
Lawrence Berkeley National Laboratory
Computing

Title
Transport control networking

Permalink
https://escholarship.org/uc/item/8gs7k78f

ISBN
9781450393959

Authors
Dunefsky, Jacob
Soleimani, Mahdi
Yang, Ryan
et al.

Publication Date
2022-08-22

DOI
10.1145/3538401.3548550

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gs7k78f
https://escholarship.org/uc/item/8gs7k78f#author
https://escholarship.org
http://www.cdlib.org/

Transport Control Networking: Optimizing Efficiency and
Control of Data Transport for Data-Intensive Networks

(Invited Paper)
Jacob Dunefsky

∗

Mahdi Soleimani
∗

Yale University

Ryan Yang
∗

Choate Rosemary Hall

Jordi Ros-Giralt

Qualcomm Europe, Inc.

Mario Lassnig

CERN

Inder Monga

Energy Sciences Network

Frank K Wuerthwein

San Diego Supercomputer Center

Jingxuan Zhang

Tongji University

Kai Gao

Sichuan University

Y. Richard Yang

Yale University

ABSTRACT
Data-intensive sciences are becoming increasingly important for

modern sciences. The transport control plane (TC-Plane) of the

networks supporting data-intensive sciences can be important to

achieve efficient and controlled transport of data for data-intensive

sciences. In this paper, we analyze FTS, which is the de facto TC-

Plane of the largest data-intensive network, revealing both effi-

ciency and resource control issues of the current design. We then

present the design and initial evaluation of Transport Control Net-

working (TCN), a design that is based on FTS but introduces (1)

network-application co-design/coordination, which uses ALTO to

realize network-wide resource control , and (2) a general, efficient,

flexible optimization framework for TC-Plane, which allows both

zero-order and first-order (e.g., bottleneck structure) gradient-based
algorithms. We also discuss future work to engage the broad net-

working and data-intensive sciences communities.

CCS CONCEPTS
• Networks → Network design principles;

KEYWORDS
Network information exposure, ALTO, FTS, Rucio, CERN

ACM Reference Format:
Jacob Dunefsky

∗
Mahdi Soleimani

∗
, Ryan Yang

∗
, Jordi Ros-Giralt, Mario

Lassnig, InderMonga, Frank KWuerthwein, Jingxuan Zhang, Kai Gao, and Y.

Richard Yang. 2022. Transport Control Networking: Optimizing Efficiency

and Control of Data Transport for Data-Intensive Networks (Invited Paper).

In ACM SIGCOMM 2022 Workshop on Network-Application Integration (NAI
’22), August 22, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3538401.3548550

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

NAI ’22, August 22, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9395-9/22/08.

https://doi.org/10.1145/3538401.3548550

1 INTRODUCTION

Data-intensive sciences are becoming increasingly important as

they drive the investigation of fundamental scientific questions

through collection and processing a large amount of scientific data.

In a large-scale data-intensive sciences setting, scientists from sev-

eral projects collaborate to design an instrument infrastructure to

generate the data, a data center infrastructure to store and process

the data, and a network infrastructure to transfer the data. Since

the data can be distributed widely, spanning multiple networks,

the communities working in the sciences collaborate to design an

overall network architecture and develop community networking

tools and applications, resulting in a fundamental setting we call

data-intensive networks. As a concrete example, CERN has con-

structed a worldwide distributed system of 170 data centers across

40 countries for the global transfer, storage, and processing of the

large data sets generated by the LHC experiments: ALICE, ATLAS,

CMS, and LHCb.

A core component of a data-intensive network is its transport

control plane, which we denote as the TC-Plane. The TC-Plane

receives higher layer transfer requests and decides, for each request,

when it is scheduled and at what rate it should be transported. A

well-design TC-Plane can lead to both efficiency (e.g., application
performance optimization) and resource control (e.g., controlled
infrastructure resource multiplexing).

One might think that the design of the TC-Plane should be

relatively straightforward by using existing techniques developed

by the networking community: including widely-deployed Internet

transport control (e.g., TCP congestion control [6, 9]), well-studied

data distribution architectures such as CDN (e.g., Akamai’s network

[14]), and recent advances in data-center flow scheduling (e.g., [1,
7]) or wide-area bandwidth allocations by large Internet service

providers (e.g., [10, 12, 13]).
Unfortunately, the TC-Plane has its own unique challenges that

the aforementioned existing techniques do not address. For example,

one might assume that TCP can already conduct congestion control

(CC) and hence achieve transport rate allocation. However, TCP

CC is designed for independent, individual transfers, but TC-Plane

should manage bandwidth allocation for sets of interdependent

transfers (e.g., those transfers for the same scientific experiments).

https://doi.org/10.1145/3538401.3548550
https://doi.org/10.1145/3538401.3548550

NAI ’22, August 22, 2022, Amsterdam, Netherlands Author et al.

