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New Brain Tumor Entities Emerge from Molecular Classification 
of CNS-PNETs

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

SUMMARY

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly 

aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but 

also affecting adolescents and adults. Herein we demonstrate that a significant proportion of 

institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of 

various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for 

patients with these tumors. From the remaining fraction of CNS-PNETs we identify four new CNS 

tumor entities, each associated with a recurrent genetic alteration and distinct histopathological 

and clinical features. These new molecular entities, designated “CNS neuroblastoma with FOXR2 
activation (CNS NB-FOXR2)”, “CNS Ewing sarcoma family tumor with CIC alteration (CNS 

EFT-CIC)”, “CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)”, 

and “CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)”, will 

enable meaningful clinical trials and the development of therapeutic strategies for patients affected 

by poorly differentiated CNS tumors.
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INTRODUCTION

The central nervous system (CNS) comprises many different pluripotent and differentiated 

cell types that vary greatly in abundance during human lifespan. This is reflected by a broad 

diversity of CNS tumor entities, some of which are relatively common, whereas others 

develop rarely, and many of them occur at defined ages. Primitive neuroectodermal tumors 

of the CNS (CNS-PNETs) are highly malignant neoplasms that predominantly affect 

children but may also arise in adolescents and adults. Histologically, CNS-PNETs are 

characterized by small, poorly differentiated or undifferentiated embryonal cells with a 

propensity for both glial and neuronal differentiation (Louis et al., 2007), but the 

neuropathological diagnosis is challenging due to a lack of defining molecular markers and 

histological overlap with other high-grade neuroepithelial tumors. The original concept 

related medulloblastoma (i.e. PNET of the cerebellum) to embryonal tumors of the cerebrum 

(supratentorial PNET) (Rorke, 1983), but issues with the clinicopathological utility of 

classifying non-cerebellar CNS-PNETs have generated significant controversy over decades 

(Rorke et al., 1997). This resulted in considerable uncertainty regarding accurate diagnosis 

and optimal treatment for affected patients (Jakacki et al., 2015). The 2007 World Health 

Organization (WHO) classification of CNS tumors lists CNS-PNET NOS (not otherwise 

specified) and four histological CNS-PNET variants distinguished by morphological 

features: CNS neuroblastoma, CNS ganglioneuroblastoma, medulloepithelioma (ME), and 

ependymoblastoma (EB) (Louis et al., 2007). Embryonal tumors with abundant neuropil and 

true rosettes (ETANTR) have been recognized as a histological variant without a specific 

designation. The identification of focal amplification of a micro-RNA cluster on 19q13.42 

(C19MC) as a unifying feature of ME, EB, and ETANTR (Eberhart et al., 2000; Korshunov 

et al., 2010; Korshunov et al., 2014; Li et al., 2009; Spence et al., 2014) led to the 

recognition of an overarching molecular and clinicopathological entity of embryonal tumors 

with multi-layered rosettes (ETMR, C19MC-altered) in the next revision of the WHO 

classification, adding to a growing list of defining molecular aberrations in high-grade 
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pediatric CNS tumors (Capper et al., 2010; Chan et al., 2013; Hasselblatt et al., 2013; 

Margol and Judkins, 2014; Pajtler et al., 2015; Parker et al., 2014; Schneppenheim et al., 

2010; Schwartzentruber et al., 2012; Venneti et al., 2013; Wu et al., 2012; Yan et al., 2009).

Recent studies support the notion that CNS-PNETs represent a molecularly heterogeneous 

group of tumors (Danielsson et al., 2015; Picard et al., 2012; Schwalbe et al., 2013), 

indicating an urgent need for better methods of classification. To provide a better framework 

for accurate diagnosis and treatment, we performed a comprehensive molecular 

characterization of a large cohort of institutionally diagnosed CNS-PNETs aiming to fully 

elucidate their underlying molecular and biological spectrum.

RESULTS

DNA Methylation Profiling of CNS-PNETs

We generated genome-wide DNA methylation profiles of 323 tumors with an institutional 

diagnosis of ‘CNS-PNET’. Unsupervised clustering, including 211 well-characterized 

‘reference’ tumors representing other CNS tumor entities, reliably separated samples into 

clusters defined by histological entities and known molecular subgroups (Figures 1A/B and 

