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Abstract
Structural analysis of proteins and nucleic acids is complicated by their inherent flexibility,
conferred, for example, by linkers between their contiguous domains. Therefore, the
macromolecule needs to be represented by an ensemble of conformations instead of a single
conformation. Determining this ensemble is challenging because the experimental data are a
convoluted average of contributions from multiple conformations. As the number of the ensemble
degrees of freedom generally greatly exceeds the number of independent observables, directly
deconvolving experimental data into a representative ensemble is an ill-posed problem. Recent
developments in sparse approximations and compressive sensing have demonstrated that useful
information can be recovered from underdetermined (ill-posed) systems of linear equations by
using sparsity regularization. Inspired by these advances, we designed Sparse Ensemble Selection
(SES) method for recovering multiple conformations from a limited number of observations. SES
is more general and accurate than previously published minimum-ensemble methods, and we use
it to obtain representative conformational ensembles of Lys48-linked di-ubiquitin, characterized
by the residual dipolar coupling data measured at several pH conditions. These representative
ensembles are validated against NMR chemical shift perturbation data and compared to
maximum-entropy results. The SES method reproduced and quantified the previously observed
pH dependence of the major conformation of Lys48-linked di-ubiquitin, and revealed lesser-
populated conformations that are pre-organized for binding known di-ubiquitin receptors, thus
providing insights into possible mechanisms of receptor recognition by polyubiquitin. SES is
applicable to any experimental observables that can be expressed as a weighted linear combination
of data for individual states.
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Introduction
Macromolecules are inherently dynamic systems in equilibrium between many
conformational states. The predominantly-populated conformation (the major state) is
generally the most experimentally-accessible. Its contribution to experimental observables
typically outweighs the contributions from the less populated (minor) states, rendering those
minor conformations, or so-called low-lying excited states, “invisible”. Elucidation of these
minor states can provide significant insights into protein/RNA folding, dynamics, enzyme
catalysis, and biomolecular recognition 1–5. For example, the dominant conformation of a
protein may be ligand-binding incompetent, whereas the minor states could constitute the
conformers capable of ligand binding 6. Knowledge of the ensemble of relevant states of a
macromolecular system could be extremely important in understanding its energy landscape,
and fundamental to mechanistic description of biological function. In recent years,
significant strides have been made in elucidating major and minor conformations and their
relative populations/weights using a battery of low- and high-resolution experimental
methods such as small-angle scattering (SAS), fluorescence resonance-energy transfer
(FRET), and nuclear magnetic resonance(NMR) 7–13. As a result, description of a system’s
conformational ensemble, particularly the structures and relative weights of each
conformational state, is becoming possible.

Determining conformational ensembles is of particular importance for highly flexible
systems (such as intrinsically disordered proteins or multi-domain proteins containing
flexible linkers), where a significant number of energetically similar conformational states
are populated at any given time. An important class of such flexible systems are polymeric
chains of ubiquitin (Ub) protomers, called polyubiquitin (polyUb), which are formed by
covalent linkages between the flexible C-terminus of one Ub and one of the seven lysines or
N-terminal methionine of another Ub. PolyUb chains function as molecular signals in the
regulation of a host of vital cellular processes in eukaryotes 14,15. For example, polyUb
linked via Lys48 serves as a universal signal targeting cytosolic proteins for proteasomal
degradation, whereas Lys63-linked chains play regulatory roles in a variety of
nonproteolytic pathways, including DNA repair, NF-κB activation, and trafficking.
Uncovering the mechanisms that allow differently linked polyUbs to function as distinct
molecular signals requires understanding of the conformational and recognition properties of
these chains. The current hypothesis is that the linkages define the conformational ensemble
for a given polyUb, which in turn determines the ability of the chain (through
conformational selection or induced fit or combination thereof) to adopt the structure/
conformation required for binding to a specific receptor 14. We have recently shown that
Lys48-linked di-ubiquitin (K48-Ub2), the minimal structural and recognition element of
longer Lys48-linked chains, exists in a pH-controlled dynamic equilibrium between a
“closed” (binding incompetent) conformation and one or more “open”, binding-competent
conformations 9,16–18. The equilibrium exchange between several states of the Ub2 has been
verified by a number of experimental methods, including NMR and spin-relaxation
measurements 9,16,17, site-specific spin labeling 16, and single-molecule FRET 11. However,
a number of open questions still remains, in particular: (i) how many conformations are
needed to adequately represent the conformational ensemble and dynamics of K48-Ub2; (ii)
what are the relative populations/weights of the open and closed conformations; and (iii)
what is the role of these states in the Ub2’s ability to recognize numerous receptor proteins?

In this study, we not only focus on finding the representative conformers of K48-Ub2, but
also address the general problem of recovering a representative subset of conformations
from a large oversampled ensemble, based on experimental observables that are physically
determined by a weighted linear combination of contributions coming from this subset. Such
experimental observables could include residual dipolar couplings (RDCs), paramagnetic
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relaxation enhancement (PRE) effects, pseudo-contact shifts, and/or SAS measurements. In
all of these cases, the observable can be computed directly from the structure of each
conformer in the ensemble 19–25. Specifically, we are interested in recovering a weighted
subset of representative conformers in the case when the number of possible structures is
significantly greater than the number of experimental observations. The large oversampled
initial ensemble can be generated using numerous methods, such as high-temperature
molecular dynamics 26, simulated annealing 27, Monte Carlo, or normal modes 28. From
such oversampled ensembles, we would like to select the ensemble that “best” recapitulates
the features of the experimental observable. Such a problem, where there are a number of
equally viable solutions, as measured by fit to the experimental data, is commonly referred
to as an ill-posed problem.

Various criteria have been proposed in the literature for selection of a representative
ensemble, see reviews 29,30. These can be roughly classified into several approaches: (i)
methods that select ensemble sizes based on some outside criteria, other than the fit to
experimental data, like ASTEROIDS 31, Maximum Occurrence (MO) 32, or the Ensemble
Optimization Method (EOM) 33; (ii) methods based on maximum entropy, like ENSEMBLE
or EROS, where an ensemble with maximum entropy weight distribution is selected 34,35;
(iii) methods where a small-sized ensemble is selected in order to avoid over-interpretation
of the data, like Minimum Ensemble Selection (MES) method 26, select-and-sample 36,37,
that of Huang and Grzesiek 21, or of Francis et al.38; (iv) or Bayesian approach with an
uninformed Jeffreys prior 39, which is related to the small-sized ensemble methods, since
Jeffreys prior is sparsity-inducing 40. Some implementations of these approaches assume
uniform weights for all conformations in the ensemble, while others allow non-uniform
weights. Most of the above formulations are solved using stochastic optimizations based on
genetic programming or simulated annealing.

Here we present a new ensemble selection criterion and an associated deterministic
algorithm, called Sparse Ensemble Selection (SES). The SES criterion selects the smallest
(sparsest) non-uniformly weighted representative ensemble that explains the experimental
data to within a desired error. This method uses the same concept as other minimum-
ensemble methods (see above), but as we will describe below, it is a significantly more
flexible framework that could be adapted to other sparse criteria. The SES method is based
on proven methodology developed for the well-studied signal processing problem of optimal
M-term approximation of a signal and the compressive sensing problem (see e.g. 41,42). This
allows us to rigorously reformulate our ill-posed problem as a well-studied mathematical
model. The intuition behind the SES criterion is the Occam’s razor principle, i.e. that the
observed experimental data are explained by a small number of properties or conformers.

