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Abstract

Methods are developed to identify whether or not a given polynomial
curve, specified by Bézier control points, is a Pythagorean–hodograph
(PH) curve — and, if so, to reconstruct the internal algebraic structure
that allows one to exploit the advantageous properties of PH curves.
Two approaches to identification of PH curves are proposed. The first
is based on the satisfaction of a system of algebraic constraints by
the control–polygon legs, and the second uses the fact that numerical
quadrature rules that are exact for polynomials of a certain maximum
degree generate arc length estimates for PH curves exhibiting a sharp
saturation as the number of sample points is increased. These methods
are equally applicable to planar and spatial PH curves, and are fully
elaborated for cubic and quintic PH curves. The reverse engineering
problem involves computing the complex or quaternion coefficients of
the pre–image polynomials generating planar or spatial Pythagorean



hodographs, respectively, from prescribed Bézier control points. In the
planar case, a simple closed–form solution is possible, but for spatial
PH curves the reverse engineering problem is much more involved.

Keywords: Bézier control points; Pythagorean–hodograph curves;
arc length; parametric speed; numerical quadrature; reverse engineering.
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1 Introduction

The phrase “reverse engineering” typically refers to the recovery of lost design
specifications for an artifact, from its physical realization. Since this endeavor
inevitably incurs some loss of fidelity to the original design intent, it is always
preferable to invoke original plans or CAD models when possible. There are,
nevertheless, circumstances in which this is impractical, and one must appeal
to a reverse engineering process to reconstruct — as faithfully as possible —
the original underlying design intent of a given physical artifact.

Most modern CAD systems rely on the Bézier/B–spline representation to
specify “free–form” curves and surfaces. Although this provides considerable
design flexibility, and compatibility with commonly–used “simple” shapes, it
necessitates the use of approximations for many basic geometrical functions,
such as computation of arc lengths, offset curves, and certain rational frames
on space curves. The Pythagorean–hodograph (PH) curves circumvent these
problems by incorporating a special algebraic structure [6], while remaining
fully compatible with the standard Bézier/B–spline representation. However,
to exploit the advantageous features of PH curves, their “internal structure”
variables (which are not directly available from their Bézier/B–spline forms)
must be known. Specifically, planar and spatial Pythagorean hodographs are
constructed by quadratic mappings of complex and quaternion polynomials,
respectively, and the coefficients of these pre–image polynomials are required
for the exact determination of various PH curve properties.

Many methods for the construction of planar and spatial PH curves are
available [8, 12, 14, 20, 21, 22, 23, 24, 25, 27, 29, 30]. The goal of this study is
to facilitate their importation into commercial CAD systems through existing
CAD data formats, by developing algorithms that (i) identify whether or not
specified Bézier/B–spline data define a PH curve; and (ii) if so, reconstruct its
“internal structure” variables. Since the polynomial PH curves are a proper
subset of all polynomial curves, a randomly–chosen polynomial curve has a
negligible probability of being a PH curve: the proposed methods make sense
only if one has a priori reason to suspect that given data define a PH curve.
Moreover, for use in “real” applications, the identification and reconstruction
of PH curves must be formulated in floating–point arithmetic, and can thus
be solved only within a given tolerance (which in practice can be very small).
For purely academic investigations, one may consider only curves defined by
rational coefficients, and invoke symbolic computation methods.

The algorithms described herein may be categorized as identification and
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reconstruction schemes, the latter being invoked only when the former yields
an affirmative outcome. The focus will be on the polynomial PH curves, since
rational PH curves lack some features of polynomial PH curves required in
these methods. Also, for brevity, the input for the algorithms is assumed to
be Bézier control points for a single segment (which may be readily extracted
[10] from the B–spline representation of a multi–segment spline).

The remainder of this paper is organized as follows. After a brief review
of some basic properties of PH curves in Section 2, two different schemes for
determining whether or not a given set of Bézier control points specify a PH
curve are described in Section 3 — the method appropriate to a particular
application context may be selected on the basis of computational efficiency
and any desired additional information concerning an identified PH curve.
The identification algorithms do not distinguish between planar and spatial
PH curves, but the “reverse engineering” algorithms described in Section 4
require individual treatment of these two cases. Specifically, the hodographs
for planar and spatial PH curves are generated from complex–number and
quaternion “pre–image” polynomials, respectively, whose coefficients must be
determined. Finally, Section 5 summarizes the key results obtained herein,
and concludes with some comments on their practical use.

2 Pythagorean-hodograph curves

A degree–n polynomial curve r(t), t ∈ [ 0, 1 ] specified in terms of its Bézier
control points p0, . . . ,pn as

r(t) =
n

∑

k=0

pkb
n
k(t) , bnk(t) =

(

n

k

)

(1 − t)n−ktk , (1)

is a Pythagorean–hodograph (PH) curve if and only if its derivative satisfies

|r′(t)|2 = σ2(t) (2)

for some polynomial σ(t) of degree n−1. We consider here only PH curves of
odd degree, since even degree curves may exhibit singular points, satisfying
σ(t) = 0 for real values of t. The non–negative function

σ(t) = |r′(t)| =
ds

dt
, (3)
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defining the rate of change of arc length s with respect to the parameter t, is
called the parametric speed of the curve r(t). Thus, the distinctive property
of a PH curve is that its parametric speed is a polynomial in t.

For planar PH curves, the satisfaction of (2) is typically achieved through
a complex–variable model [3], in which plane coordinates (x, y) are regarded
as the real and imaginary parts of a complex variable z = x + i y. Then a
sufficient–and–necessary condition for satisfaction of (2) is that the derivative
should be of the form

r′(t) = w2(t) (4)

for some complex polynomial w(t) = u(t) + i v(t), and the parametric speed
is σ(t) = |w(t)|2. For spatial PH curves, on the other hand, a quaternion
model is employed [1, 11] with the derivative expressed in the form

r′(t) = A(t) iA∗(t) , (5)

in terms of a quaternion polynomial1 A(t) = u(t)+ v(t) i+ p(t) j+ q(t)k and
its conjugate A∗(t) = u(t) − v(t) i− p(t) j− q(t)k. The parametric speed of
the PH curve defined by (5) is σ(t) = |A(t)|2 = u2(t) + v2(t) + p2(t) + q2(t).
If w(t) and A(t) in expressions (4) and (5) are of degree m, their integration
yields planar and spatial PH curves of degree n = 2m+ 1. Complete details
on these formulations, and the properties of PH curves, may be found in [6].

