the additional Higgs doublets. The second problem is that the
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superpotential cannot provide a mass term for the fermion component of the H = Le dou-

blet (related to the left-handed electron field) since HH = 0. Again, this can be resolved

by generating a mass in an analogous way [33],∫
d4θ

X†X

M2

HDαHDαE3

Λ2
, (2.3)

where Dα is the superspace derivative. If the electron doublet is the Higgs partner, then

this provides a natural explanation for the smallness of the electron mass, hence motivating

our original choice.

One of the most important consequences of having the Higgs as a slepton is the mixing

between the electroweak gauginos and the Higgs fermionic superpartner. This puts generic

constraints on such models. The Kähler potential generates weak scale Dirac mass terms

given by ∫
d4θH†eVH ⊃ − gv√

2
eLW̃

+ − gv

2
νeW̃

0 +
g′v

2
νeB̃

0 , (2.4)

where, g, g′ are the SU(2)L and U(1)Y coupling constants and v ' 246 GeV is the vacuum

expectation value of the Higgs. The Dirac wino and bino masses, MW̃ and MB̃, are of order

of the soft R-symmetric SUSY-breaking scale Msoft ≡ 〈FX〉/M . This implies a mixing of

order of the ratio of the electroweak scale to the soft R-symmetric scale, which we quantify

using the small parameter

ε ≡ gv

2MW̃

=
mW

MW̃

, (2.5)

where mW is the mass of the W boson. The above implies that the mass of the gauginos

must be high. As discussed in the following, the upper bounds on ε are O0.1. The mixing

can also depend on the size of the non-renormalizable operators arising at the scale Λ. These

contributions are model dependent and will be assumed to be negligible. We have also

neglected any R-symmetry breaking effects, although we will need to include them when

discussing neutrino masses and proton decay later. We also assume that |M2
W̃
−M2

B̃
| �

m2
W . While the mixing between the winos and the binos is modified should we relax this

assumption, it turns out to have no significant effects on the phenomenology considered in

our work. With the above assumptions, and working to O(ε2) the mass eigenstates are

χ−1,L =
(
1− ε2

)
e−L −

√
2εψ−

W̃
χc,+1,R = ec,+R (2.6)

χ−2,L =

(
1− 1

2
ε2
)
ψ−
W̃

+
√

2εe−L χc,+2,R = W̃+ (2.7)

χ−3,L = W̃− χc,+3,R = ψ̃+ (2.8)

χ0
1,L =

(
1− 1

2
ε2
(
1 + α2t2w

))
νe − εψW̃ + εαtwψB̃ (2.9)

χ0
2,L =

(
1− 1

2
ε2
)
ψW̃ + ενe + ε2

αtw
1− α

ψB̃ χc,02,R = W̃ 0 + ε2
α2tw

1− α2
B̃ (2.10)

χ0
3,L =

(
1− 2

1
ε2α2t2w

)
ψB̃ − εαtwνe − ε

2 α3tw
1− α2

ψW̃ χc,03,R = B̃ − ε2 α2tw
1− α2

W̃ 0 (2.11)

where tw denotes the tangent of the Weak mixing angle, and α ≡ MW̃ /MB̃. (For details

on the mixing matrices and diagonalization, see appendix A.)
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3 Limits on gaugino-electron doublet mixing

Previous works have shown that the strongest constraints on the model arise from the

mixing between the gaugino and the electron doublet [16, 27]. The bounds from neutral

current universality have been emphasized (with a mention of the weak charged-current

universality bounds in ref. [27]). Charged-current interactions also provide a different set

of constraints through non-standard neutrino interactions (NSI) [34–39]. In this section

we compute the neutral-current bounds in our general framework and compare the results

with additional bounds from NSI. Note that at tree-level neutral current effects can only

constrain the wino masses since this arises from mixing of the electrons in the Zee in-

teraction, while charged current measurements are affected by both electron and neutrino

mixing in the Weν, yielding bounds on both the wino and bino masses.

We start by computing the electron neutral current. Definitions of the mixing matrices

UC,L, UC,R and UN,L used here are provided in appendix A. The interaction is given by

∆L =
g

cw

[(
c2w − |(UC,R)11|2

)
(χc,+1,R)†σ̄µZµχ

c,+
1,R

−
(
c2w −

1

2
|(UC,L)11|2

)
(χ−1,L)†σ̄µZµχ

−
1,L

]
. (3.1)

Keeping only terms to O(ε2), this gives

∆L =
g

cw

[
−s2w(χc,+1,R)†σ̄µχc,+1,R −

(
1

2
− s2w

)
(χ−1,L)†σ̄µχ−1,L

]
Zµ −

g

cw
ε2(χ−1,L)†σ̄µZµχ

−
1,L,

(3.2)

from which we obtain the axial current coupling of the Z to fermions

gA = gSMA
[
1 + 2ε2

]
, gSMA =

g

2cw
, (3.3)

where gSMA is the SM value of the axial coupling. (Bounds on the vector current are much

weaker and hence irrelevant for this discussion.) Experimentally the bounds on the axial

current are [32], ∣∣∣∣δgeAgeA
∣∣∣∣ ≈ 1.2× 10−3 (90% CL) . (3.4)

This stringent bound applies only to the wino mass. Bounds on the bino mass arise

from modifications of the charged current. The left-handed electron charged current are

described by

∆L = g

(
(UN,L)∗21(UC,L)21 +

1√
2

(UN,L)∗11(UC,L)11

)
Wµ(χc,+1,R)†σ̄µχ0

1,L (3.5)

=
g√
2

(
1 +

ε2

2

(
1− α2t2w

))
Wµ(χc,+1,R)†σ̄µχ0

1,L . (3.6)

Ref. [27] computed the charged current universality constraints from τ decays. This corre-

sponds to the limit [40],
|δg|
gSM

. 2.6× 10−3 (90% CL) . (3.7)
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Figure 1. Current limits on the bino and wino masses. The regions in blue are excluded by NSI

constraints and depend on both the bino and wino mass, while the region in red is ruled out by

neutral current constraints. The limits from charged current universality are shown in green.

There are more stringent constraints arising from NSI interactions. The most stringent

constraint, in models where the Cabibbo-Kobayashi-Maskawa (CKM) matrix is assumed

to be unitary, arise from taking the ratio of GF measured in two different ways. The first is

through beta- and Kaon- decays and the second (and more precise) through muon decay.

If the CKM is unitary then these should be equal to each other and the ratio gives the

bound [34],
|δg|
gSM

. 4.0× 10−4 (90% CL) . (3.8)

This limit, as well as the one from the neutral current, are presented in figure 1. We see

that while neutral current interactions place a stronger constraint on the wino mass than

NSI, it does not constrain the bino mass. Meanwhile, the NSI bounds on the bino mass are

generally weaker than on the wino mass due to a tw suppression in the bino mixing with

the neutrino. Combining the NSI and neutral current bounds, we can put a constraint

on the bino mass of MB̃ & 1.2 TeV. This is more stringent than the existing universality

constraint of about 500 GeV [27].

