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Niche Modification by Sulfate-Reducing Bacteria Drives
Microbial Community Assembly in Anoxic Marine Sediments

Qi-Yun Liang,a Jin-Yu Zhang,a Daliang Ning,c Wen-Xing Yu,a Guan-Jun Chen,a,b Xuanyu Tao,c Jizhong Zhou,c,d Zong-Jun Du,a,b

Da-Shuai Mua,b

aMarine College, Shandong University, Weihai, People’s Republic of China
bState Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
cInstitute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
dState Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China

ABSTRACT Sulfate-reducing bacteria (SRB) are essential functional microbial taxa for
degrading organic matter (OM) in anoxic marine environments. However, there are little
experimental data regarding how SRB regulates microbial communities. Here, we applied
a top-down microbial community management approach by inhibiting SRB to elucidate
their contributions to the microbial community during OM degradation. Based on the
highly replicated microcosms (n = 20) of five different incubation stages, we found that
many microbial community properties were influenced after inhibiting SRB, including
the composition, structure, network, and community assembly processes. We also
found a strong coexistence pattern between SRB and other abundant phylogenetic lin-
eages via positive frequency-dependent selection. The relative abundances of the fami-
lies Synergistaceae, Peptostreptococcaceae, Dethiosulfatibacteraceae, Prolixibacteraceae,
Marinilabiliaceae, and Marinifilaceae were simultaneously suppressed after inhibiting SRB
during OM degradation. A close association between SRB and the order Marinilabiliales
among coexisting taxa was most prominent. They contributed to preserved modules
during network successions, were keystone nodes mediating the networked community,
and contributed to homogeneous ecological selection. The molybdate tolerance test of
the isolated strains of Marinilabiliales showed that inhibited SRB (not the inhibitor of
SRB itself) triggered a decrease in the relative abundance of Marinilabiliales. We also
found that inhibiting SRB resulted in reduced pH, which is unsuitable for the growth of
most Marinilabiliales strains, while the addition of pH buffer (HEPES) in SRB-inhibited
treatment microcosms restored the pH and the relative abundances of these bacteria.
These data supported that SRB could modify niches to affect species coexistence.

IMPORTANCE Our model offers insight into the ecological properties of SRB and identi-
fies a previously undocumented dimension of OM degradation. This targeted inhibition
approach could provide a novel framework for illustrating how functional microbial taxa
associate the composition and structure of the microbial community, molecular ecologi-
cal network, and community assembly processes. These findings emphasize the impor-
tance of SRB during OM degradation. Our results proved the feasibility of the proposed
study framework, inhibiting functional taxa at the community level, for illustrating when
and to what extent functional taxa can contribute to ecosystem services.

KEYWORDS sulfate-reducing bacteria, biotic interactions, molecular ecological
networks, microbial community assembly, organic matter degradation, sulfate-
reducing organisms

In anoxic marine sediments, the microbial degradation of organic macromolecules is
a complex interspecies process involving hydrolysis, fermentation, and mineralization

(1). It has been reported that sulfate reduction can help facilitate the oxidation of up to
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50% of the organic matter in marine sediments (2). Sulfate reducers are a phenotypic
group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA),
causing some researchers to use the term sulfate-reducing prokaryotes (SRP) or sul-
fate-reducing microorganisms (SRM) (1). The diversity and abundance of SRB have
been relatively high in marine sediments (3, 4), implying the vital importance of SRB
during sulfate and carbon cycles in marine sediments.

In anaerobic environments with low redox potential, SRB compete with other anae-
robes (e.g., fermentative bacteria, proton-reducing acetogenic bacteria, homo-acetogens,
and methanogens) for the available common substrates (5, 6), which are products of the
organic matter mineralization process. Beyond this competition, SRB might facilitate the
growth of other auxotrophic bacterial taxa via the excretion of metabolic products (e.g.,
biotin) (7). SRB could also engage in strong cooperative interactions in which energy-
transducing metabolic interactions are coupled across anaerobic methane-oxidizing arch-
aea (8). As the dominant microorganisms in marine sediments, the dynamic change of
SRB abundance could influence the surrounding abiotic or biotic environments and the
entire microbial community (9). However, we require greater knowledge about how com-
munity assembly would be influenced when a specific community function is blocked.

Community assembly theory was adapted as a general framework for understanding
the structuring of natural communities (10) and is increasingly recognized as a viable
framework for unifying ecology (11). Currently, microbial community assembly is sug-
gested to be controlled by two complementary mechanisms, which are deterministic
processes based on the niche theory (12, 13) and stochastic processes based on the neu-
tral theory (14–16). Ning (17) developed a reliable tool for quantifying the relative impor-
tance of a conceptual community assembly processes framework proposed by Vellend
(18). There are numerous studies concerning community assembly in various open envi-
ronments (19–22) and closed experiments (23–25) based on the microcosm models for
bridging the gap between theory and nature. Abundant species with broad functions
(26) can exert a large-enough influence on their environment to drive recruitment of
new taxa during community succession (27). Therefore, there will be a strong relation-
ship between abundant organisms and deterministic processes during community as-
sembly (28). For the abundant functional SRB, we hypothesize that the combined effects
of the SRB could strongly influence their localized environment through niche modifica-
tion processes during the anaerobic mineralization of organic molecules.

Sulfate reduction can be inhibited by molybdate, a divalent oxyanion analogue of sul-
fate, competing with and inhibiting sulfate transport and activation (29). Molybdate has
been used frequently as a specific inhibitor of SRB in environmental studies (30, 31);
therefore, we employed molybdate in microcosms models to illustrate the role of SRB
within a microbial community. To reduce covariations due to external environmental
variability and to maximize covariations due to interactions (32, 33), we conducted a
highly replicated microcosm study (n = 20) with homogenized coastal sediments to min-
imize variability between replicates. In these microcosms, a total of 180 homogenized
sediment samples were incubated with a nutrient medium (7) under anoxic conditions.
Half of these microcosms were incubated under conditions where sulfate reduction was
inhibited by molybdate to elucidate the roles of SRB. The degradation of organic matter
was monitored by measuring the concentrations of total organic carbon (TOC), total
inorganic carbon (TIC), volatile fatty acids (VFAs), and sulfate. Microbial community com-
position, assembly, and molecular ecological networks (MENs) were investigated using
high-throughput sequencing data of the 16S rRNA genes. Here, we wanted to address
two questions during the anaerobic degradation of organic molecules in marine sedi-
ments, (i) how SRB plays critical roles within microbial community networks, and (ii) how
SRB contributes to microbial community assembly. Our work identifies a previously
undocumented dimension of the SRB and offers insight into the ecological properties of
this functional microbial group. This targeted inhibition approach can also provide a
new framework to study specific functional groups in ecosystems and links between mi-
crobial community composition and ecosystem function.
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RESULTS
Organic matter mineralization is blocked by molybdate. Sulfate concentration

