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ABSTRACT OF THE THESIS

A Joint Seismic and Space Geodetic Investigation of the 2016 Lamplugh

Glacier and 2017 Wrangell Mountains (Alaska) Landslides

by

Xinyu Luo

Master of Science in Earth Sciences

University of California San Diego, 2022

Professor Wenyuan Fan, Chair

Landslides commonly occur in areas with steep topography and abundant precip-

itation, and can pose a significant hazard to local communities. Some of the largest

known landslides occurred in Alaska, including several that caused local tsunamis.

Many more landslides may have gone undetected in remote unpopulated areas due

to lack of observations. In this study, we develop an integrated procedure based on

seismic and geodetic observations to detect, locate, validate, and characterize land-

slides in Alaska. Seismic observations have shown promise in continuously monitoring

landslide occurrence, while remote sensing techniques are well suited for verification
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and high-resolution imaging of the detected landslides. We validate our procedure

using data from the previously detected June 28, 2016, Lamplugh Glacier landslide.

We also present observations of a previously unknown landslide that occurred on

September 22, 2017 in the Wrangell Mountains region. The Wrangell Mountains

landslide generated a coherent surface wavefield recorded across Alaska and the con-

tiguous US. We used Sentinel-1 Synthetic Aperture Radar and Sentinel-2 optical

imagery to map the respective mass deposit. To investigate the landslide dynam-

ics, we inverted regional seismic surface wave data for a centroid single force failure

model. Our model suggests that the Wrangell Mountains landslide lasted for about

140 s and had two subevents involving at least five distinct episodes. We estimate

that the landslide had displaced 3.1–13.4 million tons of rocks over a distance of ∼2

km. Our results suggest that combining seismic and geodetic observations can vastly

improve the detection and characterization of landslides in remote areas in Alaska

and elsewhere, and providing new insights into the landslide dynamics.
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Chapter 1

Introduction

Landslides can denude mountains, transport sediments to fluvial networks, and

impact regional ecosystems by drastically changing the landscape (e.g., Benda and

Dunne, 1997; Gomi et al., 2002; Korup, 2005; Imaizumi and Sidle, 2007). Land-

slides involve hydromechanical processes that move rocks and sediments downhill,

driven by gravitational forces (e.g., Gomberg et al., 1995; Milillo et al., 2014; Fan

et al., 2017). A broad range of mass wasting events can be categorized as landslides,

such as debris flows, lahars, slope creep, and avalanches (e.g., Iverson et al., 2000;

Allstadt, 2013; Delbridge et al., 2016; Lai et al., 2018). Such events can last from

minutes to years (e.g., Ekström and Stark, 2013; Gualtieri and Ekström, 2018; Hu

et al., 2019), and result in significant damage and casualties (Petley, 2012; Hibert

et al., 2015; Froude and Petley, 2018). In addition to mass wasting, landslides that

occur near bodies of water may produce local tsunamis and further endanger local

communities (Bardet et al., 2003; Dufresne et al., 2018). Despite much progress
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made toward understanding of landslides and the associated hazards, a number of

questions remain, largely due to a lack of systematic characterization of the principal

physical parameters of landslides such as their location, time, volume, and sliding

speed (Ekström and Stark, 2013; Mondini et al., 2021).

It is challenging to continuously monitor landslides in remote regions because

conventional methods such as field and aerial surveys are costly and time-consuming,

and typically limited to case studies (Guthrie et al., 2012; Dufresne et al., 2019;

Toney et al., 2021). Due to the challenging terrain conditions, field investigations of

Alaska landslides are infrequent and have been mainly conducted in coastal regions

(Hibert et al., 2015). For this reason, relatively few landslides have been reported

in Alaska (Kirschbaum et al., 2015; Bahavar et al., 2019), despite the fact that

they include some of the largest landslides observed in the US. For example, the

2015 Taan Fjord landslide near Icy Bay mobilized 180 million tons of rocks and

produced a local tsunami reaching as high as 193 m (Higman et al., 2018). As slope

failure occurrence correlates with the topographic relief in mountainous areas (Korup

et al., 2007), landslides likely occur frequently in Alaska without being detected

(Kirschbaum et al., 2015).

Remote sensing methods, such as Synthetic Aperture Radar (SAR), have been

increasingly exploited to study landslides (Fruneau et al., 1996; Singhroy et al., 1998;

Colesanti and Wasowski, 2006). For example, SAR can directly image the surface

disturbance due to landslides at a high spatial resolution by comparing the image

amplitude changes or phase coherence between radar acquisitions taken before and

after an event (e.g., Mondini et al., 2021). Additionally, satellite or aerial optical
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imagery can provide ground-truth observations to determine exact landslide location,

composition, area, and runoff distance (Lacroix et al., 2018; Dufresne et al., 2019; Qu

et al., 2021). However, due to infrequent acquisitions, exact timing of landslides and

details of their initiation cannot be solely resolved using space geodetic observations

(Mondini et al., 2021).

One additional method to study landslide is through seismology method because

landslide can generate seismic signals (Kanamori and Given, 1982; Kawakatsu, 1989a;

Brodsky et al., 2003). Fast-moving landslide can generate seismic signals on two

scales: short-period(few seconds to tens of Hz) (Hibert et al., 2011; Yamada et al.,

2012; Doi and Maeda, 2020) to intermediate and long period(10s-150s) (Moretti

et al., 2012; Allstadt, 2013; Ekström and Stark, 2013; Li et al., 2019). The short-

period seismic signals are generated at small scale such as impacts of individual

blocks, frictional process or due to small-scale topography features (Huang et al.,

2007; Schneider et al., 2010). The coherent long-period waveforms at intermediate

to long periods generated by the process of loading and unloading of the ground

associated with the deceleration and acceleration of the sliding mass, and they can

be modeled as centroid single force(CSF) (Kawakatsu, 1989a; Kanamori and Given,

1982).

Seismic observations have shown promise in detecting and locating landslides

(Ekstrom, 2006; Dammeier et al., 2016; Manconi et al., 2016; Fan et al., 2018) and

resolving landslide dynamics (Kanamori and Given, 1982; Brodsky et al., 2003; Poli,

2017; Lai et al., 2018; Intrieri et al., 2018). The short-periods seismic wave from land-

slide typically builds up gradually and taper off slowly in the end and therefor shows
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a spindle shape (Deparis et al., 2008; Hibert et al., 2011). The short-period seismic

wave has been observed for landslides of all scales. However, the high frequency at-

tenuate fast so it is only applicable at local or regional distance. On the other hand,

the intermediate to long period seismic waves can often be observed globally and

have been used to study landslide occurrence in remote regions(Ekstrom, 2006; Fan

et al., 2018; Okuwaki et al., 2021). Seismic observations have also shown promise

in resolving landslide dynamics. Previous research have used intermediate and long

periods seismic signals to study landslide processes using CSF model(Allstadt, 2013;

Gualtieri and Ekström, 2017; Okuwaki et al., 2021). The sliding mass, trajectory,

speed, and friction coefficient can be determined with the help of geodetic constrain.

The seismic records have a high temporal resolution and may be used to continuously

monitor landslides, complementing the space geodetic observations (e.g., Fan et al.,

2018; Okuwaki et al., 2021).