In the present context, we assume that a Bézier curve of the form (1) is
given (i.e., its control points p0, . . . ,pn are specified) and we wish to ascertain
whether this curve results from an integration of (4) or (5) — and, if so, to
reconstuct the complex polynomial w(t) or quaternion polynomial A(t) that
generates r′(t). Since the derivative of r(t) can be expressed [2] as

r′(t) =
n−1
∑

k=0

dkb
n−1
k (t) , dk = n(pk+1 − pk) , (6)

we have

|r′(t)|2 =

2(n−1)
∑

k=0

akb
2(n−1)
k (t) , (7)

1Calligraphic characters such as A denote quaternions, which are regarded as consisting
of a scalar part a and vector part a, so that A = (a,a) and a = scal(A), a = vect(A).
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where, using the arithmetic procedures for Bernstein–form polynomials [16],
we define

ak =

min(n−1,k)
∑

j=max(0,k−n+1)

(

n− 1

j

)(

n− 1

k − j

)

(

2n− 2

k

) dj · dk−j . (8)

3 PH curve identification schemes

In the context of exact symbolic computation, given a polynomial curve r(t)
with rational coefficients, the factorization of |r′(t)|2 into a perfect square can
be used to determine whether it has a Pythagorean hodograph. For regular
curves with |r′(t)| 6= 0 for all real t, such a factorization is equivalent to the
property that the roots of the polynomial |r′(t)|2 occur as complex–conjugate
root pairs of even multiplicity. However, methods to compute multiple roots
are typically slow to converge and sensitive to rounding errors. Experiments
with numerical root–finding algorithms indicate that attempting to compute
the root structure of |r′(t)|2 is not a viable identification scheme, compared
to the methods proposed below, in terms of efficiency and robustness.

The emphasis here is on practical methods, amenable to fast and reliable
identification of PH curves in floating–point arithmetic, based on the Bézier
control points p0, . . . ,pn in (1) as input. Two methods are described below,
that require only arithmetic operations on the control points and have been
found to yield reliable identifications of PH quintics with a relative precision
of 10−15 to 10−14 in standard double–precision arithmetic. The first is based
on evaluating certain expressions in the control polygon legs, and the second
exploits the fact that numerical quadrature arc–length estimates of increasing
order exhibit a sharp saturation when expression (1) defines a PH curve.

3.1 Identification by control polygon

If the control points in (1) specify a PH curve, the expression defined by (7)
and (8) must coincide with the perfect square of some polynomial

σ(t) =

n−1
∑

k=0

σkb
n−1
k (t) (9)
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of degree n−1. Then σ2(t) is a polynomial of degree 2(n−1), whose Bernstein
coefficients are given by expression (8), but with dj ·dk−j replaced by σjσk−j .
Hence, satisfaction of the PH condition (2) is equivalent to the existence of
real values σ0, . . . , σn−1 such that d0, . . . ,dn−1 satisfy the system of equations
defined for k = 0, . . . , 2n− 2 by

min(n−1,k)
∑

j=max(0,k−n+1)

(

n− 1

j

)(

n− 1

k − j

)

(

2n− 2

k

) (dj · dk−j − σjσk−j) = 0 . (10)

We assume r(t) has a proper parameterization, i.e., σ(t) > 0 for t ∈ [ 0, 1 ] —
this means, in particular, that σ(0) = σ0 > 0 and σ(1) = σn−1 > 0.

The coefficients dk of the derivative r′(t) differ from the control–polygon
legs ∆pk = pk+1−pk only by the factor n, so for brevity we often simply refer
to d0, . . . ,dn−1 as the control–polygon legs. The conditions on d0, . . . ,dn−1

identifying PH curves derived below are homogeneous, and remain valid if we
substitute ∆p0, . . . ,∆pn−1. By eliminating the n indeterminate quantities
σ0, . . . , σn−1 from the system (10) of 2n−1 equations, one obtains a system of
n−1 constraints on the control–polygon legs d0, . . . ,dn−1 of a degree–n Bézier
curve r(t), whose satisfaction identifies it as a PH curve. Note that, whereas
planar and spatial PH curve constructions employ distinct algebraic models,
this identification scheme for PH curves is independent of the dimension of
r(t). We now consider the reduction of the system (10) in the context of PH
cubics and quintics, setting dk = |dk| for brevity.

Proposition 1. A planar or spatial cubic Bézier curve with control polygon

legs d0,d1,d2 has a Pythagorean hodograph if and only if it satisfies

d0 d1 · d2 = d2 d0 · d1 , (11)

2 (d0 · d1)(d1 · d2) = d0d2 (d0 · d2 − d0d2 + 2 d2
1) . (12)

Proof : For a cubic curve, the conditions (10) become

d2
0 = σ2

0 , d0 · d1 = σ0σ1 ,

d0 · d2 + 2 d2
1 = σ0σ2 + 2σ2

1 , (13)

d1 · d2 = σ1σ2 , d2
2 = σ2

2 .
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By eliminating σ0, σ1, σ2 from these five equations, the condition for a cubic
to be a PH curve is reducible to two scalar constraints on the control–polygon
legs d0,d1,d2. Since σ0, σ2 > 0 for a regular curve, we must have σ0 = d0 6= 0
and σ2 = d2 6= 0 from the first and last of equations (13). We also assume
that d1 6= 0, since setting d1 = 0 in (13) gives d0 ·d2 = d0d2, so d0,d1,d2 are
linearly dependent and the curve degenerates to a straight line. With σ0 = d0

and σ2 = d2, the second and fourth equations give σ1 = d0 ·d1/d0 = d1·d2/d2,
and these expressions are consistent if and only if (11) holds. Substituting
for σ0, σ1, σ2 into the third equation then gives condition (12).

The conditions of Proposition 1 are consistent with the characterizations
for planar and spatial PH cubics, in terms of their Bézier control polygons,
derived in [17] and [18]. For the planar case, it was shown in [17] that a cubic
is a PH curve if and only if the lengths d0, d1, d2 of the control–polygon legs
and the angles θ1, θ2 at the interior vertices (see Figure 1) satisfy

d1 =
√

d0d2 and θ1 = θ2 . (14)

d0

d1

d2

θ1

θ2

θ1+θ2–π

Figure 1: The geometrical parameters d0, d1, d2 and θ1, θ2 that characterize
the Bézier control polygon of a planar PH cubic through the conditions (14).

Now by the definition of the angles θ1, θ2 we have d0 · d1 = − d0d1 cos θ1
and d1 · d2 = − d1d2 cos θ2. Substituting into (11) then implies that cos θ2 =
cos θ1 and hence sin θ2 = ± sin θ1, so we have either θ2 = θ1 or θ2 = 2π − θ1.
Since (the extensions of) d0 and d2 make an interior angle (see Figure 1) of
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θ1 + θ2 − π, we obtain

d0 · d2 = − d0d2 cos(θ1 + θ2 − π) = d0d2 cos(θ1 + θ2)

= d0d2(cos θ1 cos θ2 − sin θ1 sin θ2) .

Substituting for d0 · d1, d1 · d2, d0 · d2 into (12) and simplifying then gives

2 d2
1(cos θ1 cos θ2 − 1) = d0d2(cos θ1 cos θ2 − sin θ1 sin θ2 − 1) .

Now if θ2 = θ1, this reduces to d2
1 = d0d2, so the conditions (14) are satisfied.