The SES method has several novel features: (i) it provides an a priori method for analyzing
the amount of structural information contained in experimental restraints, which provides an
upper bound on the ensemble size that can be recovered; (ii) it introduces a method for
preconditioning the ensemble selection problem such that further computations are
significantly sped up and potentially improved; (iii) it introduces a new highly scalable
deterministic algorithm that can potentially recover solutions with order of magnitude better
fit than previously suggested stochastic methods, and is robust to inaccuracies in the
predicted data scaling; (iv) it provides a clearly defined criterion for selecting the proper
output ensemble size that avoids overfitting, even when error size is not known; (v) it has no
adjustable parameters, so the algorithm can be applied to any set of data without
adjustments.

We apply the SES approach to study conformational properties of K48-Ub2 at three different
pH conditions, using only a single set of experimental RDC data at each pH. From these
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data, we are able to recover representative conformational ensembles of K48-Ub2, and
quantify the population dynamics of their major and minor conformations as a function of
pH. Our findings provide new insights into the mechanisms of receptor recognition,
particularly for polyubiquitin chains.

Theory
Framework for Conformational Ensemble Determination from Residual Dipolar Couplings

RDCs are NMR-observable experimental data that can be detected when the molecule is
given a slight preferential orientational bias in solution, for example, by using an alignment
medium 43. RDCs report on a bond vector’s orientation (most commonly amide N-H) with
respect to the external magnetic field. Consequently, RDCs provide structural information
via orientational constraints. In a rigid multi-domain system, the RDCs from each individual
domain can be used to determine interdomain orientation 44,45. However, in the more
general case of a dynamic multi-domain system, the observed RDCs can be expressed as a
weighed linear combination of individual RDCs coming from N conformations, such that

(1)

where dexp is a vector of L observed RDCs, with each entry in the vector associated with a
particular bond in the molecule, wj is the population weight associated with the jth
conformation, and w ≥ 0 means wj ≥ 0 for all j. The quality of fit to the observed data can be
measured in terms of χ2:

(2)

where derr,i is the experimental error in the ith observation and ri is the corresponding
residual.

The RDC values of the jth conformer, dj, can be written as a product of a matrix Vj,
depending solely on the bonds’ direction cosines relative to the conformer’s coordinate
frame, and the vector sj containing the five independent components of the alignment tensor
for that conformer44, such that

(3)

Given a set of structures, V can be calculated directly from bond orientations in each
structure, however, S cannot be determined directly.

For a rigid system, represented by a one-state ensemble, the vector S, which in this case
represents the five independent components of the alignment tensor, can be computed
directly from experimental data dexp using a linear least-squares optimization method, such
as singular value decomposition (SVD) 44, by solving for S the equation
dexp≈dpred=V1s1=VS. The resulting alignment tensor is then used to back-calculate dpred,
which can be compared to dexp. The advantage of such an approach is that it is “model free”,
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in the sense that it avoids the need to know S a priori. Given the correct structure, the
residuals between dexp and back-calculated dpred, computed from the SVD-derived
alignment tensor, should be near 0.

In the case of a dynamic system, where multiple conformers must be taken into account, one
can either predict the sj values ab initio or treat them as additional fitting parameters (which
we will still call “SVD” approach). Since it is impossible to deconvolve w from S, w is
dropped as a parameter, thereby losing information about the relative populations of
conformers. Since an additional four fitting parameters (five fitting parameters instead of
one) are introduced per conformer relative to the ab initio approach, solving this formulation
directly will most likely result in overfitting. We define the lowest possible χ2 value
corresponding to SVD solution of Eq. 3 as εSVD.

This SVD approach can be constrained by assuming a single alignment tensor for all
states 46,47. However, this assumption breaks down when substantial inter-domain motions
exist, since different domain-domain conformations could have different alignment tensors.
In fact, it can be shown that the set of the problems spanned by the single-alignment-tensor
model is only a small subset of the more general Eq. 3 formulation (see Supporting
Information).

Instead of using the SVD approach, in our method we constrain Eq. 3 by introducing an ab
initio prediction for sj, similarly to previous approaches (31,48) and simplify the equation by
pre-computing dj=Vjsj. Thus this formulation of our ensemble selection problem can also be
expressed as Eq. 1. The ab initio prediction inadvertently introduces additional errors in our
model. As we showed earlier49, in the case of steric alignment media for a two-domain
system, these errors result in less than 4 Å RMSD between the actual and RDC-predicted
structures. In other words, while the ab initio prediction might not be fully accurate in terms
of the RDC fit, in terms of structural RMSD it is still relatively accurate, especially if we are
interested in recovering large-scale motions between two domains, rather than small
fluctuations.

Sparse Ensemble Selection - Theoretical Formulation
We now describe our general SES method, as it applies to not only RDC data, but to any
experimental observable that can be described by a linear combination of data from various
states, as e.g. in Eq. 1. Any potential solution of this linear model can be described in terms
of a vector of weights x, and the goodness of its fit, measured as χ2(x) (as in Eq. 2) reflecting
the discrepancy (residuals) between the experimental data and the predicted data.
Importantly, we do not assume that Σjxj =1 to allow for scaling errors in the prediction of
experimental observables and for the fact that we might not recover some of the minor states
that are below noise or are not sampled by our initial ensemble. Note that w = x/Σjxj.

For L experimental data points and N-size oversampled initial ensemble of potential
conformations (L < N),

(4)

where yi is the ith value of a column-vector y containing the experimental data, A is an L×N
matrix consisting of N aj-columns representing the associated predicted data (e.g. RDCs) for
the jth conformation in our initial ensemble, ||…||2 is the vector ℓ2-norm (Euclidean
distance), ri is the ith residual, and xj is the weight of the jth conformation in the ensemble.
The ensemble is uniquely defined by the full vector x. Note that in the case of non-uniform
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errors, yi and ith row of A should be divided by the standard deviation of the ith observation,
to match Eq. 2.

The ensemble-selection problem can be reformulated as a linear least-squares problem,
where we seek an optimal vector of weights , such that

(5)

where  is the value of x that minimizes χ2(x). The associated ensemble represented by 
is simply the set of conformations with non-zero entries. The size of the ensemble is given
by the ℓ0-norm of , defined as the number of non-zero entries in , and written as || ||0.
The ℓ0-norm is an accepted notation for sparsity, since sparsity can be thought of as the limit
of the ℓp-norm as p→0 50. The lowest possible minimum-χ2 value in Eq. 5, εr= χ2( ), can
be computed using a non-negative least squares solver 51. Note that the relationship εr ≥
εSVD must hold.

The problem with directly solving Eq. 5 is two-fold: (i) the rank of matrix A is much smaller
than N, so our linear system is underdetermined and has an infinite number of solutions 
with potentially different ℓ0-norms (overfitting); (ii) A is potentially badly-conditioned (i.e.,
A has a large condition number), meaning that any computed solution x* is extremely
sensitive to noise in y. Here we define the rank of A, rank(A), as the number of non-zero
singular values, σi, of A, and the condition number of A as σmax/σmin, where σmax is the
largest singular value and σmin is the smallest non-zero singular value of A.

