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 Visual attention and memory research focus heavily on controlled experiments with 

simple visual features and discrete objects, despite evidence for an important distinction between 

representations of objects and large extended surfaces in scenes. Other work suggests that what 

we know about attention and memory for objects may not simply extend to scene-surface 

information, motivating us to better characterize these differences. Chapter 1 investigates a 

paradigm widely cited as demonstrating the existence of scene-specific representations in 

working memory, finding that it does not convincingly differentiate scene-specific information in 

working memory from information in high-capacity iconic memory, which could be in a number 

of different formats. This led us to explore other approaches to more specifically isolate scene 

surface information. For example, recent fMRI work has revealed a potential marker for scene-
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specific representations, which showed promise for investigating influences of different task or 

attention conditions. In Chapter 2, I tested whether this scene-specific information persisted 

when participants viewed naturalistic scene photographs rather than 3D-rendered environments. I 

used deep neural networks to estimate ground-truth 3D information about stimuli in a publicly 

available fMRI data set. Using this information to predict fMRI responses, I found evidence of 

3D scene-specific representations, although this information was less distinguishable from 2D 

information than in the previous work. In Chapter 3, I re-examined this finding using stimulus 

photographs with ground-truth 3D information that, as a set, had more potential to differentiate 

3D-surface features from 2D features. We also tested the presence of more spatially precise 

scene-specific information that could be more useful in moving through the 3D world, finding a 

shocking dominance of 2D visual information over both types of 3D information, with no 

evidence for scene-specific representations. This echoes behavioral work suggesting that 2D 

textures may underlie 3D representations in natural scene images and highlights the importance 

of studying complex real-world information using complementary stimulus sets that preserve 

different aspects of the natural world. Together, these chapters lay critical groundwork for 

understanding how scene representations behave under different attention and memory 

conditions. 

 



 

 1 

INTRODUCTION 

Our visual systems encounter many types of visual information on a regular basis: simple 

features like color, orientation, and spatial frequency; discrete visual objects like an apple or a 

chair; and the large extended surfaces around us like walls and floors. A great deal of evidence 

across different disciplines argues that the distinction between discrete objects and large 

extended surfaces is important to our visual system—for example, human-developmental and 

rodent work suggests that they are prioritized differently over the course of development and 

across species (Cheng, 1986; Hermer & Spelke, 1994; Landau & Lakusta, 2009), human fMRI 

work shows these types of representations are anatomically distinct in the brain (e.g., Epstein & 

Kanwisher, 1998), and TMS work shows they can be selectively disrupted (e.g., Dilks, Julian, 

Paunov, & Kanwisher, 2013). Importantly, an intriguing set of work suggests that scene-specific 

and related types of information may be processed very rapidly or with reduced focal attention 

(Alvarez & Oliva, 2009; Greene & Oliva, 2009), suggesting that we shouldn’t assume that what 

we know about  attention and memory for visual objects and simple features extends to scene 

information. This motivated our use of a paradigm widely cited as evidence for abstract scene-

layout information in memory (Chapter 1), as well as a promising new technique to isolate 

scene-specific visual information in scene-selective cortical areas (Chapters 2 and 3). 

 

Chapter 1: Lack of knowledge about scene surface information in visual working memory 

 Visual working memory is a particularly critical realm of visual processing to understand, 

since it has the potential aid in constructing our mental model of the world through (1) 

maintaining external visual “landmarks” that we encode other objects in relation to (possibly 

aiding in the integration of visual information across eye movements, e.g.), and (2) allowing us 
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to access information that is currently not foveated or is out of view. While our severely limited 

working memory capacity appears to be an obstacle to these processes, I argue in Brady et al. 

(2019) that this limited capacity is an artifact of how we test working memory—while the 

majority of working memory paradigms measure capacity in terms of how many colors (or other 

abstract objects) someone can remember, the real world contains many structural regularities and 

more diverse types of visual information, such as the large extended surfaces that make up a 

scene. Is such scene information stored in working memory separately from objects? If so, it is 

possible that memory stores that are at least to some degree domain-specific could effectively 

expand our working memory capacity, facilitating less-overlapping memory representations that 

are less likely to compete for resources. 

To look into this possibility, Chapter 1 of this dissertation investigates a paradigm widely 

cited as demonstrating the maintenance of abstract scene layout information in memory. We 

found evidence that this established paradigm doesn’t actually isolate scene layout information 

(and may instead be driven by a more fragile form of memory, which, unlike visual working 

memory, is thought to be disrupted by eye movements). Because this previous paradigm hinged 

on the assumption that effects were driven by working-memory representations, an assumption 

that significantly narrowed the hypothesis space about the types of visual information that could 

be contributing, our findings argue that this work does not isolate scene-surface information. 

This highlights a giant gap in the existing literature: we know very little about the how and under 

which circumstances the visual system stores representations of the 3D geometry of a visual 

space, motivating Chapters 2 and 3 of my dissertation. 
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Chapter 2: Deep-net-derived surface estimations of natural scenes predict voxel responses 

in scene-selective cortex 

It is difficult to design an experiment well-controlled enough to isolate scene-surface 

information (or any other type of more complex visual information), especially since lower-level 

information might actually underlie it (Brady, Shafer-Skelton, & Alvarez, 2017) and so may be 

impossible to disentangle. Here, we look to recent neuroimaging approaches that seek to quantify 

the amount of unique or overlapping variance that different types of visual information can 

explain in human fMRI responses to visual stimuli (e.g., Groen et al., 2017; Lescroart & Gallant, 

2019). Using this approach, Lescroart & Gallant (2019) found evidence for information that is a 

likely candidate for a marker of scene-specific information in the brain. Their stimuli were 

computer-rendered 3D images that had ground-truth 3D depth information, and they generated 

features corresponding to those images that summarized the 3D spatial characteristics of surfaces 

across each image. They found that a portion of voxel responses in scene-selective areas OPA, 

PPA, and RSC could be uniquely attributed to these features, an indication of a scene-specific 

representation. 

While Lescroart & Gallant (2019) use 3D-rendered images, we believed it was important 

to ensure that their findings extended to scene photographs, which contain more naturalistic 

texture information that scene-selective cortex may be sensitive to. We use a publicly available 

fMRI data set (Chang et al., 2019) and generated estimated 3D distance and surface-direction 

information using pre-trained DNNs (Zamir et al., 2019). Using this information, we find a 

similar pattern of results as Lescroart & Gallant (2019), although with a smaller magnitude of 

voxel responses uniquely attributable to 3D scene surface information and the largest amount 

shared between 2D and 3D features. This pattern converges with behavioral evidence that 
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patterns of 2D and 3D orientation may underlie our scene processing abilities (Brady, Shafer-

Skelton, & Alvarez, 2017). 

 

Chapter 3: Stimulus dependence of 3D-scene-surface representations in scene-selective 

cortex 

 In Chapter 3, we collected our own data, seeking to (1) assess the presence of more 

navigationally relevant scene-surface information, and (2) further explore the relationship 

between 2D and 3D visual features. Starting from a large collection of natural scene images (~4 

million) with ground-truth distance and surface-direction annotations (used to train the DNNs 

used in Chapter 2), we selected images so that, across images, global summaries of 3D 

information (Ch. 2; Lescroart & Gallant, 2019) covaried minimally with spatially specific 

(quadrant-based) summaries of 3D information that might be more useful for navigating. In 

doing so, we found that there was also a smaller relationship between 2D and 3D visual features 

than in previous work, setting us up for a stronger test of the presence of scene-specific 

information (via voxel responses uniquely attributable to a 3D scene-surface model).  

 We were surprised that, using this new stimulus set, we now found no evidence for 

scene-specific representations—while 3D model performance was significantly above 0 in scene-

selective areas, our variance partitioning analysis found that this must have been due to the 

influence of shared 2D/3D information and not information uniquely attributable to 3D scene-

surface representations. Follow-up analyses argue that our results cannot be straightforwardly 

explained by analysis differences. Instead, one possibility is that this difference can be explained 

by stimulus differences—previous work used artificially generated stimulus sets with less 

naturalistic texture information than photographs. When we used naturalistic scene photographs, 
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this may have encouraged our participants’ visual systems to use the same (2D) cues for scene 

processing that they can rely on in the real world. Another intriguing possibility is that, while 

some aspects of Lescroart & Gallant’s (2019) stimuli were less naturalistic, the fact that they 

were movies means they did contain another depth cue that ours did not: motion parallax. Thus 

our results also argue that it is important to test the impacts on scene-surface information when 

motion-parallax can vs. cannot be used as a cue.  

 
 These chapters are motivated by an important distinction between discrete-object 

representations and scene-surface representations. We investigate techniques with the potential 

to study scene-surface representations in a behavioral memory paradigm (Chapter 1), as well 

during attentional/task manipulations in fMRI (Chapters 2 and 3). Together, these projects make 

important strides towards understanding the separability of scene-specific representations from 

other types of information, as well as more precisely understanding the format of the information 

represented in scene-selective cortex. Finally, they lay critical groundwork for understanding 

how scene-specific representations are affected under different attentional and memory 

conditions. 

 
  



 

 6 

References 

Alvarez, G. a, & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be 
represented with reduced attention. Proceedings of the National Academy of Sciences of the 
United States of America, 106(18), 7345–7350. https://doi.org/10.1073/pnas.0808981106 

Brady, T. F., Shafer-Skelton, A., & Alvarez, G. A. (2017). Global ensemble texture 
representations are critical to rapid scene perception. Journal of Experimental Psychology: 

Human Perception and Performance, 5, 0–17. https://doi.org/10.1037/xhp0000399 

Brady, T. F., Störmer, V. S., Shafer-Skelton, A., Williams, J. R., Chapman, A. F., & Schill, H. 
M. (2019). Scaling up visual attention and visual working memory to the real world. 
Psychology of Learning and Motivation - Advances in Research and Theory, 70, 29–69. 

https://doi.org/10.1016/bs.plm.2019.03.001 

Chang, N., Pyles, J. A., Marcus, A., Gupta, A., Tarr, M. J., & Aminoff, E. M. (2019). 
BOLD5000, a public fMRI dataset while viewing 5000 visual images. Scientific Data, 6(1), 
49. https://doi.org/10.1038/s41597-019-0052-3 

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation*. Cognition, 23, 
149–178. 

Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is 
causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 

1331–1336. https://doi.org/10.1523/JNEUROSCI.4081-12.2013 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. 

Nature, 392(6676), 598–601. https://doi.org/10.1038/33402 

Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: seeing 
the forest without representing the trees. Cognitive Psychology, 58(2), 137–176. 
https://doi.org/10.1016/j.cogpsych.2008.06.001 

Groen, I. I., Greene, M. R., Baldassano, C., Fei-Fei, L., Beck, D. M., & Baker, C. I. (2017). 
Distinct contributions of functional and deep neural network features to representational 
similarity of scenes in human brain and behavior. Distinct Contributions of Functional and 
Deep Neural Network Features to Representational Similarity of Scenes in Human Brain 
and Behavior, 207530. https://doi.org/10.1101/207530 

Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young 
children. Nature, 370(6484), 57–59. https://doi.org/10.1038/370057a0 

Landau, B., & Lakusta, L. (2009). Spatial representation across species: geometry, language, and 
maps. Current Opinion in Neurobiology, 19(1), 12–19. 

https://doi.org/10.1016/j.conb.2009.02.001 

Lescroart, M. D., & Gallant, J. L. (2019). Human Scene-Selective Areas Represent 3D 
Configurations of Surfaces. Neuron, 101(1), 178–192. 



 

 7 

https://doi.org/10.1016/j.neuron.2018.11.004 

Zamir, A., Sax, A., Shen, W., Guibas, L., Malik, J., & Savarese, S. (2019). Taskonomy: 
Disentangling task transfer learning. In IJCAI International Joint Conference on Artificial 
Intelligence (Vol. 2019-Augus, pp. 6241–6245). https://doi.org/10.24963/ijcai.2019/871 

 



8 
 

CHAPTER 1: Scene layout priming relies primarily on low-level features rather than scene 
layout. 
 

Abstract 

The ability to perceive and remember the spatial layout of a scene is critical to 

understanding the visual world, both for navigation and for other complex tasks that depend 

upon the structure of the current environment. However, surprisingly little work has investigated 

how and when scene layout information is maintained in memory. One prominent line of work 

investigating this issue is a scene priming paradigm (e.g., Sanocki & Epstein, 1997), in which 

different types of previews are presented to participants shortly before they judge which of two 

regions of a scene is closer in depth to the viewer. Experiments using this paradigm have been 

widely cited as evidence that scene layout information is stored across brief delays and have 

been used to investigate the structure of the representations underlying memory for scene layout. 

In the present experiments, we better characterize these scene priming effects. We find that a 

large amount of visual detail rather than the presence of depth information is necessary for the 

priming effect; that participants show a preview benefit for a judgment completely unrelated to 

the scene itself; and that preview benefits are susceptible to masking and quickly decay. 

Together, these results suggest that “scene priming” effects do not isolate scene layout 

information in memory, and that they may arise from low-level visual information held in 

sensory memory. This broadens the range of interpretations of scene priming effects and 

suggests that other paradigms may need to be developed to selectively investigate how we 

represent scene layout information in memory. 
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Introduction  

One of the central challenges in understanding our visual experience is understanding what 

information about the world we hold in visual memory across brief delays and interruptions, like 

eye movements and blinks. Visual memory is critical for many tasks we perform every day, like 

visual search and spatial navigation, and given our limited ability to process everything from a 

single fixation, visual memory is necessary to build up an experience of a coherent and complete 

visual scene (e.g., Hollingworth, 2004, 2005). Countless studies investigate memory for discrete 

objects, including the capacity limit of visual memory for objects (e.g., Brady et al., 2016), the 

format of the representations for objects and how precision and the number of objects held in 

mind trade-off (Zhang & Luck, 2008), and what neural mechanisms are responsible for storing 

objects in working memory (Serences, 2016).  

However, our visual environment is made up both of discrete objects and also of extended 

surfaces which form a spatial layout, and there is significant evidence that our visual system 

processes these types of information separately. For example, fMRI studies in humans show 

evidence for regions of the brain that respond selectively to scenes compared to objects (Epstein, 

2005; Epstein & Kanwisher, 1998; Kravitz, Saleem, Baker, & Mishkin, 2011) and which seem 

to represent features of a scene’s spatial layout rather than the objects it contains (Epstein, 2005; 

Park, Brady, Greene, & Oliva, 2011). In addition, it is possible to recognize briefly presented 

scenes even without being able to recognize any of the objects in those scenes (Oliva & 

Torralba, 2001; Schyns & Oliva, 1994), providing evidence of the independence of scene 

recognition from object recognition. Greene & Oliva (2009) proposed that this ability could 

arise from the representation of global properties of scenes, such as the “perspective” or 

“openness” of a scene. Past research has also drawn distinctions between other types of scene 
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information that may be represented, for example: scene meaning (sometimes called “gist”; e.g., 

if the scene is a beach, a dining room, etc.) (Oliva, 2005) and the spatial layout of scenes 

(Epstein, 2005). Finally, evidence suggests that scene structure, including the spatial layout of a 

scene, is crucial to guiding our attention during visual search for objects, and may be represented 

in a global way independent of object processing (e.g., Torralba, Oliva, Castelhano, & 

Henderson, 2006; Wolfe, Võ, Evans, & Greene, 2011).  However, despite this evidence for 

distinct representations of scenes (separate from those of objects), little work has investigated 

how scene-specific spatial layout information is maintained across saccades or brief delays, with 

most work on scene memory focusing on the role of memory for objects within scenes 

(Hollingworth, 2004, 2005). 