The recent advances in flow scheduling for data centers and wide

area networking indeed consider sets of transfers. However, they

are designed for a single administrative domain with a highly cen-

tralized, managed operating environment. The TC-Plane, on the

other hand, should operate when a data transfer may span links in

multiple autonomous network domains, and the end devices are

heterogeneous, without single management control (e.g., install the
same operating system configuration). The data-intensive sciences

communities introduced the two systems, FTS[4] and Rucio[5],

which target the organization, management, access, and transfer of

data across multiple networks and administrative domains. As we

show in this work, the network transfer scheduling component of

FTS has both efficiency and resource control issues.

This paper aims to present the initial design of Transport Control

Networking (TCN), a highly effective TC-Plane for data-intensive

networks. TCN adopts techniques developed by both the network-

ing and the data-intensive sciences communities. TCN achieves

both resource control and efficiency.

Specifically, TCN achieves resource control by allowing system-

atic specification of global resource control and using the IETF

ALTO framework [3] to map transfers to resource usage, realizing

global resource control through network-application co-design.

Following resource control, TCN introduces a highly effective

transport scheduling framework and associated algorithms. The

framework is based on the existing, widely deployed FTS framework

but addresses FTS issues by introducing a gradient composition

framework supporting both zero-order and first-order gradients

(e.g., gradients modeled by bottleneck structures [15]).

We conduct initial evaluations to demonstrate the benefits of

TCN transport scheduling. We show that, in a simulated setting,

TCN outperforms the FTS optimizer with respect to flow comple-

tion time, bandwidth utilization, and maximum utility on both a

single link and on the ESnet topology. Additionally, we find that the

ability to incorporate first-order gradients drastically increases con-

vergence speed. These results suggest that TCN can be a promising

system for handling transfers in data-intensive networks.

The rest of the paper is organized as follows. In §2, we provide

background. In §3, we specify the main design requirements of TCN.

In §4, we analyze FTS, the current de facto TC-plane used by CERN.

§5 provides the overall architecture and core APIs. §6 provides the

core scheduling algorithms. §7 conducts initial evaluations of the

algorithms. We conclude and give the next steps in §8.

2 BACKGROUND
The design of TCN is based on the existing data transfer systems

operated by CERN and collaborating organizations. To help readers

understand TCN, we briefly introduce the components involved.

These components have been deployed in production for years and

are managing the data transmissions for major scientific experi-

ments, including ATLAS, CMS, and LHCb.

Infrastructure.The infrastructure provides the hardware resources.
Storage, computation, and internal networking connectivity are

provided by participating organizations, including CERN, research

institutes, and universities around the globe (referred to as sites),
and the inter-site connectivity is provided by multiple National Re-

search and Education Networks (NRENs), including ESnet, Geant,

LHCONE, Internet2, SURFnet, and NORDUnet, among others.

Transport Data Plane. The transport data plane consists of soft-
ware and protocols which provide the basic functionalities of data

storage and transfer between two endpoints. A storage element

is deployed at a site and globally addressable by the hostname,

port, protocol, etc. At the same time, data transfers transmit files

between storage elements (storage-to-storage transfers) or from

a storage element to a machine for further processing (storage-

to-transfer transfers) over network infrastructure. Currently de-

ployed storage systems by the CERN experiments include EOS,

dCache, and XRootD, and the majority of transfer protocols in use

are HTTP/WebDAV, XRootD, and S3.

Transport Control Plane. This layer, which is the focus of this

paper, receives data transfer requests (i.e., the files to be transferred,
the source storage element, and the destination storage element)

from the upper layer and determines when and at what speed to

execute a request. The de facto transport scheduling control plane

is the File Transfer Service (FTS) [4].
Transport Management Plane. This component specifies the

resource sharing and performance goals of the transport system.

3 REQUIREMENTS
With the preceding background, we now specify the main require-

ments of the TC-Plane, focusing on a high-level description.

3.1 Software Architecture Requirements
S1 Controllability: The "control knobs" by which optimization is

carried out must be widely available to support heterogeneous

deployment settings.

S2 Ease of deployment: As opposed to heavy-weight control at

the packet level, which is challenging to deploy, light-weight

control at the transfer level is preferred.

S3 Modular, decoupling architecture: It allows a single rate-controlling

component to interface with multiple higher-level selection

mechanisms.

3.2 Performance Function Requirements
P1 Optimality: In scheduling sets of transfers, the system should

utilize resources as fully as possible.

P2 Resource allocation: There must be a way to determine which

resources, and howmuch of those resources each user has access

to.

P3 Dependency coordination: When scheduling sets of transfers:

the system should be able to take into account dependencies

between individual transfers.

4 ANALYSIS OF CURRENT DESIGN
With the preceding requirements, we now analyze FTS, which is

the de facto transport control plane for data-intensive transfers

at CERN. Our analysis focuses on FTS against the requirements

enumerated in §3. FTS shines in satisfying the software architec-

ture requirements (§3.1), but the current design cannot achieve the

functional requirements specified in §3.2.