4 Discovery potential at an e+e− collider

The Higgs-as-slepton model generates deviations of the SM couplings in the electron in-

teractions through modifications of pure SM couplings and from additional interactions

with the gauginos. This leads us to expect significant discovery potential at an e+e− col-

lider. In this section we consider different 2→ 2 processes that will deviate from their SM

predictions. In the following we keep terms to O(ε2) and we ignore all non-renormalizable

– 7 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
0

e

e
γ

W−

W+ e

e

Z
W−

W+ e

e

ν

W−

W+

e

e

e

Z

Z

e

e

e

Z

Z

e

e

χ̃−2

h

Z

e

e

χ̃−2

Z

h e

e

Z
Z

h

Figure 2. Feynman diagrams for the 2 → 2 processes that we consider in this work. The top

row shows e+e− → W+W−, the middle row represents e+e− → ZZ, and the bottom process is

e+e− → Zh. We use χ̃−2 to denote the Dirac spinor
(
χ−2,L, (χ

c,+
2,R)†

)
.

corrections arising at the scale Λ. In particular we consider, e+e− →W+W−, ZZ, hZ. The

relevant Feynman diagrams are displayed in figure 2. Naively one would expect to also have

e+e− → hh arising from chargino exchange, however these turn out not to arise at tree

level up to O(ε4) due to angular momentum conservation suppressing s-wave production.

We use the Feynman rules detailed in appendix A to compute the cross-sections.

To study projections at a future collider we use the condition that the significance,

that we take to be S/
√
B, where S is the signal and B is the background, is larger than

1.645 (corresponding to a 90% confidence interval),

L × δσ√
L× σSM

> 1.645 , (4.1)

where L is the luminosity of the collider and δσ ≡ σBSM − σSM. We expect this to be a

reasonable estimate due to the controlled environment offered by a lepton collider, leading

to negligible backgrounds.

One subtlety is the cross-section diverges for small t, or equivalently small |η|, due to

a Rutherford singularity. In order to remove sensitivity to this divergence we cut off the

phase space integration at |η| = 2. To avoid this complication in our expressions, we quote

the differential d(δσ)/dt for each process.

4.1 e+e− →W+W−

We begin by computing the effects to e+e− →W+W− scattering. The Feynman diagrams

which contribute up to O(ε2) are shown in figure 2. Note that there are no diagrams with

virtual charginos or neutralinos since adding these requires paying the price of additional

ε’s in the vertices. The only modifications to the SM cross-section are from deviations in
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the Zee couplings. The effects considered here are a close analog to deviations considered

in tW → tW scattering at the LHC from anomalous Ztt couplings [41]. The cross-sections

are straightforward to compute but the expressions are complicated without making some

approximations. For simplicity we only quote the result to lowest order in m2
V /s (V = h, Z,

or W ), though in producing the figures we use the full expressions. The result for the

signal is

d(δσ)

dt
=

1

4

β

32πs

{
2e4

s4w

(
1
2 − s

2
w − α2

)
α2

(−t)
M2
W̃

s+ t

s
+O

(
m2
V

s
,
s2

M4
W̃

)}
, (4.2)

where β ≡
√

1− 4m2
W /s is the velocity of either W boson, sw is the sine of the weak

mixing angle, s ≡ (pe− + pe+)2, t ≡ (pW− + pW+)2 and α = mZ/mW .

4.2 e+e− → ZZ

Next we consider e+e− → ZZ scattering, depicted in figure 2. As for W+W−, the chargino-

exchange diagrams only arise at higher orders in ε. Also in this process the deviation from

the SM is in the Zee coupling, but, unlike in the W+W− case the total cross-section does

not grow with energy but is roughly constant. The difference of the energy scaling between

ZZ and W+W− production can be traced back to the algebra of SU(2) or equivalently the

fact that there doesn’t exist a triple gauge coupling ZZZ in the model. The signal is,

d(δσ)

dt
=

1

2

1

4

β

32πs

{
2e4

s4wc
4
w

(
1− 2s2w

)2 m2
W

M2
W̃

s2 + 2st+ 2t2

t(s+ t)
+O

(
m4
V

s2
,
s2

M4
W̃

)}
, (4.3)

where here β ≡
√

1− 4m2
Z/s gives the speed of one of the Z bosons.

Note that for e+e− → ZZ the deviation of the coupling is factorizable as the two

diagrams (see figure 2) have the same dependence on the anomalous coupling. Thus the

new physics contribution is just a rescaling of the SM cross-section.

4.3 e+e− → hZ

Another interesting channel at a lepton collider is hZ production. The Feynman diagrams

are shown in figure 2 with the beyond the SM (BSM) effects entering from chargino ex-

change as well as modifications to the Zee coupling. Since the χ̃2he vertex does not have

an ε suppression, these diagrams are still of O(ε2). The signal is,

d(δσ)

dt
=

1

4

β

32πs

{
e4

s4wc
2
w

(
1

2
− s2w

)
(−t)
M2
W̃

s+ t

s
+O

(
m2
V

s2
,
s2

M4
W̃

)}
, (4.4)

where

β ≡
√

1−m2
Z/E

2
Z , EZ ≡

√
s

2

(
1 +

m2
Z

s
−
m2
h

s2

)
(4.5)

such that β denotes the speed of the Z boson. The signal is roughly the same as that

of W+W− production, however the SM cross-section of hZ is significantly smaller due to

– 9 –
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Figure 3. The potential reach from e+e− → V V at a future lepton collider as a function of

luminosity. The hZ deviations are by far the largest as they scale quickly with energy and have

suppressed SM contributions compared to W+W−.

the relatively small hZZ vertex. This makes deviations easier to identify, increasing its

sensitivity to new physics.

Figure 3 compares the reach of the different channels as a function of luminosity for a

1 TeV linear collider. The reach at such a collider is striking. A 300 fb−1 collider can probe

wino masses up to MW̃ ∼ 5.4 TeV, MW̃ ∼ 2.3 TeV, and MW̃ ∼ 11.5 TeV for W+W−, ZZ,

and hZ respectively. The scale probed by hZ is impressive, exploring physics well beyond

the TeV scale. Furthermore, correlated excesses in all these channels would be a smoking-

gun for the model. These projections highlight the promising opportunities offered by an

e+e− collider in testing Higgs-as-slepton models.

Lastly, we note that three body production channels can likely be used to probe the

model further. In particular, modifications to hhZ production (important for measuring

the Higgs-trilinear coupling) are also affected at O(ε2). We leave the study of these channels

for future work.

5 UPMNS and the need for a TeV-scale cutoff

We next discuss the neutrinos sector in Higgs-as-slepton models. For a generic choices of

L, that is, L 6= 0, 1,−1, the U(1)R symmetry forbids neutrino masses. Thus, all neutrino

masses are U(1)R-breaking, which can naturally explain the hierarchy between neutrinos

and the rest of SM fermions masses. (Exceptions occur in the case L = 0,−1, which we will

address later.) One extra ingredient in the model is that since it singles out one neutrino

flavor to be the Higgs superpartner, this can lead to suppression of the mixing between

the Higgs-partner neutrino with the other two neutrino flavors, with obvious implications

for the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, UPMNS. A large suppression

of one or more of the mixing angles would be inconsistent with measured values of the

|θ12| ≈ 0.6, |θ23| ≈ 0.7 and |θ13| ≈ 0.15 [32].
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In this section, we show that for generic gravity-mediated U(1)R-breaking, consistency

with the measured mixing angles requires that the cutoff-scale Λ be less than O(10 TeV), so

that non-renormalizable contributions to the neutrino mass matrix be of comparable sizes

to that from mixing-induced contributions involving gaugino soft masses. This turns out to

be the case regardless of the choice of L. It is interesting to note that the upper-bound on

the cutoff scale is similar to the one required for generating a large enough top quark mass,

despite the two phenomena being unrelated. While not the focus of this work, we also

briefly discuss neutrino mixing in the Higgs-as-slepton model with two additional Higgs

doublets (in principle this can replace the UV cutoff needed to produce the top mass). We

find that such models also generically require a low energy cutoff, except for particular

choices of L.