S1A-D, Table S1). CNS-PNETs did not form a distinct cluster, but mostly grouped with 

clusters of reference CNS tumors. In total, 196/323 (61 %) of CNS-PNETs clustered with 

either ETMRs (36/323, 11 %), MYCN-amplified high-grade gliomas (HGGMYCN, 28/323, 

9 %), IDH/H3F3A wild-type HGG from receptor tyrosine kinase (RTK) subgroups 

(HGGRTK, 28/323, 9 %), IDH-mutant HGG (HGGIDH, 17/323, 5 %), H3F3A G34-mutant 

HGG (HGGG34, 17/323, 5 %), supratentorial ependymomas (EPN, 15/323, 5 %), AT/RTs 

(14/323, 4 %), H3F3A K27-mutant diffuse midline gliomas (HGGK27, 10/323, 3 %), pineal 

tumors (PIN, 8/323, 2 %), Ewing sarcomas (EWS, 5/323, 2 %), choroid plexus carcinomas 

(CPC, 2/323, 1 %), pleomorphic xanthoastrocytomas (PXA, 1/323, < 1 %), or meningiomas 

(MNG, 1/323, < 1 %) (Figures 1A-C and S1A-E). Some CNS-PNETs also grouped with 

medulloblastoma subtypes (MBWNT, MBSHH, MBGrp3, MBGrp4, 11/323, 3 %), including 

one metastasis of a primary brainstem lesion with PNET histology. However, available 

radiological reports of these MB-like cases did not indicate a cerebellar lesion. Three further 

samples (1 %) clustered with non-neoplastic hemispheric brain tissue samples, suggesting 

high normal cell content.

Some of the remaining CNS-PNETs (50/323, 15 %) formed small, inhomogeneous clusters 

(< 5 tumors) or represented distant outliers which failed to group with each other or any of 

the reference tumor entities, possibly representing exceedingly rare entities. A larger fraction 

of remaining CNS-PNETs (77/323, 24 %) formed four separate clusters clearly distinct from 

reference entities. As elucidated below, these represent four new CNS tumor entities which 

we termed “CNS neuroblastoma with FOXR2 activation” (CNS NB-FOXR2; 44/323, 14 %), 

“CNS Ewing sarcoma family tumor with CIC alteration” (CNS EFT-CIC; 12/323, 4 %), 

“CNS high-grade neuroepithelial tumor with MN1 alteration” (CNS HGNET-MN1; 11/323, 

3 %), and “CNS high-grade neuroepithelial tumor with BCOR alteration” (CNS HGNET-

BCOR; 10/323, 3 %). Unsupervised clustering restricted to CNS-PNET samples 

recapitulated cluster associations established in the overall analysis (Figures S1C/E). For a 

subset of tumors (109 reference samples; 59 CNS-PNET), transcriptomic profiling allowed 
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assignment into gene expression-based subgroups that correlated well with DNA 

methylation clusters (Figures 1A and S1A/F).

Re-Classification of CNS-PNETs Into Other CNS Tumor Entities

To validate the re-classification of CNS-PNETs sharing concordant DNA methylation and 

transcriptomic profiles with reference tumor entities, we analyzed these samples for 

hallmark molecular features previously established for their assigned reference tumor 

entities. Only CNS-PNET samples from the ETMR cluster consistently harbored the 

C19MC amplicon (33/36, 92 % of samples with available data; p < 0.001) and displayed 

high LIN28A protein expression (17/17, 100 %; p < 0.001), which has been proposed as a 

potent diagnostic marker for ETMR (Korshunov et al., 2012; Korshunov et al., 2014; Spence 

et al., 2014) (Figure 2A). All analyzed CNS-PNET samples from the AT/RT cluster 

displayed SMARCB1 mutations and/or deletions (14/14, 100 %; p < 0.001) and loss of the 

SMARCB1 protein product INI-1 (5/5, 100 %; p < 0.001) (Figure 2B). Targeted sequencing 

confirmed mutations in IDH1 in 15/15 CNS-PNETs (100 %; p < 0.001) from the HGGIDH 

cluster, G34 mutations of H3F3A in 17/17 CNS-PNETs (100 %; p < 0.001) from the 

HGGG34 cluster, and K27 mutations of H3F3A in 4/7 CNS-PNETs (57 %; p < 0.001) from 

the HGGK27 cluster (Figure 2C). Within the HGGMYCN cluster, 20/28 CNS-PNETs (71 %; p 

< 0.001) displayed amplification of the MYCN locus (Figure 2D). Co-amplification of 

MYCN and ID2 was observed in 12/28 (43 %; p < 0.001) samples, therefore broadening a 

previously defined molecular subgroup of diffuse intrinsic pontine gliomas (DIPG) to 

include supratentorial tumors with HGG or PNET histopathology (Buczkowicz et al., 2014). 