sharply decreased from days 5 to 12 in the control group, and the changes from days 5 to
30 showed slight variations in the SRB-inhibited treatment group (Fig. 1A). The changes in
sulfate concentration from days 12 to 30 between the control and SRB-inhibited treatment
groups displayed significant differences, suggesting that sulfate reduction was fully
blocked in the latter. The concentration of total soluble Fe, total organic carbon (TOC),
total inorganic carbon (TIC), and pH also showed significant differences between the con-
trol and SRB-inhibited treatment groups from days 12 to 30. In contrast, the sulfite con-
centration and phosphorus did not display significant differences. There were significant

FIG 1 Characterization of physicochemical factors and volatile fatty acids during incubation. (A) Characterization of physicochemical factors. (B)
Characterization of volatile fatty acids (VFAs). Orange and blue represent the control and SRB-inhibited treatment groups, respectively. D00, D05, D12, D21,
and D30 on the x axis represent 0, 5, 12, 21, and 30 days of incubation. Error bars represent the standard deviation. The results of ANOVA with Turkey’s
HSD tests from days 12 to 30 are marked in the gray area.
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differences in TIC from days 12 to 30 between the control and SRB-inhibited treatment
groups. All volatile fatty acids (VFAs) showed significant differences during this period of
incubation between the control and SRB-inhibited treatment groups (Fig. 1B). The concen-
trations of primary VFAs (acetate, propionate, and butyrate) were not sharply reduced and
maintained a steady state, consistent with the accumulation of VFAs observed by
Sørensen et al. (34), showing that the oxidation of VFAs was inhibited.

Inhibiting SRB altered the bacterial community composition and structure.
After quality control of high-throughput sequencing data from the 16S rRNA genes,
3,808,147 sequences were generated from 180 samples, ranging from 20,031 to 21,434
sequences per sample. Based on a 97% sequence identity cutoff, 3,337 operational taxo-
nomic units (OTUs) were identified from all samples, ranging from 341 to 1,781 per sam-
ple. Alpha diversities decreased significantly from day 0 to day 5 and remained stable for
the rest of the incubation (Fig. 2A to C and Fig. S1A to E in the supplemental material).
The bacterial community diversity indexes (Shannon-Wiener index and inverse-Simpson
index) showed significant differences from days 5 to 30 (Fig. 2C and Fig. S1C). The bacte-
rial communities of the SRB-inhibited treatment group showed lower evenness on days
5 and 12 than the control group (P , 0.001) and no significant difference from days 21
to 30 (Fig. S1F and G). The structure of the bacterial community was significantly differ-
ent between the control and SRB-inhibited treatment groups (Fig. 2D and Fig. S1H;
Table 1 and Table S1). In detail, the differences in the bacterial community in SRB-inhib-
ited treatment group were smaller than that in the control group (Table 1 and Table S1).
Meanwhile, we used a simple metric to count the fraction of the community represented
by OTUs that were undetected at any previous time and found that the proportion of
detected novel OTUs remained at 8% from days 5 to 12 and then diminished to approxi-
mately 2% from days 21 to 30 in the control group, while this proportion remained at
about 4% from days 5 to 30 in SRB-inhibited treatment group (Fig. S1I).

To understand how much variation in community structure was due to the gain
and loss of OTUs, a rigorous analysis of beta diversity was employed, which accounted
for the additive contributions of nestedness (species loss) and turnover (species
replacement) to the binary Jaccard distance (total beta diversity) calculated between
all samples (35). Turnover was a much greater contributor to the observed diversity
than nestedness both in the control and SRB-inhibited treatment groups (Fig. 2E and F).
Within the SRB-inhibited treatment group, more than 40% of the variance observed was
from nestedness, 16% variance was from turnover, and 25% of total Jaccard could be
attributed to incubation days (Fig. 2F). Although turnover was high, it was relatively con-
stant between each incubation period. Within the control group, turnover was more vari-
able between samples, and changes to the bacterial parts of the community coincided
more with changes in turnover.

The composition of the bacterial community was significantly different between the
control and SRB-inhibited treatment groups as revealed by three nonparametric dissimi-
larity analyses (Table 1). The phylogenetic lineages of abundant taxa between the con-
trol and SRB-inhibited treatment groups were significantly different (Fig. S1J and K). In
detail, the families Marinifilaceae, Desulfovibrionaceae, and Desulfobacteraceae were
abundant taxa only in the control group, while the family Acidaminococcaceae was an
abundant taxon only in the SRB-inhibited treatment group (Fig. S2A). Based on the
results of linear discriminant analysis effect size (LEfSe) (36) analysis, we found that the
order Marinilabiliales (families Marinifilaceae, Marinilabiliaceae, and Prolixibacteraceae)
and some SRB (families Desulfovibrionaceae and Desulfobacteraceae) showed statistically
significant and biologically consistent differences in the control group (Fig. S2B), imply-
ing that there would be close associations among them.