5.1 L 6= −1, 0, 1

We establish our analysis framework using the L 6= −1, 0, 1 case as an example. We first

derive the 3× 3 neutrino mass matrix from the full neutralino mass matrix, which we then

use to obtain the mixing angles required to diagonalize the neutrino mass matrix. We

assume generic gravity mediation and we estimate the sizes of the matrix elements using a

spurion analysis, assumingO(1) coefficients and including non-renormalizable contributions

involving the cutoff Λ. Measured values of the mixing angles then translate to bounds on Λ.

To provide a useful picture of the mass scales involved, we refer to section 6, where

we find that the gravitino mass should be m3/2 ∼ O(10 eV–100 eV) in order to provide the

correct neutrino masses. This is much smaller than the U(1)R-symmetric soft mass scale

which, as we discussed above, are of the order of few TeVs.

5.1.1 Neutrino mass matrix

In section 3 and 4, where we studied electroweak precision and collider phenomenology, the

main effects came from the mixing between the Higgs-partner neutrinos and the gauginos.

Therefore, it was convenient to ignore U(1)R-breaking masses and work with Dirac mass

matrices, even for the neutralinos. However, since we are now interested in the mixing

between neutrino flavors, the U(1)R-breaking masses play an important role and so it is

more useful to work with a Majorana mass matrix instead.

We begin with the tree-level 7× 7 neutralino Majorana mass matrix in the interaction

basis {νe, νµ, ντ , B̃, W̃ 0, ψB̃, ψ
0
W̃
}. We first diagonalize the matrix only with respect to the

U(1)R-symmetric terms, from which we find that three of the eigenvectors {ν ′e, νµ, ντ} do

not have U(1)R-symmetric masses, where ν ′e is given to order O(ε) by

ν ′e ' νe + εtwαψB̃ − εψW̃ 0 . (5.1)

These three eigenvectors can still have U(1)R-breaking masses. The associated 3× 3 block

of the transformed 7 × 7 neutralino Majorana mass matrix is (the origin of the terms is

derived below)

Mν ≡


ν ′e νµ ντ

ν ′e cψW̃ + t2wα
2cψB̃ + ε′cee ε′ceµ ε′ceτ

νµ ε′cµe ε′cµµ ε′cµτ
ντ ε′cτe ε′cτµ ε′cττ ,

ε2m3/2 (5.2)
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where

ε′ ≡
2M2

W̃

g2Λ2
. (5.3)

ε′ can be roughly interpreted as the ratio of the soft mass scales to the cutoff scale of the

model. Therefore, a small ε′ implies a high cutoff scale, while an O(1) ε′ implies a low

cutoff scale only slightly above the sparticle masses.

The overall factor of ε2m3/2 can be understood from the fact that the neutrino masses

break both U(1)R and electroweak symmetry. We now explain the origin of the various

mass terms. The first two terms in (Mν)ee arise from the fact that ν ′e contains ψB̃ and ψ0
W̃

,

which in turn are involved in the soft U(1)R-breaking neutralino mass terms∫
d4θ

X†

MPl

(cψB̃
2

ΦB̃ΦB̃ +
cψW̃

2
ΦW̃ΦW̃

)
⊃ m3/2

(cψB̃
2
ψB̃ψB̃ +

cψW̃
2
ψ0
W̃
ψ0
W̃

)
, (5.4)

where cψB̃ and cψW̃ are arbitrary O(1) coefficients since we have assumed generic gravity

mediation. As for the other matrix elements, they can be generated by non-renormalizable

operators of the form

∫
d4θ

X†

MPlΛ2

1

2
cij

(
L†ee

V Li

)(
L†ee

V Lj

)
⊃
M2
W̃

Λ2

cij
g2
ε2m3/2νiνj , (5.5)

where i, j ∈ {e, µ, τ}, and we have again assumed cij to be O(1). Note that we have

replaced v2 by
4M2

W̃
g2

ε2 to make the ε-dependence manifest.

In principle, one should also take into account loop contributions to Mν . Generically,

we expect the contribution to (Mν)ee to be of order (ε2m3/2)/(16π2), which is a loop

factor smaller than the first two tree-level terms and can hence be systematically ignored.

For the other matrix elements, the loop contributions cannot be achieved with a single

soft U(1)R-breaking insertion (the soft terms cannot supply the required number of units

of U(1)R-breaking for these elements), and so require an insertion of a nonrenormalizable

operator, in which case they are also a loop factor smaller than the corresponding tree-level

terms. Since we will show that agreement with the measured UPMNS requires a low TeV-

scale cutoff Λ, these loop contributions are definitely much smaller than the corresponding

tree-level non-renormalizable contributions and so it is consistent to ignore the former

without affecting the validity of our final results.

Finally, we argue that Mν should in fact be regarded as the 3 × 3 neutrino mass ma-

trix. The neutrino mass matrix is obtained by block-diagonalizing the transformed 7 × 7

neutralino mass matrix, this time with respect to the U(1)R-breaking masses. However,

since the four other transformed states have masses MW̃ or MB̃, the remaining “transfor-

mation angles” required for block-diagonalization are at most of O
(
ε2m3/2

MW̃

)
or O

(
ε2m3/2

MB̃

)
.

This implies that the basis {ν ′e, νµ, ντ} is very close to the actual basis required for block-

diagonalization, and also that the resulting “corrections” to Mν are at mostO
(
ε4m3/2

MW̃
m3/2

)
or O

(
ε4m3/2

MB̃
m3/2

)
and hence negligible.
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5.1.2 Reproducing UPMNS

To obtain the mixing angles in UPMNS, we need to find the transformations that diagonalize

the charged-lepton and neutrino mass matrices. We first consider the charged-lepton sec-

tor. Unlike the neutrinos, the charged-lepton masses are dominated by U(1)R-symmetric

contributions. Therefore, the 3 × 3 charged-lepton Dirac mass matrix is block-diagonal

between the electron and the other lepton flavors to a very good approximation since mass

terms of the form e′Lµ
c
R, e′Lτ

c
R, µLe

′c
R and τLe

′c
R are U(1)R-breaking and hence much smaller.

Therefore, we are completely justified in choosing the lepton flavor basis to coincide with

the charged-lepton mass basis, since the required transformation does not involve the Higgs-

partner generation. This means that the PMNS mixing angles are entirely determined by

the neutrino sector.

We now consider the neutrinos. We first assume that we can have a high cutoff scale

so that ε′ � 1 in which case the neutrino mass matrix takes the form

Mν ∼


ν ′e νµ ντ

ν ′e O(1) O(ε′) O(ε′)

νµ O(ε′) O(ε′) O(ε′)

ντ O(ε′) O(ε′) O(ε′)

ε2m3/2 . (5.6)

We find that the neutrino mass eigenstate ν1 (associated most closely with ν ′e) is much

heavier than ν2 and ν3, and that both mixing angles θ12 and θ13 are of order ε′ and hence

small. These observations are inconsistent with experimental measurements, implying that

we cannot have ε′ � 1. Rather, a O(1) ε′ is preferred. In the best-case scenario, allowing

for fluctuations in O(1) coefficients, we place a lower bound of ε′ & O(0.1), which in turn

implies that

Λ . O

(√
20

g
MW̃

)
. (5.7)

For MW̃ ∼ TeV the required cutoff scale is O(10 TeV). This ensures that the non-

renormalizable contributions to Mν are comparable to the mixing-induced gaugino soft-

term contributions to (Mν)ee which is required to have large neutrino mixing angles and a

mass hierarchy consistent with measurements. Note that it is possible to evade the mass

hierarchy issue associated with ε′ � 1 by choosing a different lepton generation for the

Higgs (e.g. the choice τ is consistent with normal hierarchy), but the problems associated

with the mixing angles remain.

