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Control of transverse wakefields via phase-matched laser modes in parabolic
plasma channels

B.Z. Djordjević,1, 2 C. Benedetti,2 C.B. Schroeder,2 E. Esarey,2 and W.P. Leemans1, 2
1)Department of Physics, University of California, Berkeley, CA, 94720, USA
2)BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,
USA

The use of higher-order modes is proposed to control the transverse wakefield structure generated by a
laser pulse propagating through a plasma channel. This can be done in the quasilinear regime in both the
Laguerre-Gaussian and Hermite-Gaussian bases for appropriate laser-plasma parameters, independently of
the longitudinal field. Control of the wake can be achieved by using modes of different mode numbers but
with matched phase velocities to generate tunable, matched laser propagation. The wake can be tuned by
modifying the initial phase and amplitude of each mode. In addition, it is shown that two different higher
order modes can propagate at the same group velocity by appropriately tuning the frequencies. Geometric and
frequency tuning of the laser driver allows for greater control of the transverse phase-space of the accelerated
electron bunch.

I. INTRODUCTION

Experimental advances in the development of laser-
plasma accelerators (LPAs) over the past two decades
have verified theoretical predictions and promise new
technological applications.1,2 Of primary interest is the
use of LPAs for a future collider design.3,4 Likewise, there
is great interest in using the technology for compact and
brilliant X-ray light sources in the relatively near future.5

Currently, LPA technology has been able to achieve ac-
celerating gradients in excess of 100 GV/m and electron
bunches with an energy of several GeV over centimeter-
length scales.6 Development of the field has been primar-
ily enabled and driven by rapidly advancing laser tech-
nology.

Ultra-short, femtosecond scale pulses used in LPA ex-
periments are often assumed to have a Gaussian trans-
verse profile. In reality this is seldom the case and higher-
order mode content is often present, which complicates
laser pulse evolution in a plasma and can lead to re-
duced energy gains and potential bunch loss.6,7 However,
higher-order laser modes can be intentionally utilized and
have been proposed in several advanced concepts, such
as plasma undulators,8–10 higher harmonic generation,11

ring-shaped electron bunches,12,13 and independent con-
trol of the focusing fields.14 Ref. 14 explored the use of
two modes to modify the transverse electric fields of the
wake. In this paper we extend that concept by consider-
ing the fact that higher-order modes can be matched with
respect to both their phase and group velocities by choos-
ing the appropriate geometric mode indices as well as
propagating modes of different laser frequencies. This ve-
locity matching avoids slippage and mode beating, which
can otherwise limit the laser-plasma interaction length.

In this paper we propose the utilization of higher-order
Laguerre-Gaussian and Hermite-Gaussian modes to con-
trol the wake properties in an LPA. In most cases the
presence of higher-order modes will lead to mode beating
and thereby is detrimental to the purpose of guiding and
accelerating a trailing bunch.14 However, as described in

this work, it is possible to select which modes are present
in such a way that there will be no beating. Given the dis-
persion relation, one can select geometric mode numbers
such that different modes have the same group and phase
velocities, resulting in a superposition of those modes
without beating. In this paper we consider the applica-
tion of this idea to guiding elliptical bunches and verify
its properties in the quasi-linear limit with particle track-
ing to model the bunch. Another issue we address is the
fact that modes of different, non-complementary mode
number propagate at different group velocities. This can
be addressed by considering modes of different frequen-
cies and is considered in the case where it is desired to
reduce the electric field gradient near the axis.

In an LPA, a short and intense (I > 1018 W/cm2)
laser pulse propagates through a plasma and generates
a plasma wave.2 If the length of the pulse, L, is approx-
imately that of the plasma wavelength, λp = 2π/kp =
2πc/ωp, where kp is the plasma wavenumber, c is the
speed of light, ω2

p = 4πn0e
2/me is the plasma frequency,

n0 is the on-axis plasma density, and e and me are the
electron charge and mass, then a plasma wave will be res-
onantly excited by the ponderomotive force of the laser,
F ∼ ∇a2, where a = eA/(mec

2) is the normalized ampli-
tude and A is the vector potential of the laser field. The
electric field of this wake, in the quasilinear regime a . 1,

is proportional to the gradient of the intensity, ~E ∼ ∇a2,
and this field is used to focus and accelerate an electron
bunch. In a vacuum, the laser pulse will diffract on length
scales on the order of the Rayleigh range, ZR = πr20/λ,
where r0 is the characteristic spot size of the laser, (i.e.,
where I(r0) = I0/e

2), λ = 2π/k ' 2πc/ω is the laser
wavelength, k is the laser wavenumber, and ω is the fre-
quency of the laser. If r0 is matched to the character-
istic radius of curvature of the plasma channel then the
pulse will be matched, meaning that it propagates with
constant spot size r0 and constant normalized amplitude
a. The critical channel depth for matched guiding, as-
suming a parabolic plasma profile and low-power, low-
intensity Gaussian laser, is given by ∆nc = (πrer

2
0)−1,
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where re = e2/mec
2 is the classical electron radius.