One technique used to study memory for natural scenes in general is to test whether a 

preview of a scene facilitates subsequent processing related to that scene. For example, a preview 

of a real-world scene image facilitates subsequent visual search for an object present in that 

scene (Castelhano & Henderson, 2007; Võ & Henderson, 2010). While there is evidence that the 

memory representations retained in these studies are abstracted from the exact visual features 

(e.g., Castelhano & Henderson, 2007 show size invariance), these studies do not make it clear 

what specifically about the scene is remembered across the delay or to what extent this memory 

reflects the spatial layout per se as opposed to hypotheses about particular objects and their 

locations. Work by Sanocki and colleagues has asked more directly about the extent to which the 

spatial layout of a scene is held in memory by examining the conditions under which a preview 

of a scene facilitates a depth judgment within that scene (e.g., Sanocki, 2003, 2013; Sanocki & 

Epstein, 1997; Sanocki, Michelet, Sellers, & Reynolds, 2006). Deciding which of two things is 

closer in depth specifically targets scene layout representation as it requires participants to have 
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processed and held in mind information about which parts of a scene are near or far from the 

observer, as opposed to only having held in mind a distribution of possible locations of objects. 

This “scene priming” paradigm is widely cited as an example of scene layout information being 

maintained in memory (e.g., by Chun & Jiang, 1998; Oliva & Torralba, 2001). However, while 

existing experiments show that the effect persists when some low-level information is varied 

(e.g., Sanocki, 2003), the effect is often diminished, and it remains possible that low-level visual 

information (e.g., patterns of orientation across the image; e.g., Brady, Shafer-Skelton, & 

Alvarez, 2017) could be driving the effect without an abstract representation of the spatial layout 

of a scene.  

In the present experiments, we sought to better characterize the robustness and content of the 

memory representations responsible for scene priming effects. In particular, we ask (1) whether 

scene priming paradigms are able to isolate the effects of scene layout information held in 

memory, and (2) whether scene priming effects are primarily driven by information held in 

maskable memory stores, such as iconic memory, or more robust memory stores, such as visual 

working memory. In our first experiment, we reasoned that if “scene priming” benefits reflect 

memory for scene layout, we would expect them to persist when scene previews contain layout 

information (boundaries of major surfaces or large objects), even if these previews have no 

identifiable objects and little extraneous visual detail. However, in Experiment 1 we find that 

while previews consisting of full photographs of target scenes are able to speed depth judgments 

on the target scenes, sparse line drawings of the scenes, which contain only the boundaries of 

major surfaces or objects and lack semantic information, are unable to speed depth judgments 

despite containing significant depth information. In Experiment 2 we find that even in a task that 

doesn’t require the usage of the scene at all — and particularly not its layout — photo preview 
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benefits are still present, suggesting they are not a selective index of scene layout or even scene 

processing. In Experiment 3, we test whether scene priming benefits are due to a memory store 

robust to visual masking (e.g., working memory). We find a preview effect for the more detailed 

line drawings used by Sanocki and Epstein (1997), which contain identifiable shapes as well as 

extra visual detail, and we find that it is abolished with a mask and a longer delay. This suggests 

that even line drawing preview benefits may be due to a maskable memory store, such as iconic 

memory. Compared to previous interpretations, these results broaden the possibilities for how the 

preview is speeding participants’ judgments—arguing that low-level information held in iconic 

memory may be sufficient to facilitate the detection of sudden onsets of the target shapes rather 

than giving participants a head start on processing scene layout.  

 

Experiment 1: Preview benefit for photos but not sparse line drawings 

In a first experiment we tested whether participants were faster at making a depth 

judgment (i.e., which of two regions of a scene would be closer in depth) when they first saw a 

preview of either a photograph of the scene or a line drawing of the scene, as compared to an 

uninformative rectangle presented with the same timing as the two scene-specific previews. The 

main task for participants was to judge which of two red dots on a scene was on the position in 

the scene that was closer in depth to the viewer (Figure 1; see Sanocki, 2003). Just before each 

scene was presented, participants saw one of the preview images. Because line drawings share 

minimal low-level visual features with the target images, a line drawing preview benefit might 

indicate that scene priming effects are due to abstract information stored in memory about the 

spatial layout of the surfaces in the scene. To best assess this, the line drawings we selected for 

this experiment contained the boundaries of the major surfaces and objects in a scene but were 
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screened to ensure they contained no recognizable objects. Because they were automatically 

generated from the boundaries dividing labeled regions of a scene, they also did not contain 

extraneous visual detail (e.g., blades of grass, artistic details). 

 

Experiment 1 Method 

The design, number of participants, and analysis plan for this experiment were 

preregistered (URL for this experiment: https://aspredicted.org/yw5bg.pdf; see Supplemental 

Materials for all pre-registrations).  

 

Participants: To complete a full counterbalance (see Design & procedure for details), we 

had 102 participants (6 groups of 17 each). Participants were Mechanical Turk workers who 

participated in exchange for monetary compensation. Previous literature finds that Mechanical 

Turk workers are representative of the adult American population (Berinsky, Huber, & Lenz, 

2012; Buhrmester, Kwang, & Gosling, 2011) and provide similar data to participants run in 

laboratory visual cognition studies (Brady & Alvarez, 2011). We recorded timing information in 

order to ensure consistency across individual participants' computers and monitors.  

 

Stimuli: Fifty-four images of indoor scenes were selected from the SUNRGB-D database 

(Song, Lichtenberg, & Xiao, 2015), which includes RGB images of scenes as well as 

corresponding semantic segmentations and maps of ground-truth depth. Because we didn’t want 

participants to be able to use the vertical position of the target dots as a depth cue, the two target 

dots placed on each image always had the same vertical position and different horizontal position 

in the image. Left-right depth-asymmetric scenes ensured a wider variety of possible target dot 
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locations. Thus, to select the scenes to use as target images, we first ordered the images by 

asymmetry in the mean depth between the left and right halves of the image.  Starting with the 

most depth-asymmetric scenes, line drawings were then created in Matlab by tracing the borders 

of the semantic segmentations of these same images, and the first ~500 line drawings were 

screened for identifiable objects, as we wished our line drawing preview images to contain 

information about spatial layout but not about the identity of particular objects. Participants were 

asked to list any objects they could identify in the images (excluding major surfaces, like “wall” 

or “floor”), and an image was selected for the main experiments if neither author AS nor any of 

10 pilot participants per image reported being able to identify any objects. This resulted in 54 

images. One set of probe locations was chosen for each image, and target images were created by 

using Matlab to add red dots with white outlines at the chosen probe locations. Matlab was also 

used to create the rectangle preview. Scene photograph previews were the original scene images 

used to create target images. All images were cropped and down-sized, if necessary, to 561 x 427 

pixels.  

 

Design & procedure: Participants’ task on every trial was to judge which of two red 

probe dots was on the part of the scene image that would be closer to the viewer in depth in real 

life. Each trial began with a preview from one of three conditions: (1) a line drawing of the scene 

photo (line drawing preview); (2) the black outline of a rectangle (rectangle preview), as used in 

Sanocki & Epstein (1997); and (3) the exact same scene photograph that was used to create the 

target image (photo preview). Each preview image was presented for one second. Following a 

brief blank (87 ms, as in Sanocki & Epstein, 1997), the target image was presented until 

participants responded (see Figure 1 for a schematic of a trial). Participants were instructed to 
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respond as quickly as possible while still getting most trials correct, and feedback was given for 

incorrect answers. 

Each image appeared once in each of the three conditions. The order images appeared in 

was randomized with the constraint that each target image was presented for the first time before 

any images were presented for the second time. Six possible counterbalance conditions ensured 

that across all participants, each image appeared equally often in each of the six possible orders 

of preview conditions (e.g., line drawing, then photo, then rectangle; etc.). 

 

Figure 1.1: Trial timing and conditions for Experiment 1. Each trial started with a preview 
image from one of the three preview conditions -- a photo preview without the red probe dots 
present, a rectangle preview, or a line drawing preview that contained information about the 
spatial layout of the scene but not about the identity of individual objects. As in previous work, 
these previews were visible for 1000ms. After an 87ms blank, a target image was then presented, 
and participants were instructed to respond which of the locations cued by the two red probe dots 
would be closer to the viewer in depth in real life. (Red dots enlarged here for visibility.) In 
Experiment 1, preview conditions were intermixed, and participants were given no special 
instructions regarding the previews. 
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Analyses: Our exclusion criteria and analyses were decided in advance (see pre-

registration). We excluded individual trials if reaction times were faster than 150ms and only 

included correct trials in reaction time analyses. Participants were excluded and replaced with a 

new participant from the same counterbalance condition if any of the following applied: overall 

accuracy more than 3 standard deviations below the mean accuracy; overall accuracy below 

55%; same response key used on more than 80% of trials; median RT slower than 2 seconds for 

any of the three preview conditions; fewer than 50% of trials included in the main analysis, 

either because of RTs below 150ms, or because of incorrect responses. These criteria resulted in 

the exclusion of 15 participants (14 participants for accuracy, one of whom also had too many 

RTs faster than 150ms and another of whom also had median RTs slower than 2 seconds; as well 

as 1 participant for having median RTs slower than 2 seconds). 

In all experiments, our statistics were performed based on each participants' median 

reaction time in each of the three preview conditions. The critical analyses were two t-tests 

between participants' median RTs in the photo preview condition and the rectangle preview 

condition, and between the line drawing preview condition and the rectangle preview condition. 

Effect sizes were calculated using Cohen’s d. 

 

Experiment 1 Results 

Participants were faster with photo previews (M=857 ms) than with rectangle previews 

(M=900 ms; t(101) = 4.91, p < 0.001, d = 0.49), indicating that participants were making use of 

the previews. However, we did not see facilitation for the line drawing preview condition 

(M=900 ms) compared to the rectangle preview condition (M=900 ms; t(101) = -0.07, p = 0.94, 
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d = -0.06). The photo preview benefit was also significantly larger than the line drawing preview 

benefit (t(101) = 5.64, p < 0.001, d = 0.56).  

Because we designed the task to have as many usable trials as possible for the reaction 

time analysis, mean accuracies were high and within a 0.7% range (line drawing: 97.5%, 

rectangle: 97.0%, photo: 96.8%). Uncorrected post-hoc t-tests showed one significant accuracy 

difference (line drawing vs. photo) and small effect sizes in each comparison (rect vs. photo: 

t(101) = 0.49, p = 0.62, d = 0.05; line drawing vs. rect: t(101) = -1.92, p = 0.06, d = -0.19; line 

drawing vs. photo: t(101) = -2.32, p = 0.02, d = -0.23). Because there are no large accuracy 

differences, speed-accuracy tradeoffs are unlikely to have affected our pattern of RT data. See 

Figures A4-A6 for accuracy data, including individual subject accuracies. 

To verify that our line drawings contained information about the spatial structure of each 

scene, we performed a supplemental experiment (see Experiment A1), in which the red target dot 

locations were placed directly on the line drawings, and participants judged which regions of the 

line drawings would be closer in real life. Participants saw the line drawings for the same timing 

as they saw them during the preview in Exp. 1 (1000ms). Participants were 67% accurate at this 

task, significantly above chance (t(99) = 17.46, p < 0.001, d = 1.75), and in a post-hoc analysis, 

when we re-analyzed Experiment 1 using only the line drawings with significantly above-chance 

performance (lowest: 66%; mean: 78%), we again did not find a line drawing preview benefit 

(t(101) = 0.21, p = 0.83, d = 0.02). Again, the photograph preview benefit and the interaction 

between the line drawing and photograph preview benefits were both significant (photo preview 

benefit: t(101) = 4.98, p < 0.001, d = 0.49; interaction: t(101) = 5.17, p < 0.001, d = 0.51). In 

order to further explore the relationship between depth information in the sparse line drawing 

previews and the line drawing preview benefit, we also plotted the size of the line drawing 
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preview benefit for each image against the proportion of participants who correctly judged depth 

in that image. If our lack of a preview benefit were due to lack of depth information in the 

previews, we would expect a positive relationship between depth judgment accuracy and line 

drawing preview benefits. Instead, we find no evidence of a relationship (r = 0.13, p = 0.35; see 

Figure 3 for plot). 

 

Experiment 1 Discussion 

We found that while previews of the full photograph provided a significant benefit in a 

subsequent depth judgment task, sparse line drawing previews did not provide a benefit (relative 

to uninformative rectangle previews). This was true despite the presence of significant depth 

information in the line drawing previews and held even when we limited our analysis to only 

those line drawings that provided the best depth information.  

In additional experiments reported in the Appendix, we replicated the photograph 

preview benefit (Experiments A1-A3) and the lack of a line drawing benefit (Experiments A1-

A2; no line drawings were included in Experiment A3). These replications were originally 

designed to address the role of mirroring the photo or line drawing preview to distinguish 

representations of spatial layout from more global scene properties. In all experiments conducted 

using our sparse line drawing stimuli, we found the same pattern of results: a significant preview 

benefit for the photo previews, but none for the sparse line drawings in any of the 3 experiments 

in which they were included. This was despite the fact that these line drawings contain enough 

information for participants to make depth judgments. 

Thus, despite the presence of depth information in our sparse line drawings, they did not 

lead to a preview benefit. Previous work (e.g., Sanocki & Epstein, 1997) has found reliable 
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preview benefits from a different set of line drawings, an effect we successfully replicate in 

Experiment 3. There are two important differences between these stimulus sets. First, while 

Sanocki & Epstein’s original (1997) drawings contained semantic information, we specifically 

chose line drawings that did not contain identifiable objects. This was because we wanted to be 

able to differentiate between effects due to the presence of semantic information vs. the presence 

of spatial layout. The second difference is that the original line drawings share much more local 

orientation information with the target images (e.g., from blades of grass, small and medium-

sized objects) than the sparse line drawings used in Experiment 1. Critically, Experiment 3 of 

Sanocki & Epstein (1997) does show a scene priming benefit for artificially generated stimuli 

that lack semantic information (as our line drawings do) but also share much of the same local 

orientation information with the target images (which our line drawings do not). This led us to 

believe that the lack of a line drawing benefit in Experiment 1 was not due to the lack of 

semantic information or participants’ inability to categorize our line drawings—instead, one 

important possibility to consider was whether the amount of visual detail (e.g., orientation 

information) shared between the previews and targets is critical to finding a line drawing preview 

effect, and that such a preview effect might not result from processing of scene layout. 

