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Abstract: California growers face challenges with water shortages and there is a strong need to
use the least amount of water while optimizing yield. Timely information on evapotranspiration
(ET), a dominant component of crop consumptive water use, is critical for growers to tailor
irrigation management based on in-field spatial variability and in-season variations. We evaluated the
performance of a remote sensing-based approach, Mapping Evapotranspiration at high Resolution
with Internalized Calibration (METRIC), in mapping ET over an almond orchard in California, driven
by Landsat satellite observations. Reference ET from a network of weather stations over well-watered
grass (ETo) was used for the internal calibration and for deriving ET at daily and extended time
period, instead of alfalfa based reference evapotranspiration (ETr). Our study showed that METRIC
daily ET estimates during Landsat overpass dates agreed well with the field measurements. During
2009–2012, a root mean square error (RMSE) of 0.53 mm/day and a coefficient of determination
(R2) of 0.87 were found between METRIC versus observed daily ET. Monthly ET estimates had
a higher accuracy, with a RMSE of 12.08 mm/month, a R2 of 0.90, and a relatively small relative
mean difference (RMD) of 9.68% during 2009–2012 growing seasons. Net radiation and Normalized
Difference Vegetation Index (NDVI) from remote sensing observations were highly correlated with
spatial and temporal ET estimates. An empirical model was developed to estimate daily ET using
NDVI, net radiation (Rn), and vapor pressure deficit (VPD). The validation showed that the accuracy
of this easy-to-use empirical method was slightly lower than that of METRIC but still reasonable, with
a RMSE of 0.71 mm/day when compared to ground measurements. The remote sensing based ET
estimate will support a variety of State and local interests in water use and irrigation management, for
both planning and regulatory/compliance purposes, and it provides the farmers observation-based
guidance for site-specific and time-sensitive irrigation management.

Keywords: evapotranspiration; landsat 5 TM and 7 ETM+; METRIC; almond orchard; consumptive
water use; central valley

1. Introduction

Almond has become the first leading revenue-generating crop commodity in California, with
a total value of annual production over 5.9 billion dollars in 2014. California’s almond acreage has
been rapidly growing, from 700,000 acres (bearing acreage: 590,000 acres) in 2005 to 1,020,000 acres
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(bearing acreage: 870,000 acres) in 2014, according to the California Department of Food and
Agriculture (CDFA) [1]. On the other hand, almond growers face water supply challenges due
to the increasing frequency and severity of recurring droughts. Water use by almond orchards has not
been well studied, especially under various cropping conditions, and this knowledge gap limits the
capacity for growers to achieve resource-efficient water management.

Agricultural consumptive water use consists of water removed by evapotranspiration (ET), via soil
evaporation (E) and plant transpiration (T). Accurate estimation and mapping of crop ET across space
and time are essential for improving field-scale irrigation management and for watershed and regional
water planning and management. Ground-based flux measurement methods such as eddy covariance
(EC) [2], Bowen ratio (BR) [3], and most recently surface renewal (SR) [4], can provide half-hourly,
hourly, and daily ET measurements and thus offer guidance to growers for time sensitive irrigation
scheduling. However, these measurements are limited by the small scale of the footprint area of
the measurement stations and they cannot capture heterogeneity within each agriculture field, and
sometimes cannot represent the entire field or orchard conditions. The equipment for measuring field
ET through ground methods is usually expensive, while their installation and maintenance could also
be labor-intensive.

In agricultural production areas, ET has been traditionally estimated as a product of the
weather-based ET of a hypothetical reference surface, such as alfalfa (ETr) or grass (ETo) under
well-watered condition, and crop coefficient (Kc) [5,6]. Kc is often generalized for each crop type and
over a few growth stages from limited field measurements, and thus does not capture the detailed
temporal dynamics of crop growth and spatial variability of crops within and across the field blocks.
For example, values of almond Kc of 0.40 at initial stage, 0.90 at mid-season and 0.65 at the end of the
season are usually considered for irrigation management in all almond orchards [5]. Near real time
values of ETo are readily accessible to growers throughout the State of California from the California
Irrigation Management Information System (CIMIS) network of more than 150 weather stations, and
they are used extensively for irrigation management in California. However, spatially-explicit seasonal
Kc values for estimating water use by almond orchards are not yet available in the literature. Updating
the almond water use information is particularly important for California’s almond growers to improve
their on-farm irrigation management, since almond production industry experienced major changes in
cultivars, rootstocks, planting density, canopy management practices, and irrigation technology and
methods during the past 15 to 20 years.

New approaches to take advantage of remote sensing observations to map ET have been developed,
especially in recent decades, due to increasingly available free satellite observations from multiple
sensors [7–10]. Empirical algorithms were built to relate ET to remotely sensed vegetation indices and
weather data [11–14]. These algorithms typically perform well in areas where they are calibrated, but the
uncertainty usually increases when applied to other areas. The semi-empirical Priestley–Taylor equation,
calibrated with ET measurements, has also shown promising results for estimating ET at continental
to global scale [7,8]. A suite of algorithms that were based on surface residual of the energy balance
(REB) data, using both optical and thermal remote sensing observations, has also provided estimates of
ET. One-source REB models include Surface Energy Balance Algorithm for Land (SEBAL) [15], Surface
Energy Balance System (SEBS) [16], Mapping Evapotranspiration at high Resolution with Internalized
Calibration (METRIC) [17], and Simplified Surface Energy Balance (SSEB) [18,19]. Two-source models,
such as the Two-Source Model (TSM) [20,21] and the Disaggregated Atmosphere-Land Exchange Inverse
(DisALEXI) [22–25], integrate the biophysical processes and remote sensing data to estimate the plant
transpiration and evaporation from non-vegetated surfaces separately.