The transverse dynamics of a bunch as it is acceler-
ated can be described by the rms spot size equation,
d2σ/dz2 + k2βσ− ε2n/(γ2σ3) = 0, where σ is the rms spot
size of the electron bunch, εn is the normalized emit-
tance, k2βx = kp limx→0[(Ex − By)/(γE0)]/x is the beta-

tron wavenumber, γ = 1/
√

1− v2/c2 =
√

1 + p2/(mec)2

is the relativistic Lorentz factor, and E0 = mecωp/e
is the cold, nonrelativistic wave breaking field. Typi-
cally plasma-based accelerators have very strong focus-
ing fields and these can lead to large betatron oscilla-
tions in the accelerated electron bunch.15 Controlling the
focusing forces is highly desirable. For electron accel-
eration, steep electric field gradients can lead to small
bunch size and a dense bunch can lead to ion motion.16,17

For positron acceleration the steep gradients yield dense
bunches that blow-out the plasma electrons and expose
the positron bunch to defocusing by the background
ions.13,18 An additional complication for LPAs is that
there has not been an easy way to control the trans-
verse emittances εx and εy independently. This will be
important for future colliders since final focus emittance
ratios as high as εx/εy = 100 are considered to mitigate
beam-beam effects at the interaction point.19 The use of
higher-order modes in the laser driver provides a solution
to these challenges.

This paper is organized as follows. In Sec. II we
present the general solutions to the paraxial wave equa-
tion in Cartesian and cylindrical coordinates as well as
the propagation of multiple, overlapping modes in a
plasma channel, which typically results in mode beat-
ing. The dependence of the phase and group velocities
on mode number and laser wavenumber is presented. In
Sec. III we present our analysis regarding geometric tun-
ing of the transverse wakefield. It is shown that for Her-
mite as well as for Laguerre-Gaussian modes, one can
independently alter the transverse electric fields in the x
and y directions without altering the longitudinal accel-
erating field. In Sec. IV we show that the frequencies
of two different modes, whether of orthogonal polariza-
tion or temporal separation, can be chosen so that the
modes propagate at the same group velocity. This model
is then verified using particle tracking to show that a
higher-order mode can be used to reduce the transverse
electric field gradients and allow for the acceleration of
wider bunches than possible for a Gaussian laser driver
while keeping the bunch emittance constant. In Sec. V
we present a summary of our analysis and describe po-
tential future directions and experiments.

II. HIGHER-ORDER LASER MODE PROPAGATION IN
A PLASMA CHANNEL

Laser pulse propagation through a plasma channel can
be analyzed in the low-power and low-intensity limit
|a|2 � 1, assuming the paraxial approximation in the
direction of propagation, |k∂za| � |∂2za|, by the paraxial

wave equation:

∇2
⊥a+ 2ik∂za = k2p(n/n0)a, (1)

where we have the Laplacian ∇2
⊥ = ∂2x + ∂2y in Cartesian

coordinates, ∇2
⊥ = (1/r)∂r(r∂r)+(1/r2)∂2θ in cylindrical

coordinates, r =
√
x2 + y2, and θ = arctan(y/x). The

plasma density n is given by a parabolic channel with a
radius of curvature (critical depth) matched to the initial
laser spot size r0:

n(r) = n0

(
1 +

4

k2p

r2

r40

)
. (2)

In Eqs. (1) and (2) we are neglecting the effects of rela-
tivistic self-focusing and ponderomotive self-channeling.
It is well known that when a low-power, low-intensity
Gaussian pulse is injected into a matched parabolic chan-
nel that the spot size, rs, and peak intensity a20 will re-
main constant.2 This can be extended to the quasilin-
ear regime by considering the effects of relativistic self-
focusing.2 This matching criterion can also be extended
to any individual higher-order Hermite or Laguerre-
Gaussian mode including plasma wave guiding effects.20

A. Cartesian geometry

In the Cartesian coordinate system, the solution to
the paraxial wave equation, Eq.(1), corresponding to
matched laser propagation, is of the following form for
arbitrary horizontal and vertical mode numbers m and
n,

a⊥(x, y, z) =
am,n

(m!n!2m+n)
1
2

Hm

(√
2x

x0

)
Hn

(√
2y

y0

)

× e
− (x2+y2)

r20 ei(ϕmn+ϕ0),
(3)

where a⊥ is the perpendicular component of a, am,n is the
amplitude contribution of mode (m,n) to the radiation
field, Hm is the Hermite polynomial of order m, x0 =
y0 = r0 are the spot sizes, the phase contribution from
the dispersion relation is given by ϕmn = (−1/2k)[k2p +

4(m+n+ 1)/r20]z, and the initial phase is ϕ0. From this
we derive the phase velocity of the mode:21

vp,H
c

= 1 +
1

2k2

[
k2p +

4(m+ n+ 1)

r20

]
. (4)

B. Cylindrical geometry

In the cylindrical coordinate system, the solution for
the transverse field to Eq. (1) for matched propagation
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and arbitrary radial and azimuthal mode numbers µ and
ν is given by

a⊥(r, θ, z) = aµν

√
2µ!