 Given the very brief delay in our experiment (87 ms, based on previous scene priming 

paradigms), it is possible that low-level visual information about the preview image may be 

stored in a high-capacity visual memory store, such as iconic memory, and that a preview image 

that is sufficiently similar to the target image (simply missing the probe dots) might allow 

participants to find the probe dots more efficiently. In other words, rather than giving participants 

a head-start on layout processing, it is also possible that when more visual detail is shared 

between the preview image and the target image, the sudden onset of the probe dots becomes 



20 
 

more salient, speeding participants’ judgments by speeding their detection of the probe dots (e.g., 

Jonides & Yantis, 1988; Theeuwes, 1991). To address this, we conducted two further 

experiments. Experiment 2 tests whether the photo preview benefit remains for a task in which 

participants’ judgments on the target image should not be sped by knowledge of scene layout, as 

the target scene is irrelevant to the task, but could be sped by faster detection of the probe dots. 

Experiment 3 tests whether previews with more detailed line drawings facilitate depth 

judgements and tests how robust this is to longer delays and visual masking. 

 

Figure 1.2: Participants' reaction times in each preview condition in Experiment 1. Bars 
represent means over participants. Error bars are within-participant SEM. N = 102. 
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Figure 1.3: For each image, proportion of participants who correctly made the depth judgment in 
Experiment A1, plotted against the size of the line drawing preview benefit for that image in 
Experiment 1. Error bars on depth judgment accuracy are standard error of the proportion, and 
error bars on the line drawing preview benefit are SEM. Gray dotted lines indicate a line drawing 
preview benefit of 0 (horizontal) and chance performance on the depth judgment task (vertical). 
 

Experiment 2: Photo preview benefit even when layout information is irrelevant 

The sudden onset of an object tends to draw attention (Jonides & Yantis, 1988; 

Theeuwes, 1991), and thus the appearance of probe dots may draw attention even when the 

preview scene is in iconic memory rather than present on the screen. For example, empty-cell 

localization tasks and other related tasks show evidence for integration – and detection of new 

information – across brief delays (Di Lollo, 1980; Eriksen & Collins, 1967). 

In particular, evidence suggests that if the delay between two stimuli is less than 80–100 

milliseconds, visual persistence of the first overlaps with the initial sensory processing of the 

second, allowing participants to perceptually combine the two stimuli (Di Lollo, 1980; Eriksen & 

Collins, 1967), as in the case of two sets of dots forming a letter string (Eriksen & Collins, 1967). 
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Even at slightly longer delays, participants may be able to use informational persistence in iconic 

memory to notice the sudden onset of the probe dots (e.g., Hollingworth, Hyun, & Zhang, 2005). 

Thus, given the short delay used in typical scene priming experiments, it may be that much of the 

scene priming benefit arises as a result of faster detection of the probe items following the 

informative previews rather than faster processing of the target scene. 

If preview benefits for more visually detailed preview images are driven by something 

other than scene layout information (e.g., speedier detection of the probe dots when more visual 

detail is shared between the preview and target images), we should find a preview benefit for a 

task that does not require scene layout information at all, or even the use of the target scene at 

all.  

Thus, in Experiment 2, we used the same scene images and target shape locations as 

Experiment 1, but rather than seeing two red circles and making a depth judgment about the 

scene regions underlying these two circles, participants saw a red square and a red diamond and 

judged whether the left or right of these two target shapes was a square—a judgment for which 

the background scene was completely irrelevant. If participants' responses in scene priming 

experiments like Experiment 1 were speeded due to ease in locating the target shapes, we should 

also find a photo preview benefit here. On the other hand, if the scene priming paradigm 

effectively isolates a head-start in processing layout information, we should not expect a photo 

preview benefit, since layout information and scene information in general is not informative for 

this task. 
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Experiment 2 Method 

The design, set size, and analysis plan for this experiment were preregistered 

(https://aspredicted.org/8g5v2.pdf; see Supplemental Materials for all pre-registrations).  

 

Participants: Participants were 100 Mechanical Turk workers (25 in each of 4 

counterbalance conditions) who participated in exchange for monetary compensation. No 

participants participated in the previous experiment. 

 

Stimuli: Stimuli were the same as Experiment 1, except (1) we did not include a line 

drawing condition, since we did not find a line drawing preview benefit in Experiment 1, and (2) 

we replaced each set of the target dots with a square and a diamond.  

 

Design and procedure: See Figure 4 for example trial. The design of this experiment 

was the same as for Experiment 1, except that there was no line drawing preview condition. This 

resulted in 4 counterbalance groups, since each target image was repeated with the opposite 

placement of squares and diamonds across groups, and each variation of each target image was 

presented either in the rectangle condition first or in the photo condition first across groups. 

Rectangle and photo previews were intermixed. 

Participants’ task was to judge whether the square was the left of the two shapes or the 

right of the two shapes. 

 

Analyses: Analyses were the same as in Experiment 1, and exclusion criteria were the 

same as in the other 2 experiments. The preregistered exclusion criteria resulted in the exclusion 
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of one participant for having an overall accuracy lower than three standard deviations below the 

mean accuracy. This participant was replaced with a participant from the same counterbalance 

condition. 

 

Figure 1.4: Trial timing and conditions for Experiment 2. As in Experiment 1, a preview image 
appeared for 1000ms, followed by an 87ms blank. In this experiment, each preview image was 
either the photo preview (without the square/diamond) or an uninformative rectangle preview. 
After the delay, a target image was presented, and participants were instructed to indicate which 
of the two shapes was a square (left or right). Square and diamond enlarged here for visibility. 
 

Experiment 2 Results & Discussion  

Participants were significantly faster in the photo preview condition (M=777 ms) 

compared to the rectangle preview condition (M=814 ms; t(99) = 4.36, p < 0.001, d = 0.44; see 

Figure 5), indicating the presence of photo “scene priming” effects even for a task that does not 

require any scene layout information or any use of the background scene in the task. Accuracies 

in the two conditions were high and very similar (rectangle: 98.5%; photo: 98.6%), and a post-

hoc uncorrected t-test showed no significant difference between them (t(99) = 0.36, p = 0.70, d = 

0.04).  
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Because square vs. diamond targets are randomly assigned to either target location (with 

this assignment counterbalanced across participants for each image), the effects here cannot be 

the result of layout information being predictive of the locations of squares vs. diamonds, or of 

the visual features of these targets, or of the response participants need to make. Instead, the 

results support the hypothesis that scene priming with photograph previews can result from 

participants being faster to localize the probes; in other words, that response times are facilitated 

by the sudden onsets of the probe shapes when detailed visual information is shared by the 

preview image and the target image. Because the preview images do contain layout information, 

we cannot rule out the hypothesis that participants obligatorily process this information. 

However, because of the absence of a relationship between the layout of the scene and the shape 

task, there is no plausible explanation for how faster processing of the background scene’s layout 

could speed shape judgments. Further, overall faster reaction times in this experiment compared 

to Experiment 1 are consistent with the task in the current experiment not requiring any 

processing of the background scenes. (By contrast, in Experiment 1, once the dots were localized 

in each condition, a depth task also needed to be performed.)  

 This hypothesis that the source of scene priming effects may be the detection of the onset 

of the target shapes provides a potential explanation for the lack of scene priming in the line 

drawings we used in Experiment 1. That is, while the sparse line drawings contained significant 

depth information, they were more abstract and considerably less visually detailed than Sanocki 

& Epstein’s (1997) line drawings, causing them to share less low-level visual information with 

the target images. Thus, it may be that this lack of visual detail prevented participants from 

detecting the onset of the probes efficiently. To examine this hypothesis, we next sought to test 

the source of the scene priming effects found using Sanocki & Epstein’s (1997) original stimuli, 
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and in particular the robustness of these effects to visual masking and increased delay, both of 

which should severely curtail participants' ability to quickly detect the onset of the probes if such 

detection relies on iconic memory (Irwin & Thomas, 2008). 

 

Figure 1.5: Means of reaction times in each preview condition in Experiment 2. Error bars are 
within-participant SEM. N = 100. 
 

Experiment 3: Replication using original Sanocki & Epstein stimuli; effects abolished using 

200ms masked delay period 

 

In Experiment 3, we asked what type of memory store drives scene priming effects. Since 

these effects may be dependent on the amount of visual detail present shared between preview 

images and target images, and appear to occur even when the background scene is irrelevant, this 

raises the possibility that they could arise from integration between the preview and the target 

scene and the improved ability of participants to detect the probes that results from this 

integration. Thus we hypothesized that they may be driven not by a robust working memory 

representation but by a high-capacity but fragile visual memory like iconic memory. 
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A classical distinction in visual memory is between iconic memory and visual working 

memory, with high-capacity sensory memory (“iconic” memory) decaying quickly and being 

easily disrupted by masks, and visual short-term memory being relatively robust to longer delays 

and visual masks (Irwin & Thomas, 2008). Thus, we reasoned that if the benefits of detailed line 

drawing previews and photograph previews arose from integration between the preview scene 

and the target scene in iconic memory, this memory should be interrupted by a visual mask 

and/or by a longer delay period, even if this delay period remains quite short. By contrast, if the 

preview benefit reflects a head-start in scene layout processing or participants’ ability to hold 

scene layout in working memory, the preview benefit should remain even after a brief visual 

mask and a 200ms delay.  

Thus, using Sanocki & Epstein’s original (1997) stimuli and timing, we first replicated 

both the photo preview benefit and the line drawing preview benefit. Critically, we included two 

delay period conditions: an un-masked delay period of the same duration as the original 

experiments (87 ms) and a masked delay period of 200ms. If Sanocki & Epstein’s scene priming 

effects were driven by information held in iconic memory, the mask and the longer delay 

between the preview and target image should abolish the preview benefits. On the other hand, if 

scene priming effects are driven by information in a more robust form of visual memory, such as 

visual working memory, the scene priming benefits should remain. 

 

Experiment 3 Method 

The design, set size and analysis plan for this experiment were preregistered (pre-

registration for this experiment here: https://aspredicted.org/rk6f6.pdf; see Supplemental 

Materials for all pre-registrations).  
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Participants: Participants were 306 Mechanical Turk workers (102 in each 

counterbalance condition) who participated in exchange for monetary compensation. We sought 

(and preregistered) greater power in this experiment as we were predicting a smaller or absent 

effect of scene previews in the masked conditions. 

 

Stimuli: Stimuli were the original Sanocki & Epstein (1997) target images, scene 

photographs, and line drawings. The rectangle preview was created in Matlab. In addition to 

these 3 preview conditions, which we focus on here, the experiment also contained mirrored line 

drawing previews, as our original interest was to examine the role of spatial layout vs. more 

global scene properties in scene priming (see also Experiment 1 replications in the Appendix). In 

this experiment, we do not focus on the mirrored line drawing condition because in this 

particular set of stimuli the images are extremely symmetrical (with only the exception of the 

pool image), and thus there is no real difference in the informativeness of the original line 

drawings and the mirrored line drawings (see Figure A7).   

 

Design & procedure: See Figure 6 for example trial. Preview conditions were blocked, 

with the order of blocks counterbalanced across participant groups using a balanced latin square. 

In this experiment, following Sanocki and Epstein (1997), participants task was to judge which 

of two chairs was closer in depth to the viewer (rather than the red dots in the previous 

experiments). 

 

Analyses: Analyses and exclusion criteria were the same as for Experiment 1, except that 

we were now also interested in how any line drawing or photo preview benefits changed 
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according to mask condition. Our preregistered exclusion criteria resulted in the exclusion of 17 

participants (15 for accuracy, one of whom also had too many trials faster than 150ms; there 

were also 2 participants with median RTs slower than 2 seconds in at least one condition). 

 

Experiment 3 Results & Discussion 

In the un-masked condition, we found benefits for both line drawings (M=807 ms) and 

photographs (M=800 ms) over rectangle previews (M=826 ms; line drawings vs. rectangles: 

t(305) = 3.18, p < 0.002 d = 0.18; photos vs. rectangles: t(305) = 3.88, p < 0.001, d = 0.22; see 

Figure 7). However, both effects were abolished in the masked condition (line drawings vs. 

rectangles: t(305) = -1.26, p = 0.21, d = -0.07; photos vs. rectangles: t(305) = -0.56, p = 0.57, d = 

-0.03), with the direction of means for both being in the direction of the preview slowing 

response, and with Bayes factors showing substantial evidence favoring the null hypothesis in 

both cases (Scaled JZS Bayes Factor = 7.1 line drawing vs. rectangles; 13.4 photos vs. 

rectangles; using default of r=0.707 and the method of Rouder, Speckman, Sun, Morey, & 

Iverson, 2009). A post-hoc power analysis suggests that if the preview benefits in the masked 

condition were of the same effect size as in the unmasked conditions (~d=0.20), we had 96.7% 

power to detect this in the current study with our sample size. Comparing the benefit in the 

masked vs. unmasked conditions, both drawing vs. rectangle and photo vs. rectangle were 

significantly smaller in the masked compared to the un-masked conditions (line drawing benefit: 

t(305) = 2.97, p = 0.003, d = 0.17; photo benefit: t(305) = 3.02, p = 0.003, d = 0.17). Mean 

accuracies in each combination of mask and preview condition ranged between 98.0% and 

98.6%. Post-hoc uncorrected t-tests showed no significant differences in any pairs of conditions 
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within either mask/delay condition, or for either of the two critical interactions across mask/delay 

conditions. 

Note that in this experiment using the Sanocki and Epstein (1997) stimuli, rather than 

making a depth judgment on a pair of red circles, participants had to make a depth judgment on 

two large chairs that appear in the target scene but are not present in the previews. Thus, the raw 

reaction times are numerically faster than in Experiment 1, likely reflecting easier localization of 

the larger chair targets compared to the smaller dot targets. The faster overall reaction times in 

the 200ms masked condition are consistent with participants benefiting from a longer preparation 

time compared to the 80ms no-mask condition. While this possibility does not detract from our 

main conclusions, it prevents us from making any additional conceptual claims based on the 

overall RT differences in the 80ms no-mask condition vs. the 200ms masked condition. Because 

the reaction times in our study are well within the range reported for previous scene priming 

effects (as fast as 562 ms in Sanocki & Epstein, 1997 and as slow as 1029 ms in Sanocki, 2013), 

this argues that the lack of scene priming in our masked condition is not due to ceiling effects.  
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Figure 1.6: Trial timing and conditions for Experiment 3. The line drawing and photo previews 
do not have the chairs present that are present in each of the target images, and the judgment 
required on the target image is which of two chairs would be closer to the viewer in depth in real 
life. In the task, first, a preview image appeared for 1000ms.  It was either followed by an 87ms 
blank, as in the first two experiments (and as in Sanocki & Epstein, 1997), or a dynamic visual 
mask, for 200ms. Preview and target images were the same as in Sanocki & Epstein (1997). 
 