A common approach for solving such underdetermined system is to add a regularization
term to Eq. 5 that will push  towards a solution that has some desired property 52.
Common approaches include truncated-SVD, Tikhonov, and maximum-entropy
regularizations 53. In contrast to these methods, we regularize our problem by directly
seeking the sparsest solution (lowest ℓ0-norm value). Our SES problem is formally written
as

(6)

where we compute the solution for all values M = 1,…, rank(A). After computing these
solutions we select the smallest M that gives χ2 ≤ ε, for some ε ≥ εr, where ε is our
adjustable regularization parameter that prevents overfitting of the data. ε controls the
interplay between the accuracy of our solution, measured by χ2, and the sparsity of the
solution, measured by M. The higher the value of ε, the sparser is the solution, but the worse
is the fit to the experimental data. We will describe below how to compute a proper ε and
also compare our solution to the maximum-entropy regularization approach.

From Eq. 6 we make three critical observations. First, our formulation is scale invariant,
allowing one to compute ensembles in cases when the scaling between the experimental and
predicted data cannot be accurately determined, since ||x*||0 = ||cx*||0 = ||w||0 for any constant
c≠0. (Therefore, the ℓ0-norm is not actually a norm, but a quasi-norm.) If the predicted data
are properly scaled relative to the experimental data, we expect that all non-zero entries in x*

are positive and add up to approximately 1, otherwise the solution can simply be normalized
to adjust for the unknown error in scaling of the predicted data. Second, since the largest
possible number of linearly independent columns in matrix A equals rank(A), the largest
possible SES ensemble size cannot exceed rank(A), that is ||x*||0 ≤ rank(A). Third, the
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smallest possible χ2(x) value for any x has lower bound of εr. That means that the closeness
of χ2(x) to εr can be used as a metric of the quality of the solution.

ℓ-Curve Regularization
A powerful method for selecting the proper ε, or equivalently the proper M, is based on the
analysis of the corner point in the ℓ-curve (or L-curve) plot of χ2(x*) vs. ||x*||0 values, and is
potentially more reliable than general cross-validation, especially in the case of correlated
errors, which one might expect in an ab initio predictor 52. The corner point (see Results
section) corresponds to the solution in which an addition of another ensemble member
provides highly redundant information, and therefore does not decrease χ2 nearly as much as
those already included, indicating that adding another member will potentially result in
overfitting. For a good solution, the χ2 value at the corner point should be almost identical to
εr.

Algorithm Implementation: Multi-Orthogonal Matching Pursuit
The general problem of solving Eq. 6 for a specific value of M is commonly known as
finding the best M-term approximation of y, and is NP-hard 54,55. Thus, guaranteeing an
optimal solution to Eq. 6, even for a small M-sized ensemble, is computationally intractable
for a general matrix A. This limitation extends to similar ensemble selection methods, such
as MES, EOM, and select-and-sample. That does not mean that finding a good
approximation is also intractable. Greedy-type algorithms, like orthogonal matching pursuit
(OMP) 56 (see Alg. S1), are easy to implement, computationally efficient, perform well in
practice, and depending on the specific properties of A in some cases can be proven to
compute the optimal solution 50. The greedy heuristics behind OMP is based on the
observation that an orthogonal representation is the most compact (sparsest) representation
of a subspace, and it can be well approximated by adding the most orthogonal element to a
representation approximating y, one element at a time. A convenient property of OMP is
that while computing x* it also computes x* for all ensemble sizes less than M during
previous iterations.

In our case, the mapping of a specific set of conformations to a set of experimental values
might not be unique for a given M. It is possible that several nearly optimal solutions, as
measured by χ2, come from significantly different sets of structures. For example, due to
orientational symmetry of RDCs there are typically eight interdomain arrangements in a
dual-domain system that have approximately equal RDC values 20. In order to recover such
alternative solutions, if they do exist, we modified OMP based on the ideas from 57–59, such
that our implementation, which we call Multi-OMP, returns top K nonnegative solutions,
instead of just the best solution, where K ≥ 1 is a user-defined parameter (see Supporting
Information). The overall computational complexity of Multi-OMP is O(KMLN), meaning
that the algorithm can tractably handle very large problem sizes. A detailed description and
the theoretical advantage of our Multi-OMP algorithm are given in Supporting Information.

The suggested SES protocol is therefore as follows: (i) generate an ensemble of possible
conformers for the desired molecular system of interest and compute the A matrix for
various experimental observables; (ii) select a set of experiments/observables, based on
mixing and matching of their associated A matrices such that the effective rank of the
combined A matrix is maximized; (iii) collect the associated experimental data; (iv) solve
for possible ensembles using Multi-OMP; (v) select the optimal ensemble size using the ℓ-
curve and analyze the best, as well as alternative, ensembles with similar χ2.
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Experimental Section
NMR Data

Ub monomers with chain-terminating mutations (Ub K48R and Ub D77) were expressed
and purified as described 17. K48-Ub2 were made using controlled-length chain assembly
with E1 and Lys48-selective E2-25K enzymes combined with domain-specific isotope
labeling 17.

All NMR experiments were performed at 23° C on a Bruker Avance III 600 MHz
spectrometer equipped with a cryoprobe. Protein concentration was 125 μM for all
experiments. Samples were prepared in one of three buffers: (a) 20 mM sodium acetate at
pH 4.5, (b) 20 mM sodium phosphate at pH 6.8, or (c) 20 mM sodium phosphate at pH 7.6,
all with 5% D2O and 0.02%(w/v) NaN3. NMR data were processed using NMRPipe 60 and
analyzed using Sparky 61. Amide CSPs between a given Ub unit in K48-Ub2 and its
respective monomer were calculated using the equation

(7)

where ΔδH and ΔδN are the corresponding differences in the chemical shifts for 1H and 15N,
respectively. For CSPs, 1H-15N TROSY-HSQC spectra were collected for all Ub and Ub2
species, except for pH 4.5, where 1H-15N SOFAST-HMQC experiments were used.

All RDC measurements for backbone amide 1H-15N pairs were carried out using 5% C12E5/
hexanol media (molar ratio 0.85)62 in the appropriate buffer. Distal and proximal Ubs at
each pH were prepared with the same stock of RDC media. The 2H splitting of the HDO
signal was 29 Hz for both distal and proximal Ubs at pH 4.5 and 27 Hz at pH 6.8 and pH
7.6. RDCs were measured using the IPAP-HSQC experiments with at least 500 t1
increments and the spectral widths of 25 ppm in 15N and 12 ppm in 1H.

Peak positions in 2D NMR spectra were determined by fitting contour levels to ellipses 17.
The RDCs were quantified as the difference in 1H-15N couplings in the liquid-crystal and in
the isotropic phase. For pH 4.5, the isotropic-phase 1H-15N couplings were measured only
for the distal Ub. In general, the RDC values for both Ubs over all pHs ranged from
approximately −30 to 25 Hz. Alignment tensors for each individual Ub unit in Ub2 were
determined via linear least-squares analysis (PATI 20) using the solution structure of Ub
(PDB ID 1D3Z). The alignment tensors are shown in Table 1. Quality factors were
determined as defined in 63.