Finally, we recall that in order to generate the top mass in the Higgs-as-slepton model

we require Λ . O(10 TeV). It is interesting to note that both the top mass and neutrino

mixing, that are unrelated physical phenomena, both point towards an O(10 TeV) upper

bound for the cutoff scale.

5.2 L = 1

Now we consider the case with L = 1 where there are two main differences with respect

to the general case discussed above. The first is the fact that in the neutrino sector, the

loop contributions to all the Mν matrix elements can now be generated by a single soft
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U(1)R-breaking insertion (whereas this is only true for (Mν)ee when L 6= 1). Nevertheless,

being at least one loop factor smaller than the soft-mass contribution to (Mν)ee, they are

still too small to replace the need for a low cutoff scale Λ.

The second effect is more important; in the charged-lepton sector, the mass terms

e′Lµ
c
R, e′Lτ

c
R, µLe

′c
R and τLe

′c
R are no longer U(1)R-breaking, so the charged-lepton Dirac

mass matrix isn’t diagonal anymore. If we choose the flavor basis to be the charged-lepton

mass basis, it is no longer guaranteed that the Higgs be associated with a single flavor, i.e. all

the sneutrinos can in principle get VEVs. On the other hand, such a scenario is inconsistent

with bounds on lepton-flavor violating processes such as µ→ eγ [32]. For example, if all the

sneutrinos get VEVs, the W and Z gauge coupling vertices will then mix the gauginos with

all three charged-lepton mass eigenstates such that a W/Z-gaugino loop can induce µ→ eγ.

Therefore, any successful implementation of the L = 1 scenario requires that the sneutrino

VEVs be suppressed for two of the generations, which, returning to our original flavor

basis, suggests that the Dirac mass matrix should again be approximately block-diagonal.

(Note that this also implies that the L = 1 model is less favorable than the generic L model

due to the need for the sneutrino VEV suppression in the other two generations.)

Therefore, we conclude that these differences do not affect our conclusion of the need

for a TeV-scale cutoff. We note that the same conclusion was made in [19] in the context of

a Two Higgs Doublet Model (2HDM) extension of the Higgs-as-slepton model. As a result,

the authors introduced a right-handed Dirac neutrino as a low-scale UV completion, which

is analogous to our idea of a cutoff scale Λ.

The above discussion is only valid for generic gravity mediated U(1)R-breaking. As dis-

cussed in [19], anomaly mediation does not generate soft mass terms of the form ψW̃ 0ψW̃ 0

and ψB̃ψB̃, so in fact the neutrino mass matrix can be entirely dominated by loop contri-

butions without any constraints on Λ.

5.3 L = 0

For L = 0, before imposing any additional symmetry, the non-renormalizable contributions

to νµνµ, νµντ and ντντ are no longer U(1)R-breaking. As a result, two of the neutrinos

become too heavy. Therefore, for such a choice to work, one needs to impose an additional

global U(1) lepton number symmetry on Lµ and Lτ [16], assumed to be broken at some fla-

vor scale Mf . At this scale we get an R-conserving but lepton symmetry-violating operator,∫
d4θ

X†

MfΛ2

1

2
cij

(
L†ee

V Li

)(
L†ee

V Lj

)
⊃ α′

M2
W̃

Λ2

cij
g2
ε2m3/2νiνj (i, j ∈ {µ, τ}) , (5.8)

where α′ ≡MPl/Mf ≥ 1. Note that we have assumed that the Mf -scale mediators can also

mediate SUSY-breaking, due to the involvement of the spurion X. Otherwise, we should

either replace one of the Λ by M , or replace Mf by MPl, whichever gives the lower overall

suppression. As a result, Mν now takes the form

Mν ∼


ν ′e νµ ντ

ν ′e O(1) O(ε′) O(ε′)

νµ O(ε′) O(α′ε′) O(α′ε′)

ντ O(ε′) O(α′ε′) O(α′ε′)

ε2m3/2. (5.9)

– 14 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
0

There are two scenarios that result in the neutrino mixings angles, θ12 and θ13, that are

very small, which we would like to avoid. The first is if ε′ � 1, and the second if α′ε′ � 1.

To avoid both scenarios, we require that ε′ & 0.1 and α′ε′ . 10 (or equivalently α′ . 100).

The first constraint again corresponds to a low TeV-scale cutoff as was found in the previous

cases. The second constraint corresponds to Mf & MPl/100 or, in other words, that we

need the flavor scale cutoff to be close to the Planck scale so that the U(1)R-symmetric

neutrino masses do not become too large. Therefore, the lepton number symmetry should

be broken very close to the Planck scale. Yet, we note that this conclusion assumes that

Mf -scale mediators can also mediate SUSY-breaking, and is not valid otherwise.

5.4 L = −1

Next, we consider the L = −1 case. While less obvious than the L = 0 case, we also have

the problem of two of the neutrinos becoming too heavy. This can seen from the fact that

νe, ψW̃ 0 and ψB̃ have U(1)R-charges −1, while νµ, ντ , W̃ 0 and B̃ have U(1)R-charges +1,

so there can be three massive Dirac pairs at the U(1)R-symmetric level, leaving only one

massless neutralino. More specifically, one can come up with U(1)R-symmetric mass terms

such as

∫
d4θ

X†

M

cB̃iΦB̃L
†
eeV Li

Λ
+ cW̃ i

Φa
W̃
L†eeV τaLi

Λ
+ cei

(
L†eeV Le

)(
L†eeV Li

)
Λ2


⊃ MPl

M
m3/2

(√
2MW̃

gΛ
cB̃iεψB̃νi +

MW̃√
2gΛ

cW̃ iεψW̃ 0νi +
M2
W̃

g2Λ2
ceiε

2νeνi

)
,

(5.10)

for i ∈ {µ, τ}, leading to large neutrino masses. Note that MPl
M m3/2 gives the soft U(1)R-

symmetric scale.

As in the L = 0 case, one way to resolve this issue is to introduce an additional U(1)

lepton symmetry on Lµ and Lτ , both of which are broken at the flavor scale Mf . As a

result, all instances of M in the above equation should be replaced by Mf . Assuming Mf to

be large and hence the above terms to be much smaller than the original U(1)R-symmetric

masses, we can then follow the previous procedure to obtain the neutrino mass matrix. In

other words, we first diagonalize the full 7 × 7 Majorana mass matrix with respect to the

original U(1)R-symmetric terms, following which we block-diagonalize with respect to the

remaining lepton symmetry-breaking and/or U(1)R-breaking terms. We find that Mν now

takes the form

Mν ∼


ν ′e νµ ντ

ν ′e O(1) O(α′ε′) O(α′ε′)

νµ O(α′ε′) O(ε′) O(ε′)

ντ O(α′ε′) O(′ε′) O(ε′)

ε2m3/2. (5.11)

Again, there are two scenarios that lead to small neutrino mixing(s) which we want to

avoid. The first is if ε′ � 1, leading to one or two small angles depending on the size of

α′ε′. The second is if α′ε′ � 1, leading to one small angle. Therefore, just as in the L = 0

case, we again see that we require both a low cutoff-scale Λ, and a lepton number-breaking
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scale Mf close to the Planck scale. Note that the constraints here are slightly weaker since

the suppression may now occur only for one mixing angle, which can be identified with the

smallest measured angle θ13.