Inhibiting SRB changed network characters. The nine molecular ecological net-
works (MENs) were significantly different from random networks, and all empirical net-
works showed scale-free and small-world features (Table S2A). The percentage of OTUs
for MEN construction was greater under the control than SRB-inhibited treatment
group (Table S2A), community members formed looser associations in the latter group,
and ecological stochastic processes might be more prevalent in the SRB-inhibited
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treatment group. Based on the 17 network properties (Table S2A), the succession of
MENs under the control and SRB-inhibited treatment groups displayed different trajec-
tories (Fig. S3A and B). In MENs, a module is a group of species that correlate strongly
among themselves but little with species in other modules. All MENs both in the con-
trol and SRB-inhibited treatment groups were highly modular (Table S2A); meanwhile,
the variations of MENs could affect network organizational principles of modularity.
Altogether, 27 large modules (modules with $5 nodes) accounted for 75 to 88% of the
nodes in the MENs in the control group from incubation days 5 to 30, while 26 large
modules accounted for 70 to 85% of the nodes in the MENs under SRB-inhibited treat-
ment group during the same incubation stage (Table S2A). The phylogenetic lineages

FIG 2 Characterization of bacterial community biodiversity. (A to C) The alpha diversities (observed OTU number [A], Simpson index [B], and Shannon-
Wiener index [C]), along with incubation days, both in the control and SRB-inhibited treatment groups, were calculated. Orange and blue represent the
control and SRB-inhibited treatment groups, respectively. D00, D05, D12, D21, and D30 on the x axis represent 0, 5, 12, 21, and 30 days of incubation. The
results of ANOVA with Turkey’s HSD tests between the control and SRB-inhibited treatment groups at the same incubation days are shown; *,
0.01 , P # 0.05; **, 0.001 , P # 0.01; and ***, P # 0.001. (D) Beta diversity of the bacterial community visualized using NMDS ordination based on the
binary Jaccard distance. Circle and triangle symbols represent the control and SRB-inhibited treatment groups, respectively. (E and F) Binary Jaccard
distance between samples, partitioned by contributions from nestedness (species loss) and turnover (species replacement). The total change (b jac) is the
sum of changes due to nestedness (b jne) and turnover (b jtu).
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of networked communities (assemblages of microbial taxa detected in the networks)
also showed a significant difference between the control and SRB-inhibited treatment
groups (Fig. S3C). Based on removing random (5% of the total nodes) and targeted
(module hubs) nodes from the networked communities and the relative contribution
of a node to the global efficiency, we found that inhibiting SRB could significantly
decrease the robustness of MENs and increase vulnerability at incubation days 5, 12,
and 30 (Fig. S4A to C). Some significant correlations were detected between partial
network stability indices and complexity (Fig. S4D). In detail, node persistence was neg-
atively correlated with the relative modularity, and the robustness (random removal of
nodes) displayed a significantly positive correlation with the average degree in the
control group (Fig. S4D), meaning that the network stability and complexity in the con-
trol group showed a positive correlation, while the robustness (random removal of
nodes) was negatively correlated with modularity in MENs of the SRB-inhibited treat-
ment group (Fig. S4D), meaning that the correlation between network stability and
complexity in this group was changed to the negative correlation, opposite to that in
the control group. We also found that inhibiting SRB increased the node persistence
(the percentage of nodes persisting across incubation days) and constancy of empirical
networks (Fig. S4E to G), meaning that the compositions of the networked commun-
ities in the SRB-inhibited treatment group showed a smaller difference than that in the
control group.

An intriguing question is whether inhibiting SRB affects the role of individual mem-
bers and the principles of network organization. We sought to address this question
with two analyses. First, the phylogenetic lineages of keystones (module hubs, network
hubs, and connectors) were influenced by inhibiting SRB (Fig. S5A; Table S2B). There
were more keystones in the SRB-inhibited treatment group (59 keystones) than the
control group (54 keystones), and only 15.3% (15/98) of all keystones were shared
between MENs of the control and SRB-inhibited treatment groups (Table S2B). Second,
the preserved module pairs were defined as two modules in different networks having
a significantly large proportion of shared nodes (37). There were only four preserved
module pairs between the control and SRB-inhibited treatment groups, suggesting
that inhibiting SRB distinctly altered module identity (Fig. 3). Interestingly, the light-
green (M3, M1, and M5 under D12, D21, and D30, respectively) and gray (M6 and M1
under D21 and D30, respectively) clusters of the preserved modules were only
detected in the control group (Fig. 3B; Table S2C). In detail, some SRB members made
important contributions to the composition of the preserved modules (8/34, 8/23, 4/
27, and 5/9, respectively, in M3_M1 of D12C_D21C, M3_M5 of D12C_D30C, M1_M5 of
D21C_D30C, and M6_M5 of D21C_D30C [Table S2C]). Meanwhile, some members
within the order Marinilabiliales made similar contributions to the composition of pre-
served modules (6/34, 6/23, 8/27, and 1/9, respectively, in M3_M1 of D12C_D21C,

TABLE 1 Significance tests of the bacterial communities

Comparison

Adonis ANOSIM MRPP

F P R P d P
D00C_vs_D05C 19.38 0.001 0.95 0.001 0.49 0.001
D00C_vs_D12C 25.63 0.001 1.00 0.001 0.48 0.001
D00C_vs_D21C 29.72 0.001 1.00 0.001 0.48 0.001
D00C_vs_D30C 34.12 0.001 1.00 0.001 0.46 0.001
D00C_vs_D05M 13.21 0.001 0.88 0.001 0.49 0.001
D00C_vs_D12M 12.60 0.001 0.82 0.001 0.49 0.001
D00C_vs_D21M 11.70 0.001 0.79 0.001 0.49 0.001
D00C_vs_D30M 14.07 0.001 0.93 0.001 0.49 0.001
D05C_vs_D05M 11.99 0.001 0.88 0.001 0.50 0.001
D12C_vs_D12M 20.27 0.001 0.92 0.001 0.49 0.001
D21C_vs_D21M 23.93 0.001 1.00 0.001 0.49 0.001
D30C_vs_D30M 26.95 0.001 1.00 0.001 0.47 0.001
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M3_M5 of D12C_D30C, M1_M5 of D21C_D30C, and M6_M5 of D21C_D30C [Table S2C]).
These results implied that there would be strong associations between SRB and the
orderMarinilabiliales.

