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Abstract 

While there is substantial evidence showing that assistance 
provided to students during problem-solving activities 
influences learning outcomes, it is not yet clear how to best 
design educational technologies to maximize learning through 
various types of assistance. One common type of assistance 
corresponds to hints delivered by an educational technology. 
To date, however, there is little research on the impact of 
different types of hints, including high-level hints vs. specific 
bottom-out hints. Our research takes a step in filling this gap, 
through an experimental study with an intelligent tutoring 
system we implemented in the domain of algebra (N = 50). 
We did not find evidence that the type of hint, high level vs. 
bottom out, influenced learning, with both types of hints 
producing similar outcomes. We did, however, find support 
for the conclusion that the number of hints accessed interacted 
with the type of hint to influence learning, and specifically, 
that accessing more hints was correlated with learning but 
only in the high-level hint condition.  

Keywords: Intelligent Tutoring Systems; high-level and 
bottom-out hints 

Introduction 
There is established evidence that instructional feedback and 
assistance, such as hints and explanations during 
instructional activities, influence student learning (Shute, 
2008). An open question, however, is how explicit should 
this assistance be to facilitate learning?  

Prior research suggests that students learn best when 
they engage in constructive behaviors as compared to ones 
that are merely active or passive. This is a key prediction 
made and confirmed by Chi’s (2009) ICAP framework that 
distinguishes levels of student engagement during 
instructional activities. To illustrate in the context of human 
tutoring, when a tutor prompts their student with general 
suggestions and/or questions, this encourages the student to 
generate substantive contributions, namely domain-related 
utterances that are positively associated with learning (Chi, 
Roy, & Hausmann, 2008). As another example, Ferreira, 
Moore, and Mellish (2007) compared two common 
strategies human tutors used to respond to student errors and 
misconceptions, namely giving-answer assistance and 
prompting-answer assistance. They found that giving-

answer type of assistance occurred more often, but 
prompting-answer type of assistance was more effective for 
learning. Thus, in the context of human tutoring, tutors 
don’t encourage constructive student processing because 
they provide the answer instead of eliciting it from the 
student. When students are working on their own without a 
tutor, they also default to passive strategies. For instance, 
VanLehn (1991, 1998) showed that when students were 
given access to worked-out examples during paper and 
pencil problem-solving activities, they commonly missed 
learning opportunities because they copied from the 
examples rather than trying to generate the problem solution 
without the help of the example.  

The findings on learning from human tutoring and 
related activities have influenced the design of educational 
technologies, including that of tutoring systems. These 
technologies rely on artificial intelligence techniques to 
personalize instruction, in some cases approaching the 
effectiveness of human tutors (Vanlehn, 2011). Based on 
research that students benefit from active processing and 
that reduced assistance may promote it, some work has  
examined the effects of manipulating assistance in computer 
tutors. For instance, in separate experiments, Borracci, 
Gauthier, Jennings, Sale, and Muldner (2019) and Lee, 
Betts, and  Anderson (2015) found that students learn better 
from tutoring systems that provide reduced assistance as 
compared to high assistance. In these studies, assistance was 
operationalized through examples that aided problem 
solving, with the level of similarity between an example and 
its corresponding problem determining how much assistance 
the example provided (high similarity resulted in high 
assistance, low similarity in reduced assistance). We next 
review tutoring systems that provide assistance through 
hints. 

A common way to integrate hints into tutoring systems 
is to use a specific progression of assistance, one that starts 
off general with hints that provide high-level suggestions, 
but that become more specific as students ask for more help 
(Arroyo, Mehranian, & Woolf, 2010; Roll, Aleven, 
McLaren, Ryu, Baker, & Koedinger 2006; Vanlehn, Lynch, 
Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, & 
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Wintersgill, 2005). The final hint in the progression is 
commonly referred to as a bottom-out hint, and this type of 
hint essentially provides the answer (e.g., the solution step 
the student needs to produce to make progress in solving the 
problem). To illustrate, Figure 1 shows an example of such 
a hint progression from two established tutoring systems: 
(1) the Andes tutor in the domain of physics (Vanlehn et al., 
2005) and (2) the Cognitive Geometry tutor (Aleven, 
McLaren, Roll, & Koedinger, 2006).  