The fact that both effects were abolished by a longer but still short (200ms) delay and a 

mask argues that the original preview benefits were due to visual information held in high-

capacity sensory memory (e.g., iconic memory). Because a wide variety of information can be 

stored in iconic memory, including low-level visual information such as patterns of orientation 

across an image, the results of the present experiment further argue that scene priming paradigms 

are not able to isolate the effects of scene layout information stored across a delay period. 

Instead, these results are also consistent with the interpretation that preview images facilitate 

participants’ search for the probes rather than giving them a head-start on layout processing. 
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Figure 1.7: Reaction times in each preview condition in Experiment 3. Bars represent means 
over all participants. Error bars are within-participant SEM. N = 306. 
 

General Discussion 

In three experiments, we showed that the effects of scene previews on subsequent depth 

judgments (termed 'scene priming'; Sanocki & Epstein, 1997) are: (1) present for visually 

detailed preview images, but not for sparser preview images that still contain depth information; 

and (2) are driven by information held in iconic memory or another short-term and maskable 

memory store. In particular, we showed that while both photograph previews (Experiments 1 and 

3) and visually detailed line drawings (Experiment 3) produced scene priming benefits, abstract 

line drawings (containing only the boundaries of major objects and surfaces; Experiment 1) did 

not, despite containing significant depth information. This is not what we would expect if scene 

previews facilitated performance by giving participants a head start on layout processing. Further 

arguing against the idea that scene previews primarily facilitate layout processing, we found a 

photograph preview benefit even for a task in which the background scene was completely 

irrelevant (Experiment 2). Finally, we found that the scene priming effects from Sanocki & 
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Epstein’s original (1997) photographs and detailed line drawings both disappeared when the 

delay period is masked, suggesting that scene priming effects are driven by information held in 

iconic memory. Together, our data suggest that scene previews may primarily speed participants’ 

localization of the probe shapes on the target image.  

Relationship to Previous Scene Priming Findings: Our results are in line with previous 

studies showing benefits of a scene preview on subsequent processing of a scene. For example, a 

preview of a real-world scene image facilitates subsequent visual search in that scene 

(Castelhano & Henderson, 2007; Võ & Henderson, 2010), and both scene photograph and 

detailed line drawing previews speed subsequent depth judgments on scenes (Sanocki & Epstein, 

1997). We consistently replicated photograph preview benefits, and we replicated line drawing 

preview benefits when using the same line drawings as the original experiment (Sanocki & 

Epstein, 1997). 

However, our results are at odds with the argument that these effects are due to abstract 

visual information about a scene's layout that speeds participants’ judgments by giving them a 

head start on processing scene layout information. Previous support for this argument is based on 

based on a few experiments: first, in Sanocki & Epstein (1997), a previewed line drawing of a 

scene photograph facilitates 3D depth judgments on the photograph. Because the line drawing 

has less low-level information in common with the target image than a full photograph preview 

and facilitates depth judgments, they reasoned that layout information is stored across the delay. 

Second, Sanocki (2003) showed scene priming with moderate retinal shifts between previews 

and targets (Experiment 5), and Sanocki & Epstein (1997) argue that the viewpoint shifts present 

in their Experiment 4 are evidence of a more abstract, higher-level representation. Finally, 
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Sanocki (2003; Experiments 2-5) varies lighting direction between preview and target images, 

disrupting some low-level visual information. 

However, while the above experiments show that scene priming benefits persist when 

some low-level information is varied, the effect is often diminished, and remaining low-level 

visual information (e.g., the orientation information present in each part of the image) could be 

driving the preview benefit. Even line drawing previews, which perhaps share the least pixel-by-

pixel information with target photographs, still preserve some of the important orientation 

information in the target photographs, especially the detailed line drawings used in Sanocki & 

Epstein (1997).  Orientation and edge information is well-known to be relevant to scene 

information. Both local orientations, curvatures and angles (e.g., Walther & Shen, 2014) and the 

global distribution of orientation information (e.g., Brady et al., 2017; Oliva & Torralba, 2001) 

are critical to scene recognition. Furthermore, detailed line drawings elicit remarkably similar 

brain activity in scene regions to real scene photographs (Walther, Chai, Caddigan, Beck, & Fei-

Fei, 2011). Thus, it may be that line drawing preview benefits in fact reflect the preservation of 

these important low-level or mid-level features of a scene that are necessary for participants to 

notice the onset of a new set of objects, rather than reflecting the representation of more abstract 

properties such as spatial layout.  

Another study using scene previews (Castelhano & Pollatsek, 2010) shows the limited 

viewpoint tolerance of scene priming effects, and it is notable that the viewpoints that give the 

largest scene priming benefits are also the ones with the most low-level overlap with the target 

images. This is in line with the results we report here. Prior work by Gottesman (2011) has the 

potential to demonstrate the maintenance of more abstract information from scene previews, but 

the conclusions of that work rest on the particular details of the stimuli they used and how 
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specific the effects of boundary extension are to higher levels of the visual hierarchy. Future 

work could investigate the potential of their paradigm for specifically investigating scene layout 

information stored in memory.  

 Our findings are also consistent with arguments made in Germeys & d’Ydewalle (2001), 

but while their results call into question scene priming results with significant pixel-by-pixel 

overlap between preview and target images, ours argue that even studies designed to reflect a 

more abstract memory store, such as those using line drawings as previews (e.g., see Sanocki 

2003), may instead be picking up on the speedier detection of target shapes.  

Implications for Representations of Space in Visual Memory: There is a long-running 

and broad debate over how much information we maintain about the world in memory (O’Regan 

& Noë, 2001), whether and when we are able to integrate information from successive fixations 

into a more complete picture of our surroundings (Henderson, 1997; Irwin, Yantis, & Jonides, 

1983; Irwin, 1991), and what format these representations are in. Investigating the types of scene 

information retained in memory has the potential to shed light on how much information we 

maintain in memory about the world and how we combine information across successive 

fixations to build a more complete picture of our surroundings. While a good deal of work has 

been done on the maintenance of object information across brief delays and eye movements, less 

is known about whether scene layout information persists across eye movements, and if so, how 

this type of memory fits into the process of maintaining a stable representation of the world. The 

flash-preview-moving-window paradigm (Castelhano & Henderson, 2007; Võ & Henderson, 

2010) demonstrates memory for a size-invariant representation of some information about a 

natural scene, but it is unclear what the content of this representation is. Change blindness effects 

(Carlson-Radvansky & Irwin, 1995; Franconeri & Simons, 2003; Luck & Vogel, 1997; Grimes, 
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1996; McConkie & Currie, 1996; Phillips, 1974; Rensink, O’Regan, & Clark, 1997; Simons, 

1996) argue that when we are unable to rely on iconic memory (as is often the case in the real 

world, visual details are often lost). It is an important question the extent to which people store 

detailed spatial layout information in memory — and particularly working memory, which is 

quite capacity limited. Because the current findings call into question one of the main literatures 

used to support the existence of spatial layout representations, it remains an open question the 

extent of the layout of specific surfaces in a scene (scene layout) that we are capable of 

maintaining in working memory. 

One of the challenges for future work is understanding how scene layout representations 

can be quantified and incorporated into existing models of working memory. In particular, while 

working memory is known to be quite capacity limited, there is significant debate in the visual 

working memory literature about whether the units of working memory capacity are discrete 

“slots” or a more continuous resource that can be used to remember fewer objects with more 

precision or more objects with less precision (Luck & Vogel, 2013; Ma, Husain, & Bays, 2014). 

Because the layout of a scene is not obviously broken down into discrete objects, it is a 

challenge to conceptualize how to incorporate it into these primarily object-based models of 

working memory.  Existing models that incorporate both individual objects as well as higher-

level information like ensemble structure may be adaptable to incorporate other information like 

scene layout (Brady & Alvarez, 2011; Brady & Tenenbaum, 2013).  

Neural models of working memory more easily accommodate the representation of scene 

layout information. For example, the occipital place area (OPA) and parahippocampal place area 

(PPA) are generally seen as perceptual areas, but many neural models of working memory are 

based on the idea that “perceptual” areas can be recruited for working memory storage (Awh & 
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Jonides, 2001; Chelazzi, Miller, Duncan, & Desimone, 1993; Curtis & D’Esposito, 2003; 

D’Esposito, 2007; D’Esposito & Postle, 2015; Harrison & Tong, 2009; Lara & Wallis, 2015; 

Magnussen, 2000; Miller, Li, & Desimone, 1993; Pasternak & Greenlee, 2005; Serences, Ester, 

Vogel, & Awh, 2009; Sreenivasan, Curtis, & D’Esposito, 2014). The neuroimaging literature 

shows evidence of scene-specific representations in perceptual contexts (Dilks, Julian, Paunov, 

& Kanwisher, 2013; Epstein & Kanwisher, 1998; Maguire, 2001), including boundary 

information in the OPA (Julian, Ryan, Hamilton, & Epstein, 2016). Thus, future work could 

examine working memory delay period activity or patterns in these regions to quantify working 

memory for spatial layout and examine how it interacts with other working memory capacity 

limits. 

 

 

Conclusion 

The ability to perceive and remember the spatial layout of a scene is critical to 

understanding the visual world, both for navigation and for other complex tasks that depend 

upon the structure of the current environment. The present studies offer a new interpretation of 

scene priming effects, which are one of the primary tools used to study the representation of 

spatial layout. We find that scene priming effects are driven by visual detail held in iconic 

memory that does not necessarily isolate scene layout information. Studying scene layout 

information in memory has the potential to offer fresh insight into several long-standing 

questions about visual memory, and the current studies are a critical first step towards this goal. 
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Appendix 

 

Figures A1-A3: Preview benefits by participant 

 

Figure 1.A1: Distributions of individual participants’ line drawing and photo preview benefits in 
Experiment 1. Red lines mark the boundaries of quartiles, and blue points are individual 
participants’ preview benefits in each condition. Note that because we collected many 
participants but with relatively few trials per participant (to avoid repeating scenes too often), the 
spread of participants data is larger than in a typical psychophysics study, whereas our power to 
estimate the grand average across participants and the variation across participants is higher.  
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Figure 1.A2: Distributions of individual participants’ photo preview benefits in Experiment 2. 
Red lines mark the boundaries of quartiles, and blue points are individual participants’ preview 
benefits.  
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A  

 

B 

 

Figure 1.A3: (A) Distributions of individual participants’ photo and line drawing preview 
benefits in Experiment 3 show a few outliers. We identified outliers as any participants who had 
a median RT in any condition that was three standard deviations more extreme than the mean. 
Supplemental analyses show that post-hoc removal of these outliers gives the same pattern of 
results for our main analyses: line-drawing preview benefit, no mask: t(295) = 3.43, p < 0.001 , d 
= 0.20; photo preview benefit, no mask: t(295) = 4.88, p <0.001 , d = 0.28; line-drawing preview 
benefit, mask: t(295) = -0.22, p = 0.83 , d = -0.01; photo preview benefit, mask: t(295) = 1.45, p 
= 0.15, d = 0.08; line-drawing benefit diminishes with mask: t(295) = 2.96, p = 0.003, d = 0.17; 
photo benefit diminishes with mask: t(295) = 2.80, p = 0.005, d = 0.16. (B) Distributions of 
preview benefits with outliers removed. 
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Figure 1.A4: Accuracy data for Experiment 1. Circles are individual participants. 

 
Figure 1.A5: Accuracy data for Experiment 2. Circles are individual participants. 

 

Figure 1.A6: Accuracy data for Experiment 3. Circles are individual participants. 
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Experiment A1: Verifying sparse line drawings contain layout information 

The design, set size, and analysis plan for this experiment were preregistered (see below for pre-

registrations).  

 

Participants: Participants were 100 Mechanical Turk workers who participated in exchange for 

monetary compensation. No participants participated in any other experiments using these line 

drawings. 

 

Stimuli: Stimuli were the line drawing images used in Experiments 1 and 2, with target dots 

placed on them in the locations corresponding to the photo target images from Experiments 1 

and 2. 

 

Design and procedure: In this experiment, there were no preview images, and participants saw 

each target line drawing once. During practice, participants were shown examples of line 

drawings created from photographs, and they practiced choosing which dot would indicate the 

closer part of the line drawing if the scene existed in three dimensions. Participants were given 

feedback for correct and incorrect answers in the practice, but only for incorrect answers during 

the main experiment.  

 

Analyses: In this experiment, we analyzed average performance as well as performed a two-

tailed binomial test on each image to determine whether participants’ depth judgments were 

significantly above chance. 
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Results: Participants were 67% accurate at this task, significantly above chance (t(99) = 17.46, p 

< 0.001, d = 1.75). We found that 35 of the 54 images had above-chance depth judgments in the 

binomial test, and these are the images that are the focus of the post-hoc analysis in Experiment 

1. 
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Experiment A2: Mirrored and un-mirrored line drawing previews  

The design, set size, and analysis plan for this experiment were preregistered (see below for pre-

registrations).  

 

Participants: Participants were 100 Mechanical Turk workers who participated in exchange for 

monetary compensation. No participants participated in any other experiments using these line 

drawings. 

 

Stimuli: Stimuli were the same as in Experiment 1, except there was an additional preview 

condition using left/right mirror-reversed line drawings, which were created using Matlab. 

 

Design and procedure: In this experiment, there were four preview conditions: line drawing 

preview, mirrored line drawing preview, uninformative rectangle preview, and photo preview. 

The order images appeared in was randomized with the constraint that each target image was 

presented for the first time before any images were presented for the second time, for each of 

four presentations of each image (one per preview condition). 

 

Analyses: Our pre-registered comparison was a t-test between the mirrored line-drawing 

condition and the un-mirrored line drawing condition. Based on Sanocki & Epstein (1997), we 

also expected at least the un-mirrored line drawing condition to be facilitated relative to the 

rectangle baseline condition. 
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Results and Discussion: We found no significant benefit for either of the line drawing preview 

conditions compared to the uninformative rectangle baseline (un-mirrored significantly slower 

than baseline: t(99) = -2.93; p = 0.004; d = -0.29; mirrored no difference: t(99) = -0.70, p = 0.49, 

d = -0.07), making any difference between the two line drawing conditions uninterpretable. We 

did, however, find a photograph preview benefit (t(99) = 7.66, p < 0.001, d = .77), suggesting 

that the lack of line drawing benefit was not due to participants ignoring previews altogether or 

lack of trying at the task.  

 Because of a mistake in counterbalancing, the mappings between condition order and 

target image was not changed across participants as intended (That is, all participants saw a 

particular target image first in the photograph condition, and another particular target image first 

in the un-mirrored line drawing condition, etc).  
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Experiment A3: Mirrored and un-mirrored line drawings, blocked design 

The design, set size, and analysis plan for this experiment were preregistered (see below for pre-

registrations).  

 

Participants: Participants were 100 Mechanical Turk workers (25 in each counterbalance 

condition) who participated in exchange for monetary compensation. No participants participated 

in any other experiments using these line drawings. 

 

Stimuli: Stimuli were the same as in Experiment A2. 