Ensemble Generation for Lys48-linked Ub2

To sample the overall Ub/Ub conformational space of K48-Ub2 we generated a 20000-
structure ensemble of K48-Ub2 by adapting the Rapidly-exploring Random Trees (RRT)
algorithm 64 (see Supporting Information, Fig. S1). The RRT algorithm samples the
conformational space by leveraging an iteratively constructed nearest-neighbor linked tree.
This iterative strategy expands the tree towards unexplored regions, and significantly
improves the sampling of the overall conformational space compared to random sampling.

We used the RRT algorithm to sample the 12 degrees of freedom in the Ub-Ub linker
region: the φ-ψ angles of four N-terminal residues (73–76) of the distal Ub, the four χ angles
of Lys48 of the proximal Ub, and the isopeptide bond between Gly76 of the distal Ub and
Lys48 of the proximal Ub.
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The RRT algorithm was initialized twice, starting with the open and closed conformations of
K48-Ub2 (PDB IDs 3NS8 and 1AAR, respectively). For each starting conformation, an
ensemble of approximately 100000 clash-free conformations was generated. The
conformations were scored using smoothed van der Waals and electrostatics terms 65, and
then clustered iteratively with Cα-RMSD threshold of 2 Å. The best scoring representative
was selected for each of the top 10000 clusters from each of the two runs, resulting in a total
of 20000 structures in the final ensemble. See Supporting Information for details.

Data Prediction
We generated two A matrices for our ensemble, one for RDC and one for SAXS data. The
errors for RDCs, derr, were taken to be 1 Hz, while the SAXS errors where calculated from
the Poisson distribution with the λ of 10 and bound to 3%. The alignment tensor for each of
the 20000 conformers was predicted using the PATI program 20. In order to remove possible
bias in NH-vector orientations originating from the crystal structure, the solution structure of
monomeric Ub (PDB ID 1D3Z) was superimposed with each Ub unit in each of the
conformers in the ensemble, and the resulting bond vector orientations were used to
compute the RDC values from the alignment tensor. For the analysis, we selected ~90
“rigid” NH vectors belonging to structurally well-defined residues, approximately evenly
split between the distal and the proximal Ub. Each predicted RDC set forms an associated
column in A, together forming an ~90×20000 matrix. For PATI prediction, the effective
bicelle concentration was set to 0.05, in order to approximately scale the predicted RDC
values to the experimental RDC data. The scaling of the matrix does not affect our solution,
nor any of the subsequent analyses, but instead we use it as an alternative validation of our
results, since, given the correct scaling of the columns, we expect the weights of x* to add
up to approximately 1. The A matrix for SAXS data was generated in a similar manner, by
predicting a 200-point, 0<q<1 Å−1 profile using FoXS program 66.

Results
Lys48-linked Di-Ubiquitin is in equilibrium with several conformations

A pH-dependent switch in the conformation of K48-Ub2 has been observed in several
studies 9,16–18, and is considered a hallmark property of this chain. Prior studies 9,16 have
shown that the analysis of structural rearrangements occurring with pH is complicated by the
fact that in solution the Ub2 is in equilibrium between multiple conformations; this prevents
direct structural interpretation of the experimental data and necessitates an ensemble-based
approach. In order to uncover the pH-induced structural changes, we have collected
chemical shift perturbation (CSP) and 1H-15N RDC data for backbone amides in K48-Ub2 at
pH 4.5, 6.8, and 7.6 (see Experimental Section).

CSPs report on the physical and chemical differences in the microenvironment of a given
nucleus in Ub as a monomer and as a Ub unit in K48-Ub2. At pH 4.5, CSPs in the distal Ub
are localized to the C-terminus, while CSPs in the proximal Ub are localized to residues
surrounding Lys48 (Fig. 1). All of these CSPs stem from the changes in the chemical and
electronic microenvironment upon formation of the isopeptide bond between the C-terminus
of the distal Ub and Lys48 of the proximal Ub. Thus, the CSP data at pH 4.5 indicate that
K48-Ub2 adopts a predominantly “open” conformation with no detectable non-covalent
inter-Ub contacts. As pH is increased, the CSPs increase markedly, particularly for residues
near the hydrophobic patch of Ub (Leu8, Ile44, and Val70), reflecting strengthening of non-
covalent Ub-Ub interactions mediated by the hydrophobic patches of both Ub units and
resulting in a compact (“closed”) Ub2 conformation.
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RDCs reflect both the structure of each individual Ub unit and the overall spatial orientation
of the two Ub units with respect to each other. For all three pH conditions there is an
excellent agreement (R ≥ 0.99, Q ≤ 0.08, Fig. 2) between the experimental RDCs for each
individual Ub unit and the back-calculated RDCs (determined via SVD) from the solution
structure of monomeric Ub (PDB ID 1D3Z), indicating that the structure of each Ub unit is
unchanged as a function of pH. However, marked changes in the Ub2 conformation between
low and neutral pH can be seen in the striking lack of correlation between the RDCs
measured at pH 4.5 and pH 6.8 (Fig. 3A). In contrast, when the RDCs at pH 7.6 are
compared with those at pH 6.8, a strong correlation is observed, suggesting similarity
between the Ub2 conformations at these two pHs. All of these observations are in full
agreement with our prior NMR data 17, as well as the Ub2 structures derived from 15N
relaxation measurements at pH 4.5 and 6.8 9,16.

Structural interpretation of the RDCs is complicated by two issues: (i) the derived alignment
tensors for the distal and proximal Ubs at each pH have significantly different principal
values (Table 1), and (ii) the range of RDC values for the proximal Ub is significantly
smaller than for the distal Ub, particularly at pH 4.5 and pH 6.8. These differences cannot be
explained by variations in sample conditions for the proximal and distal Ub RDC data
collection, since deuterium-signal splitting was identical between the two samples (see
Experimental Section), and therefore suggest the existence of interdomain dynamics in K48-
Ub2.

Consequently, it is not possible to align the two Ubs with respect to each other such that a
good overall fit of the combined RDCs (for both the distal and proximal Ub together) can be
achieved with respect to the back-calculated RDCs from a single Ub2 structure (Fig. 2, third
column), especially at pH 4.5 and pH 6.8 (R < 0.92, Q > 0.23). Consideration of multiple
conformations is therefore necessary to improve the agreement between experimental and
predicted RDCs.

Interestingly, even though there is a strong correlation between the RDC data at pH 7.6 and
pH 6.8, the overall spread of the proximal-Ub RDCs at pH 7.6 is slightly (1.3-fold) higher
compared to that at pH 6.8 (Figs. 2 and 3B), whereas there is virtually no difference in the
RDC ranges for the distal Ubs at these two pHs. This cannot be explained by a difference in
the alignment medium concentration, since that would rescale the RDC values of both Ubs
in Ub2 uniformly. Also, the principal values of the alignment tensor reported by the distal
and proximal Ubs are in a much closer agreement at pH 7.6 than at pH 6.8. These data point
to the ability to treat (as a first approximation) the Ub2 system as a rigid entity at pH 7.6,
which prompted our attempt to construct a single conformation for the di-Ub system. The
agreement between the experimental and back-calculated RDCs for this single conformation
is markedly improved (R = 0.96, Q = 0.15) compared to the single conformation
representations for pH 4.5 and pH 6.8, however the R and Q values are still somewhat higher
than the corresponding values for the individual Ub units, indicative that certain features of
the observed RDCs are not captured with a single-structure representation even at pH 7.6.