4.1 FTS Software Architecture Analysis
S1 FTS uses the number of TCP connections between a source and

a destination (we refer to a (𝑠𝑟𝑐, 𝑑𝑠𝑡) pair as a pipe) as the control
knob, which is universally available, and hence represents an

excellent design option to achieve S1.

Transport Control Networking (TCN) for Data-Intensive Sciences NAI ’22, August 22, 2022, Amsterdam, Netherlands

S2 FTS delegates the transfers to the transport data plane. Since

there are multiple transfer tools available and at high bandwidth

settings, rate limits at hosts or switches can become bottlenecks,

FTS does not directly use packet-level control to limit transport

rates. Thus, FTS has a lightweight control design.

S3 Although in CERN’s system, transfers are generated by multiple

different sources, FTS is the major coordinator responsible for

coordinating global transfers. FTS thus embodies a modular

software architecture.

4.2 FTS Performance Function Analysis
We next analyze FTS on the 3 performance function require-

ments. Since FTS considers only individual transfers, it does not

handle P3. Hence, we focus on the optimality (P1) and resource

control (P2) behaviors of FTS. Protocol 1 gives the FTS algorithm

which we analyze. Although there are other parts of the optimizer

(which take into account file size and success rate changes), this

algorithm forms the core of the optimizer.

Protocol 1 FTS Model Analyzed (Called for High Success Rate)

1: Define 𝑅𝐿(𝑥) = round(log𝐵 (𝑥))
2: procedure optimizeGoodSuccessRate(state)
3: if cur.ema < prev.ema then
4: if RL(cur.ema) < RL(prev.ema) then
5: decision = prevValue - decreaseStepSize

6: else
7: decision = prevValue

8: end if
9: else if cur.ema > prev.ema then
10: decision = prevValue + increaseStepSize

11: else ⊲ emas are equal

12: decision = prevValue + increaseStepSize

13: end if
14: end procedure

Protocol 1 toModel.Assume an interval model, and let 𝑡+1 denote
the new interval (cur) in Protocol 1, and 𝑡 the preceding interval

(pre). The system state at interval 𝑡 is the vector 𝑛(𝑡) = {𝑛𝑖 (𝑡)},
where 𝑛𝑖 (𝑡) is the number of connections of pipe 𝑖 at interval 𝑡 . FTS

adapts each 𝑛𝑖 (𝑡) individually and the Protocol 1 above is the algo-

rithm. FTS includes𝑀𝑖 and𝑚𝑖 , which are configurations limiting

the maximum and minimum of 𝑛𝑖 (𝑡) respectively. Let 𝑇𝑖 (𝑡) denote
the throughput of pipe 𝑖 during interval 𝑡 . Then the exponential

moving average (ema in Protocol 1) of pipe 𝑖 , denoted as 𝐸𝑖 below,

is computed as 𝐸𝑖 (𝑡 + 1) = 𝛼𝑇𝑖 (𝑡 + 1) + (1 − 𝛼)𝐸𝑖 (𝑡), where 𝛼 is a

constant.

With the notations. a formalization of Protocol 1 is the following:

𝑛𝑖 (𝑡 + 1) =

𝑛𝑖 (𝑡) − 1 𝑅𝐿𝐵 (𝐸𝑖 (𝑡 + 1)) < 𝑅𝐿𝐵 (𝐸𝑖 (𝑡)); Line 4
𝑛𝑖 (𝑡) + 1 𝐸𝑖 (𝑡 + 1) ≥ 𝐸𝑖 (𝑡); Lines 9,11
𝑛𝑖 (𝑡) else

where 𝐵 is the base of the logarithm in Protocol 1; in actual FTS,

we have 𝐵 = 10. We refer to this model as the Dynamical System
Model; when context makes it clear, we call it "the model" for short.

AnalysisWe consider an idealized model where 𝑇𝑖 (𝑡) is a simple

function of 𝑛(𝑡). The model is more accurate when (1) there is a

greater persistent backlog at each queue (pipe), and (2) the transfer

boundary effects are not large (e.g., transfer sizes are large).
One challenge in the analysis is that the dynamical systemmodel

can exhibit complex behaviors, including both convergence and

oscillations. We present the results in 2 settings: (1) when the model

converges to a fixed point; and (2) a specific setting where the model

oscillates between two states.

Setting I (Fixed-Point Convergence Behavior)
Consider the case where the model converges to a fixed point at a

finite time 𝑡0. We have the following result:

Theorem 4.1 (Stable State Characterization). Let 𝑛(𝑡) be
the vector (𝑛1 (𝑡), . . . , 𝑛𝑘 (𝑡)) at time 𝑡 . If, for all 𝑡 > 𝑡0, 𝑛(𝑡) = 𝑛(𝑡0),
then 𝑛𝑖 (𝑡) = 𝑀𝑖 for all 𝑖 .

