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I( tirol of transverse wakefields via phase-matched laser modes in parabolic

Publilagsa channels
3.Z. Djordjevi¢, 2 C. Benedetti,?

C.B. Schroeder,? E. Esarey,?

and W.P. Leemans!?2

Y Department of Physics, University of California, Berkeley, CA, 94720, USA
2 BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,

USA

The use of higher-order modes is proposed to control the transverse wakefield structure generated by a
laser pulse propagating through a plasma channel. This can be done ir?ge quasilinear regime in both the

Laguerre-Gaussian and Hermite-Gaussian bases for appropriate laser-pl
the longitudinal field. Control of the wake can be achieved by using m
with matched phase velocities to generate tunable, matched laser pr

electron bunch.
I. INTRODUCTION

Experimental advances in the development of laser-
plasma accelerators (LPAs) over the past two decades
have verified theoretical predictions and promise new
technological applications."” Of primary interest is t

is great interest in using the technology for compact
brilliant X-ray light sources in the relatively near f
Currently, LPA technology has been able to a hleve
celerating gradients in excess of 100 GV/m an
bunches with an energy of several GeV over ce
length scales.” Development of the field has ) pr
ily enabled and driven by rapidly adv ncmgb\te h-
nology.

use of LPAs for a future collider design.”* Likewise, the\ Y
an

Ultra-short, femtosecond scale pulses usedsin L A ex-
periments are often assumed to Gaussian trans-
verse profile. In reality this is seldom the'¢ase and higher-

i ch complicates
laser pulse evolution in a can lead to re-
duced energy gains and pétential bu loss.”" However,
higher-order laser mod 1 be intentionally utilized and
have been proposed in SE:Ndvanced concepts, such
as plasma undulatofs,” " higher*harmonic generation,'’

ring-shaped electron ches,'”"'? and independent con-
' Ref. 14 explored the use of

xtend that concept by consider-
1er-order modes can be matched with
it phase and group velocities by choos-
geometric mode indices as well as
des of different laser frequencies This ve-

IW\ISG limit the laser-plasma interaction length.

is paper we propose the utilization of higher-order
-Gaussian and Hermite-Gaussian modes to con-
trol the wake properties in an LPA. In most cases the
presence of higher-order modes will lead to mode beating
and thereby is detrimental to the purpose of guiding and
accelerating a trailing bunch.'* However, as described in

ma parameters, independently of
different mode numbers but

tion. “Lhe wake can be tuned by
iat:g; shown that two different higher
g the frequencies. Geometric and
phase-space of the accelerated

way that there will be no beating. Given the dis-
rsion relatiofl, one can select geometric mode numbers
%Uht different modes have the same group and phase
1t1::) resulting in a superposition of those modes
ithout-beating. In this paper we consider the applica-
tion“ef this idea to guiding elliptical bunches and verify
s properties in the quasi-linear limit with particle track-
ing to model the bunch. Another issue we address is the
ct that modes of different, non-complementary mode
number propagate at different group velocities. This can
be addressed by considering modes of different frequen-
cies and is considered in the case where it is desired to
reduce the electric field gradient near the axis.

In an LPA, a short and intense (I > 10'® W/cm?)
laser pulse propagates through a plasma and generates
a plasma wave.” If the length of the pulse, L, is approx-
imately that of the plasma wavelength, A\, = 27/k, =
27c/w,, where k, is the plasma wavenumber, ¢ is the
speed of light, wg = 4mnge? /m, is the plasma frequency,
ng is the on-axis plasma density, and e and m. are the
electron charge and mass, then a plasma wave will be res-
onantly excited by the ponderomotive force of the laser,
F ~ Va?, where a = eA/(m.c?) is the normalized ampli-
tude and A is the vector potential of the laser field. The
electric field of this wake, in the quasilinear regime a < 1,
is proportional to the gradient of the intensity, E ~ Va?,
and this field is used to focus and accelerate an electron
bunch. In a vacuum, the laser pulse will diffract on length
scales on the order of the Rayleigh range, Zr = 7r3/\,
where 7 is the characteristic spot size of the laser, (i.e.,
where I(rg) = Iy/e?), X = 2n/k ~ 27mc/w is the laser
wavelength, k is the laser wavenumber, and w is the fre-
quency of the laser. If rg is matched to the character-
istic radius of curvature of the plasma channel then the
pulse will be matched, meaning that it propagates with
constant spot size r¢ and constant normalized amplitude
a. The critical channel depth for matched guiding, as-
suming a parabolic plasma profile and low-power, low-
intensity Gaussian laser, is given by An, = (7rerg)=1,
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‘ s I\'\Q r. = e> / mec? is the classical electron radius.
T