The above observations and the fact that this is a well-studied system, establish K48-Ub2 as
an excellent model system to test our sparse ensemble selection method. Therefore we
applied our SES method to the RDC data, and use the results to answer several important
questions: (i) whether the K48-Ub2 takes on the same primary conformations at all pH
conditions, (ii) how many major conformations are sampled, (iii) what are their associated
populations, (iv) how are these populations modulated with pH, and ultimately, (v) whether
these conformations can provide clues to possible mechanisms of receptors recognition by
K48-Ub2?
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A Priori Analysis of RDC and SAXS Constraints for Lys48-linked Ub2

A critical question in using experimental data as a constraint for ensemble analysis is what
amount of independent information a particular type of experimental data contains, since
this dictates how many independent parameters can be used to fit the data. The number of
independent components is determined by the effective rank of matrix A, which can be
computed a priori. Consequently, the maximum limit of the ensemble size should be
constrained to no more than the effective rank of A, defined here as the number of “large”
relative singular values, σi/σmax (e.g. greater than 0.01).

To demonstrate the ability of such analysis to provide valuable a priori information, we
compare two commonly used experimental constraints for recovering ensembles, RDCs and
SAXS profiles 21,33. We generate the A matrix from the 20000-conformers ensemble using
PATI for RDC data and FoXS for SAXS data (see Experimental Section). Note that noise
was included in A by scaling each row of A by the associated error estimate.

The largest twelve σi/σmax values for the two generated A matrices are shown in Fig. 4A.
Even before collecting any experimental data, one can see that for K48-Ub2 the RDC matrix
A contains significantly more large relative singular values than the SAXS matrix A,
indicating that RDCs are more suitable for discriminating among different conformers.
Figure 4A shows that using RDCs we can potentially recover a SES ensemble of up to 10
structures. By contrast, the SAXS matrix A has far fewer significant singular values,
indicating that SAXS data are not as suited for accurate ensemble recovery as are RDCs, for
the generated Ub2 ensemble. There are two reasons why the SAXS matrix A has only a
small effective rank: (i) the radius of gyration, is very similar for all generated Ub2
structures (20.3±1.8 Å), and (ii) the scattering profile is bandwidth limited by the maximal
interatomic distance (diameter) of the molecule, while also sampled on a very limited
domain of scattering vectors (q = 0–1 Å−1) 67, meaning that the SAXS profile of any
possible K48-Ub2 ensemble contains only a small number of independent components (see
also Fig. S2 and the Discussion section). In fact, our analysis showed that over 96% of the
information in the SAXS profile for any Ub2 conformer could be explained by any other
conformer in the 20000-conformer ensemble. Therefore, it is difficult to select even a two-
state solution for K48-Ub2 based on SAXS data without overfitting. The theoretical
observations described above guided us to use RDCs, rather than SAXS data, for SES
analysis of the conformational ensemble of K48-Ub2.

Before proceeding with an ensemble recovery, we first demonstrate our ability to recover a
low-χ2 solution for any sparse input vector x, generated from synthetic RDC data. Figure 4B
shows that the relative error of our best recovered solution (for K >102) is below the
expected experimental error (around 5%) in RDCs. Given any set of experimentally
observed RDCs coming from a 1 to 6-state ensemble, and the parameter K=105, we can
realistically expect to recover a “good” solution, as measured by the fit to the observed
experimental data. Based on these results, we set K=105 for all subsequent computations
described below. At this value of K we can compute the ensemble solution in less than ten
minutes on a single midrange desktop. Significant speedup was achieved for all
computations described here by preconditioning χ2, as detailed in Supporting Information.

Comparison to MES
We compare our Multi-OMP algorithm to the publicly available genetic-programming
algorithm MES 26. As the quality of the recovery can be improved by increasing the
computation time in both methods, we assess the performance of MES and Multi-OMP
given the same computational resources and time. The results for the 3-sized and 5-sized
ensembles, using the same RDC matrix, are shown in Figure 4C. Not only does the Multi-
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OMP algorithm recover an order of magnitude better (in terms of relative error) solution for
both M=3 and M=5, but during the same computation Multi-OMP also recovers all the
solutions for ensembles of size <M. This latter feature of Multi-OMP is strategically
important since we determine the optimal ensemble size based on a ℓ-curve analysis of all
ensemble sizes up to the effective rank of the ab initio-generated A matrix. In contrast, the
current implementation of MES requires separate computations for each value of M,
resulting in a factor O(M) increase in the total computation time. The improvement in results
for Multi-OMP over a genetic-programming algorithm can potentially be attributed to the
better heuristic and faster recomputation of weights (see Supporting Information).

SES Analysis of RDCs for Lys48-linked Ub2

Using our Multi-OMP algorithm, we recovered from the RDC data the best solutions for 1
to 6-state ensembles of K48-Ub2 at all three pH conditions (Fig. 5). Since all computations
are deterministic, all of the described results are entirely reproducible. For all pHs the χ2

decreases monotonically as a function of the ensemble size, and for ensembles of size M=3
and above the error ε is virtually indistinguishable from εr, the lowest error possible when
using all structures in the ensemble, and from εSVD, the lowest error possible when also
fitting all structures and their associated alignment tensors (see Theoretical Formulation
above). Since ε ≈ εr ≈ εSVD, not only did we successfully solve the SES formulation for
M=3, but our 3-state SES solution is also a solution to the SVD approach.

We performed ℓ-curve analysis on the 1–6-sized ensembles (Figs. 5A,B). From the linear ℓ-
curve plot one can see that there is only a nominal improvement in the χ2 for the top M > 3
ensemble solutions. The corner point of the log-log plot suggests the selection of M = 3 as
the proper ensemble size for all three pHs. Note that at pH 7.6, the contributions of 2-sized
or 3-sized ensembles to reproducing the experimental RDCs are significantly smaller than at
lower pH values. Furthermore, a 1-sized ensemble solution at pH 7.6 reports a better χ2

value than that for a 1-sized solution at pH 4.5 or pH 6.8. These observations are in
agreement with our prior assessment (see above) that, at pH 7.6, a single-conformation
representation does a reasonably good job (but not entirely adequate) of reproducing the
experimental RDCs (Fig. 2, third column).

The residuals between experimental and predicted RDCs for the best 1 to 3-state ensembles
for all three pHs are shown in Fig. 5C. Remarkably, the agreement between the experimental
RDCs and the RDCs calculated from the 3-state ensembles at each pH is as good as the
agreement between the experimental and back-calculated RDCs for the individual Ub units
(compare the fourth column with the first and second columns in Fig. 2). In addition, the
population weights are stable with respect to experimental noise (Supporting Information).

