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S T - ABSTRACT
_-%, o ’i‘.”' "? ". General considerations are presented on the perturbing effect of
- weak interactions on S-matrix dynamics specifying the neutral K- meson
{ states, The perturbations due to weak~interaction amplitudes in the N/D
o o dynamical scheme are illustrated for two models of the neutral K's:
+
(a) K .= oK bound state (c =nr, I =0, J" =0)
- .
t (b) K = wK bound state (w=23r, I=0,J =17) .,
The main result of examining these perturbations is the relation
. m(Kz) ?im(Kl) .
f | - ,
Inadequacies of the (current). dynamical models permit only a crude
estimate of the magnitude of the mass difference, namely between lO'5
and 10'6 electron volt, .
%
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'%,  INTRODUCTION

{jf'Recéntly;,éalcuiations have been performed, in the framework of
S:ﬁéfrix dynamical equations; which obtain strong and electromagnetic

10203

“%vaSB'splittingB ‘and also the symmétry-breakings.of'strongh and

'TVFfﬁweak_couplings\’G (the former due to both strong and electromagnetic

v effectss). In this note, we consider (via similar techniques) the

"'1remaining symmetry breaking effect operative for strongly interacting:

7;f~‘.particles: weak mass 3plittihg. The only case in which such effects

(ﬂ generaﬁe observable consequences is that of the neutral K mesons;T our
discussion thereof wiil f£all into these categories; i
._(a) General examination of relevant S-matrix ideas.
(b) A aiscussion employing certain dynamical‘éodels to infer the sign
of the.mass‘difference. |

(¢) Comments on the absolute magnitude of the mass difference.

" The main result 6f this studj is

Com() > m(k ), N (1)

.  ‘'with the magnitude of the mass difference uncertain because of an

':' ;inadequate dynamical model.

e
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... The observed
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“j The'eigenstatés of strangeness (except for weak-interaction effects)

K°(S = +1) and B°(S = -1) . The CP eigenstates are (usually)

with CP =+

with CP= - - , (2)

nonleptonic decays of these states, are

© K, » 2 .

'K2—b3n '-.‘.

1

(3)

(For simplicity, let us now omit the "zero" superscript.) If H iis

given by

' the total Hamiltonian for K's , then the KX

el
!

— 2{xl°'tnlk°‘> .

oK mass'difference is

= _m(Kg) va(Kl)

'(lenlxcg) - <K-l[u|xi>_" | (La)

| (k)
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fﬂwe thus see that a. AS = 2 interaction is responsible for 6 . No
'ffsuch fundamental ueak intéraction is known, “we therefore assume that a.
”;f;;second-order (veak interaction) transition is involved. If we were to

t‘??;';assume a fundamental AS = 2 -interaction of order &> (g being the

'iiweak-interaction coupling strength), then we could proceed no further

',; exoept to estimate ga from experimental dnta on GK' (since it is unlikely
that experiment would otherwise study an order g2 interaction). Our

'ﬁ";ff,j.z;.:-assumption then is that AS = 2 arises from (AS = 1 , AI = %—) to

~..». second order,

; _ o , . . _ 5
VT ) T To elucidate the structure of the relevant S matrix, we consider
%i.'" | those scattering channels connected with the K channel. In addition to .
(r‘;:-:;w ) : '. . ) - - ' !
7ff. . ... - the K channel, in which strong and weak interactlions occur, there are
| k’:i . channels accessible via AS = 1 transitions, either PC - violating,
or PC conserving,
| H - .. If the state we are interested in isa_J“ = 0" state with a
. mixture of S = $1 (as is the case for K, or K2) , then the relevant
‘L T matrix has the structure |
. T2 T3
T o= Tpp Tps R (5)
L | Ta3 T3
S :ng " where
.ef ' . ‘.'" VW?.‘
‘\\ e 5 A G




R ﬁ_ T,. 1s a channel with S

b e

B

' is & chamnel with '8

#1 , P =~ , strong + (weak)2 interactions,
T \ié.g éhannelvwith_'s =0, P=«, strong + (weak)? interactions,

0, P+, strong +~(veak)2 interactions,

33 T
o T12 représents AS = 1 , P conserving weak transitions,
Ti3 represents AS = 1 , P-nonconserving weak transitions,
' . T23 represents  AS = 0 , P-nonconserving weak transitions, which

. therefore must be of second order in the weak interactions. This is

S Tt -

 because no first-order A4S =0 nonlébtonic?weak.interaction is known,
and even leptonic transitions would'have to both.em;t and reabsorb
. two leptons.
In”general, if the K sgtate is takenxto occur in an n-channel system;

then each T is really an n x n submatrix,

ij
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- %0 channel accessible to the X

SR . . i L. .
«L . PR -5-
d b . B B N .