Here we develop an integrated approach combining space geodetic and seismic

observations to detect and locate Alaska landslides, and further use the suite of geo-

physical observations to infer landslide failure processes. We first apply the method

to the well-documented 2016 Lamplugh Glacier landslide (Bessette-Kirton et al.,

2018; Coe et al., 2018; Dufresne et al., 2019) to verify our procedure. We then use

our method to identify a previously unknown landslide that occurred on September

22, 2017 in the Wrangell Mountains region in Alaska. As we demonstrate below, the

2017 Wrangell Mountain landslide had two subevents and a multiple-episode failure

process. The results demonstrate the effectiveness of the procedure and offer new

insights into failure dynamics of complex landslides in Alaska.
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Chapter 2

Data

2.1 Seismic Data

We use continuous, vertical-component, broadband seismic data to locate land-

slides with stations registered at the International Federation of Digital Seismograph

Networks (FDSN) (Figure 2.1). The data were downloaded from the Data Manage-

ment Center (DMC) of the Incorporated Research Institution for Seismology (IRIS).

The original records are sampled at 1 Hz, and we bandpass-filtered them in the 20

to 50 s period band using a fourth-order Butterworth filter.
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Figure 2.1: Rayleigh wavefields of the June 28, 2016 Lamplugh Glacier landslide (a)
and the September 22, 2017 Wrangell Mountains landslide (b). Surface wave prop-
agation directions and arrival times are shown as the arrows and dots respectively.
Triad subarrays are shown as gray triangles. Red stars are the seismically resolved
locations. Insets show wavefields in the contiguous US.

To investigate the landslide failure dynamics, near-field to regional-distance seis-

mic records are used for inverting centroid single force (CSF) models of the land-

slides (Figure 2.2–4.5). We use three-component, broadband displacement records

from stations within five degrees of the landslide location to invert for the CSF mod-

els. The records are sampled at 40 or 50 Hz, and we fit waveforms in a 200 s long

time window around the surface waves. Assuming an apparent moveout velocity of

3.7 km/s, the time window is selected as 40 s before and 160 s after the predicted

arrival time, and the waveforms are tapered before being used for the CSF inversion.

Additionally, we inspect high-frequency radiation of near-field stations (Figure 2.2

and 4.1) to infer the nature of the seismic sources.
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Figure 2.2: Record sections that are aligned using the seismically resolved locations
in Figure 2.1. Records are self-normalized and bandpass-filtered to show signals in
the 20–70 s period band. Red lines show a 3.6 km/s reference move-out velocity.
Origin time (0 s) denotes 16:20:53 (UTC) for the Lamplugh Glacier landslide and
09:43:11 (UTC) for the Wrangell Mountains landslide. (a), Vertical record section
of the June 28, 2016 Lamplugh Glacier landslide . (b), Vertical record section of
the September 22, 2017 Wrangell Mountain landslide. (c), Vertical high-frequency
record (0.1 to 1 s period) of the 2016 Lamplugh Glacier landslide at the nearest
station BESE (119 km away). (d), Vertical high-frequency record (0.1 to 1 s period)
of the 2017 Wrangell Mountain landslide at the nearest station MCR2 (26 km away).
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2.2 Space Geodetic Data

We use the Sentinel-2 optical imagery to confirm whether the seismically de-

tected sources are indeed associated with landslides (Figure 4.8). The optical images

are downloaded from Copernicus Open Access Hub of the European Space Agency.

We use images from bands 2, 3, and 4 of the Multispectral Instrument on board of

the Sentinel-2A and Sentinel-2B satellites to generate a true color composite of the

regions of interest. In addition to the optical imagery, we use Synthetic Aperture

Radar (SAR) data from Sentinel-1A satellite (Figures 4.7 and 4.9). The SAR data

offer independent confirmation and validation of the events and are highly comple-

mentary to the Sentinel-2 optical imagery. The data were processed using GMTSAR

(Sandwell et al., 2011). We calculate the radar amplitude for each acquisition date,

and coherence of the interferometric phase. Both the phase coherence and variations

in the radar amplitude can carry information about surface changes caused by the

landslides.
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Chapter 3

Methods

3.1 Detecting Landslides Using Coherent Seismic

Surface Wavefields

We use AELUMA (Automated Event Location Using a Mesh of Arrays) to detect

and locate Alaska landslides (de Groot-Hedlin and Hedlin, 2015; Fan et al., 2018).

The method uses surface waves recorded by large aperture arrays to identify seismic

sources. It first detects coherent surface wave signals using subarrays and then assem-

bles the measured surface wave arrival angles to locate the seismic sources, assuming

that the waves propagate along great circle paths (Fan et al., 2018). In practice,

we first divide the large arrays into non-overlapping three-station subarrays (triads).

Each triad is required to have internal angles between 30–120◦ to reliably resolve the

arrival angles. Next, beamforming analysis is applied to band-passed filtered (20–

50 s) continuous data to detect coherent signals. We use a 600 s long sliding time
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window and a 300 s increment step to examine the data. The beamforming analysis

is applied to each triad and time window independently. The detections are screened

through a quality control procedure, such as examining the average cross-correlation

coefficient, local phase velocity, and beam-power value of each detection (Fan et al.,

2018). The remaining ones are used for association, which are grouped into non-

overlapping clusters. Each cluster is then used to locate one seismic source, and its

location uncertainty is empirically estimated by examining the spatial structure of

grids within a pre-defined misfit threshold (de Groot-Hedlin and Hedlin, 2018; Fan

et al., 2018, 2020). Finally, the quality of each located seismic event is assessed to

avoid duplicates and a catalog is populated. The approach is data-driven, makes few

assumptions about the nature of the seismic sources, and does not need a velocity

model (Fan et al., 2018). The method is particularly well-suited for detecting uncon-

ventional seismic sources such as landslides that are commonly missed in standard

catalogs (Fan et al., 2019; Okuwaki et al., 2021; Fan et al., 2020).

10



Figure 3.1: Stations used for centroid single force (CSF) inversions. (a), Lamplugh
Glacier landslide. (b), Wrangell Mountains landslide. Red stars show seismic loca-
tions of landslides. Blue triangles indicate the stations used in the CSF inversion.
Yellow triangles indicate the stations that are within the five-degree searching range
but are not selected for inversions.

3.2 Centroid Single Force Inversion

The acceleration and deceleration of a landslide moving downhill is expected to

impose shear tractions at the sliding interface, which can be approximated as cen-

troid single forces (CSF; Kawakatsu, 1989b; Kanamori and Given, 1982). The sliding

process can generate broadband seismic surface waves propagating up to thousands

of kilometers if the landslide couples with solid Earth and does not significantly dis-

integrate (Fukao, 1995; Allstadt, 2013). The CSF models can offer high-resolution

insights into the landslide failure process and characteristics (e.g., Allstadt, 2013).

Here we use regional three-component broadband seismic records to invert for CSF
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models of the 2016 Lamplugh Glacier and 2017 Wrangell Mountains landslides (Fig-

ure 4.2). We use a frequency-domain inversion method derived from (Fan et al.,

2014), which was initially designed for finite-fault slip inversion. We apply the in-

version scheme iteratively to update the model by gradually including usable traces

within five degrees of the landslides.

The landslide displacement waveforms are convolutions between the CSF model

and the Green’s functions for a given source-receiver pair. In the frequency domain,

the displacement spectra are linearly related to the CSF spectra (Equation 3.1),

which can be inverted for each frequency bin independently. In a discrete format,

the linear relation can be written as

un(x, ω) = Gni(x, ω)Fi(ω), (3.1)

where un, Gni, and Fi are the spectra of the displacement seismogram, Green’s func-

tion, and CSF; ω is the angular frequency; x denotes the relative locations between

the source and receiver; and n and i are the receiver- and source-side directions,

respectively. The failure history of a CSF model is then obtained from the inverse

Fourier transform of its estimated spectra. The zero-frequency spectra are set as zero

to ensure that the net forces are zero. We minimize ℓ1 data misfit in the inversion

(Equation 3.2) to obtain robust models, and the procedure is effective when using a

large number of stations with observation outliers:

F = argmin ∥u−G · F∥1. (3.2)
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The Green’s function is obtained using the Instaseis method (van Driel et al., 2015),

which extracts Green’s functions from a pre-computed database that is computed

using the axisymmetric spectral-element method (Nissen-Meyer et al., 2014). The ℓ1

inverse problem is solved using convex optimization (CVX package; Grant and Boyd,

2014, 2008).