The relative importance of community assembly affected by inhibiting SRB.
The various groups of organisms differ greatly in their responses to environmental
changes; some populations are under strong selection, whereas others could exhibit
strong drift. Hence, it would be meaningful to consider community assembly processes
at the level of individual lineages rather than the entire community (14, 38). We

FIG 3 Preserved modules of networks across incubation days. (A) Modules ($5 nodes) shown in circular layout for all networks.
The nodes indicate major taxa and are colored randomly based on the different phyla. The label represents the ID of the module.
The left column represents modules in the control group, and the right column represents modules in the SRB-inhibited treatment
group. (B) Preserved module pairs are connected and highlighted. Nodes are randomly colored based on the modules. The left
column represents modules in the control group, and the right column represents modules in the SRB-inhibited treatment
group. The vertical links in the same color indicate that the linked modules were part of the same module clusters. The
horizontal links indicate that the linked modules of the control and SRB-inhibited treatment networks at the same enrichment
incubation stage were preserved. Note that three clusters of modules (the red, blue, and orange clusters) were consistently
preserved over the course of the incubation from D00 (day 0) to D30 (day 30). D00, D05, D12, D21, and D30 represent 0, 5, 12,
21, and 30 days of incubation, respectively. The nodes both in panels A and B only represent different taxa rather than the
relative abundance.
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employed the infer community assembly mechanisms by phylogenetic bin-based null
model (iCAMP) (17) to detect the effect of inhibiting SRB on bacterial community eco-
logical assembly. Based on the iCAMP results, homogeneous selection (HoS) and dis-
persal limitation (DL) were found to be the primary ecological processes in community
assembly, accounting for up to approximately 90% (Fig. 4A and B). The relative impor-
tance of HoS decreased sharply from incubation day 5 to day 12 in the SRB-inhibited
treatment group, whereas DL sharply increased (Fig. 4C and D). The bacterial commun-
ities in the control group showed a significantly higher ratio of HoS (Cohen’s d varied
from 4.11 to 10.32, P , 0.05), but a lower ratio of DL (Cohen’s d varied from 24.16 to
210.40, P , 0.05), supporting that the community assembly was more stochastic in
the SRB-inhibited treatment group (Fig. 4E and F). To quantify the relative importance
of different ecological processes in each phylogenetic lineage, the 3,337 observed OTUs
were divided into 134 individual phylogenetic lineages (Fig. 5). There were 17 primary
phylogenetic lineages (.5% relative abundance) dominated by HoS and DL (Fig. 5, 1st
and 2nd annuli), suggesting that only a few phylogenetic lineages significantly contrib-
uted to ecological processes. In detail, inhibiting SRB decreased the contributions to
HoS of Bin14 (Desulfobacteraceae), Bin20 (Marinifilaceae), and Bin50 (Vibrionaceae), while
the contributions to DL of Bin27 (Bacteroidaceae), Bin41 (Fusobacteriaceae), and Bin85
(Acidaminococcaceae) were increased by inhibiting SRB, thereby enhancing stochastic
processes (Fig. 5, 3rd and 4th annuli).

Niche modification by SRB promoted species coexistence. The fact that the rela-
tive abundance of different abundant families in the control group decreased by inhibiting
SRB surprised us because they are unlikely to be sensitive to molybdate due to the lack of
the coding genes of sulfate adenylyl transferase (Sat) and YcaO-like domain (39) (Fig. S5B).

FIG 4 Relative importance of different ecological processes. (A and B) Relative importance of different ecological processes
in the control and SRB-inhibited treatment groups, respectively. (DL, dispersal limitation; DR, drift; HoS, homogeneous
selection; HeS, heterogeneous selection). (C and D) Changes of homogeneous selection (HoS) and dispersal limitation (DL) in
the control (orange box) and SRB-inhibited treatment (blue box) groups. (E and F) Stochasticity estimated in the control and
the SRB-inhibited treatment groups across incubation days. In panels C to F, colored orange and blue symbols represent the
control and SRB-inhibited treatment groups, respectively. D00, D05, D12, D21, and D30 represent 0, 5, 12, 21, and 30 days
of incubation, respectively. L, M, and S represent large (jdj . 0.8), medium (0.5 , jdj # 0.8), small (0.2 , jdj # 0.5), and
negligible (jdj # 0.2) effect sizes of inhibiting SRB, based on Cohen’s d (the mean difference between the control and SRB-
inhibited treatment groups divided by pooled standard deviation) in panels C to E. Mann-Whitney U test results are shown
in panel F. *, 0.01 , P # 0.05; **, 0.001 , P # 0.01; ***, P # 0.001.
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The order Marinilabiliales among the different abundant families of the control group
were prominent due to their closer associations with SRB, including (i) six SRB members
and seven Marinilabiliales members contributed as keystones within the control group
(Table S2B), (ii) the Marinilabiliales members made similar contributions to the preserved
modules in the control group (Table S2C), and (iii) the relative importance of homogene-
ous selection in someMarinilabilialesmembers was primary in the control group (Fig. 5).

To understand why the order Marinilabiliales were suppressed in the SRB-inhibited
treatment group, we isolated a total of 305 strains from all microcosms based on six

FIG 5 Ecological process across different phylogenetic groups. The maximum-likelihood phylogenetic tree is displayed at the center in a circular layout. All
134 phylogenetic groups are shown in this figure. Bin27, Bin41, Bin50, Bin85, and Bin96 were the five most abundant phylogenetic groups. 1st annulus,
relative importance of different ecological processes across different phylogenetic groups; 2nd annulus, relative abundance of each phylogenetic group;
3rd and 4th annuli, the contribution of phylogenetic groups to homogeneous selection (HoS, 3rd) and dispersal limitation (DL, 4th).
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different growth media (Table S3A). We then randomly chose five Marinilabilialesmem-
bers from among the isolated strains to test their tolerance to molybdate (Table S3B).
The results showed that these strains grew well on marine agar with different concen-
trations of molybdate (0, 0.03, 0.3, 3, and 30 mM/L) and showed strong tolerance to
molybdate (100-fold of concentration in microcosm) in pure culture (Fig. 6A). These
results suggested that the inhibited SRB (not the inhibitor of SRB itself) might trigger a
decrease in the relative abundance of Marinilabiliales.