 

Design and procedure: We reasoned that in Experiment A2 the intermixing of un-mirrored and 

mirrored line drawings may have caused participants to pay less overall attention to both types of 

line drawing previews. For this reason, we blocked the preview conditions in Experiment A3. 

Thus, preview conditions were blocked in this experiment, with the order of blocks 

counterbalanced across participant groups using a balanced latin square. Other aspects of the 

design were the same as Experiment A2. 

 

Analyses: Again, our pre-registered comparison was a t-test between the mirrored line-drawing 

condition and the un-mirrored line drawing condition; based on Sanocki & Epstein (1997), we 

again expected at least the un-mirrored line drawing condition to be facilitated relative to the 

rectangle baseline condition. 
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Results and Discussion: We found no significant benefit for either of the line drawing preview 

conditions compared to the uninformative rectangle baseline (un-mirrored vs. rect: t(99) = -0.48, 

p = 0.64, d = -0.05; mirrored vs. rect: t(99) = -0.31, p = 0.76, d = -0.03), making any difference 

between the two line drawing conditions uninterpretable. Again, we found a photograph preview 

benefit (t(99) = 3.08, p = 0.003, d = 0.31), suggesting that the lack of line drawing benefit was 

not due to general inattention to preview images. Because the preview types were blocked and 

introduced at the beginning of each block, the lack of a line drawing benefit was unlikely to be 

due to participants ignoring all line drawings because mirrored line drawings were unhelpful. 
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Experiment A4: Un-mirrored photograph previews facilitate depth judgments better than 

mirrored photograph previews  

The design, set size, and analysis plan for this experiment were preregistered (see below for pre-

registrations).  

 

Participants: Participants were 102 Mechanical Turk workers (17 in each of 6 counterbalance 

conditions) who participated in exchange for monetary compensation. No participants 

participated in any other experiments using these line drawings. 

 

Stimuli: Target images were the same as in Experiment A2 and A3, and preview images were 

either rectangle previews, photograph previews, or mirror-reversed photograph previews created 

in Matlab. 

 

Design and procedure: Preview conditions were blocked in this experiment, with every 

possible order of blocks equally likely across the 6 participant groups. Other aspects of the 

design were the same as in Experiments A2 and A3. 

 

Analyses: Our pre-registered comparison was a t-test between the mirrored and un-mirrored 

photograph preview conditions (note there is a small inconsistency in the pre-registration, which 

says line drawings rather than photographs in the analysis section, despite the fact that there 

were no line drawings in this study); we also expected to replicate the un-mirrored photograph 

preview benefit we found in Experiments A2 and A3. 
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Results and Discussion: Our critical analysis found that subjects’ median RTs were 

significantly faster in the un-mirrored photo prime condition compared to the mirrored photo 

prime condition (t(101) = 2.27, p = 0.026, d = 0.22). There was again a benefit of the un-

mirrored photo prime compared to the rectangle prime (t(101) = 2.44, p = 0.016, d = 0.24) but 

not for the mirrored photo prime compared to the rectangle prime (t(101) = -0.24, p = 0.81, d = -

0.02). This argues against scene priming benefits originating solely from memory for global 

properties (Oliva, 2005) of scenes, such as openness or amount of perspective, since the 

photograph and mirrored photograph previews had identical global properties, but only the un-

mirrored photographs facilitated depth judgments.  



51 
 

 

 

 

Figure 1.A7: Sanocki & Epstein’s original (1997) line drawing stimuli, left columns; mirror-
reversed versions of their stimuli, right columns. The images are largely mirror-symmetric, 
which makes the mirror-reversed line drawing condition in Experiment 3 uninformative. 
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Figure 1.A8: Line drawings and corresponding photographs, Experiment 1 – ordered by 
depth discrimination accuracy from line drawings alone (indicated next to drawing) 
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Figure 1.A8: Line drawings and corresponding photographs from Experiment 1 
(continued) 
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Figure 1.A8: Line drawings and corresponding photographs from Experiment 1 
(continued)
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Figure 1.A8: Line drawings and corresponding photographs from Experiment 1 
(continued)  
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CHAPTER 2:  Deep-net-derived surface estimations of natural scenes predict voxel responses in 
scene-selective cortex 
 

Abstract 

Our world is full of diverse types of visual information, yet visual attention and memory 

experiments focus almost exclusively on understanding attention/memory of basic visual features 

and discrete objects, in part because our understanding of how people represent scene surface 

information cognitively and neurally is very limited. Recent work has made headway in 

quantifying such surface representations, finding 3D surface information in scene-selective 

cortex, yet their results were limited to artificially generated images for which ground-truth 3D 

information exists, and it is unclear if their results would extend to natural scene photographs, 

which have more naturalistic textures and relationships among visual properties. Here, we use 

DNNs to estimate ground-truth distance and surface-direction information based only on RGB 

stimulus images in the publicly available BOLD5000 fMRI data set. Using voxelwise encoding 

models based on these features, we find that such models can predict significant amounts of 

activity in scene-selective cortex, suggesting the presence of 3d scene representations when 

viewing natural images. These results lay the foundation for investigating scene surface 

processing in more naturalistic environments and tasks, a critical step towards understanding 

visual and cognitive processes in the real world. 
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Introduction 

As we navigate the world, our visual systems are able to make sense of diverse types of 

visual information: low- to mid-level visual features like edges or abstract shapes; bodies, facial 

identities and expressions; letters and words; objects that we may interact with or navigate 

around; and the large extended surfaces that make up the 3D shape of a scene. One core division 

in our visual representations is a distinction between the representation of scene surfaces and 

visual objects. In particular, developmental and comparative work shows differential priority 

given to representations of major scene surfaces vs. other features across ages and species, with 

strong dissociations between tasks where children and animals use scene features vs. object 

features (K. Cheng, 1986; Hermer & Spelke, 1994; Landau & Lakusta, 2009). Furthermore, the 

observation of anatomically separate regions specialized for processing scenes vs. objects 

suggests a fundamental divide between representations of simple features or discrete visual 

objects and visual scenes (e.g., Epstein & Kanwisher, 1998; Park, Brady, Greene, & Oliva, 2011; 

Silson, Steel, Kidder, Gilmore, & Baker, 2019). These regions can be separately disrupted with 

TMS (Dilks, Julian, Paunov, & Kanwisher, 2013; Julian, Ryan, Hamilton, & Epstein, 2016; 

Mullin & Steeves, 2011, 2013), suggesting they play a causal role in processing stimuli of their 

preferred kind.  

Despite the evidence for these differences, considerably more is known about simple 

visual features and even complex object representations than about scene representations. 

Importantly, what we know about how attention and memory act on discrete visual objects may 

not simply extend to the realm of scene representations. For example, several characteristics of 

scene representations mean they could play different roles than object representations in core 

cognitive processes; for example, some information about natural scenes is thought to be 
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processed extremely quickly (Greene & Hansen, 2020; Henriksson, Mur, & Kriegeskorte, 2019; 

Martin Cichy, Khosla, Pantazis, & Oliva, 2017) – in some cases more quickly than, and without 

recognition of, the objects inside the scene (Greene & Oliva, 2009; Oliva & Torralba, 2006). 

More distributed properties of scenes can also be processed with reduced focal attention (Alvarez 

& Oliva, 2009; Groen, Ghebreab, Lamme, & Scholte, 2016), leading to the suggestion that some 

properties of scenes may be processed via a separate pathway that does not require selective 

attention, unlike most object processing (Wolfe, Vo, Evans, Greene, 2011).  

The asymmetry in what we know about objects and scenes may partly be because more 

complex stimuli are inherently harder to study (Brady et al., 2019)—naturalistic stimuli with 

more types of information present leave more alternative explanations to be ruled out. Rather 

than attempting to perfectly control for representations of lower-level features, recent work has 

made progress by quantifying variance explained by different feature sets (Greene, Baldassano, 

Esteva, Beck, & Fei-Fei, 2016; Greene & Hansen, 2020; Groen et al., 2018; Lescroart & Gallant, 

2019). This approach has the potential to uncover important sources of variability and lay critical 

groundwork for more targeted investigations, even though it does not, on its own, perfectly 

pinpoint the unique contributions of higher-level scene representations (compared to low- and 

mid-level features).  

One important type of scene information that is not well understood is the fine-grained 

spatial information we use to move through and interact with the world – e.g., the exact location 

and orientation of major surfaces in scenes. One reason for this may be that it is much more 

difficult to get ground-truth information for the layouts of major surfaces in scenes than for 

coarser-grained properties, like whether a scene is indoor or outdoor. A recent study aimed to 

address this by building virtual 3d environments to use as stimuli (Lescroart & Gallant, 2019; 
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also see Henriksson, Mur, & Kriegeskorte, 2019), so that the ground-truth 3d information is 

directly available in the stimuli themselves. They found evidence that scene regions maintained 

information about scene surfaces and their directions in 3D space, above and beyond local image 

information like 2D orientation and spatial frequency, making this information a promising 

potential marker of scene-specific representations.  

While this approach offers a substantial degree of flexibility and precise measurement of 

the underlying ground truth about scene surfaces, the tradeoff is naturalism, with some important 

real-world characteristics lost—for example, texture and surfaces are manipulated totally 

independently in these artificial scenes in a way that may not preserve some 2D cues that scene-

areas have available to them in the natural world (Lescroart & Gallant, 2019).  Thus, in the 

current work we sought to extend the methods used to isolate 3d scene information by Lescroart 

and Gallant (2019) to naturalistic scene photographs, rather than 3d renderings. This allows us to 

test whether such 3d scene information is represented in visual scene regions even in natural 

stimuli. Another motive for the present work is that the difficulty of creating precise 3d spatial 

annotations for natural scenes is an unnecessary barrier to studying these navigationally relevant 

spatial representations, so we also sought to demonstrate an approach that allows us to advance 

our knowledge of these more complex types of information more quickly and easily than has 

been possible before, taking advantage of a world where data and stimulus sharing is becoming 

more common.  

To simultaneously address both of these challenges, our approach in the present work 

was to use pre-trained Taskonomy neural networks (Zamir et al., 2019) to generate 3d features 

similar to those in Lescroart & Gallant (2019), but using ordinary scene images as a starting 

point. This provided us with the information needed to fit voxelwise encoding models based on 
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3d surface features, with prediction success serving as our measure of scene surface 

“information” present in voxels across cortex.  

 

Methods 

fMRI data acquisition and pre-processing: We analyze data from the BOLD5000 data set 

(Chang et al., 2019), a publicly available fMRI data set. Data were acquired on a 3T Siemens 

Verio MR scanner at Carnegie Mellon University, using a 32-channel head coil. We use the 

provided pre-processed data for our analyses, and we analyze the average of the 3rd and 4th TRs 

after stimulus onset, as those timepoints included the peak responses across all ROIs (Chang et 

al., 2019). 

 

Participants: We include the three BOLD5000 participants who completed all 15 

functional sessions of the experiment, ensuring enough trials for our analyses. This included: 

CSI1 – male, age 27, right-handed; CSI2 – female, age 26, right-handed; and CSI3 – female, age 

24, right-handed. 

 

Task and stimuli: Participants viewed stimuli while fixating, in a slow event-related 

design, and indicated via button-press how much they liked or disliked each image. From the 

original 5000+ BOLD5000 stimulus images, we selected the 1000 “Scenes” images (which had 

been intermixed with other images in each run) that depicted naturalistic scenes, both indoor and 

outdoor. While these images did not come with any annotations beyond category label, they are 

chosen to correspond to categories included in the SUN database, an image set used for scene 

categorization tasks. This ensured a broad sampling of categories (250 total in the BOLD5000 
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stimuli). There were four exemplars of each category. A small number of images were repeated 

3-4 times, and for these, we analyzed only the first presentation. 

 

Regions of interest: We use the provided BOLD5000 region of interest definitions. 

Eight functional localizer runs were collected over the course of the 15 functional sessions, run at 

the end of a given session. Stimuli consisted of scenes, objects, and scrambled images, presented 

in a blocked design, and participants detected repetitions of identical images (one-back task). 

Scene areas were defined using a scenes > objects+scrambled contrast, and an early visual cortex 

(EVC) ROI was defined using a scrambled > baseline contrast. The authors note that this resulted 

in an ROI that may have extended past V1 or V2. 

 

Feature sets: The baseline gabor wavelet model contained 300 features, each a 

combination of one of 4 spatial frequencies (0, 2, 4, 8, and 16 cycles per image) and one of 4 

orientations (0, 45, 90, or 135 degrees). The stimulus image was tiled by a grid of gabor wavelets 

for each spatial frequency. This is fewer features than in Lescroart and Gallant (2019). To see if 

this was critical, we also compared fitting success in one subject using a 1,425-feature gabor 

model similar to Lescroart & Gallant (2019) and found it gave very similar results to the 300-

feature model. These features were generated using code from https://github.com/ 

gallantlab/motion_energy_matlab. 

To generate the global and quadrant-based 3d scene surface features, we first used 

Taskonomy pre-trained neural networks (Zamir et al., 2019) to generate the distance to and the 

surface normals (surface directions in 3d space) of each pixel in each 2d image. We used pytorch 

to resize each image to 256x256 and used the visualpriors package (Sax et al., 2018) to extract 
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surface-normal and euclidean-distance maps. At this point, we tagged stimuli for exclusion if 

either corresponding map contained any obvious artifacts (e.g., see Figure 2.1C). This left 978 

artifact-free stimulus images. To generate features from these remaining image maps, we adapted 

code from Lescroart & Gallant (2019). We first chose three distance bins, spaced so that distance 

bins were roughly equally represented across images (vs. 10 in Lescroart & Gallant, 2019); we 

included the same 9 surface-direction bins contained in Lescroart & Gallant (2019). In the global 

scene-surface model, we counted the proportion of pixels in each image falling into each 

combination of the 3 distance and 9 surface direction bins for a total of 27 features. In the 

quadrant-based scene-surface model, we next divided the image into 4 quadrants, with each of 

the 108 resulting features corresponding to a combination of image quadrant x surface direction 

x distance bin. Before model fitting, features were z-scored.   

 

Ridge regression: We fit models using leave-one-session-out cross-validation, resulting 

in 15 main cross-validation folds. To choose ridge parameters, we nested 10 inner cross-

validation folds within the fitting data of each main fold and chose the lambda predicting the 

highest r-squared among the inner cross-validation folds. This lambda was then used to fit the 

model for the current main cross-validation fold. There were 13 possible ridge parameters: 0, as 

well as 12 values logarithmically spaced between 10-2 and 105. Early analyses with this ridge 

parameter selection matched performance using a more extensive set of ridge parameter choices. 