π(µ+ ν)!

(√
2r

r0

)ν
Lµν

(
2r2

r20

)
× e
− (x2+y2)

r20 ei(ϕµν+ϕ0+νθ),
(5)

where Lµν is the Laguerre polynomial of radial order µ
and azimuthal order ν and θ is the azimuthal angle. The
modal phase contribution is given by ϕµν = (−1/2k)[k2p+

4(2µ+ ν + 1)/r20]z and the phase velocity is:

vp,L
c

= 1 +
1

2k2

[
k2p +

4(2µ+ ν + 1)

r20

]
. (6)

C. Co-propagation of multiple modes

An individual laser mode with a matched spot-size,
which is a solution to Eq. (1), will propagate without
intensity variation down a plasma channel. However,
if one were to inject two or more overlapping Laguerre
or Hermite-Gaussian modes into a plasma channel the
modes would interfere and induce beating, affecting the
wakefield. For modes a1 and a2 of arbitrary mode num-
bers, the intensity profile will have the following form:

|a|2 = |a1 + a2|2 = (a1 + a2)(a∗1 + a∗2)

= |a1|2 + |a2|2 + a1a
∗
2 + a∗1a2.

(7)

For linearly polarized, Hermite-Gaussian modes,

kbeat,Hz = [(m1 + n1)− (m2 + n2)]z/ZR. (8)

For linearly polarized, Laguerre-Gaussian modes,

kbeat,Lz = [(2µ1 + ν1)− (2µ2 + ν2)]z/ZR. (9)

If the sum of the mode numbers for each individual mode
are not equal there will be a beating term with a charac-
teristic wavelength of λbeat = 2π/kbeat. However, if

m1 + n1 = m2 + n2 (10)

for Hermite-Gaussian modes, or

2µ1 + ν1 = 2µ2 + ν2 (11)

for Laguerre-Gaussian modes, there will be no beating.
An example of this can be seen in Figure 1 for the

Laguerre-Gaussian basis. Here we have plotted sev-
eral examples of co-propagating modes in a matched
parabolic channel. The base line in black is the double
Gaussian pulse, the trivial result. We can see that when
we propagate pairs of modes with different indices there
will be oscillations in the on-axis intensity. Likewise, a
greater difference between indices results in a higher fre-
quency oscillation, e.g., L20+L00 vs. L10+L00. However,

L00+L00

L10+L00

L20+L00

L00+L04

L10+L02

π/2 π

0.2

0.4

0.6

0.8

1.0

z/ZR

|a
|2
/
|a

(z
=

0
)|

2

FIG. 1. Comparison of the on-axis intensity of co-propagating
modes. The black line corresponds to two Gaussian modes,
blue line to a10 and a00, red line to a20 and a00, dashed cyan
line to a00 and a04, and dashed orange line to a10 and a02.

if we pick the indices such that the sum of the mode
numbers is equal, according to Eqs. (10) and (11), we
obtain matched propagation and no oscillations, e.g., for
L10 + L02.

In addition to the phase velocity we can derive an ex-
pression for the group velocity of a propagating mode.
The general expression for the group velocity of a laser
mode can be written as, vg/c = ∂ω/∂k. For Hermite-
Gaussian modes with matched spot size we have:

vg,H
c

= 1− 1

2k2

[
k2p +

4(m+ n+ 1)

r20

]
. (12)

For Laguerre-Gaussian modes with matched spot size we
have:

vg,L
c

= 1− 1

2k2

[
k2p +

4(2µ+ ν + 1)

r20

]
. (13)

This demonstrates the standard result that light propa-
gates at a group velocity slower than the speed of light
while traversing through a medium, i.e., vg < c. From
this we can also note that a wave packet composed of
higher-order modes propagates through a plasma more
slowly than one composed of lower order modes.

III. GEOMETRIC TUNING OF THE WAKEFIELD

In the linear regime the response of the wake can be
determined from the normalized electrostatic potential,
φ = eΦ/mec

2, where Φ is the scalar potential, governed
by the equation (∂2/∂ζ2 + k2p)φ = k2pa

2/2. In terms of
the comoving variable ζ = z − vgt, we have the Green’s
function solution:

φ =
kp
4

∫ ζ

∞
dζ ′ sin[kp(ζ − ζ ′)]|â(r, ζ ′)|2, (14)

where â(r, ζ) = a⊥(r)g(ζ), g(ζ) = exp[−(ζ − ζ0)2/L2] is
the longitudinal profile of the laser pulse (assumed Gaus-
sian) and ζ0 is the laser centroid. Note that this formu-
lation assumes that the group velocities of all the modes
are approximately the same, e.g., vg,H(m = 0, n = 2) ≈
vg,H(m = 2, n = 0) ≈ c, which assumes the quasi-static

http://dx.doi.org/10.1063/1.5064740
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y
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r 0

