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Abstract

Catecholamines stimulate the mobilization of stored triglycerides in adipocytes to provide fatty 

acids (FAs) for other tissues. However, a large proportion is taken back up and either oxidized or 

re-esterified. What controls the disposition of these FAs in adipocytes remains unknown. Here we 

report that catecholamines redirect FAs for oxidation through the phosphorylation of signal 

transducer and activator of transcription 3 (STAT3). Adipocyte STAT3 is phosphorylated upon 

activation of β-adrenergic receptors, and in turn suppresses FA re-esterification to promote FA 
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oxidation. Adipocyte-specific Stat3 KO mice exhibit normal rates of lipolysis, but exhibit 

defective lipolysis-driven oxidative metabolism, resulting in reduced energy expenditure and 

increased adiposity on high fat diet. This previously unappreciated, non-genomic role of STAT3 

explains how sympathetic activation can increase both lipolysis and fatty acid oxidation in 

adipocytes, revealing a new regulatory axis in metabolism.

Introduction

The worldwide obesity epidemic1–3 has focused much attention on the pathways that 

regulate energy homeostasis, particularly in adipocytes, the primary site of energy storage 

and mobilization. Nutrients are transported into adipocytes and stored as triglycerides (TGs) 

in lipid droplets. Glucose is converted into fatty acids (FAs) by de novo lipogenesis; 

adipocytes also take up FAs directly from the circulation. In both cases, FAs are esterified 

onto a glycerol backbone via the glycerol phosphate pathway. The first-committed and rate-

limiting step is carried out by the glycerol-3-phosphate acyltransferase (GPAT) family of 

enzymes, which catalyze the conversion of glycerol-3-phosphate and long-chain fatty acyl-

coenzyme A (FA-CoA) to lysophosphatidic acid4–7. There are 4 GPAT proteins; GPAT1 and 

GPAT2 are localized in mitochondria, while GPAT3 and GPAT4 are microsomal8–18. GPAT3 

is highly induced during adipogenesis, and is the dominant isoform in white adipocytes, 

whereas GPAT4 is predominant in brown adipocytes11,19. Because FA-CoA can undergo 

either re-esterification or oxidation, GPAT activity is critical for determining the fate of FAs. 

In the liver, GPAT1 ensures storage of de novo synthesized FAs20, while in brown adipose 

tissue (BAT), GPAT4 limits basal FA oxidation, thereby reducing energy expenditure and 

promoting obesity21. In white adipocytes, GPAT3 is the critical rate-limiting enzyme for TG 

synthesis11,19.

The dynamic regulation of TG synthesis and breakdown in adipocytes is required for 

metabolic health. Failure to store triglycerides in adipose tissue causes lipodystrophies, 

associated with severe metabolic complications22–24. Parenthetically, excessive energy 

storage in adipocytes leads to obesity and ensuing metabolic disease25,26. Nutrient uptake 

and TG synthesis are increased by insulin, while TG breakdown is stimulated by epinephrine 

and norepinephrine-induced lipolysis, resulting in the release of FA and glycerol27–36. 

During lipolysis, adipocytes take back up a large fraction of the released FAs37–47. While 

under basal conditions, white adipocytes esterify and store the vast majority of FAs, and 

oxidation rates are very low48, lipolytic stimulation dramatically increases FA oxidation at 

the expense of re-esterification49. This lipolysis-driven oxidative metabolism represents a 

significant avenue for energy expenditure in white adipocytes that is not dependent on 

beiging or thermogenesis. Furthermore, there is evidence that lipolysis-driven oxidative 

metabolism, but not lipolysis, is defective in adipocytes from obese humans49.

We demonstrate here that signal transducer and activator of transcription 3 (STAT3) is a 

crucial effector of lipolysis-driven oxidative metabolism in adipocytes. STAT3 is 

phosphorylated in response to β-adrenergic activation in a lipolysis-dependent manner. 

STAT3 redirects FAs towards oxidation by suppressing FA re-esterification. Specific 

deletion of the Stat3 gene in adipocytes dramatically reduced lipolysis-driven oxidative 

Reilly et al. Page 2

Nat Metab. Author manuscript; available in PMC 2020 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism, prevented dynamic remodeling of lipid droplets, increased lipid storage, and 

resulted in increased adiposity in mice on a high fat diet. Interestingly, gene expression 

changes produced by Stat3 deletion could not explain these effects. These data demonstrate 

that STAT3 is a crucial regulator of adipocyte lipid metabolism through a non-genomic 

mechanism that ensures proper energy balance.

Results

Stat3 is phosphorylated in response to β-adrenergic receptor activation in adipocytes

Epinephrine and norepinephrine are released from sympathetic nerve terminals in adipose 

tissue50–53, activating β-adrenergic receptors to stimulate the production of cAMP31–34. 

Subsequent activation of PKA results in the phosphorylation and activation of hormone-

sensitive lipase (HSL) and perilipin 1, resulting in increased lipolysis54–59. Despite the 

extensive characterization of this pathway60,61, the molecular events downstream of β-

adrenergic receptor activation in adipocytes remain incompletely understood. One example 

is the secretion of the cytokine IL-6 from adipocytes62–64, which regulates metabolic gene 

expression in liver65 and muscle66–68, and controls macrophage polarization to influence 

adipocyte metabolism69,70, but also may be associated with maladaptive responses to 

obesity71–74. Several studies have suggested that adipocyte-derived IL-6 may exert autocrine 

or paracrine effects in adipose tissue75–77. As this cytokine is known to activate STAT3 upon 

binding to its receptor via activation of JAKs, we sought to clarify the impact of IL-6 on 

adipocyte function by investigating STAT3 phosphorylation in adipocytes from Il6 KO and 

WT littermate mice treated with the β−3 specific adrenergic receptor agonist, CL-316,243 

(Fig. 1). The β−3 adrenergic receptor is expressed at dramatically higher levels than other β-

adrenergic receptors in mature mouse adipocytes, and almost exclusively expressed in these 

cells in mice. Thus, this drug primarily affects adipose tissue, without confounding effects 

on other tissues such as heart or liver78–80. CL-316,243 treatment resulted in a robust 

increase in Il6 mRNA levels in both inguinal and epididymal WAT within 30 minutes, as 

well as a dramatic increase in IL-6 secretion 2 hours after treatment in WT animals (Fig. 

1a,b). As expected, serum IL-6 protein was undetectable in Il6 KO mice. Injection of the 

agonist increased the phosphorylation of HSL on the PKA-responsive site57, Ser563, in both 

inguinal and epididymal adipose tissue derived from both Il6 KO and WT mice (Fig. 1c). 

Phosphorylation of p38 in response to CL-316,243 was also seen in both genotypes (Fig. 

1d). Thus, catecholamine signaling appeared not to be affected in adipocytes of Il6 KO 

animals.

STAT3 activity is regulated by phosphorylation at two sites: phosphorylation of Tyr705 

promotes STAT3 dimerization and transcriptional regulation81,82, while Ser727 

phosphorylation is required for mitochondrial localization83–85, and also enhances 

transcription factor activity86,87. IL-6 is known to increase Tyr705 STAT3 phosphorylation 

by activation of the JAK family of tyrosine kinases81,88. Treatment of WT mice with 

CL-316,243 produced STAT3 Tyr705 phosphorylation after 2 hours (Fig. 1e). This 

phosphorylation event was blunted in the inguinal white adipose tissue (iWAT) of Il6 KO 

mice but occurred normally in the epididymal WAT (eWAT) of the same animals (Fig. 1e). 

On the other hand, Ser727 STAT3 phosphorylation was detected in both iWAT and eWAT 
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within 20 minutes of CL-316,243 treatment, preceding the appearance of IL-6 in the serum. 

Moreover, this effect was observed in both WT and Il6 KO mice (Fig. 1f), indicating that 

this action is not dependent on the autocrine action of adipocyte-secreted IL-6. Interestingly, 

the regulation of STAT3 in response to catecholamine signaling appears to be white fat-

specific, as neither STAT3 Tyr705 nor Ser727 phosphorylation was observed in BAT 

(Extended Data Fig. 1).

Changes in net STAT3 phosphorylation on either serine or tyrosine residues in whole cell 

lysates from 3T3-L1 adipocytes were not detectable after CL-316,243 treatment. However, 

subcellular fractionation (Extended Data Fig. 2) revealed Tyr705 phosphorylation in the 

membrane, cytosolic and nuclear fractions 30 to 60 minutes after CL-316,243 (Fig. 2a). 

While present in the mitochondrial fraction, STAT3 Tyr705 phosphorylation was 

undetectable, while Ser727 phosphorylation was detected but not changed with CL-316,243 

treatment. However, increased Ser727 phosphorylation was observed specifically in the lipid 

droplet fraction (Fig. 2a). We also fractionated adipose tissue from mice treated with vehicle 

or CL-316,243 for 20 min or 2 hrs. Tyr705 phosphorylated STAT3 was localized to the 

nucleus and appeared later than Ser727 phosphorylated STAT3, which was found in the lipid 

droplet and cytosolic fractions (Fig. 2b).

While the localization of Tyr705 phosphorylated STAT3 to the membrane and nucleus is 

consistent with classical JAK/STAT3 signaling, Ser727 phosphorylation of STAT3 at the lipid 

droplet has not been previously described. To further characterize the localization of Ser727 

phosphorylated STAT3, we performed immunofluorescence confocal microscopy in 

differentiated 3T3-L1 adipocytes treated with CL-316,243 prior to fixation and staining. 

Consistent with our fractionation data, total STAT3 and Ser727 phosphorylated STAT3 were 

detected in the cytosol and nucleus, but unchanged by CL-316,243 treatment (Fig. 2c). 

Evaluation of the overlap of STAT3 or Ser727 phosphorylated STAT3 with bodipy, which 

stains the lipid droplet, revealed a significant increase in Ser727 phosphorylated STAT3 

overlap with bodipy, while colocalization of total STAT3 with bodipy was unchanged (Fig. 

2d,e), suggesting that the pool of STAT3 phosphorylated in response to catecholamines is 

adjacent to the lipid droplet in adipocytes.

We next investigated the kinases responsible for phosphorylating STAT3 in response to β-

adrenergic stimulation. Both basal and stimulated STAT3 Tyr705 phosphorylation were 

completely blocked by pretreatment with a pan-JAK inhibitor89,90, while inhibition of PKA 

with H8991 blocked only the stimulation of STAT3 Tyr705 phosphorylation by CL-316,243 

(Fig. 2f), consistent with canonical JAK-mediated phosphorylation of STAT3 at Tyr705 

activated downstream of PKA.