5.5 2HDM Higgs-as-slepton model

Finally, we discuss the 2HDM Higgs-as-slepton model (see appendix B for a summary of

the differences), where we will only consider the L 6= −1, 0, 1 case for brevity. The 2HDM

model may be one possible UV completion of the Higgs-as-sneutrino model [27], completing

the model to a much higher scale since the top quark can now gain mass from the up-type

Higgs (although the electron mass still has to come from non-renormalizable operators).

We now show that the requirement of lepton mixing angles forces also the 2HDM model

to have a much lower UV completion scale than one might expect.

The analysis follows the same procedure as before, although it is now complicated by

the fact that there are two additional neutralinos, one associated with the up-type Higgs

h̃0u, and another with the electroweak doublet required for anomaly cancellation r̃0d (these

correspond to the superfields Hu and Rd). Also, there are now additional soft U(1)R-

breaking terms that can contribute to the neutrino mass matrix via mixing. For instance,

we can now have ∫
d4θ

X†

MPl
ciLiHu ⊃ cim3/2νih̃

0
u (5.12)

where i ∈ {e, µ, τ}. This enters the neutrino mass matrix since ν ′e now also contains a

h̃0u component. Finally, being a 2HDM model, there is also a tan β ≡ vu/vd dependence

(where vu(vd) is the vacuum expectation value of hu(hd)).

We find that the neutrino mass matrix takes the form

Mν ∼


ν ′e νµ ντ

ν ′e O(c2β) +O(cβsβ) +O(ε′) O(cβsβ) +O(ε′) O(cβsβ) +O(ε′)

νµ O(cβsβ) +O(ε′) O(ε′) O(ε′)

ντ O(cβsβ) +O(ε′) O(ε′) O(ε′)

ε2m3/2

(5.13)

where cβ ≡ cosβ and sβ ≡ sinβ. If we assume that cβsβ ∼ O(1) or c2β ∼ O(1), then we

again find one or two mixing angles with size O(ε′). Therefore, we see that even in the

2HDM model, we still need a low cutoff scale in order to reproduce the PMNS matrix. In

general the constraint is slightly weaker than before due to the β dependence. This is a non-

trivial result since the 2HDM version can otherwise have a much higher cutoff scale given

that the top quark mass can be generated by Hu rather than through nonrenormalizable

operators. On the other hand, if tβ � 1, we expect both cβsβ and c2β to be small, in which

case the constraints on the cutoff scale can be less stringent depending on the size of tβ .

In particular, for large tβ the required cutoff scale is,

Λ .

√
20

g2
tβMW̃ , (5.14)

raising the cutoff by a factor of
√
tβ .
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We note that the above conclusion is invalid for the case L = 0, since in this specific

case the O(ε′) terms in the lower right 2 × 2 block are then replaced by O(α′ε′). A small

ε′ can be compensated by a large α′ to give large mixing angles. In other words, a larger

cutoff-scale Λ can be compensated for by a smaller flavor scale Mf .

6 Neutrino masses, proton decay and the gravitino mass

The U(1)R symmetry in Higgs-as-slepton models serves two important roles: to forbid

neutrino masses (as long as the gauginos have separate Dirac mass partners ψG̃, ψW̃ and

ψB̃) as well as to forbid superpotential and soft terms that might have otherwise led to

rapid proton decay. However, since neutrino masses are small but nonzero, we require

explicit breaking of the U(1)R symmetry, possibly through gravity mediation to account

for this smallness. In particular, this implies a relation between the neutrino masses and

the gravitino mass m3/2 ≈ 〈FX〉/MPl, the details of which depends on whether the breaking

is through generic “Planck-scale” gravity mediation or through anomaly mediation. The

U(1)R-breaking may also introduce proton decay channels, which lead to upper bounds on

the gravitino mass m3/2. It is hence of interest to discuss the bounds on m3/2 from the

neutrino mass spectrum and from proton decay. In this section we restrict our attention to

the case of generic gravity mediation, since the proton decay channels we consider below

do not arise in anomaly mediation despite the U(1)R-breaking.

6.1 Bounds from neutrino masses

We have already discussed neutrino masses in section 5 and so we will only briefly review

the relevant points. If L 6= −1, 0, then all neutrino masses involve U(1)R-breaking and

hence scale with the gravitino mass m3/2. In particular, for generic gravity mediation, we

have shown that the Majorana mass for the Higgs-partner neutrino is given by ∼ ε2m3/2.

This arises mainly from the mixing of the neutrino with ψB̃ and ψ0
W̃

and is generally larger

than loop-induced masses. We use this to set the mass scale of the heaviest neutrino, since

all other terms in the neutrino mass matrix are expected to be of the same order so as to

explain the large mixing angles in UPMNS. Even for the cases L = 0 and L = −1, while

some of the neutrino mass terms are U(1)R-symmetric, we require them to be suppressed

by some flavor scale Mf close to the Planck scale so that these mass terms are comparable

to the mixing-induced term above.

Mass hierarchy measurements from neutrino oscillation experiments require the heav-

iest neutrino mass to be at least around 0.1 eV, while cosmology and spectroscopy exper-

iments place an upper bound of around 1 eV [32]. Together, this implies the following

bounds on the gravitino mass:(
0.1

ε

)2

10 eV . m3/2 .

(
0.1

ε

)2

100 eV. (6.1)

Note that the bounds are dependent on the wino mass through ε. The allowed values of

the gravitino mass are shown in figure 4 as a function of the wino mass, with the excluded

region shown in blue.
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Figure 4. The excluded gravitino mass range. The limits in blue correspond to constraints from the

neutrino mass scale while the limits in red are from proton lifetime measurements. The constraints

from the proton lifetime are dependent on the ms̃R ,mg̃, and we include two benchmark scenarios.

BM1 is for ms̃R = Mg̃ = 1 TeV while BM2 is for ms̃R = 1 TeV, Mg̃ = MW̃ .

6.2 Upper bounds from proton decay

After generic gravity-mediated U(1)R-breaking, various operators appear that can give rise

to proton decay. For example, we now have aijkU
c
RiD

c
RjD

c
Rk in the superpotential, which

comes from

L ⊃
∫
d4θAijk

X†

MPlΛ
U cRiD

c
RjD

c
Rk, (6.2)

so aijk = (m3/2/Λ)Aijk, where Aijk are O(1) coefficients. In conjunction with

yd,ijL1QLiD
c
Rj ≡ yd,ijHdQLiD

c
Rj already present in the U(1)R-symmetric superpotential,

this gives rise to tree-level proton decay, familiar from the R-parity violating MSSM. Re-

member that we have already excluded the B = 1 scenario, in which aijkU
c
RiD

c
RjD

c
Rk is

U(1)R-symmetric and hence aijk is entirely unsuppressed, leading to rapid proton decay.

