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Abstract* an understanding of the essential nature of

Conservation knowledge and measurement
abilities are two central components in
quantitative development. Piaget's position is
that conservation is a logical pre-requisite of
measurement, while Miller’s is the reverse. In
this paper we illustrate how measurement is
employed as an empirical tool in the
construction of conservation knowledge. This
account predicts the familiar pattern of
conservation development from the limits on
young children's measurement abilities. We
present Q-Soar, a computational model that
acquires number conservation knowledge by
simulating children's performance in a
published conservation training study. This
model shows that measurement enables a
verification process to be executed which is the
basis of conservation learning.

Introduction

Two central conceptual attainments in the
development of quantification abilities are
conservation knowledge (understanding the
behavior of quantities under transformation)
and measurement skills (creating
quantitative values for bodies of material).
Yet, despite the centrality of these two
aspects of quantification, relatively little
attention has been paid to the developmental
roles that they play. Inspection of the
literature reveals two incommensurate
positions. The view held by Piaget (Piaget,
Inhelder and Szeminska, 1960) was that
conservation is a logical pre-requisite to the
ability to measure. He reasoned that, without
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quantity, measurements in terms of those
quantities would mean nothing and would be
of no practical use. The opposing view is that
measurement is the necessary precursor of
conservation (Klahr & Wallace, 1976; Miller,
1984). Measurement is the empirical tool
used to gather information about whether or
not some dimension of a transformed entity
has remained quantitatively invariant. Miller
(1984) states that "practical measurement
procedures appear not to be late-developing
concomitants of a more general understanding
of quantity. Instead, the measurement
procedures of children embody their most
sophisticated understanding of the domain in
question. The limitations of these procedures
constitute significant limits on children's
understanding of quantity ... (p.221)".

Such measurement is not always possible
though. The limitations Miller speaks of
determine what children can learn about
quantity. They are responsible for the pattern
in the development of conservation. Number,
or discrete quantity, conservation is acquired
first. Also, preconservers can reason
successfully about transformations of small
discrete quantities but not of large ones
(Cowan, 1979; Fuson, Secada & Hall 1983;
Siegler, 1981). Conservation of continuous
quantities such as length, area and volume is
acquired a year or two later (Siegler, 1981).

One type of limitation is on processes, i.e.
on what kinds of things measurement
procedures can be applied to. As Piaget et al
(1960) state, "to measure is to take out of a
whole, one ... unit, and to transpose this unit
on the remainder of the whole". Thus, any
material to be measured must afford the
measurer some unit which can be used in that
process. This characteristic is not present in
continuous quantities. Beakers of water or
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pieces of string do not exhibit any evident sub-
units. Only the employment of special tools
such as rulers or measuring cylinders (and the
knowledge of how to use them) can create sub-
units that can be used for quantification. On
the other hand, discrete quantities are
defined by collections of individual sub-units
of the quantity as a whole. No special tools
are needed since quantification abilities are
present to some extent in the heads of even
the youngest children. Young children appear
to be particularly sensitive to the fact that it
is at the level of unitary objects, and not
subparts of those objects, that quantification
of collections should take place (Shipley &
Shepperson, 1990). Thus, discrete quantities
are clearly much easier to measure.

A second type of limitation is in the abilities
of the children who are attempting to use
measurement procedures. The children that
need to carry out measurements to determine
quantitative invariance are those below the
age of five. However, their quantification skills
are not well developed. They are efficient at
subitizing: a fast, accurate perceptual
quantification mechanism (Chi & Klahr,
1975; Svenson & Sjoberg, 1983). Subitizing,
though, has a limit of about four objects
(Atkinson, Campbell & Francis, 1976). Young
children's counting is only reliable for
collections of about the same size (Fuson,
1988).

The measurement-before-conservation view
therefore predicts the learning events that
enable the acquisition of quantitative
invariance knowledge. It follows that, if
measurement is needed to be able to reason
about quantity, learning can occur only when
the effects of transformations of small
collections of objects are evaluated. These
quantities will have to be discrete because
young children are not capable of creating
consistent sub-units from continuous
quantities. Gelman (1977) has shown that
one-year-olds can reason about some
transformations when the number of objects
involved is very small. The discrete quantity
requirement is supported by Piaget et al's
(1960) and Miller's (1984) findings that, given
the task of dividing up an object such as a
cookie into equal parts, young children created
many arbitrarily-sized sub-units, These are
unsuitable for quantification because counting
them does not produce accurate absolute
measures for a single entities or relative
measures of multiple entities.