METRIC estimates the near surface temperature gradient (dT) as an indexed function of
radiometric surface temperature, and thus does not rely on accurate estimate of land surface
temperature from thermal imagery [17,26,27]. It also uses hourly reference ET to auto-calibrate the
sensible heat calculation for each satellite image. This internal calibration makes ET estimates more
robust. METRIC has been widely used to estimate agricultural water use in Idaho, California,
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and New Mexico for management of water rights, irrigation scheduling, and water resource
planning [28,29]. Regional scale ET mapping has also been done in the Texas High plains [30], in
the mountainous areas of northern Portugal [31], and in the oasis area in Heibe River Basin in
China [32], and the results showed reasonable accuracy. The METRIC method was used to provide
good estimates of ET over olive orchards [33–35] and over cotton fields [36]. It tends to outperform
TSEB when sufficient ancillary data are not available [36]. To our knowledge, however, there are
no studies on almond ET estimation by METRIC, and it is not clear how remote sensing-based ET
approaches perform in almond orchard with the complex canopy structure of almond trees.

In this paper, we aim to: (1) assess the accuracy of ET estimates at the field scale in an almond
orchard using the METRIC approach, driven by Landsat satellite observations and ETo from CIMIS;
(2) examine the dominant drivers for temporal and spatial variation in crop water use; and (3) develop
and assess empirical methods that are easy to use for ET estimation at the farm scale.

2. Study Area and Datasets

2.1. Study Area

The study area was a 60 ha mature almond orchard (Prunusdulcis) located near Lost Hill in Kern
County, in the southern San Joaquin Valley of California (35.510◦N, 119.667◦W; Figure 1). The almond
trees were planted in 1999 on a Milham sandy loam, with South to North orientation, 6.4 m between
trees in the rows, and 7.3 m between the rows [37]. Two types of micro-irrigation systems, i.e., drip and
fanjet, were used to water the orchard. This orchard was relatively homogeneous in terms of canopy
structure since similar soil water storage was achieved for all trees on purpose through a careful
management of the two micro-irrigation systems during 2009–2012. Almond trees were about 7 m tall
during our study period from 2009 to 2012.
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(#146) and flux tower installed at the southern edge of the orchard are also shown. 

  

Figure 1. Study area shown as: (a) a Landsat 5 TM false color image; and (b) true color image
from Google Earth. The subset extent of the Landsat image (path 42, row 35) used in the Mapping
Evapotranspiration at high Resolution with Internalized Calibration (METRIC) approach for our
evapotranspiration (ET) estimate includes the almond orchard, well-watered vegetation area and bare
soil area. The nearest California Irrigation Management Information System (CIMIS) weather station
(#146) and flux tower installed at the southern edge of the orchard are also shown.
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San Joaquin Valley has a typical Mediterranean climate. Mean annual temperatures ranged from
15.9 to 17.2 ◦C during 2009–2012. Summer months are hot and dry, while winter months are mild
and wet (Figure 2a). Most rainfall occurs in winter and spring from November to April. Precipitation
varied significant from year to year, e.g., annual precipitation varied from 98.5 mm in 2009 to 235.7 mm
in 2010. Almond trees flower in late February to early March and reach almost full canopy cover by
late March. Harvest typically occurs in late August to mid-September.

The reference ETo related to grass had a strong seasonal cycle, ranging from 23.8 mm/month in
January to 214.1 mm/month in July (Figure 2b). The annual accumulated reference ETo was 1492.2,
1393.8, 1330.7, and 1450.8 mm/year in 2009–2012, respectively. The almond orchard was irrigated
following typical practices in the upper San Joaquin Valley.
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Figure 2. Monthly: (a) air temperature and precipitation; and (b) reference ETo related to grass during
2009–2012 at the Belridge CIMIS station.

2.2. Remotely Sensed Data

Landsat 5 TM and 7 ETM+ observations were obtained from USGS (http://earthexplorer.
usgs.gov/) for path 42 and row 35 during 2009–2012, covering the almond orchard study area
(Supplementary Materials Table S1). Forty-six cloud-free images were obtained during the four year
study period, with an average of 12 images per year, mostly from April to November. The Landsat
revisiting time was 16 days, but most images during December to March rain season were not usable
for our analysis due to frequent cloud cover. All the images were subsetted to a common domain, as
shown in Figure 1a. A careful examination of individual Landsat 7 ETM+ images showed that this
domain had no data gaps during the study period. This subset of 801 by 801 pixels included both bare
soil and well-watered full cover vegetation areas, as needed by METRIC approach for the purpose of
selecting cold and hot pixels to calculate sensible heat.

2.3. Micrometeorological Measurements

2.3.1. Station Reference Evapotranspiration

Reference ETo, associated with well-irrigated grass, and other meteorological data were obtained
from CIMIS (http://www.cimis.water.ca.gov/), as ancillary inputs to the METRIC algorithm. CIMIS
was jointly developed by the California Department of Water Resources (DWR) and the University of
California, Davis (UCD) in 1982 to inform water resource and irrigation management. CIMIS currently
operates a network of 164 automated stations measuring weather parameters over well-watered
standardized grass surface across California. A typical ETo station consists of several sensors including
pyranometer, thermistor, HMP35 temperature and humidity probe, wind vane, anemometer, and
tipping-bucket rain gauge to collect information on solar radiation, soil temperature, air temperature,
relative humidity, wind direction and speed, and precipitation, respectively. Data are collected every
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minute and archived as totals or averages each hour. Hourly and daily values of reference ETo are not
measured directly, but calculated from meteorological data using both CIMIS Penman equation and
the standardized reference evapotranspiration equation for short canopies [6]. The standardized ETo

equation data were used in this study. ETo was only used for the internal calibration of energy balance
and for calculating the fraction of grass reference ET as an index to represent the relative change in
weather [17] (See 3.2 below).