In practice, the seismic data are first detrended, and the instrument response is

removed. We invert CSF spectra in the 20–70 s period band (0.014–0.02 Hz) after

applying a Tukey taper with a cosine fraction of 15% to the 200 s long records.

We gradually include all usable data and iteratively update the CSF model. We

first manually select a set of seismic traces to obtain an initial model, and traces are

selected to have clear event signals and low background noise. With the initial model,

we forward compute synthetic waveforms at all stations for all three components.

The synthetic waveforms (us) are cross-correlated with the observations, and the

normalized residual are computed for each trace. Here the normalized residual is

defined as ∥u− us∥1/∥u∥1 using the ℓ1 misfit. Traces with cross-correlation (CC)

coefficients above a threshold of 0.6 and normalized residual below a threshold of 0.7

are included to invert for a new CSF model. Such an inversion-update procedure

is repeated until no new traces can be added to update the model. The procedure

typically converges within three iterations.

Further, the cross-correlation during the iteration step would measure delay times

that can be used to empirically shift the traces before the next iteration. Applying

the time correction would reduce impacts from heterogeneous three-dimensional (3D)

velocity structures in Alaska (Jiang et al., 2018; Feng and Ritzwoller, 2019; Nayak
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et al., 2020). To quantify the uncertainties of the obtained CSF models, we boot-

strap the set of traces that are used to obtain the final preferred models. In each

bootstrap run, we randomly draw 80% of the total traces for the 2016 Lamplugh

Glacier and 2017 Wrangell Mountains landslides respectively (Figure 4.4), and the

same traces can be selected multiple times for a realization. We perform 500 boot-

strap realizations for each landslide to obtain statistically reliable estimates of the

model uncertainties.

3.3 Validating and Characterizing Landslides Us-

ing Space Geodetic Imagery

3.3.1 Sentinel-2 Optical Imagery

The Sentinel-2 imagery provide 10 m-resolution, true-color composite of the areas

of interest. We initially select two images that most tightly bracket the event date

and have a minimal cloud coverage to examine the source region. When needed, we

also use additional images taken during different seasons to confirm the nature of

seismically detected events (e.g, discriminate landslides and snow avalanches). The

optical imagery is further used to estimate the landslide area and runout distance.

The runout distance helps constrain the mass of the landslide material and can be

also compared to the displacement inferred from the CSF model (Figure 4.5).
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3.3.2 Sentinel-1 SAR Imagery

We also use Sentinel-1 SAR data to independently classify the seismic detection

and characterize the landslide parameters by examining the phase coherence and

variations in the radar amplitude in the radar images taken before and after the

event (Yonezawa and Takeuchi, 2001; Mondini et al., 2021). Unlike Sentinel-2 opti-

cal imagery, Sentinel-1 radar imagery is not limited by weather and light conditions

(Rees, 2013). Ground motion due to a landslide can cause changes in the reflective

properties of the Earth’s surface, which can be manifested in variations in the radar

amplitude and phase correlation. Anomalous changes in the radar amplitude can

be used to map the landslide extent (Mondini et al., 2021). We focused the raw

SAR data into Single Look Complex (SLC) images, and computed the radar ampli-

tude images for each acquisition date. Images were co-registered using the BESD

(Bivariate Enhanced Spectral Diversity) algorithm (Wang et al., 2017). We then

subtracted the co-registered amplitude images to obtain the differential amplitude.

We also computed phase coherence for each interferometric pair spanning the event

date. Phase coherence is another measure of surface changes that can be used to

map out the landslide area. All of the above steps are automated and can be readily

applied to process SAR data covering large areas.
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Chapter 4

Results

We first use data from a known landslide to validate our integrated detection

procedure. Our test case is the 2016 Lamplugh Glacier landslide that occurred in

Alaska.

4.1 The Lamplugh Glacier Landslide

The Lamplugh Glacier landslide generated globally detectable surface waves (Ek-

strom, 2006; Ekström et al., 2012). The landslide lasted 75 s, and occurred in two

stages, with a total displacement of about 10 km (Dufresne et al., 2019). The event

mobilized 1.4×1011 kg of materials. The 2016 Lamplugh Glacier landslide produced

a coherent surface wavefield across Alaska and the contiguous US (Figure 2.1a).

Rayleigh waves can be easily identified from vertical velocity records that are filtered

at 20–70 s period band, and the waveforms remain coherent up to 1000 km away

(Figure 2.2a). The event was detected by 257 triad subarrays from 354 stations. Our
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seismically inferred event location is 3 km away from the true landslide location. The

nearest station, BESE, is 119 km away from the landslide, and its high-frequency

record (0.1–1 s period band, vertical component) has a spindle shape without clear

body wave phases (Figure 2.2c), which is typical for landslides. Additionally, the

spectrum of BESE has a bell shaped spectrum (Figure 4.1a) with the first 30 s

exhibiting limited high-frequency radiation, differing from typical earthquake seis-

mograms (e.g., Gualtieri and Ekström, 2018). There is more high-frequency radiation

30 s after the event onset, which may be due to changes in the speed of the mobi-

lized material (Norris, 1994; Deparis et al., 2008; Dammeier et al., 2011; Hibert et al.,

2011).
As a validation of our CSF inversion approach, we estimate a failure model of the

2016 Lamplugh Glacier landslide using 45 traces from 25 stations (Figure 3.1b). The

CSF model suggests that the event had two downward acceleration stages and two

associated deceleration stages (Figure 4.3a–c). The landslide primarily slid towards

north as suggested by the horizontal accelerations (Figure 4.5a), consistent with

satellite imagery (Figure 4.7b) (Dufresne et al., 2019). The peak centroid force is

2.55 × 1011 N, which empirically corresponds to a displaced mass of 1.34 × 1011 kg

(Ekström and Stark, 2013). This mass estimate agrees well with the field survey

estimate of 1.41 × 1011 kg (Dufresne et al., 2019). The preferred CSF model can

explain the seismic observations well, including traces that are not used in the CSF

inversion (example traces in Figure 4.2a–c, see all traces in Figure B.1). The CSF

model is robustly resolved as the ensemble of bootstrap models does not deviate

away from the preferred model very much (grey lines in Figure 4.3a–c). For each

bootstrap realization, we record the normalized residual and cross-correlation (CC)
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Figure 4.1: Spectrograms of vertical component at BESE (a) for the 2016 Lamplugh
Glacier landslide and at MCR2 (b) and RH05 (c) for the 2017 Wrangell Moun-
tain landslide. Gray boxes show the part where the stations have recorded high
frequency(>1 Hz) radiation.

coefficient of each waveform, and the median values of the CC coefficient and the

median values of the residuals are around 0.6 and 0.65 for all three components,

respectively (Figure 4.4a and c).
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Figure 4.2: Example waveforms of the landslides. (a–c), Observed and synthetics
seismograms of the June 28, 2016 Lamplugh Glacier landslide. (d–f), Observed and
synthetics seismograms of the September 22, 2017 Wrangell Mountains landslide.
Black and red traces are observed and synthetic seismograms, respectively. Opaque
traces were not used for the centroid single force inversion. Origin times (0 s) are the
onset times of the 200 s time windows. All traces used in the inversion are shown in
Figure B.1–B.4.
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Figure 4.3: Three-component centroid single force (CSF) models of the 2016 Lam-
plugh Glacier landslide (a–c) and the 2017 Wrangell Mountains landslide (d–f). Blues
lines show the preferred CSF models. Gray lines show CSF models obtained from the
bootstrap resampling. Yellows lines show the 90% confidence intervals inferred from
bootstrap resampling. Dash lines indicate the estimated origin and ending times
of the landslides. Color patches in (d–f) sequentially show five stages of the 2017
Wrangell Mountains landslide.