Miller (1989) has further demonstrated the
interaction between the use of measurement
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procedures and the acquisition of quantitative
knowledge. Miller tested three- to ten-year-
olds on a modified equivalence-conservation
task. A variety of transformations were
applied to different materials to test number,
length and area conservation. He predicted
that the effects of transformations would be
easy to determine when relevant
measurement procedures provided good cues
to the actual quantity and vice versa. For
example, counting is a good way to determine
the resulting quantity of a transformation like
spreading objects out. Thus, Miller predicted
that the number task would be easier than
length or area because it is easiest to
measure. But enumeration is a bad method
for evaluating the effect of changing the
objects’ size, since it does not assess their
total mass. For this transformation, Miller
predicted the number task would produce the
worst performance. The results were as
predicted, showing that what quantitative
knowledge one can learn depends on what
measurement procedures one uses.

Our theory (Simon, Newell & Klahr, 1991)
follows Klahr (1984) in stating that it is
measurement of collections of discrete objects
that provides information upon which
knowledge about quantitative invariance is
built. Conservation knowledge is acquired in
situations where invariance can be empirically
verified. In other words, learning events occur
when the materials allow children to use their
measurement capabilities to obtain a
numerical measurement for a collection of
objects before and after it has been
transformed. The two measurements can then
be compared and the result attributed to the
transformation as its effect.

If the difference is zero, the quantity is
unchanged and the transformation is deemed
to have a non-quantitative effect for the
dimension in question, e.g. it "conserves
number”. If some difference is detected, the
transformation is found to be non-conserving.
Such differences can be simply detected by
means of discriminations based on subitizing.
With sufficient domain knowledge, the
direction and magnitude of the change can
also be determined. Thus we conclude that
the initial learning experiences for invariance
knowledge will be based on measurements of
small collections of discrete objects within the
subitizing range.



Q-Soar

To show that measurements are the stuff of
which conservation knowledge is made, we
built a computational model, based on the
above theory. Q-Soar's foundation is the Soar
architecture for intelligent behavior (Laird,
Newell & Rosenbloom, 1987) and associated
cognitive theory (Newell, 1990) which involves
performance organization in terms of problem
spaces and goal-oriented, experienced-based
learning in terms of chunking. Q-Soar
simulated the acquisition of number
conservation demonstrated in a training study
by Gelman (1982) and thus is the first
demonstration that chunking can account for
developmental transitions. Gelman's study
contained two training conditions of interest;
experimental and cardinal-once.

The experimental condition was an
equivalence-conservation task where one of
two rows of three or four objects was spread
out or compressed, leaving the original one
untouched. Before and after each
transformation, children were required to
count each row and state the absolute and
relative numerosities of the rows. Gelman
designed this condition to help children make
use of one-to-one correspondence matching.
The cardinal-once condition was an identity
conservation condition, so called because the
single row involved just one before and after
count. The numerical comparison required
was between the pre- and post-
transformation quantities of the same row. In
this condition there was no means of using
one-to-one matching and so Gelman predicted
that this group would not benefit from
training.

Results showed that three- and four-year-
olds learned conservation from the
experimental condition, since they solved large
number tests. The cardinal-once condition
produced no learning in three-year-olds but it
did benefit the four-year-olds, though they
performed less well than their experimental
peers. The no-cardinal control group, who saw
no transformations, failed the tests.

Q-Soar began with the ability to simulate
the pre-training competence of the three- and
four-year old children in Gelman's study. The
precise details of the model can be found in
Simon et al (1991). There were two variants
of the model; Q-Soar-3 and Q-Soar-4 (which
modelled the three- and four-year-olds
respectively). They consisted of a set of
problem spaces enabling the execution of the
behaviors required in Gelman's conditions.
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The problem spaces also enabled the model
variants to execute a verification process. This
involved comparing pre- and post-
transformation measurements of the
numerical aspect of the arrays to determine
the effect of the transformation. Thus, after
training, the effect of chunking over the
verification processing was that Q-Soar now
knew the numerical effects of the
transformations rather than having to
determine them empirically. Untrained
versions of each model faced with Gelman's
larger number post-tests failed in the
characteristic manner. Their quantification
abilities were not sufficient to measure the
arrays and so they resorted to estimation
based on the lengths of the rows. The result
was that the wrong answer was always given,
just the same as children in Gelman's control
group.

The only difference between the two model
variants was that Q-Soar-4 always executed
the verification process (unless chunks fired to
provide the effect of a familiar transformation)
whereas Q-Soar-3 did not. The following
observations support this. First, Gelman
(1977) among others, has shown that young
children assume that a set of objects that has
undergone no visible transformation will not
undergo any alteration in quantity. Second,
many experiments (see Donaldson, 1978)
have shown that young children assume that
the quantitative value of a set of objects will
change if it undergoes an obvious visible
transformation. These lead to two theoretical
assumptions. First, three-year-olds will not
attempt to verify the assumed gquantitative
change resulting from a visible transformation
unless presented with conflicting evidence
which suggests that the quantity has
remained unchanged. Second, four-year-olds
will always verify the quantitative effect of a
transformation, irrespective of the post-
transformation perceptual information.