‘he transverse dynamics of a bunch as it is acceler-

PUbll;&bdn(g] be described by the rms spot size equation,

d“o/dz* + k‘%a — €2 /(v?03) = 0, where o is the rms spot
size of the electron bunch, ¢, is the normalized emit-
tance, k3 = kplimgo[(Ex — By)/(vEo)]/x is the beta-

tron wavenumber, v = 1//1 —v2/c2 = /1 + p2/(m.c)?
is the relativistic Lorentz factor, and Ey = mecwp/e
is the cold, nonrelativistic wave breaking field. Typi-
cally plasma-based accelerators have very strong focus-
ing fields and these can lead to large betatron oscilla-
tions in the accelerated electron bunch.'® Controlling the
focusing forces is highly desirable. For electron accel-
eration, steep electric field gradients can lead to small
bunch size and a dense bunch can lead to ion motion.'%'”
For positron acceleration the steep gradients yield dense
bunches that blow-out the plasma electrons and expose
the positron bunch to defocusing by the background
ions.'>'® An additional complication for LPAs is that
there has not been an easy way to control the trans-
verse emittances €, and €, independently. This will be
important for future colliders since final focus emittance
ratios as high as €;/¢, = 100 are considered to mitigate

wave equation:
V3 a+ 2ikd.a =k} (n/ng)a, (1)

where we have the Laplacian Vi = 92 + 0 in Cartesian
coordinates, V2 = (1/r)9,(rd,) + (1/r*)9d3 in cylindrical
coordinates, r = /22 + y2, and § = arctan(y/z). The
plasma density n is given by a parabolic channel with a
radius of curvature (C?Acal depth) matched to the initial

laser spot size rq:
% 4 7“2>

0 1 k% 7"61 (2)
In Egs. (1)fand (2) are neglecting the effects of rela-
tivistic se for(iwtn ponderomotive self-channeling.

n that when a low-power, low-intensity
an pulse isinjected into a matched parabolic chan-
the sppt size, r, and peak intensity a3 will re-
t." This can be extended to the quasilin-

ain con
r regime by considering the effects of relativistic self-
foctising.”) This matching criterion can also be extended

sian mode including plasma wave guiding effects.””

- _ any=individual higher-order Hermite or Laguerre-
beam-beam effects at the interaction point.'” The use w - & Suerre

to these challenges.

This paper is organized as follows. In Sec.
present the general solutions to the paraxial wéave eq
tion in Cartesian and cylindrical coordinates }7&? as
the propagation of multiple, overlapping mod noa

plasma channel, which typically results in de beat-
ing. The dependence of the phase and groupyvelecities
on mode number and laser wavenumber Med. In
Sec. III we present our analysis regarding g
ing of the transverse wakefield. I#fissshown that for Her-
mite as well as for Laguerre- 10des, one can

fields in the x
gitudinal accel-

higher-order modes in the laser driver provides a soluﬂK

W\A. Cartesian geometry

erating field. In Sec. TV we
of two different modes cther rthogonal polariza-
tion or temporal sep. raMbe chosen so that the
modes propagate affthe same group velocity. This model
is then verified rticle tracking to show that a
higher-order used to reduce the transverse
electric field gr allow for the acceleration of
wider bunchies«thanspos§ible for a Gaussian laser driver
while keeping the buneh emittance constant. In Sec. V

we present asummary of our analysis and describe po-
tential futtre ions and experiments.

. ‘H&?HER- RDER LASER MODE PROPAGATION IN
A PEASMA“CHANNEL

Laser pulse propagation through a plasma channel can
be analyzed in the low-power and low-intensity limit
la|> < 1, assuming the paraxial approximation in the
direction of propagation, |kd.a| > |92a|, by the paraxial

In the Cartesian coordinate system, the solution to
the paraxial wave equation, Eq.(1), corresponding to
matched laser propagation, is of the following form for
arbitrary horizontal and vertical mode numbers m and

() ()

(22442 n +00)
2 7
X e 0 e PmnTPO ,

3)
where a is the perpendicular component of a, Gy, is the
amplitude contribution of mode (m,n) to the radiation
field, H,, is the Hermite polynomial of order m, zo =
Yo = 1o are the spot sizes, the phase contribution from
the dispersion relation is given by @, = (—1/2k)[k2 +
4(m+mn+1)/rd]z, and the initial phase is pg. From this
we derive the phase velocity of the mode:”!