The rationale behind using a hint progression that starts 
with high-level hints is to encourage students to be 
constructive and so generate the answer with minimal 
assistance from the high-level hint; if students continue 
asking for help, they are given more specific assistance. 
While this type of design mirrors what expert human tutors 
do (i.e., start off more general in their assistance and only 
provide the answer if students are truly stuck), in the context 
of tutoring systems students often abuse help functionalities 
(Aleven et al., 2006; Muldner, Burleson, Van de Sande, & 
VanLehn, 2011; Peters, Arroyo, Burleson, Woolf, & 
Muldner, 2018), a behavior referred to as gaming (Baker, 
Corbett, Koedinger, & Wagner, 2004). In the context of 
systems that make hints available, students who “game” 
tend to quickly and repeatedly ask the tutoring system for a 
hint, without reading the high-level hints, until they reach 
the bottom-out hint in the hint progression, at which point 
they copy the answer the hint provides into the problem they 
are working on.  

Skipping high-level hints in tutoring systems is a well-
documented event (e.g., Arroyo et al., 2010, Muldner et al., 
2011). How does this behavior impact learning? Some argue 
that students still learn because they use the bottom-out 
hints as worked examples, which may promote learning in 
ways that abstract hints do not (Shih, Koedinger & 
Scheines, 2011). This conclusion was reached through a 
data mining analysis. Others have found more mixed 
findings on the utility of either type of hint. To illustrate, 
Muldner et al. (2011) used exploratory methods 
corresponding to Bayesian parameter machine learning to 
investigate the utility of high-level and bottom-out hints. 
Specifically, to model learning from hints, a knowledge-

tracing Bayesian network was used that included nodes 
representing student actions, knowledge of domain 
principles (rules), and hints. The network  encoded the 
probability that students will learn a rule given that they saw 
a certain type of hint (high-level vs. bottom-out). To obtain 
those probabilities, machine learning was applied to learn 
the parameters from data corresponding to students 
interacting with the Andes tutoring system. The findings 
showed that neither type of hint was very effective at 
promoting learning and there was little difference between 
the two types of hints. Specifically, the probability of a rule 
being learned was only at about 25% when a hint was used 
and this value was similar for both bottom-out and high-
level hints.  

The work cited above used exploratory methods to 
investigate the utility of different types of hints. The 
motivation for the present study is that to date there is very 
little experimental work comparing the effect of different 
types of hints on student learning. One exception is the 
study by Chi et al. (2001), albeit this work involves human 
rather than artificial tutors. Specifically, Chi et al. (2001) 
manipulated the type of hint human tutors were allowed to 
give: high-level prompts only vs. detailed hints. The results 
indicated a lack of a difference in learning between the two 
conditions, with similar posttest scores. In contrast to this 
study, our work investigates the effect of different types of 
hints provided by a computer tutor, as we now describe. 

The Present Study 
To test how different types of hints influence learning from 
a tutoring system, we created a computer tutor using the 
Cognitive Tutor Authoring Tools (CTAT) framework 
(Aleven, McLaren, Sewall, & Koedinger, 2006). CTAT 
facilitates the construction of tutoring systems by providing 
tools that a human author uses to create the tutor interface 
and specify the tutor’s behavior. For the latter, a human 
author creates a behavior graph for each problem that 
specifies the tutor’s behavior for that problem (e.g., what 
kinds of hints to show, what feedback to provide on solution 
entries, what to do if a student wants to move on to the next 
problem).  

 
Level 1: Check your trigonometry  
Level 2: If you are trying to calculate the component of a 
vector along an axis, here is a general formula that will 
always work: Let qV be the angle as you move 
counterclockwise from the horizontal to the vector. Let qx be 
the rotation of the x- axis from the horizontal. (qV and qx 
appear in the Variables window.) Then: V_x = V*cos(qV-qx) 
and V_y = V*sin(qV-qx). 
Level 3: (bottom-out hint) Replace cos(20o) with sin(20o) 
 

 
Level 1: Enter the value of the radius of circle A 

Level 2: How can you calculate the value of the radius of 
circle A given the value of the �diameter of circle A? 

Level 3: The radius of a circle is half �of the diameter � 

Level 4: (bottom out hint): The radius of circle A 1⁄4 46.5 � 

 

Figure 1. The hint progression sequence in two established tutoring systems: Andes (left) and the Cognitive Geometry tutor 
(right)  
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The algebra hint tutor 
Our tutor provided students with problems to solve in the 

target domain of algebra (see Figure 2). The problem format 
was adopted from prior work and used variables instead of 
numeric constants (e.g., similar to the approach used by 
Cooper and Sweller, 1987). 