The 2016 Lamplugh Glacier landslide gave rise to conspicuous changes in the

back-scatter characteristics of the landslide area, expressed in changes in the radar

amplitude. For the 2016 Lamplugh Glacier landslide, we use data acquired on June

6 and June 30, 2016 by the Sentinel-1A satellite from the descending track 145

(absolute orbits 11592 and 11942) in the Interferometric Wide(IW) swath mode

(Figure 4.7). Figure 4.7a shows the amplitude of the Sentinel-1 radar image acquired

on June 6, 2016, and Figure 4.7b shows the differential amplitude between the June 6

and June 30 acquisitions. As one can see in Figure 4.7b, the Earth’s surface was

roughened within the landslide area, resulting in an increased backscatter. The

respective changes in the radar amplitude are not correlated with the pre-event radar

amplitude (Figure 4.7a). The phase coherence from the same interferometric pair is
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unfortunately less useful in this case (Figure 4.6) because of a substantial snow cover

that degraded the phase coherence over the entire scene. The differential amplitude

data suggest that the landslide had a runout of ∼10 km, moving northward. The

area and boundary of the landslide inferred from the SAR images (Figure 4.7b) are

consistent with results of previous studies which employed optical images and field

surveys (Dufresne et al., 2019).
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Figure 4.4: Histograms of the waveform residuals and cross-correlation coefficients
from bootstrap realizations. (a) and (b), three-component cross-correlation coef-
ficients of the observed and synthetic traces for the 2016 Lamplugh Glacier land-
slide and the 2017 Wrangell Mountains landslide, respectively. (c) and (d), three-
component waveform residuals between the observed and synthetic traces for the
2016 Lamplugh Glacier landslide and the 2017 Wrangell Mountains landslide, re-
spectively. Red lines denote the median values for each distribution.
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Figure 4.5: Horizontal centroid single force histories. (a), Lamplugh Glacier land-
slide. (b), Wrangell Mountains landslide. Color and size of the dots indicate the
failure time and force strength.

Figure 4.6: Sentinel-1 SAR correlation image obtained from two acquisitions on June
6 and June 30, 2017. The most of the area is decorrelated because of snow coverage
in the region. So the changes due to the landslide is not visible.
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Figure 4.7: (a) Radar amplitude of a Sentinel-1 SAR image acquired on June 6
(before the 2016 Lamplugh Glacier landslide). (b) Differential radar amplitudes
from two Sentinel-1 SAR images acquired on June 6 and 30. The 2016 Lamplugh
Glacier landslide is outlined by the yellow circle, and manifested by an increased radar
backscatter. The amplitude changes do not correlate with the local topography. Note
the difference in color limits between the two panels.

4.2 The 2017 Wrangell Mountains Landslide

Here we report on a previously unregistered event in the Wrangell mountains re-

gion we discovered using the AELUMA method. The event occurred on September

22, 2017, and produced coherent waveforms that were detected by 162 triad subar-

rays from 238 stations in Alaska and the contiguous US (Figure 2.1b). We confirm

that the event is a landslide by inspecting the Sentinel-2 images (Figure 4.8). Im-

ages from three acquisitions, dated August 5, 2017 before the seismically detected

event, November 20, 2017 shortly after the event, and July 23, 2018 in the following

summer, are used to investigate the Wrangell Mountains landslide (Figure 4.8). Ini-
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tially, we used the the two Sentinel-2 images obtained on August 5 and November 20,

2017. These two images most tightly bracket the seismically detected event and are

relatively cloud-free. Changes in surface conditions are obvious from a comparison

of the two images (see areas outlined by yellow circles in Figure 4.8a–b). However,

the November 20, 2017 acquisitions was affected by a snow cover (Figure 4.8b). To

verify that the event was a landslide and not a snow avalanche, we inspected an

image taken in the following summer (July 23, 2018, Figure 4.8c), and the landslide

deposits can be clearly identified in the color composites in the image taken on July

23, 2018 (Figure 4.8c). The landslide deposits can be clearly identified in the color

composites in the image taken on July 23, 2018 (Figure 4.8c). A comparison of

Figure 4.8a and Figure 4.8c clearly shows the event was a landslide. The ground

truth location obtained from Sentinel-2 imagery is 5 km away from the seismically

determined location. The Sentinel-2 imagery also suggests that the landslide pro-

duced two deposit piles, with the greater pile having a runout distance of 1.5 km

(Figure 4.8c). The surface area of the two piles is about 1.6 km2 in total.

Figure 4.8: Sentinel-2 imagery of the 2017 Wrangell Mountains landslide. (a–c),
Optical images acquired on August 5 and November 20, 2017, and July 23, 2018.
Red star shows the seismically determined location. Yellow circle indicates surface
alternation caused by a landslide. The images are true color composition using bands
2–4 of Sentinel-2. Color stretching is applied to adjust image brightness.
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We also verified the landslide occurrence using SAR data that were acquired on

September 20 and October 2, 2017 by the Sentinel-1A satellite from the descending

track 14 (absolute orbits 18461 and 18636) in the IW swath mode (Figure 4.9).

The 2017 Wrangell Mountains landslide is located at the intersection of the two

sub-swaths (sub-swaths 2 and 3) of the Sentinel-1A track, and we used both sub-

swaths in our analysis. The respective interferometric pair features a low phase

coherence at the location suggested by the optical Sentinel-2 data. Because the

location happens to be in the overlap area between two radar sub-swaths, the same

low-coherence feature can be seen independently in each sub-swath (Figure 4.9). The

radar amplitude also changes between the two acquisitions, with a higher backscatter

anomaly at the landslide site (Figure 4.10). From the coherence images, the landslide

area is estimated at ∼ 1.7 km2 using a coherence threshold of 0.15.

Figure 4.9: Sentinel-1 Phase coherence images obtained from two acquisitions on
September 20 and October 2, 2017. (a) Sub swath 2. (b) Sub swath 3. Low coherence
regions within the yellow circle correspond to the landslide area.
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The landslide radiated seismic waves that can be clearly identified in the period

band of 20–70 s up to 1000 km away (Figure 2.2b). The record section shows co-

herent wave packets with a moveout velocity of 3.6 km/s, which is consistent with

typical surface wave velocity in the period band. Station MCR2 is 26 km away

from the landslide (Figure 2.2d), which high-frequency (0.1–1 period band, verti-

cal component) waveform has a spindle shape, confirming the source as a landslide.

The high-frequency radiation lasted less than 100 s with two main episodes, and the

second episode has a longer duration with greater amplitudes (Figure 2.2d). The

spectrograms of the event (Figure 4.1b–c) are similar to that of the 2016 Lamplugh

Glacier landslide in bell shapes (Deparis et al., 2008; Hibert et al., 2011). The seis-

mic radiation above 5 Hz of the Wrangell Mountains landslide decayed rapidly at

further distances (Figure 4.1c). Station RH05 is 106 km away from the Wrangell

Mountains landslide, similar to the separation distance between BESE and the Lam-

plugh Glacier landslide, but its relative high-frequency content is significantly smaller

compared to that of the Lamplugh Glacier landslide (Figure 4.1a,c).