Qm,n

(minl2m+n)z

aJ_(‘rvyvz) =

UpH 1 [ 4m+n+1)
c 71+2k2 Fp r3

(4)

B. Cylindrical geometry

In the cylindrical coordinate system, the solution for
the transverse field to Eq. (1) for matched propagation
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rbitrary radial and azimuthal mode numbers 1 and

2ul V2r VL 22
a(p+v)\ o o\ rd
_ @2y
% e 2 eZ(Wuu+900+V9),

()
where L, is the Laguerre polynomial of radial order p
and azimuthal order v and 6 is the azimuthal angle. The
modal phase contribution is given by ¢, = (—1/2k)[k2+
4(2u + v + 1)/r]z and the phase velocity is:

Al

Vs, given by
Publishing

ai(r,0,z) =au,

Up L 1 [, 42p+r+1)
c _1+2k2 F + ré ' (6)

C. Co-propagation of multiple modes

An individual laser mode with a matched spot-size,
which is a solution to Eq. (1), will propagate without
intensity variation down a plasma channel. However,

0)[?

lal?/la(z

/2 .

Z/ZR

FIG. 1. Comparison 0{2/6 on-axis intensity of co-propagating

modes. The black liné| corgesponds to two Gaussian modes,

blue line to a19 and %0 az0 and aogp, dashed cyan
ashed

r
line to apo and a4 and 9 ange line to aio and ao2.

indiees such that the sum of the mode
1, according to Egs. (10) and (11), we

if we pick
numbers i

obtain matc propagation and no oscillations, e.g., for
—
Lyo +HLo2-

In ai ditionk] the phase velocity we can derive an ex-
ession for thie group velocity of a propagating mode.
zhe general expression for the group velocity of a laser
1 can) be written as, vy/c = Ow/0k. For Hermite-

if one were to inject two or more overlapping Laguerr\ussiﬂ.n. modes with matched spot size we have:

modes would interfere and induce beating, affecting t

or Hermite-Gaussian modes into a plasma channel &Iie\

wakefield. For modes a; and as of arbitrary mod an c 2k2
bers, the intensity profile will have the following formg

0> = Jar + a2f? = (a1 + a2)(a} +a3) N, 3

= la1]* + |az|® + a1a3 +'¢¢

For linearly polarized, Hermite—Gaussi’Kd}
Fveat,rz = [(m1 +n1) — (me + n2)]z . (8)
kbeat,Lz = [(2/J/1 +

If the sum of the mode bers ea/ch individual mode
are not equal there will uc%b@g:ing term with a charac-

teristic wavelength 6f %L = 27 kpear- However, if

mi = mg + N2 (10)
£
for Hermite-Gaussian mgdes, or
ﬂ
%1 + v =2us + 1o (11)

for L u‘(;?re—Ga ian modes, there will be no beating.

of this can be seen in Figure 1 for the
ussian basis. Here we have plotted sev-
mples of co-propagating modes in a matched
ic channel. The base line in black is the double
Gaussian pulse, the trivial result. We can see that when
we propagate pairs of modes with different indices there
will be oscillations in the on-axis intensity. Likewise, a
greater difference between indices results in a higher fre-
quency oscillation, e.g., Log+ Log vs. L1g+Lgo. However,

(7)*

2

1 4 1
Yol _q_ {k§+(m+n+ )]. (12)
o

For Laguerre-Gaussian modes with matched spot size we
have:

VgL 1 5  42pu+v+1)
e ST [kp+ 2 } . (13)
This demonstrates the standard result that light propa-
gates at a group velocity slower than the speed of light
while traversing through a medium, i.e., vy, < c. From
this we can also note that a wave packet composed of
higher-order modes propagates through a plasma more
slowly than one composed of lower order modes.