 All problems in the tutor required three to four solution 
steps for the final solution; each step was produced by 
applying algebraic manipulations (i.e., rules) to the prior 
step (or specification if the current step was the first one). A 
single algebraic manipulation corresponded to moving a 
variable from one side of the equation to the other. For 
example, given the equation y = (a+x)b, a manipulation 
required to solve the problem for the variable x involves 
moving the b variable to the other side of the equation, 
resulting in the equation y/b = a+x. Each solution step had 
its own input box in the tutor’s interface that the student 
could type into. The tutor provided two forms of support: 
(1) feedback for correctness and (2) on-demand hints.  

Feedback for correctness was realized by having the tutor 
color a student’s entry as red (incorrect entry) or green 
(correct entry) directly after students indicated they were 
done with the entry by hitting the return key. The tutor was 
flexible in terms of accepting various forms of solutions, 
e.g., recognized x = yab as equivalent to x = a *y(b). This 
flexibility was accomplished through functionality we added 
to the tutor following the algorithm proposed by Shapiro 
(2005). This algorithm involves using mathematical 
calculations to check for equivalence without pre-storing all 
possible versions of a solution, thus saving significant 
development effort as well as computational cost of 
evaluating student solutions. To further scaffold the solution 
entry process, the solution steps had to be entered in the 
order required by the algebraic process and steps could not 

be skipped. Once a problem was done (all steps were 
correctly generated), students clicked the Done button (see 
Figure 1) to move on to the next problem. 

As they were solving problems, students could ask for a 
hint, done by clicking on the Hint button in the interface 
(see Figure 1). We created two different versions of the 
tutor: one version provided only bottom-out hints and the 
other provided only high-level hints. To design the wording 
of the hints, we consulted existing tutoring systems as well 
as online educational sites specific to algebra. To check the 
wording of the hints was appropriate, we conducted several 
rounds of pilots.  

Bottom out hints Bottom-out hints told students the exact 
equation they had to enter (see row 1, Table 1), and thus 
provided high assistance to problem solving. These hints 
were context specific, meaning that if the student entered a 
part of the solution and then asked for a hint, the hint would 
correspond to the next step they had to enter.  

High-level hints High-level hints provided reduced 
assistance because they only prompted the student without 
giving the answer away. There were two levels of this type 
of hint: level 1 prompted the student about the next goal 
they needed to fulfill, but in contrast to a bottom-out hint 
did not specify exactly how to do that (see row 2, Table 1). 
If the student wanted further help, they could click the hint 
button again to access a level 2 hint. This type of hint 
specified the required operation and the variable that would 
be moved as a result (see row 3, Table 1).  

Like the bottom-out hints, the high-level hints were 
context specific, and tailored to the student’s problem-
solving progress. For example, if the next step that had to be 
entered corresponded to the equation y-a = (x+b)/c, the hint 
would tell the student to move the variable c over to the 
other side of the equation using multiplication. In instances 
where two different manipulations were possible, the tutor 
would pick one at random (students could enter the steps in 
whichever order they wished). To avoid the hints sounding 
repetitive, we created several variations of each and the 
tutor cycled randomly through these variations. We chose to 
have the high level hints include prompts for both the 
variable and the operation because both were integral to the 
solving the problem.  

 

 

Figure 2. A problem in the algebra tutor 

 

Table 1 
Examples of hints used in the algebra tutor 

Hint Type Example 

Bottom-out Hint Enter ya=(x/z)+b into the highlighted field. 

High-Level Hint 
(Level 1) 

x isn’t isolated (alone on one side of the 
equal sign). So we must reverse the 
operations acting on the variable(s), starting 
with the outermost ones (i.e. a in y=xa) 

High-Level Hint 
(Level 2) 

For this step, you need to move b to the 
opposite side of the question using addition. 
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We did not include bottom-out hints in the high-level hint 
tutor version because we wanted to investigate whether 
general prompts alone would be sufficient to foster learning.  

Each of the two versions of the algebra tutor were 
populated with the same 12 algebra problems (all required 
3-4 steps for their solutions, of the type shown in Figure 2). 
Both tutor versions logged all student actions in the tutor. 
We used a basic python script to extract the salient 
information from the log files (e.g., number of hints, 
number of errors). 

Participants 
The participants (N = 50) were undergraduate students at a 
Canadian University recruited via Sona and compensated 
with course credit. To be eligible for the study, participants 
could not have taken or be currently enrolled in any 
university-level math courses. 