R >;_;;.25 ! DYNAMICAL MODELS

‘;,EYWe shall now consider models for the K's which considerably

simplfy the T matrix given by (5).

‘Model 1

9

There exists an I = 0 scalar particle, the o ,” with mass

around 400 MeV, and a mn .(strong) decay mode., The K's are Ko bound

states, K, decays into wm , and in this model K, decays (weakly)

into on , This model, containing only K's , o and T , can only

have Kla + nr and Kzu > cﬁ s With single-~particle exchange forces.
. , |

The reason for this is simply that in the equation specifying the K

.bound étates,_off-diagonal transitions always occur at least as two

multiplicative factors, These transit;ons are therefore negligibile

if nof of first order in the WI (we now denote weak interactions by WI).
This implies the above restrictions (as examination of diagrams will make ’
clear to the reader), The same argument rules out consideration of

ch +> Kzu transitions in this model,

.In this model, we have only a two-channel T matrix, whose Born
matrix elements are i;lustrated in Fig. 1, where an obvious diagrammatic
notation is used. We~have only the positive-parity =m channel (assumed
dominated by the o) accessible to the Kl , and only the negative-parity
R 2 )

We should now state clearly that in Model 1 we ignore couplings to

vector-pseudescalar (V - PS) channels, as well as to baryon-antibaryon
9 :

(B - B) chanﬁels, etc, The latter channels are probably important

contributor to 0~ and 0' bound states, despite the high B - B threshold
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';*:fenéféyllp This author admits to ignoring additional channels in the

"ixﬁi:present models ‘because- of a desire to examine a simple model., However,
“‘;‘{it should also be'poinﬁed out that the 'K channels can communicate-
iﬂ'with both. J" = 0" and Of BE channels, At present, though,
.::‘P vave baryon nonleptoniciweak-decayS are iil-delineated by both theory
= ﬁ;and experiment, adding to the potential uncertainties of BB calculations.

"VAnbther objection might well be that we should consider K bound states

within an SU3 scheme of, perhaps, meson scattering channels, The objection

T is valid,_but unfortunately, current knowledge of ()a()a{), mesonic weak
. 8’8’8

interactions is too scant to permit such considerations.l
Model 2 )

No o0 exists and we assume that K's are'p:edominantly Kw bound
states, Note that an extension of this model to include more mesons would
encounter the cémplicationofaweak mass difference between the corresponding
vector mesons Kl* and K2* « The weak decays are now assumed to occur via

the vertices Klﬂﬂ and szu o+ With the allowed strong coupling vertex

-5eing wK. K ; the Born T matrix is as illustrated in Fig. 2.

172




Fig. 1. Model le=T Matrix for Kl' K2'
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Model 2-~t-matrix for Kl’ K2.

- Fig. 2.



. (1th channel phase space factor pi) s 8

‘ e We assume that ‘&/D . expressions are obtained for the partiale-

wave amplitudes of 1nterest " Here N and D are 2 x 2 matrices, and

_Q"‘the condition specifying,the energy of a bound state is.

. determinant D = [p] = o , (6a)
" vhere v
' sews, N _
o Besy Xy o
AT AT j (6" = 8)(s' =s,) ast (6v)
T e | |

' w#&a is a diagonal matrix whose elements are GiJG(s - ith threshold energy)

¢ is a subtraction point. We

adopt a determinantal model for simplicity, wherein

N= 3(8)|Born : ' - (6c)
. Now, using the fact that

| D,

*‘1‘*‘ (5= mz(xlumz(xz))] =0 , (7)

we perform a Taylor expansion of ID (mK )! about the parameters of

"]D (mK )| to order g . In other words, ve express [D (mK )[- [D (mK )[ =0

as a power series (to order g ) in mass differences, and ' force differences.