Another possibility is the one-loop proton decay channels shown in figure 5, which

requires soft trilinear terms bijkũ
c
Rid̃

c
Rj d̃

c
Rk, as well as the soft Majorana mass mg̃ and mψg̃

for the gluinos and their Dirac partners. The latter are always U(1)R-breaking, so we

expect that mg̃ = cg̃m3/2 and mψg̃ = cψg̃m3/2, where cg̃ and cψg̃ are O(1) coefficients. For

B 6= 1/3, the trilinear terms are also U(1)R-breaking, so we expect that bijk = Bijkm3/2

where Bijk are O(1) coefficients. For B = 1/3 however, the trilinear terms do not break

U(1)R symmetry, so bijk should instead be of order the U(1)R-symmetric soft mass scale.

We first consider the one-loop proton decay channels since, as we will see later, they

are less dependent on the UV completion than the tree-level ones. For convenience, we

work in the basis where the flavor eigenstates of dL,i, d
c
R,i, and uR,i coincide with the

mass eigenstates (otherwise we would have additional CKM matrix contributions, which

would of course simplify to the same final result), so for instance yd,ij =
√

2md,iδij/v,

where md,i are the down-type quark masses. We also assume that the quark and squark

mass basis are exactly aligned to simplify the index assignments in figure 5. Relaxing

this assumption complicates the analysis but is not expected to significantly affect our
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u1

d1

g̃

g̃

ũcR1

d̃cR1

d̃cRk
b11k

νe

−yd,lk

dl

u1

u1

d1

g̃

g̃

ũcR1

d̃cR1

d̃cRk
b11k

e+

−yd,lk(VCKM)†lm

um

u1

Figure 5. One-loop proton decay channels arising from soft trilinear scalar terms ũcRid̃
c
Rj d̃

c
Rk and

the Majorana gluino mass. All indices here label mass eigenstates. The cross indicates a Majorana

gluino mass insertion. There is a similar set of diagrams involving the Majorana mass of the gluino

Dirac partner.

main results. Antisymmetry of bijk under exchange of j and k (due to SU(3) contraction)

further implies that k = 2 or 3, while kinematic considerations implies l = 1 or 2 in

the left diagram and m = 1 in the right diagram. For an electron-sneutrino Higgs, we

find two decay channels: uud → us̄ν̄ (p → K+ ν̄) is the dominant decay channel, while

uud→ uūe+ (p→ π0 e+) is subdominant due to CKM suppression, despite having a slight

phase space enhancement. (Note that the current bounds on either decay channels are

comparable [42, 43].) Since the dominant decay channel is to the neutrino rather than

the charged lepton, the subsequent analysis remains valid in the case of a muon- or tau-

sneutrino Higgs.

We now focus on the dominant one-loop channel. Integrating out the gluinos and

squarks gives us the standard dimension-6 proton decay operator d̄cūcqLlL/Λ
2
p. For sim-

plicity we assume that the gluinos are somewhat heavier than the squarks (as is typi-

cal in R-symmetric models due to the supersoft mechanism [44]) and that mg̃ ≈ mψg̃ .

We find that
1

Λ2
p

∼ g2s
16π2

mg̃b112ms/vH
M2
s̃R
M2
g̃

, (6.3)

where gs is the QCD gauge coupling, ms the strange quark mass, Ms̃R the mass of the RH

strange squark, and Mg̃ Dirac gluino mass. We would like to convert the current lower

bound of Λp & O(1015) GeV [43] to an upper bound on m3/2. For B 6= 1/3, we find that

m3/2 .

(
1

cg̃B112

)1/2( Ms̃R

1 TeV

)(
Mg̃

1 TeV

)
× 0.6 keV. (6.4)

We see that for coefficients of order O(1) and sparticle masses of order O(1) TeV, we require

a gravitino mass of less than O(1) keV. In figure 4, we compare this to the bounds from

neutrino masses for different benchmarks of squark and gluino masses. We see in general

that the two bounds still remain compatible.

For B = 1/3, we instead have

m3/2 .
1

cg̃

(
1 TeV

b112

)(
Ms̃R

1 TeV

)2( Mg̃

1 TeV

)2

× 4× 10−7 eV. (6.5)
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The bound is much stronger in this case, which is not surprising since U(1)R-breaking now

only enters once through the Majorana mass insertion and not the trilinear terms. In fact,

this bound clearly conflicts with the bounds from neutrino masses, indicating that B = 1/3

is incompatible with generic gravity-mediated U(1)R-breaking.

Now we move on to the the tree-level channel. Integrating out the squarks to obtain

the dimension-6 proton decay operator, we find that

1

Λ2
p

∼ a112ms/vH
M2
s̃R

, (6.6)

which translates to a bound of

m3/2 .
1

A112

(
Ms̃R

1 TeV

)2( Λ

10 TeV

)
× 3× 10−8 eV. (6.7)

This bound is in conflict with the neutrino mass measurements. This suggests either that

the U(1)R-breaking is non-generic, or that we require a non-trivial UV completion such that

instead of a suppression by MPlΛ in the tree-level operator, we have an M2
Pl suppression.

In this case we replace Λ in the above bound by MPl, from which we get

m3/2 .
1

A112

(
Ms̃R

1 TeV

)2

× 6 MeV , (6.8)

which is now consistent with the neutrino constraints and in fact weaker than that from

the previous one-loop channel.

To summarize, we have obtained upper bounds on the gravitino mass m3/2 from

tree-level and one-loop proton decay channels, assuming generic gravity-mediated U(1)R-

breaking. Bounds from both channels are consistent with the bounds from the neutrino

mass spectrum, provided that B 6= 1/3 and that the tree-level non-renormalizable operator

is entirely Planck-scale suppressed. The latter condition implies the need for non-trivial

UV completions such that the lighter mass scales M or Λ do not enter in the denomina-

tor of the tree-level operator, while the suppression is entirely due to MPl. Finally, we

emphasize that our entire discussion hinges on the assumption of generic gravity medi-

ation. If U(1)R-breaking is non-generic, certain O(1) coefficients may be suppressed or

even forbidden.

7 Conclusions

Supersymmetric models with the Higgs as a slepton are interesting alternatives to the

MSSM. These models have two distinctive features: an R-symmetry which must be broken

by gravity and a mixing of the Higgs superpartner lepton with the electroweakinos. These

properties allow us to place general bounds on such models from several different frontiers.

In this work, we have studied a variety of such constraints, which we summarize below.

Previous work has pointed out constraints from neutral and charged current univer-

sality on the mixing of the electron with the gauginos. These bounds are stringent for

the wino, MW̃ & 3.3 TeV, but weaker for the bino, MB̃ & 500 GeV. We revisited these
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bounds in our framework and compare them to complementary bounds from low energy

probes, which are much more stringent for the bino, MB̃ & 1.2 TeV and competitive for

the wino mass, MW̃ & 2.8 TeV. We then moved to study the probing power a future e+e−

machine. We find large deviations from SM predictions leading to spectacular reach for

such a collider. In particular, for an integrated luminosity of 300 fb−1 and a center of mass

energy of 1 TeV, we estimate the potential to probe winos with masses up to 11.5 TeV in

the e+e− → hZ channel.

Higgs-as-slepton models also offer a novel explanation for the smallness of neutrino

masses, arising from spontaneous breaking of the U(1)R-symmetry due to gravity. We ex-

plore the ability of such models to reproduce the neutrino mass spectrum and the measured

mixing angles. Typically, we find that the models must be UV-completed at a low scale

of at most O(10 TeV) in order to reproduce the large measured mixing angles. Interest-

ingly, this is in agreement with the scale required to give a sufficiently large top mass. For

the choices L = 0 and −1 (where L parameterizes the R-charge of the non-Higgs-partner

leptons), some neutrino mass terms are not R-breaking and hence small neutrino masses

require an additional lepton number symmetry, assumed to be broken at a scale Mf . We

find that, under certain assumptions, constraints on the mixing angles also force Mf to be

close to the Planck scale.