The theorem makes clear that if the model converges to a fixed

point, then the only possible fixed point is the state at which all

pipes reach their configuredmaximumnumbers of connections. The

intuition is that due to finite precision of floating point computation,

regardless of the initial values, cur.ema (𝐸𝑖 (𝑡 + 1)) eventually equals
prev.ema (𝐸𝑖 (𝑡)), at which point Case 2 of the dynamical system

model increases𝑛𝑖 . Thus the only stable fixed point is the maximum.

However, our evaluations show that the model does not always

converge to a fixed point. In the general case, an insightful result is

the following conserved quantity proposition:

Theorem 4.2 (Conservation Theorem). Let 𝐾 = max
𝑀𝑖
𝑚𝑖

. Then
as long as 𝐵 > (1 − 𝛼 + 𝛼𝐾2), the quantity

𝑉𝑡 (𝑡) = 𝑛𝑖 (𝑡) − round(log𝐵 (𝐸𝑖 (𝑡))
only ever stays constant or increases.

This provides valuable insight into the general behavior of Proto-

col 1: other than slight changes in round(log𝐵 (𝐸𝑖 (𝑡))), the number

of connections generally cannot be decreased, and will either go to

the maximum or increase until it begins oscillating.

The implication of these theorems on resource control is the

following. Because the only possible fixed-point state is the state

where 𝑛𝑖 = 𝑀𝑖 , the only mechanism for resource control is a judi-

cious setting of the𝑀𝑖 . But it is challenging to set𝑀𝑖 to achieve a

desired throughput distribution, given complicating factors such as

TCP RTT bias and complex network bottleneck structures.

Setting II (Non-Fixed-Point Behavior) It is also important to

analyze cases in which we have oscillatory behavior. In particular,

consider the following simple, concrete setting:

Definition (Throughput-DeteriorationModel): A single pipe

traversing a single link with capacity 𝐶 , where throughput 𝑇 (𝑡) is
given according to the following model:

𝑇 (𝑡) = max (0,min (𝐶,𝐶 − 𝑑 · (𝑛(𝑡) − 𝑛0))) ,
where 𝑛 is the number of connections. In this model, when the

number of TCP connections is ≤ 𝑛0, the throughput is the capacity
𝐶 . But when the number of connections is> 𝑛0, various components

are overwhelmed and the effective capacity decreases by 𝑑 for each

new connection until it reaches a value of 0. Note that choosing any

number of connections ≤ 𝑛0 always gives the optimal throughput.

However, under FTS, we have the following theorem regarding

Protocol 1 behavior under the Throughput-Deterioration Model:

NAI ’22, August 22, 2022, Amsterdam, Netherlands Author et al.

Theorem 4.3 (Oscillation Characterization). Consider the
Throughput-DeteriorationModel setting. Define 𝑃 (𝑥) = 𝐵(round(log𝐵 𝑥)−

1

2
) .

Then, there exists some 𝑡0 such that for 𝑡 > 𝑡0, Protocol 1 is either
always equal to the maximum, or it oscillates between 𝑁 and 𝑁 + 1

where 𝑁 ≥ 𝑛0 +
⌊
𝐶−𝑃 (𝐶)

𝑑

⌋
.

Recall that the Throughput-Deterioration Model considers a

single pipe traversing a single link. Oscillation requires a decrease

in𝑅𝐿𝐵 (𝑇), so a value of𝑇 satisfying𝑅𝐿𝐵 (𝑇 (·)) ≤ round(log𝐵 𝐶)−1
is needed. This happens for the first time at 𝑁 = 𝑛0 +

⌊
𝐶−𝑃 (𝐶)

𝑑

⌋
+ 1

since this 𝑁 value gives a throughput of𝐶 −𝑑 · (𝑁 −𝑛0) < 𝑃 (𝐶) =
𝐵(round(log𝐵 𝐶)−

1

2
)
.

As a corollary, we have the following important result:

Corollary 4.4. In the Throughput-Deterioration setting, if 𝐶 =

𝐵𝑝 for some integer 𝑝 , then either Protocol 1 oscillates between points
which have an achieved throughput 1/

√
𝐵 of the optimal, or it stabi-

lizes to 𝑛 = 𝑀 (which can have arbitrarily poor throughput depending
on 𝑑 and 𝑛0).

In fact, by selecting 𝐶 to be the greatest floating point number

less than 𝐵𝑝+1/2, we can cause achieved throughput to be almost a

factor of 1/𝐵 of the optimal.

Intuitively, this is due to two causes: (1) Protocol 1 only decreases

𝑛when throughput drops by an order of magnitude; (2) If decreasing

𝑛 increases throughput, then instead of decreasing again, Protocol

1 increases 𝑛. In particular, this means that Protocol 1 sometimes

goes against the gradient 𝑑𝑇 /𝑑𝑛, causing an oscillation around the

point where the order of magnitude changes.

Summary: Protocol 1 has four issues:
(1) As demonstrated in Corollary 4.4, Protocol 1 may produce

throughputs that are suboptimal by almost a factor of 1/𝐵. Thus,
it fails to meet the optimality requirement. This is because Pro-

tocol 1 does not always adjust 𝑛 in the direction of the gradient

𝑑𝑇 /𝑑𝑛, but can be considered a semi-gradient algorithm.