The CSF model of the Wrangell Mountains landslide suggests a multi-episode

failure process (Figure 4.3d–f), considerably more complex than that of the Lamplugh

landslide. The model suggests a total duration of 140 s, which is 40 s longer than the

high-frequency duration observed at MR2 (Figure 2.2d). Multiple acceleration and

deceleration stages can be identified from the vertical centroid single force history

(Figure 4.3d). The vertical force has a comparable peak amplitude as forces at

horizontal directions, indicating three-dimensional sliding motions (Figure 4.3d–f).

The horizontal force histories show that the Wrangell Mountains landslide may have
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changed its sliding directions multiple times, different from the Lamplugh Glacier

event, which mostly moved northward (Figure 4.5). The ensemble models from the

bootstrap tests are tightly clustered around the preferred model (Figure 4.3d–f).

Waveform ℓ1 residuals and the cross-correlation coefficients from the bootstrap tests

have a median CC value of 0.79 and a median residual value of 0.54 for the three

components.

Figure 4.10: Differential radar amplitude calculated for two Sentinel-1 SAR images
acquired before and after the 2017 Wrangell Mountains event. The yellow circles
outlines areas of enhanced backscatter that does not correlate with local topogaphy.
(a) differential amplitude for subswath 2. (b) differential amplitude for subswath 3.
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Chapter 5

Discussion

5.1 Uncertainty and Resolution

The seismically resolved locations of the 2016 Lamplugh Glacier and 2017Wrangell

Mountains landslides are 3 km and, respectively, 5 km away from their ground-truth

locations. Considering the wavelengths of the surface waves used in the AELUMA

procedure, both cases are well resolved. Considering the wavelengths of the surface

waves used in the AELUMA procedure, both cases are well resolved. The location

accuracy is comparable to landslide relocation resolution obtained employing empir-

ical Green’s functions from ambient seismic noises Xie et al. (2020). Their spatial

deviations are less than the grid separation distance (0.25◦; Fan et al., 2018). The

seismically resolved location may have uncertainties due to the relative positions be-

tween the array and the event, searching grid parameterization, and the 3D velocity

anomalies in Alaska, which would cause surface-wave ray paths deviating away from
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the great circle paths (Feng and Ritzwoller, 2019; Nayak et al., 2020). One way

to evaluate the impacts of these factors is to examine the spatial structure of the

searching grids that have misfit values within 125% of the minimum misfit (de Groot-

Hedlin and Hedlin, 2018; Fan et al., 2018, 2020). The distance covariance matrix of

the grids can be used to provide a formal way to examine the location uncertainties.

We find that the 2016 Lamplugh Glacier landslide and the 2017 Wrangell Mountains

landslide have maximum spatial uncertainties of 227 km and 51 km, respectively. In

general, the spatial uncertainties are smaller for seismic sources located within the

seismic array.

The landslide CSF models are inverted from using band-limited seismic data, and

they best represent the macroscopic loading and unloading processes during landslide

failures. Microscopic processes, such as the associated debris flow, may generate high

frequency seismic radiation and are challenging to resolve with teleseismic records

(Chmiel et al., 2021). The 1D velocity model used for Green’s functions can capture

the waveform shapes but cannot predict the surface wave arrival times accurately. To

mitigate the 3D velocity influence, we apply empirical corrections before performing

the inversion, which are obtained from cross-correlating the synthetic waveforms

with the observations. We also examine the data influences in the CSF models

by performing bootstrap resampling of the traces. The ensemble models from the

bootstrap realizations are consistent with each other (Figure 4.3). In our method,

we do not post-process the CSF models, and the onset of a landslide is determined as

the first downward acceleration and the termination yields the forces reaching zero.

Due to the limited frequency bandwidth used in the inversion, small oscillations are
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present in the CSF models. However, they do not impact the main failure episodes

very much (Figure 4.3). The waveform misfit is higher than typical values because

we measure the ℓ1 normalized residuals instead of the ℓ2 normalized residuals. For

comparison, our CSF model of the 2016 Lamplugh landslide is consistent with other

published CSF models (Dufresne et al., 2019; Toney and Allstadt, 2021), and its

failure process agrees with the surface structures resolved from field surveys Dufresne

et al. (2019).

Optical images can directly validate the seismic detections. However, weather

conditions may hinder timely verification of landslides in Alaska. For example, the

first clear optical image of the 2017 Wrangell Mountains landslide from Sentinel-2

was taken on November 20, 2017 and the most recent cloud-free image before the

landslide was taken on August 2, 2017. The three-month separation between the two

acquisitions would hamper resolving the event occurrence time if we have only used

optical images. In such cases, SAR imagery can provide a complementary verification

for a better temporal resolution. For example, the two SAR images collected on

September 20 and October 2, 2017 can provide a more timely assessment of the

2017 Wrangell Mountains landslide (12 days separation; Figure 4.9). The coherence

changes in the SAR images sharply delineate a region with surface alteration (circled

in Figure 4.9). The quasi-triangular geometry of the low coherence area suggests that

it is most likely caused by a landslide (Mondini et al., 2021). In contrast, the SAR

amplitude changes before and after the event are ambiguous at the landslide site,

and the cause of the amplitude changes is less definitive without other independent

geophysical evidence (Figure 4.10). The SAR images for the 2016 Lamplugh event
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show the opposite sensitivities such that the differential radar amplitude works better

as a proxy to identify landslides than the phase coherence (Mondini et al., 2019). The

effectiveness of the phase decorrelation as a landslide marker is strongly affected by

the mean coherence of the study area. If the coherence is low (e.g., due to vegetation

or snow cover), a further reduction in coherence due to surface disturbance may not

produce a clear anomaly. The effectiveness of the differential radar amplitude may

depend on a distance between the repeat orbits (Manzo et al., 2012; Mastro et al.,

2022). Larger perpendicular baselines may result in higher “background” values of

the differential amplitude due to somewhat different lines of sight, which can reduce

the signal-to-noise ratio for the amplitude changes caused by the landslide motion.

5.2 Mass Estimate of the 2017 Wrangell Moun-

tains Landslide

The surface area of the 2017 Wrangell Mountains landslide is estimated as 1.6 km2

using the Sentinel-2 images and 1.7 km2 using the Sentinel-1 phase coherence anomaly

(Figure 5.3). The satellite images suggest that the landslide has two branches, with

the southern branch 8.4 times greater in area than the northern branch (Figure 5.3a).

Therefore, we focus on the southern branch to estimate its mass. The observed sur-

face alteration area likely consists of the source, sliding, and deposition areas. We

assume that the mass is conserved and the landslide is a deep-seated event because of

the coherent surface wavefield. In this case, if the displaced materials had a thickness

around 50 m at the source region (Okuwaki et al., 2021; Xu et al., 2021) with an
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area of 0.04 km2 (200 m by 200 m, blue rectangle in Figure 5.3a), the mass estimate

would be 5× 109 kg assuming an average bedrock density of 2.5× 103 kg/m3 (Ridg-

way et al., 2007). By inspecting the Sentinel-2 image, the deposition area of the

southern branch (green rectangle in Figure 5.3a) is estimated to be about 1.25 km2,

and the landslide mass would be 5× 109 kg for an average thickness of 1.6 m at the

deposition area. These mass estimates are based on the assumed landslide mate-

rial thickness, and may be subject to large uncertainties. Better constraints on the

landslide thickness can be obtained e.g. by differencing digital elevation models (Lin

et al., 2006) provided such models are available with sufficient accuracy and resolu-

tion before and after the event. Following the empirical scaling relationship between

the maximum centroid single force and the displaced mass in (Ekström and Stark,

2013), the southern branch of the Wrangell Mountains landslide may have moved a

total mass of 7.8× 109 kg, and the bootstrap ensemble models suggest a variation of

the mass ranging from 7.5× 109 kg to 8.6× 109 kg within a 90% confidence interval.