Notably, the pH transitioned from weakly acidic to weakly basic during incubation
from days 5 to 12 in the control microcosms (Fig. 1A), which is close to the optimal pH of
the order Marinilabiliales members (Fig. 6B; Table S3C), while in SRB-inhibited treatment
microcosms, the pH remained weakly acidic from incubation days 5 to 12 (Fig. 1A), which
was close to the minimal pH tolerance of the order Marinilabiliales members (Fig. 6B and
Table S3C) and unsuitable for the growth of the majority (32/59) of Marinilabiliales strains.
Thus, we hypothesized that the stable weak base status in microcosms could maintain
the relative abundance of the order Marinilabiliales. To test this hypothesis, we added the
pH buffer (HEPES-free acid) into the SRB-inhibited microcosms. We found that these
microcosms restored the pH reduction caused by inhibiting SRB and reinstated weakly ba-
sic status in the HEPES addition experiment (Fig. S6A). Meanwhile, the relative abundance
of the family Marinifilaceae within the order Marinilabiliales increased during incubation
from days 5 to 12 (Fig. S6B), while the families Marinilabiliaceae and Prolixibacteraceae
within the order Marinilabiliales did not significantly increase (Fig. S6B). To some extent,
these results supported that the stable weak base status in microcosms could promote
the survive of the order Marinilabiliales. The loss of biosynthetic genes in bacteria fre-
quently influences their survival in the environment (40). To further assess the biosyn-
thetic ability of certain metabolites, we chose the majority of the abundant taxa in the
control and SRB-inhibited treatment groups for comparative genomic analysis and found
that many of them were auxotrophic (Fig. 6C; Fig. S6C). Meanwhile, there were comple-
mentarities in some metabolites (e.g., L-proline, L-ornithine, L-cysteine, and vitamins B7
and B12) among SRB and the order Marinilabiliales, meaning that SRB could biosynthesize
some metabolites, but the order Marinilabiliales could not. Therefore, we hypothesized
that SRB could provide metabolites (e.g., amino acids and vitamins) to facilitate the
growth of auxotrophic Marinilabiliales via cross-feeding. To support this assumption, we
randomly chose 10 Marinilabiliales strains (Table S3B) and found that these strains grew
well and were significantly facilitated on the minimal media with various metabolites
(e.g., L-proline, L-ornithine, L-cysteine, and vitamins B7 and B12) (Fig. S6D). The above-
described results suggested that niche modification by SRB could modify niches to pro-
mote species coexistence, especially with the order Marinilabiliales.

DISCUSSION

The degradation of organic matter (OM) in marine sediments is a complex interspecies
process involving hydrolysis, fermentation, and mineralization (1). While SRB perform an
important process in OM mineralization, how they regulate the microbial community
remains unclear. To describe this previously undocumented dimension of SRB, we sys-
tematically analyzed the contributions of SRB in the microbial community composition,
structure, network, and ecological processes based on comparison with the SRB-inhibited
treatment group.

Rapid accumulation of several VFAs demonstrated the primary fermentation of sup-
plemented OM within 5 days of the onset of incubation, which was similar to the degra-
dation of protein and lipid macromolecules in subarctic marine sediment (41). At this
stage, pH and TOC concentration were decreased in all incubation microcosms, but not
sulfate concentration. After incubating for 5 days, the relative abundance of SRB increased
to become abundant in the control microcosms (see Fig. S1J in the supplemental mate-
rial), coupled with the consumption of sulfate and VFAs (Fig. 1). Meanwhile, the oxidation
of VFAs was blocked in SRB-inhibited treatment microcosms (Fig. 1). These results sup-
ported that hydrolysis and fermentation are upstream processes during OM biotic
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FIG 6 The molybdate tolerance phenotype and growth pH of the order Marinilabiliales and metabolic reconstructions. (A) Representative images of the
five Marinilabiliales strains cultured with molybdate in a series of concentrations (0, 0.03, 0.3, 3, and 30 mM/L) (Table S3B in the supplemental material).
Triangle, circle, and square symbols represent the families Marinifilaceae, Marinilabiliaceae, and Prolixibacteraceae, respectively. (B) The two subgraphs
display the optimal (top) and minimal (bottom) pH of the order Marinilabiliales members validly published according to the International Code of
Nomenclature of Prokaryotes (ICNP) (Table S3C). The orange and blue segments represent the variation of pH on incubation days 12 in the control and SRB-
inhibited treatment groups, respectively. (C) Metabolic capacities of the family Desulfobacteraceae (n = 26), Desulfobulbaceae (n = 25), Desulfovibrionaceae
(n = 115), Marinifilaceae (n = 32), Marinilabiliaceae (n = 25), and Prolixibacteraceae (n = 46) were reconstructed based on the 29 metabolites (15 amino acids,
12 cofactors, and 2 nucleic acids). The blue and dark segments represent the complete and incomplete pathways in metabolic reconstruction, respectively.
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degradation (1). SRB contributed to the oxidization of VFAs, shifting the pH from weakly
acidic back to weakly basic by removing acidic VFAs and therefore reinstating the pH
niche and producing metabolites (e.g., H2S), which acted as a strong environmental filter
(1) to serve in deterministic ecological processes. Our incubation environments (closed
system) were similar to environment pressure (42), reducing the network stability after
entering the incubation stage, while the strong environmental filter constructed by SRB
slowed the decline of network stability during OM degradation (Fig. S4A and B).

Although the majority of abundant families in the control groups were likely not
sensitive to molybdate due to the lack of sulfate adenylyltransferase (Sat) and YcaO-like
domain (29, 39) (Fig. S5A), their relative abundances were suppressed through the inhi-
bition of SRB (Fig. S2A). For instance, the Marinilabiliales members grew under 30 mM
molybdate in pure culture but were significantly suppressed in SRB-inhibited treatment
microcosms; this indirect inhibition by molybdate may have possibly been due to a
combination of the following. (i) SRB serve as metabolite pool (e.g., amino acids and
vitamins) to positively support the growth of these auxotrophs (e.g., Marinilabiliales). It
has been reported that the majority of microorganisms in nature are auxotrophs, thus
relying on external nutrients for growth, including the exchange of amino acids and
vitamins (43). These results were similar to those obtained from the free-living bacteria
in aquatic systems (44), microbial communities in which syntrophic metabolism of
essential enzyme cofactors was found. (ii) SRB have the ability to regulate pH and
remediate acidic areas (45). The pH change (acidification) resembles a “public bad,”
which is collectively produced members of the population that can kill or inhibit them-
selves or other members (46). Without the regulation of SRB, the acidic environments
generated during the fermentation periods could inhibit the growth of many bacteria
belonging to Marinifilaceae and Marinilabiliaceae (47). Commonly, pH serves as a pri-
mary control of microbial communities (48) and microbial interactions among pH-sensi-
tive fermentative species (49). (iii) Sulfides produced by sulfate respiration may regulate
the redox potential of the microcosms and thereby act as a factor determining the
growth of some anaerobic bacteria (50). Therefore, SRB may apply a great-enough influ-
ence on their abiotic and biotic environment to modify their niches. However, addi-
tional studies are required to reveal the mechanism of interaction.