(2) Protocol 1 is a zero-order method, in the sense that it does not

need an explicit model. However, zero-order can be less efficient

than a first-order method that computes gradients when an

explicit model is available.

(3) As seen in Setting I, the only fixed point of the system is when

𝑛𝑖 = 𝑀𝑖 for all 𝑖 . Hence, it does not include an effective resource

control mechanism.

(4) Protocol 1 attempts to optimize the throughput of each pipe in-

dependently, resulting in a multi-objective framework. A multi-

objective framework, however, can result in non-Pareto optimal

solutions.

5 TCN ARCHITECTURE
We now present the overall design of TCN, which is based on FTS

but includes extensions. In particular, TCN extends FTS in three core

ways. (1) TCN introduces a component in the management plane to

provide resource control specifications. (2) TCN utilizes a unifying

data structure called the run-time transport-control state to address

P3 and map logical resource usage to physical resource usage using

ALTO. (3) TCN specifies a transport control scheduling framework

to enhance native FTS substantially, addressing its efficiency and

resource control issues.

c
r
e
a
t
e
-
p
i
p
e
/

s
e
t
-
r
e
s
o
u
r
c
e
-
c
o
n
t
r
o
l

Network 1

Config
pipe→ src/dst spec

resource→ control spec

Transfer Control State
pipe → # of TCP conn

pipe → active | pending
transfer set; transfer DAG

Pipe→ Resource State
pipe → network resources

...

Transport Control State Base

Transport Select (Rucio) Transport Select 2

Transport Data Plane (e.g., GridFTP, XrootD, HTTP)

Transport Networking (e.g., SENSE)

OAM

1

add-transfer
2

TCN Scheduling Framework

ALTO Execution Loop
(Maps pipes to
routing paths)

Data Transfer
Dispatcher Loop

(Triggered by transfer
events)

Control Loop
(Runs periodically)

3-control 3-data

Network 2

3-alto

TCN Stack

Network 3

Pipe

Figure 1: Architecture and workflow of TCN.
Below, we introduce the abstractions used by TCN, go over the

typical workflow of TCN (Figure 1), and explain the components.

TCN Abstractions. There are four primary abstractions used in

TCN: (1) user, which represents an organization or experiment (e.g.,
CMS); (2) pipe, which represents a logical connection from a source

to a destination; (3) resource, which can be anything from network

bandwidth to storage; (4) transfer, which traverses a pipe.

Additionally, pipes are mapped to resource-sets, defining which
resources the pipe uses (e.g., which physical links or storage units

are used). Resource control is achieved by setting bounds on how

much of the resources in a given resource-set each user can use.

The resource-sets associated with a given pipe are automatically

updated in control loop 3-alto , as explained below.

TCN Workflow. First, operators specify the pipes and their re-

source control requirements (1), with the following APIs:

create-pipe: src, dst, user -> pipe
set-rc: user, resource-set -> bound | rel-weight
etc.

Then, during operations, a transfer-select component adds sets

of transfers (2), with the following APIs:

add-transfer: data, pipe, order -> trans-id
etc.

Note that the add-transfer call is a push API, and TCN also allows

a pull-based design. Additionally, unlike basic FTS, TCN allows

each transfer to include ordering constraints (i.e., which transfers

must finish before a given transfer can start); hence, this design

can integrate a powerful mechanism (i.e., Sincronia [1]) to achieve

co-flow scheduling optimization. (Note, however, that Sincronia

assumes that there is no bottleneck inside of the network. In order

to meet this assumption, the network must support a hose model

[2] that allows clients to behave as if there is no bottleneck.)

The main functions of TCN are implemented in 3 control loops,

which run concurrently:

• The ALTO execution loop (3-alto) continues to update (pull

or push) the mapping from pipes to the network resources used

by each pipe, using ALTO to obtain information about network

resources;

• The control-state loop (3-control) runs periodically by invok-

ing the scheduling framework (§6) to update the control state:

the number of concurrent TCP connections
1
;

1
this control state can have a limited controllability space, but for this paper, we still

focus only on this control state.

Transport Control Networking (TCN) for Data-Intensive Sciences NAI ’22, August 22, 2022, Amsterdam, Netherlands

User:

Pipe:

Resource:

Transfers:

Figure 2: Run-time transport control state.

• The data-transfer dispatch loop (3-data) is triggered when a

new transfer is added or when the data plane finishes a transfer.

It is guided by the control state maintained by the control-state

loop.

TCNCoreData Structures. The core data structure supporting the
three control loops is shown in Figure 2; we refer to it as the run-time
transport control state. Recall that pipes are mapped to resource-

sets; this enables TCN to achieve performance requirement P2.

Additionally, the run-time transport control state allows TCN to

meet performance requirement P3 by storing transfers in a DAG

and representing dependencies as directed edges.