Inhibition of PKA with H89 also prevented Ser727 phosphorylation of STAT3 in response to 

CL-316,243 (Fig. 2g). Although PKA has previously been implicated as an upstream STAT3 

kinase92, the Ser727 site does not match the PKA consensus sequence93. Moreover, we were 

not able to produce STAT3 phosphorylation in vitro after incubation with purified active 

PKA, suggesting that the effects of PKA on STAT3 are indirect. The protein kinases that 

phosphorylate STAT3 Ser727 have been the subject of much investigation92,94–101. Although 

p38 has been reported to phosphorylate STAT3 at Ser727 downstream of PKA in 
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adipocytes100–103, p38 inhibition with SB-203,58065,104,105 did not block Ser727 

phosphorylation of STAT3 by CL-316,243 (Fig. 2g).

We wondered whether STAT3 Ser727 phosphorylation might result from the stimulation of 

lipolysis. Lipolysis in adipocytes is catalyzed by HSL and Adipocyte Triglyceride Lipase 

(ATGL)31,52. The ATGL inhibitor completely prevented Ser727 phosphorylation of STAT3 

by CL-316,243 (Fig. 2g), while HSL phosphorylation was unaffected, strongly suggesting 

that lipolysis and not PKA activity per se is critical for STAT3 phosphorylation. Addition of 

bovine serum albumin (BSA) to the media binds to and sequesters FAs upon their release, 

preventing reuptake during lipolysis106. Ser727 phosphorylation of STAT3 by CL-316,243 

was attenuated by addition of BSA (Fig. 2h), indicating that FA reuptake is a critical 

component of the lipolysis-driven signaling event, and that the serine kinase responsible for 

STAT3 Ser727 phosphorylation may be activated by fatty acids or their metabolites.

Adipocyte STAT3 protects against diet-induced obesity

While it has been suggested that STAT3 is involved in adipogenesis88,107–109, its role in 

mature adipocyte metabolism is largely unknown. We created adipocyte-specific Stat3 
knockout (SAKO) mice by crossing floxed Stat3 mice with Adipoq-Cre mice110,111. STAT3 

protein levels in mature adipocytes were reduced by more than 95 percent in the SAKO mice 

(Extended Data Fig. 3a). While an Ap2-Cre-driven Stat3 KO mouse was reported to have 

slightly increased adiposity on a normal diet112, interpretation is confounded by Stat3 
deletion in Ap2-expressing immune and other cells. Body weight and energy expenditure of 

the SAKO mice were equivalent to wild type floxed controls on normal diet (Extended Data 

Fig. 3b,c). However, both inguinal and epididymal adipocytes in SAKO mice were larger 

than those observed in the wildtype controls (Extended Data Fig. 3d–f). When challenged 

with a high fat diet (HFD), SAKO mice gained significantly more weight than the floxed 

littermate controls (Fig. 3a), due to increased adiposity (Fig. 3b); there was no difference in 

lean body mass (Fig. 3b). SAKO mice exhibited increased weight of both the iWAT and 

eWAT depots (Fig. 3c), while liver weight and TG content remained unchanged (Fig. 3c,d). 

Histological analysis of eWAT and iWAT revealed significantly larger adipocytes in the 

SAKO mice (Fig. 3e,f and Extended Data Fig. 4), while BAT and liver histology were 

identical (Extended Data Fig. 4). No differences in activity or food intake were observed 

between the genotypes (Fig. 3g,h). However, oxygen consumption and carbon dioxide 

production were reduced in SAKO relative to control mice, attributing weight gain to a 

reduction in energy expenditure (Fig. 3i,j).

Loss of adipocyte STAT3 causes a defect in oxidative metabolism

Stimulation of β−3 adrenergic receptors in mice increases energy expenditure113–115 

(Extended Data Fig. 5a). While injection with CL-316,243 increased oxygen consumption in 

WT mice, this response was markedly blunted in SAKO mice (Fig. 4a). This defect was not 

the result of generalized catecholamine resistance, as there were no differences in the 

phosphorylation of HSL or p38 (Fig. 4b), nor in the stimulation of lipolysis between the 

genotypes (Fig. 4c). Additionally, neither CL-316,243 treatment nor genotype impacted 

physical activity after injection (Fig. 4d). The increase in oxidative metabolism following 

CL-316,243 treatment was associated with reduced respiratory exchange ratio (RER), 
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presumably due to the increased utilization of FA acids released by lipolysis (Extended Data 

Fig. 5b). Although loss of STAT3 did not impact lipolytic rates (Fig. 4c), SAKO mice did 

not exhibit reduced RER after treatment with CL-316,243, as observed in WT animals (Fig. 

4e). Thus, adipocyte STAT3 appears to be required for the utilization, but not generation of 

FAs during lipolysis.

To explore the cell autonomous effect of STAT3, we isolated primary preadipocytes from 

SAKO and floxed control inguinal white adipose tissue and differentiated them in vitro. 

Preadipocytes derived from mice with both genotypes differentiated with high efficiency 

(Fig. 5a). As observed in vivo, the stimulation of lipolysis and phosphorylation by 

CL-316,243 was equivalent in WT and SAKO primary preadipocytes differentiated in vitro 
(PPDIVs) (Fig. 5b,c). While WT PPDIVs exhibited a time-dependent increase in oxygen 

consumption rate (OCR), SAKO PPDIV OCR remained low (Fig. 5d). The increase in OCR 

in the WT PPDIVs was completely blocked by inhibition of the lipolytic enzyme ATGL, 

which also blocked the small increase in OCR observed in SAKO PPDIVs (Fig. 5e), 

indicating that under these conditions, oxidative metabolism in adipocytes is driven by 

lipolysis, but also requires STAT3.

Once released from adipocytes by lipolysis, a significant percentage of FAs are taken back 

up by adipocytes37–47. FA uptake was identical in control and SAKO PPDIVs (Fig. 5f), 

indicating that STAT3 promotes oxidation of fatty acids after reuptake. In the presence of 

BSA, FA reuptake is negligible, and the ratio of released FA to glycerol during β-adrenergic-

stimulated lipolysis is 3:1 (Fig. 5f,g). In the absence of BSA, this ratio approaches 0:1, as 

nearly all FAs are taken back up (Fig. 5g). As has been previously reported in 3T3-L1 

adipocytes49, CL-316,243-stimulated oxygen consumption rate (OCR) was significantly 

attenuated in the presence of BSA in WT PPDIVs (Fig. 5h). CL-316,243-stimulated OCR in 

SAKO PPDIVs was lower than in WT cells and equal to the level observed in WT PPDIVs 

in the presence of BSA. Moreover, BSA did not further reduce OCR in SAKO PPDIVs (Fig. 

5h). These data indicate that STAT3 is required for oxidative metabolism driven by fatty acid 

reuptake in lipolytic adipocytes.

The effect of STAT3 on adipocyte oxidative metabolism is non-genomic and non-
mitochondrial

Since STAT3 is well known to function as a transcription factor, we performed RNA 

sequencing analysis in primary mature adipocytes isolated independently from the iWAT and 

eWAT of SAKO and floxed littermates. There were 143 and 228 significantly upregulated 

genes respectively in the epididymal and inguinal primary adipocytes from the SAKO mice 

compared to the floxed controls; 48 of these were upregulated in both depots. Additionally, 

there were 636 and 39 significantly downregulated genes respectively in the epididymal and 

inguinal primary adipocytes from the SAKO mice compared to the floxed controls; 32 were 

downregulated in both depots (Fig. 6a). There was an increase in inflammatory gene 

expression in the SAKO adipocytes, but this is likely secondary to the increase in adipocyte 

size and adiposity, and not STAT3 transcriptional regulation, as Stat3 was not deleted in 

immune cells. Although STAT3 has been shown to promote oxidative metabolism in other 

cell types116–119, we did not observe downregulation of genes involved in oxidative 
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metabolism in SAKO adipocytes. Furthermore, directed Q-PCR analysis of numerous genes 

involved in oxidative phosphorylation, uncoupled respiration, β-oxidation, and lipogenesis 

did not reveal any changes in gene expression that would explain the profound defect in 

oxidative metabolism and increased adiposity observed in SAKO mice (Fig. 6b–f).

STAT3 has also been shown to localize to mitochondria where it promotes electron transport 

chain (ETC) activity83–85. Because we observed STAT3 localization to mitochondria in 

adipocyte fractionation experiments (Fig. 2a), we isolated and evaluated mitochondria from 

WAT. Mitochondrial metabolism from the SAKO and WT adipocytes was identical with 

every substrate tested (Fig. 6g and Extended Data Fig. 6a–e). Moreover, no differences were 

observed in ETC activity between permeabilized WT and SAKO PPDIVs (Fig. 6h and 

Extended Data Fig. 6f–j). To determine whether there were mitochondrial defects in vivo, 

we examined WAT mitochondria by electron microscopy from in vivo fixed tissues. 

Mitochondrial structure was indistinguishable in the SAKO versus flox control adipocytes 

from both iWAT and eWAT (Fig. 6i,j). These data indicate that STAT3 promotes oxidative 

metabolism in adipocytes through a non-genomic and non-mitochondrial mechanism.

STAT3 suppresses FA re-esterification in adipocytes

Having established that the metabolic effect of STAT3 occurs downstream of FA reuptake, 

we examined the fate of exogenous 14C-labeled palmitic acid in isolated adipocytes, 

measuring incorporation into triglycerides (TG) and phosphatidic acid (PA), or alternatively 

oxidization to acid soluble metabolites (comprised mainly of short chain FAs) or CO2. 

PPDIVs derived from SAKO mice exhibited 2-fold higher levels of 14C-palmitic acid 

incorporation into TG and PA than control adipocytes (Fig. 7a). This occurred at the expense 

of FA oxidation, as the formation of 14C-labeled CO2 and acid metabolites was substantially 

reduced in the SAKO cells relative to WT controls (Fig. 7b). These results indicate that 

STAT3 promotes FA oxidation while inhibiting fatty acid re-esterification in the adipocyte. 

Consistent with this idea, inhibition of GPAT activity with the pan-GPAT inhibitor, FSG67, 

resulted in a dose-dependent increase in oxidative metabolism in mature adipocytes (Fig 7c). 

Importantly, the IC50 of FSG67 (27.7 μM ± 4.4 μM) was consistent with the previously 

described IC50 for inhibition of GPATs (24 μM)120, strongly supporting the specific effect 

of the compound. Co-treatment with CL-316,243 did not change the observed IC50 (24.9 

μM ± 1.8 μM), but did potentiate the effect of GPAT inhibition on oxidative rate (Fig 7c), 

indicating that stimulation of lipolysis is required to provide sufficient FA substrate to drive 

oxidative metabolism to its full potential.