The closest CIMIS station, Belridge station (CIMIS #146; Lat/Lon: 35.50◦N/119.69◦W),
is approximately 2 km away from the almond orchard (Figure 1a). Belridge station was located
near the center of footprint of Landsat 5 TM and 7 ETM+ image subsets, and thus was selected
to provide weather input data sets and reference ETo for the METRIC approach in the study area.
In particular, we used hourly reference ETo, air temperature, vapor pressure and wind speed at Landsat
overpass time, typically around 10:30 a.m., and daily reference ETo during Landsat overpass dates from
Belridge CIMIS station. Hourly reference ETo was used to internally calibrate METRIC approach for
sensible heat flux calculation. Air temperature was required to correct land surface temperature (LST)
estimates from Landsat thermal imagery. Daily reference ETo was used to convert instantaneous ET at
Landsat overpass time to daily ET over the almond orchard in the METRIC approach, as shown below.

2.3.2. Actual Evapotranspiration Measurements

Evapotranspiration was measured with a micrometeorological tower installed 9 m above the
ground in the almond orchard in early 2008. This system includes a net radiometer, sonic anemometer,
two thermocouples, and soil heat flux plates, which were assembled to measure components of surface
energy fluxes [38]. A REBS Inc. Q7.2 net radiometer was mounted at about 10 m height on the flux
tower to measure net radiation (Rn). Sensible heat flux (H) was measured with both an RM Young
81000RE 3-d sonic anemometer and with Campbell Scientific Inc. FW3 fine-wire thermocouples
as described in Shapland et al. [39]. The ground heat flux data were measured using three sets of
ground heat flux packages, including a heat flux plate (REBS Inc., Seattle, WA, USA, HFT3) and a soil
temperature averaging sensor (Campbell Scientific Inc., Logan, UT, USA, Tcav), which were established
near the tower to measure the average ground heat flux (G) at the soil surface [40]. Latent heat flux
(LE) was then estimated as the residual of the energy balance (LE = Rn − G − H) every half hour and
converted to ET by dividing the LE in MJ m−2 per half hour by 2.45 MJ mm−1 of water vaporized.
Hourly and daily ET of the almond orchard was calculated from the half-hourly data collected from
2009 through 2012. Using the station and measurement methodology described in Shapland et al. [39],
there were almost no missing half hour estimates of almond ET. Daily and monthly calculations of ET
were used to validate the METRIC approach for estimating and mapping almond ET.

3. Methodology

3.1. Landsat 5 TM and 7 ETM+ Data Preprocessing

The digital number (DN) of visible, near infrared and shortwave infrared bands of Landsat 5 TM
and 7 ETM+ was first converted to radiance, and then atmospherically corrected to surface reflectance
by using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [41]. Surface
albedo [42], normalized difference vegetation index (NDVI) [43] and leaf area index (LAI) [44] were
derived from the spectral reflectances to calculate energy fluxes (Rn, G, and H) in the METRIC approach.

The original resolution of the thermal band (band 6) is 120 m. We here downscaled the thermal
data to a 30-meter resolution to match the resolution of the reflective bands by using cubic convolution
method. The thermal band DN was then converted to radiance using the coefficients provided in
the imagery metadata. A correction to the radiance was further performed using the method of
Wukelic et al. [45], and the Plank equation was then applied to compute the land surface temperature
(LST). Cloud fraction (CF) mask for each Landsat image, provided by USGS (http://earthexplorer.
usgs.gov/), was also used to remove data affected by cloud and cloud shadow.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/


Remote Sens. 2017, 9, 436 6 of 21

3.2. METRIC Evapotranspiration Estimate: General Approach

METRIC™, a satellite-based surface energy balance approach, has been widely used to map
field-scale crop ET, mostly over row crops. It is a one-source model that considers transpiration of
vegetation and evaporation of soil as a whole. Latent heat flux (LE), directly related to ET, is computed
as a residual according to surface energy balance equation (Equation (1)):

LE = Rn −G−H (1)

The major energy components are estimated as below:

Rn = (1− α) ∗ Rs ↓ +Rl ↓ −Rl ↑ −(1− ε0)∗Rl ↓ (2)

G =
(

0.05 + 0.18∗e−0.52∗LAI
)
∗Rn(LAI ≥ 0.5)

G =

(
1.80 ∗ Ts− 273.16

Rn
+ 0.084

)
∗ Rn (LAI < 0.5) (3)

H =
(
ρ ∗ cp ∗ dT

)
/rah (4)

where α is the surface albedo, Rs↓ is the incoming shortwave radiation (W/m2), Rl↓ is the incoming
longwave radiation (W/m2), Rl↑ is the outgoing longwave radiation (W/m2), ε0 is the broad band
surface emissivity, ρ is the air density (1.15 kg/m3), cp is the air specific heat (1004 J/kg/K). Ts is the
land surface temperature (K), and dT is the near surface-air temperature difference (K). dT is assumed
to have a linear relationship with Ts (Equation (5)) as developed by Bastiaanssen [46] (Figure S1).

dT = a ∗ Ts + b (5)

where the coefficients a and b were calculated using two sets of “hot” and “cold” anchor pixels, as
shown below:

a =
dThot − dTcold
Tshot − Tscold

b = dThot − a ∗ Tshot (6)

where dThot =
Hhot∗rahhot

ρ∗cp
and dTcold =

Hcold∗rahcold
ρ∗cp

. The initial values of H, rah, and Ts were from the
selected cold and hot pixels at the beginning of the iteration.