Summary: Two main novelties of the TCN architecture are as

follows: (1) Via ALTO integration, which makes network resources

visible to the application, resource constraints can be explicitly

accounted for by the scheduler; (2) By storing transfers in a DAG,

TCN can encode complex dependencies between sets of transfers.

6 TCN SCHEDULING FRAMEWORK
Within the architecture outlined in the previous section, we now

give the details of TCN’s scheduling framework. The framework is

based on FTS but includes fourmajor differences: (1) instead of using

semi-gradient, it always uses full gradient; (2) instead of only using

zero-order, it uses first-order when explicit models are available; (3)

instead of depending on specifying indirect connections bounds to

achieve resource control, it allows generic resource constraints in

optimization; (4) instead of using multi-objective gradients, it uses

a single objective to avoid non Pareto-optimal inefficiency. Below,

we first give the details of the framework (§6.1), and then we give

the details of the full zero-order gradient (§6.2)

6.1 TCN Scheduling Framework

zero-order
gradient

first-order
gradient

policy control

resource
constraints

Figure 3: TCN composition framework.
Figure 3 specifies the complete composition framework, which

consists of two levels of compositions. At the top level, it uses an

aggregation function 𝑎(·) to map multiple objectives (throughputs)

to a single objective. (For instance, 𝑎(·) might be summation.) At

the second level, it uses the min(·) function to handle multiple

bottlenecks.

With the composition framework, the scheduling framework can

be specified as optimizing the objective function: 𝑎(𝑇1,𝑇2, . . . ,𝑇𝑘)
where 𝑇𝑖 (𝑛) = min(𝑓𝑖,1 (𝑛), . . . , 𝑓𝑖, 𝑗 (𝑛)). Each of the 𝑓𝑖, 𝑗 , in turn,

represents a different bottleneck on the throughput of pipe 𝑖 (e.g., a
network bottleneck, a storage bottleneck, etc).

We use the notation from §4.2, and use 𝑛 = (𝑛1, . . . , 𝑛𝑘) for the
overall decision vector. Optimizing the objective function using

gradients requires computing the gradient of𝑎(·) with respect to the
control vector 𝑛. Using the structure of the composition framework,

d𝑎

d𝑛𝑖
=

𝐾∑︁
𝑗=1

d𝑎

d𝑇𝑗
·
d𝑇𝑗

d𝑛𝑖
(1)

measures the change in 𝑎 with respect to assignment changes at

pipe 𝑖 when there are a total of 𝐾 pipes. Since 𝑎(·) is explicitly
expressed in terms of 𝑇 , d𝑎/d𝑇𝑗 can be easily computed. The main

difficulty therefore comes from computing the d𝑇𝑗/d𝑛𝑖 terms. Since

𝑇𝑗 = min{𝑓𝑗,1 (𝑛), 𝑓𝑗,2 (𝑛), · · · , 𝑓𝑗,𝑘 (𝑛)}, if 𝑘 = argmin𝑘 𝑓𝑗,𝑘 , then

d𝑇𝑗/𝑛𝑖 = d𝑓𝑗,𝑘/d𝑛𝑖 . For ease of use, 𝑓𝑗,𝑘 will be used to refer to the

bottleneck of pipe 𝑗 . Finally, the derivative is computed with:

d𝑓𝑗,𝑘

d𝑛𝑖
=

{
zero order estimate if 𝑓𝑗,𝑘 is blackbox

first order gradient otherwise.
(2)

First-order gradients for a given explicit function are available

in general and can be found even in specialized cases (e.g., taking
into account the bottleneck structure of networks [15]). Below, we

focus on computing zero-order estimates for blackbox 𝑓𝑖 .

6.2 TCN Zero-Order Algorithm
Designing a correct, efficient zero-order gradient algorithm, how-

ever, is not easy. There are multiple approaches to computing zero-

order gradients. TCN generates noise by first sampling 𝑧′ ∼ 𝑁 (0, 𝐼).
Then, we set 𝑧 = 𝑖𝑛𝑡 (𝑧), where 𝑖𝑛𝑡 (·) is defined below. Now, let

𝑛′ = 𝑛 + 𝑧. Then

𝐺 (𝑛, 𝑧) = 𝑓 (𝑛′) − 𝑓 (𝑛)
∥𝑧∥2

· 𝑧 (3)

is an estimator of the gradient.

Utilizing the preceding estimator and accelerating using momen-

tum, TCN scheduler implements a zero-order gradient algorithm,

shown in Protocol 2. Specifically, in Protocol 2, line 15 updates

the gradient using momentum; line 16 rounds the update with the

following function:

𝑖𝑛𝑡 (𝑥) =
{
⌊𝑥⌋ with probability 1 − (𝑥 − ⌊𝑥⌋)
⌊𝑥⌋ + 1 with probability 𝑥 − ⌊𝑥⌋ .

. (4)

This is called “stochastic rounding" [11] and is necessary because

the space of possible assignments is discrete. In expectation,E[𝑖𝑛𝑡 (𝑥)] =
𝑥 , and this allows us to keep the true value of the momentum step.