‘c

. This 1is the bagic pert.urba.‘t‘.:f.onl"6 approach providing expressions for GK ’

:;f In the follo&fﬁg. let . ———L be the derivative with respect to the mass of

1 N 3m2

a single external or exchanged particle.
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‘_Let us first consider ‘Model 1, The above technique furnishes

?Zthe relation, evaluated at s€= m (K) .

" 12- SDK, . -zQDKa‘ :aDKa'
- - . + 9s GK
B .am (K)'{ - m (K)]exchange
";‘j . X < :
SRR T 1.,"[ Ay ng+gK’n exchange
el AU + (DKa]u exchange -1 -
S : < L no
371 : .D2 ] Lo . |
: g ww*oK ; exchange 0 . : | (8)
I. ’ - "" .

;.Actually, the D matrix is not symmetric, and what we have denoted by

:\ 2 ' .
| -DiJ ;s really DiJDJi « DNevertheless, for i #or=to} DiJDJi is
' 07 1 a positive quantity here, An additional approximation here is to ignore
S T | ' | ‘
R ' 6G effects in the perturbations, i.e,, we ignore possible terms
A * - proportional to (g .. =g )
:j;:e‘ o R . Olel' .0K2K2
j}ij o : : Scale invariance of D1J is the statement that because each
ffﬂm DiJ is dimensionless, if we ihcrease all masses by a factor B8 4, then the
?2 output bound-state mass is similafly increased by a factor 8 . .The
v consequence of this for Eq, (8) is that the first parentheses contain an
' expression equal to
= ; 23D -
7 . , K » :
; e aa - (92)
AN o am (0)
L @*.. R : : ‘
S where we negléct the K - ¢ mass difference as & tolerable approximation.
e Mo v
’afgj-We observe that . o - )
TS v



SR
yo =ile
:-‘;-(}——2-.&!1"1*"12*3_— ' ' (9v)
bq"™ m“(K)

-h:yhere thélsifong coupling conséﬁnﬁ 62' has dimensions of (mass)e.and

: S plauai‘biy,_zj Ga x m2(o)_. Thus;(even without some implicit mass

. dependence in G2)

b, e RS W | |
- -{?L- >0 , so that 2K° >0 . (9¢).
. am(o) ) : am“ (o) ‘
S o T ‘ : |

: Furthérmore, the q; eichange fbrce-in the Ko channel is attractive,

. 8o that 1 -ZDKa]i exchange 0 ' We thus have
cL -23D,, ' | -
: Ko . D
- om2 >0p 6K - DKa]w exchange 0) R
| °. | |
i :
L D2 2
n9-+0K nn+oK '
+ D - D . (lo)
. no ) nn .

 Now; the - ﬁﬂ cﬁannel_contains the o pole; thereforé (with our sign

©  convention, attractive forces produce positive amplitudes) at

- C 8 ='m2(K) > ma(a) s D < 0. The final quantity to be examined is D__ .
? . As this should have a pole at & = m>(n) , 1t 1s also negative, but one
‘i:» expects that

bk o oK) = mo(e) -1

LA ~o , )
W T ) onf(n) T
| e %é-n;i for m(o) 2 400 MeV . (11a).

&8

7
N
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;This merely states that the ”slopes afe.expeéted to be about the same for
vaﬂ;v and :Du In addition, one expects the mo force to be greater
., than the mn force, since m(ﬂ) < m(o) - This has the effect of replacing

Knn
: *f;e?ffK decay model of Reference 4 , which assumes ‘K2 + gr -+ 3 , With their

Gl
g . '

Q@*l :Evyhl“f.l/B-by a smaller number.. Finally,_ong'can estimate gio"/32 . from the

g
-, 'assignment -{E?LAﬁl., m{o) @ LOO MeV , and a crude three particle phase~

2 2
gKon smaller than Bmn * All these arguments

serve to demonstrate that the final two terms of Eq., (10) have a positive sum.