On the other hand, when θ2 = 2π− θ1 it reduces to 2 d2
1 sin2 θ1 = 0, implying

that (i) d1 = 0, or (ii) θ1, θ2 are integer multiples of π. As noted above, case
(i) identifies degeneration to a straight line, and this is clearly also true for
case (ii). Hence, for a proper PH cubic, the conditions (13) are satisifed.

For the spatial case, it was shown in [18] that a twisted cubic is a PH
curve if and only if d0 and d2 lie on a right–circular cone of some half–angle
ϑ about d1 as axis, with azimuthal separation ϕ on this cone given by

cosϕ = 1 − 2 d2
1

d0d2
. (15)

In other words, in a coordinate system in which d1 is parallel to the positive
z direction and d0 is parallel to the (z, x) plane, we must have

d0 = d0(sinϑ, 0, cosϑ) , d1 = d1(0, 0, 1) ,

d2 = d2(sinϑ cosϕ, sinϑ sinϕ, cosϑ) . (16)

Now writing d0 · d1 = d0d1 cos θ01 and d1 · d2 = d1d2 cos θ12, the condition
(11) implies that cos θ01 = cos θ12 (= cosϑ, say) for non–zero d0, d1, d2. This
means that d0, d2 lie on a cone of half–angle ϑ with d1 as axis. If ϕ is their
azimuthal separation on this cone, substituting from (16) into (12) gives

2 d0d
2
1d2 cos2 ϑ = d0d2 [ d0d2(sin

2 ϑ cosϕ+ cos2 ϑ) − d0d2 + 2 d2
1 ] ,

and upon simplification this becomes

d0d2 sin2 ϑ cosϕ = d0d2 sin2 ϑ− 2 d2
1 sin2 ϑ .

Noting that d1 and d2 are non–zero, and assuming that sinϑ 6= 0 (since this
identifies the degenerate case in which the control–polygon legs are collinear),
this implies that the condition (15) is satisfied.
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Proposition 2. A planar or spatial quintic Bézier curve with control polygon

legs d0,d1,d2,d3,d4 has a Pythagorean hodograph if and only if it satisfies

3 d2
0d

2
4(d4d0 − d0d4) · d2 = 4 d3

0 |d3 × d4|2 − 4 d3
4 |d0 × d1|2 , (17)

d4
0(d4d0−d0d4) ·d3 + 6d2

0d4(d0×d1) ·(d0×d2) = 8d4 d0 ·d1 |d0×d1|2 , (18)

d4
4(d0d4−d4d0) ·d1 + 6d2

4d0(d2×d4) ·(d3×d4) = 8d0 d3 ·d4 |d3×d4|2 , (19)

d3
0d

3
4(d0 · d4 − d0d4 + 18d2

2) + 16 d2
0d

2
4 [ d0d4 d1 · d3 − (d0 · d1)(d3 · d4) ]

= 2 [ 3d2
0 d0 · d2 + 4 |d0 × d1|2 ][ 3d2

4 d2 · d4 + 4 |d3 × d4|2 ] . (20)

Proof. For a quintic curve, the conditions (10) become

d2
0 = σ2

0 , d0 · d1 = σ0σ1 ,

3d0 · d2 + 4 d2
1 = 3 σ0σ2 + 4 σ2

1 ,

d0 · d3 + 6d1 · d2 = σ0σ3 + 6 σ1σ2 ,

d0 · d4 + 16d1 · d3 + 18 d2
2 = σ0σ4 + 16 σ1σ3 + 18 σ2

2 , (21)

d1 · d4 + 6d2 · d3 = σ1σ4 + 6 σ2σ3 ,

3d2 · d4 + 4 d2
3 = 3 σ2σ4 + 4 σ2

3 ,

d3 · d4 = σ3σ4 , d2
4 = σ2

4 .

Since σ0, σ4 > 0 for a regular curve, we have σ0 = d0 6= 0 and σ4 = d4 6= 0
from the first and ninth equations, and from the second and eighth we obtain
σ1 = d0 · d1/d0 and σ3 = d3 · d4/d4. Using |a× b|2 = |a|2|b|2 − (a · b)2, the
third and seventh equations then give

σ2 =
d0 · d2

d0
+

4

3

|d0 × d1|2
d3

0

=
d2 · d4

d4
+

4

3

|d3 × d4|2
d3

4

.

Consistency of these expressions is equivalent to condition (17). Substituting
for σ0, σ1, σ2, σ3, σ4 into the fourth and sixth equations, and using the relation
(a×b) · (c×d) = (a · c)(b ·d)− (a ·d)(b · c), we obtain (18) and (19), while
the fifth equation gives (20).

We emphasize again that the conditions (17)–(20) apply to both planar
and spatial PH quintics. No simple and intuitive constraints on the geometry
of the control polygon, analogous to those mentioned above for cubics, are
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8

10

12

t

σ

Figure 2: Left: the quintic PH curve in Example 1, together with its Bézier
control polygon. Right: variation of the parametric speed σ(t) for this curve.

available to guide the construction of PH quintics. Some partial results were
given in [3], but their geometrical meaning is rather opaque — as is the case
with the constraints in equations (17)–(20). Instead, PH quintics are usually
specified as interpolants to first–order Hermite data.

Remark 1. In testing the conditions (11)–(12) and (17)–(20), it is advisable
to first normalize the vectors di by dividing each with their mean magnitude.
This gives scale–free conditions in which both sides of (11)–(12) and (17)–(20)
are of order unity, allowing direct comparison with the machine unit for the
floating–point number system in use: for double–precision binary arithmetic
with 53–bit mantissa and rounding, this is η = 2−53 ≈ 1.11 × 10−16.

Example 1. Consider the planar PH quintic constructed as the interpolant
[14] to first–order Hermite data specified by the initial and final control point
pairs p0 = (1.0, 1.0), p1 = (2.5,−0.5) and p4 = (2.5, 4.5), p5 = (4.0, 3.0). To
full precision, the interior two control points (computed by the interpolation
algorithm) are found to be

p2 = (3.6408217899592117, 2.2476669682249213) ,

p3 = (1.3591782100407905, 1.7523330317750787) .
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This curve is shown in Figure 2, together with the variation of its parametric
speed σ(t). The differences between the right and left hand sides of equations
(17)–(20), computed in double precision arithmetic, are as follows2

5 × 10−16 , 4 × 10−16 , 4 × 10−16 , 18 × 10−16 .

These are within two orders of magnitude of the machine unit η. Thus, a
robust PH curve identification is obtained by choosing a relative tolerance ǫ
for the satisfaction of (17)–(20) that is 102–103 larger than η. To illustrate
the ability of the method to reject “ordinary” quintic curves, an instance of
the latter is defined by leaving p0,p1 and p4,p5 unchanged, and perturbing
the inner control points to p2 = (3.6, 2.2), p3 = (1.4, 1.8). The perturbed
curve is barely distinguishable from Figure 2, but it is no longer a PH curve.
In this case, the residuals obtained from equations (17)–(20) are

2.4 × 10−15 , − 9.1 × 10−2 , − 9.1 × 10−2 , − 9.2 × 10−1 .