Where tested by fluorescence in situ hybridization (FISH; 4/4), MYCN and ID2 were co-

amplified in the same tumor cell nuclei (Figure 2D). CNS-PNETs within the HGGRTK 

clusters showed diverse, broad chromosomal copy-number alterations, and half (14/28, 

50 %) harbored focal amplifications and/or deletions of known oncogenes and/or tumor 

suppressor genes (Figures S2A/B). In the three CNS-PNETs from the EWS cluster the 

presence of a EWSR1 re-arrangement was detected by RNA sequencing or FISH analysis 

(data not shown). There was insufficient material to investigate CNS-PNETs from the EPN 

clusters for the presence of RELA or YAP1 fusions. Patient information (age at diagnosis, 

tumor location, and survival) of CNS-PNETs from aforementioned clusters matched clinical 

features of their reference entities and subgroups (Figures 2E-H and S2C-G).

Where available, the histology of CNS-PNETs with DNA methylation profiles and 

molecular markers associated with other CNS tumor entities (n = 71) was re-evaluated by an 

expert panel of neuropathologists. In most instances, the tumors demonstrated histological 

features either supporting their molecular re-classification, or ambiguous histology for 

which the entity suggested by the molecular re-classification would be included in the 

differential diagnosis (Tables S2A-C). Among the tumors re-classified into other CNS tumor 

entities were small-cell tumors displaying classic features attributed to CNS-PNET (Figures 

S2H-M). These features were not restricted to the ETMR group but were also prominent in 

the HGGG34 and HGGMYCN groups, in which specific examples demonstrated hallmark 

features of anaplasia including cell wrapping and prominent nucleoli, while other tumors 

demonstrated diffuse infiltrative growth more typical of HGG. Rare examples of tumors re-

classified into a HGG group demonstrated robust neuronal antigen expression, highlighting 
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the insufficiency of glial and neuronal antigen expression alone to reliably discriminate these 

malignant small-cell CNS tumors (Figures S2N-P).

Identification of Four New Molecular CNS Tumor Entities

Our initial clustering analysis of CNS-PNETs identified four new molecular entities 

designated “CNS NB-FOXR2”, “CNS EFT-CIC”, “CNS HGNET-MN1”, and “CNS 

HGNET-BCOR”. To explore whether these molecular entities were also diagnosed other 

than CNS-PNET, we compared DNA methylation patterns of each entity with an in-house 

collection of > 10,000 profiles from a broad variety of pediatric and adult CNS tumors (data 

not shown). Subsequent clustering analysis identified 59 tumors with diverse histological 

diagnoses that now grouped with one of the four new CNS tumor entities (Figures 3 and 

S3A-C, Table S3). While the enlarged CNS NB-FOXR2 (n = 46) and CNS EFT-CIC (n = 

15) clusters represented entities with almost exclusive CNS-PNET histology (Figure 3), the 

CNS HGNET-MN1 cluster (n = 41) included 16 tumors histologically diagnosed as 

astroblastoma (ABM) – rare WHO-defined glial tumors – supporting the concept that they 

are distinct from conventional diffuse glial neoplasms (Louis et al., 2007). The CNS 

HGNET-BCOR cluster (n = 34) was expanded by a variety of CNS tumor histologies. 

Again, molecular subgroup assignment by transcriptomic profiling recapitulated DNA 

methylation-based clusters (Figures 3A and S3A) and allowed the identification of three 

additional tumors included in further gene expression analyses.

We correlated each of the four novel CNS tumor entities with available basic clinical 

parameters (Figures 3C-F). Noticeably, the gender ratio was strongly shifted towards 

females in the CNS HGNET-MN1 (p < 0.001), as also observed for ABM (Louis et al., 

2007). Patient age at diagnosis in CNS HGNET-MN1 was higher compared with other 

entities (p < 0.001). There were no clear differences in tumor site of occurrence, although 

occasional cerebellar location was restricted to tumors of the CNS HGNET-MN1 and CNS 

HGNET-BCOR entities. Infratentorial, non-cerebellar location was not associated with a 

specific molecular CNS tumor entity. Surgical and pathological reports of four CNS EFT-

CIC tumors did not indicate meningeal or osseous origin. Available survival data suggested 

differences between the novel CNS tumor entities, with significantly better overall survival 

observed for patients from the CNS HGNET-MN1 compared to the CNS HGNET-BCOR 
entity (Figure S3D).