rah is the aerodynamic resistance to heat transport (s/m). An iterative method was applied
to calculate both rah and H to reduce the effects of buoyancy of heated, light air at the surface.
The algorithm started with finding a sets of “hot” and “cold” pixels. It assumed that LE equals to 0.05
and 1.05 times reference ET (ETo) for “hot” and “cold “pixels at the beginning of the iteration, and
then calculated dThot and dTcold (Equation (4)), followed by calculating a and b, and then updating dT,
H, and rah. We used 5% of reference ET, instead of 0, to initiate the LE for “hot” pixels, considering the
possibility of soil moisture content in bare soils shown by [17]. We tested the possible impact of using
ETo for internal calibration, and found that using 1.05 as a constant led to the closest agreement between
observed and estimated ET. The Monin–Obuknov length (L) was used to define the stability conditions
of the atmosphere during iteration in METRIC [17]. The iteration stops when the value of rah remains
stable [44] (see Figure S1). After the convergence of the hot and cold pixels, iterations are also needed
to converge the surface energy balance components. Dhungel et al. [47] demonstrated the improved
behavior of surface energy balance convergence in the low wind speed, which is particularly important
to reduce uncertainty in surface energy balance components due to the lack of the convergence. In our
study, we set that the iteration process of H calculation stops when the coefficients of a and b remain
stable. Our test showed that it typically takes 5 or 6 iterations to reach convergence while low wind
conditions required more iterations. A simplified flowchart of METRIC approach is shown in Figure 3.
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Figure 3. Flowchart of METRIC approach. Input data sets including Landsat 5 TM and 7 ETM+
observations from USGS and weather data from Belridge CIMIS station are used to calculate instantaneous
surface energy fluxes (instantaneous values at Landsat overpass time) such as net radiation flux (Rn), soil
heat flux (G) and sensible heat flux (H) in the processing procedure. The derived instantaneous fraction
of reference ET (EToF) and reference ETo were then used to derive daily and monthly evapotranspiration
(ET) maps over the almond orchard. The detailed description of METRIC approach can be found in
Allen et al. [17,26].

In METRIC, ET of each pixel at Landsat overpass time (10:30 a.m.) is calculated from Equation (7),
and then the fraction of reference ET (EToF) is calculated by dividing instantaneous ET by hourly
reference ETo (Equation (8)), obtained from Belridge CIMIS station. It assumes that the value of
EToF at Landsat overpass time is the same as the average value of 24 h during Landsat overpass
day [17,26]. Finally, the daily ET at each pixel is calculated as a product of EToF and daily reference
ETo (Equation (9)), which is the accumulative 24 h reference ETo at the station during the dates when
Landsat satellite overpasses every 16 days and when imagery is not obscured by cloud.

ETinst = 3600 ∗ LE/(λ ∗ βw) (7)

EToF = ETinst/ETO_inst (8)

ET_daily = EToF ∗ ETO _daily (9)

where ETinst is the instantaneous ET in mm/hour, 3600 is used for converting from seconds to hours, λ
is the latent heat of vaporization in J/kg, βw is the density of water, ETo_inst is the hourly reference ET
of grass at the time of image, ET_daily is the 24 h actual ET, and ETo_daily is the accumulative 24 h
reference ETo on the date of image acquisition.

ET-based irrigation scheduling requires continuous daily ET estimate especially during growing
season, so that ET losses could be replaced by applying the proper amount of water at the right time to
meet the plant water demands. We applied a cubic spline interpolation to fill in the gaps of daily EToF
using the Landsat-based estimates of EToF at the four most adjacent dates when Landsat clear sky
observations were available. A cubic spline was first fitted to generate a smoothed EToF curve based
on the non-linear curve nature of the temporal dynamics of fraction of reference ET [44]. The complete
time series of daily EToF was then derived from the splined curve, and used in combination with the
continuous daily reference ETo at the Belridge CIMIS station to derive daily ET estimate for every
single day. Monthly, seasonal, and annual ET estimates were finally aggregated from daily values. The
temporal interpolation was only done during the growing season from April to September, since there
were too many missing data during October to March winter rainy season.

3.3. Automated “Cold” and “Hot” Pixel Selection

In order to estimate sensible heat flux (H) accurately, two “anchor” pixels, named “cold” pixel
and “hot” pixel must be selected to determine the relationship between Ts and dT in the METRIC
approach. “Cold” pixels represent well-watered, full-cover vegetation areas within an image, and
thus have relatively higher NDVI and relatively low Ts. The “hot” pixels, namely dry and bare soil,
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on the other hand, usually have low NDVI but high Ts. The selection of these anchor pixels typically
involves some training and manual image interpretation, and is often arbitrary. To make the process
more consistent, we developed a method to select those pixels automatically based on the statistics of
NDVI and Ts maps, following and integrating similar concepts proposed by previous studies [48–51].
The cumulative histogram of NDVI and Ts were first generated. The values of NDVI at the point of 5%
(95%) and the values of Ts at the point of 95% (5%) in the accumulated percentage curves were used
in combination as thresholds for identifying hot (cold) pixels. To allow for flexibility, we extracted
all pixels falling both within ±0.01 of the NDVI thresholds and within ±0.5 ◦C of Ts threshold, and
averaged over these two sets of pixels to calculate the mean Ts for “hot” and “cold” pixels (Figure 4).
We tested imageries in different seasons and found that the resulting Ts − dT relationships with this
automatic selection method were similar to those from manual selections.
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3.4. Evaluation of Evapotranspiration Estimate

To assess the uncertainties of METRIC approach in estimating ET over the almond orchard, we
compared the METRIC ET with field measurements. Comparisons were made for instantaneous, daily
and monthly ET. Considering the fetch area of 50 by 50 m of the installed flux tower in the study area,
we averaged the METRIC ET over 2 by 3 pixels centered at the flux tower location. Four statistics were
reported, which are mean bias, mean relative difference (MRD), root mean squared error (RMSE) and
determination coefficient (R2). The equations of bias, MRD and RMSE are shown as follows:

Bias = ETMETRIC − ETTower (10)

MRD(%) =
|ETMETRIC − ETTower|

ETTower
∗ 100 (11)

RMSE =

√
∑n

i=1(ETMETRIC − ETTower)
2

n
(12)

where ETMETRIC is METRIC-based ET estimate at Landsat 5 TM and 7 ETM+ overpass date and ETTower

is ground-based ET measurement at the same day from micrometeorological tower. We also examined
the ability of METRIC approach to capture the inter-annual and spatial variation of ET.