Our main analyses report prediction performance, first averaged across 15 cross-

validation folds, then averaged across all voxels in an ROI. Statistical significance was computed 

via permutation tests, shuffling the test data 10,000 times relative to the predicted data. For each 

permutation, we completed the same process of averaging prediction performance across cross-  
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Figure 2.1. Stimuli and scene surface model features. (A) Stimuli were the 1000 “Scenes” 
images from the BOLD5000 data set that depicted indoor and outdoor naturalistic scenes (Chang 
et al., 2019). (B) We used two Taskonomy (Zamir et al., 2019) DNNs to generate estimated 
distance-from-viewer and surface normal spatial maps. We binned distances into 3 bins and 
surface normals into 9. Each of the 27 features was the proportion of voxels in an image falling 
into a particular combination of distance and surface direction bin (Lescroart & Gallant, 2019). 
(C) Of the 1000 images, the 978 without obvious errors were included in analyses. (D) Left: The 
quadrant-based scene surface model included 108 features: the 27 combinations of distance and 
surface-direction bins, for each of the 4 quadrants of images. Right: We used a gabor wavelet 
model with 300 features to capture spatial-frequency and orientation information. 
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Figure 2.2. RDM correlations for the three feature sets. To create each RDM, artifact images 
were removed, features were z-scored, and the dissimilarity in each cell was calculated as the 
cosine distance between the features of the corresponding pair of images. To assess similarity 
across RDMs, we took the correlation of the cells corresponding unique image pairs. 
Correlations were very similar across 2 other distance metrics as well. 
 
 
validation folds and across voxels in a given ROI, generating a null distribution of averaged r-

values corresponding to each ROI and participant. We use a significance cutoff corresponding to 

a two-tailed p-value of 0.05, without assuming a symmetrical null distribution.   

 

Results 

Prediction performance for individual models: Consistent with other work, we found 

the highest prediction performance for the gabor wavelet model in early visual areas (Figure 

2.3C; individual subjects’ two-tailed p-values via permutation tests: all ps < 0.0001). 

Performance was lower but also significant in PPA (all ps < 0.0013) and RSC (all ps < 0.019), 

and significant in 2/3 subjects in OPA (ps < 0.0001, 0.0001, and 0.074). Critically, we were 

Global 3d

Gabor 2d

Global vs. 
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interested in whether a 3d surface-based model, using features estimated with DNNs, could 

successfully predict performance in scene-selective cortex. Surprisingly, we found significant 

prediction performance in all three participants and scene-selective ROIs (OPA: all ps < 0.0076; 

PPA and RSC: all ps < 0.0001). For 2/3 participants, there was also significant prediction 

performance in EVC, although performance was numerically lower than in scene areas. 

We also wondered how the performance of the quadrant-based scene surface model 

compared to that of the global scene surface model. First, to gauge our potential for success, we 

wanted to verify that the feature sets were un-correlated enough in this stimulus set—for 

example, because the BOLD5000 scene stimuli were drawn from the internet, it’s possible that 

images were disproportionately symmetrical compared to scenes we encounter in everyday life. 

If this were the case, images with similar surface distance/direction features across the whole 

image (global 3D model) would also have relatively similar features within each quadrant of the 

image. Even if voxels responded to either global or spatially specific features more strongly, 

relationships of these features across images would mean that they vary together across trials, 

limiting our ability to differentiate which features are more responsible for these voxel responses. 

To assess this, we created representational dissimilarity matrices (RDMs) for both the global and 

the quadrant-based scene surface model, using cosine distance as our measure of dissimilarity. 

These RDMs had correlation of 0.72, corresponding to ~52% shared variance across model 

features in our stimulus set (Figure 2.2). Thus, it could be possible for us to find differences 

between model performance if they were large enough, but there was enough shared variance in 

this stimulus set to reduce our potential to find differences. For this data set, we indeed found 

that quadrant-based model performance (Figure 2.3B) was significant in all scene-selective areas 

(all ps < 0.0002), with 2/3 participants’ EVC areas significantly better than chance (ps < 0.0001,  
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Figure 2.3. Results. Stars denote an effect that is significant in each of 3 participants; 2/3 
denotes an effect that is significant for 2/3 participants, and n.s. denotes an effect not significant 
for any participants. (A) Prediction performance for the global 3d surface-based model. 
Performance is measured for each individual voxel for each cross-validation fold, and the 
measure for each ROI is the mean across folds, across voxels. (B) Prediction performance for the 
quadrant-based 3d surface model. (C) Prediction performance for the gabor model. (D) Variance 
partitioning for the global 3d surface-based model, vs. the gabor model. Y axis is proportion 
variance explained.    
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0.834, 0.0001) showing a very similar pattern of results to the global 3d model (Figure 2.3A). 

This may mean that both types of information are distributed similarly across all three scene-

selective ROIs—however, future work is needed to test whether this pattern holds true even 

without sizeable correlations between feature sets. 

 

Shared variance between 3d model and gabor wavelet model: As expected (Lescroart 

& Gallant, 2019), in early visual cortex, we found the largest amount of unique variance 

explained by the gabor model (all ps < 0.0001), while in scene-selective cortex there was little to 

no unique variance explained by the gabor model (OPA: ps < 0.72, 0.85, 0.70; PPA: (ps < 0.01, 

0.06, 0.08); RSC: ps < 0.28, 0.23, 0.12). Compared to previous data with artificially generated 

scenes (Lescroart & Gallant, 2019), the pattern of results diverged slightly more for the global 3d 

model in scene-selective areas—in this data set, we found shared variance between the 2d and 3d 

models (OPA: all ps < 0.013; PPA: all ps < 0.0001; RSC: all ps < 0.0001) of a larger magnitude 

than unique 3d-model variance (Figure 2.3D; OPA: all ps < 0.0043; PPA: ps < 0.075, 0.0001, 

0.0014; RSC: ps < 0.0006, 0.0001, 0.18). These results are unlikely to be explained by high 

correlations of 2d vs. 3d features across images in our stimulus set; there was a correlation of just 

0.056 between these two feature sets’ RDMs, corresponding to 0.31% variance. Instead, one 

explanation is the lack of real-world visual statistics in artificially generated images, compared to 

the real-world images used in this experiment—it may be the case that naturalistic 2d patterns of 

orientation and spatial frequency act as cues to 3d structure (Brady, Shafer-Skelton, & Alvarez, 

2017) when present, and that breaking this relationship results in less unique 3d model variance. 

These results highlight the importance of using both highly controlled and naturalistic stimuli 

across experiments to gain a more complete picture of the visual system’s representations.  
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Discussion 

In this work we assessed the success of 3d surface information at predicting voxel 

responses to naturalistic scene images in scene-selective areas OPA, PPA, and RSC. We did this 

using Taskonomy (Zamir et al., 2019) deep neural networks to estimate distance and surface-

direction maps used to compute the features for stimuli in the publicly available BOLD5000 data 

set (Chang et al., 2019). We found that 3d surface information significantly predicted responses 

in scene-selective areas, even in these naturalistic images. In most scene-selective regions and 

subjects, there was also significant 3D variance explained beyond the influence of 2D features. 

This information is detectable even using DNNs to estimate the distances and surface directions 

in photographs of real scenes, demonstrating that it is robust to visual properties of images and is 

not an artifact of artificially generated images used in previous work.  

These results also show an interesting difference from previous findings. Surprisingly, 

shared variance between 2d and 3d features was notably larger in this experiment than in work 

using artificially generated movie stimuli (Lescroart & Gallant, 2019), highlighting the 

importance of studying visual representations by isolating different visual features of interest and 

by using stimulus sets that are ecologically valid in complementary ways. Because of the small 

number of repeated images in the BOLD5000 stimulus set, we were unable to calculate the 

noise-ceiling-normalized variance explained that would allow us to select voxels in the same 

way as Lescroart & Gallant (2019) or to compare absolute magnitudes of variance explained 

across these different experiments. Nevertheless, these results are apparent from the pattern of 

results across ROIs.  

What types of behaviors might these 3d surface features support? We primarily focus on 

global 3d surface features here in order to relate our work to Lescroart & Gallant (2019)—these 
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features are based on the proportions of stimulus pixels falling into each combination of distance 

and surface-direction bin across the entire image. This may capture information used to identify 

a new environment when entering or to recognize a new location across cuts when watching a 

movie—for example, openness is an important property that was captured by this model 

(Lescroart & Gallant, 2019) that can be used for categorization. However, other important global 

properties, like concavity (A. Cheng, Walther, Park, & Dilks, 2021), are not distinguishable 

without at least some coarse information about which pixels are where in the image. Thus we 

divided images into quadrants for the quadrant-based scene-surface model and computed the 

same features for each quadrant. This model should also pick up on information related to 

navigating a scene—for example, whether there are horizontal surfaces in the bottom half of the 

image. Given the differential roles of OPA vs. PPA in identification vs. navigation of scenes 

(Persichetti & Dilks, 2018), we thought we might find a differential pattern of these models 

across scene areas. Instead, we found a strikingly similar pattern across ROIs. An important 

question for future work is whether this was due to correlations between the two models’ 

features in the stimulus set we used or due to similarly distributed information across areas.  

What types of images may be suitable for this approach? It is notable that the images 

used to train the Taskonomy neural networks were almost exclusively indoor images (with some 

images including windows or extending to an outdoor patio, but ground-truth 3d annotations 

were either out-of-range or counted the pane of the window as the surface in the scene, even 

though they were visible in the image). Despite this, however, we still found mostly error-free 

distance and surface-normal maps, as well as significant prediction of scene-area responses using 

features based on these estimations. This may mean that the same principles the DNN learns to 

estimate 3d properties of indoor scenes translate to outdoor scenes as well. Regardless of the 
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reason, this result is a demonstration of the flexibility of this approach. Even if there may be 

images with less-good feature estimations, euclidean-distance and surface-normal estimation are 

relatively common computer vision tasks, and the basic approach of estimating neural activity 

using these features could be extended to future DNNs trained on different types of images. We 

believe the approach we used here is a powerful tool to make use of existing data sets to help 

close the gap between our knowledge about representations of discrete visual objects and of the 

3-dimensional spaces we interact with every day. 

Work with other quantifications of 3d scene information: One similar approach to the 

current work uses DNN features themselves as predictors for an encoding model (Wang, Wehbe, 

& Tarr, n.d.). The authors categorize different types of neural networks into those trained to do 

2d or 3d tasks, finding that latent-space activations of 3d DNNs predict human voxel responses 

in scene-selective areas better than those of 2d DNNs. While we don’t have a precise 

understanding of the type of representation contained in the DNN activations above, the present 

work uses human-interpretable spatial features that give a more specific picture of the type of 3d 

representations present.  

Other work (Bonner & Epstein, 2017; Greene & Oliva, 2009) has estimated spatial 

features via individually drawn annotations. This process takes time and potentially money, and 

researchers are limited to quantifying properties that are easy for participants to report on a 

computer. We hope the present work is a convincing demonstration that DNNs can be used to 

estimate more detailed properties that may otherwise be impossible or very difficult to collect 

from human data. 
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Conclusion 

This work was motivated by the relative dearth of knowledge the field has about visual 

processing of complex features like the 3d spatial structure of scenes, compared to 

representations of lower-level features or discrete objects (Brady et al., 2019). We found that 

even in naturalistic images, both global and quadrant-based 3d scene-surface representations can 

predict voxel responses in scene-selective cortex. This work highlights an exciting new 

possibility for investigating the format of visual representations of 3d scene surfaces, a topic that 

has had a high barrier to entry in the past. We also provide a proof of concept for using DNNs to 

estimate ground-truth 3d information from publicly available fMRI data sets that would 

otherwise be unusable for this purpose—this is an exciting new technique that lowers the barrier 

to entry for studying 3d configurations of surfaces in scenes, a critical piece of information to our 

visual systems as we move through the world every day. 
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CHAPTER 3:  Stimulus dependence of 3D-scene-surface representations in scene-selective 
cortex 
 

Abstract 

Recent analysis techniques allow us to better quantify and compare different types of 

complex visual information in natural scene stimuli. Using two different tasks—one more 

dependent on scene structure and one less—we investigated representations of the 3D geometry 

of natural scenes. Specifically, are scene-selective cortical areas sensitive to global 3D properties 

that may aid in scene identification and re-orientation in everyday life, and/or spatially specific 

configurations of 3D-oriented surfaces that may be more useful for acting on and moving 

through our environment? By iteratively sampling potential stimuli from the Taskonomy training 

set, we created a stimulus set in which global and spatially specific features summarizing the 3D 

configurations of surfaces were more separable than in previous work. This process also resulted 

in real-world photographs that, as a set, separate 2D gabor-wavelet features from 3D scene-

surface features better than in previous studies. This allowed us to follow up on findings in 

Chapter 2 that real-world scene photographs elicited more shared 2D/3D information (not 

uniquely attributable to either) compared to unique-3D information than in Lescroart & Gallant 

(2019). Surprisingly, with this information more separable across stimuli, we find evidence for 

more 2D than 3D information in scene-selective cortex, suggesting previous findings of greater 

3D information could have been due to computer-generated stimuli that render naturalistic 2D 

depth cues less useful (Lescroart & Gallant, 2019), and/or to our use of static photographs that 

cannot provide motion-parallax as a possible depth cue. These findings highlight the importance 

of investigating complex visual information in natural scenes using a variety of stimuli that 

isolate different aspects of the natural world. 
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Introduction 

A large body of evidence in vision science argues for a fascinating division: that 

representations of extended visual scenes are distinct from those of discrete visual objects (e.g., 

Dilks, Julian, Paunov, & Kanwisher, 2013; Epstein & Kanwisher, 1998). While early work 

suggests that part of what makes scene representations special is information about 

configurations of major surfaces like walls and floors (e.g., Epstein & Kanwisher, 1998; Hermer 

& Spelke, 1994; Landau & Lakusta, 2009), less is known about the precise format of this 

information or how such a distinction may impact cognitive processes such as visual attention 

and memory. This is challenging to study with behavioral paradigms, in part because of the large 

amount of information needed to characterize these representations well enough to disambiguate 

them from those of global properties (like “openness” or “navigability”) and low-level features 

(like orientation or spatial-frequency information). fMRI work, however, is well positioned to 

study these types of representations, since their presence can be assessed without the difficulty of 

finding a reporting method that captures enough information. Three well-studied regions of 

cortex offer fruitful areas to target: the occipital place area (OPA), parahippocampal place area 

(PPA), and retrosplenial complex/medial place area (RSC/MPA). All are characterized by higher 

responses to scene images than other stimuli, and there is already some evidence that they 

contain information relevant to us as we navigate through the 3D world (Bonner & Epstein, 

2017; Henriksson, Mur, & Kriegeskorte, 2019; Park & Park, 2020), including causal evidence in 

OPA (Dilks et al., 2013).  