Histopathology of New CNS Tumor Entities

Histopathological review was performed on 30 CNS NB-FOXR2, 14 CNS HGNET-BCOR, 

10 CNS HGNET-MN1, and four CNS EFT-CIC tumors (Tables S2A-C). The CNS NB-

FOXR2 entity displayed embryonal architectural and cytological features with a small-cell 

phenotype (Figures 4A-C). Areas of differentiation in the form of neuropil, neurocytic cells, 

or ganglion cells were observed in a high proportion of tumors (Figure 4C). Frequent 

perivascular anuclear zones (“vascular pseudorosettes”), nuclear palisades, and Homer 

Wright rosettes were encountered in individual samples (Figure S4A, Tables S2B/C). This 

group encompassed tumors that would be classified as CNS neuroblastoma or CNS 

ganglioneuroblastoma in the 2007 WHO classification scheme (Louis et al., 2007) (Figures 
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4A-C). CNS NB-FOXR2 tumors nearly uniformly expressed OLIG2 and the neuronal 

antigen synaptophysin (Figures S4A/B).

The CNS EFT-CIC entity was also characterized by a small-cell phenotype but with variable 

histology (Figures 4D-F). The tumor architecture included both alveolar and fascicular 

patterns of growth. Although tumors were uniformly high-grade, this group lacked defining 

histological features and failed to express markers of differentiation.

The CNS HGNET-MN1 entity (Figures 4G-I) consisted of circumscribed high-grade tumors 

containing a mixture of solid and pseudopapillary patterns. Dense pericellular hyalinization 

was frequently present in this group. Some had the typical pathology of the tumor termed 

astroblastoma (ABM) in the current WHO classification system, whereas others were harder 

to align with that diagnosis. The majority of tumors (16/23) from our current database 

histologically diagnosed as ABM belonged to this molecular entity. Thus, we consider it 

unlikely that there is an additional true ‘astroblastoma’ entity other than the MN1-altered 

entity outlined here.

The CNS HGNET-BCOR entity consisted of relatively compact tumors with a combination 

of spindle to oval cells. They often exhibited perivascular pseudorosettes, giving the tumors 

an ependymoma-like appearance (Figures 4J-L). Tumors frequently demonstrated fibrillary 

processes, typical of glial differentiation, and only in rare instances exhibited true embryonal 

morphology.

Tumors from CNS HGNET-MN1 and CNS HGNET-BCOR entities frequently expressed 

GFAP, but neuronal antigen expression was either focal or absent. In comparison, mitotic 

counts were high for CNS NB-FOXR2 and CNS EFT-CIC tumors, but lower for the other 

two entities (Figure S4C).

Genetic Alterations Define New CNS Tumor Entities

For each of the four new CNS tumor entities, we next inspected copy-number profiles 

derived from DNA methylation arrays. Gain of chromosome arm 1q was characteristic for 

the CNS NB-FOXR2 entity (43/44, 98 %; p < 0.001) (Figure S5A). Further broad 

aberrations included loss of 16q in CNS NB-FOXR2 (21/42, 50 %) and CNS HGNET-MN1 
(12/37, 32 %), and gain of chromosome 8 in CNS NB-FOXR2 (14/44, 32 %), CNS EFT-CIC 
(3/13, 23 %), and CNS HGNET-MN1 (6/38, 16 %) tumors. Most tumors from the CNS 

HGNET-BCOR entity displayed balanced copy-number profiles. We only detected high-

level focal oncogene amplifications of MYC and CDK4, each in one CNS NB-FOXR2 
sample, and EGFR and CDK4 in one CNS HGNET-MN1 sample (Table S4). Homozygous 

deletions of CDKN2A were found in two CNS HGNET-BCOR and one CNS HGNET-MN1 
tumors.

In order to identify genetic alterations that underlie each of the four new, molecularly 

defined CNS tumor entities in greater detail, we performed genome-wide DNA and RNA 

sequencing of all cases with available fresh-frozen tissue (Table S4). As outlined below, we 

found that each entity was characterized by a recurrent genetic alteration.
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CNS Neuroblastoma with FOXR2 Activation (CNS NB-FOXR2)

Genome-wide sequencing revealed complex inter- and intrachromosomal re-arrangements 

converging on forkhead box R2 (FOXR2) in 6/8 samples with available data, leading to 

increased FOXR2 gene expression levels in CNS NB-FOXR2 tumors compared with other 

CNS tumor entities (Figure 5A-C). Three of the detected events resulted in fusion transcripts 

retaining the full coding sequence of FOXR2, with upstream non-coding exons forming a 

novel transcript variant fused to different fusion partners (Figures S5B/C). These included 