(a)

x/r0

y
/
r 0

(b)

FIG. 2. Comparison of |a|2 for higher-order Hermite-Gaussian
modes (a) m1 = 2, n1 = 0 and (b) m2 = 0, n2 = 2. Color
denotes the amplitude intensity a2.

approximation such that the laser evolves slowly with re-
spect to the k−1p . The transverse electric field is given
by

E⊥/E0 = −k−1p ∇⊥φ. (15)

We can use any number of modes to manipulate the
wakefields, but in order to have a longitudinal accelerat-
ing field on-axis we need to choose modes that have an on-
axis peak, i.e., in the Hermite-Gaussian basis, even num-
ber mode indices and in the Laguerre-Gaussian basis, ra-
dial modes. The lowest-order example of this mechanism
that allows for independent control of the x and y com-
ponents is the superposition of two Hermite-Gaussian
modes, with m1 = 2, n1 = 0 and m2 = 0, n2 = 2. The
intensity profiles of these two, independent modes can be
seen in Figure 2.

The superposition of these modes can be controlled in
several ways. The full expression of the intensity for these
two modes is given by:

|a|2 =
1

2

[
a220

(
1− 4

x2

r20

)2

+ a202

(
1− 4

y2

r20

)2

+ 2a20a02

(
1− 4

x2

r20

)(
1− 4

y2

r20

)
cos(∆ϕ)

]
× e−2(x

2+y2)/r20e−2(ζ−ζ0)
2/L2

,

(16)

where ∆ϕ is the difference between the initial phases of
the two modes. The first concern is the initial, arbitrary
phase factor that each mode brings to the intensity pro-
file. The effect of an initial phase factor can be observed
in Figure 3 and it can be deduced that the intensity is
sensitive to the phase difference between the two modes,
as a difference of ∆ϕ = π can extinguish the on-axis
intensity peak (only if a20 = a02).

x/r0

y
/
r 0

(a)

x/r0

y
/
r 0

(b)

x/r0

y
/
r 0

(c)

FIG. 3. Comparison of |a|2 for the superposition of higher-
order Hermite-Gaussian modes m1 = 2, n1 = 0 and m2 =
0, n2 = 2 with equal amplitudes a20 = a02. (a) ∆ϕ = 0, (b)
∆ϕ = π/2, and (c) ∆ϕ = π. Color denotes the amplitude
intensity a2.

A. Wakefield excited by H0H2 +H2H0 and L10 + L02

laser modes

When considering a charged particle beam in the res-
onantly driven plasma wave behind the laser driver,
|ζ − ζ0| � L, where the laser amplitude is negligible,
and when the phase difference is zero, i.e., ∆ϕ = 0, the
transverse electric fields derived from Eqs. (14), (15),
and (16) can be written as:22

Ex
E0

=
√

8π
xL

r20

[
a20

(
5− 4

x2

r20

)
+ a02

(
1− 4

y2

r20

)]
×
[
a20

(
1− 4

x2

r20

)
+ a02

(
1− 4

y2

r20

)]
× e−k

2
pL

2/8e−2(x
2+y2)/r20 sin[kp(ζ − ζ0)],

(17)

Ey
E0

=
√

8π
yL

r20

[
a20

(
1− 4

x2

r20

)
+ a02

(
5− 4

y2

r20

)]
×
[
a20

(
1− 4

x2

r20

)
+ a02

(
1− 4

y2

r20

)]
× e−k

2
pL

2/8e−2(x
2+y2)/r20 sin[kp(ζ − ζ0)].

(18)
Figure 4 portrays the intensity profile a2, 4(a), 4(c),

and 4(e), for two Hermite-Gaussian modes, and the cor-
responding transverse electric field, 4(b), 4(d), and 4(f),
for three different instances of varying modal amplitude
contributions. The arrows denote the direction of the
electric field and the color its strength. Here we have two
modes m1 = 2, n1 = 0 and m2 = 0, n2 = 2 with three dif-
ferent sets of coefficients: 4(a), 4(b) a20 = a02 = 1, 4(c),
4(d) a20 = 1, a02 = 0.5, and 4(e), 4(f) a20 = −1, a02 = 5.
In 4(c) and 4(d) we can see a modest transverse asym-
metry, while in 4(e) and 4(f) we see a strong asymmetry.
Lineouts of the transverse x and y electric field can be
seen in Figure 5. Considering the slopes of the x and y
wakefields we can choose the relative value of the asym-
metry using these two modes just as a function of the
modal amplitude contributions, as has been depicted in
Figure 6.
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The same can be done with Laguerre-Gaussian modes,
except following the matching condition 2µ1 + ν1 + 1 =
2µ2 + ν2 + 1. An example of Laguerre-Gaussian mode
matching can be seen in Fig. 7, where we plot the laser
intensity and transverse electric field for a superposition
of µ1 = 1, ν1 = 0 and µ2 = 0, ν2 = 2 modes. In this
example we also have asymmetric focusing fields, with
near-zero focusing along the y-axis and strong focusing
along x-axis. These modes are phase matched so there
will be no mode beating and both will propagate at the
same group velocity.