“ . space estimate, one finds

:ff}_ ' ‘ '3; We consequently infer that GK >0, |
A: E R vﬁ E Now let us consider Model 2., The result of applying perturbation
,ffﬁ e ('f techniques as previously is the analogue of Eq, (8), namely

§

¢

, aDKm X r L 23DKw
=28\ =3 5
.S. ‘ i \am (N)Jexternal' am (K)]external
.)}} B . “. . ) D2 D2 ' .
. . - Kg**ﬂg o Kg#»ﬂn _ (12)
Cnp ™ . ' .
where
f s n?(w)
/ 22(%)

."’,

;'iA'As argued before, 1f the o ocecurs in the mw channel, the right-hand
side of Eq. (12) is positive, ' In this event, though, the lighter-mass

‘., %’ oK -channel might be more important.

Ir no ¢ occurs, we have the right-hand side of (12) negative.
Examination of the Kw-channel Born amplitude indicates that the

Jf ‘::_ A‘_f‘ "coefficient of GK is negative, and therefore, again SK is positive!

i
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~ and

y Thus, = .
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LR -, -13_

'5Wé cbhéludelfhis section with an indication of how we . may crudely estimate

K in Model l. Tgnbegin,with, we have an upper bound

. RERCI | oy =1 »
. kD . oD ' '
o e | 2= x |2 X ). . | (132)
CCmn o\ am(o)

2

K - : 2 . " '
We write D K"'\(—- 3GK1mGa1m J - vhere all mass differences are ignored

' in estimating the integrals encountered. The factor 3 arises from the -

. fact that the wn s are in an ‘I = 0 state. From the total K, decay

\ 1

e ’;"" ’“2 x 107, | (14)
() N

. A rough estimatefof, 8Dko/3m2(o).,is obtained by assuming that

gy G, n° (o) x <= on (ete.)| (15a)

hq®

"~ D D - 6. - - :
Cee “"ga 2 Ko KKO J e : (15b)
oom (o) m (c) ‘m (o)

- '6K - é CxnnConn me(o)
(k)| - ¥ TG - m(K)

. KXo 44

V% .
P
L]

Id(m(K)

(] =0

. (16)

s B
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" This assumes that . ‘0 'exchange dominates the scalar.'un channel, A

51" crude estimate of the derivative in (17a) is

vy . S SR
R ORI g ¢ J : - J v | .
e o " (175)
SR ST ‘ o 3s ~° sg(threshold) f’hmz(“)

. We estimate G~ G . (a8 in an SU, scheme) and find now

- s

3

' ‘i; _ _:;u.' ' :::{ 13¢ - > : 2 ‘ ' : - %
Do sl g g Agg) e a8)
o R S emm m (K) - m“ (o) .
ny:, b _
qu_a'loo-MeV[yidth,of.the '0.(which could be considered an upper estimate),
Gaﬂﬂ'ég 5m2 ?, taking m(o) A~ 400 MeV , Thus we finally estimate
AP ; =1k -5 -
R CJem@END ] A2 2 x 1077 (k) & 1077 eV . (19)

H

of coﬁrée, this estimate is extremely rough, and certainly cannot be
," considered as anything but an order-of-magnitude estimate. As such,
1;,:_Eq.’(19) is not in the least surprising. We have presented the procedure

" above only to indicate which parameters would be extracted from dynamical

¥

a¢;5;calculation§;‘;nd which from external data or assumptions.
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g : DISCUSSION :
B An amusing situation has been . suggested recently, namely that the
?f(CP = -) particle might decay entirely into 21, violating CP-invarxance,
1;, ﬁwhile“appropriate propertigs‘of the interaction symmetries might cause the
_;;,;y_ :’ fi?i” (CP = +) state to decay primarily into 3n , This effectively reverses the
E;ﬂ* ff.i fi - ﬁafCP assignments of the states responsible for a given decay. In the
;i' | above dynamicallscheme, the effect is to reverse the sign of &(K) although
the quantity (mass of 3m-decaying entity) - (mass of 2n-decaying entity)
is independent of the CP assignments of the neutral K states.ll
!
;: i " Finally, we remark that the present statement 6 > 0 agrees
iﬂ,; ‘ ‘with the results of References 12 and 13, where & rather different appro&ch
;i ! is employed.
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