We observe that equation (17) continues to yield a small residual. This is a
consequence of the symmetry3 of the curve. Specifically, d0 = d4, |d3×d4| =
|d0×d1|, and d4d0−d0d4 = 0, and hence both sides of (17) vanish. However,
equations (18)–(20) have residuals much larger than η (commensurate with
the perturbations of p2,p3) so the data are inconsistent with a PH curve.

Example 2. To verify the reliability of the method in extreme cases, it was
tested on the curve shown in Figure 3, a PH quintic with a severe curvature
variation. This curve is specified by the initial and final control point pairs
p0 = (4.0, 4.0), p1 = (10.0, 9.0) and p4 = (6.0, 11.0), p5 = (11.0, 5.0) with
the middle pair determined by the Hermite interpolation algorithm as

p2 = (5.2662184461825108, 9.1034234921021326) ,

p3 = (9.2741575847607258, 7.5795795100404524) .

To emphasize the severity of the parametric speed variation, it is shown in
Figure 3 as a function of fractional arc length along the curve, rather than
the parameter t. In this case, the differences between the right and left hand
sides of equations (17)–(20) are

27 × 10−16 , 18 × 10−16 , 5 × 10−16 , 0 × 10−16 .

2Note that the normalization proposed in Remark 1 is always used.
3This symmetry also explains the equality of the residuals for equations (18) and (19).
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Again, a robust PH curve identification is indicated by the fact that all these
values are within two orders of magnitude of the machine unit.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

fractional arc length

σ

Figure 3: The PH quintic in Example 2 and its parametric speed variation.

In principle, the methods described above for PH cubics and quintics can
be extended to higher–order PH curves — although the system of constraints,
specified by eliminating the σ0, . . . , σn−1 variables from (10), obviously grows
correspondingly in number and degree. Since quintic PH curves are generally
recognized to have sufficient shape flexibilty for most applications, we do not
pursue the extension to higher–order PH curves here.

3.2 Identification by arc length

A quadrature rule estimates the integral of a function f(t) over an interval t ∈
[ a, b ] as a weighted sum w1f(t1)+· · ·+wmf(tm) ofm function values, sampled
at nodes t1, . . . , tm ∈ [ a, b ]. When the nodes and weights are suitably chosen,
the estimate is exact (modulo round–off error) if f(t) is a polynomial of a
certain maximum degree, dependent on m. A quadrature rule has precision

n if it yields exact integrals for polynomials of degree ≤ n, but not > n.
The cumulative arc length s(t) of a parametric curve is the integral of the

parametric speed (3). For a general polynomial curve of degree n ≥ 3 this
integral has no closed–form reduction, but for a degree–n PH curve with the
polynomial parametric speed (9) it is also a polynomial of degree n, namely

s(t) =

n
∑

k=1

skb
n
k(t) , sk =

1

n

k−1
∑

j=0

σj , k = 1, . . . , n .
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In particular, the total arc length for the parameter interval [ 0, 1 ] is

S = s(1) =
σ0 + σ1 + · · ·+ σn−1

n
. (22)

The exactitude of a quadrature rule for sufficiently high m, when f(t) is a
polynomial, may be exploited to identify PH curves — if r(t) is a degree–n
PH curve, σ(t) is a polynomial of degree n− 1, and there will be no change
(modulo round–off error) in the quadrature estimates of S with increasing m
once it exceeds a certain threshold value. However, if r(t) is not a PH curve,
the quadrature values will exhibit steady convergence with increasing m, but
no “saturation” as with a PH curve. This approach is illustrated using two
well–known quadratures, the Gauss–Legendre and Newton–Cotes rules [26].

The exactitude of a quadrature rule for sufficiently high m, when f(t) is
a polynomial, may be exploited to identify PH curves — if r(t) is a degree–n
PH curve, σ(t) is a polynomial of degree n− 1, and there will be no change
(modulo round–off error) in the quadrature estimates of S with increasing m
once it exceeds a certain threshold value. On the other hand, if r(t) is not a
PH curve, the computed S values will exhibit steady but slow convergence
with increasing m — there is no “saturation” of these values, as with a PH
curve. This approach is illustrated below in the context of two well–known
quadratures, the Gauss–Legendre and Newton–Cotes rules [26].

An important consideration is the numerical stability of the quadrature
rule. The parametric speed σ(t) is always a non–negative function. In Gauss–
Legendre quadrature, the weights are all positive, so S is estimated as a sum
of non–negative terms, and no amplification of floating–point error through
the cancellation of leading digits can occur. For Newton–Cotes quadrature,
on the other hand, negative weights arise for m ≥ 9 in the closed case, and
m ≥ 3 in the open case. To preclude numerical instability, the closed rule is
used only for curves of degree ≤ 7, and the open rule is avoided altogether.

3.2.1 Gauss–Legendre quadrature

The nodes and weights for Gauss–Legendre quadrature are usually specified
[26] for the interval t ∈ [−1,+1 ]. The nodes t1, . . . , tm are the roots of the
degree–m Legendre polynomial, defined by the Rodrigues formula

Pm(t) =
1

2mm!

dm

dtm
(t2 − 1)m ,

12



and the corresponding weights w1, . . . , wm are given by

wk =
2

(1 − t2k) [P ′
m(tk) ]2

, k = 1, . . . , m .

The nodes and weights for m ≤ 5 admit closed–form expressions, as listed4

in Table 1. For larger m, they must be determined numerically — values for
m = 6, . . . , 10, 12, and 16 are tabulated to 15 decimal places in [26]. The
quadrature error may be formulated [26] as

em =
22m+1(m!)4

(2m+ 1) [ (2m)! ]3
f (2m)(ξ) , −1 < ξ < +1 .

Since f (2m)(t) ≡ 0 for any polynomial of degree d ≤ 2m−1, the quadrature is
exact for a polynomial integrand f(t) of degree n whenever m ≥ ⌈1

2
(n+ 1)⌉.

In the present context, we adapt the Gauss–Legendre quadrature rule to the
domain [ 0, 1 ] by the change of variables t→ 1

2
(t+ 1), to obtain

S =

∫ 1

0

σ(t) dt ≈ 1

2

m
∑

k=1

wk σ(1
2
(tk + 1)) , (23)

with parametric speed values sampled at the points 1
2
(1+tk) for k = 1, . . . , m

using successive m values, saturation of S being observed when m ≥ ⌈1
2
n⌉.

With a quintic curve, for example, the quadrature arc length values S should
remain essentially unchanged for m ≥ 3, if it is a PH curve. Note that this
method is again independent of whether r(t) is a planar or spatial curve.