Since we did not observe a direct effect of STAT3 on mitochondrial capacity for fatty acid 

oxidation, we investigated the role of STAT3 in FA esterification. Lipid depletion by 

CL-316,243 in the absence of BSA is mediated by mitochondrial FA oxidation, as it was 

blocked in 3T3-L1 adipocytes by pretreatment with etomoxir to inhibit CPT1 activity (Fig. 

7d). However, in the presence of BSA, lipolysis produces lipid droplet depletion, which is 

not blocked by CPT1 inhibition (Fig. 7d). We anticipated that the preference for re-

esterification would preserve lipid content in the SAKO PPDIVs. Consistent with equal 

lipolytic rates in the WT and SAKO PPDIVs, lipid droplet disappearance was rapid in both 

genotypes in the presence of BSA (Fig. 7e). While CL-316,243 treatment produced lipid 
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droplet disappearance in the WT cells in the absence of BSA, lipid droplet volume in the 

SAKO PPDIVs was preserved (Fig. 7e and Supplementary Video). We confirmed this result 

in a larger population of cells by quantifying TG levels in WT and SAKO PPDIVs after 

treatment with CL-316,243 (Fig. 7f). These results indicate that STAT3-mediated 

suppression of re-esterification is essential for lipid burning during stimulated lipolysis, 

which in turn has a significant impact on TG levels in adipocytes. This explains why SAKO 

adipocytes are significantly larger than WT adipocytes in both iWAT and eWAT under both 

normal diet and high fat diet feeding (Fig. 3e,f and Extended Data Fig. 3d,e).

STAT3 suppresses GPAT activity

The rate-limiting step in FA esterification is catalyzed by GPATs, leading us to wonder 

whether STAT3 regulates the activity of these enzymes. Treatment with the GPAT inhibitor 

FSG67, restored oxidative metabolism in SAKO PPDIVs (Fig. 7g). GPAT activity was 

significantly higher in lysates from SAKO PPDIVs as compared to control lysates (Fig. 7h). 

The increased GPAT activity in the SAKO adipocytes was N-ethylmaleimide (NEM)-

sensitive (Fig. 7i), ruling out GPAT1, which is NEM-insensitive14. STAT3 itself is NEM-

insensitive121, and thus is not the cause of the NEM-sensitivity. Since GPAT2 is not 

expressed in adipocytes122, it seems likely that either GPAT3 or GPAT4 are affected by 

STAT3. Although both were originally characterized as ER-localized proteins, there is 

mounting evidence that GPAT3 and GPAT4 localize to the lipid droplet when present in the 

cell8–10. Indeed, we detected GPAT3 localization specifically in the lipid droplet fraction in 

adipocytes (Extended Data Fig. 7a). We thus treated cells with CL-316,243 and 

immunoprecipitated with a STAT3 antibody or IgG control, and performed mass 

spectrometry on STAT3-associated proteins corresponding to the size of GPAT1/2 (95/90 

kDa) and GPAT3/4 (49/52 kDa) separated by SDS-PAGE. Among other proteins, GPAT3 

was found in the anti-STAT3 immunoprecipitate, and was absent in the IgG control 

(Supplementary Data 1), while no other GPAT proteins were co-precipitated. To investigate 

a possible interaction between STAT3 and GPAT3, we overexpressed tagged versions of both 

proteins in HEK293T cells. STAT3 coimmunoprecipitated with GPAT3, and reciprocally, 

GPAT3 coimmunoprecipitated with STAT3 (Extended Data Fig. 7b–d), while specific 

interaction with the closely related family member GPAT4 was not observed (Extended Data 

Fig. 7c,d). Together these results suggest that STAT3 may interact with GPAT3, the major 

GPAT in white adipocytes, to suppresses GPAT activity.

Regulation of FA re-esterification by STAT3

We investigated whether STAT3-mediated suppression of re-esterification is regulated by 

catecholamines. Basal re-esterification of 14C-palmitic acid to TG in the SAKO PPDIVs was 

two times the rate observed in WT cells; upon CL-316,243 stimulation re-esterification in 

the SAKO PPDIVs was 4.5 times the WT rate (Fig. 8a), supporting the hypothesis that 

STAT3-mediated suppression of re-esterification is enhanced by β-adrenergic activation. We 

also measured GPAT activity in WAT from animals treated with CL-316,243 or vehicle 

control. In WAT derived from WT mice, GPAT activity was suppressed by CL-316,243 (Fig. 

8b). This GPAT suppression by CL-316,243 was STAT3-dependent, as CL-316,243 failed to 

suppress GPAT activity in WAT from SAKO animals (Fig. 8b). No difference in GPAT 

activity was detected between vehicle treated WT and SAKO WAT, nor was there a 
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difference in GPAT3 or GPAT4 protein expression levels (Fig. 8b,c). Thus, although some 

suppression of GPAT activity is observed in the absence of β-adrenergic stimulation in 

serum-starved SAKO PPDIVs, we do not observe STAT3-mediated suppression of GPAT 

activity in unstimulated ad-libitum fed animals. These data suggest that catecholamines 

enhance STAT3-mediated suppression of GPAT activity in white adipocytes.

Serine phosphorylation of STAT3 is required for lipid oxidation

These data suggest that lipolysis-driven oxidative metabolism requires STAT3-mediated 

suppression of re-esterification. As shown above, treatment with a pan-JAK inhibitor 

completely blocks STAT3 Tyr705 phosphorylation. However, inhibition of JAKs did not 

suppress lipolysis-driven oxidative metabolism, suggesting that this function of STAT3 is 

independent of its phosphorylation at Tyr705 (Fig. 8d). To test the role of STAT3 Ser727 

phosphorylation, we reconstituted the SAKO PPDIVs with WT or S727A STAT3 using 

lentiviral overexpression. Reconstitution with WT STAT3 restored lipolysis-driven oxidative 

metabolism in the SAKO PPDIVs to WT levels (Fig. 8e), while reconstitution with the 

S727A STAT3 mutant failed to rescue lipolysis-driven oxidative metabolism (Fig. 8e). 

Although the S727D mutant also rescued the induction of oxidative metabolism by 

CL-316,243, it did not impact OCR in vehicle-treated cells, likely because lipolysis was not 

induced in these cells (Fig. 8f).

We hypothesize that the molecular mechanism by which STAT3 suppresses re-esterification 

may involve interaction with GPAT3. Consistent with this hypothesis, we found that the co-

immunoprecipitation of endogenous STAT3 with GPAT3 was enhanced by CL-316,243 

treatment (Extended Data Fig. 7e). Furthermore, co-immunoprecipitation of GPAT3 was 

enhanced by S727D phosphorylation-mimetic STAT3 mutation in HEK293T cells (Extended 

Data Fig. 7f), while the S727A phosphorylation-null mutant exhibited reduced co-

immunoprecipitation of GPAT3 in CL-316,243-treated 3T3-L1 adipocytes (Extended Data 

Fig. 7g). Consistent with the dispensable role of Tyr705 phosphorylation of STAT3 in this 

context, GPAT3 co-immunoprecipitation was unchanged by the Y705F STAT3 mutation 

(Extended Data Fig. 7g). While these data suggest that STAT3 specifically blocks GPAT3 

activity through a direct interaction, we cannot rule out the involvement of other proteins in 

this process.

These results suggest that upon sympathetic activation in the adipose tissue during 

conditions such as fasting, catecholamine signaling promotes oxidative metabolism in 

adipocytes via Ser727 phosphorylation of STAT3, which suppresses re-esterification in turn 

redirecting FAs from re-esterification to oxidation (Fig. 8h).

Discussion

During feeding and fasting, adipocytes are regulated by anabolic and catabolic hormones to 

store or mobilize energy. The dominant catabolic regulation comes after activation of 

adrenergic receptors due to release of epinephrine and norepinephrine from nerve terminals 

in adipose tissue27–30. In response, adipocytes undergo lipolysis, releasing FAs to be used as 

an energy substrate. A large proportion of FAs are reincorporated into the adipocyte37–47, 

where they can either re-esterify into triglycerides or undergo mitochondrial oxidation. 
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Interestingly, adipocytes are metabolically reprogrammed during lipolysis to increase FA 

oxidation49. There is evidence that lipolysis-driven oxidative metabolism, but not lipolysis 

itself, is defective in adipose tissue from obese humans49, although it is unclear whether 

defects in this pathway lead to the development or are a consequence of obesity. However, 

the mechanisms by which the adipocyte is instructed to re-esterify versus oxidize FAs 

remain completely unknown. Data presented here indicate that catecholamines suppress re-

esterification by increasing serine phosphorylation of STAT3, and suppression of re-

esterification leads to increased FA oxidation due to the increased availability of FA-CoA.

We show here that β-adrenergic-stimulated fatty acid oxidation was dramatically reduced in 

adipocyte-specific Stat3 KO mice in vivo, and in adipocytes derived from these mice in 
vitro, accounting for the increased adiposity of these mice. Moreover, the defect in fatty acid 

oxidation observed in adipocytes from SAKO mice was rescued by WT but not S727A 

mutant STAT3. Thus, it appears that catecholamine-stimulated Ser727 phosphorylation of 

STAT3 results in the suppression of GPAT activity, and this inhibition results in the 

redirection of FA-CoAs to mitochondria for oxidation. In contrast, STAT3 Tyr705 

phosphorylation appears to be dispensable for this process. However, this phosphorylation 

event could be critical for other catecholamine-stimulated pathways, or for the perpetuation 

of oxidative metabolism after the first few hours, as OCR remains high long after Ser727 

phosphorylation returns to baseline.

The signaling pathways linking catecholamine stimulation to STAT3 Tyr705 phosphorylation 

are not clear, and there may be another adipokine besides IL-6, such as IL-11, that activates 

the JAK/STAT3 axis123. The serine/threonine kinases that phosphorylate STAT3 Ser727 have 

been the subject of much investigation, and include numerous MAPKs92,94–101. While we 

find that this phosphorylation is PKA-dependent, the Ser727 site on STAT3 does not match a 

PKA consensus site. Instead, PKA-induced lipolysis followed by FA reuptake appears to be 

required for this phosphorylation event at the lipid droplet, suggesting that the serine kinase 

responsible for STAT3 Ser727 phosphorylation may be activated by fatty acids or their 

metabolites. Future studies will be required to identify the STAT3 serine kinase, and to 

understand the spatial regulation of this phosphorylation event.