3.5. Simplified Empirical Approaches for Evapotranspiration Estimate

Many growers do not have the capacity to implement sophisticated remote sensing based
algorithm for their irrigation management, especially on a daily basis. We thus also aimed to develop
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easy-to-use and cost-effective approaches for growers to estimate ET with easily accessible data such as
NDVI and weather data in this study. We took advantage of the spatially explicit ET estimates derived
from Landsat data, and examined the main factors controlling spatial and temporal ET variation using
both temporal and spatial data. We quantified the relationship between METRIC ET, as a dependent
variable, and NDVI, which potentially can be relatively easy to derive from imagery by drones, and
a suite of environmental variables that growers have easy access to. Multivariate statistical models
were built using three years of spatial data. The univariate linear and nonlinear relationships between
ET and the explanatory variables were first examined, and then various combinations of linear and
exponential terms of key ET driving factors, including NDVI, net radiation, and vapor pressure deficit,
were explored. The parameters were optimized using “lsqcurvefit” in MATLAB to minimize the
difference between predicted and METRIC-estimated ET. The models were validated with the rest year
of both spatial ET data and field measured ET as well.

4. Results

4.1. Evaluation with Flux Tower Data

We compared the instantaneous METRC-based ET estimate using Landsat 5 TM and 7 ETM+
data, averaged over a 2 by 3 Landsat pixel window centered at the flux tower location, with ET
values during 10:00 a.m. to 11:00 a.m. derived from flux tower measurements during Landsat
overpassing dates. Aggregated ET estimates at daily, monthly, and annual time scales were also
compared with corresponding field measurements in order to validate the performance of METRIC
approach when it was applied to map ET at different time scales over an almond orchard in the
southern San Joaquin Valley.

4.1.1. Instantaneous and Daily ET on Landsat Overpassing Dates

The instantaneous ET during Landsat overpassing time around 10:30 a.m., directly estimated
through METRIC approach, agreed well with field measurements in general, with a R2 of 0.74 and
RMSE of 0.11 mm/h, over a total of 46 Landsat overpassing cloud-free days from 2009 to 2012 (Figure 5a
and Table 1). When aggregated at daily time scale, a better agreement was found, with a R2 of 0.87,
RMSE of 0.80 mm/day. Higher accuracy was found during the growing season, e.g., R2 remains the
same, but RMSE was reduced to 0.53 mm/day and mean relative difference (MRD) lowered to 8.0%
(Figure 5b and Table 1).
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on a total of 46 Landsat images with those measured by flux tower, at Landsat overpass time around
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Table 1. Accuracy of instantaneous and daily METRIC ET estimates in comparison with flux tower
measurements during Landsat overpass dates in 2009–2012.

Instantaneous ET Daily ET

Year Number
of Days R2 RMSE

(mm/h)
Bias

(mm/h) MRD(%) R2 RMSE
(mm/Day)

Bias
(mm/Day)

MRD
(%)

All clear-sky Landsat overpassing dates

2009 14 0.82 0.11 0.00 27.91 0.87 0.93 −0.02 31.82
2010 11 0.45 0.12 0.02 16.70 0.76 0.91 −0.32 11.69
2011 10 0.89 0.12 0.04 28.47 0.98 0.76 0.37 27.31
2012 11 0.90 0.10 −0.06 13.02 0.96 0.49 0.27 13.67
Total 46 0.74 0.11 0.00 21.79 0.87 0.80 0.06 21.68

Growing season (April–September)

2009 9 0.69 0.05 −0.02 6.38 0.78 0.56 −0.16 7.56
2010 9 0.86 0.09 0.05 12.64 0.89 0.48 −0.06 6.46
2011 8 0.79 0.11 0.01 15.93 0.94 0.54 0.13 8.31
2012 8 0.60 0.11 −0.06 10.80 0.88 0.54 0.26 9.73
Total 34 0.64 0.09 0.00 11.32 0.87 0.53 0.03 7.96

The METRIC approach captured similar seasonal dynamics of daily ET as the field measurements
(Figure 6 and Figure S2). For example, estimated ET varied from 1.61 mm on 3 December to 7.72 mm on
28 July in 2009. Similarly, the measured ET was lowest in January and December, increased gradually
until June and July with a maximum of 9.15 mm/day on 20 June, and then declined again, reaching
a minimum ET of 0.17 mm/day on 29 December. The large day-to-day fluctuation of field measured ET
mostly followed that of the reference ETo. The mean daily METRIC-estimated ET was 5.10 mm/day,
averaged over a total of usable 14 Landsat overpassing days in 2009, which was similar to that from
the field measurements (5.12 mm/day) and about 7% higher than the mean daily reference ETo of
4.80 mm/day. A high bias of the METRIC approach was found in winter in both 2009 and 2010.
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4.1.2. Fraction of Reference Evapotranspiration (EToF)