Ill. GEOMETRIC TUNING OF THE WAKEFIELD

In the linear regime the response of the wake can be
determined from the normalized electrostatic potential,
¢ = e®/m.c?, where ® is the scalar potential, governed
by the equation (8?/8¢* 4 k2)¢ = k2a?/2. In terms of
the comoving variable ( = z — v4t, we have the Green’s
function solution:

k‘p ¢ ;. N A 1\ |2
0= 2 [ac sl (= Oar P, (1)

where a(r, ) = a. (r)g(¢), 9(¢) = exp[—(C — ¢)2/L?] is
the longitudinal profile of the laser pulse (assumed Gaus-
sian) and (p is the laser centroid. Note that this formu-
lation assumes that the group velocities of all the modes
are approximately the same, e.g., vy g(m =0,n =2) =
vg,m(m = 2,n = 0) = ¢, which assumes the quasi-static
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FIG. 2. Comparison of |a|? for higher-order Hermite-Gaussian
modes (a) m1 = 2,n1 = 0 and (b) m2 = 0,n2, = 2. Color
denotes the amplitude intensity a?.

approximation such that the laser evolves slowly with re-
spect to the k; L. The transverse electric field is given
by

Ei/Ey=—k, 'V _1¢.

We can use any number of modes to manipul

ing field on-axis we need to choose modes that h -
axis peak, i.e., in the Hermite-Gaussian basis, ev
ber mode indices and in the Laguerre-Gaussian basis, ra-
dial modes. The lowest-order example thisw m
that allows for independent control of y com-
ponents is the superposition of two Hermite-Gaussian
2. The

modes, with my; = 2,n7 = 0 and.my = 0,19
intensity profiles of these two, inflependent modes can be
seen in Figure 2.

The superposition of theé@ c e controlled in

several ways. The full e?(es of ty intensity for these

two modes is given by: \
-

- SX =24 /13 o =2((~0)*/L?

e AP t}e difference between the initial phases of
e%?rgdes. The first concern is the initial, arbitrary
actor that each mode brings to the intensity pro-
effect of an initial phase factor can be observed
in Figure 3 and it can be deduced that the intensity is
sensitive to the phase difference between the two modes,
as a difference of Ay = 7 can extinguish the on-axis
intensity peak (only if asg = agz).

1 t verse electric fields derived from Egs.
\ and (16) can be written as:*”

*'h\ E, xL x? y?
wakefields, but in order to have a longitudinal accelerat- BV 8 W ag | 5 — 4@ +ape|1- 4r_2

(a)

FIG. 3. Comparison o
order Hermite-Gaussia:

0,n2 = 2 with equ 1i
Ap = 7/2, and ( Zan;s: .
intensity a?. 4\

A. Wake )u%by HoH> + HoHg and Lig + Lo2
laser modes

Whe onsi;ring a charged particle beam in the res-
antly dr plasma wave behind the laser driver,
| L, where the laser amplitude is negligible,
d WE the phase difference is zero, i.e., Ay = 0, the
ritng (14), (15),

0

2 2
X [ago <1 - 4%) + ap2 (1 — 4%)]
0 0

x e R L /8= 2+ /8 inle (€ — o)l

(17)
L 2 2
=V 87ry—2 asg | 1 — 4:r_2 +age | 5 — 4y—2
g r r

0 0

IEQ 2
% [aQO (1 - 4ﬁ) + ags (1 — 4%)]
0 0

x e Ko L* 8218 ginlk, (¢ — Co).
(18)
Figure 4 portrays the intensity profile a2, 4(a), 4(c),
and 4(e), for two Hermite-Gaussian modes, and the cor-
responding transverse electric field, 4(b), 4(d), and 4(f),
for three different instances of varying modal amplitude
contributions. The arrows denote the direction of the
electric field and the color its strength. Here we have two
modes m; = 2,n1 = 0 and my = 0, ny = 2 with three dif-
ferent sets of coefficients: 4(a), 4(b) azp = ag2 = 1, 4(c),
4(d) asp = 1,a02 = 05, and 4(6)7 4(f) asp = —1, ap2 = 5.
In 4(c) and 4(d) we can see a modest transverse asym-
metry, while in 4(e) and 4(f) we see a strong asymmetry.
Lineouts of the transverse x and y electric field can be
seen in Figure 5. Considering the slopes of the z and y
wakefields we can choose the relative value of the asym-
metry using these two modes just as a function of the
modal amplitude contributions, as has been depicted in
Figure 6.