The first committed and rate-limiting step in the esterification of FAs with glycerol to form 

glycerolipids is catalyzed by the GPAT enzymes, which are crucial in the regulation of fatty 

acid handling in the cell. GPAT3 is the dominant isoform in WAT but is also expressed in the 

intestine, heart and kidney, with low levels in the brain11,124. Gpat3 global KO mice exhibit 

increased energy expenditure, and Gpat3 KO females are protected from diet induced 

obesity19. Moreover, treatment of obese mice with a GPAT inhibitor elevates energy 

expenditure125,126. While these data are consistent with the hypothesis presented here, it is 

impossible to tease out the adipose tissue-specific effects of GPATs in these experiments19. 

In support of an obesogenic role of adipose tissue re-esterification, adipose-specific 

overexpression of Pck1, which increases re-esterification via increased glyceroneogenesis, 

dose-dependently increased adiposity and adipocyte size127.

Suppression of FA re-esterification by STAT3 in adipocytes represents a novel non-genomic 

activity of STAT3. While gene expression differences were noted in adipose tissue of the 
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SAKO mice, these were largely unrelated to fatty acid oxidation or storage. STAT3 has also 

been detected in mitochondria, where it is proposed to control ETC activity83,84. The 

mechanism of increased ETC activity by mitochondrial STAT3 remains uncertain, and the 

role of STAT3 as a mitochondrial transcription factor has not been eliminated116,128. 

However, we observed no difference in structure or function of mitochondria in white 

adipocytes from SAKO mice, and this potential effect of STAT3 is unlikely to contribute to 

the phenotype described here. Interestingly, ER-localized STAT3 has also been ascribed a 

non-genomic activity129, where it may interact with the calcium channel, IP3R3, and 

suppress its activity. This action of the signaling protein deserves further attention.

Understanding the mechanisms controlling the fate of fatty acids in white adipocytes is of 

great importance. Although previous studies have reported that adrenergic activation 

increases the oxidative step, the pathways regulating this critical event have been a complete 

mystery. The crucial part played by STAT3 in this process reveals yet another surprising role 

for this versatile signaling intermediate, and implicates a new crucial regulatory node for 

metabolic homeostasis.

Methods

Animals

Homozygous Il6 KO mice were obtained from Jackson Labs (Stock No: 002650). These 

mice were bred to C57BL/6J mice (Stock No: 000664) to generate heterozygous animals. 

Cohorts of WT and KO littermate controls were generated from heterozygous to 

heterozygous breeding. Animals were genotyped prior to weaning and WT and KO mice 

were cohoused after weaning.

Animals homozygous for the Stat3 floxed allele were obtained from Jackson Labs (Stock 

No: 016923). These mice were bred to Adipoq-promoter driven Cre mice (Stock No: 

028020). The F1 generation was then intercrossed to generate mice homozygous for the 

Stat3 floxed allele both with and without the Adipoq-Cre. Animals with Adipoq-Cre 
expression lose Stat3 in mature adipocytes and are referred to in the manuscript as SAKO 

animals, while littermates without Adipoq-Cre are WT or floxed controls.

All strains of mice were on the C57BL/6J background. Only male mice were used for 

experiments. We fed mice with normal diet (ND) (7912 – Teklad) or high fat diet (HFD) 

consisting of 45% of calories from fat (D12451 – Research Diets Inc.) for 12–13 weeks, 

starting at 6–8 weeks of age. Mice were treated with CL-316,243 at a dose of 1 mg/kg by 

intraperitoneal injection with 1o ml/kg of a 0.1 g/l solution of CL-316,243 in PBS, or PBS 

vehicle control using a 28G needle. During metabolic studies, ear tag numbers were used to 

identify animals. Within an experiment, the genotype and or treatment groups were both 

littermates and cage mates. Researchers performing tests and collecting data were blinded 

during experiments. Animals in each cohort were produced from up to 20 breeding pairs to 

minimize the birthdate range. Within each genotype, mice were assigned to treatment 

groups, such that prior to treatment the mean body weight, as well as the standard deviation 

of the body weight, was equal across treatment groups, using a method similar to block 

randomization. Additional consideration was given to housing, such that each cage 
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contained multiple treatment groups, to avoid confounding by cage effects. Sample size was 

determined based on the available cohorts and the number of treatment groups required. 

Mice were housed in a specific pathogen-free facility with a 12-h light, 12-h dark cycle, and 

given free access to food and water, except for fasting period. All animal use was approved 

by the Institutional Animal Care and Use Committee (IACUC) at the University of 

California-San Diego.

Serum IL-6 measurement—Blood was collected by submandibular bleed, and allowed 

to clot at room temperature for 30 min prior to serum isolation. Serum IL-6 levels were 

quantified using Mouse IL-6 Quantikine ELISA from R&D (SM6000B) with 50 μl of serum.

Body composition—The University of Michigan Metabolic Phenotyping Core used 

NMR analysis to quantify body fat, lean body mass and fluid content in HFD fed mice. 

Body composition of normal diet (ND) fed mice was determined at the University of 

California San Diego using an EchoMRI™ (3 in 1).

Metabolic cage studies—For metabolic study, mice were subject to Comprehensive 

Laboratory Monitoring System (Columbus Instruments) (CLAMS is an integrated open-

circuit calorimeter equipped with an optical beam activity monitoring system) to measure 

oxygen consumption (VO2), carbon dioxide production (VCO2) by indirect calorimetry and 

spontaneous motor activity at ACP phenotyping core of UCSD. For metabolic study in ND 

fed mice, animals were subject to Promethium system metabolic cage in a temperature 

control cabinet. Values presented are normalized to body weight.

Adipocyte size

Adipocyte size was quantified from Hematoxylin and Eosin stained WAT histology slides, 

imaged with standard Texas Red excitation and emission filter. Adipocyte size was assayed 

using Cell Profiler 130. We developed a pipeline to exclude objects that deviated from 

circularity by omitting those objects with a form factor below 0.5 and an eccentricity above 

0.95, which greatly improved the accurate identification of single adipocytes by the 

automated system. A minimum of 1,000 cells were assayed from each HFD fed animal, and 

a minimum of 600 cells in ND fed mice.

Lipolysis

FA concentration was measured using either 2 μl of serum or 25 μl conditioned media with 

the NEFA kit (WAKO), using 75 μl Reagent A and 150 μl Reagent B. Absorbance was 

measured at 550 nm (reference 660 nm) using the manufacturer’s protocol. Free glycerol 

concentration in serum was measured by reacting 10 μl of serum with 190 μl Free Glycerol 

Reagent (Sigma) and absorbance was measured at 540 nm using the manufacturer’s 

protocol. Free glycerol concentration in cell culture media was measured by reacting 50 μl 

of conditioned media with 150 μl Free Glycerol Reagent reconstituted to 4/3x (Sigma) and 

absorbance was measured at 540 nm using the manufacturer’s protocol.
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Cell culture

3T3-L1: 3T3-L1 fibroblasts (American Type Culture Collection) were cultured in culture 

media (DMEM containing 4.5 g/l glucose, 10% FBS, 10 U/ml penicillin, 10 U/ml 

streptomycin and 292 mg/l glutamine). Once grown to confluence, adipocyte differentiation 

was initiated using a three component cocktail containing 500 μM 3-Isobutyl-1-

methylxanthine, 250 nM dexamethasone and 1 μg/ml insulin for the first 3 days, followed by 

an additional 3 days of media containing 1 μg/ml insulin and finally differentiation was 

completed in the culture media. Only cultures in which >90% of cells displayed adipocyte 

morphology were used. Fully differentiated adipocytes, which were cultured in culture 

media for 5–9 days were used for experiments. CL-316,243 was treated at 10 μM in serum 

free DMEM, with 2% free fatty-acid free BSA when indicated. Inhibitors (50 μM H89, 10 

μM JAK Inhibitor I (CAS 457081–03-7 – Calbiochem), and 10 μM SB-203,580) were 

pretreated in complete media for 30 min, then continued in serum free DMEM with CL or 

vehicle treatment. For cellular respiration studies, JAK inhibitor I pretreatment was 

performed in seahorse DMEM, and CL was injected via port A. CL-316,243 was dissolved 

in water at 1,000x, other inhibitors were dissolved in DMSO at 1,000x.

Fractionation—3T3-L1 adipocytes and adipose tissue were fractionated using differential 

centrifugation in fractionation buffer: HEPES (pH 7.4) 20 mM, KCI 10 mM, MgCl2 2 mM, 

EDTA 1 mM, EGTA 1 mM, DTT 200 μM, NaF 10 mM, NaVO4 1 mM, β-glycerophosphate 

2.5 mM, phosphatase inhibitor tablet (Roche). All steps were performed at 4 °C. Cells/tissue 

were lysed with a glass dounce homogenizer, then spun at 1,000 g for 10 min to separate 

lipid droplets (floating fat cake) and nuclear pellet. Mitochondria were then pelleted from 

the supernatant at 10,000, and then Membrane pelleted at 21,000 g after incubation with 8 

mM CaCl2. Remaining proteins in solution were cytosol. Each fraction (except cytosol) was 

resuspended in fractionation buffer and spun a second time to wash, before addition of lysis 

buffer. Each supernatant was spun a second time at the same speed, before transferring to a 

new tube to pellet the next fraction. Protein content in each fraction was normalized and 20 

μg of protein loaded per well for western blot analysis.

PPDIV—Primary preadipocytes were isolated from inguinal fat pads as follows: Following 

fine mincing, the tissue was collagenase (2 mg/ml Sigma – C6885) digested in a 37 °C water 

bath with shaking for 15–20 min. FBS was added to 10 %, then the slurry was passed 

through a 100 μm filter, and spun at 500 g for 5 min. The fat cake was washed once and spun 

again. The two pellets were combined and washed once and plated in culture media with 2.5 

mg/L amphotericin B (Sigma – A2411). The following day, the media was removed and 

nonadherent cells washed away with DPBS, fresh culture media was added. When the cells 

reached ~40 % confluence, they were split 1:3. Cells from the first and second passage were 

plated to confluence for experiments to ensure that all cells reached confluence at the same 

time. Differentiation was initiated with 500 μM 3-Isobutyl-1-methylxanthine, 250 nM 

dexamethasone, 1 μg/ml insulin and 1 μM Troglitazone for 4 days, followed by insulin for 3 

days. Cells were used for experiment 8 or 9 day after the initiation of differentiation. Only 

cultures in which >90% of cells displayed adipocyte morphology were used. CL-316,243 

was treated at 0.5 or 1 μM in serum free DMEM, with 0.2 or 2% Free fatty-acid free BSA as 
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indicated. Atglistatin 50 μM pretreatment was performed in seahorse DMEM, 15 min prior 

to beginning OCR measurements.