Example 3. Consider the quintic PH curve constructed in Example 1, shown
together with the variation of its parametric speed in Figure 2. To compare
the performance of Gauss–Legendre quadrature in computing the arc length
of this curve with that for an “ordinary” quintic, we again define the latter by
moving the inner control points to p2 = (3.6, 2.2), p3 = (1.4, 1.8). For both
curves, the parametric speed values required in the numerical quadrature are
computed from σ(t) =

√

x′2(t) + y′2(t). Table 2 compares arc lengths for
the two curves, computed in double–precision arithmetic by Gauss–Legendre
quadrature with m = 1, . . . , 5. For the PH quintic, the quadrature values

4Note that, in the case m = 5, the weight corresponding to the node x3 = 0 is incorrectly
quoted as 64/225 in [26].
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m nodes weights

1 0 2

2 ±
p

1/3 1

3 0, ±
p

3/5 8/9, 5/9

4 ±

s

3−2
p

6/5

7
, ±

s

3+2
p

6/5

7

18+
√

30

36
,

18−
√

30

36

5 0, ±

q

5−2
p

10/7

3
, ±

q

5+2
p

10/7

3

128

225
,

322+13
√

70

900
,

322−13
√

70

900

Table 1: Nodes and weights for Gauss–Legendre quadrature with 1 ≤ m ≤ 5.

agree with the exact arc length5 to a relative accuracy of ∼ 10−15 for m ≥ 3.
For the “ordinary” quintic, however, the quadrature values have an accuracy
of only ∼ 10−3 at m = 5, although it is “very close” to the PH quintic.

m computed arc length
1 5.026711675008204
2 4.507171181637951
3 5.458972718024720
4 5.458972718024721
5 5.458972718024720

exact 5.458972718024720

m computed arc length
1 5.081369156044461
2 4.472998552356430
3 5.462598411370442
4 5.469779178678197
5 5.460633553605954

exact

Table 2: Comparison of arc lengths computed by Gauss–Legendre quadrature
using an increasing number m of sample points for (left) a quintic PH curve,
and (right) an “ordinary” quintic Bézier curve — as described in Example 3.

Let S1, S2, . . . be arc lengths of a polynomial curve, computed in floating–
point arithmetic by Gauss–Legendre quadrature withm = 1, 2, . . .To identify
a PH curve by agreement of these values for allm ≥ l, it is necessary to choose
a suitable convergence tolerance ǫ, such that

|Sm − Sl|
|Sl|

≤ ǫ for m > l .

5For the PH curve, the exact value is given by (22), but no exact value is possible for
the “ordinary” Bézier curve.
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Clearly, ǫ should be larger than the machine unit η for double–precision
arithmetic. Since the nodes and weights (see Table 1) are irrational numbers,
and evaluating the sum (23) incurs some floating–point error, it is advisable
to choose ǫ a few orders of magnitude larger than η, but at a level of accuracy
that numerical quadrature cannot achieve for integration of non–polynomial
functions. In practice, the value6 ǫ = 10−14 appears to work well.

If the numerical quadrature is restricted to instances with m ≤ 5, so as to
use only the nodes and weights with closed–form expressions (see Table 1),
the maximum degree of PH curves that can be identified using this approach
is n = 7, since two consecutive arc lengths that agree in value are required.
The nodes and weights listed numerically to 15 decimal places in [26], up to
m = 10, can be employed if higher–order PH curves are of interest.

Example 4. As seen in Figure 3, the curve of Example 2 exhibits a severe
parametric speed variation, providing a stringent test of the method. Table 3
lists arc lengths computed in double–precision arithmetic by Gauss–Legendre
quadrature. Convergence to an accuracy of ∼ 10−15 is again seen for m ≥ 3.

m Example 4 PH quintic Example 5 PH cubic
1 1.553608834708754 1.250000000000000
2 9.099750036509274 1.333333333333333
3 11.080978828432336 1.333333333333333
4 11.080978828432333 1.333333333333333
5 11.080978828432333 1.333333333333333

exact 11.080978828432336 1.333333333333333

Table 3: Gauss–Legendre quadrature arc length values for the PH quintic in
Example 4 (Figure 3) and degree–elevated PH cubic in Example 5 (Figure 4).

Example 5. A useful side–benefit of the quadrature identification procedure
is that it signals, when a PH curve is detected, whether its true degree is less
than the nominal degree indicated by its Bézier control–point representation.
As is well–known [2], a Bézier curve of true degree n always has a non–trivial
representation in the Bernstein basis of any degree > n. Consider the quintic

6More precise estimates of the (worst case) relative errors incurred in computing S by
numerical quadrature can be obtained by the method of running error analysis [28].
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Bézier curve specified by the control points

p0 = (0, 0) , p1 = (0, 2
5
) , p2 = ( 1

10
, 7

10
) ,

p3 = ( 4
15
, 9

10
) , p4 = ( 7

15
, 1) , p5 = (2

3
, 1) .

Applying the Gauss–Legendre quadrature yields the arc–length values shown
in Table 3. For a PH quintic, these values should agree for m ≥ 3, but in the
present case they actually agree for m ≥ 2. This indicates that the curve is
actually a degree–elevated PH cubic, rather than a true PH quintic. Figure 4
illustrates this curve, together with its Bézier control polygons of degree 5
and 3, the latter being defined by the control points

p0 = (0, 0) , p1 = (0, 2
3
) , p2 = (1

3
, 1) , p3 = (2

3
, 1) .

The parametric speed has the quadratic Bernstein coefficients (σ0, σ1, σ2) =
(2, 1, 1) and hence the exact arc length is S = (2 + 1 + 1)/3 = 4/3.

Figure 4: The PH quintic in Example 5 (left) is actually a degree–elevated
PH cubic (right). The PH curve identification procedure detects this through
the fact the quadrature arc lengths are in agreement for m ≥ 2 (see Table 3).

3.2.2 Newton–Cotes quadrature

The (closed) Newton–Cotes quadrature rule is based on Lagrange polynomials
[26] with the uniform nodes tk = (k− 1)/(m− 1), k = 1, . . . , m on t ∈ [ 0, 1 ],
and involves only positive weights when m ≤ 8 — see Table 4. The remainder
term [26] is proportional to f (p)(ξ) for some ξ ∈ [ 0, 1 ], where p = 2 ⌊1

2
(m+1)⌋.
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Hence, to obtain the exact arc length of a degree–n PH curve, m must satisfy
2 ⌊1

2
(m + 1)⌋ ≥ n since σ(t) is of degree n − 1. Thus, for a PH quintic, the

arc length values saturate for m ≥ 5 nodes with Newton–Cotes quadrature
(as compared to m ≥ 3 for Gauss–Legendre quadrature) — this is borne out
by the values obtained for the curves in Examples 1 and 2, listed in Table 5.

m weights

2
1

2

3
1

6
,

4

6

4
1

8
,

3

8

5
7

90
,

32

90
,

12

90

6
19

288
,

75

288
,

50

288

7
41

840
,

216

840
,

27

840
,

272

840

8
751

17280
,

3577

17280
,

1323

17280
,

2989

17280

Table 4: Weights wk for closed Newton–Cotes quadrature with m = 2, . . . , 8
nodes. Since wm−k+1 = wk, only the values for k ≤ ⌈1

2
m⌉ are tabulated here.