The daily time series of EToF derived from flux tower measurements showed some large day to
day fluctuations, such as peaks (EToF > 1.30) on 10 April, 1 May, and 14 September in 2009; 21 April
and 17 May in 2010; 8 April, 4 June, and 11 September (EToF = 0.54) in 2011, and 13 April in 2012
(Figure S3). The data spikes may be caused by irrigation events or by station maintenance. In addition,
main spikes occurred during spring when a local high inversion fog and cloudiness is common and
might cause temporal variability of the radiation balance. The METRIC-based EToF estimates could not
capture this high frequency variation, limited by the 16-day revisiting time of the satellites and cloud
cover. We therefore calculated a 16-day running average of field-based EToF as the ratio of 16-day
running average of measured daily ET divided by 16-day running average of daily ETo (Figure 7).
The complete time series of METRIC daily EToF was obtained using cubic spline interpolation from
the available EToF estimates during Landsat overpassing days, and was then used to calculate the
16-day running average of METRIC EToF as show in Figure 7.
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Figure 7. Comparison of 16-day running mean daily fraction of reference ET (EToF) derived from
the field measurements and estimated from Landsat-METRIC ET estimates during April–September
in 2009–2012. Landsat-based EToF was not available from October to March since most Landsat
observations were obscured by cloud cover during these months.

At a 16-day time scale, the average values of estimated EToF were close to those of measured EToF,
with a MRD of 6.29% and a small bias of −0.01 from April to September in 2009–2012. Field-based
EToF was mostly low from January to March, increased significantly from the beginning of April
(EToF = 0.92) to August or the middle of September (EToF = 1.30), and then started to decrease at the
end of September in general (Figure 7). For example, EToF increased from below 0.6 in January to 0.92
in April, reached its maximum at 1.30 in September, and decreased to 0.6 by the end of year in 2009.
A similar trend was observed in 2012, when EToF was 0.91 in the beginning of April and reached 1.21
in the middle of September. The EToF during Landsat overpassing days followed this similar trend.

4.1.3. Continuous Time Series of Daily and Monthly ET

Daily ET was calculated by Equation (9), as a product of daily ETo and temporally interpolated daily
EToF, during days with clouds or without Landsat overpass. We here focused on April to September
since there were too many imageries obscured by cloud in winter season and thus the interpolation of
EToF was expected to result in larger uncertainties. The complete daily time series of METRIC-based ET
estimates followed closely with those from field measurements (Figure 8). Overall, METRIC daily ET
agreed well with measurements, with a R2 of 0.85, a RMSE of 0.56 mm/day, a bias of −0.05 mm/day,
and a MRD of 8% for a total of 732 days during 2009–2012 growing seasons (Table 2). Comparing with
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the daily ET estimate during Landsat overpass days only (see Section 4.1.1), the overall accuracy was
not decreased after temporal interpolation, partly because all images used in this paper were of good
quality (cloud-free) and EToF had a small range during growing season. Mean daily ET from METRIC
was 6.36 ± 1.24 mm/day averaged during April–September (n = 183 days) in 2009, close to the flux
tower measured ET (6.63 ± 1.23 mm/day). Both METRIC and field measurements showed a gradual
decrease in mean daily growing season ET in 2010 and 2011, e.g., 5.99 ± 1.42 mm/day in 2010 and
5.73 ± 1.20 mm/day in 2011 from METRIC estimates, and then a slight increase to 6.16 ± 1.31 mm/day
in 2012. Similarly, mean daily ET from flux tower measurements decreased to 6.05 ± 1.59 mm/day in
2010 and 5.61 ± 1.36 mm/day in 2011 and increased to 6.13 ± 1.33 mm/day in 2012.
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Table 2. Comparison between complete time series of daily ET estimated by METRIC and measured
by the tower from April to September (n = 183 days per year) during 2009–2012.

Year R2 RMSE (mm/Day) Bias (mm/Day) MRD (%)

2009 0.84 0.57 −0.28 7.09
2010 0.87 0.58 −0.06 8.27
2011 0.86 0.53 0.12 8.32
2012 0.83 0.56 0.04 8.31
Total 0.85 0.56 −0.05 8.00

When aggregated at monthly time scale, METRIC ET estimates were in good agreement with
flux tower measurements during 2009–2012 growing seasons, as shown by a high R2 of 0.90 and
a relatively small RMD of 9.68% (n = 24, Figure 9a). The RMSE was 12.08 mm/month and there was
only a slight bias of −1.40 mm/month. Both METRIC and flux tower measurements showed a peak
ET in July: METRIC ET varied from 207.7 mm/month in 2011 to 232.8 mm/month in 2009, and flux
tower measured ET varied from 215.4 mm/month to 243.5 mm/month, respectively. METRIC-based
ET was much lower in April, ranging from 120.3 mm/month in 2010 to 156.1 mm/month in 2009,
similar with flux tower measured ET.

Satellite-based monthly ET estimates captured similar inter-annual variation as observed by flux
tower measurements (Figure 9b). Mean annual measured ET varied from 1027 mm/year in 2011
to 1214 mm/year in 2009 summarized over April–September growing seasons. Similarly, METRIC
monthly ET also showed the largest ET across all months in 2009, resulting in a mean annual ET of
1163 mm/year, and a 10% decrease in 2011. Monthly ET from June to September was much lower in
2011 than the other three years, as shown by both METRIC and flux estimates. This was consistent
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with the lower EToFs in 2011 (Figure 7). In addition, ETo in 2011 was also lower than that of the other
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4.2. Spatial Pattern of Evapotranspiration

Spatial distribution of daily ET at the field-scale is essential to understand the water distribution
pattern over a whole orchard to irrigate rationally, especially during crop growing season. Maps of
spatial daily ET and main driving factors at a 30-m resolution (676 pixels) are shown in Figure 10, for
selected dates representing different growth stages of almond trees. ET within the orchard follows
similar spatial patterns of EToF, NDVI, and net radiation. Roads, either non-vegetated or sparsely
vegetated, as indicated by low NDVI, had lower net radiation and available energy than trees, and
smaller EToF further contributed to lower ET over sparsely vegetated areas, compared with the rest of
the orchard.