Lentiviral Transduction—After differentiation cocktail, 3T3-L1 cells were exposed to 

concentrated virus-containing insulin media for 2 hours, then additional insulin media was 

added for another 14 h. After which the media was changed to fresh insulin media for an 

additional 72 h. 3T3-L1 cells were cultured for an additional 4–8 days in culture media 

before being used in an experiment. The same protocol was followed for PPDIVs, except 

that insulin treatment was 4 days, and cells were utilized for the experiment after 24 h in 

culture media.

HEK293T—HEK293T cells (American Type Culture Collection) were cultured in culture 

media.

Transfection

HEK293T cells were transfected with a combination of pLVX-3xFLAG-STAT3, 

pLVX-3xFLAG-STAT3-S727D, pLVX-3xFLAG-STAT3-S727A, pLVX-3xMYC-GPAT3, 

pLVX-3xMYC-GPAT4, and pLVX-GFP plasmids as designated in each experiment using 

Lipofectamine 3000 reagent (Invitrogen) following the manufacturer’s protocol. GFP vector 

was used to normalized transfected DNA amount in control samples that received only 

STAT3 or GPAT3/4, as well as monitor transfection efficiency. 24 to 48 hours after 

transfection, cells were used in a Co-IP assay.

Co-Immunoprecipitation

HEK293T and 3T3-L1 cells were lysed in a buffer containing 20 mM HEPES (pH 7.6), 100 

mM NaCl, 20 mM β-glycerophosphate, 1 mM NaVO3, 10 mM MgCl2, 1 mM DTT, 1 mM 

PMSF, 0.5 g/l Triton X-100, 0.5 g/l NP-40, protease inhibitors [1 complete™ Protease 

Inhibitor Cocktail (Roche) per 50 ml of buffer] by mechanical homogenization via 10 time 

passage through a 28-gauge needle. Homogenate was spun at 1,000 g for 10 minutes, then at 

23000 g centrifugation for 15 min, then lysates were collected and diluted 1:1 using dilution 

buffer containing 20 mM HEPES (pH 7.6), 20 mM β-glycerophosphate, 1 mM NaVO3, 10 

mM MgCl2, 1mM DTT, 1 mM PMSF, protease inhibitors [1 cOmplete™ Protease Inhibitor 

Cocktail (Roche) per 50 ml of buffer]. The diluted cell lysates were incubated with either 

monoclonal anti-FLAG M2 magnetic beads (M8823, Sigma) or monoclonal anti-MYC 

magnetic beads (5698S, Cell Signaling Technology) for 2-h at 4 °C. For the endogenous Co-

IP, the 3T3-L1 lysate was incubated with GPAT3 antibody (Invitrogen –PA5–38698 Lot 

TI2643756) overnight at 4 °C, then protein A/G beads (Santa Cruz – sc-2003) were added 

for 2 h, or lysates were incubated with STAT3 (Cell Signaling – 4368) or IgG (Cell 

Signaling − 3423) antibody coated beads overnight. Flow through was collected and the 

beads were washed 5 times with wash buffer containing 20 mM HEPES (pH 7.6), 50 mM 

NaCl, 20 mM B-glycerophosphate, 1 mM NaVO3, 10 mM MgCl2, 1mM DTT, 1 mM 

PMSF, 0.25% Triton X-100, 0.25% NP-40, protease inhibitors [1 cOmplete™ Protease 

Inhibitor Cocktail (Roche) per 50 ml of buffer]. Proteins were eluted off the beads by the 

addition of SDS sample buffer and 5 min incubation at 95 °C with vortexing every 30 

seconds.
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Lentivirus production

HEK293T cells were plated onto polylysine (0.01%) coated plate, then transfected with 

pLVX expression vectors along with pMDL/pLP1 (packaging plasmid), pVSVG/pLP 

(envelope plasmid), and pLP2/ pRev (packaging plasmid) and using Lipofectamine 3000 

reagent (Invitrogen, L3000) following the manufacturer’s protocol. Media was changed 24 h 

later. The lentivirus containing media were collected at 48 and 72 hours post transfection 

and incubated overnight at 4 °C with lenti-X concentrator (TaKaRa, 631232), then spun at 

1500 g at 4 °C for 45 minutes, the viral pellets were reconstituted in fresh insulin media 

(high glucose (4500 mg/L) DMEM with 10% FBS and 10 μg/ml insulin).

pLVX expression vectors

STAT3 constructs in the pAdCMV vector were purchased from Addgene: pAdCMV/V5-

DEST-STAT3–3xFlag (99260), pAdCMV/V5-DEST-S727A-STAT3–3xFlag (99262), 

pAdCMV/V5-DEST-S727D-STAT3–3xFlag (99263), and pAdCMV/V5-DEST-Y705F-

STAT3–3xFlag (99261). A PCR based cloning method was used to transfer the constructs 

into the pLVX vector. GPAT3 was cloned from C57BL/6 inguinal WAT cDNA, and GPAT4 

was cloned from C57BL/6 liver cDNA and placed into the TOPO vector. From there the 

constructs were transferred into the pLVX vector with a C-terminal Myc Tag and N-terminal 

Kozak sequence.

Microscopy

Live Cell Confocal—PPDIVs were incubated in culture media containing 1 μM of Bodipy 

493/503 (Life Technology) to label lipid droplets, and/or 25 nM of MitoTracker Deep Red 

FM (Thermo Fisher) at 37 °C for 30 min. Cells were then washed with media twice and then 

washed into phenol red free DMEM with and without 1 μM CL-316,243 and 2% FFA-free 

BSA. Live cell images were obtained using Nikon A1R confocal with 100x oil immersion 

objective. For live cell time-lapse microscopy, multi z-steps (15 steps, 1 μm/step) images 

were taken roughly every 20 minutes.

Immunofluorescence confocal microscopy—PPDIVs were differentiated on 

chambered cover glass (Lab-Tek). Lipid droplets were labeled by incubation with 10 μM of 

Bodipy 493/503 (Life Technology) at 37 °C for 15 min, followed by treatment with and 

without 1 μM CL-316,243, and then immediately fixed with 4% paraformaldehyde. Cells 

were permeabilized and blocked with 3% BSA + 0.2% Triton X-100 for 30 min at room 

temperature, then incubated with primary antibodies in 3% BSA overnight at 4 °C (STAT3 

1:1,600 Cell Signaling 9139, p727 STAT3 1:100 Abcam ab131103). Cells were washed 

three times with PBS, then incubated with Secondary antibodies for 1 hour at 4 °C 

(Invitrogen Goat anti-mouse Alexa Fluor 555, A32732 1:1,000 and Goat anti-rabbit Alexa 

Fluor 647 A32733 1:2,000), then stained with Hoechst dye, and washed three more times 

before imaging. Multi z-step (71 steps 0.5 μm/step) images were obtained using Nikon A1R 

confocal with 100x oil immersion objective. Blinded analysis was performed using Volocity 

6.3 software to identify lipid droplets (Bodipy stained objects in 3D reconstruction). 

Misidentified objects (either multiple lipid droplets identified as one object or only part of a 

lipid droplet selected) were eliminated from the analysis. Voxels in the object that co-
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localize with either STAT3 or Ser727 phosphorylated STAT3 were determined and 

normalized either total object voxels or surface area.

Lipid Droplet Volume—To calculate the volume of lipid droplets, cells were manually 

selected. The same intensity threshold adjustment was applied to every individual cell to 

reduce background and eliminate out of focus pixels. LD volume of each cell was then 

calculated using NIS-Elements (Nikon). This analysis uses the number of above threshold 

pixels in the selected region to calculate volume and is not affected by staining intensity. The 

researcher was blinded to the experimental group during analysis.

Electron Microscopy—Mice were fixed via cardiac perfusion at 37 °C with 2% 

paraformaldehyde (freshly made), 2.5% glutaraldehyde in pH 7.4, 0.15 M sodium 

cacodylate buffer with 0.03% calcium chloride. Fat pads were removed and immersion fixed 

overnight at 4 °C. Tissues were washed five times with ice-cold buffer consisting of 0.15 M 

sodium cacodylate, 0.03% calcium chloride, and postfixed with ice-cold 2% OsO4, 0.8% 

KFe(CN)3, 0.03% CaCl2 in 0.15 M sodium cacodylate for 1 h on ice, washed three times 

with ice-cold distilled water and stained overnight with 2% uranyl acetate at 4 °C. Tissues 

were dehydrated in an ethanol series, infiltrated and embedded in Durcupan ACM resin 

(Fluka). Ultrathin 80-nm-thick sections were made using a Leica EM UC6 ultramicrotome 

and Diatome 45° diamond knife. Sections were imaged by an FEI Spirit transmission 

electron microscope operated at 80 kV with a Teitz TemCam F224 2k by 2k CCD camera.

Triglyceride quantification

Lipids were extracted from PPDIV cells using a 3:2 mixture of Hexane:Isopropanol. Liver 

tissue was weighed and homogenized and lyophilized, then lipids were extracted with 

chloroform. The organic solvent was evaporated from the extracted lipids and triglycerides 

content was quantified using the infinity TG reagent (Thermo-Fisher) following the 

manufacturer’s protocol.

Cellular and Mitochondrial Respiration

Oxygen consumption rates were measured using a Seahorse XF96 or XFe96 analyzer. Data 

were analyzed as previously described 131.

Mitochondrial isolation—Mitochondria were isolated from inguinal primary mature 

adipocytes from WT and SAKO animals. Each isolation utilized tissue from at least 3 

animals to reduce animal to animal variance within each genotype. Harvested tissues were 

minced and collagenase (1 mg/ml) digested in a 37 °C water bath with shaking for 15–25 

min, followed by addition of FBS to 10% and passage through a 100 μm filter; from this 

point forward all steps were performed at 4 °C. The floating adipocyte fraction was collected 

and washed into SHE buffer pH 7.4 with 4% FA-free BSA (250 mM sucrose, 5 mM HEPES, 

1 mM EGTA), then homogenized with 5 rotating strokes in a glass-Teflon homogenizer. The 

homogenate was spun at 800 g for 10 min, and the supernatant collected then spun again at 

10,000 g at 4 °C for 10 min to pellet mitochondria, which were then washed into SHE with 

0.5 % FA free BSA, 2.5 μg were plated per well in a 96 well Seahorse plate generally as 

previously described 132. Media was changed to MAS buffer (70 mM Sucrose, 220 mM 
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Mannitol, 5 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA and 0.2% FA-free 

BSA), containing various substrates (4 mM ADP + 5 mM pyruvate + 1 mM malate, 40 μM 

palmitoylcarnitine + 1 mM malate, 5 mM succinate + 2 μM rotenone, 5 mM glycerol 3 

phosphate + 2 μM rotenone + 700 nM CaCl2, 20 mM ascorbate + 200 μM Tetramethyl-p-

Phenylenediamine) before measurement of oxygen consumption. Phosphorylating (“State 

3”) respiration was measured as the initial rate, followed by sequential injections of 

oligomycin (2 μM), and then FCCP (sequential additions of 3 μM).