7 EVALUATION
The TCN framework has four major components: (A) the aggrega-

tion of multiple optimality criteria into a single objective function,

(B) zero-order gradient estimates for implicit throughput functions,

(C) support for explicit first-order gradients, and (D) dynamic re-

source control constraints. We performed initial but systematic

NAI ’22, August 22, 2022, Amsterdam, Netherlands Author et al.

0 500 1000 1500 2000 2500 3000 3500
Time slots to finish transfer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

m
 =

 1
20

8.
0

st
d

=
74

3.
0

m
 =

 6
19

.0
st

d
=

44
4.

0

ma
x 1

58
8 s

lot
s

ma
x 3

54
0 s

lot
s

Flow completion time CDF
 (100 x 500GB transfers on ESNet)

controller
FTS
TCN (Constrained)

(a) TCN vs FTS FCT (100×500GB Pipes).

0 200 400 600 800 1000 1200 1400
Time slot

−200

−150

−100

−50

0

50

Ut
ilit

y

35
1

sl
ot

s

10
45

 s
lo

ts

Max = 32.0

TCN Zero order vs First Order
Convergence Behavior (10 x ∞ Pipes)

scheme
Zero Order
First Order

(b) TCN 0-order vs 1st-order (10×∞ Pipes).

0 2000 4000 6000 8000 10000
Time Slot

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (G

bp
s) Max agg rate = 117.86 Gbps

Max agg rate = 26.89 Gbps

24
52

 s
lo

ts

91
50

 s
lo

ts

TCN vs FTS
 30 x 2TB Pipes on ESNet

TCN
FTS

(c) TCN vs FTS (30×2TB Pipes).

Figure 4: TCN Evaluations

Protocol 2Momentum-Based Discrete Zero-Order Optimization

1: 𝑎(T) = some utility function of the throughputs T
2: cur.n = uniform(m, M, k) ⊲ Choose 𝑘 values for 𝑛 uniformly

between𝑚 and𝑀

3: 𝛼, [assigned hyperparameters

4: while network is running do
5: Evaluate 𝑓𝑖,𝑘 functions

6: for each (𝑛𝑖 ,𝑇𝑗) pair do
7: Find bottle neck 𝑓𝑗,𝑘 for 𝑇𝑗
8: if 𝑓𝑗,𝑘 is explicit then

9: Compute

d𝑓𝑗,𝑘
d𝑛𝑖

= first-order gradient.

10: else if 𝑓𝑗,𝑘 is not explicit then

11: Compute

d𝑓𝑗,𝑘
d𝑛𝑖

according to Equation 3

12: end if
13: end for
14: Compute 𝑔 = (d𝑎 (𝑛)

d𝑛1
,
d𝑎 (𝑛)
d𝑛2

, . . . ,
d𝑎 (𝑛)
d𝑛𝐾

) according to Eq (1).

15: m = (1 − 𝛼)m + 𝛼 · ([𝑔) ⊲ Update Momentum

16: 𝑛 = 𝑐𝑢𝑟 .n + 𝑖𝑛𝑡 (m) ⊲ Update Assignment

17: end while

evaluations to demonstrate how these components can improve

the top-down performance metrics of scientific transfers. Our eval-

uations measured the following: (1) aggregated throughput and

bandwidth utilization while adhering to the resource control con-

straints (§7.1), (2) individual flow completion times (FCT) (§7.2), (3)

convergence speed, and converged states (§7.3), and (4) behavior

under dynamic transfer arrival patterns (§7.4).

7.1 FTS vs TCN: Optimality and Constraints
Satisfaction

First, we evaluate 2×20TB transfers on a single link with two

pipes. We find that TCN with resource constraints achieves 3.33×
bandwidth utilization compared to FTS. Additionally, we evaluate

30×2TB transfers on ESnet’s topology with 30 pipes using FTS

and TCN (zero-order, bandwidth constraints). We find that TCN

achieves 4.38× maximum utility when compared to FTS, thanks to

components A and B .

7.2 FTS vs TCN: Flow Completion Time
We evaluated 30×2TB transfers on ESnet’s topology using FTS

and TCN (zero-order, bandwidth constraints) and found that maxi-

mum FCT was 3.73× longer in FTS than TCN (fig. 4c).

Additionally, we evaluated 100 pipes, each executing 500GB

transfers on the ESnet topology (fig. 4a). TCN with no constraints

achieved a mean FCT 1.59× less than FTS, indicating that TCN

improves fairness even without active bandwidth constraints. But

when explicitly taking into account resource constraints (compo-

nent D), TCN achieved a mean FCT of 1.95× less than FTS.