x/r0

y
/
r 0

(a)

x/r0

y
/
r 0

(b)

x/r0

y
/
r 0

(c)

x/r0

y
/
r 0

(d)

x/r0

y
/
r 0

(e)

x/r0

y
/
r 0

(f)

FIG. 4. Comparison of the superposition of higher-order
Hermite-Gaussian modes m1 = 2, n1 = 0 and m2 = 0, n2 = 2
with respect to the laser intensity a2 and the transverse elec-
tric field E⊥/E0. In subfigures (a) and (b) a20 = a02 = 1, (c)
and (d) a20 = 1 and a02 = 0.5, and (e) and (f) a20 = −1 and
a02 = 5. The color denotes the amplitude and field intensities
and the arrows the transverse direction of the field.

Ex

Ey

-0.4-0.2 0.2 0.4

-4

-2

2

4

x/r0, y/r0

E
/
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(a)
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-0.4-0.2 0.2 0.4

-3

-2

-1

1

2
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x/r0, y/r0

E
/
E

0

(b)

Ex

Ey

-0.4-0.2 0.2 0.4

-30

-20

-10

10

20

30

x/r0, y/r0

E
/
E

0

(c)

FIG. 5. Comparison of the superposition of higher-order
Hermite-Gaussian modes m1 = 2, n1 = 0 and m2 = 0, n2 = 2
with respect to a lineout of the transverse electric field E⊥/E0.
In subfigure (a) a20 = a02 = 1, (b) a20 = 1 and a02 = 0.5,
and (c) a20 = −1 and a02 = 5.

FIG. 6. Ratio of the slopes for ∂xEx and ∂yEy with constant
longitudinal field Ez. There is freedom in picking the asym-
metry of the wakefield just by modifying the amplitudes of
the individual modes. For H20 and H02, there are poles at
a20/(a20 + a02) = 1.25 and -0.25.

B. Electron bunch propagation in an H0H2 +H2H0 wake

Near the axis, x, y � r0, the regime where we expect
the bunch to propagate, we can consider just the linear
contribution of the field. In subsequent analysis model-
ing bunch propagation we only consider the phase when
the transverse field is maximum and when the longitudi-
nal accelerating field is near-zero, i.e., kp(ζ − ζ0) = lπ/2,
where l is an integer. The reason for this is to simplify
our particle tracking and to clearly present the effects
of higher-order modes. This analysis can readily be ex-
tended to a proper accelerating and focusing bucket of
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FIG. 7. Example of matched Laguerre-Gaussian modes L10

and L02 with a10 = 1 and a02 = 3/2. (a) the real compo-
nent of mode L10, (b) the real component of mode L02, (c)
the overall intensity profile |a|2 = |a10 + a02|2, and (d) the
corresponding transverse electric wakefield, where the color
denotes the strength of the field and the arrows the direction.

the wake. The linear field can be expressed as

Ex
E0
≈
√

8π
L

r20
e−

k2pL
2

8 |(a02+a20)(a02+5a20)|x = −K2
xkpx,

(19)

Ey
E0
≈
√

8π
L

r20
e−

k2pL
2

8 |(a02+a20)(5a02+a20)|y = −K2
ykpy,

(20)

where K2
x =
√

8π(L/r20) exp[−k2pL2/8]|(a02 + a20)(a02 +

5a20)| and K2
y =

√
8π(L/r20) exp[−k2pL2/8]|(a02 +

a20)(5a02 + a20)|. From the linear fields we can com-
pute the betatron frequency of a particle being focused
by the wakefields:

ω2
βx = K2

xω
2
p/γ (21)

and similarly for ωβy, where γmec
2 is the bunch energy.

We can numerically model a bunch propagating in such
wakefields using a split-step, leapfrog integration scheme.
The electron bunch spatial distribution is assumed to
be Gaussian with σx0, σy0 being respectively, the hor-
izontal and vertical rms bunch spot sizes. In order to
have matched propagation, the bunch momentum distri-
bution is assumed to be Gaussian with an rms distri-
bution σpx0 = mecγ0kβσx0

and likewise for σpy0 , where
kβx = ωβx/c and similarly for kβy. If an electron bunch

with these values is injected into a linear focusing field
and there is no correlation term, i.e., 〈xx′〉 = 0, there will
be no betatron oscillations. The rms normalized emit-
tance can be written as

εx =
√
〈x2〉〈u2x〉 − 〈xux〉2, (22)

where ux = px/(mec). An analogous expansion exists for
the y−direction. The angular brackets 〈 . 〉 represent
an average over the bunch particle distribution. The rms
emittance will be constant for linear focusing forces and
for a mono-chromatic bunch.