One study in particular, Lescroart & Gallant (2019), more precisely examines the format of 

this information, finding evidence for the presence of global summaries of information about the 

3D configurations of major surfaces in scenes, summarized across entire images. These 3D 
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features predict voxel responses beyond 2D patterns of orientation and spatial frequency, 

offering evidence of a scene-specific representation. This global, whole-image summary 

information may be useful for re-orienting when entering a new space—for example, going 

through a doorway and detecting a left-facing and right-facing wall may signal to us that we’re in 

a hallway. However, without information about where in our visual field those surfaces are, we 

would fail to effectively navigate to where we need to go. Thus, the present work aimed to test 

the presence of spatially specific 3D scene surface representations, which may support spatial 

navigation and visual exploration beyond scene identification. In particular, using fMRI 

encoding models, we aimed to look at the extent to which voxels in scene-responsive regions of 

visual cortex contain information about the global spatial structure of the surfaces in an image, as 

in Lescroart and Gallant (2019), as well as the (local) spatial structure of surfaces in each 

quadrant of the image. To do so, we designed a stimulus set that allowed these two to be 

distinguished, by making them relatively un-correlated. 

We also aimed to further investigate the relationship between 3D scene-surface information 

and 2D orientation and spatial-frequency information, since the stimuli we chose to differentiate 

between global vs. spatially specific 3D visual features also turned out to have the potential to 

differentiate between 3D and 2D models. In addition, since Chapter 2 used estimated 3D features 

to probe 3D representations, the present experiment offers an important opportunity to verify this 

finding in a different stimulus set, in this case, with images used to train the Taskonomy DNN 

model. This helps ensure the generalizability of the results from Chapter 2 and reduces the 

dependence on the Taskonomy DNNs’ (Zamir et al., 2019) depth and surface-direction estimates 

in novel images. Further, while the BOLD5000 images (Chang et al., 2019) in Chapter 2 were 

taken from the internet, and many appear to be carefully composed images taken to be visually 
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appealing, the images in the Taskonomy training set used here were taken to teach DNNs about 

visual scenes we encounter on a day-to-day basis and appear much more mundane and 

potentially more representative of our day-to-day experience. Our use of both types of 

naturalistic scene photographs offers an important complement to the 3D-rendered stimuli used 

in Lescroart & Gallant (2019) and Henriksson, Mur, & Kriegeskorte (2019), preserving more 

naturalistic texture patterns that might influence our processing of 3D surfaces in our everyday 

lives.     

In the present work, we use voxelwise encoding models to quantify the strength of 

“information” about different visual features. While we manipulated the relevance of the 3D 

spatial structure of the scene, as well as the spatial extent of the likely locations of probe shapes 

(see Methods for details), we don’t focus on those manipulations in this paper. First, we compare 

two types of 3D information: (1) global (whole-image) summaries of 3D configurations of the 

major surfaces in scenes (as in Lescroart & Gallant, 2019), which may capture global properties 

such as openness, and (2) spatially specific summaries (based on image quadrant) that also 

capture where these surfaces are within the image, information critical to guiding our actions 

within the world. In addition, our real-world photograph stimuli (as contrasted with the rendered 

scenes used in previous work) preserve texture information within images that could influence 

our visual processing in real life—meanwhile, by selecting our stimuli purposefully, we have 

ensured that across images, feature sets of interest are more separable than in previous work, 

affording a prime opportunity to re-examine the relationships of each of the above types of 3D 

scene information to (3) gabor wavelet features that capture 2D patterns of orientation and spatial 

frequency in each image. By ensuring that the images with the most similar 2D features are not 
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the images with the most similar 3D features, we allow our model fits to more uniquely pick up 

on the features that voxels are most responsive to. 

 

Methods 

Participants: 8 participants (6 female) between the ages of 25 and 31 participated in the 

experiment. The protocol was approved by the Institutional Review Board of UCSD, and all 

participants gave informed written consent. Each participant completed a behavioral training 

session lasting approximately 1.5 hours, followed by three fMRI sessions lasting approximately 

2 hours each. Participants were compensated $15/hr for the behavioral session and $25/hr for 

each of the three scanner sessions.  

 

fMRI data acquisition and pre-processing: fMRI data collection was completed at the 

UC San Diego Keck Center for Functional Magnetic Resonance Imaging, on a General Electric 

(GE) Discovery MR750 3T scanner. Functional echoplanar imaging (EPI) data were collected 

using a Nova 32-channel head coil (NMSC075-32-3GE-MR750) and the Stanford Simultaneous 

Multi-Slice (SMS) EPI sequence (MUX EPI), with a multiband factor of 8. This resulted in 9 

axial slices per band (72 slices total; 2mm3 isotropic voxels; 0mm gap; matrix = 104x104; FOV 

= 20.8cm; TR=800ms; TE = 35ms; flip angle = 52°; in-plane acceleration = 1).  

 Participants completed one retinotopic mapping session with the same scan parameters as 

functional data in the above experimental sessions. We acquired a high-res T1 anatomical scan in 

the same session (GE ASSET on a FSPGR T1-weighted sequence; 1x1x1 mm3 voxel size; 

8136ms TR; 3172ms TE; 8° flip angle; 172 slices; 1mm slice gap; 256x192cm matrix size), 

corrected for inhomogeneities in signal intensity using GE’s Phased array uniformity 
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enhancement (PURE) method. This was used for segmentation, flattening, and delineation of 

retinotopic visual areas.  

 Preprocessing was completed using Freesurfer and FSL (available at 

https://surfer.nmr.mgh.harvard.edu and http://www.fmrib.ox.ac.uk/fsl). We used Freesurfer’s 

recon-all utility (Dale, Fischl, & Sereno, 1999) to perform cortical surface gray-/white-matter 

segmentation of each subject’s anatomical scan. These segmentations were then used to define 

cortical surfaces on which we delineated retinotopic ROIs used for subsequent analyses (see 

Regions of Interest). We used Freesurfer’s manual and automatic boundary-based registration 

tools (Greve & Fischl, 2009) to generate transformation matrices that were then used by FSL 

FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001) to co-register 

the first volume of each functional run into the same space as the anatomical image. Motion 

correction was performed using FSL MCFLIRT (Jenkinson et al., 2002), without spatial 

smoothing, with a final sinc interpolation stage, and with 12 degrees of freedom. Finally, slow 

drifts in the data were removed using a high-pass filter (1/40 Hz cutoff). No additional spatial 

smoothing was performed for main-task runs. After pre-processing, we z-scored each voxel’s 

signal within each run and epoched the data based on the start time of each trial. Because of the 

short ITI and fast event-related design, we averaged responses between 2.4 and 4.8 seconds after 

stimulus onset to use as each trial’s data for our main analyses, unless specified otherwise. 

 

Regions of interest: For regions V1, V2, and V3, we followed previously established 

retinotopic mapping protocols (Engel, Glover, & Wandell, 1997; Sereno et al., 1995; Wandell, 

Dumoulin, & Brewer, 2007). Initial masks for areas V1, V2, and V3 were manually drawn based 

on retinotopic mapping data collected in a separate session, and candidate voxels were selected 
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for further analyses based on a scrambled > baseline contrast, using a false discovery cutoff of q 

< 0.05. For regions OPA, PPA, and MPA/RSC, we used a combination of localizer runs from 

past experiments and the present experiment (stimuli from Grill-Spector lab), for a total of 4-10 

functional localizer runs per subject. Initial masks were manually drawn around contiguous 

clusters of voxels in each subject’s native space, including voxels with q < 0.05 for a scenes > 

objects contrast. VOI definitions were mutually exclusive. To ensure that any differences in 

performance across VOIs were not due to averaging over dramatically different numbers of 

voxels, we capped our main analyses to the 200 voxels with the strongest localizer signal in each 

bilateral VOI; we included VOIs with >= 75 voxels bilaterally, resulting in 7/8 participants with 

all VOIs defined and one with all defined except MPA/RSC (see Figure S3.4 for main analysis 

results as a function of number of voxels included). This participant is omitted in MPA/RSC 

analyses.  

 

Procedure and experimental conditions: For all task runs described here, stimuli were 

projected onto a semi-circular screen 21.3cm wide and 16cm high, fixed to the inside of the 

scanner bore just above the participant’s chest. The screen was viewed through a mirror attached 

to the head coil, from a viewing distance of 49 cm. After taking into account the shape of the 

screen and the square stimuli, this resulted in a vertical extent of approximately 18.1° (max 

vertical eccentricity of 18.1°/2). The background was a mid-gray color, with a darker gray 

placeholder outline marking the location of the square stimuli between stimulus presentations. 

The fixation point was a black rounded square of 0.2° with a white outline and was on the screen 

throughout each run. 
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 We collected a total of 12 experimental runs (514 TRs each; 6 minutes 52 seconds long) 

in each of the three sessions, for a total of 36 runs. Runs alternated between two tasks (see Tasks 

section below), with task order counterbalanced across participants. Within each run, three mini-

blocks corresponded to narrow, medium, or broad regions of the scene (“spatial spread”) that 

target shapes could appear in (see Dot Selection below). Order of mini-blocks within runs was 

counterbalanced within participants to minimize order effects of spatial-spread conditions. Four 

combinations of response mappings were counterbalanced across participants along with task 

order, for a total of one combination per participant. 

 We used a fast event-related design, with each stimulus presented for 500ms on each 

trial, with a 2000-ms un-jittered response window/ITI. Participants responded “left” 

(square/diamond/closer/farther) using their index finger and “right” using their middle finger. All 

responses were made with their right (dominant) hand. Response mappings were consistent 

throughout the entire session for each participant, including during the 90-minute behavioral 

practice session.  

 

Stimuli and Tasks: On each trial, a pair of red shapes (one square and one diamond) was 

superimposed on a grayscale scene photograph. In distance judgment runs, participants were 

instructed to respond whether the left or the right shape was on the part of the scene that would 

be closer to (/farther from) the viewer in three-dimensional depth if viewed in real life (Sanocki, 

2003; Shafer-Skelton & Brady, 2019). In shape judgment runs, the participant was instructed to 

respond whether the left or right shape was a square (/diamond). To ensure that any task 

differences were not due to different difficulties of tasks, the diamond and square could be 

parametrically adjusted to be more rounded, allowing us to continuously adjust the difficulty of 
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the task to match the distance judgment task. Dot pairs were selected to keep participants off 

ceiling in the distance judgment runs so that difficulty could be accurately matched. (See Figure 

S3.1 for participant performances across task.) By choosing two tasks that depended on 

judgments of two dots, we aimed to avoid task effects that could be trivially explained by small 

eye movements or covert spatial attention. 

 

Stimulus selection: We include 300 stimulus images from the Taskonomy training set 

selected to maximally differentiate between spatial and non-spatial 3d models. The Taskonomy 

training set is made up of 4.5 million scene images from hundreds of unique buildings, with a 

range of different camera locations in each building. We first subsetted this data set by selecting 

one image from almost all unique camera locations, resulting in 679,000 images in our starting 

set. We began with an iterative approach similar to Groen et al.’s (2017), creating 

representational similarity matrices (RDMs) based on the cosine distance between features of 

each image. Iterating through randomly chosen stimulus sets resulted in a plateaued correlation 

of ~0.7 between global and quadrant-based feature RDMs, similar to the correlation between 

these two RDMs in the BOLD5000 stimuli used in Chapter 2. We next iterated through each of 

the 300 images in this initial set, testing RDM correlations for 1000 potential replacement 

images and using the replacement that resulted in the lowest RDM correlation of the set. After 

replacing each of the 300 images once, we were left with a correlation of 0.5 between global and 

quadrant-based feature RDMs. Although this procedure did not explicitly orthogonalize either 

3D feature set against gabor features, we ended up with smaller RDM correlations (global 3D vs. 

gabor: -0.002) than both Chapter 2’s stimuli (0.056) and Lescroart et al.’s (2019) validation data 

set (0.274). This pattern was robust to choice of distance metric (see Table S3.1). 
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Dot selection: For each stimulus image, we chose locations of 3 pairs of superimposed 

dots (the square- and diamond-shaped dots described in the Tasks section above): one each 

within a narrow, medium, and broad spread of potential dot locations. We did this using a semi-

automated Matlab script, indicating the allowed region of the image for each spatial spread 

condition and prompting the selector to (if possible) select via mouse click one potential set in 

which the correct answer was “left closer” and one in which the correct answer was “right 

closer”. Feedback was given in the command window after each selection to help the selector 

choose dot locations with roughly similar average differences in distance across dot pairs in the 

narrow, medium, and broad spatial spread conditions. To choose the final set from these 

manually selected options, a Matlab script chose from these options to contain an equal number 

of left-correct and right-correct dot pairs and verified the narrow, medium, and broad sets of dot 

pairs didn’t differ substantially in depth difference between dots. 

 

Feature sets: The gabor wavelet model contained 300 features, each a combination of 

one of 4 spatial frequencies (0, 2, 4, 8, and 16 cycles per image) and one of 4 orientations (0, 45, 

90, or 135 degrees). The stimulus image was tiled by a grid of gabor wavelets for each spatial 

frequency. We also compared fitting success in one subject using a 1,425-feature gabor model 

similar to Lescroart & Gallant (2019), achieving similar results as with the 300-feature model. 

These features were generated using code from https://github.com/ 

gallantlab/motion_energy_matlab. 

Global and quadrant-based 3d scene surface features were computed in much the same 

way as in Chapter 2. This time, we used ground-truth distance and surface-normal (surface 
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direction) image maps that were used as the training set for the Taskonomy (Zamir et al., 2019) 

neural networks. To generate features from these maps, we adapted code from Lescroart & 

Gallant (2019), first grouping distances into 3 bins (vs. 10 in Lescroart & Gallant, 2019). We 

included the same 9 surface-direction bins contained in Lescroart & Gallant (2019). In the global 

scene-surface model, we counted the proportion of pixels in each image falling into each 

combination of the 3 distance and 9 surface direction bins for a total of 27 features. In the 

quadrant-based scene-surface model, we next divided the image into 4 quadrants, with each of 

the 108 resulting features corresponding to a combination of image quadrant x surface direction 

x distance bin. Before model fitting, features were z-scored.   

 

Ridge regression: We fit models using ridge regression, with nine cross-validation folds. 

For the analyses collapsing across task, each of the 9 left-out sets was made up of 4 of the 36 

runs (two from each task). For the scene-task-only results, each of the left-out sets was made up 

of 2 of the 18 same-task runs. To choose ridge parameters, we nested 10 inner cross-validation 

folds within the fitting data of each main fold and chose the lambda predicting the highest r-

squared among the inner cross-validation folds. This lambda was then used to fit the data in the 

fitting portion of that main fold. There were 13 possible ridge parameters: 0, as well as 12 values 

logarithmically spaced between 10-2 and 105. Early analyses from Chapter 2 showed that this 

ridge parameter selection matched performance using a more extensive set of ridge parameter 

choices. 