Our study revealed the wealth of positive interactions during OM degradation within
the control microcosm group, supporting the idea that positive interactions can facilitate
other species participating in a “non-zero-sum game” (51, 52). Positive interactions
appear to play an important role in supporting microbial community biodiversity (53)
and productivity (54, 55). These hypotheses were also supported by this study, in which
inhibiting the positive interactions between SRB and other organisms resulted in the
repression of OM degradation and a decrease in a-diversity. Many mechanisms could
explain the prevalence of positive interactions between SRB and other bacteria in our
system. First, given the dynamics of OM degradation, the facilitator might have secreted
OM-degrading enzymes that increased intermediate products and overall carbon avail-
ability. Second, the facilitator might have excreted incompletely oxidized metabolites
that were used by the facilitated strain(s) (56) (e.g., the excretion of VFAs as by-products
of incomplete oxidation). Such “overflow metabolism” could allow strains to benefit
from the biochemical transformation capabilities of the facilitators (57). Third, the facilita-
tor might exploit new niches by regulating the surrounding microenvironment (e.g.,
changing pH) to promote resuscitation of facilitated strains from dormancy. Also, facili-
tated strains might have grown on components from the accumulating dead cells of
other bacteria (58).

In experiments with replicate microcosms operated under constant conditions, micro-
bial community composition often follows complex but reproducible trajectories over
periods ranging from weeks to months (7, 13, 23, 59). This suggests that taxonomic turn-
over within functional groups in the absence of obvious environmental variation can be
driven by intrinsic and, at least partly, deterministic processes. Even so, every species
may be affected by a distinct combination of biotic and abiotic factors that modulate its
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instantaneous growth rate, even if its metabolic potential overlaps with other members
of the community (60). These factors may be frequency dependent and may include a
stochastic component, for example, due to drift, mutations, or horizontal gene transfer
events (61, 62). In this study, the short period of incubation could not generate an evolu-
tionary process of generating new genetic variation, and the microcosms were made by
randomly sampling from homogenized coastal sediments. Thus, following Vellend’s con-
ceptual framework (18), the main community ecology processes in microcosms could be
selection and dispersal (Fig. 4A and B). The inhibited SRB coincided with the decrease of
homogeneous selection (Fig. 4C) in which homogenous abiotic and biotic environmental
conditions lead to more similar structures among communities (14). The sampling from
homogenized coastal sediments could not be truly random; thus, the estimated stochas-
ticity was high in all microcosms (.50%) (Fig. 4D). Stochastic processes concern birth/
death, speciation/extinction, and immigration, and these could not be detected within
closed microcosms based only on the high-throughput sequencing data of the 16S rRNA
genes. Therefore, we employed turnover (species replacement) and nestedness (species
loss) to represent stochastic processes. Their influence on community dynamics depends
on the size and composition of the communities. In the SRB-inhibited treatment group,
richness and turnover were lower, while the nestedness was higher (Fig. 2C, E, and F);
thus, these results might account for the higher estimated stochasticity in this group
(Fig. 4E).

In summary, the present study provides powerful evidence for SRB contributing to
microbial ecological services. Our analysis shows that SRB, acting as one of the most
active prokaryotic populations in the mineralization of VFAs, diversified community
structure during succession, enhanced network stability, contributed to the preserva-
tion of network modules, promoted species coexistence with the order Marinilabiliales,
and significantly contributed to homogeneous selection in community assembly.

MATERIALS ANDMETHODS
Marine sediment sampling and incubation. All marine sediment samples were collected from the

intertidal zone of Weihai, China (37°319330N, 122°19470E) on 29 August 2018. Sediment from the depths
of 5 to 10 cm was collected, placed in 1,000-mL sterile plastic bags, kept cold within an ice box, and im-
mediately (within 4 h) processed for incubation. The incubation medium was referenced from the work
of Mu et al. (7) and then modified consisting of the following in natural seawater: 0.1% NH4Cl, 0.2%
CH3COONa, 0.02% MgSO4�7H2O, 0.02% yeast extract, 0.02% peptone, 0.1% EDTA, and 0.125% sodium py-
ruvate. The pH of the medium was adjusted to 7.0 and then autoclaved. Ten percent (wt/vol) NaHCO3

solution was filtered, and a 2% (wt/vol) KH2PO4 solution was autoclaved. Each solution was added to the
autoclaved media (10 mL per L). The above description served as the incubation medium for the control
group, while that of the SRB-inhibited treatment group was amended with Na2MoO4 as a sulfate respira-
tory inhibitor at 3 mM/L (final concentration). Twenty-five grams of sediment was added to 250-mL
sealed glass bottles, which were then filled with an approximate amount of incubation medium. Then,
all bottles were stored at 25°C for 0, 5, 12, 21, and 30 days and shaken twice daily. The control and SRB-
inhibited treatment groups both had 20 replicates for each incubation time point. To test the hypothesis
that the stable weak base status in microcosms could maintain the relative abundance of the order
Marinilabiliales, we recollected marine sediments at the same sampling site on 9 May 2022. The micro-
cosms (n = 3) in the control and SRB-inhibited treatment groups were prepared following the process of
the above-described highly replicated microcosms. Meanwhile, we added HEPES-free acid (4.7 g/L) into
the SRB-inhibited microcosms as the pH-restored treatment group (n = 3). Then, a total of 27 bottles
were incubated at 25°C for 5, 12, and 30 days and shaken twice daily. In the end, all samples were col-
lected and stored at 280°C for 16S rRNA high-throughput sequencing.