JMJD1C as a result of a complex interchromosomal translocation involving chromosome 10, 

and LOC550643 and JPX as products of tandem duplications on chromosome X. These 

duplications were also detectable by characteristic copy-number changes in three samples 

without available sequencing data (Figure S5D). We further identified a recurrent deletion 

between full-length FOXR2 and MAGEH1 in two samples. Copy-number data indicated 

additional alterations targeting the FOXR2 locus in seven samples (Figure S5D), with a 

deletion reaching ~ 500 kb upstream of FOXR2 as the most frequent event (4/46, 9 %), 

potentially fusing FOXR2 to the MAGED2 gene. Moreover, we identified a mitochondrial 

DNA insertion within USP51 that led to the formation of a novel FOXR2 promoter (Figure 

S5E). Mitochondrial-nuclear genome fusions have been recently reported to occur 

frequently in cancer (Ju et al., 2015), but this is the first example where such an event 

induces oncogene expression. Since FOXR2 is not expressed in other CNS tumor types 

(Figure 5C) or normal brain tissues, these events are suggestive of FOXR2 activation 

facilitated by promoters of active genes (Figure S5F), thus instigating oncogenic activity 

(Rahrmann et al., 2013). One exceptional tumor that did not show elevated gene expression 

of FOXR2 was the only one to harbor a focal amplification of MYC, resulting in upregulated 

MYC gene expression compared with FOXR2-activated tumors (Figure S5F). The FOXR2 
homologue FOXR1 is recurrently activated in peripheral neuroblastoma counterparts by 

intrachromosomal deletion/fusion events, resulting in overexpression of fusion transcripts 

(Santo et al., 2012).

CNS Ewing Sarcoma Family Tumor with CIC Alteration (CNS EFT-CIC)

In three tumors analyzed by RNA sequencing we detected an interchromosomal gene fusion 

between capicua transcriptional repressor (CIC, located on chromosome 19q13.2), and NUT 
midline carcinoma, family member 1 (NUTM1, located on chromosome 15q14) in two 

samples (Figures 6A/B and S6A), while the third harbored a frameshift deletion in CIC 
(exon6:c.902delC:p.S301fs). Both fusion events fused exon 16 of CIC in-frame to exon 4 of 

NUTM1, retaining the DNA-binding high mobility group (HMG) box domain of CIC. Using 

a CIC break apart FISH probe we identified CIC re-arrangements in 8/9 samples including 

one of the tumors analyzed by RNA sequencing (Figures 6B and S6B), while the FISH-

negative tumor carried the CIC frameshift deletion. Gene expression data indicated 

transcriptional upregulation of fusion partner NUTM1 in this group compared with all other 

samples (Figure 6C). Consequently, those tumors showed strong reactivity when 

investigated for NUTM1 protein expression by immunohistochemistry, while no tumors 

from any other entity stained positive (Figures 6B and S4A/B). On the basis of CIC fusions 

present in subgroups of pediatric primitive round cell sarcomas (Haidar et al., 2015) and 

their distinct transcriptional signature (Specht et al., 2014), we analyzed CNS EFT-CIC 
tumors for similar gene expression patterns. As observed in peripheral EFT, among the 
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genes specifically upregulated in this group were members of the ETS transcription factor 

family including ETV1, ETV4, ETV5, FLI1, and ETS1 (Figure S6C). Oncogenic re-

arrangements of NUTM1 are a defining genetic feature of NUT midline carcinomas (NMC), 

in most cases involving bromodomain-containing protein 4 (BRD4) (French, 2014). We 

hypothesize a molecular mode of action of CIC-NUTM1 fusions in which specific CIC 
target genes are transcriptionally activated by the NUTM1 moiety via the recruitment of 

histone acetyl transferases, similar to a model of how BRD4-NUTM1 might block 

differentiation in NMC (French, 2014). As this may lead to global hypoacetylation, these 

findings provide a rationale for testing the efficacy of epigenetically active drugs in this 

tumor entity.

CNS High-Grade Neuroepithelial Tumor with MN1 Alteration (CNS HGNET-MN1)

We identified interchromosomal gene fusions between meningioma (disrupted in balanced 
translocation) 1 (MN1, 22q12.3) and BEN domain containing 2 (BEND2, Xp22.13) in three 

samples, and MN1 and CXXC-type zinc finger protein 5 (CXXC5, 5q31.2) in one sample 

(Figures 6D/E and S6D) from RNA sequencing data of four tumors. Using an MN1 break 

apart FISH probe, MN1 re-arrangement was confirmed in three of the tumors with RNA 

sequencing data and nine additional tumors from the CNS HGNET-MN1 entity (Figures 6E 

and S6E). High-level gene expression of the fusion partner BEND2 was observed 

specifically in CNS HGNET-MN1 tumors, while being absent in other CNS tumor types 