We can further combine the parameters obtained from both the CSF model and

space geodetic images for a better constrained mass estimate. The runout distance of

the southern branch is estimated as about 700 m to 1500 m from the space geodetic

observations, and the runout uncertainty reflects the possible range of the centroid

location of the displaced mass. Given that the CSF model is the product of the

displaced mass times the acceleration (F = ma), and the runout is the double

integration of the horizontal acceleration (at) in the sliding direction, we can thus
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estimate the displaced mass from

m =

∫ te
ts
dt

∫ te
ts
Ftdt

Lt

, (5.1)

where ts and te are starting and terminating times of the sliding process, Ft is the

horizontal force in the sliding direction, and Lt =
∫ te
ts
dt

∫ te
ts
atdt is the runout dis-

tance. The horizontal force, Ft, can be obtained from the CSF model, and the

runout distance can be measured from the space geodetic images. In practice, we

forward calculate the trajectory using an assumed mass to identify the optimal value

that best matches the runout distance resolved from the satellite imagery. Using

the combined method, we obtain a mass estimate of 3.1 − 8.3 × 109 kg with the

uncertainty range accounting for the runout distance uncertainties. In summary, the

mass estimates from different methods are generally in agreement with each other.

If we combine all the estimates, the displaced mass of the southern branch is likely

in the range of 3.1− 8.6× 109 kg. The total mass of both branch is estimated in the

range of 3.1− 13.4× 109 kg by evaluating the northern branch using the same set of

techniques.

5.3 Failure Dynamics of the 2017 Wrangell Moun-

tains Landslide

Satellite imagery from Sentinel-1 and Sentinel-2 (Figure 5.3) shows two separate

deposits of the 2017 Wrangell Mountains landslide. However, it is unclear whether
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the two piles of deposits were from the same landslide or from two separate landslides

occurring within the acquisition intervals of satellite data. In the case of a single

landslide scenario, the relations between the two subevents cannot be resolved using

geodetic data alone. Complementary to the imagery, the seismic CSF model can

offer insights into the failure trajectory (Figure C.1), but cannot resolve subevents

for landslides because of its point source approximation.

Optical images from the Sentinel-2 satellite suggest that the source region of the

2017 Wrangell Mountains landslide is from a local mountain crest (the upper left

region within the contour area in Figure 5.3a). The two deposits resulted from two

distinct sliding trajectories with the northern branch sliding towards an azimuth of

116◦ and the southern branch sliding towards an azimuth of 175◦. The CSF model

indicates an initial sliding direction of 139◦ (Figure C.1), which is more consistent

with the trajectory of the northern branch. Therefore, the northern subevent likely

occurred first. The horizontal trajectory calculated from the CSF model can only

match the topographic features at the northern branch up to 30 s, while the total

failure process lasted for about 140 s (Figure C.1). The observations indicate that

the southern branch may have occurred from 30 to 140 s, suggesting that the two

branches were from one landslide. We denote the northern and southern branches

as subevent 1 and 2, respectively.
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Figure 5.1: Inferred failure process of the 2017 Wrangell Mountains landslide. (a),
Horizontal sliding trajectories of two subevents on a map-view satellite image. Col-
ored lines represent five sliding stages with their occurrence times indicated in the
colorbar. Overlapping time of the two subevents from 30–40 s are not interpreted.
(b), Schematic sliding process on a vertical-view satellite image. (c), Zoom-in view
of the source areas in (a). Area 1 and Area 2 are two possible initiation sites. Black
arrow shows the sliding direction of Stage 2. Pink arrows show possible sliding di-
rections of subevent 1. (d), Zoom-in view of the deposit area. Features in the red
dash ellipse indicate a landslide occurred before 2004. Background images are from
Google EarthTM taken on August 4, 2004, provided by Maxar Technologies.
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We therefore divide the CSF model into two parts to study the spatiotemporal

evolution of the two subevents. The starting time of subevent 2 is determined by

comparing the CSF horizontal trajectory to the topographic features (Appendix C

and Figure C.2). The trajectory is the displacement integrated from the horizontal

accelerations, which are obtained by dividing the mass estimates (1.5 × 109 kg for

subevent , 3.5 × 109 kg for subevent 2) from the horizontal centroid single forces.

The results show that the transition between the ending of subevent 1 and the

initiation of subevent 2 most likely occurred at 40 s. There may have been a short

overlap between the two subevents because the three-component centroid forces do

not synchronize to zero at the same time, suggesting a possible concurrent ending

and starting of the two subevents during 30–40 s.

While subevent 1 is relatively simple with one episode of sliding with a linear

trajectory (Stage 1), subevent 2 likely had four sliding episodes lasting for about

100 s (Stages 2–5 in Figure 5.1a and 4.3d–f). Subevent 2 likely initiated from Area 2

in Figure 5.1c and slid toward a direction of 185◦ (Stage 2). The mobilized materials

hit a mountain ridge with a southeast strike at 67 s and then turned towards a

direction of 94◦, sliding for another 23 s (Stage 3). Bounded in a valley, the subevent

was forced to turn towards 164◦ at 90 s again and then moved along an incision

valley from 90 to 120 s (Stage 4). When the failure material reached the bottom of

the mountain at 120 s, the vertical centroid single force dropped to zero due to the

low topographic relief, and the runout gradually lost its momentum (Stage 5). The

Stage 5 sliding caused the material to spread out in a local basin with an approximate

footprint of 1.25 km2 (Figure 5.1a and 5.2). Visual inspections of the Sentinel-2 and
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Google Earth satellite imagery (Figures 4.8c and 5.1a) suggest a possible overshoot

of the failure material at the end of Stage 2. Some landslide material may have slid

beyond the ridge around 50 s.

Figure 5.2: Zoom-in view of satellite images at the subevent 2 deposition area of
the 2017 Wrangell Mountains landslide (a), Image acquired on August 4, 2004. (b),
Image acquired on April 5, 2021. The satellite images are from Google Earth provided
by Maxar Technologies. The area in (b) is covered by snow .

The peak sliding velocity of subevent 2 is about 39 m/s, assuming a failure mass

of 3.5× 109 kg. The sliding velocity is comparable to the 2015 Taan Fiord landslide
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and the 2016 Lamplugh Glacier landslides. The failure processes of the two subevents

inferred from the CSF model (horizontal displacements) match well with the trajec-

tories identified from morphology features using satellite images (Figure 5.3). The

vertical displacement is not used for inferences because it does not match the eleva-

tion changes (Figure D.1 and D.2). This is not surprising as CSF models of other

Alaska landslides also have challenges in fitting the elevation changes (Toney et al.,

2020; Toney and Allstadt, 2021). It is likely because the CSF model is obtained from

band-limited seismic data and we used a 1D velocity model to compute the Green’s

functions. The unaccounted high-frequency data and the complex 3D velocity struc-

ture may have caused the poor resolution of the CSF model in vertical displacements.

Further, noise in the seismic records likely contributed to the discrepancy as well.