When the Q-Soar-4 variant undergoes either
of the Gelman training conditions it carries
out the verification processing which has the
effect of allowing it to learn the effects of
spreading and compressing transformations.
When Q-Soar-3 experiences the cardinal-once
training condition, the post-transformation
array appears totally consistent with its
assumption of quantitative change. There is a
single row that is longer or shorter than it
was before, There is no reason to check what
appears to be an obvious result, i.e. that
transforming the row has altered the number
of objects in it. Thus Q-Soar-3 in cardinal-once



Gelman, 1982 Experimental Cardinal-Once No-Cardinal
(%
3-year-olds 71 9 6
4-year-olds 70 46 15
o i r— — — m— — — — W $  TEES TR G IR TS TR W G T T . -
(response)
Q-Soar -3 correct incorrect incorrect
Q-Soar-4 correct correct incorrect

Table 1. Test responses from Gelman's subjects and Q-Soar

does not execute the verification procedure
and so does not provide for itself the chance to
learn about the conservation effects on
number of spreading and compressing
transformations.

However, when Q-Soar-3 experiences the
experimental condition there are two post-
transformation arrays, both within the
subitizing range. The transformed row is now
assumed to be quantitatively different, but
two conflicting types of perceptual input are
available. The length of the rows appears to
confirm the assumption. However, based on
subitizing evidence, the two rows still
maintain their original numerical values. This
conflict leads Q-Soar-3 to execute the
verification procedure and, like Q-Soar-4,
learn about the conservation effects of the
transformations. This suggests that the
conflict is what persuades the three-year-olds
to use the verification process when they seek
to determine quantitative invariance.
Presumably, once stimulated to employ the
verification process by such conflict, these
three-year-olds will eventually automatically
do so, as is the case for four-year-olds.

Results
Q-Soar-3 and -4 underwent the same training
and testing as Gelman's subjects.

Comparison of test responses is presented in
Table 1. Similar performance is evident for Q-
Soar and human subjects in the experimental
and no-cardinal conditions. The cardinal-once
condition produced no learning in Gelman's
three-year-olds, as she predicted, but the
older children clearly did benefit from the
training. The precise reasons for their variable
performance are not clear at present.
Nevertheless, this counters the prediction that
cardinal-once offers no opportunity for
conservation learning due to the fact that
correspondence matching is not possible.
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Though Q-Soar-4 learned rather too well from
the training, the result suggests that its
processes provide the means of learning
conservation knowledge.

Conclusions

In this paper we have presented Q-Soar, a
computational model, which simulates the
acquisition of conservation knowledge in a
published training study. Q-Soar implements
and extends Klahr's theory that discrete
quantities are foundational to conservation
learning. It also demonstrates that Soar's
chunking mechanism can account for
significant developmental acquisitions such as
number conservation. Although chunking was
originally constructed to model practice effects
over many trials (Rosenbloom & Newell,
1986), its application has been extended to a
wide range of cognitive tasks (Lewis et al,
1990). This suggests that, as a goal-directed,
experience-based learning mechanism within
a problem space architecture, chunking may
be a sufficient account of human learning.
Q-Soar also predicted learning events that
were not consistent with Gelman's theory.
Our work shows that conservation knowledge
is acquired when young children apply their
limited measurement capabilities to
empirically verify the quantitative effect of
transforming a collection of objects. The result
is then bound to the type of transformation
observed as its general quantitative effect on
the quantity concerned. In other words,
measurement enables conservation judgments
to be made, while verification enables
conservation knowledge to be learned.

This reverses the logical relationship
between conservation and measurement in
Piaget's formulation, making the empirical
process of measurement a prerequisite for
necessity judgments about conservation. It
also limits the scope of such "logical”



conservation judgments from a general
principle about all quantities in Piaget's case,
to a domain-specific generalization in our
case. Number conservation must be learned
first, by determining the effects of
transformations in terms of number. The
transfer to continuous quantities appears to
require transfer via representation change,
which is presumably why it takes so long
after the initial acquisition. We have not yet
addressed this issue in detail. Another issue
arising from this work is the need to identify
the exact processes required to learn
conservation knowledge. Q-Soar could
complete Gelman's task in a number of ways,
not all of which would learn what the children
in her experiment did. The data show that
the children’s learning is not all or none as Q-
Soar's is. A parametric analysis of Q-Soar
variants is being undertaken. From this we
expect to discover the range of necessary
knowledge and processes that can be
employed to acquire conservation knowledge
from this task in the way that human
subjects do.
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