(Figure 6F). BEND2 immunohistochemistry failed to give reliable results due to non-

specific staining with available antibodies. In the tumor with MN1-CXXC5 fusion, CXXC5 
but not BEND2 was expressed at high levels (data not shown). A smaller set of five samples 

including the tumor harboring the MN1-CXXC5 fusion formed a distinctly separate cluster, 

while all three tumors harboring an MN1-BEND2 fusion were found in a larger homogenous 

cluster, potentially indicating differences in underlying biology depending on the MN1 
fusion partner (Figures 3A and S3A). The gender bias was even more striking in the two 

separated clusters (male:female ratio: 2:32, p < 0.001; and 4:1, respectively). Fused to 

BEND2, the encoded chimeric protein combines the transactivating domains of MN1 and 

the two BEN domains in the C-terminus of BEND2, which have been suggested to mediate 

protein-DNA and protein-protein interactions during chromatin organization and 

transcription (Abhiman et al., 2008). In myeloid leukemia, frequently occurring MN1-TEL 

fusion proteins act as transcription factors with transforming activity both via targeting TEL 

binding sites (Buijs et al., 2000) and a dominant-negative effect on wild-type MN1 (van 

Wely et al., 2007).

CNS High-Grade Neuroepithelial Tumor with BCOR Alteration (CNS HGNET-BCOR)

DNA and RNA sequencing revealed in-frame internal tandem duplications of the BCL6 
corepressor (BCOR) in 10/10 (100 %) samples (Figures 6G/H and S6F). The duplicated 

region in exon 16 of BCOR was identical with that of BCOR tandem duplications recently 

described in clear cell sarcomas of the kidney (Ueno-Yokohata et al., 2015) (Figure S6G). 

One additional tumor harbored an intragenic in-frame deletion in BCOR fusing the previous 

exon directly to the sequence duplicated in the other samples (Figure S6F), while two more 

tumors from that entity carried BCOR frameshift mutations. Duplications in BCOR were 

detected by targeted PCR in five additional tumors (Figures 6H and S6G). Activation of the 
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WNT signaling pathway as indicated by nuclear beta-catenin immunoreactivity was 

observed in 11/14 samples (79 %) (Figure S4A/B). Gene expression of BCOR was found at 

higher levels in CNS HGNET-BCOR tumors than in most other CNS tumor types (Figure 

6I). High expression of altered BCOR transcripts in CNS HGNET-BCOR tumors suggests a 

different mechanism from BCOR loss-of-function mutations reported in other malignancies, 

such as medulloblastoma (Jones et al., 2012; Pugh et al., 2012).

Differential Pathway Activation in New CNS Tumor Entities

Array-based gene expression analyses of tumors from the four new entities (n = 34) 

identified many genes (range: 435 – 2,880) as significantly (FDR q < 0.001) differentially 

expressed between one vs. the other three entities (Table S5). Subsets of these genes, which 

frequently included transcription factors and potential drug targets, showed up-regulated 

expression within the new entities (Figures 7A and S7A), suggesting activation of specific 

pathways or transcriptional networks (Figure S7B), and were also often not expressed in 

other CNS tumor entities (Figure 7B). Gene-ranked pathway enrichment analysis (Reimand 

et al., 2011) of entity-specific genes relative to non-neoplastic brain tissues indicated several 

general and specific neuronal developmental processes being activated similarly in each of 

the four entities, but also identified deregulated processes and pathways more unique to one 

or more of the entities (Figure S7C, Tables S6A-D).

DISCUSSION

Our study demonstrates that the embryonal histology of CNS-PNETs does not correspond to 

a homogeneous molecular class, and suggest that a majority of tumors designated CNS-

PNET represent morphological variants of other histologically and molecularly defined 

diagnostic entities. While a subset of tumors diagnosed as CNS-PNET were questionable or 

inaccurate diagnoses upon expert review, a high proportion of tumors demonstrated 

ambiguous small-cell morphology that was difficult to classify on histology alone, 

highlighting the diagnostic necessity of utilizing established molecular markers.

Our study also led to the identification of four new, molecularly defined CNS tumor entities. 

The entity designated “CNS neuroblastoma with FOXR2 activation” consisted of a relatively 

pure population of CNS-PNET and was enriched for CNS-PNET variants CNS 

neuroblastoma and ganglioneuroblastoma. This entity therefore clarifies the molecular 

underpinnings of histopathological CNS-PNET variants into two primary entities, namely 

ETMR (which accounts for the previously described ETANTR, ME, and EB) and CNS NB-

FOXR2. We have further defined three additional molecular entities among pediatric CNS 

tumors, of which one entity, CNS HGNET-MN1, incorporates astroblastomas, while CNS 

EFT-CIC and CNS HGNET-BCOR represent novel entities displaying pathological overlap 

with CNS-PNET and other histological entities.