7.3 First vs Zero Order Gradient Ascent
To compare zero-order and first-order versions of TCN, we sched-

uled 10 pipes with infinite backlogs on the ESnet topology. For

concave objective functions, first-order methods (component C)

converge faster than zero-order methods (component B) [8]. How-

ever, because the updates used by component B involve steps

randomly drawn from a unit Gaussian (§6.2), zero-order methods

can escape local maxima when BW allocation functions are not

concave. Thus, As shown in fig. 4b, with concave bandwidth allo-

cation functions and convex constraints, both versions converge

to the same global optimal state, while first-order converges 3.0×
faster. However, when evaluated on non-convex BW constraints,

zero-order TCN yields a 1.49× gain in final throughput compared

to first-order TCN.

7.4 Dynamic Arrival Pattern
Due to continuous changes in BW control constraints, handling

dynamic transfer arrivals is challenging for a gradient system. To

evaluate the stability of TCN, we scheduled 50 dynamic transfers

with arrival time drawn from Exp(1/200) with an average size of

4TB on ESnet topology. Component D of TCN enables it to achieve

a mean FCT of 7.0× lower than FTS.

8 CONCLUSION
Wepresented TCN: a system for handling transport in data-intensive

settings. TCN utilizes ideas from current systems while enabling

further gains in flexibility, modularity, generality, and performance.

TCN takes cues from FTS’ method of optimizing transfers, but

addresses performance issues of FTS with a gradient-based opti-

mization algorithm that accounts for heterogeneous bottlenecks

and resource constraints. Initial evaluations indicate that TCN’s op-

timization algorithm significantly outperforms FTS’. This algorithm

is supported by an architecture that interfaces with pre-existing

components to keep track of network state and control transfers.

We believe that TCN can become an integral part of the systems

underpinning data-intensive networks.

Transport Control Networking (TCN) for Data-Intensive Sciences NAI ’22, August 22, 2022, Amsterdam, Netherlands

REFERENCES
[1] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and A. Vahdat.

Sincronia: Near-optimal network design for coflows. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages
16–29, 2018.

[2] S. S. Ahuja, V. Gupta, V. Dangui, S. Bali, A. Gopalan, H. Zhong, P. Lapukhov, Y. Xia,

and Y. Zhang. Capacity-efficient and uncertainty-resilient backbone network

planning with hose. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
pages 547–559, 2021.

[3] R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W. Roome, S. Shalunov, and

R. Woundy. Application-layer traffic optimization (alto) protocol. RFC 7285, RFC

Editor, 09 2014.

[4] A. Ayllon, M. Salichos, M. Simon, and O. Keeble. FTS3: new data movement

service for WLCG. In Journal of Physics: Conference Series, volume 513, page

032081. IOP Publishing, 2014.

[5] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron,

D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing, et al. Rucio: Scientific data

management. Computing and Software for Big Science, 3(1):1–19, 2019.
[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. BBR:

Congestion-based congestion control: Measuring bottleneck bandwidth and

round-trip propagation time. Queue, 14(5):20–53, 2016.
[7] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for cluster

applications. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 31–36, 2012.

[8] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for

zero-order convex optimization: The power of two function evaluations. IEEE
Transactions on Information Theory, 61(5):2788–2806, 2015.

[9] S. Ha, I. Rhee, and L. Xu. Cubic: a new TCP-friendly high-speed TCP variant.

ACM SIGOPS operating systems review, 42(5):64–74, 2008.
[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-

tenhofer. Achieving high utilization with software-driven WAN. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, pages 15–26, 2013.

[11] M. Hopkins, M. Mikaitis, D. R. Lester, and S. Furber. Stochastic rounding and

reduced-precision fixed-point arithmetic for solving neural ordinary differen-

tial equations. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 378(2166):20190052, jan 2020.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software

defined WAN. ACM SIGCOMM Computer Communication Review, 43(4):3–14,
2013.

[13] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C. Zermeno, C. S.

Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, et al. BwE: Flexible, hierarchical

bandwidth allocation for WAN distributed computing. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages 1–14,
2015.

[14] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: a platform for

high-performance Internet applications. ACM SIGOPS Operating Systems Review,
44(3):2–19, 2010.

[15] J. Ros-Giralt, N. Amsel, S. Yellamraju, J. Ezick, R. Lethin, Y. Jiang, A. Feng, L. Tas-

siulas, Z. Wu, M. Y. Teh, and K. Bergman. Designing data center networks using

bottleneck structures. In Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, SIGCOMM ’21, page 319–348, New York, NY, USA, 2021. Association for

Computing Machinery.

	Abstract
	1 Introduction
	2 Background
	3 Requirements
	3.1 Software Architecture Requirements
	3.2 Performance Function Requirements

	4 Analysis of Current Design
	4.1 FTS Software Architecture Analysis
	4.2 FTS Performance Function Analysis

	5 TCN Architecture
	6 TCN Scheduling Framework
	6.1 TCN Scheduling Framework
	6.2 TCN Zero-Order Algorithm

	7 Evaluation
	7.1 FTS vs TCN: Optimality and Constraints Satisfaction
	7.2 FTS vs TCN: Flow Completion Time
	7.3 First vs Zero Order Gradient Ascent
	7.4 Dynamic Arrival Pattern

	8 Conclusion
	References