PPDIV permeabilization—Cells were permeabilized by 15 min incubation in MAS with 

4 mM ADP and 3 nM recombinant perfringolysin O 133 (Agilent – 102504–100). Then 

various substrates (4 mM ADP + 5 mM pyruvate + 1 mM malate, 40 μM palmitoylcarnitine 

+ 1 mM malate, 5 mM succinate + 2 μM rotenone, 5 mM glycerol 3 phosphate + 2 μM 

rotenone 700 nM CaCl2, 20 mM ascorbate + 200 μM Tetramethyl-p-Phenylenediamine) 

were added before measurement of oxygen consumption. Phosphorylating (“State 3”) 

respiration was measured, followed by sequential injections of oligomycin (2 μM), and then 

FCCP (sequential additions of 2 μM) 134.

Intact cell experiments—Cells were differentiated on a 96 well seahorse plate, then 

washed into base media (DMEM containing 8 mM glucose, 1 mM pyruvate, 2 mM 

glutamine and 0.5 mM carnitine without phenol red or sodium bicarbonate), then incubated 

in a CO2 free incubator for 15 min prior to measurement of oxygen consumption. Inhibitor 

pretreatments were performed in base media. Basal rates of respiration were measured, 

followed by sequential injections of oligomycin (2μM), FCCP (sequential additions of 500 

nM) and rotenone (1 μM)/antimycin A (1 μM), or sequential injections of CL-316,243 (0.5 

μM PPDIV/10 μM 3T3-L1), oligomycin (2μM), FCCP (500 nM) and rotenone (1 μM)/

antimycin A (1 μM).

Re-esterification and FA Oxidation

PPDIVs in a 12-well plate were incubated in 1 ml/well DMEM containing 28 mM (0.5 μCi 

well) 14C-palmitic acid with or without 1 μM CL-316,243. After a 60 min incubation, 900 μl 

of media was collected and 100 μl 10% BSA added. The remaining media was suctioned off 

and the cells washed 3x with cold PBS. Lipids were extracted with 200 μl 3:2 

hexane:isopropanol three times. Lipid extracts were dried and run on a TLC plate with 

80:20:1 hexane:ether:acetic acid to separate TG, FA and DG, which were cut off then the 

plate was run in the opposite direction with 6:35:8 chloroform:methanol:water to separate 

PA, FA-CoA, LPA. While all FA species could be identified based on standards and seen by 

I2 staining, the vast majority of the radioactivity was contained in the TG and to a lesser 

extent the PA bands, which were scraped off the plate for measurement of radioactivity in a 

liquid scintillation counter (Perkin Elmer, MicroBeta TriLux 1450).

GPAT activity assay

The GPAT activity assay was adapted from previously described assays 19,20. GPAT specific 

activity was assayed for 15 min at room temperature in a 200 μl reaction mixture containing 

100 μg total lysate protein in GPAT assay buffer (75 mm Tris-HCl, pH 7.5, 4 mm MgCl2, 1 

mg/ml BSA (FA-free), 1 mm dithiothreitol, 8 mm NaF, 77 μM (2 μCi/rxn) 14C-glycerol 3-
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phosphate, and 50 μM lauryl-CoA). PPDIV cell lysates were prepared by 10 passages 

through a 28 g needle in GPAT assay lysis buffer (250 mM sucrose, 10 mM Tris pH 7.5, 1 

mM EDTA and 8 mm NaF). Inguinal WAT tissue lysates were prepared by mechanical 

homogenization (Roto Star) with 1 μl GPAT assay lysis buffer per mg tissue. Crude lysates 

were spun at 1,000 g for 10 min followed by 17,000 g for 15 min. Supernatant was 

transferred to a new tube and protein concentration measured before dilution to 1 mg/mL 

and addition of 2x GPAT assay buffer. NEM treatments were performed for 15 min prior to 

addition of 2x GPAT assay buffer. Reactions were terminated by addition of 2:1 

chloroform:methanol to extract lipids and precipitate protein. Lipid extraction was repeated 

an additional two times, dried and separated by TLC with 6:35:8 

chloroform:methanol:water, to isolate phosphatidic acid. The spot corresponding to 

phosphatidic acid was identified based on a standard 16:0PA standard (Avanti Polar Lipids, 

830855), and visualized with I2 in order to be scraped off the plate and radioactivity 

quantified in a liquid scintillation counter (Perkin Elmer, MicroBeta TriLux 1450).

Western blot analysis

We homogenized tissues and cells in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 2 mM 

EDTA, 10% glycerol, 1% Triton X-100, 1 mM dithiothreitol, 1 mM Na3VO4, 5 mM NaF, 1 

mM phenylmethanesulfonylfluoride, 25 mM glycerol 2-phosphate and freshly added 

protease inhibitor tablet) and then incubated them for 1 h at 4 °C. We centrifuged crude 

lysates at 17,000 g for 15 min twice and determined the protein concentration using Bio-Rad 

Protein Assay Dye Reagent. Mature adipocytes were isolated using the same protocol as 

used to isolate preadipocytes for PPDIVs, except that three spins were done at 20g to wash 

the floating mature adipocytes, followed by protein precipitation with 5% TCA, acetone 

wash and resuspension in 8M urea, 100 mM Tris pH 8.0. Samples were diluted in SDS 

sample buffer. Bound proteins were resolved by SDS–PAGE and transferred to nitrocellulose 

membranes (Bio-Rad). Individual proteins were detected with specific antibodies and 

visualized on film using horseradish peroxidase-conjugated secondary antibodies (Bio-Rad) 

and Western Lightning Enhanced Chemiluminescence (Perkin Elmer Life Sciences). 

Primary antibodies were used at a 1:1,000 dilution unless otherwise specified and purchased 

from Cell Signaling: pS563 HSL (4139), HSL (4107), pT108.Y182 p38 (9211), p38 (9212), 

p727 STAT3 1:500 (9134), p705 STAT3 (9131), STAT3 1:4,000 (9139), H3 (4499), TOM20 

(42406), Flag R (14793), Myc R (2278), Perilipin 1 (9349), β-tubulin (2128) or Invitrogen: 

GPAT3 (PA5–38698 Lot TI2643756). Goat anti-mouse (31430) and goat anti-rabbit (31460) 

secondary antibodies were purchased from Thermo Fisher, and Donkey anti-goat secondary 

antibody was purchased from R&D system (HAF 109) and used at a concentration of 

1:10,000. Uncropped western blot scans with the size markers indicated are included in the 

Source Data files. All blots are from separate membranes unless otherwise noted, but were 

run, transferred and blotted in parallel using the same power source and antibody dilutions.

Real-time PCR analysis of gene expression

RNA extractions from inguinal WAT were performed using the RNeasy Lipid Tissue Kit 

(Qiagen). We used the Superscript First-Strand Synthesis System for reverse transcription–

PCR (Invitrogen) with a 3:1 mixture of random hexamers/oligo dT primers for reverse 

transcription. Real-time PCR amplification was performed on samples in triplicate with 
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Power SYBR Green PCR Master Mix (Applied Biosystems) using the Applied Biosystems 

QuantStudio5 real-time PCR System and quantified using an internal standard curve with 

Arbp as the control gene. The sequences of all primers used in this study are listed in 

Supplementary Table 1.

RNA sequencing analysis

RNA extractions from primary mature inguinal adipocytes were performed using the 

RNeasy Lipid Tissue Kit (Qiagen) according to the manufacturer’s instructions. Biological 

triplicates of RNA isolated from WT and SAKO primary mature adipocytes were used to 

prepare sequencing libraries from 100–500 ng total RNA using the TruSeq RNA Sample 

Preparation Kit v2 (Illumina) according to the manufacturer’s protocol.

Sample preparation—Briefly, mRNA was purified, fragmented and used for first- and 

second-strand complementary DNA synthesis followed by adenylation of 3′ ends. Samples 

were ligated to unique adapters and subjected to PCR amplification. Libraries were then 

validated using the 2100 BioAnalyzer (Agilent), normalized and pooled for sequencing on 

the Illumina HiSeq 2000 using bar-coded multiplexing and a 100 bp read length.

Data analysis—Read alignment and junction mapping was accomplished using TopHat2 

v2.0.4 using a 25 bp 5′ segment seed for initial mapping followed by differential gene 

expression analysis using Cuffdiff v2.0.2 to map reads to the reference genome annotation, 

NCBI mouse build 37.2 135. Median sequencing read yield per replicate sample was 24.2 M. 

Data were expressed as fragments per kilobase of exon per million fragments mapped. 

Volcano plots were generated from Cuffdiff output using CummeRbund v2.0.0 135.

RNA-seq library construction—Single-cell complementary DNA size distribution and 

concentration were assessed on a capillary electrophoresis-based fragment analyzer 

(Advanced Analytical). Illumina libraries were constructed in 96-well plates using the 

Illumina Nextera XT DNA Sample Preparation kit as described previously using the 

protocol supplied by Fluidigm. For each C1 experiment, a bulk RNA control (about 200 

cells) and a no-cell negative control were processed in parallel in PCR tubes, using the same 

reagent mixes as used on chip. Libraries were quantified by Bioanalyzer, using High 

Sensitivity DNA analysis kit, and also fluorometrically using Qubit dsDNA HS Assay kits 

and a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies).