A minority of CNS-PNETs failed to classify into a specific subgroup, therefore representing 

a group we currently consider as ‘CNS embryonal tumors, NOS’. However, as international 

initiatives accumulate larger tumor series, our approach has potential to expand the 

molecular classification of malignant brain tumors, pushing the limits of what is recognized 

as a bona fide entity.
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In conclusion, our findings reinforce the importance of incorporating molecular information 

into the next revision of the WHO classification of CNS tumors (Louis et al., 2014), and 

warrant a replacement of the term “CNS-PNET” with biologically specific designations. Our 

study provides an innovative framework for improving diagnostic accuracy and 

prognostication in malignant CNS tumors. The approach is amenable to retrospective 

analyses of patients treated with current regimens and will facilitate the design of more 

meaningful clinical trials for patients with malignant brain tumors.

EXPERIMENTAL PROCEDURES

Tumor samples and clinical data were collected at the DKFZ (Heidelberg, Germany) and at 

the St. Jude Children's Research Hospital (Memphis, USA) in accordance with research 

ethics board approval from both institutes. Additional tumor samples and clinical data were 

provided by collaborating centers world-wide. Clinical patient details can be found in Table 

S1A and Table S3. An overview of all CNS-PNET and other CNS tumor samples included 

in various analyses is given in Figure S8. Inclusion criteria for CNS-PNET samples 

comprised an institutional diagnosis of “CNS-PNET” (excluding medulloblastoma) and 

sufficient high-quality DNA for methylation profiling. Wherever possible, HE-stained FFPE 

sections from CNS-PNET and additional CNS tumor samples were reviewed by experienced 

neuropathologists (A.K., D.W.E., B.A.O., D.C.; n = 151; see Table S2).

DNA methylation profiling of CNS-PNET and reference samples was performed from both 

fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue using the Infinium 

HumanMethylation450 BeadChip array (450k array) according to the manufacturer's 

instructions (Illumina, San Diego, USA). The complete CpG methylation values have been 

deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) 

under accession number GSE73801. For unsupervised hierarchical clustering of CNS-PNET 

and reference samples we selected the 10,000 most variably methylated probes across the 

dataset. Copy-number variation (CNV) analysis from 450k methylation array data was 

performed using the conumee Bioconductor package version 1.0.0. Scoring of focal 

amplifications and deletions and chromosomal gains and losses was performed by manual 

inspection of each profile.

Samples for which RNA of sufficient quantity and quality was available were analyzed on 

the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, 

USA). Sample library preparation, hybridization, and quality control were performed 

according to manufacturer's protocols. Expression data have been deposited in NCBI's Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) under accession number 

GSE73038.

Next generation DNA and RNA sequencing was performed using Illumina technologies as 

previously described (Jones et al., 2012). In addition to automated detection of alterations, 

candidate genes and their 3' and 5' intergenic neighborhood were manually investigated 

using the Integrative Genomics Viewer (IGV) (Robinson et al., 2011) for any breakpoints. 

Sequencing data has been deposited at the European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/) under accession number EGAS00001001632.
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Detailed description of each analysis presented in this study can be found within the 

Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Molecular Classification of CNS-PNETs by DNA Methylation Profiling
(A) Unsupervised clustering of DNA methylation patterns of 323 CNS-PNET samples 

alongside 211 reference samples representing CNS tumors of known histology and 

molecular subtype using the 10,000 most variably methylated probes. Molecular diagnostic 

reference tumors or CNS-PNETs (inner circle) and gene expression subgroup assignment 

(outer circle) are depicted by colored bars as indicated. DNA methylation clusters are 

highlighted by colors as indicated. Grey bars indicate samples unclassifiable by gene 

expression analyses.

(B) Two dimensional representation of pairwise sample correlations using the 10,000 most 

variably methylated probes by t-Distributed Stochastic Neighbor Embedding (tSNE) 

dimensionality reduction. The same samples as in (A) are used (n = 534). Reference samples 

are colored according to their molecular reference entity. CNS-PNET samples are colored in 

black. Lines connect each sample to the centroid of its respective molecular CNS tumor 

entity.
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(C) Re-classification of 323 CNS-PNETs into known molecular reference entities and four 

new CNS tumor entities by molecular profiling. Entities correspond to DNA methylation 

clusters and are represented by colors as indicated.