Measurement of physical-chemical factors and SCFAs. We randomly selected 6 samples from the
20 replicates at each incubation time point for measurement of physical-chemical factors and then randomly
chose 4 of those 6 samples for measuring short-chain fatty acids (SCFAs). The supernatant was collected af-
ter centrifugation (12,000 rpm for 5 min, 4°C) and stored at 280°C. The concentrations of phosphorus, Fe,
sulfate, sulfite, total organic carbon (TOC), and total inorganic carbon (TIC) were measured at the Scientific
Instruments Sharing Platform, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
(http://www.tio-sisp.net/JMISP/), using standard testing methods. The contents of SCFAs were detected at
Shanghai Applied Protein Technology Co., Ltd., China (http://www.aptbiotech.com/), and the targeted
metabolite profiling analysis procedure followed those of Wu et al. (63).

DNA extraction, 16S rRNA gene sequencing, and analysis. Extraction and purification of microbial
community genomic DNA from samples were carried out using the E.Z.N.A. soil DNA kit (Omega Bio-tek,
Norcross, GA, USA) according to the manufacturer’s protocols. The V3 and V4 regions of the 16S rRNA
genes were amplified using general primers (338F/806R). Sequencing was performed on the Illumina
MiSeq PE300 platform (Illumina, San Diego, USA) according to the standard protocols by Shanghai
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Majorbio Bio-pharm Technology Co. Ltd. (Shanghai, China). Paired-end reads were merged by FLASH
version 1.2.11 (64). Altogether, we obtained 4,072,354 high-quality reads (average length, 419 bp) from
180 samples, and the lowest number of reads among the samples, 21,530, was chosen to rarefy data
sets for all community comparisons. Operational taxonomic units (OTUs) with 97% similarity cutoff were
clustered using UPARSE version 7.0 (65), and chimeric sequences were identified and removed. The tax-
onomy of each OTU representative sequence was analyzed by RDP Classifier version 2.11 (66) against
the Silva version 138 16S rRNA database (67) using a confidence threshold of 0.7.

Alpha diversity metrics were calculated using the R package microeco (68), and the significance of
differences in alpha diversities was tested through analysis of variance (ANOVA) with Tukey’s honestly
significant difference (HSD) test. Nonmetric multidimensional scaling (NMDS) analysis was performed
using R package vegan (69) based on Bray-Curtis dissimilarities. We also employed nonparametric multi-
variate statistical analysis (Adonis, analysis of similarity [ANOSIM] and multiresponse permutation proce-
dure [MRPP]) based on Bray-Curtis distance to assess whether the bacterial community compositions
were different. Rank abundance distributions (RADs) for each sample were calculated using R package
RADanalysis (70). The visualization of bacterial community composition was created by Circos (71) online
(http://circos.ca/). The differential abundance test of microbial community across the control and the
SRB-inhibited treatment groups was analyzed based on the LEfSe (36). To further understand the poten-
tial interaction between SRM and differential taxa, we converged differential families in the control
group based on the two conditions of whether differential families were abundant taxa and detected on
at least two incubation days. To account for the amount of temporal variation in bacterial community
structure, the nestedness (species loss) and turnover (species replacement) were employed to partition
the beta diversity by using the R package betapart (72).

Genome metabolic reconstruction. Twenty-nine significant different families were selected based
on OTU abundance. We confirmed 3,596 genomes according to the Genome Taxonomy Database (GTDB;
https://gtdb.ecogenomic.org) (73) on the basis of the taxonomic information at the family level of the
abundant taxa in the control and SRB-inhibited groups (see Fig. S2A in the supplemental material) and by
filtering with completeness $80% and contamination #5% (Table S4). We then downloaded these con-
firmed genomes from the NCBI database (https://pubmed.ncbi.nlm.nih.gov/) for downstream analysis. The
protein-coding gene prediction for the downloaded genomes was performed by prodigal version 2.6.3
(https://github.com/hyattpd/Prodigal) (74). We employed KofamKOALA (75) (https://www.genome.jp/
tools/kofamkoala/) for functional annotation of protein-coding genes. The metabolic pathways of 29
metabolites (including 15 amino acids, 12 cofactors, and 2 nucleic acids) and sulfate reduction were ana-
lyzed by KEGG Mapper (76). Meanwhile, sulfate adenylyltransferase (Sat) and YcaO-like domain were
employed to confirm whether differential taxa were sensitive to molybdate (29, 39).

Network construction and analysis. (i) MEN construction. To investigate the dynamics of microbial
community patterns over the course of the incubation, we employed the Molecular Ecological Network
Analyses pipeline (MENAP; http://ieg4.rccc.ou.edu/mena/) following the random matrix theory (RMT)
approach (77, 78). MENs were constructed with the following settings. Only OTUs present in at least 11 of
the 20 samples for each time point were included for Pearson correlation calculation. If OTU abundances
had missing data, the blanks were filled with 0.01. OTU abundances were log transformed, calculated by
decreasing cutoff from the top; we set the parameter of “scan speed” as “Regress GOE and Poisson” during
MEN construction in MENAP, and the similarity correlation cutoff threshold was 0.80. We applied iDIRECT
(79) to remove spurious indirect links in the original MENs (https://github.com/nxiao6gt/iDIRECT).

(ii) Network characterization. Modules were detected using the greedy modularity optimization
method, and various network topological properties were calculated to characterize the topological
structure of the MENs by using R packages (igraph, omnivor, and brainGraph), including nodes, links,
power-law fitting of node degrees, average degree (avgK), average clustering coefficient (avgCC), aver-
age path distance (APD), graph density (GD), modularity, nestedness, relative modularity (RM), and rela-
tive nestedness (RN). To classify the nodes based on the topological roles that they play in the network,
the connectivity of each node was determined based on its within-module connectivity (Zi) and among-
module connectivity (Pi) (80). We followed criteria used in previous studies and identified four categories
(33, 37, 78), module hubs (Zi $ 2.5, Pi , 0.62), network hubs (Zi $ 2.5, Pi $ 0.62), connectors (Zi , 2.5,
Pi $ 0.62), and peripherals (Zi , 2.5, Pi , 0.62). Module hubs, connectors, and network hubs are referred
to as keystone nodes (37). We applied IQ-TREE version 1.6.12 (81) for phylogenetic analysis of keystone
nodes, and the visualization was created on iTOL (82) (https://itol.embl.de/).