The structures of the three ensemble members at each pH are shown in Fig. 6 (see Fig. S6
for M=1 and M=2 solutions). Importantly, at pH 4.5, all states exhibit an open Ub/Ub
conformation with no obvious non-covalent contacts between the two Ub units. The
populations of the 3-state ensemble at pH 4.5 are 49%, 30%, and 21%, for the three
conformations. At higher pHs, we observe the emergence of a major conformation
(populated at 62% at pH 6.8 and 69% at pH 7.6) that resembles the “closed” conformation
of K48-Ub2, seen previously both in crystals68 and in solution9,16,17,69. The increase in the
population of the closed conformation is fully consistent with the better fit of RDCs to a
single conformation (Fig. 2) and with our CSP data (Fig. 1). Note that the residues with
significant CSPs localize to the Ub/Ub interface in the “closed” conformation17.
Interestingly, the minor conformations (populations < 22%) at both pH 6.8 and pH 7.6
resemble more “open” conformations, consistent with observations from 15N relaxation data
at pH 6.8 16. All of these results are consistent with the hypothesis17 that K48-Ub2
undergoes a population change from mainly open conformations at acidic pH, to a
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predominantly closed conformation at higher pH (Fig. 7). The high relative population of the
closed conformation at neutral and higher pH (62–69%) is also in general agreement with
prior NMR and FRET measurements 9,11,16,17.

Alternative Ensembles that Explain Lys48-linked Ub2 RDC Data
In addition to providing the best-χ2 solution, the SES approach allows the analysis of other
alternative ensembles that yield a similarly low χ2. One of the advantages of the Multi -OMP
computational method is that for each M-sized best ensemble we also deterministically
recover K−1 best alternative solutions (see the Multi-OMP section above).

In order to visualize the structural similarity of the K−1 alternative solutions with the best
solution, we analyzed all solutions within 3% of the χ2 for the best solution. We then
hierarchically clustered all the conformers in the best solution and all alternative solutions
by 8 Å Cα-RMSD cutoff, showing only the lowest-χ2 solution that comes from the same set
of M clusters (see Fig. S3). The mean and standard deviation of the populations of the top
3% 3-state ensembles at pH 4.5 are [47% ± 1%, 31% ± 1%, 22% ± 1%]; at pH 6.8 are [62%
± 0%, 22% ± 0%, 16% ± 0%]; and at pH 7.6 [71% ± 4%, 18% ± 4%, 11%±1%]. The top 3%
alternative solutions of the 3-state ensembles at pH 6.8 and 7.6 all have an almost identical
dominant closed conformation (Fig. 7, Figs. S4, S5). Remarkably, this feature is consistently
preserved even in the top 15% of the 3-state ensembles, thus demonstrating the stability of
our SES results.

Comparison to Maximum Entropy Solution
Another regularization method used for ensemble selection is maximum entropy
(MaxEnt) 34,35. In contrast to the ℓ0-norm regularization employed by SES to solve the
ensemble selection problem (Eq. 6), the MaxEnt method uses relative entropy regularization
to balance fit to the observed data with the divergence between the computed population
weights w, and some prior distribution p,

(8)

with λ ≥ 0 being a regularization parameter.

In order to verify that our results are mainly driven by the experimental data and not by
sparsity regularization, we compared our SES results to the MaxEnt solution for all three pH
conditions. MaxEnt solutions were computed using the uniform prior distribution, pj=1/N,
and λ selected using the described ℓ-curve approach (see Supporting Information for
computational details and results).

Since our initial ensemble contains 20000 structures, the MaxEnt solution contains a large
number of non-zero population weights. In order to interpret the results of the MaxEnt
solution, we selected only the “significant” states, defined as those states with population
weights greater than two standard deviations above the averaged population weight for all
states. This corresponds to 559, 239, and 103 states, for pH 4.5, 6.8, and 7.6, respectively
(Fig. S7). These significant states and their associated populations were aggregated together
by hierarchical clustering within 4 Å Cα-RMSD. The centroids of the four most populated
clusters and their associated aggregated populations are shown in Fig. 8. The displayed
weights have been normalized such that the significant states’ weights add up to 1 (the
absolute weights are shown in the brackets). The agreement between the experimental data
and the predicted data using only the weights of the significant states is shown in Fig. S7.
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From Figure 8, it is interesting to note that the MaxEnt solution does indeed capture several
salient features of the K48-Ub2 conformational ensemble. First, with increasing pH, the
population of the major conformation increases from 18% to 44% for pH 6.8, and remains at
38% for pH 7.6. Only open conformations are detected for low pH, and more conformations
at higher pH values resemble closed conformations of K48-Ub2. The first two states of the
MaxEnt solution are almost identical between pH 6.8 and pH 7.6 and somewhat structurally
similar to each other. If combined, their populations approach the population of the major
conformation in the SES solution, for their respective pHs (Fig. 6). In general, the number of
states explaining the majority of experimental RDC data decreases with pH (Fig. 8B),
supporting the hypothesis that K48-Ub2 becomes more ordered at higher pH.

Unlike our SES solution, where just three representative states explain the experimental
data, the first four clustered states capture only 15%, 47%, and 66% of the total population,
for pH 4.5, 6.8, and 7.6, respectively, and so they cannot be interpreted directly as the four
representative states (see Fig. S7). In addition, MaxEnt solution does not capture the
putative closed state found in the crystal PDB structure 1AAR. Indeed, the Cα-RMSD vs.
1AAR of the MaxEnt’s major states at pH 6.8 and 7.6 is 4.8 Å, compared with 1.9 Å and 2.2
Å, respectively, for SES.

Nonetheless, it is encouraging that the maximum entropy and the SES ensemble solutions
are somewhat similar at higher pH values. This suggests that the overall pattern in solutions
of both methods is due to the robustness of the experimental data, rather than assumptions
inherent in either method. However, three major issues hamper the MaxEnt approach: (i) the
solution depends on the assumption of the prior distribution p, and therefore the ensemble
generation method. A similar issue with dependence on the input ensemble arises with
truncated-SVD and Tikhonov regularizations. (ii) The MaxEnt solution ensemble is difficult
to interpret, requiring a further, somewhat subjective analysis, to reduce the solution to a few
simple human-understandable properties 29,34. (iii) It is difficult to adapt the method to cases
when there is scaling error in the predicted data, or when some states are not in the initial
ensemble, and thus the weights are not expected to add to 1.

Discussion
Here we developed a novel method for recovering multiple conformational states from a
limited number of observations. We applied this method to determine, using RDC
measurements, representative conformational ensembles for K48-Ub2 as a function of pH.
Our results are in full agreement with the previous observations made from entirely
independent measurements, including CSPs, 15N relaxation, site-specific spin
labeling 9,16–18, and single-molecule FRET 11. The fact that we were able to recover the
ensembles and their associated populations based solely on a single set of RDC data
suggests that sparsity regularization, known to be a powerful tool for solving numerous ill-
posed problems, can also be successfully applied to the ensemble selection problem. That an
entirely different method, MaxEnt, yields similar results (top populated conformers,
increased conformational order at higher pH) lends further support to our findings.