 Similarly to Chapter 2, our main analyses report prediction performance, first averaged 

across the 9 main cross-validation folds, then averaged across all voxels in an ROI. Statistical 

significance was computed via permutation tests, shuffling the test data 10,000 times relative to 
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the predicted data before completing the same process of averaging prediction performance 

across cross-validation folds and across voxels in a given ROI. This generated permuted values 

corresponding to each ROI and participant, which we then used to calculate a null distribution of 

t-statistics across participants. We tested individual model performances against zero by 

calculating a t-statistic from the actual data and comparing that to the null distribution. We report 

two-tailed uncorrected p-values without assuming a symmetrical null distribution.  
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Figure 3.1. Methods. (A) Candidate stimuli were drawn from the taskonomy training set. (B) 
Feature sets were computed similarly to Lescroart & Gallant (2019), from Euclidean-distance 
and surface-normal annotations included in the Taskonomy (Zamir et al., 2019) training set. (C) 
The 300 stimulus images were chosen to minimize spatial- vs. quadrant-based-model RDMs. An 
initial set of stimulus images (chosen similarly to Groen et al., (2007)) had a correlation of 0.7. 
Next, we replaced each of the 300 stimulus images with the image from 1000 random choices 
that resulted in the lowest RDM correlation. (D) Example stimulus images. (E) Example trial. (F) 
Tasks. On alternating runs, participants either answered 1) whether the left or right shape was 
closer to (farther from) the viewer in 3D space or 2) whether the left or right shape was more 
square-shaped (diamond-shaped). 
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Results 

Figure 3.2 shows the fit of each model in each visual region. 

EVC performance serves as a baseline, replicating previous results: As expected, we 

find significant gabor- and 3D-surface-model performance in early visual areas (all ps < 0.0002, 

uncorrected; Table S3.2A), showing a similar pattern as in previous work, as well as similar 

magnitudes of cross-validated prediction performance (Figures 3.B in both the present chapter 

and in Lescroart & Gallant, 2019). 

Stronger 2D vs. 3D representations in scene areas; no evidence for uniquely 3D 

representations: In scene areas, we had intended to use gabor performance only as a baseline as 

well, since previous work (Chapter 2; Henriksson et al., 2019; Lescroart & Gallant, 2019) had 

converged on the presence of unique 3D scene-surface representations. While we found 

significant prediction performance for all three models in scene-selective cortex (all ps < 0.014; 

see Figure 3.2A and Table S3.2A), the lower 3D-scene-surface performance compared to 2D 

gabor-wavelet performance (Figure 3.2A; all ps < 0.0025) prompted us to attempt to replicate the 

previous 2D-vs-3D variance-partitioning results (Lescroart & Gallant, 2019) in these areas—

surprisingly, we found only consistent evidence of unique 2D representations (vs. quadrant-

based: OPA: p = 0.0006; PPA: p = 0.0002; RSC: p = 0.026; vs. global: OPA: 0.0018; PPA: 

0.005; RSC: 0.053), as well as shared 2D/3D-quadrant-based (OPA: p = 0.0019; PPA: p = 

0.0004; RSC: p = 0.026) and shared 2D/3D-global (OPA: 0.0069; PPA: 0.0018; RSC: 0.0048) 

representations, with no evidence for uniquely 3D representations (global 3D model: all ps > 

0.13; quadrant-based 3D model: all ps > 0.41; Figure 3.2B and C and Table S3.2 B and C). Note 

that RSC results follow the same pattern but are not as robust as OPA/PPA results, consistent 

with previous work. In OPA and PPA, the unique variance explained by the gabor model was 
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significantly greater than either the quadrant-based-3D-model (ps < 0.0008) or the global-3D-

model (ps < 0.004), as well as than variance shared with the quadrant-based model (ps < 0.0027) 

or global model (ps < 0.0061). Again, RSC showed a similar but less reliable pattern (Figure 3.2 

B and C). This was the opposite pattern of results as found in Lescroart & Gallant (2019).  

Next, we investigated whether this difference could be explained by methodological 

differences. Plotting each model’s performance as a function of the number of voxels included in 

each ROI, we find a strikingly consistent pattern of relative model performance, arguing against 

this pattern being an artifact of different voxel selection procedures across studies (see Methods: 

Regions of Interest). Note that while, in hindsight, our pre-determined voxel counts may have 

lowered the overall magnitude of performance for all models, our main conclusions hinge on the 

pattern irrespective of magnitude. Next, a sliding window analysis (Figure S3.3) shows that 

these results are also consistent across timepoints. We also show that this pattern of results was 

not due to collapsing across scene-task and orthogonal-task data—the scene-task data alone show 

an almost identical pattern of model performances in all ROIs (Figure S3.2).  
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Figure 3.2. Dots represent individual participant data. Stars denote significant two-tailed effects 

in the positive direction (**** = p<0.0001; *** = p<0.001; ** = p<0.01; * = p<0.05, 

uncorrected). Colored stars correspond to individual tests, and brackets indicate paired tests. 

Note that magnitudes across ROIs are not interpretable, but patterns within ROIs are. (A) Results 

collapsed across all task data. (B) Variance partitioning results for 2D gabor model vs. 3D 

quadrant-based 3D model. (C) Variance partitioning results for 2D gabor model vs. 3D global 

model. 
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Discussion 

This project investigated the neural representation of visual scenes in scene-responsive 

visual cortex using natural scene photograph stimuli selected to best separate global and spatially 

specific (quadrant-based) representations of 3D scene surfaces. After the stimulus selection 

procedure, each of the 3D models was also more separable from a 2D gabor wavelet model than 

in previous work, which gave us an opportunity to also distinguish 2D vs 3D representations in 

general. Contrary to previous work, we find higher prediction performance for a 2D-gabor-

wavelet model compared to 3D-scene-surface models, even in scene-selective cortex. We also 

find evidence for uniquely 2D representations but not uniquely 3D representations in scene-

selective areas OPA, PPA, and MPA/RSC, contrary to the dominant claim about OPA in 

particular (Bonner & Epstein, 2017; Henriksson et al., 2019; Lescroart & Gallant, 2019; Park & 

Park, 2020). 

No evidence for representations uniquely attributable to 3D scene surface 

information: Our variance partitioning analysis finds no evidence that 3D scene surface features 

can uniquely explain activity in scene-selective cortex—these results conflict most directly with 

Lescroart & Gallant (2019), who used similar analysis techniques but different stimuli. Two 

differences in our stimuli could explain this: (1) in contrast to work with computer-generated 

stimuli (Henriksson et al., 2019; Lescroart & Gallant, 2019), which showed 3D scene surface 

features providing an added benefit beyond 2D models, our stimuli consisted of naturalistic 

photographs sampled from the real world. That means that within each photograph, naturalistic 

textures and relationships among different types of information were closer to in real life, which 

in our study may have encouraged participants’ visual systems to rely more on 2D cues to infer 
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3D information. (2) Across images in our stimulus set, 2D and 3D features are more separable 

than in both Ch. 2 and in Lescroart & Gallant (2019; see Table S3.1 for comparison), positioning 

us to be better able to differentiate between shared 2D/3D variance and variance uniquely 

explained by 2D or 3D features.  

Note that our results motivate further investigation of one other stimulus difference: 

Lescroart & Gallant’s stimuli were 3D-rendered videos and thus may have provided participants 

with one other monocular depth cue to rely on: motion parallax. Future work could model this 

information to determine its relative contributions to 3D stimulus representations. If it turned out 

to be a major contributor to these differing results, it could further incentivize a shift away from 

static visual stimuli and towards using naturalistic movies.  

However, while stimulus differences are a possible cause, differences between the 

present work and Lescroart & Gallant (2019) can’t be straightforwardly explained by analysis 

differences. First, when varying ROI size (even with different numbers across different regions), 

the pattern of results is very robust, even within individual participants (Figure S3.4). While we 

use a slightly shorter time window than Lescroart & Gallant (2019) and the BOLD5000 data in 

Chapter 2, our pattern of results is consistent across a wide range of timepoints (Figure S3.3).  

Finally, we see the same pattern for the scene-relevant task (Figure S3.2) as we do collapsed 

across tasks (main results). It is also worth noting that both the present study and Lescroart & 

Gallant (2019) fit models using cross-validation, making the results robust to overfitting.  

There are also differences between the present results and Chapter 2’s results: first, the 

large amount of shared variance in Chapter 2, compared to the large amount of unique-2D 

variance in the current data. This difference may be due to 2D vs. 3D features being more 

separable across images in the present feature set than in Chapter 2. For example, with these 
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features being more separable across images, variance that had previously not been uniquely 

attributable to either model may, in Chapter 3, have become uniquely attributable to the gabor 

wavelet model. A second difference is that there appeared to be a small amount of unique-3D 

information in Chapter 2. While it was not significant in every participant/ROI, it appeared to at 

least show a relatively consistent pattern—meanwhile, we found no detectable 3D information in 

the present data. Given this difference, other publicly available fMRI data sets, such as the 

Natural Scenes Dataset (Allen et al., 2021) may serve to add more data points, helping to more 

precisely estimate the strength of any unique-3D information using the methods in Chapter 2. 

Other studies that explicitly compared 3D to 2D information have found compatible 

results with ours, even when interpretations are slightly different. First, while investigating local-

scene-affordance information, a related type of 3D visual information, Bonner & Epstein (2017) 

find a similar pattern of higher performance for 2D features (a gist model) than their 3D 

information. The question of whether there is unique 3D information in their data hinges on 

whether it’s reasonable to discount 2D variance that’s redundant with information in EVC. It’s 

also worth noting that they find more 2D gist than 3D information even though Lescroart & 

Gallant (2019) find that a 2D gist model performs less than half as well as a 2D gabor wavelet 

model. This model difference also potentially affects Henriksson et al. (2019), which used a gist 

model as their measure of 2D information as well. 

In summary, differences from previous results/conclusions may arise from: artificially 

generated scenes breaking the correspondence of 2D cues to the 3D structure of the world 

(Lescroart & Gallant, 2019; Henriksson et al., 2019), the presence of one other monocular depth 

cue (Lescroart & Gallant, 2019), 2D vs. 3D features sets that were not entirely separable (Ch. 2; 
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Lescroart & Gallant, 2019), and/or choice of a lower-performing 2D feature set in previous work 

(Henriksson et al., 2019, Figure 7A; c.f. Figure 3B in Lescroart & Gallant, 2019).  

Implications for the visual system: The present pattern of results, considered in 

conjunction with other data, suggests that, when 2D orientation info that can be used as a cue to 

the 3D geometry of surfaces, there is less (or no) detectable unique 3D surface information in 

scene-selective cortex. This converges with evidence that 2D orientations/spatial frequencies are 

computationally sufficient to infer global scene properties related to 3D layout (Ross & Oliva, 

2010) and that human behavior does indeed seem to rely on these features in scene processing 

tasks (Brady, Shafer-Skelton, & Alvarez, 2017). In summary, the present work emphasizes that, 

for naturalistic photographs, a possible underpinning of cortical scene-selective areas’ 3D 

representations is via 2D patterns of orientation and spatial frequency, and that separating 

abstract representations of 3D surfaces from such 2D patterns may be difficult in natural scenes, 

where they are systematically related.  

In this work, we also manipulated task, as well as the likely spatial regions of task-

relevant shapes. In particular, we originally sought to gain insight into a special characteristic of 

scene representations: the reduced attention with which some types of scene information can 

apparently be processed (Alvarez & Oliva, 2009; Groen, Ghebreab, Lamme, & Scholte, 2016). If 

we had found unique-3D information in scene-selective cortex, that information could have 

served as a marker of scene-specificity, and we could have investigated its robustness to our task 

manipulation. While the patterns of orientation and spatial frequency captured by the gabor 

model may indeed be the basis of scene-specific representations, they are not themselves 

diagnostic and so do not lend themselves to understanding this task effect. Future work could 
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address this by more directly quantifying relationships between this information and scene-

specific behaviors it may support.  

Conclusion: The present work further examines the presence of 2D and 3D 

representations in scene-selective cortex while participants viewed naturalistic scene-photograph 

stimuli. In contrast to Lescroart & Gallant (2019), we find that, using a stimulus set in which 3D-

scene-surface and 2D-gabor information are also more separable across images than in previous 

work, we find a marked reverse pattern of greater 2D vs. 3D information in scene-selective 

cortex, as well as no detectable evidence of 3D information. This emphasizes the importance of 

investigating complex types of visual information using complementary stimulus sets that 

preserve different aspects of the natural world. 
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Supplement:  

 

Figure S3.1. Participants’ performance was well above chance, with no obvious outliers. The 
difficulty of the scene task was fixed because it depended on pre-determined placement of dots on 
the scene. We chose these placements with the goal of keeping participants off of ceiling. We were 
able to staircase performance in the dot task to match the scene task, avoiding large differences in 
performance across runs and enabling us to determine that participants were remaining alert.   
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Table S3.1. RDM-correlations between 2D gabor-wavelet model and 3D-scene-surface (global) 
models are reliable within stimulus sets across 3 distance metrics. For Chapters 2 and 3, only the 
global scene-surface model was included, as it most closely corresponded to Lescroart & Gallant’s 
(2019) model. 
 

Distance metric Chapter 2 Chapter 3 Lescroart & Gallant (2019) 
Cosine distance 0.056 -0.002 0.274 

Spearman’s rho 0.052 -0.001 0.191 
Pearson correlation 0.057 -0.003 0.277 
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Figure S3.2: Scene-task-only performance. Magnitudes are almost identical to performance 
collapsed across task, suggesting that our lack of evidence for variance uniquely attributable to 3D 
surfaces is not due to our task manipulation. 
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Figure S3.3 Sliding-window results. Prediction performance across ten 3-TR windows. The 
relative pattern of model performances is robust, even in individual subjects, arguing that our 
results are not due to differences in timepoints analyzed compared to other studies. The pane with 
no lines (S03, RSC) means that ROI combination did not have enough voxels (>=75) to be included 
in the analysis. 
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Figure S3.4: Variance partitioning results are robust to ROI size. Two example subjects’ 
variance partitioning results plotted as a function of voxels included in each ROI. Voxels were 
ordered by independent-localizer activation: scrambled > baseline for EVC ROIs, top row; scenes 
> objects for scene-selective ROIs, bottom row. Then, results were plotted as though we’d defined 
1-voxel ROIs, 2-voxel ROIs, etc. (See methods for details for ROI definition.) Plots are stacked, 
y-axis-height-taken-up denoting: unique variance explained (r^2) by the gabor model (first legend 
entry; bottom layer of stacked plot; blue; sorry the colors don’t match the main-results colors); 
shared variance (middle; red); and variance uniquely explained by the 3D model, in this case the 
spatial, or quadrant-based model (bottom legend entry; top layer of stacked plot; yellow). Note 
that these really _are_ representative example subjects because all subjects looked remarkably 
similar. The downward slopes of many plots indicate that our ROI sizes (200 in most cases, or the 
max number of available voxels above the significance cutoff—at least 75 required—for our 
independent localizer data) may have caused us to find a smaller magnitude of effects than in other 
studies that used a stricter cutoff. 
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Table S3.2A: Two-tailed p-values corresponding to permutation tests for each model compared 

to 0, as well as comparisons of performance for each. 

  
 
Table S3.2B: Variance partitioning, two-tailed p-values corresponding to permutation tests for 
quadrant-based 3D (“spat3d”) and gabor models. 
 

 
Table S3.2C Variance partitioning, two-tailed p-values corresponding to permutation tests for 
global 3D (“nonSpat3d”) and gabor models. 

 