All the wakefields are inherently non-linear and the
use of higher-order modes further constrains the region
of linearity near the axis. An example of this can be seen
in Figure 8, where in 8(a) we have a bunch for which
σx0

= σy0 = 0.03r0 and in (b) we have σx0
= σy0 =

0.1r0. Laser-plasma parameters are on-axis amplitude of
|a| = 0.1, plasma density n0 = 3 × 1017 cm−3, and laser
spot size r0 = 50 µm. In Figure 8(b) we see emittance
growth due to the bunch being wide enough to sample
the nonlinear region of the wakefields. Due to this, using
higher-order modes often requires the electron bunch to
be tightly focused relative to the laser driver, with the
bunch spot size being about 5% that of the laser driver
or less.

We can demonstrate the potential for a matched,
asymmetric laser driver when considering a situation in
which we desire to guide a bunch with asymmetric emit-
tances, e.g., the final focus in an accelerator. Considering
a bunch with matched spot sizes, σx0

= σy0 = 0.003r0,
but with an emittance ratio of εx/εy = 10, we can demon-
strate that higher-order modes can control the bunch.
Initial parameters are an on-axis amplitude of |a| = 0.1,
plasma density n0 = 3 × 1017 cm−3, and laser spotsize
r0 = 50 µm. Since the fields in the presence of the bunch
are approximately linear in this case, there will be no
emittance growth but the spot size will still evolve. In
Figure 9(a), we inject a symmetric bunch into a matched
wakefield of a laser driver composed of H0H2 and H2H0

modes. This gives the trivial solution of constant emit-
tance εx = εy = 0.01µm and relatively constant spot size.
If we increase the emittance εx by a factor of 10 by in-
creasing σpx by a factor of 10 we can see in Figure 9(b)
how the bunch is matched in the y direction but not the
x direction, such that εx = 0.1µm and εy = 0.01µm. A
mismatched bunch will undergo betatron oscillations and
particles would be lost from the wakefield. However, if
we keep the asymmetric electron bunch but tune the am-
plitude coefficients of the laser driver, i.e., a02 = 0.0235
and a20 = −0.1235, which still gives an on axis ampli-
tude of |a| = 0.1, we obtain the result shown in Figure
9(c), with a larger bunch spot size σx = σy = 0.0115r0
giving us similar emittances as before of εx = 0.1µm and
εy = 0.01µm. In this plot we see two distinct emittances
but equal spot sizes.
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FIG. 8. Comparison of a bunch guided by the full, nonlinear
wakefield of H02 and H20 modes for an initial bunch size of
(a) x0 = 0.03r0 and (b) x0 = 0.1r0.

C. Potential limitations due to dephasing and efficiency

Two caveats of using higher-order modes are the effect
of dephasing and the energy efficiency with respect to

electron bunch acceleration. Dephasing between the ac-
celerated electron bunch and the wake is a well known
problem that is present in all LPA concepts. In the
weakly-relativistic limit the dephasing limit for a higher-
order mode in the Hermite-Gaussian basis can be approx-
imated as

Ld ≈
1

2

λ3p
λ2

[
1 +

4(m+ n+ 1)

k2pr
2
0

]−1
.

In current LPA systems a tapering of the background
plasma density profile23 along the path of acceleration
is often proposed as one means to overcome dephasing
as well as the implementation of multiple stages24. This
is the same for higher-order laser modes, except given
the fact that the group velocity is lower for higher-order
modes than in the case for a Gaussian laser driver, the
effective acceleration length would be reduced.

The issue of efficiency loss by the use of higher-order
modes can be simply estimated by the ratio of the inte-
grated laser intensity of the Gaussian mode, i.e., H0H0,
relative to that of a superposition of higher-order modes,
e.g., H2H0 + H0H2, assuming equal on-axis intensity,
a200 = |a20 + a02|2, i.e., for an equal accelerating gra-
dient. For any two arbitrary, Hermite-Gaussian modes,
this can be expressed as

η ∝
∞∫∫
−∞

a200e
−2 (x2+y2)

r20 dxdy

/ ∞∫∫
−∞

∣∣∣∣∣a1Hm1

(√
2x

r0

)
Hn1

(√
2y

r0

)
+ a2Hm2

(√
2x

r0

)
Hn2

(√
2y

r0

)∣∣∣∣∣
2

e
−2 (x2+y2)

r20 dxdy,

where we assume the same longitudinal profile for both
profiles. For example, using the superposition of second-
order modes as seen in Figure 4(a), where a20 = a02 = 1,
would give us an effective efficiency loss of η = 1/4. How-
ever, if we want to guide or accelerate an electron bunch
with an asymmetry ratio of εx/εy = 10 we need a laser
profile as seen in Figure 4(c), which also approximately
corresponds to the setup for particle tracking in Figure 9.
This would lead to greater efficiency loss with η ≈ 1/13.
The relative increase in energy efficiency loss with respect
to the Gaussian mode is intuitive as more energy content
is located away from the axis.25