SIS
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IE e same can be done with Laguerre-Gaussian modes,
cept following the matching condition 2u; + 11 +1 =

IRE. + 1. An example of Laguerre-Gaussian mode
matching can be seen in Fig. 7, where we plot the laser
intensity and transverse electric field for a superposition
of uy = 1,1 = 0 and e = 0,5 = 2 modes. In this
example we also have asymmetric focusing fields, with
near-zero focusing along the y-axis and strong focusing
along z-axis. These modes are phase matched so there

will be no mode beating and both will propagate at the
same group velocity.

1a]%/a% max
1.0

(X}

0.6

omlarison of the superposition of higher-order
Gaussian modes m1 = 2,n1 = 0 and mo = 0,ny =
eCteto the laser intensity a? and the transverse elec-
E | /Ey. In subfigures (a) and (b) a20 = ao2 =1, (c)
20 = 1 and ag2 = 0.5, and (e) and (f) a0 = —1 and
ap2 = 5. The color denotes the amplitude and field intensities
and the arrows the transverse direction of the field.

5

— E — E

IS

-0.4-0.2 0.2 04

E/Eq

(=)

g
Z04-02 ) 02 04

S

-1

-2
/ -3 -30

@/ro,y /7o N\y\/ x/r0,y/r0
(a) ‘) (b (c)

FIG. 5. Com

Hermite-Ga

the superposition of higher-order
=2,n1 =0and mg =0,n2 = 2

the transverse electric field F, /Ey.
CLoQ—l ago—landa02—05

a02>0 a.02<0

0.2 0.4 0.8 0.8 1.0 1.2
ayo/(azo + apz)

FIG. 6. Ratio of the slopes for 0, E, and 0y E, with constant
longitudinal field E,. There is freedom in picking the asym-
metry of the wakefield just by modifying the amplitudes of
the individual modes. For Hyp and Hpz, there are poles at
az0/ (a2 + ap2) = 1.25 and -0.25.

B. Electron bunch propagation in an HoH2> + H2H, wake

Near the axis, x,y < 79, the regime where we expect
the bunch to propagate, we can consider just the linear
contribution of the field. In subsequent analysis model-
ing bunch propagation we only consider the phase when
the transverse field is maximum and when the longitudi-
nal accelerating field is near-zero, i.e., k,(¢ — (o) = I7/2,
where [ is an integer. The reason for this is to simplify
our particle tracking and to clearly present the effects
of higher-order modes. This analysis can readily be ex-
tended to a proper accelerating and focusing bucket of
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Re[a]

I1.0

038

FIG. 7. Example of matched Laguerre- Gaussian modes

and Loz with aio = 1 and ag2 = 3/2. (a) the real m
nent of mode L1g, (b) the real component of mode Lo C
the overall intensity profile |a|®> = |a10 + ao2|?,
corresponding transverse electric Wakeﬁeld Whe W
denotes the strength of the field and the arrow the

the wake. The linear field can be expr

E I k2L2
==~ \/87‘(’—26_ 5 a02+a20 ﬁ |x =
EO T
’ 1)
E k2L2 K
E—y ~ V8 a02 a20)ly = =K kpy,
0

(20)
%}(p 2L2/8 (102 + CL20>(6L02 +
(L/r§) exp| k2L2/8]|(a02 +

the linear ﬁelds we can com-
of a particle being focused

5CL20)| and Kg
1120)(5(102 + asg
pute the beta

(e = K2y (21)

3y, where ym.c? is the bunch energy.

on bunch spatial distribution is assumed to
ssian with o9, oyo being respectively, the hor-
nd vertical rms bunch spot sizes. In order to
have matched propagation, the bunch momentum distri-
bution is assumed to be Gaussian with an rms distri-
bution 0., = mecyokpos, and likewise for o, , where
kgz = wgs/c and similarly for kg,. If an electron bunch

with these values is injected into a linear focusing field
and there is no correlation term, i.e., (xz') = 0, there will
be no betatron oscillations. The rms normalized emit-
tance can be written as

e = v/ (@?)(ud) — (2us)?, (22)

n analogous expansion exists for
ular brackets ( ) represent
nch particle dlstrlbutlon The rms
nt fordinear focusing forces and
unch.