Comparing the Newton–Cotes and Gauss–Legendre rules, the former has
the advantage of rational nodes and weights for all m, while the latter incurs
irrational nodes and weights with closed–form expressions only if m ≤ 5. On
the other hand, Gauss–Legendre quadrature permits PH curve identification
with fewer nodes. Since consecutive identical arc length values are required,
the minimum number of nodes to identify a PH quintic is m = 4 with Gauss–
Legendre quadrature, but m = 6 with Newton–Cotes quadrature.

Remark 2. Although much simpler than the control–polygon constraints,
the arc length quadrature method should be regarded as providing a tentative
PH curve identification. Since it employs discrete sampling of the parametric
speed, it may be possible for non–PH curves to exhibit successive coincident
quadrature arc length values (although in practice this is highly improbable).
To validate the identification, one should ensure the existence of consistent
solutions to the over–determined systems of equations that characterize the
reverse–engineering problem, as described below.
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m Example 1 PH quintic Example 2 PH quintic
2 10.606601717798217 39.051248379533270
3 6.886675022604875 14.052822016316927
4 6.093507075615900 12.401798023047711
5 5.458972718024720 11.080978828432334
6 5.458972718024721 11.080978828432336
7 5.458972718024720 11.080978828432334
8 5.458972718024719 11.080978828432334

exact 5.458972718024720 11.080978828432336

Table 5: Newton–Cotes arc length quadrature estimates for Examples 1 & 2.

4 Reverse engineering of PH curves

Once the curve (1) specified by its Bézier control points has been identified as
a PH curve, through the procedures described above, it will be necessary to
“reverse engineer” it, in order to fully exploit its advantageous computational
properties. This amounts to a determination of the coefficients of the complex
polynomial w(t) in (4) for a planar PH curve, or the quaternion polynomial
A(t) in (5) for a spatial PH curve. Since the identification schemes do not
distinguish these two cases, the first step is to ascertain which applies. This
is accomplished by forming the components of d0, . . . ,dn−1 into a 3×n array:
the curve is planar or spatial if it is of rank 2 or 3, respectively. In the former
case, the control points are transformed so as to lie in the (x, y) plane.

4.1 Planar PH curves

For an identified planar PH curve, the reverse engineering problem consists of
determining the complex pre–image polynomial that generates its hodograph
through (4). If w(t) is of degree m, and specified in Bernstein form as

w(t) =
m

∑

k=0

wkb
m
k (t) ,

the complex coefficients w0, . . . ,wm are to be determined from p0, . . . ,pn. To
achieve this, the control points are regarded as complex values pk = xk +i yk,
the quantities in (6) being dk = n [ (xk+1 − xk) + i (yk+1 − yk) ].
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Equating (4) with (6) then gives a system of 2m + 1 equations for the
m+ 1 complex unknowns w0, . . . ,wm. Specifically, for PH cubics, we obtain

w2
0 = d0 , w0w1 = d1 , w2

1 = d2 ,

while for PH quintics the equations are

w2
0 = d0 , w0w1 = d1 , 2w2

1 + w0w2 = 3d2 , w1w2 = d3 , w2
2 = d4 .

Although there are more equations than unknowns, the fact that d0, . . . ,dn−1

are known to define a PH curve ensures that the equations are consistent,
and it suffices to consider only the first (or last) m+1 equations to determine
w0, . . . ,wm. From the first two equations in the case of PH cubics, we obtain

w0 =
√

d0 , w1 =
d1√
d0

,

while the first three equations for PH quintics yield

w0 =
√

d0 , w1 =
d1√
d0

, w2 =
1√
d0

[

3d2 −
2d2

1

d0

]

, (24)

where d0 6= 0 for a regular curve. In general,
√

d0 admits two complex values,
and the same value must be used in these expressions — the value chosen is
immaterial, since they differ only in sign, and the complex polynomial w(t)
is squared in (4). Alternatively, one may use

w1 =
√

d2 , w0 =
d1√
d2

,

for PH cubics (where d2 6= 0 for a regular curve), and

w2 =
√

d4 , w1 =
d3√
d4

, w2 =
1√
d4

[

3d2 −
2d2

3

d4

]

(25)

for PH quintics (where d4 6= 0 for a regular curve). The equivalence of these
alternative forms arises from the fact that d0, . . . ,dn−1 are not independent
for a PH curve. For PH cubics, their dependence can be compactly expressed
[3] by the complex constraint7 d2

1 = d0d2. For PH quintics, the situation is
more complicated [3], since a number of special cases must be accommodated.

7This can be viewed as an alternative to conditions (11)–(12) — in the case of planar
PH cubics — facilitated by use of the complex representation.
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Example 6. Consider the planar PH quintic of Example 1 shown in Figure 2.
For this curve, we obtain (to full precision) the coefficients

w0 = 3.0088703625944260− 1.2463149116090630 i ,

w1 = 0.0038308962625464 + 4.5675312287005045 i ,

w2 = 3.0088703625944269− 1.2463149116090637 i ,

from the expressions (24) based on d0,d1,d2 and

w0 = 3.0088703625944211− 1.2463149116090662 i ,

w1 = 0.0038308962625461 + 4.5675312287005028 i ,

w2 = 3.0088703625944255− 1.2463149116090635 i ,

from the expressions (25) based on d2,d3,d4. These two sets of values agree
to at least 14 decimal places, consistent with the tolerance arising from the
determination of its Bézier control points as a PH quintic interpolant to
first–order Hermite data (the fact that w0 and w2 are essentially identical
reflects the symmetry of the curve). Analogous results were observed for the
asymmetric PH quintic of Example 2, illustrated in Figure 3.

The methods described above, for planar PH cubics and quintics, can be
extended in a relatively straightforward manner to higher–order PH curves.

4.2 Spatial PH curves

The reverse engineering of a spatial PH curve entails a determination of the
quaternion polynomial A(t) in (5), given the curve control points. Namely,
if A(t) is specified in Bernstein form as

A(t) =
m

∑

k=0

Akb
m
k (t) , (26)

the coefficients A0, . . . ,Am must be computed. Equating (5) and (6) gives
a system of 2m+ 1 vector equations for the m+ 1 quaternions A0, . . . ,Am.
As in the planar case, there are more equations than unknowns, but the fact
that d0, . . . ,dn−1 are known to define a PH curve ensures the consistency of
these equations. Moreover, for spatial PH curves, the quaternion polynomial
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(26) that generates a particular hodograph r′(t) through expression (5) is not
unique [11]. Namely, if A(t) generates r′(t), then for any φ the polynomials

Ã(t) = A(t) exp(φ i) , (27)

where exp(φ i) = (cosφ, sinφ i), also generates r′(t). This indeterminacy is
required for rotation invariance of the form (5), i.e., r′(t) must be expressible
in the form (5), for a suitable A(t), in a coordinate system of any orientation
[11]. We focus below on reverse engineering of spatial PH cubics and quintics.