(iii) Network comparison. To evaluate the differences between MENs, we performed a NDMS analy-
sis based on 17 topological network indices calculated for each empirical MEN. We fitted a linear model
between each network index and incubation time to understand how each network property varied
over incubation time. We employed Fisher’s exact test to identify preserved module pairs (i) under con-
trol and treatment over time, and (ii) between control and treatment at the same time point. The detec-
tion of preserved module pairs was calculated following descriptions by Yuan et al. (37).

(iv) Network stability. To evaluate the robustness of MENs, we simulated random (5% of the total
nodes) or targeted (module hubs) species removal where a certain proportion of nodes were removed
(83, 84). To test the effects of species removal on the remaining species, we calculated the abundance-
weighted mean interaction strength (wMIS) of the node, following the description by Yuan et al. (37). To
measure the relative contribution of a node to the global efficiency, we calculated the vulnerability of
each node (78). We then followed the method introduced by Yuan et al. (37) and calculated the node
constancy, node persistence, and compositional stability.

(v) Spearman correlation for network construction. To explore whether different correlation
methods impacted the construction of MENs, we also used Spearman correlation to construct MENs and
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applied iDIRECT (79) to remove spurious indirect links in the original MENs based on Spearman correla-
tion. We show the topological properties of Spearman correlation-based MENs in Table S2A to certify
that the successional trend of MENs derived from Pearson and Spearman correlations over incubation
days is consistent. All presented detailed analyses of the MENs are based on Pearson correlation.

(vi) Random networks construction. To confirm that the observed MEN topology represents non-
random assemblies of bacterial communities, 1,000 random networks were generated and compared
with the nine empirical MENs. We calculated the topological properties of the random networks, which
include average path distance (APD), average clustering coefficient (avgCC), modularity, and nestedness.

Microbial community assembly analysis. The infer community assembly mechanisms by phyloge-
netic bin-based null model (iCAMP) was used to investigate the assembly mechanisms of different micro-
bial groups (https://github.com/DaliangNing/iCAMP1) (17). By using iCAMP, five assembly mechanisms of
different microorganism phylogenetic groups (called bins) were identified, including homogeneous selec-
tion (HoS), heterogeneous selection (HeS), dispersal limitation (DL), homogenizing dispersal (HD), and drift
(DR), which were explained in detail in a previous study by Zhou and Ning (14). Furthermore, the molyb-
date-induced changes in HoS and DL were investigated in our study, and a change was defined as a posi-
tive value if the relative contribution of HoS or DL was higher under sulfate reduction-inhibited conditions
than under control. We also employed IQ-TREE version 1.6.12 (81) for phylogenetic analysis of bins, and
the visualization was created on iTOL (82) (https://itol.embl.de/).

The isolation and classification of bacteria during incubation. Serial dilutions of incubation sam-
ples were spread-plated onto various rich media (listed below). Plates were then incubated at 28°C for
7 days. All experiments were performed under aerobic and anaerobic conditions, respectively. The follow-
ing growth media were used in this study: marine agar (F) supplemented with 1 g/L yeast extract, 5 g/L
tryptone, 1 g/L beef extract, and 0.01 g/L FePO4�4H2O; nutrient agar (J) supplemented with 3 g/L beef
extract and 5 g/L tryptone; modified marine agar (L) supplemented with 1 g/L yeast extract, 5 g/L tryptone,
0.08 g/L KBr, 0.057 g/L SrCl2, 0.022 g/L H3BO3, 4 mg/L Na2SiO3, 0.02 g/L Na2HPO4, 1.6 mg/L NaNO3, and
2.4 mg/L NaF; Trypticase soy yeast extract (X) supplemented with 30 g/L Trypticase soy broth and 3 g/L
yeast extract; modified marine agar (Y) supplemented with 1 g/L yeast extract, 5 g/L tryptone, 0.08 g/L KBr,
0.034 g/L SrCl2, 0.022 g/L H3BO3, 4 mg/L Na2SiO3, 8 mg/L Na2HPO4, 3.24 g/L Na2SO4, 2.4 mg/L NaF, 1.6 mg/L
NH4NO3, 8.8 g/L MgCl2, 8.8 g/L CaCl2, 0.16 g/L Na2CO3, 0.55 g/L KCl, and 0.1 g/L FeC6H5O7; and modified
marine agar (Z) supplemented with 1 g/L yeast extract, 5 g/L tryptone, 0.034 g/L SrCl2, 0.022 g/L H3BO3,
4 mg/L Na2SiO3, 8 mg/L Na2HPO4, 2.4 mg/L NaF, 1.6 mg/L NH4NO3, 0.08 g/L KCl, and 0.1 g/L FeC6H5O7.

Molybdate tolerance and metabolite facilitation testing. We randomly chose five Marinilabiliales
strains for molybdate tolerance testing (Table S3B). The medium was marine agar with Wolin's vitamin
solution (https://www.dsmz.de/; DSMZ medium 141) and different molybdate concentration series (0,
0.03, 0.3, 3, and 30 mM/L), and all plates were incubated at 28°C for 48 to 72 h in anaerobic packs. We
randomly chose 10 Marinilabiliales strains for metabolite facilitation testing (Table S3B). The minimal me-
dium of metabolites (5 amino acids, 2 vitamins, and 1 cofactor) facilitation testing was modified marine
agar (without yeast exact and tryptone) using artificial seawater (MgCl2�6H2O 4.83 g/L, MgSO4�7H2O 6.66
g/L, CaCl2 1.15 g/L, NaHCO3 0.2 g/L, KCl 0.72 g/L, and NaCl 30 g/L) amended with 0.4% (wt/vol) glucose
as the sole carbon source. The concentrations of vitamins followed the description of Wolin’s vitamin so-
lution (DSMZ medium 141). The concentrations of amino acids and menadione were 1 g/L and 0.5 mg/L,
respectively. Liquid cultures were followed by passaging 2 mL of the suspension (optical density at 600
nm [OD600], 0.2) into 200 mL of fresh media (minimal medium with the metabolites; parallel experi-
ments = 5) in 96-well plates. All 96-well plates were incubated at 28°C for 54 h under aerobic conditions.

Data availability. The 16S rRNA gene data sets generated during this study have been deposited in
the Sequence Read Archive under accession no. SRP364228 for 207 samples. The list of 207 runs under
SRP364228, R scripts, and raw data is available on GitHub at https://github.com/2015qyliang/InhibitingSRB
_molybdate.
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