where u, = p,/(m
the y—direction. T
an average over th
emittance will befcons
for a mono-chremati

inherently non-linear and the
es further constrains the region
af theaaxis. An example of this can be seen

in Figliresg, re in 8(a) we have a bunch for which
Ozy =40y, =40.03r¢ and in (b) we have 0,y = 0, =
0.1rg ser-plasma parameters are on-axis amplitude of

a density ng = 3 x 1017 cm™3, and laser
f}o = 50 pm. In Figure 8(b) we see emittance
e to the bunch being wide enough to sample

rowtllr
inear region of the wakefields. Due to this, using
higher-order modes often requires the electron bunch to

ightly focused relative to the laser driver, with the
bunch spot size being about 5% that of the laser driver
T less.

We can demonstrate the potential for a matched,
asymmetric laser driver when considering a situation in
which we desire to guide a bunch with asymmetric emit-
tances, e.g., the final focus in an accelerator. Considering
a bunch with matched spot sizes, 05, = oy, = 0.003r,
but with an emittance ratio of €, /¢, = 10, we can demon-
strate that higher-order modes can control the bunch.
Initial parameters are an on-axis amplitude of |a| = 0.1,
plasma density ng = 3 x 10'7 cm™3, and laser spotsize
ro = 50 pm. Since the fields in the presence of the bunch
are approximately linear in this case, there will be no
emittance growth but the spot size will still evolve. In
Figure 9(a), we inject a symmetric bunch into a matched
wakefield of a laser driver composed of HyHs and HyHy
modes. This gives the trivial solution of constant emit-
tance €, = €, = 0.01pm and relatively constant spot size.
If we increase the emittance ¢, by a factor of 10 by in-
creasing o, by a factor of 10 we can see in Figure 9(b)
how the bunch is matched in the y direction but not the
x direction, such that e, = 0.1um and ¢, = 0.0lym. A
mismatched bunch will undergo betatron oscillations and
particles would be lost from the wakefield. However, if
we keep the asymmetric electron bunch but tune the am-
plitude coefficients of the laser driver, i.e., ags = 0.0235
and a9y = —0.1235, which still gives an on axis ampli-
tude of |a] = 0.1, we obtain the result shown in Figure
9(c), with a larger bunch spot size o, = o, = 0.01157¢
giving us similar emittances as before of €, = 0.1ym and
€y = 0.01pm. In this plot we see two distinct emittances
but equal spot sizes.


http://dx.doi.org/10.1063/1.5064740

Publishiy

| This manuscript was accepted by Phys. Plasmas. Click here to see the version of record.

Al P
— &l€xo
.............. ==..Eyl€x0 1.0 -
g """"" Ox/0xo %
oof 0 /0, 109
0.8 0.8
0 2 4 6 8 10

FIG. 8. Comparison of a bunch guided by the full, nonlinear
wakefield of Hos and Hso modes for an initial bunch size of
(a) zo = 0.03r¢ and (b) zo = 0.170.

electron bunch acceleration. Dephasing between the ac-
celerated electron bunch and the wake is a well known
problem that is present in all LPA concepts. In the

weakly-relativistic limit the dephasing limit for a higher-
order mode in the Hermite-Gaussian basis can be approx-
imated as

123 Am+n+1)]"
Ly~ =22 =TT
d ux’r”\k;rg ]

s a tapering of the background
1ty p along the path of acceleration
?s)d as olle means to overcome dephasmg
inplettientation of multiple stages”'. This
igher-order laser modes, except given

%iveﬁcceleration length would be reduced.

Thelissue of efficiency loss by the use of higher-order
modes can be simply estimated by the ratio of the inte-
rated laser intensity of the Gaussian mode, i.e., HyHy,
relative to that of a superposition of higher- order modes,

C. Potential limitations due to dephasing and efficie \g , HoHy + H()HQ, assumlng equal on-axis intensity,

Two caveats of using higher-order modes are Xﬂe t
of dephasing and the energy efficiency WK ¢t to

o (1 +2y )
770(//@(2)06 o dedy 4\ Hy,

— 00

where we assume the Samedongit 1nal profile for both

profiles. For examp 1g thesuperposition of second-

order modes as seeiv ﬁPiure 4(a), where asg = aga = 1,

would give us andeffective efficiency loss of n = 1/4. How-

accelerate an electron bunch

of €;/e, = 10 we need a laser

e 4(c), which also approximately

correspondS,to the itup for particle tracking in Figure 9.

todgreater efficiency loss with n ~ 1/13.

rease in energy efficiency loss with respect

iam mode is intuitive as more energy content
from the axis.””