Throughout the study period, ET of almond trees was relatively uniform, because the main
driving factors, i.e., EToF and Rn calculated at Landsat overpassing time, had only slight variations
within the orchard. Overall, the coefficient of variance (CV = STD/Mean) of METRIC-based daily ET
estimates over the whole almond orchard varied between 3.63% and 10.52% and the CV of monthly
ET ranged from 2.60% to 6.24% during the study period (Table S2). The CV of daily ET on 29 June
2010, for example, was 5.52%, with a mean ET of 7.39 mm/day. EToF varied between 0.77 and 1.13
and had a mean of 1.04 ± 0.06 (CV: 5.52%), while spatial variability of Rn was much smaller, with a CV
less than 2% on the same day. The CV of NDVI was around 8% in general.

The difference between almond trees and the road were minimal during non-growing season, i.e.,
November and December (not shown), when almond trees go through a period of winter dormancy.
The CV increased as the plants developed and then decreased again to dormancy. These findings
were consistent with Couvreur et al. [37], which showed that the CV of tree-scale ET was 5–7% and
increased as the average soil water stress was larger during 2009–2012 in the same study area.
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time, for the almond orchard outlined in Figure 1b.

4.3. Factors Controlling Evapotranspiration

To better understand the main factors controlling spatial and temporal ET variation, correlations
between ET and its driving factors were studied using both temporal and spatial data. For each
individual pixel in the orchard, the correlations of daily ET with NDVI and Rn were computed for
Landsat overpass dates (n = 46 days) during 2009–2012. Figure 11 shows that Rn was a dominate driver
in determining day-to-day variation in ET, with an average correlation of 0.96, indicating that the
majority of daily ET variation among seasons and years can be captured by Rn. Time series of NDVI
was less correlated with that of daily ET, but was still highly correlated, with an average correlation of
0.79 and a range of 0.62–0.85 throughout the orchard (Figure 11b).
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The spatial variability of daily ET was also mostly controlled by Rn variation across the orchard
for any given Landsat overpass day, especially during April–September growing season, as shown by
a typical correlation of 0.96 (Figure 12a). The average growing season correlations between daily ET
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(Figure 12b). The dependence of daily ET on spatial distributions of Rn and NDVI decreased during
non-growing season (Figure 12).
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4.4. Empirical Method for Estimating Evapotranspiration

Rn and NDVI were both closely correlated with daily ET temporally and spatially as shown in
4.3. We thus explored the feasibility of using NDVI and Rn in combination with daily reference ETo,
vapor pressure deficit (VPD), and average daily wind speed (U) to develop empirical and easy-to-use
methods for daily ET estimation. Spatial data from 2009 to 2011 were used to build a suite of univariate
and multivariate models and 2012 data were used for validation and uncertainty assessment. The ET
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results from the empirical methods were also compared with ET tower measurements. Equation (13)
was chosen after model building and testing with all available spatial and temporal data:

ET = ETo ∗ (0.3108 ∗ NDVI – 0.0059 ∗ ln(VPD) + 0.8315) (13)

This statistical-based equation indicates that ETo and NDVI were positively related with ET as
expected. VPD, however, negatively regulates evapotranspiration here, possibly as a proxy of water
stress on EToF [7]. It predicted well the temporal dynamics of evapotranspiration at the tower site
during 2012, with a R2 of 0.94 and a RMSE of 0.55 mm/day (n = 11 days) when comparing with flux
tower measurements, and with a R2 and RMSE of 0.98 and 0.27 mm/day (n = 7436 pixels) when
compared with METRIC-based ET estimates during 2012 (Figure 13).

We also found that reference ETo had an exponential relationship with Rn (R2 = 0.95) and therefore
reconstructed Equation (13) and optimized the parameters to obtain the second empirical algorithm as
shown below:

ET = [0.9405 ∗ exp(0.0027 ∗ Rn)] ∗ [0.1816 ∗ NDVI + 0.2672 ∗ ln(VPD) + 0.8913] (14)

The ET estimates from Equation (14) were highly correlated with both tower measured
ET (R2 = 0.94, RMSE = 0.71 mm/day) and with 2012 METRIC ET estimates (R2 = 0.99,
RMSE = 0.28 mm/day) (Figure 13). This empirical method is of particular value to estimate ET, when
ETo is not available, since net radiation can be estimated with satellite remote sensing observations.
Similar to Penman Monteith concept, VPD here represents more the drying power of an atmosphere
and thus atmospheric demand for water.
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Figure 13. Daily ET estimated by two empirical methods, compared with: (a,c) METRIC-based ET
(n = 7436 pixels); and (b,d) measured ET at the tower site, during 11 Landsat overpass dates in 2012.
The top panel shows the results from the empirical method driven by ETo, NDVI, and VPD, while the
bottom panel shows the results with Rn, NDVI, and VPD as driving variables.
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5. Conclusions and Discussion

The almond acreage in California has grown rapidly in the past 10 years, raising concerns about
competition for the limited water resources in California. Information on crop ET at the field-scale is
crucial for irrigation management at the farm level and for water planning at the watershed and state
level. A robust and cost-effective approach for crop ET mapping is needed to improve sustainable
water management. METRIC, a satellite-based surface energy balance method, has been widely used to
map crop evapotranspiration (ET) of field crops, but less is known about how it performs for orchards.