4.2.1 Spatial PH cubics

Equating (5) with (6) in the case of spatial PH cubics (m = 1) yields the
system of three vector equations

A0 iA∗
0 = d0 , vect(A0 iA∗

1) = d1 , A1 iA∗
1 = d2 , (28)

for the two quaternion coefficients A0,A1. Setting d0 = |d0|, d2 = |d2| (where
d0, d2 6= 0 for a regular curve) and δ0 = d0/d0, δ2 = d2/d2 the first and third
equations in (28) can be used [8] to express A0 and A1 in the form

A0 =
√

d0 n0 exp(φ0i) and A1 =
√

d2 n1 exp(φ1i) , (29)

where φ0, φ1 are free parameters, and

n0 =
δ0 + i

| δ0 + i | and n1 =
δ2 + i

| δ2 + i |
are the unit bisectors of δ0, δ2 with i (for brevity, we discount the degenerate
cases where δ0 = − i or δ2 = − i, which require separate treatment).

Substituting from (29) into the second of equations (28) and setting ∆φ =
φ1 − φ0 then gives the vector condition

√

d0d2 (u cos ∆φ+ v sin ∆φ) = d1 ,

where

u = (i · n1)n0 + (i · n0)n1 − (n0 · n1) i , v = n1 × n0 . (30)

The value of ∆φ must be chosen so as to ensure satisfaction of this condition.
For generic data with i · (n0×n1) 6= 0, which is equivalent to i · (δ0×δ2) 6= 0,
the dot product of this equation with n0,n1, i gives the scalar conditions

(i · n1) cos ∆φ =
n0 · d1√
d0d2

, (i · n0) cos∆φ =
n1 · d1√
d0d2

, (31)

21



[ 2 (i · n0)(i · n1) − n0 · n1 ] cos ∆φ − i · (n0 × n1) sin ∆φ =
i · d1√
d0d2

. (32)

If δ0 6= − i and δ2 6= − i, we have i · n0 6= 0 and i · n1 6= 0, so either of the
two equations (31) can be used to determine cos ∆φ (the equivalence of these
equations can be seen from the “canonical form” (16) of a spatial PH cubic).
In general, cos ∆φ determines two values ∆φ ∈ [ 0, 2π) and the appropriate
value must be determined by checking the satisfaction of (32). Once ∆φ has
been computed, φ0 can be freely specified, and then with φ1 = φ0 + ∆φ the
desired quaternion coefficients are determined from (29).

Example 7. Consider the spatial PH cubic defined [18] by the control points

p0 = (0, 0, 0) , p1 = (2
√

3, 0, 2) , p2 = (2
√

3, 0, 8) , p3 = (−
√

3, 9, 14) .

One can verify that this curve has the polynomial parametric speed σ(t) =
10 t2 − 2 t+ 4. To full precision, the quaternion coefficients computed by the
above method (choosing φ0 = 0) are

A0 = 0.0000000000000000 + 3.3460652149512313 i

+ 0.0000000000000000 j + 0.8965754721680534k ,

A1 = 2.8977774788672042 + 1.3448632082520799 i

− 0.7764571353075622 j + 5.0190978224268470k .

When the control points p1,p2,p3 are re–computed from these coefficients,
through the expressions

p1 = p0 + 1
3
A0 iA0 , p2 = p1 + 1

3
vect(A0 iA1) , p3 = p2 + 1

3
A1 iA1 ,

their errors relative to the originally–specified points are found to be

6 × 10−16 , 35 × 10−16 , 46 × 10−16 .

Furthermore, it is verified from the implementation that the relative accuracy
of p1,p2,p3 is insensitive to the choice of φ0.

4.2.2 Spatial PH quintics

Given the Bézier control points p0, . . . ,p5 of a spatial PH quintic, the reverse
engineering problem consists of determining the three quaternion coefficients
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A0,A1,A2 from the five vector equations

A0 iA∗
0 = d0 , vect(A0 iA∗

1) = d1 ,

2A1 iA∗
1 + vect(A0 iA∗

2) = 3d2 , (33)

vect(A1 iA∗
2) = d3 , A2 iA∗

2 = d4 ,

with di = 5(pi+1 − pi) for i = 0, . . . , 4. Setting di = |di| (where d0, d4 6= 0
for a regular curve) and δ0 = d0/d0, δ4 = d4/d4, we consider again only the
generic case i · (δ0 × δ4) 6= 0. Then the first and fifth equations in (33) yield

A0 =
√

d0 n0 exp(φ0i) and A2 =
√

d4 n1 exp(φ2i) , (34)

where φ0, φ2 are free parameters, and

n0 =
δ0 + i

| δ0 + i | and n1 =
δ4 + i

| δ4 + i |

are the unit bisectors of δ0, δ4 with i. Substituting from (34) into the second
of equations (33), one can deduce the expression8

A1 = − (ζ,d1)n0 exp(φ0i) i√
d0

, (35)

where ζ is a free real parameter. Forming the product A1 iA∗
1 from (35), and

noting that 2 (i · n0)n0 − i = δ0, after some simplification we obtain

A1 iA∗
1 =

ζ2δ0 − 2 ζ d1 δ0 × δ1 + 2 d2
1(δ0 · δ1) δ1 − d2

1 δ0

d0
. (36)

Also, using the expressions (34) gives

vect(A0 iA∗
2) =

√

d0d4 (u cos ∆φ+ v sin ∆φ) , (37)

where ∆φ = φ2 − φ0, and u,v are as defined in (30).
Substituting (36) and (37) into the third of equations (33) then yields the

vector condition

2 ζ2
δ0 − 4 ζ d1 δ0 × δ1 + d0(u cos ∆φ+ v sin ∆φ)

= 3 d0 d2 + 2 d2
1 δ0 − 4 d2

1 (δ0 · δ1)δ1 . (38)

8An analogous expression can also be obtained from the fourth of equations (33).
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This defines an over–determined system of three scalar conditions on the two
parameters ζ and ∆φ, but the system is consistent if the given data define a
spatial PH quintic. Now the cross product of the vectors (30) simplifies to

u × v = 1
2
d0d4(δ4 − δ0) ,

and is non–zero under the stated assumption i · (δ0 × δ4) 6= 0. The variable
∆φ can thus be eliminated from (38) by taking its dot product with u × v

to obtain a quadratic equation

a ζ2 + b ζ + c = 0 , (39)

in ζ with the coefficients a = 2(δ0 · δ4 − 1), b = − 4 d1(δ0 × δ1) · δ4, and
c = (δ0 − δ4) · (3 d0 d2 + 2 d2

1 δ0 − 4 d2
1 (δ0 · δ1)δ1). The discriminant of (39)

must satisfy b2 − 4ac ≥ 0 — this is a (non–obvious) consequence of the fact
that d0, . . . ,d4 define a PH quintic. For each root ζ of (39), corresponding
values for ∆φ must be computed. This is achieved by taking the dot product
of equation (38) with i, thereby reducing it to

cos(∆φ− ψ) =
r(ζ)

√

p2 + q2
, (40)

where we set p = d0 i · u, q = d0 i · v,

r(ζ) = i · [ 3 d0 d2 + 2 d2
1 δ0 − 4 d2

1 (δ0 · δ1)δ1 − 2 ζ2
δ0 + 4 ζ d1 δ0 × δ1 ] ,

and ψ is uniquely determined by

cosψ =
p

√

p2 + q2
, sinψ =

q
√

p2 + q2
. (41)

If a root ζ is such that the condition

|r(ζ)| ≤
√

p2 + q2 (42)

is not satisfied, it must be rejected. If ζ is such that (42) is satisfied, equation
(40) identifies, in general, two corresponding values ∆φ ∈ [ 0, 2π ].