Landslides may occur frequently in the region at the same spots. Figure 5.1d

shows brown deposits near Stage 5, indicating a possible previous mass wasting

event depositing at the same location. Further, the source areas (Areas 1 and 2)

identified in Figure 5.1c were from an optical Maxar satellite image taken in 2004,

which indicates previous landslides occurring before 2004. In conjunction with the

2017 landslide, the images indicate that the slope materials have been unstable for

decades, and the material and topographic conditions may favor retrogressive land-

slides. The source areas are likely covered in snow in winter times (Figure 4.8b)

and the snow would fully melt in summer times (Figure 4.8c). The rapid changes of

surface hydraulic conditions would facilitate weathering and cause material disinte-

gration, destabilizing the mountain slope at the source areas, and possibly leading

to repeating landslides.
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The current set of geophysical observations cannot conclusively determine the

origin source region of subevent 1. The two subevents are separated by a mountain

ridge, and subevent 1 could be from either Area 1 or 2 as highlighted in Figure 5.1c.

The CSF model favors Area 1 as it does not indicate an initial acceleration towards

the northeast direction, which would be expected if subevent 1 was from Area 2.

However, as shown in Figure 5.1c, the 2004 satellite image suggests that materials

from Area 2 may have slipped towards the trajectory of subevent 1 in previous

landslides. The relics in Figure 5.1c suggest that subevent 2 came from the ridge

denoted as Area 2. Therefore, both subevents of the 2017 Wrangell Mountains

landslide may have originated from Area 2 as two pieces of one destabilized mass.

Alternatively, subevent 1 may have originated from Area 1, and its failure destabilized

mass in Area 2 and induced subevent 2. The sequential failure of the two subevents

resolved in the CSF model (Figure 4.8) supports this scenario. Our observations

suggest that failure processes of Alaska landslides can be highly complex and multiple

subevents can trigger each other to cascade into greater landslides.
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Figure 5.3: Area estimates of the 2017 Wrangell Mountains landslide. (a), Landslide
area estimated using Sentinel-2 imagery. Red contour outlines the landslide. Thin
blue box shows an assumed source area of subevent 2 and thin green box shows an
assumed deposition region of subevent 2. (b) and (c), Coherence image of sub swath
2 and 3 with a mask threshold of 0.15. Masks of Sentinel-1 SAR coherence images
obtained from two acquisitions on September 20 and October 2, 2017. Contours
show the coherence values.

5.4 Outlook on Investigating Alaska Landslides

The two case studies presented above show that our integrated procedure is highly

effective in identifying Alaska landslides and revealing their failure dynamics. In

particular, the 2017 Wrangell Mountains landslide is one order of magnitude smaller

than the Lamplugh Glacier landslide in mass, but had a more complex failure pro-

cess. The 2017 Wrangell Mountains landslide is also much more complex than other

recent landslides in Alaska (e.g., Gualtieri and Ekström, 2017; Toney et al., 2021).

Our case study suggests that the failure processes of Alaska landslides are poorly

known and emphasizes the necessity to systematically study landslides in the region.

Our procedure has the potential to be applied to a large set of continuous records
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to efficiently identify most, if not all, of the Alaska landslides above a certain detec-

tion threshold. Specifically, we can first use the AELUMA method to systematically

detect and locate abnormal seismic sources and then use SAR and optical satellite

data to quantitatively evaluate surface alternations in the seismic detection areas.

The seismic detection method does not require phase-picking, an accurate velocity

model, or knowing the source type. The SAR data products can be obtained from a

number of providers, including e.g. routinely processed data products at the Alaska

SAR Facility, and the optical images are freely provided by the European Space

Agency. After confirming the events as landslides, our CSF modeling procedure is

computationally efficient and designed to incorporate records from seismic stations

within five degrees or even further from an event. The procedure requires an analyst

to select an initial set of traces, but it can iteratively update the model based on

all available data within the pre-selected distance range. Finally, we show that com-

bining satellite imagery and seismically determined CSF models can yield a better

understanding of the landslide dynamics.
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Chapter 6

Conclusions

We developed an integrated procedure to use seismic and space geodetic obser-

vations to detect, locate and investigate the dynamic process of landslides in Alaska

and other locations. We demonstrated that an array-based surface wave detector

could be applied to the continuous waveform to detect landslides such as the 2016

Lamplugh Glacier landslides and 2017 Wrangell Mountains landslides.

We used geodetic data from Sentinel-1 and Sentinel-2 to confirm the detection

from the seismology method. The seismic locations obtained from the seismology

method are close to the landslide location obtained from geodetic data. Taking the

2016 Lamplugh Glacier landslide as a validation case, we showed that our seismi-

cally resolved location is within 3 km of the actual location ground truth-ed by the

remote sensing data. The 2016 Lamplugh Glacier landslide can be clearly resolved

in the radar amplitude changes obtained from Sentinel-1 SAR data. Applying the

AELUMA detector to continuous seismic data in 2017, we identified a previously
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unknown landslide in the Wrangell Mountains region. We use three Sentinel-2 ac-

quisitions to confirm the location and the nature of the seismic detection. The color

composite after the event shows the area of the landslide clearly. The coherence

calculated using two SAR acquisitions from Sentinel-1 shows the landslide area has

low coherence, and it can improve the confidence that the landslide in Sentinel-2 is

associated with the detected seismic signal. The 2017 Wrangell Mountains landslide

site is within 5 km of the seismically resolved location, demonstrating the robustness

and accuracy of our procedure.

Further, We use regional seismic records to obtain a centroid single force model

of the landslides. The CSF model for the 2016 Lamplugh Glacier landslide shows

two downward acceleration stages, moving mostly in the north direction. The results

agree with the previous studies. The CSF model for the 2017 Wrangell Mountains

landslide is more complicated. It involves multiple accelerations and deceleration

stages. But the inversion result is robust according to bootstrap inversion.

By combining seismic and space geodetic data, we confirm that the 2017 Wrangell

Mountains landslide had two separate, sequential subevents, which involved five

stages of sliding, and its dynamics were likely controlled by local terrain features.

The results show that the smaller branch (subevent 1) happened first, and the larger

branch(subevent 2) happened later. Subevent 1 is simple, with just one downward

acceleration and deceleration process. Subevent 2 has four stages controlled by the

topography features. This case suggests that small-scale landslides can still have a

complicated dynamic process, and our procedure can effectively resolve such a pro-

cess. Further, satellite images suggest the region may have landslides repeatedly
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occurring at the same locations.

Through the case study here, it has been demonstrated that seismology and space

geodetic methods can be combined to provide continuous monitoring of landslides in

the Alaska region. The landslide mechanisms can be studied using the CSF model.

The landslide dynamical process can be jointly constrained using the CSF model and

satellite imagery such as Sentinel-1 and Sentinel-2. This approach can provide a very

detailed dynamical process even for very small-scale landslides such as the Wrangell

Mountains landslide. By combining seismic data and geodetic data, a complete long-

term catalog was obtained using the procedure in this research. The catalog can also

be used to understand climate change affects landslides in the Alaska region as well as

other locations (Gariano and Guzzetti, 2016). Our results demonstrate that integrat-

ing multiple geophysical methods can illuminate complex landslide failure processes

in Alaska and elsewhere.

The thesis, in full, has been submitted for publication of the material as it may

appear in Journal of Geophysical Research-Earth Surface: Luo, X., Fan, W., and

Fialko, Y., A joint seismic and space geodetic investigation of the 2016 Lamplugh

Glacier and 2017 Wrangell Mountains (Alaska) landslides, submitted. I am the

primary investigator and author of the paper.
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Appendix A

Frequency Domain Inversion

We apply an iterative procedure using waveform similarity and waveform resid-

ual criteria (detailed in method) to determine the seismic record to include in the

inversion.

