Lawrence Berkeley National Laboratory

Engineering

Title

Development of a standalone zoneplate based $\ensuremath{\mathsf{EUV}}$ mask defect review tool

Permalink https://escholarship.org/uc/item/8gq2p9zr

Authors

Perera, Chami

Yoon, Gi Sung

Carlson, Ryan

<u>et al.</u>

Publication Date

2022-06-13

DOI

10.1117/12.2617277

Peer reviewed

Development of a standalone zoneplate based EUV mask defect review tool

Gisung Yoon, R. Carlson, B. Yang, M. Hermes Micron Technology, Inc.

<u>Chami Perera</u>, D. Houser, A. Khodarev, C. Murray, T. Grodt EUV Tech, Inc.

A. Allézy, W. Chao, F. Salmassi, E. Gullikson, P. Naulleau Center for X-ray Optics, Berkeley Lab

Micron euv tech CXR®

Agenda

- Background
- System description
- Performance
- Future improvements

BACKGROUND

Zoneplate microscopy proven technique for EUV mask review

Micron CXR()

Goldberg, et al., Proc SPIE, 9048, 90480Y (2014) Benk, et al, Proc SPIE, 10957, 109570V (2019)

euvVtech

Zoneplates are ultra-compact high wavefront quality diffractive optics

Chao, et al., Opt. Exp., 20, 9777 (2012)

euvVtech

Measurement of zoneplate aberrations in SHARP using in-situ wavefront sensor

Field dependent aberrations

SHARP

Ideal 0.33 4xNA zoneplate

Wavefront measurement

Sweet spot (Z₄ to Z₈) : **7.2 m** λ RMS (λ _{EUV} /139)

Acron CXRO Miyakawa et. al, Proc SPIE 10143, 101430N (2017) EUV TECH

Primary limitation of diffractive optics is chromatic aberration

- Chromatic aberration mitigated by
 - Decreased focal length
 - Decreased illumination bandwidth

euv tech

SYSTEM DESCRIPTION

AIRES - ACTINIC IMAGE REVIEW SYSTEM

- Compact plasma-source zoneplate review system
- Incorporates EUV Tech's proven ultraclean mask transfer system
- Low capital cost and low cost of ownership
- Short install time
 - Roll into fab to first EUV images in < 1 month

cron CXRO

US Patent 6738135B1 + Patent Pending

Source module

- POC tool uses Energetiq EQ10-HP DPP light source
- EUV source, vacuum system, and control system integrated into one upgradable module
- Easy access for source consumables replacements

euvVtech

Process module

- EUV optical system consisting of collector, monochromator, illuminator, and diffractive optics
- 1200x mag direct EUV imaging
- Active vibration cancellation system
- Automated sample registration, site navigation, autofocus, and image collection
- Full diagnostics and in-situ plasma cleaning

euv tech

Monochromator module

- Full multilayer mirror bandwidth of 2% not suitable for high quality diffractive imaging
- High efficiency, high resolution monochromator essential to plasma source application
- Measured monochromator resolution $(\lambda/\Delta\lambda) = 470$
 - Design-limited performance achieved

euvtech

PERFORMANCE

Flare

- Flare often raised as a concern for diffractive optical systems
- Kirk type flare test performed with 800-nm cross
- Direct measured flare = 3.1%
 - System flare < 2% after accounting for mask absorber contrast

Uniformity

- 88-nm lines across
 3-um field
- CD uniformity +/- 1.3%
- Illumination uniformity +/- 1.8%

euvVtech

Threshold response indicates diffraction limited performance

euv **Tech**

Near theoretical contrast limit achieved

88 nm 80 nm 64 nm 72 nm

Conventional σ = 0.9 illumination

Well-controlled through focus behavior

Near theoretical contrast limit achieved

19

FUTURE IMPROVEMENTS

AIRES+

- The next generation AIRES Tool in fabrication to meet HVM Production requirements
- Increased throughput
 - Improving Optical efficiency
 - Increased source brightness
- Variable illumination
- Upgradeable to High NA
- Customer delivery scheduled Q1 2024

Thank You