Lastly, R-breaking will also generically lead to tree-level proton decay rates inconsis-

tent with experiment. This puts a restriction on the type of models which can UV complete

the model. Furthermore, we study loop contributions to proton decay which will be present

regardless of the UV completion. We find that these restrict the viable range for the grav-

itino mass to within the range O(10 eV)–O(1keV), which is consistent with the predictions

from neutrino mass measurements. It may be interesting to study the implications of such

a gravitino mass range on observational cosmology, but we will defer this to future work.

The possibility that the Higgs is the superpartner of the electron is an intriguing

alternative to standard supersymmetric extensions of the Standard Model. Future tests

at the LHC, lepton colliders, low energy experiments, and of the neutrino mixing patterns

each provide an avenue to discover this variant of supersymmetry.
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A Feynman rules

In this appendix, we derive the couplings for Yukawa and gauge interactions in the chargino

and neutralino mass basis. The mixing matrices used here are derived prior to introducing

any U(1)R-breaking.

– 21 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
0

A.1 Mixing matrices

The chargino and neutralino mass matrices are given by

MC ≡


ec,+R W̃+ ψ+

W̃

e−L O(εNR) gv√
2

0

ψ−
W̃
O(εNR) MW̃ 0

W̃− 0 0 MW̃

, MN ≡


W̃ 0 B̃

νe,L
gv
2 −g′v

2

ψ0
W̃

MW̃ O(εNR)

ψB̃ O(εNR) MB̃

, (A.1)

where O(εNR) denotes any non-renormalizable contributions suppressed by the scale Λ.

While we usually neglect them in our calculations unless specified, we include them here

to distinguish them from terms which are identically zero due to U(1)R symmetry.

The chargino mass eigenstates are denoted by(
χ−1,L

(χc,+1,R)†

)
or

(
e−′L

(ec,+′R )†

)
: mass ∼ O(εNR),(

χ−2,L
(χc,+2,R)†

)
: mass ≈MW̃ ,(

χ−3,L
(χc,+3,R)†

)
: mass ≈MW̃ ,

(A.2)

and the neutralino mass eigenstates by

χ0
1,L or ν ′e,L : mass = 0(
χ0
2,L

(χc,02,R)†

)
: mass ≈MW̃ ,(

χ0
3,L

(χc,03,R)†

)
: mass ≈MB̃,

(A.3)

where we have arranged the Weyl fermions into Dirac pairs wherever appropriate.

We denote the unitary transformations between the interaction and mass basis by the

matrices UC,L, UC,R, UN,L and UN,R, defined as e−L
ψ−
W̃

W̃−

 = UC,L

χ−1,L
χ−2,L
χ−3,L

 ,

 ec,+R
W̃+

ψ+
W̃

 = UC,R

χc,+1,R

χc,+2,R

χc,+3,R

 ,

 νe,L
ψ0
W̃

ψB̃

 = UN,L

χ0
1,L

χ0
2,L

χ0
3,L

 ,

(
W̃ 0

B̃

)
= UN,R

χc,01,R

χc,02,R

χc,03,R

 .

(A.4)

Note that χc,01,R does not correspond to any fields present in the model and has been intro-

duced simply for notational convenience.
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Assuming |MW̃ −MB̃| > mW , we find that

UC,L =

O(1) O(ε) 0

O(ε) O(1) 0

0 0 1

 O(ε2),O(ε0NR)
−−−−−−−−→

 1− ε2
√

2ε 0

−
√

2ε 1− ε2 0

0 0 1

 ,

UC,R =

 O(1) O(εNR) 0

O(εNR) O(1) 0

0 0 1

 O(ε2),O(ε0NR)
−−−−−−−−→

 1 0 0

0 1 0

0 0 1

 ,

UN,L =

O(1) O(ε) O(ε)

O(ε) O(1) O(ε2)

O(ε) O(ε2) O(1)

 O(ε2),O(ε0NR)
−−−−−−−−→

 1− ε2 12
(
1 + α2t2w

)
ε −εαtw

−ε 1− 1
2ε

2 − ε2α3tw
1−α2

εαtw
ε2αtw
1−α2 1− ε2 12α

2t2w

 ,

UN,R =

(
0 O(1) O(ε2)

0 O(ε2) 1

)
O(ε2),O(ε0NR)
−−−−−−−−→

(
0 1 − ε2α2tw

1−α2

0 ε2α2tw
1−α2 1

)
, (A.5)

where ε ≡ mW /MW̃ = gv/(2MW̃ ), α ≡MW̃ /MB̃ and tw ≡ tan θw = g′/g.

A.2 Couplings for Yukawa interactions

The Yukawa interactions between the charginos/neutralinos and the Higgs arise from the

Kähler potential of the Higgs/electron supermultiplet. The chargino couplings are given by

L ⊃ −g h√
2
e−LW̃

+

= − g√
2
h(UC,L)1i(UC,R)2jχ

−
i,Lχ

−
j,L.

(A.6)

To O(ε) and ignoring O(εNR), this simplifies to

L ⊃ − g√
2
h
(
χ−1,Lχ

c,+
2,R +

√
2εχ−2,Lχ

c,+
2,R

)
. (A.7)

The neutralino couplings are given by

L ⊃ −gh
2
νe,LW̃

0 + g′
h

2
νe,LB̃

= −gh
2

(UN,L)1i [(UN,R)1j − tw(UN,L)2j ]χ
0
i,Lχ

c,0
j,R.

(A.8)

To O(ε) and ignoring O(εNR), this simplifies to

L ⊃ −gh
2

(
χ0
1,L + εχ0

2,L − tw
MW̃

MB̃

εχ0
3,L

)(
χc,01,R − twχ

c,0
2,R

)
. (A.9)
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A.3 Couplings for gauge interactions

We begin with the gauge interactions in the interaction basis:

L ⊃ g
(

(W̃+)† (W̃ 0)† (W̃−)†
) W 0

µ −W+
µ 0

−W−µ 0 +W+
µ

0 +W−µ −W 0
µ

 σ̄µ

 W̃+

W̃ 0

W̃−


+ g

(
(ψ+

W̃
)† (ψ0

W̃
)† (ψ−

W̃
)†
) W 0

µ −W+
µ 0

−W−µ 0 +W+
µ

0 +W−µ −W 0
µ

 σ̄µ

ψ+
W̃

ψ0
W̃

ψ−
W̃


+ g

(
(νe,L)† (e−L )†

) W 0
µ

2
W+
µ√
2

W−µ√
2
−W 0

µ

2

 σ̄µ

(
νe,L
e−L

)

− g′

2

(
(νe,L)† (e−L )†

)
Bµσ̄

µ

(
νe,L
e−L

)
+ g′(ec,+R )†Bµσ̄

µec,+R .

(A.10)

For clarity, we separate this into a few parts before converting to the mass basis.

A.3.1 Charged current interactions

The couplings to W+
µ are given by

L ⊃ gW+
µ

{
(UN,R)∗1,i(χ

c,0
i,R)†σ̄µχ−3,L − (UC,R)∗2,i(UN,R)1j(χ

c,+
i,R )†σ̄µχc,0j,R

+

[
(UN,L)∗2i(UC,L)2j +

1√
2

(UN,L)∗1i(UC,L)1j

]
(χ0

i,L)†σ̄µχ−j,L

− (UC,R)∗3i(UN,L)2j(χ
c,+
i,R )†σ̄µχ0

j,L

}
.