DNA sequencing—Single-cell Nextera XT (Illumina) libraries of one experiment were 

pooled and 100 bp) paired-end were sequenced on Illumina HiSeq 2000 to a depth of (2–6) 

× 106 reads (three replicate experiments of distal mouse lung epithelial cells at E18.5, one 

experiment at E14.5 and one experiment on adult AT2 cells) or 150 bp paired-end on 

Illumina MiSeq (one experiment at E16.5) to a depth of 100,000–550,000 reads with v3 

chemistry. CASAVA 1.8.2 was used to separate out the data for each single cell by using 

unique barcode combinations from the Nextera XT preparation and to generate *.fastq files.
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Statistical Analyses

All statistical analyses were two sided. When comparing the two groups, two-tailed unpaired 

Student’s t test was used to determine the significance of experimental results. For 

experiments with a two factorial design a two-way analysis of variance (ANOVA) was 

performed to establish that not all groups were equal. The Holm-Sidak post-hoc analysis 

was then used for specific between-group comparisons after statistical significance was 

established by ANOVA. In each case, significance was set at α = 0.05. Statistical analyses 

were performed in GraphPad Prism version 6.

Additional methodological detail on sample size, statistics, software and code used, 

authentication, ect can be found in the Reporting Summary included with this manuscript.

Extended Data
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Extended Data Fig. 1: Catecholamine signaling in white and brown adipose tissue.
Western blot analysis of WT and SAKO mice fed a HFD for 12 weeks, then treated with 1 

mg/kg CL-316,243 or vehicle control for indicated time before sacrifice and tissue 

collection. a. Epididymal white adipose tissue. b. Inguinal white adipose tissue. Outlier 

detected with Grubs outlier test removed. c. Brown adipose tissue. Blots are representative 

of results from three independent experiments
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Extended Data Fig. 2: Fractionation of 3T3-L1 differentiated adipocytes
Relative levels of β-tubulin (cytosol marker), H3 (nuclear marker), Calnexin (ER/membrane 

marker), TOM20 (mitochondrial marker) and Perilipin1 (lipid droplet marker) in 

fractionated samples from time course analysis in Fig. 2a. Cytosol, nucleus, membrane and 

mitochondria run on the same gel. These experiments were repeated independently four 

times with similar results.
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Extended Data Fig. 3: Metabolic phenotype of SAKO mice on a normal diet (ND)
a. Left panel: Western blot of mature adipocytes isolated from 12-week old WT and SAKO 

mice. Right panel: Quantification of STAT3 protein relative to RalA loading control. 

Individual data points plotted ± SEM (n = 3 iWAT, 2 eWAT). b. Body weight of 12-week old 

ND fed WT and SAKO mice. Individual data points plotted ± SEM (n = 6 per genotype). c. 

Oxygen consumption rate in ND fed WT and SAKO mice at 16-weeks of age. Data are 

represented as mean ± SEM (n = 16). d. Adipocyte size distribution from ND-fed 12-week 

old WT and SAKO eWAT (n = 2 WT and 3 SAKO). e. Adipocyte size distribution from ND-

fed 12-week old WT and SAKO iWAT (n = 2 WT and 3 SAKO). f. Body composition of ND 

fed WT and SAKO mice at 12 weeks of age. Individual data points plotted ± SEM (n =6 WT 

and 4 SAKO).
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Extended Data Fig. 4: Histology from HFD-fed WT and SAKO mice
From top to bottom, eWAT (scale bar = 100 μm), iWAT (scale bar = 100 μm), BAT (scale bar 

= 50 μm), and liver (scale bar = 100 μm). Results are representative of results from three 

independent experiments
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Extended Data Fig. 5: Effect of CL-316,243 on metabolism
a. Oxygen consumption and b. RER before and after intraperitoneal injection with 1 mg/kg 

CL-316,243. Individual data points plotted ± SEM (n = 6 per treatment). * p value = 0.002 

(VO2) and <0.0001 (RER) CL versus baseline (two-tailed paired t-test).
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Extended Data Fig. 6: Mitochondria bioenergetics profiles
a.-e. Isolated mitochondria. Vertical lines indicate addition of oligomycin (2 μM), and FCCP 

(two sequential additions of 3 μM). a. 4 mM ADP + 5 mM pyruvate + 1 mM malate, b. 40 

μM palmitoyl-carnitine + 1 mM malate, c. 5 mM succinate + 2 μM rotenone, d. 5 mM 

glycerol 3 phosphate + 2 μM rotenone 700 nM CaCl2, e. 20 mM ascorb-ate + 200 μM 

Tetramethyl-p-Phenylenediamine. f.-j. Permeabilized PPDIVs. Vertical lines indicate 

addition of oligomycin (2 μM), and FCCP (two sequential additions of 2 μM). f. 40 μM 

palmitoylcarnitine + 1 mM malate, g. 4 mM ADP + 5 mM pyruvate + 1 mM malate, h. 5 

mM succinate + 2 μM rotenone, i. 5 mM glycerol 3 phosphate + 2 μM rotenone 700 nM 

CaCl2, j. 20 mM ascorbate + 200 μM Tetramethyl-p-Phenylenediamine. Data are 

represented as mean ± SEM (n = 8 per genotype).
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Extended Data Fig. 7: STAT3/GPAT3 interaction
a. Western blot analysis of fractionated 3T3-L1 adipocytes treated with 10 μM CL-316,243 

or vehicle control for 60 min. b.-d. and f. Western blot analysis of input, flow through and 

immunoprecipitation using Myc-antibody coated beads (b, c) or Flag-antibody coated beads 

(d, f) of HEK293T cell lysates overexpressing Flag-tagged STAT3 and/or Myc-tagged 

GPAT3/GPAT4. Blots are representative of three independent replicates. Dark exposure 

(D.E.). e. Western blot analysis of input and immunoprecipitation using GPAT3 antibody in 

3T3-L1 differentiated adipocytes treated with 10 μM CL-316,243 or vehicle control for 15 

min. f. Western blot analysis of input, flow through and immunoprecipitation using Flag 

antibody coated beads of HEK293T cell lysates overexpressing Flag-tagged STAT3 (WT/

S727A/S727D) and/or Myc-tagged GPAT3. Blots are representative of three independent 

replicates. Arrow indicates expected size of Ser727 phosphorylated STAT3; the band 

observed in the IP samples is a larger non-specific band. g. Western blot analysis of input, 

flow through, and immunoprecipitation using Flag antibody coated beads from 3T3-L1 

differentiated adipocytes with lentiviral overexpression of flag-tagged STAT3 (WT/Y705F/

S727A) and/or Myc-tagged GPAT3, cells treated with 10 μM CL-316,243 or vehicle control 

for 60 min before harvest and IP. These experiments were repeated independently twice with 

similar results.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Stat3 is phosphorylated in response to β-adrenergic receptor activation in adipocytes.
a. Il6 expression in 12-week high fat diet (HFD) fed C57BL/6 mice treated with 1 mg/kg 

CL-316,243 or vehicle control for 30 minutes before sacrifice and tissue collection. 

Expression levels normalized to vehicle within each tissue. Individual data points plotted ± 

SEM (n = 12 mice per treatment group). p value = 0.0003 (iWAT) and 0.006 (eWAT) b. 

Serum IL-6 levels in 12-week HFD fed C57BL/6 mice treated with 1 mg/kg CL-316,243 or 

vehicle control before sacrifice and blood collection. Data are represented as mean ± SEM 

(n = 3 mice per genotype at each time point). p value < 0.0001 WT vs Il6 KO. Quantification 

of phosphorylation of c. HSL at serine 563 over total HSL (p value < 0.0001 20 min vs. 

basal) d. p38 at threonine 180 and tyrosine 182 over total p38 (p value = 0.003 20 min vs. 

basal) e. STAT3 at tyrosine 705 over total STAT3 (p value < 0.0001 120 min vs. basal) and f. 
STAT3 at serine 727 over total STAT3 (p value = 0.003 20 min vs. basal). c.-f. Western blots 

shown in Extended Data Fig. 1. Individual data points plotted ± SEM (n = 3 WT, 4 SAKO 

mice per time point). * p value < 0.05 from post hoc analysis after significant two-way 

ANOVA.
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Fig. 2: Localization and phosphorylation of Stat3 in catecholamine stimulated adipocytes.
a., f.-h. Western blot analysis of STAT3 phosphorylation in fractionated 3T3-L1 adipocytes 

treated with 10 μM CL-316,243; HSL phosphorylation in the lipid droplet fraction also 

shown to demonstrate effectiveness of CL-316,243 treatment. b. Western blot analysis of 

STAT3 phosphorylation in fractionated adipose tissue collected after intraperitoneal 

injection of 1 mg/kg CL-316,243 (20 or 120 min) or vehicle control (20 min after vehicle 

injection). c. Confocal images of PPDIVs stained with Bodipy, DAPI, STAT3 (Alex fluor 

555 conjugated secondary) and pSer727 STAT3 (Alex fluor 647 conjugated secondary). 

Individual channels of two representative vehicle and CL treated cells shown. Scale bar = 10 

μm. d. 3-D representation of z-stack images of PPDIVs stained with bodipy (green), Dapi 

(blue) STAT3 (yellow) or pSer727 STAT3 (red) are shown with colocalization of Bodipy and 

STAT3 shown in pink, and colocalization of Bodipy pSer727 STAT3 shown in white. e. 

Quantification of colocalization of STAT3 and pSer727 STAT3 with bodipy, normalized to 

lipid droplet volume (top) or lipid droplet surface area (bottom). Data are represented as 

mean ± SEM (n = 61 V and 64 CL lipids droplets) p value < 0.0001 WT versus SAKO 

pSer727. f. Cells pretreated with H89 (PKA inhibitor) or JAK inhibitor I for 30 min, before 

Cl-316,243 treatment for 60 min. g. Cells pretreated with H89, SB-303,580 or atglistatin for 

30 min, before Cl-316,243 treatment for 15 min. Right panel: Quantification of Ser727 

STAT3 phosphorylation in three independent experiments, data are represented as mean ± 

SEM. p value < 0.0001 DMSO v vs CL, CL DMSO vs. PKAi/ATGLi and = 0,003 p38i V vs 

CL. h. Cl-316,243 treatment performed in the presence or absence of 2% BSA in the media. 

Blots are representative of results from three independent experiments, 75 kDa and 100 kDa 

protein marker locations indicated in pink and blue respectively. Results in c-e were 

replicated in an independent experiment. * p value < 0.05 from post hoc analysis after 

significant two-way ANOVA.
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Fig. 3: Adipocyte Stat3 protects against diet-induced obesity.
a. Body weight of WT and SAKO mice before and after 12-weeks HFD. Individual data 

points plotted ± SEM (n = 12 WT and 14 SAKO mice). p value < 0.0001 WT vs. SAKO 

post HFD. b. Body composition by NMR after 12-weeks HFD. Individual data points 

plotted ± SEM (n = 12 WT and 14 SAKO mice). p value < 0.0001 WT vs. SAKO body fat. 