IV. FREQUENCY TUNING OF THE WAKEFIELD

In addition to geometric tuning there is also the free-
dom to select different frequencies for each of the inde-

pendent modes. However, since the phase velocity is a
function of the laser wavenumber k as well, it is not possi-
ble to select different, lower-order modes that propagate
at the same group velocity and do not beat. This can be
seen from the following expression,

|a|2 = |a1 + a2|2 = a21 + a22

+ a1a2e
i(k1z−vp,1t)e−i(k2z−vp,2t) + c.c.,

as having different wavenumbers to have equal vp terms
and thereby equal group velocities would result in a new
beating contribution from the (k1 − k2)z term. In or-
der to prevent beating, one can either use two modes
of orthogonal polarization or modes that are temporally
separated and do not overlap, which are equivalent sit-
uations in terms of the interaction between the modes
in the linear regime. Using orthogonal polarization lim-
its one to only two modes in one instance as opposed to
an indefinite number of arbitrary modes with temporal
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FIG. 9. Comparison of bunch guided by the fields of an H02

and H20 wake. (a) Initially matched bunch with εx/εy = 1
in a symmetric wake. (b) Initially mismatched bunch with
εx/εy = 10 with matched bunch spot sizes in a symmetric
wake. Due to the mismatch strong betatron oscillations can
be observed. (c) Initially mismatched bunch with εx/εy = 10
with matched spot sizes in an asymmetric wake with coeffi-
cients a02 = 0.0235 and a20 = −0.1235.

separation. However, temporal separation may be more
difficult to achieve experimentally, as each mode ought
to be injected λp apart and would be more susceptible to
longitudinal effects.

A. Wakefield excited by L00 + L01 laser modes

For two Laguerre-Gaussian modes of indices µ1 = ν1 =
0 and µ2 = 0, ν2 = 1 and orthogonal polarization, the
intensity profile can be written as:

|a|2 =
2

π

(
a200 + 2

r2

r20
a201

)
e−2r

2/r20e−2z
2/L2

. (23)

This is a superposition of the intensity profiles of a simple
Gaussian and a first-order ring mode, as seen in Figure

x/r0

y
/
r 0

(a)

x/r0

y
/
r 0

(b)

x/r0

y
/
r 0

(c)

FIG. 10. Amplitude intensity profiles of Laguerre-Gaussian
modes L00, L01, and their superposition L00 + L10

10. In order for the two modes to co-propagate, it is
necessary for them to have the same group velocity, and
that can be done by solving for k = ω/c in Eq. (13).
The general expression for matching the frequency of two
Laguerre-Gaussian modes for co-propagation is,

1

λ2
=

1

λ1

√
k2pr

2
0 + 4(2µ2 + ν2 + 1)

k2pr
2
0 + 4(2µ1 + ν1 + 1)

. (24)

For example, in the case of an LPA system, with n0 =
3× 1017 cm−3, r0 = 50 µm, for λ00 = 0.815 µm we have
λ01 = 0.766 µm.

When considering positions in the resonantly driven
plasma wave far behind the laser driver, |ζ − ζ0| � L
and orthogonal polarization, the transverse electric fields
corresponding to Eqs. (14), (15), and (16) for L00 and
L01 can be written as:

Er
E0

=

√
2

π

L

r20

[
a200 − a201

(
1− 2

r2

r20

)]
e−k

2
pL

2/8

× e−2r
2/r20 sin[kp(ζ − ζ0)]r,

(25)

Ez
E0

=
kpL√

8π

(
a200 + 2a201

r2

r20

)
e−k

2
pL

2/8

× e−2r
2/r20 cos[kp(ζ − ζ0)],

(26)

and the linear component of these fields, i.e., when
r/r0 � 1, can be written as:

Er
E0
≈
√

2

π

L

r20
(a200 − a201)e−k

2
pL

2/8 sin[kp(ζ − ζ0)]r, (27)

Ez
E0
≈ kpL√

8π
a200e

−k2pL
2/8 cos[kp(ζ − ζ0)]. (28)

From the linear equations one can deduce that the lon-
gitudinal field depends primarily on the Gaussian mode
and the higher-order mode L01 can independently modify
the transverse fields. A lineout of the intensity profile and
the corresponding transverse electric field can be seen in
Figure 11. The thin solid lines correspond to just a Gaus-
sian driver, the thick solid lines correspond to a00 = a01
and to when the electric field is zero near the axis, while
the dashed line corresponds to a modified Gaussian wake
and the dot-dashed to a strongly modified wake.
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FIG. 11. Lineouts of the transverse profiles of Laguerre-
Gaussian modes L00 and L01 for (a) the amplitude intensity
|a|2 and (b) for the transverse electric field E⊥/E0. The thin
line is for a00/a01 = 100, effectively just the Gaussian, the
solid line is for a00/a01 = 1, dashed for a00/a01 = 1.25, and
dot-dashed for a00/a01 = 0.8.