Biological Relevance to Polyubiquitin Chain Recognition
The SES-derived structural ensemble of K48-Ub2 comprises both “closed” and “open”
conformations. The closed conformation, predominantly populated at pH 6.8 and 7.6,
features a Ub-Ub interface formed by the hydrophobic patches of both Ub units. This
interface, consistently present in all SES solutions in the top 15% clusters (Figs. S3–S5), is
in full agreement with the CSPs detected in both Ub units, and resembles the Ub-Ub
interface in the published (closed) structures of K48-Ub2 (PDB IDs 1AAR, 2BGF, 3M3J)
and Ub4 (PDB IDs 2O6V, 1FJ9). Open conformations, low-populated at or near neutral pH

Berlin et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2014 November 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(pH 6.8, pH 7.6), dominate the SES ensemble at acidic conditions (pH 4.5), with the closed
conformation vanishing from that ensemble as its weight dropped below the detection
threshold. These results are in full agreement with the experimental CSP data (Fig. 1).

Important to this analysis is the elucidation of the low-populated states at near-physiological
pH, as these states structurally represent binding-competent states, whereas the major
(closed) conformation does not (the Ub hydrophobic patch critical for binding is sequestered
by the Ub/Ub interface). The minor conformations observed here represent low-lying
excited states of K48-Ub2, with the free-energy difference of ~1.8 RT (1.1 kcal/mol) from
the major state, as determined from the differences in population between the major and
minor conformations. Moreover, the fact that a single set of NMR signals was detected for
each Ub in our studies indicates that the dynamic equilibrium between these states is fast on
the NMR chemical-shift time scale. This then suggests that the energy barriers separating
various states within the conformational ensembles derived here are such that these states
are easily accessible both kinetically and thermodynamically at physiological temperatures.
Importantly, in contrast to the binding-incompetent closed conformation, the hydrophobic
patches in the open conformations are solvent exposed and, therefore, accessible to ligands.
Thus these conformations represent binding-competent states of K48-Ub2.

Remarkably, the inter-Ub orientations and positioning in many of the open conformations
detected here resemble the bound conformations of K48-Ub2 in complexes with various
receptor proteins (see Fig. 9). For example, the UBA2 domain from the proteasomal shuttle
protein hHR23a binds to K48-Ub2 selectively and in a sandwich-like manner (Fig. 9A) 70;
this conformation is captured in one of the minor states of the (unbound) K48-Ub2 at pH 6.8
(Fig. 6). Similar considerations apply to other known ligand-bound structures of K48-Ub2
(Fig. 9). The insights gleaned from the structures of the minor conformers revealed here
suggest that ligand recognition and binding to polyUb may employ a mechanism whereby a
chain conformation predisposed for accommodating a specific ligand is selected from the
available conformational ensemble; and subsequent steps might include further structural
rearrangements to form the proper interfaces. The observations made here are likely to
extend to other polyUb chains comprising different lysine linkages, and contribute to the
understanding of how Ub chains are specifically recognized by target receptor proteins.

SES Method as a General Approach to Ensemble Recovery
The SES method can be viewed as a general framework for understanding and recovering
sparse conformational information from any linearly-convoluted set of experimental data or
a combination thereof (e.g., RDCs and PREs). The sparsity framework allows us to avoid
assuming a prior population distribution of the initial ensemble (other than sparsity), and
therefore removes the dependence of the solution on the size and the sampling distribution
of the initial ensemble and scaling of data, which could vary depending on the ensemble-
generation and ab initio prediction methods. Such a property does not exist in maximum-
entropy or energy minimization approaches.

The general applicability of a specific structural restraint, or a combination thereof, is an
important theoretical question. Ideally, structural restraints should have the following two
properties: (i) sensitivity, i.e. small structural alterations would result in a detectable change
in experimental data, and (ii) uniqueness, i.e. no two conformers are described by the same
experimental data. In terms of linear algebra, these requirements refer to the degree of
correlation (orthogonality) in matrix A columns. In the ideal case, A is an orthogonal matrix
where all columns are completely uncorrelated, so that the true ensemble can be
unambiguously recovered, and the results are robust to experimental noise. However, in
practice matrix A columns are at least partially correlated, because the number of
conformers in the initial ensemble is much greater than the number of experimental
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observations. In that case, it still might be possible to unambiguously recover a sparse
solution, but not a solution that has a large number of conformers, if small subsets of A
columns are mostly uncorrelated (see restricted isometry property 71).

One can gain insight into how well different types of experimental restraints satisfy the
above criteria by visualizing and comparing the pattern of values and correlation between
different columns of A (as illustrated in Fig. S2). If the predicted data (divided by the
experimental errors) are well spread, such that each column’s pattern is distinct, and hence
not correlated, then the associated experimental data most likely have better ensemble
recovery properties than those where all the columns have a similar pattern, and are
correlated. See Figure S2 for the visualization of RDC, SAXS, and PRE matrices.

In our case, the columns of RDC matrix A are fairly well spread. The matrix has 10
independent components, so using RDCs as sole restraints potentially allows one to recover
ensembles of size up to 10, although RDCs cannot be used to unambiguously recover larger
ensembles. By contrast, the SAXS matrix A columns are highly correlated and show a
similar pattern to each other (see Fig. S1). This suggests a priori that unambiguous recovery
of even small ensembles using SAXS is problematic. While this observation was made for
di-ubiquitin, we would expect this conclusion to hold for other molecular systems where
there are no significant variations in the atom distribution between conformers. However,
SAXS data can potentially supplement other experimental restraints in order to improve
ensemble recovery.

Importantly, the SES formulation can be extended towards a more general concept of
sparsity. In this paper we chose to interpret the experimental data in terms of the weights of
individual conformational states. However, the interpretation of any particular biological
system is dependent on what is biologically relevant, and one might want to seek alternative
representations, such as relevant folding pathways, motion modes, or any other linear
combination of individual states. Our SES approach can accommodate these alternative
representations by introducing a more general formulation,

(9)

where P is a matrix of a finite set of column vectors that map a desired sparse basis of
conformational states onto probabilities of individual states, and λ is a regularization
parameter that can be computed using the ℓ-curve, or some other methodology. In the study
presented here, P was the identity matrix, but the columns of P can instead represent a set of
possibly meaningful combinations of individual states, for example reflecting continuous
motions. This allows one to extend the applicability of SES to a broader set of problems,
like e.g. intrinsically disordered proteins, where a small number of conformations might not
be an adequate representation. For these types of problems the flexibility of the sparsity
approach over the simpler minimum ensemble selection could be important.

Finally, the SES method is a complete approach that provides:

• A method for analyzing a priori the amount of structural information that a
particular set of experimental data provides.

• A problem formulation that is stable with respect to the input ensemble’s size and
sampling distribution.

• A well-defined regularization technique for choosing the proper ensemble size
based on fit to data.
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• A robust deterministic computational method for efficiently computing a solution
even for very large ensemble sizes, that can also account for errors in scaling of
predicted data.

• A validation technique for checking the quality of the computed solution by
comparing the errors to a lower bound determined from experimental data.

• A general model that can be adapted to individual problems by seeking various
sparse solutions, not just minimum ensemble.

Our SES algorithm is simple to implement, provides a deterministic solution that requires no
problem-specific tuning parameters, and has computational complexity that scales linearly
with input and output ensemble sizes. Thus, SES provides entirely reproducible results that
can be computed in reasonable time on individual desktops. In the case when one wishes to
compute sparsest ensembles with only uniform weights, the Multi-OMP algorithm can be
sped up by removing the least-squares optimization step, and introducing several other small
modifications.