See also Figure S1 and Table S1.
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Figure 2. Molecular and Clinical Characteristics of Re-Classified CNS-PNET Groups
(A-D) Molecular characteristics of CNS-PNETs from ETMR (A), AT/RT (B), HGGIDH, 

HGGK27, and HGGG34 (C), and HGGMYCN (D) DNA methylation clusters. Detection and 

frequency of characteristic molecular alterations in each group are indicated. Representative 

copy-number profiles in (A), (B), and (D) depict genomic gains (green dots) and losses (red 

dots) on individual chromosomes as indicated. FISH and IHC images in (A), (B), and (D) 

show representative tumor samples.

(E-H) Tumor location and age at diagnosis from ETMR (E), AT/RT (F), HGGIDH, HGGK27, 

and HGGG34 (G), and HGGMYCN (H) DNA methylation clusters. Black bars in age plots 

indicate the median. Numbers in brackets indicate group size with available data.

See also Figure S2 and Tables S1 and S2.
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Figure 3. Identification of New CNS Tumor Entities Across Histologies
(A) Unsupervised clustering of DNA methylation patterns of 77 CNS-PNET samples 

alongside 159 reference samples and 59 additional samples representing CNS tumors of 

varying histology using the 10,000 most variably methylated probes. Molecular subgroup 

assignment by DNA methylation (inner circle) or gene expression patterns (middle circle) 

correspond to subgroup labels. Original tumor histology (outer circle) is depicted for tumors 

from new molecular CNS tumor entities by colored bars as indicated.

(B) Composition of four new CNS tumor entities by histological diagnosis. Tumor histology 

is represented by colors as indicated.

(C-F) Clinical patient information for four novel CNS tumor entities CNS NB-FOXR2 (C), 

CNS EFT-CIC (D), CNS HGNET-MN1 (E), and CNS HGNET-BCOR (F). For each entity, 

tumor location (left panel), age at diagnosis (middle panel), and gender distribution (right 

panel) are shown. Numbers in brackets indicate group size with available data.

See also Figure S3 and Table S3.
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Figure 4. Histopathological Patterns of New CNS Tumor Entities
(A-C) The CNS NB-FOXR2 entity was characterized by uniform round embryonal cells 

with minimal cytological pleomorphism. Nuclear palisades and neurocytic differentiation 

were frequently encountered.

(D-F) CNS EFT-CIC tumors were composed of small monotonous cells. The tumor 

architecture was variable and included fascicular and alveolar growth. Select examples 

demonstrated a spindle cell phenotype.

(G-I) CNS HGNET-MN1 tumors were composed of monotonous neuroepithelial cells with 

oval forms. Pseudopapillary architecture and dense stromal hyalinization was often 

encountered.

(J-L) The CNS HGNET-BCOR entity was characterized by oval to elongated cells. 

Perivascular anuclear zones were often present and glial fibrillary processes were typical.

Scale bars represent 50 μm. See also Figure S4 and Table S2.
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Figure 5. Recurrent Molecular Alterations in the CNS NB-FOXR2 Entity
(A) Schematic representation depicting chromosomal location, wild-type RNA transcripts, 

and exon structures resulting from an exemplary genetic alteration affecting the FOXR2 
gene.

(B) Frequency of FOXR2 re-arrangements identified by RNA/DNA sequencing or copy-

number data.

(C) Gene expression levels of FOXR2 in various CNS tumor entities.

See also Figure S5 and Table S4.
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Figure 6. Recurrent Molecular Alterations in CNS EFT-CIC, CNS HGNET-MN1 and CNS 
HGNET-BCOR Entities
(A-I) Schematic representation, frequency, and transcriptomic effects of recurrent molecular 

alterations found in tumors from the CNS EFT-CIC (A-C), CNS HGNET-MN1 (D-F), and 

CNS HGNET-BCOR (G-I) entities. Schematics in (A), (D), and (G) depict chromosomal 

location, wild-type RNA transcripts, and exon structures resulting from recurrent alterations. 

Frequencies of the respective events detected by different methods are depicted in panels 

(B), (E), and (H). Gene expression levels of NUTM1, BEND2, and BCOR across various 

CNS tumor entities are displayed in panels (C), (F), and (I).

See also Figure S6 and Table S4.
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Figure 7. Transcriptional Profiling of New CNS Tumor Entities
(A) Heatmap representing the expression levels of the ten most significantly differentially 

up-regulated genes comparing one new CNS tumor entity vs. the three others. Each column 

represents one sample, each lane represents one gene. Gene expression levels are 

represented by a color scale as indicated.

(B) Individually selected marker genes specifically up-regulated in one of the new CNS 

tumor entities compared with other CNS tumor entities as indicated.

See also Figure S7 and Table S5 and S6.
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