Up to four distinct solutions (ζ,∆φ) are determined in this manner. For
each solution, with (say) φ0 freely chosen and φ2 = φ0 + ∆φ, corresponding
quaternions coefficients A0,A1,A2 may be computed by means of (34)–(35).
In general, only one set of coefficients generates (within a given tolerance) the
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prescribed vectors d0, . . . ,d4 using (33), and the others must be discarded.
The coefficients are unique only modulo a common factor exp(φ i) for any φ,
reflecting the free choice of φ0 (or φ2) — as noted in expression (27). Once
A0,A1,A2 have been determined, the control points can be computed from
them (and a given initial point p0) through the expressions

p1 = p0 + 1
5
A0 iA∗

0 ,

p2 = p1 + 1
10

(A0 iA∗
1 + A1 iA∗

0) ,

p3 = p2 + 1
30

(A0 iA∗
2 + 4A1 iA∗

1 + A2 iA∗
0) , (43)

p4 = p3 + 1
10

(A1 iA∗
2 + A2 iA∗

1) ,

p5 = p4 + 1
5
A2 iA∗

2 .

Figure 5: The two spatial PH quintic curves that are reverse–engineered in
Example 8 (left) and Example 9 (right), with their Bézier control polygons.

Example 8. Consider the quintic space curve (see Figure 5) specified by the
Bézier control points

p0 = (0, 0, 0), p1 = (0,−2
5
, 0), p2 = (3

5
,−1

5
, 2

5
),

p3 = ( 4
15
, 8

15
, 1

15
), p4 = (2

3
, 11

15
, 1

15
), p5 = (2

3
, 11

15
,−1

3
).

By the methods of Section 3 it is identified as a PH curve, with parametric
speed is σ(t) = 2 (19 t4 − 40 t3 + 27 t2 − 6 t+ 1). Equation (39) has the roots
ζ = 0 and 6, and since p = 2 and q = − 2 in (41), we have ψ = −1

4
π.

For ζ = 6 condition (42) is violated, so this root must be discarded, but
with ζ = 0 we have r(ζ)/

√

p2 + q2 = 1/
√

2, and ∆φ − ψ = 1
4
π or 7

4
π.
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Hence, ∆φ = 0 or 3
2
π. Choosing φ0 = 0 and φ2 = ∆φ, and computing

A0,A1,A2 from (34) and (35), the former choice yields agreement with the
vectors di = 5(pi+1−pi) computed from (33), but the latter does not. Hence,
ζ = 0 and φ0 = φ2 = 0 identify the correct solution (any φ0 value can be
chosen, provided that φ2 = φ0). When A0,A1,A2 are computed from (34)
and (35) in this manner, using double precision arithmetic, they are found
to agree with the coefficients A0 = i − j, A1 = 1 + i + 2 j + k, A2 = i − k,
from which the curve control points were initially generated using (43), to
an accuracy of ∼ 10−15. The relative errors in p1, . . . ,p5 (computed using
the reverse–engineered coefficients) are found to be

0 × 10−16 , 2 × 10−16 , 13 × 10−16 , 33 × 10−16 , 31 × 10−16 .

Example 9. The preceding example was constructed so as to have a simple
known pre–image polynomial. As a more general example, we consider the
spatial PH quintic interpolant (see Figure 5) to the first–order Hermite data

r(0) = (0, 0, 0), r′(0) = (2,−1,−1) and r(1) = (1, 1, 1), r′(1) = (0, 2, 3)

using φ0 = φ2 = 0 in the interpolation algorithm [8]. For this curve, p0 =
r(0), p1 = r(0) + 1

5
r′(0) and p4 = r(1) − 1

5
r′(1), p5 = r(1), while to full

precision the two interior control points obtained from the algorithm are

p2 = (0.7746664443097209,−0.0209484017535140,−0.1326892881613731) ,

p3 = (0.9601287216055423, 0.2353431635591809, 0.0635268956967925) .

When p1, . . . ,p5 are re–computed from the reverse–engineered coefficients
A0,A1,A2 using expressions (43), their errors relative to the original control
points are found to be

2 × 10−16 , 1 × 10−16 , 25 × 10−16 , 33 × 10−16 , 23 × 10−16 ,

so the reverse–engineering is also very accurate in this more general context.

Remark 3. In various contexts, the roots of the parametric speed σ(t) are
required, e.g., in computing the absolute rotation index [14], elastic bending
energy [4], and rotation–minimizing frames [5], which require partial–fraction
decompositions of rational integrands with σ(t) as denominator. The roots
can be computed after completing the reverse–engineering process, by setting
σ(t) = |w(t)|2 or |A(t)|2 for planar or spatial PH curves, respectively.
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5 Closure

Two simple methods have been presented to identify whether or not a given
polynomial curve, specified by its Bézier control points, has a Pythagorean
hodograph. The first method checks a system of constraints on the control–
polygon legs, enumerated explicitly for the case of cubics and quintics. The
second method computes arc length estimates through numerical quadrature
rules with polynomial precision on successively augmented node sets.

Both methods apply equally to planar and spatial PH curves. Computed
examples indicate that they can both distinguish PH curves from “ordinary”
polynomial curves to an accuracy of ∼ 10−14 or better using double precision
arithmetic. The first method employs only the curve control points, but the
second method also requires storage of the quadrature nodes and weights.
However, the quadrature method is perhaps preferable in terms of efficiency
and straightforward extensibility to PH curves of degree 7 or higher.

The proposed methods provide a practical means of importing PH curves
into existing CAD systems without modification of prevailing representation
schemes. Once the control points have been identified as defining a PH curve,
the reverse engineering procedures allow very accurate reconstruction of the
complex or quaternion pre–image polynomials (for planar and spatial curves,
respectively) in double–precision arithmetic, so the advantageous properties
of PH curves can be fully exploited. These include closed–form solutions for
arc lengths, offset curves, and elastic bending energy [4, 17]; real–time CNC
interpolators for constant or variable feedrates along curved paths [13, 19]; a
diverse family of sweep operations yielding rational surfaces [15]; and rational
rotation–minimizing frames along space curves [7, 9].
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