Next, because the key parameters of landslides are important to estimate the

impact and the mechanics, we can further use the centroid single force (Centroid

Single Force) model to do that. The model characterizes the force exerted on the

ground by the landslide. This is a first-order model that is decided by the landslide

first-order movement as a whole. The model consists of three components force for

North-South, West-East and vertical components. The recorded seismic signals from

a landslide are decided by the centroid single force history is and the green function

by the equation below:

un(x, t) = Gni(x, t, η, τ) ∗ Fi(η, τ) (A.1)
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where x denotes the seismometer location, η denotes the source location, un

denotes the displacement at the seismometer at the n th direction, Gni denotes the

Green’s function with a force source applied at the i th direction and received at n

th direction, t and τ denote time, Fi denotes Centroid Single Force, i denotes the

direction of the force (north-south, west-east and vertical). According to Green’s

function’s time shift property, it can also be written as

un(x, t) = Gni(x, t− τ, η, 0) ∗ Fi(η, τ) (A.2)

Now do a change of variable to make it clearer t′ = t − τ , which is time using

the force source time as the origin. So the term Gni(x, t − τ, η, 0) = Gni(x, t
′, η, 0).

Gni(x, t
′, η, 0) is the Green’s function with a force source at origin time. The equation

is then written as

un(x, t) = Gni(x, t
′, η, 0) ∗ Fi(η, τ) (A.3)

We solve this system in the frequency domain. Apply the Fourier transform to the

equation. It is transformed to be a linear system as below (because it is convolution

between function of t′ and τ , those two variables are both transformed to ω):

ũn(x, ω) = G̃ni(x, ω, η, 0)F̃i(η, ω) (A.4)

It can be written in the matrix form as below by writing out the index n and i

in terms of three directions 1,2 and 3,
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U = GF (A.5)

where

U =


ũ1(x, ω)

ũ2(x, ω)

ũ3(x, ω)

 (A.6)

G =


G̃11(x, ω, η, 0) G̃12(x, ω, η, 0) G̃13(x, ω, η, 0)

G̃21(x, ω, η, 0) G̃22(x, ω, η, 0) G̃23(x, ω, η, 0)

G̃31(x, ω, η, 0) G̃32(x, ω, η, 0) G̃33(x, ω, η, 0)

 (A.7)

F =


F̃1(η, ω)

F̃2(η, ω)

F̃3(η, ω)

 (A.8)

This system can be solved using the least square inversion method. In practice, we

include many good seismic records from many stations to include in the U matrix.

we perform the Fast Fourier Transform (FFT) algorithm on the Green’s function

and the recorded seismograms. The nine components Green’s function is obtained

using the Instaseis method, which is obtained using axisymmetric spectral-element

code AxiSEM with the anisotropy PREM model of up to 5s.Then for each frequency

produced by FFT, we do the inversion in the frequency domain by using the least

square inversion method. We use frequency from 0.0143Hz (70s) to 0.05Hz (20s)

with 0.002Hz interval . Centroid single force models can be obtained in the frequency

domain. Finally, we inverse transform the result into the time domain.

48



Appendix B
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All Waveforms for CSF Inversion

Figure B.1: All of the observed and synthetics seismograms for June 28, 2016 Lam-
plugh Glacier landslide within 5 degrees distance. Black lines are the observed seis-
mograms. The red lines are synthetic seismograms. The traces with opaque color
are traces not included in the final inversion.

50



Figure B.2: All of the observed and synthetics seismograms for September 22, 2017
Wrangell Mountains landslide within 5 degrees distance (part 1). Black lines are the
observed seismograms. The red lines are synthetic seismograms. The traces with
opaque color are traces not included in the final inversion.
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Figure B.3: All of the observed and synthetics seismograms for September 22, 2017
Wrangell Mountains landslide within 5 degrees distance (part 2). Black lines are the
observed seismograms. The red lines are synthetic seismograms. The traces with
opaque color are traces not included in the final inversion.
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Figure B.4: All of the observed and synthetics seismograms for September 22, 2017
Wrangell Mountains landslide within 5 degrees distance (part 3). Black lines are the
observed seismograms. The red lines are synthetic seismograms. The traces with
opaque color are traces not included in the final inversion.
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Appendix C

Decompose the CSF for Two

Subevents

Topographic features can help constrain landslide sliding process Crowley et al.

(2003); Gualtieri and Ekström (2018). The runout of subevent 1 observed in the sa-

tallite images matches the horizontal displacement integrated up to 30 s. Subevent 1

of the 2017 Wrangell Mountains landslide likely ended before 40 s because the tra-

jectory of subevent 2 matches the topography precisely if its occurrence starts on

40 s (Figure C.2). The results suggest no significant amount of forces produced by

subevent 1 after 40 s. In Figure C.1, the southward trajectory cannot be explained

by the topography of the incision valley near subevent 1. However, such a direction

can be explained by the topography near subevent 2. The two subevents may have

overlapped because the three-component centroid signal forces do not synchronize to

zero in between 30 to 40 s.
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Figure C.1: Horizontal trajectory determined from integrating the accelerations,
assuming a mass of 2× 109 kg. Color dots represent the time since the origin time.
Background satellite image is from Google Earth provided by Maxar Technologies.
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Figure C.2: Horizontal trajectory determined from integrating the accelerations,
assuming a mass of 1.5×109 kg for subevent 1 and a mass of 3.5×109 kg for subevent
2. Color dots represent the time since the origin time. Background satellite image is
from Google Earth provided by Maxar Technologies.
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Appendix D

Vertical Displacement Profile for

Two Subevents

Figure D.1: Vertical displacement of subevent 1 of the Wrangell Mountains landslide.
Blue line is the vertical displacement integrated from the vertical acceleration. Red
line is the measured elevation.
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Figure D.2: Vertical displacement of subevent 2 of the Wrangell Mountains landslide.
Blue line is the vertical displacement integrated from the vertical acceleration. Red
line is the measured elevation variation.
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Appendix E

Calculated Trajectory

Figure E.1: Horizontal trajectory of subevent 2 determined from using the CSF
model and the steepest descent path according to the ALOS AD3D30 digital elevation
model.
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Appendix F

Mass Estimations for Two

Subevents

Table F.1: Maximum centroid single forces and mass estimation following (Ekström
and Stark, 2013) for the 2017 Wrangell Mountains landslide

Subevent 1 Subevent 2 Total

Maximum force 0.864× 1010 N 1.448× 1010 N
Mass estimate 4.66× 109 kg 7.82× 109 kg 12.48× 109 kg
90% confidence
interval, maxi-
mum force

0.831/0.891×1010 N 1.392/1.583×1010 N

90% confidence
interval, mass
estimate

4.49/4.81×109 kg 7.52/8.55×109 kg 12.01/13.36×109 kg
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Table F.2: Mass estimate based on geodetic and seismc observations

Subevent 1 Subevent 2 Total

Mass runout dis-
tance

600 m 1000 m

Mass estimate 1.5× 109 kg 3.5× 109 kg 5.0× 109 kg
Mass runout
range

300− 1500 m 700− 1500 m

Mass estimate
range

0.6/3×109 kg 2.5/5.3×109 kg 3.1/8.3×109 kg

Table F.3: Mass estimate based on area and thickness

Subevent 1 Subevent 2 Total

Total area 0.23 km2 1.47 km2 1.70 km2

Source area 0.01 km2 0.04 km2 0.05 km2

Passage area 0.05 km2 0.18 km2 0.23 km2

Deposition area 0.17 km2 1.25 km2 1.43 km2

Assumed source
thickness

50 m 50 m

Assumed deposi-
tion thickness

1.6 m 2.9 m

Assumed den-
sity

2.5× 103 kg/m3 2.5× 103 kg/m3

Mass estimate 1.25× 109 kg 5.01× 109 kg 6.25× 109 kg
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