(=]

IV. FREQUENCY TUNING OF THE WAKEFIELD

In addition to geometric tuning there is also the free-
dom to select different frequencies for each of the inde-

ago = |ago + ao2|?, , for an equal accelerating gra-
dient. For any two arbitrary, Hermite-Gaussian modes,
this can be expressed as

(w +y (z%4+y?)
fy) + 2Hm2 <\/§$> Hn2 (fy>| 6 TO dfdy,

(

pendent modes. However, since the phase velocity is a
function of the laser wavenumber k as well, it is not possi-
ble to select different, lower-order modes that propagate
at the same group velocity and do not beat. This can be
seen from the following expression,

la|* = |ay + az]* = af + a3

+ a1a262(k1zf'up,lt)efz(kngvp,gt) + c.c.,

as having different wavenumbers to have equal v, terms
and thereby equal group velocities would result in a new
beating contribution from the (k1 — k2)z term. In or-
der to prevent beating, one can either use two modes
of orthogonal polarization or modes that are temporally
separated and do not overlap, which are equivalent sit-
uations in terms of the interaction between the modes
in the linear regime. Using orthogonal polarization lim-
its one to only two modes in one instance as opposed to
an indefinite number of arbitrary modes with temporal
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FIG. 9. Comparison of bunch guided by t }QH\/ n Hos
and Hao wake. (a) Initially matched bunch €xfey =1
in a symmetric wake. (b) Initially mismatched Bunch with
€x/€y = 10 with matched bunch gpot sizes in a symmetric

wake. Due to the mismatch strong“bhetatron oscillations can
be observed. (c) Initially mis

with matched spot sizes in asy)ﬁmetrl wake with coeffi-
cients ag2 = 0.0235 and (%; — /

@po%&paration may be more
19

imentally, as each mode ought
would be more susceptible to

rre-Gaussian modes of indices yu; = v =
v, = 1 and orthogonal polarization, the
.p&)ﬁle can be written as:

2
— (aOO +2— aOl) 6_2T2/T(2)€_2Z2/L2. (23)
™ o

This is a superposition of the intensity profiles of a simple
Gaussian and a first-order ring mode, as seen in Figure

Lague Q\Ga modes for co-propagation is,

10. In order for t WO modes to co-propagate, it is

necessary for th to e the same group velocity, and

that can solving for & = w/c in Eq. (13).

The gene ex sion for matching the frequency of two
ian

24+4(2u2 + v +1)
k2r0 +42u + 11 +1)°

_ Al (24

am le, in the case of an LPA system, with ng =

IOL_gm_?’ ro = 50 pm, for A\gp = 0.815 pm we have
)\()1 0.766 .

en considering positions in the resonantly driven

a wave far behind the laser driver, | — (o] > L

p
~\~apd orthogonal polarization, the transverse electric fields

corresponding to Eqgs. (14), (15), and (16) for Lgy and

Lo1 can be written as:

E. /2 L 2
= agy — ad, (1 - 2r_2> e Rl /8
Trd g (25)

x e~2r° /"5 sin[k, (¢ — Co)]r,

Ez k‘pL 2 2 7‘2 —k2L2/8
— = —— | ajy + 2a5,—= |e " /
By~ &r ( oo T o

(26)
x e~ 2176 coslky (¢ — Go)l,

and the linear component of these fields, i.e., when
r/ro < 1, can be written as:

E, \F L (a2 — a2)e 8 B gimlhy (¢ — o), (27)

Ey Tra
E. kLl 5 2
Eo agoe™ v B coslhy (C = o)) (28)
0 8m

From the linear equations one can deduce that the lon-
gitudinal field depends primarily on the Gaussian mode
and the higher-order mode Ly; can independently modify
the transverse fields. A lineout of the intensity profile and
the corresponding transverse electric field can be seen in
Figure 11. The thin solid lines correspond to just a Gaus-
sian driver, the thick solid lines correspond to agy = ag1
and to when the electric field is zero near the axis, while
the dashed line corresponds to a modified Gaussian wake
and the dot-dashed to a strongly modified wake.
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B. Bunch propagation 7n
By using two mod wewor he focusing forces of
idering a bunch with emittance ratio
ting in the full, non-linear wake-
at higher-order modes can be
ran:zer e fields and ensure matched
parameters are an on-axis ampli-
a density ng = 3 x 107 cm ™3,
= 50 pum. Likewise, we are only
using forces in this simulation, so
2, where [ is an integer. Numerical results
d in Figure 12.