In this paper, we assessed the accuracy of the METRIC approach, driven mainly by Landsat
satellite data, in estimating daily and monthly ET over an almond orchard in southern San Joaquin
Valley, California during 2009–2012 when field measured ET data were available. METRIC-based
ET estimates agreed well with flux tower measured ET both instantaneously and at daily time step.
High accuracy was found during the growing season (R2 = 0.87 and RMSE = 0.53 mm/day). Monthly
ET estimates captured similar seasonal ET pattern, increasing from April and peaking in July, and
were in good agreement with field measurements with a R2 of 0.90 and a RMSE of 13.69 mm/month
during 2009–2012 growing seasons. ET estimated by METRIC varied from 119.56 to 226.46 mm/month
averaged over three years, and measured monthly ET varied from 121.06 to 243.54 mm/month. Both
METRIC and flux tower measurements showed the highest ET in 2009.

Continuous daily fraction of reference ET (EToF) was derived from the METRIC-estimated EToF
during available clear sky Landsat overpass dates using a cubic spline interpolation technique. Overall,
the estimated 16-day EToFs were close to those derived from field measurements, with a RMSE of 0.08
and a MRD of 6.29%. The interpolated EToF curve, however, was unable to capture the high frequency
variation due to irrigation events and other factors as revealed by the flux tower measured ET.

We also examined the dominant drivers for temporal and spatial variation in crop water use.
METRIC daily ET estimates were highly correlated with Rn and NDVI, both temporally and spatially.
The correlation was 0.96 on average between time series of ET and Rn and 0.79 between temporal ET
and NDVI (n = 46 days). The correlations between spatial ET and those of Rn and NDVI were 0.96 and
0.70 during 2009–2012 growing seasons, respectively. We further developed two empirical methods to
estimate daily ET, using NDVI, Rn, ETo and VPD as key input data. The method driven by NDVI, Rn,
and VPD showed a slightly lower accuracy in mapping ET, with a RMSE of 0.71 mm/day compared
with the 2012 flux tower measurements, and a RMSE of 0.28 mm/day compared with the METRIC ET
estimate. The empirical method driven by NDVI, ETo, and VPD showed a lower RMSE (0.55 mm/day)
than that of Rn-based method, when compared with the 2012 flux tower measurements.

Overall, the METRIC approach driven by Landsat observations and CIMIS station data can
estimate evapotranspiration (ET) in almond orchards with reasonable accuracy during growing season,
and also identify both temporal and spatial variability in a cost-effective way. This is consistent with
previous assessment of METRIC ET estimates in other crop types. Mean absolute differences between
ET estimates from METRIC and field measurements ranged from 16% over irrigated meadow in the
monthly scale [28] to 20% in olive orchards in the daily scale [35]. The error was reduced to 4% when
aggregated to the seasonal scale [28]. The RMSE varied from 1.1 mm/day in spring wheat fields [32]
to 1.9 mm/day over cotton [36].

A continuous daily ET mapping is critical for growers in their efforts to apply the right amount of
water at the right time. ET estimate is limited by the 16-day repeat cycle when relying only on Landsat
satellite observations, and uncertainties from mathematical interpolations can increase when there is
no clear sky imagery during entire month due to cloudy and rainy weather, e.g., during winter and
early spring in California. An important next step would be to combine and fuse observations from
other sensors such as Sentinel-2 and VIIRS to increase the temporal frequency of remote sensing based
ET estimate. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), for example,
showed the success and promises of using data fusion to derive Landsat-like daily ET estimates at the
field scale [10,52]. Other methods have also been developed to improve the accuracy of three hourly
or daily ET mapping, including a combination of the feedback model (GG model) with SEBAL [53].
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As discussed earlier, we utilized ETo to be congruent to the instantaneous and daily ET calculation,
in order to interpolate EToF between the overpass dates using the spline method. Earlier studies
indicate that ETrF needs to be adjusted in particular crops like olive orchards which behave similarly
to the grass-based coefficients [34,35] because of the crop stress, physiological and micrometerological
variations. To address this problem, Dhungel et al. [54] developed a backward-averaged iterative
two-source surface temperature and energy balance solution algorithm (BAITSSS), incorporating the
crop and soil stress components using soil water balance, to capture the impacts of the irrigation and
precipitation between the satellite overpass. They demonstrated improved robustness compared with
mathematical and regression based interpolations.

Our study here showed that the METRIC ET estimate using well-watered pasture as a reference
crop worked reasonably well, although it may not be the case for other crop types. It is always
necessary to examine the impact of selection of anchor pixels and the reference ET on actual ET
estimate of any untested cropping systems. Further studies are also needed to quantify the ET field
measurement errors and investigate the METRIC performance in younger orchards and in more
homogeneous orchards under the effects of various environment stressors such as increasing salinity
in soil and deficit irrigation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/5/436/s1,
Figure S1: Illustration of METRIC algorithms: (a) Flowchart for iterative calculation of sensible heat flux;
and (b) linear relationship between dT (near surface-air temperature difference) and Ts (surface temperature),
as shown in the METRIC manual by Allen et al., 2014. Figure S2: Time series of daily ET measured by the flux
tower (black line) and estimated by the METRIC approach (red triangle points) over almond trees in: (a) 2010;
(b) 2011; and (c) 2012. The daily reference ETo of grass from Belridge CIMIS station is also shown here in blue line.
Figure S3: Time series of daily EToF from ground-based measurements (ETa/ETo, in black) and from METRIC
estimated ET averaged over 2 × 3 pixels centered around EC tower at Landsat overpass dates (red dots) from
April to September in 2009–2012. The cubic spline interpolation of METRIC daily EToF using daily EToF estimates
on four adjacent Landsat overpassing dates (in blue) is also shown. Table S1: List of 46 Landsat 5 TM and
7 ETM+ images used for estimating ET by METRIC approach. Table S2: Statistics of METRIC-based monthly ET
(mm/month) over the almond orchard (n = 676 pixels) from April to September in 2009–2012.
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