(A.11)

We have used the fact that W̃− doesn’t mix with e−L nor ψ−
W̃

(due to U(1)R symmetry) to

eliminate one of the mixing matrices in the first term. To O(ε) and ignoring O(εNR), this

simplifies to

L ⊃ gW+
µ

[
(χc,02,R)†σ̄µχ−3,L − (χc,+2,R)†σ̄µχc,02,R +

1√
2

(χ0
1,L)†σ̄µχ−1,L

− 1√
2
ε(χ0

2,L)†σ̄µχ−1,L + (χ0
2,L)†σ̄µχ−2,L + ε(χc,+3,R)†σ̄µχ0

1,L − (χc,03,R)†σ̄µχ0
2,L

]
.

(A.12)

Note that the V −A violating term (χc,+1,R)†σ̄µχ0
1,L does not appear, even when we include

higher powers of ε as well as O(εNR). This is not surprising since such a term violates

U(1)R symmetry.
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A.3.2 Neutral current interactions

We first consider neutral current interactions with the neutralinos, given by

L ⊃ g

cw
Zµ

1

2
(νe,L)†σ̄µνe,L

=
g

cw
Zµ

1

2
(UN,L)∗1i(UN,L)1j(χ

0
i,L)†σ̄µχ0

j,L.

(A.13)

There are no couplings to the photon as expected. To O(ε) and ignoring O(εNR), this

simplifies to

L ⊃ g

cw
Zµ

1

2

{
(χ0

1,L)†σ̄µχ0
1,L +

[
ε(χ0

1,L)†σ̄µχ0
2,L − tw

MW̃

MB̃

ε(χ0
1,L)†σ̄µχ0

3,L + h.c.

]}
. (A.14)

Now we move on to the charginos. The couplings to the photon are given by

L ⊃ eAµ
[
(ec,+R )†σ̄µec,+R + (W̃+)†σ̄µW̃+ + (ψ+

W̃
)†σ̄µψ+

W̃

− (e−L )†σ̄µe−L − (ψ−
W̃

)†σ̄µψ−
W̃
− (W̃−)†σ̄µW̃−

]
= eAµ

[
(χc,+i,R )†σ̄µχc,+i,R − (χ−i,L)†σ̄µχ−i,L

]
.

(A.15)

The couplings are universal as expected since U(1)EM is unbroken.

The couplings to Zµ are given by

L ⊃ g

cw
Zµ

[
(W̃+)†σ̄µW̃+ − (W̃−)†σ̄µW̃− + (ψ+

W̃
)†σ̄µψ+

W̃
− (ψ−

W̃
)†σ̄µψ−

W̃
− 1

2
(e−L )†σ̄µe−L

]
− g

cw
s2wZµ

[
(ec,+R )†σ̄µec,+R + (W̃+)†σ̄µW̃+ + (ψ+

W̃
)†σ̄µψ+

W̃

− (e−L )†σ̄µe−L − (ψ−
W̃

)†σ̄µψ−
W̃
− (W̃−)†σ̄µW̃−

]
=

g

cw
Zµ

{
[(UC,R)∗2i(UC,R)2j + (UC,R)∗3i(UC,R)3j ] (χc,+i,R )†σ̄µχc,+j,R

−
[

1

2
(UC,L)∗1i(UC,L)1j + (UC,L)∗2i(UC,L)2i + (UC,L)∗3i(UC,L)3i

]
(χ−i,L)†σ̄µχ−j,L

}
− g

cw
s2wZµ

[
(χc,+i,R )†σ̄µχc,+i,R − (χ−i,L)†σ̄µχ−i,L

]
. (A.16)

This comprises of a non-universal part related to mixing between different SU(2)L repre-

sentations and a universal part related to Q. Using unitarity of UC,L and UC,R, this can

be written more succinctly as

L ⊃ g

cw
Zµ

[
(1− s2w)(χc,+i,R )†σ̄µχc,+i,R + (−1 + s2w)(χ−i,L)†σ̄µχ−i,L

]
+

g

cw
Zµ

[
−(UC,R)∗1i(UC,R)1j(χ

c,+
i,R )†σ̄µχc,+j,R+

1

2
(UC,L)∗1i(UC,L)1j(χ

−
i,L)†σ̄µχ−i,L

]
.

(A.17)

To O(ε) and ignoring O(εNR), this simplifies to

L ⊃ g

cw
Zµ

[
(1− s2w)(χc,+i,R )†σ̄µχc,+i,R + (−1 + s2w)(χ−i,L)†σ̄µχ−i,L

]
+

g

cw
Zµ

{
−(χc,+1,R)†σ̄µχc,+1,R +

1

2
(χ−1,L)†σ̄µχ−1,L +

[√
2ε(χ−1,L)†σ̄µχ−2,L + h.c.

]}
.

(A.18)
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(SU(3)C , SU(2)L)Y U(1)R

Hd ≡ Le (1, 2)−1/2 0

Ece (1, 1)1 2

Lµ,τ (1, 2)−1/2 1− L
Ecµ,τ (1, 1)1 1 + L

Q1,2,3 (3, 2)1/6 1 +B

U c1,2,3 (3̄, 1)−2/3 1−B
Dc

1,2,3 (3̄, 1)1/3 1−B
W aα (8, 1)0 + (1, 3)0 + (1, 1)0 1

Φa (8, 1)0 + (1, 3)0 + (1, 1)0 0

Hu (1, 2)1/2 0

Rd (1, 2)−1/2 2

Table 2. Superfields and their gauge and U(1)R representations for the 2HDM version of the

Higgs-as-sneutrino model.

B Two Higgs doublet model

Here we briefly review the Higgs-as-slepton model with two additional Higgs doublets,

Hu, Rd. The Hu can then be used to provide a mass to the top quark, while Rd is

needed for anomaly cancellation. Table 2 lists the superfields and their gauge and U(1)R
representations. The most general superpotential consistent with the symmetries (assuming

B 6= 1/3 and L 6= 1) is

W =

3∑
i,j=1

yd,ijHdQiD
c
j +

∑
i,j∈{µ,τ}

ye,ijHdLiE
c
j +

3∑
i,j=1

yu,ijHuQiU
c
j

+ µHuRd + λSHuΦB̃Rd + λTHuΦW̃Rd . (B.1)

h̃u and r̃d are now additional neutralinos and charginos which mix with the gaugino and

the Higgs-partner lepton. Unlike in the model with the single Higgs doublet, the top quark

mass can arise from an HuQU term, removing the need for a low UV cutoff.

For the purpose of deriving the neutrino mass matrix in section 5.5, after diagonalising

the R-symmetric terms in the 9 × 9 neutralino mass matrix, we now have

ν ′e ' νe +

(
MW̃

MB̃

tw

)
cβε ψB̃ − cβε ψ

0
W̃

+

(
MW̃

µ

λT√
2g
−
M2
W̃

MB̃µ

√
2λStw
g

)
cβsβε

2 h̃0u. (B.2)

In contrast to the 1HDM case, ν ′e now contains a h̃0u component, and some of the coefficients

depend on cβ and sβ . The h̃0u component induces the ν ′eνµ and ν ′eντ terms in the neutrino

mass matrix through the R-breaking mass terms h̃0uνµ and h̃0uντ .
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