It is important to note that our Multi-OMP algorithm tries to improve the chance of recovery
by propagating K starting points during each m iteration. Many alternative algorithms exist
with different recoverability properties, however, no known algorithm can guarantee an
optimal solution in a general case. It is foreseeable that, as more experimental observations
are added (to y), and the initial ensemble of potential conformations is better refined, the
properties of matrix A will improve such that unique and optimal sparse recovery could be
guaranteed. The chance of recovery can also be potentially improved by preconditioning
(Supporting Information). Realizing under what conditions the chance of recovery improves
is one of the advantages of expressing this problem in terms of the M-term approximation
model.

Conclusions
Here we described and demonstrated, as a proof of principle, a novel method, which we call
Sparse Ensemble Selection, for determining multiple conformational states from a limited
number of observations. SES recasts the problem in terms of sparse approximations, which
is tied to the active research area of compressive sensing. We presented clear criteria for
selecting proper ensemble sizes without overfitting the data, and described a
computationally efficient deterministic algorithm that can compute these criteria in a
tractable amount of time. Importantly, the method does not assume any constraints on the
resulting ensemble size, individual weights, absolute scaling of data, or an error threshold,
but rather determines these values as part of the computation.

We applied the SES method to elucidate the conformational ensemble of Lys48-linked Ub2,
which is the minimal structural and recognition element in longer polyUb chains. Using
RDC data collected at a range of pH values from 4.5 to 7.6, we showed that our method
yields structural ensembles consistent with previously published results determined by
alternative methods. Our SES analysis revealed that in the low-populated conformational
states of the Ub2 the hydrophobic surface patches on both Ub units are solvent accessible,
which makes these conformers ligand-binding competent. Moreover, the resemblance with
the known ligand-bound structures of Lys48-linked Ub2 suggests that some of these open
conformational states are predisposed for binding to various Ub-chain receptors. These
results provide an important link between the conformational properties of the polyUb signal
and the possible mechanisms of its recognition by cellular receptors.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Backbone amide chemical shift perturbations (CSPs) in the distal and proximal Ubs in K48-
Ub2 versus monomeric Ub at pH 4.5, 6.8, and 7.6. The Ub unit with the free C-terminus is
called “proximal”, while the other Ub, linked through its C-terminus to Lys48 on the
proximal Ub is called “distal”.
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Figure 2.
The agreement between the experimental and back-calculated RDCs for the individual Ubs
in K48-Ub2 (two left columns); the back-calculated RDCs were computed using the solution
structure of monomeric Ub (PDB ID 1D3Z). The agreement of the combined experimental
RDCs for K48-Ub2 (data for both Ub units taken together) and the back-calculated RDCs
computed using two optimally aligned PDB 1D3Z structures (third column). The agreement
between the experimental RDCs and the predicted RDCs for the best M=3 ensemble (right-
most column). Values of the Pearson’s correlation coefficient R and the quality factor Q are
indicated.
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Figure 3.
Correlation plots between the RDC data at various pH conditions for the distal (blue circles)
and proximal (red squares) Ubs in K48-Ub2. (A) RDCs at pH 6.8 versus pH 4.5. The RDCs
for the distal and the proximal Ubs are completely uncorrelated (distal: R=0.89, proximal:
R=−0.26), indicating a large structural difference between the two pH conditions. (B) RDCs
at pH 6.8 versus pH 7.6. The good overall correlation between the RDCs (distal: R=0.99,
proximal: R=0.98) suggests similarity between the structural ensembles at the two pH
values. The greater than 1 slope for the proximal Ub along with the factor of ~2 greater
spread of the RDC values at pH 7.6 compared to pH 6.8 suggests an increased
conformational order of this Ub unit at higher pH. The dashed lines in both panels represent
the corresponding regression lines. Values of the Pearson’s correlation coefficient R and the
quality factor Q are indicated.
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Figure 4.
Recoverability properties of the 20000-structures RDC ensemble. (A) The σi/σmax values of
the largest 12 singular values of A, for RDC (black squares) and SAXS (red circles)
matrices of the ensemble. (B) Average relative error in the best recovered solution, for
randomly generated x with ||x||0 non-zero values; K =100,…,105, from left to right. The
black bars represent the standard deviation. Optimal recovery is guaranteed for ||x||0 = 1. (C)
Comparison of errors for SES and MES algorithms (blue and red symbols, respectively), as
a function of computation time. No preconditioning or compression was used.
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Figure 5.
(A–B) ℓ-curve plots: (A) linear and (B) log-log plots, for M=1,…, 6 SES ensembles for
K48-Ub2 at various pH conditions. The dashed line represents both εSVD/L and εr/L, the best
possible solution when fitting all 20000 columns for the SVD and ab initio predicted tensor
models (but arbitrary ensemble sizes). (C) Residuals, ri, for the x* solutions for K48-Ub2
RDC data at pH 4.5, 6.8, and 7.6, for M = 0 (blue), 1 (green), 2 (yellow), 3 (red). Residuals
for the distal and proximal Ubs are shown on the left and right sides, respectively, of the
dashed line.
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Figure 6.
The best overall ensemble solutions for K48-Ub2 at pH 4.5, 6.8, and 7.6. Red coloring of the
ribbon marks residues that exhibited significant spectral differences (CSPs ≥ 0.05 ppm)
between the Ub2 and the corresponding Ub monomers; the spheres (yellow) represent the
side chains of the hydrophobic patch residues Leu8, Ile44, and Val70 in both Ub units. The
structures are oriented such that the distal Ub is on the left and in the same orientation
throughout this paper.
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Figure 7.
The top 3% M=3 ensemble solutions for K48-Ub2 at pH 7.6 (the numbers show average
populations) and the crystal structure (left) of the closed state of K48-Ub2 (PDB ID 1AAR),
for comparison. Red coloring of the ribbon marks residues that exhibited significant spectral
differences (CSPs ≥ 0.05 ppm) between the Ub2 and the corresponding Ub monomers; the
spheres (yellow) represent the side chains of the hydrophobic patch residues Leu8, Ile44,
and Val70 in both Ub units.
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Figure 8.
The results of MaxEnt analysis of the K48-Ub2 RDC data. (A) The top four populated
clusters of the significant states for the MaxEnt solution at each pH value, visually
represented by their centroids, along with the clusters’ aggregated population weights. A
significant state is the one that has a population of more than two standard deviations above
the mean weight. The weights indicated here have been normalized such that the total
weight of the significant states equals 1. The absolute (unnormalized) weights of the clusters
are given in brackets. The clusters shown here include in total 268, 182, and 83 states, for
pH 4.5, 6.8, and 7.6, respectively. (B) The improvement in the quality of fit as a function of
the number of most populated states included. The states are sorted in descending order by
their MaxEnt solution weights. The dashed line shows the best possible χ2/L value (εr/L)
computed by minimizing Eq. 5.
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Figure 9.
Known ligand-bound structures of K48-Ub2 are similar to some of the low-populated
ensemble states (shown immediately to the right). The structures are oriented such that the
distal Ub is on the left and has the same orientation as in all other figures in this paper. The
Ub moieties are colored cyan and shown in ribbon representation, with the side chains of the
hydrophobic-patch residues Leu8, Ile44, and Val70 shown as yellow spheres. The ligand is
shown as white narrow ribbon and indicated for each complex.
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