B. Bunch propagation in an L00 + L01 wake

By using two modes we can tailor the focusing forces of
the wakefields. Considering a bunch with emittance ratio
εx/εy = 1 and propagating in the full, non-linear wake-
fields, we demonstrate that higher-order modes can be
used to mollify the transverse fields and ensure matched
propagation. Initial parameters are an on-axis ampli-
tude of |a| = 0.1, plasma density n0 = 3 × 1017 cm−3,
and laser spotsize r0 = 50 µm. Likewise, we are only
considering the focusing forces in this simulation, so
kp(ζ−ζ0) = lπ/2, where l is an integer. Numerical results
can be found in Figure 12.

In Figure 12(a) we have an electron bunch with
matched spot sizes, σx = σy = 0.1r0 in the wake of a
Gaussian pulse, i.e., L00 mode. This is the trivial result
with constant emittance εx = εy = 1.3 µm and rela-
tively constant spotsize. In Figure 12(b) we have a wider
bunch with σx = σy = 0.2r0 and the bunch begins to
experience the non-linear contributions of the field and
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FIG. 12. Comparison of a bunch guided by the non-linear
wakefields of an L00 and L01 laser driver. (a) Initially matched
bunch with σx = σy = 0.1r0 in a symmetric wake with a00 =
0.1 and a01 = 0. (b) Initially matched bunch with σx =
σy = 0.2r0 in a symmetric wake with a00 = 0.1 and a01 = 0.
The bunch sees the non-linear field and emittance grows (c)
Initially matched bunch with σx = σy = 0.2r0 in a symmetric
wake with a00 = 0.1 and a01 = 0.08. The softening of the
transverse gradients reduces the experience of non-linear fields
by the bunch and emittance remains effectively constant.

both emittance, initially εx = εy = 5.3 µm, and spot
size grow. Keeping a0 = 0.1, we introduce an L01 mode
with amplitude a01 = 0.08 such that a00/a01 = 1.25,
which corresponds to the dashed lines in Figure 11. In
this case we still have the wider, initial bunch spot
size σx = σy = 0.2r0 but relatively constant emittance
εx = εy = 3.2 µm and spot size evolution, shown in
Figure 12(c). Just as in the case for geometric tuning,
frequency tuning is also physically limited by issues of
dephasing and energy efficiency loss.
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V. SUMMARY AND CONCLUSIONS

In this paper we propose the use of higher-order laser
modes to modify and control the wakefields behind a laser
driver. It was shown that modes of different geometric in-
dices propagate at different group velocities and when co-
propagating lead to mode beating. Using both the Her-
mite and Laguerre-Gaussian basis we demonstrated that,
by choosing appropriate geometric indices, one would
have a transverse mode structure that is non-Gaussian
but does not beat and has all modes propagating at the
same group velocity, (e.g., H2H0 +H0H2 and L10 +L02).
This can be used to create an asymmetric wake struc-
ture and allow for the focusing of asymmetric electron
bunches with asymmetric transverse emittances, such as
an emittance ratio of εx/εy = 10, which opens the pos-
sibility of using a laser-plasma lens structure as a final
focus for a linear accelerator.

Likewise, we showed that one can also choose modes
of different colors to allow for a wake with more com-
plex structures but not limited by group velocity disper-
sion. However, these modes still beat and so they must
be either of orthogonal polarizations or temporally sep-
arated. We showed that a pulse could be composed of
two modes, L00 + L01, and that we could vary the am-
plitude and thereby reducing the transverse gradients of
the wakefield, allowing for the focusing of wider bunches.
This is particularly relevant for positron beam accelera-
tion and/or to avoid ion motion.

Experimental implementation of our theoretical results
presupposes several conditions. One must have good con-
trol of the phase and polarization of the individual laser
modes. It is shown that multimode pulses are sensitive to
the phase content of the individual modes. In addition,
one must be able to carefully and precisely generate the
modes one wishes to use. Hermite-Gaussian modes can
be generated using an off-axis pumping scheme.26 For
Laguerre-Gaussian modes, a spiral phase plate can be
used to induce a helical phasefront in an injected laser
beam.27 Once the modes have been generated precise
aiming and timing of the individual modes in addition
to a combining optic in order to generate the desired
multimode pulse. In order to also consider color tun-
ing, one must be able to vary the frequency of a mode
precisely. From a physical perspective, dephasing and ef-
ficiency loss are limitations to the proposed concept, but
these can be addressed via density tapering and energy
recover.

Advancements in laser technology have greatly spurred
on LPA science and promise more possibilities in the fu-
ture. While historically it has been sufficient to have
a near Gaussian profile for the driver, further advances
will require greater control and quality. Applying current
techniques for the generation of higher-order laser modes
to high-intensity, ultrashort laser pulse systems will be
challenging, but the potential benefits of using the dis-
cussed mechanisms will greatly expand the potential for
future LPA applications.
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