)=

1 pulse, i.e., Log mode. This is the trivial result
with constant emittance ¢, = ¢, = 1.3 um and rela-
tively constant spotsize. In Figure 12(b) we have a wider
bunch with o, = o, = 0.2r¢ and the bunch begins to
experience the non-linear contributions of the field and

o/oo

FIG. 12. Comparison of a bunch guided by the non-linear
wakefields of an Lgo and Lo1 laser driver. (a) Initially matched
bunch with o, = oy = 0.17¢ in a symmetric wake with ago =
0.1 and ap1 = 0. (b) Initially matched bunch with o, =
oy = 0.2rg in a symmetric wake with apo = 0.1 and ap1 = 0.
The bunch sees the non-linear field and emittance grows (c)
Initially matched bunch with o, = o, = 0.27¢ in a symmetric
wake with apo = 0.1 and ao1 = 0.08. The softening of the
transverse gradients reduces the experience of non-linear fields
by the bunch and emittance remains effectively constant.

both emittance, initially €, = €, = 5.3 um, and spot
size grow. Keeping ag = 0.1, we introduce an Ly; mode
with amplitude ag; = 0.08 such that agp/agr = 1.25,
which corresponds to the dashed lines in Figure 11. In
this case we still have the wider, initial bunch spot
size 0, = 0y = 0.2ry but relatively constant emittance
€x = €, = 3.2 um and spot size evolution, shown in
Figure 12(c). Just as in the case for geometric tuning,
frequency tuning is also physically limited by issues of
dephasing and energy efficiency loss.
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‘ s I\IPUI‘ 1MARY AND CONCLUSIONS

PUbIISquwntgi i paper we propose the use of higher-order laser

modes to modify and control the wakefields behind a laser
driver. It was shown that modes of different geometric in-
dices propagate at different group velocities and when co-
propagating lead to mode beating. Using both the Her-
mite and Laguerre-Gaussian basis we demonstrated that,
by choosing appropriate geometric indices, one would
have a transverse mode structure that is non-Gaussian
but does not beat and has all modes propagating at the
same group velocity, (e.g., HoHo+ HoHs and Lig+ Lo2).
This can be used to create an asymmetric wake struc-
ture and allow for the focusing of asymmetric electron
bunches with asymmetric transverse emittances, such as
an emittance ratio of €,/€, = 10, which opens the pos-
sibility of using a laser-plasma lens structure as a final
focus for a linear accelerator.

Likewise, we showed that one can also choose modes
of different colors to allow for a wake with more com-
plex structures but not limited by group velocity disper-
sion. However, these modes still beat and so they must
be either of orthogonal polarizations or temporally sep-
arated. We showed that a pulse could be composed

two modes, Loy + Lo1, and that we could vary the QX
ts o

plitude and thereby reducing the transverse gradients
the wakefield, allowing for the focusing of wider bu
This is particularly relevant for positron bea:
tion and/or to avoid ion motion.
Experimental implementation of our theatetical

presupposes several conditions. One must have goo n-
trol of the phase and polarization of the individuakjaser
modes. It is shown that multimode pulse Ntive to

the phase content of the individual modes. addition,
one must be able to carefully a isely generate the
modes one wishes to use. Hermige-GauSsian modes can
be generated using an off- ing' scheme.” For
Laguerre-Gaussian modes, se plate can be
used to induce a helical ont )ﬁ an injected laser
beam.?” Once the mode en generated precise
aiming and timing
to a combining o

perspective, dephasing and ef-
tiéns to the proposed concept, but
these can Re addresse via density tapering and energy

laser technology have greatly spurred
science and promise more possibilities in the fu-
ile historically it has been sufficient to have
ar“Gaussian profile for the driver, further advances
will require greater control and quality. Applying current
es for the generation of higher-order laser modes
to high-intensity, ultrashort laser pulse systems will be
challenging, but the potential benefits of using the dis-
cussed mechanisms will greatly expand the potential for
future LPA applications.
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