c. Tissue weights after 12-weeks HFD. Individual data points plotted ± SEM (n = 7 per 

genotype). d. Quantification of liver triglycerides, normalized to wet liver weight. Individual 

data points plotted ± SEM (n = 8 per genotype). p value = 0.02 WT vs. SAKO iWAT and 

eWAT. e. Histogram showing adipocyte size in iWAT 12-weeks HFD. Inset: bar graph 

showing mean adipocyte size. Individual data points plotted ± SEM (n = 3 per genotype) p 
value = 0.033. f. Histogram showing adipocyte size in eWAT 12-week HFD feeding. Inset: 

bar graph showing mean adipocyte size. Individual data points plotted ± SEM (n = 5 per 

genotype) p value = 0.033. g.-j. Metabolic cage experiment in WT and SAKO mice after 12-

weeks HFD, dark cycle indicated by grey shading. Data are represented as mean ± SEM (n = 

6 per genotype). g. Food intake. h. Ambulatory activity (x-axis). i. Oxygen consumption, p 
values = 0.012, 0.048, 0.006, 0.046, 0.012. j. Carbon dioxide production p values = 0.001, 

0.005, 0.0003, 0.005, 0.0008. * p value < 0.05 from post hoc analysis after significant two-

way ANOVA (a-c, i, j) or two sided student’s t-test (e and f).
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Fig. 4: Loss of adipocyte STAT3 causes a defect in oxidative metabolism in vivo.
a. Oxygen consumption in 12 week HFD-fed mice, injected with 1 mg/kg CL-316,243 or 

vehicle control. p values = 0.002, 0.0003, 0.002. b. Western blot analysis of 12-week HFD 

fed mice injected with 1 mg/kg CL-316,243 or vehicle control 20 min before sacrifice and 

tissue collection. 50 kDa, 75 kDa and 100 kDa protein marker locations indicated in green, 

pink and blue respectively, blots are representative of three independent experiments. c. 

Serum free fatty acid (top panel – p value = 0.006 WT and 0.028 SAKO V vs CL) and 

glycerol (bottom panel – p value = 0.027 WT and 0.010 SAKO V vs CL) levels in 12-week 

HFD fed mice injected with 1 mg/kg CL-316,243 or vehicle control for 20 min, normalized 

to the value in each animal prior to injection. Individual data points plotted ± SEM (n = 8 

vehicle, 10 CL-316,243). d. Ambulatory activity and e. RER in 12 week HFD-fed mice, 

injected with 1 mg/kg CL-316,243 or vehicle control at time zero. p value < 0.0001 WT V 

vs. CL, and WT vs. SAKO CL. a., d. and e. Data are represented as mean ± SEM (n = 20). * 

p value < 0.05 from post hoc analysis after significant two-way ANOVA.
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Fig. 5: Loss of adipocyte STAT3 causes a cell autonomous defect in lipolysis driven oxidative 
metabolism.
a. Differentiated WT and SAKO PPDIVs, results are representative of dozens of 

independent experiments. Lipid droplet stained with Bodipy (shown in green). Mitochondria 

stained with MitoTracker (shown in red). Scale bar = 10 μm. b. Western blot analysis of WT 

and SAKO PPDIVs treated with 1 μM CL-316,243 for 20 min, results are representative of 

three independent experiments. 50 kDa, 75 kDa and 100 kDa protein marker locations 

indicated in green, pink and blue respectively. c. FA (top panel) and glycerol (bottom panel) 
secreted into the media from WT and SAKO PPDIV treated with 1 μM CL-316,243 or 

vehicle control for 20 min. Individual data points plotted ± SEM (n = 3 per treatment per 

genotype, p values < 0.0001). d., e., and h. Basal oxygen consumption rate in PPDIVs. 

Vertical lines indicate injection times for oligomycin, FCCP and Rotenone/Antimycin A. d. 

Data are represented as mean ± SEM (n = 8 wells per condition). e. Atglistatin pretreated for 

15 min. e. Data are represented as mean ± SEM (n = 6 wells per condition). f. FA uptake in 

WT and SAKO PPDIV in the presence and absence of 2% BSA. Data are represented as 

mean ± SEM (n = 8 wells per condition). g. Ratio of FA to glycerol released into the media 

from WT and SAKO PPDIV in the presence and absence of 2% BSA. Data are represented 

as mean ± SEM h. Assay performed in the presence and absence of 0.2% BSA in the culture 

media. Oxygen consumption rates after 30 min vehicle or CL-316,243 shown as a 

percentage of the basal OCR prior to treatment is shown. Individual data points plotted ± 

SEM. (n = 6 wells per condition, p value = 0.0008). * p value < 0.05 from post hoc analysis 

after significant two-way ANOVA.
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Fig. 6: The effect of STAT3 on adipocyte oxidative metabolism is non-genomic and non-
mitochondrial.
a. Venn diagram showing number of differentially regulated genes in inguinal and 

epididymal mature adipocytes from WT and SAKO mice after 12-weeks HFD feeding (n = 3 

mice per genotype). b.-f. Q-PCR analysis of gene expression in iWAT from WT and SAKO 

mice after 12-weeks HFD feeding. Individual data points plotted ± SEM (n = 12 mice per 

genotype, p value < 0.0001). g. Phosphorylating (State 3) respiration rates of oxygen 

consumption in mitochondria isolated from iWAT in the presence of different substrates. 

Individual data points plotted ± SEM (n = 8 wells per group). h. State 3 oxygen 

consumption rate in permeabilized PPDIV in the presence of different substrates. Individual 

data points plotted ± SEM (n = 8 wells per group). d.-h. No statistically significant results 

WT vs. SAKO. Experiments in g and h were repeated in 4 independent experiments, all with 

similar results; no significant difference between WT and SAKO OCR found by two-way 

ANOVA with post hoc analysis. Electron micrograph of iWAT (i) and eWAT (j), showing 

mitochondrial structure. This experiment was repeated independently with similar results. 

Scale bar = 200 nm. * p value < 0.05 versus WT two-sided student’s t-test.
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Fig. 7: STAT3 suppresses FA re-esterification in adipocytes.
a. Incorporation of 14C-palmitic acid into triglycerides and phosphatidic acid (p value = 

0.018), b. Oxidation of 14C-palmitic acid to form acid metabolites (ACM) and CO2 by WT 

and SAKO PPDIV (p values = 0.002 ACM and 0.022 CO2). Individual data points plotted ± 

SEM (n = 6 per genotype). Data in a. and b. are from the same experiment. c. Dose response 

of FSG67 impact on maximal OCR in 3T3-L1 adipocytes ± 10 μM CL-316,243 (n = 5 per 

treatment, p values = 0.016, 0.021 and < 0.0001 at FSG67 = 6.25, 12.5 and ≥ 25 μM 

respectively) d. Quantification of Bodipy stained area at 5 h relative to basal. BSA and 

etomoxir pretreated for 15 min (n = 20 cells per condition, p values < 0.0001). e. 

Representative micrographs (confocal, collapsed z-stack) of bodipy staining in WT and 

SAKO PPDIVs ± 2% BSA/1 μM CL-316,243. Lower-left panel: Quantification of Bodipy 

stained area at 18 h relative to basal. Individual data points plotted ± SEM (n = 12 vehicle 

and 16 CL cells per genotype, p value = 0.001 WT V vs. CL and 0.002 WT vs. SAKO CL). 

f. Triglyceride content in WT and SAKO PPDIVs after 24 h ± 2% BSA/1 μM CL-316,243, 

percent vehicle. Individual data points plotted ± SEM (n = 3 +BSA, 6 -BSA wells per 

genotype, p value = 0.046 V vs. CL WT, 0.035 WT vs. SAKO CL, 0.018 BSA vs. BSA-CL 

WT, 0.002 BSA vs. BSA-CL SAKO). g. WT and SAKO PPDIV OCR at 30 min ± 100 μM 

FSG67/1 μM CL-316,243. Individual data points plotted ± SEM (n = 6 per treatment, p 
value = 0.0002). h. and i. GPAT activity assay in homogenates from WT and SAKO PPDIV. 

Individual data points plotted ± SEM h. (n = 5 WT and 6 SAKO, p value = 0.042). i. NEM 

preincubation for 15 min. Data are represented as mean ± SEM (n = 3 per genotype, p values 

= 0.0002). * p value < 0.05 post hoc analysis after significant two-way ANOVA.
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Fig. 8: Regulation of FA disposition by STAT3.
a. Incorporation of 14C-palmitic acid into triglycerides by SAKO PPDIV relative to WT 

control cells ± 1 μM CL-316,243. Individual data points plotted ± SEM (n = 3 wells per 

condition, p values = 0.0008). b. GPAT activity in iWAT homogenates from WT and SAKO 

mice treated with 1 mg/kg CL-316,243 or vehicle control for 20 minutes. Individual data 

points plotted ± SEM (n = 3 mice per condition, p value =0.002 WT V vs. CL, 0.019 WT vs. 

SAKO CL). c. Western blot analysis of GPAT3 and GPAT4 protein levels in lysates from 

WT and SAKO iWAT and eWAT. Results are representative of three independent 

experiments, 50, 75 and 100 kDa protein markers indicated in green, pink and blue 

respectively. d. OCR at 30 min ± 10 μM CL-316,243 in 3T3-L1 adipocytes ± JAK inhibitor I 

pretreatment for 30 min, normalized to baseline. Individual data points plotted ± SEM (n = 8 

wells per condition, p values < 0.0001). e. and f. OCR at 30 min ± 0.5 μM CL-316,243 in 

WT and SAKO PPDIV with lentiviral STAT3 (WT, S727A or S727D) or GFP overexpression. 

e. Data are represented as mean ± SEM (n = 12 wells per over expression construct in each 

genotype, p value < 0.0001 V vs. CL, 0.002 WT CL vs. SAKO CL GFP, and 0.046 WT CL 

vs. SAKO CL S727A ). f. Individual data points plotted ± SEM (n = 4 wells per condition, p 
value = 0.029 V vs. CL STAT3, 0.016 V vs. CL 727D, 0.047 GFP vs. STAT3 CL, 0.011 
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727A vs. STAT3 CL, and 0.024 727A vs. 727D CL). g. Model of FA handling in the fed 

state (blue arrows) versus the fasted stated (red arrows) and the signaling regulating 

lipolysis-driven oxidative metabolism (black arrows) in the fasted state. * p value < 0.05 

from post hoc analysis after significant two-way ANOVA.
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Supplementary Video. 
Time course of lipid droplet depletion (visualized by Bodipy staining) in WT and SAKO 

PPDIVs treated with CL-316,243.
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