Materials 
To assess algebra knowledge, we used a paper and pencil 
algebra pretest and posttest from our prior research that 
included 11 questions (Borracci et al., 2019). The tests were 
equivalent (only variable names were changed between 
them). The tests were scored out of 40, with the points for a 
given question corresponding to the number of rule 
applications needed for the question’s canonical solution. 
For instance, if a question required three rule applications 
for its solution, its point value was three. This scoring 
method is more sensitive than marking a question as correct 
or incorrect, given that each question required multiple rule 
applications. 

Several other questionnaires were used in the study to 
measure personality traits but we do not describe them as 
we do not include analysis from their data here. 

Design 
We used a between-subjects design with two conditions: 
high-level hints (participants used the version of the alebra 
tutor that included only high-level hints) and bottom-out 
hints (participants used the version of the tutor that included 
only bottom-out hints). As noted above, the problems solved 
in both conditions were identical, and the only difference 
between the two conditions was the type of hint available in 
the tutor. 

Procedure 
Each session was conducted individually and lasted 
approximately 90 minutes (the duration varied slightly 
based upon the amount of time participants spent on the 
various components). The procedure for the two conditions 
was the same. 

Participants first completed the algebra pretest (they had 
up to 20 minutes to do so). They then filled in a 
demographics questionnaire and were assigned to their 
condition. Participants initially were assigned to a given 
condition in a round robin fashion; after about 10 

participants, we began using a matching procedure based on 
pretest score with the goal of equalizing pretest scores 
between the two conditions, while maintaining similar 
sample size between the two conditions1. The experimenter 
then introduced participants to the algebra tutor, and 
explained its various features (e.g., that feedback for 
correctness was provided, and that all solution steps had to 
be correctly generated for a given problem before moving 
on to the next problem). Participants were told to treat this 
part of the study as if it were a homework situation: they 
had some problems to solve and were doing so to prepare 
for an upcoming test. Once participants confirmed they 
understand how to use the tutor, they were given 40 minutes 
to complete the 12 problems in their respective tutor 
version. Participants then completed the algebra posttest (20 
minutes), and the personality questionnaire (10 minutes). 

Results 
The analysis is based on 47 participants. We excluded 

from the analysis three participants who were at ceiling on 
pretest, i.e., 95% or higher.  

Does type of hint influence learning? 
The descriptives for the pretest and posttest are in Table 1. 
Before checking if the type of hints influenced how much 
students learned from pretest to posttest, we verified there 
was no significant difference in pretest scores between the 
two conditions – this was the case (p = .24).  

A between-subjects ANCOVA with pretest as the 
covariate, posttest as the dependent variable, and condition 
(high-level hints, bottom-out hints) as the independent 
variable did not find a significant effect of condition, F(1, 
44) = .1, p = .75 and the effect size was very small, ηp

2 < 
.01. As shown in Figure 3, the mean posttest scores adjusted 
by the pretest through the ANCOVA were very similar in 
the two conditions. There was also no significant effect of 
condition on performance as measured by the number of 
errors made during problem solving (we extracted this 
information from the log files). Specifically, as expected on 
average participants made more errors with high-level hints, 
M = 29.2, SD = 20.1, as compared to with bottom-out hints, 
M = 23.0, SD = 15.7, but this difference was not significant, 
t(45) = 1.2, p = .25. 

Thus, we did not find evidence that the type of hint 
provided influenced either learning from the algebra tutor or 
overall performance. However, it may be the case that that 
the number of hints participants accessed influenced 
learning differently depending on the condition. The next 
analysis investigates this possibility.  

                                                             
1 The pretests were graded during the experimental session but 

in a separate room to avoid making participants uncomfortable. To 
save time, we used a coarser grading scheme than for the present 
analysis (where each question was assigned one point it was fully 
correct and zero points otherwise). 
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What is the relationship between number of hints 
accessed and learning in each condition? 

On average, participants requested more hints in the 
bottom-out hint condition (M = 15.6, SD = 17.5) than in the 
high-level condition (M = 13.4, SD = 15.1). This finding is 
not surprising given that the bottom-out hints facilitated 
problem solving by telling the students precisely what to do. 
To get a preliminary view of how the number of hints 
accessed influenced learning in each condition 
(operationalized as posttest score – pretest score), we plotted 
the relationship between these two variables for each 
condition. As shown in Figure 4, the relationship between 
the number of hints accessed and learning in the high-level 
hint condition is positive: the more participants accessed the 
high-level hints, the more they learned. In contrast, the slope 
of the line characterizing this relationship in the bottom-out 
hint condition is almost flat, suggesting there is little 
association between learning and number of bottom-out 
hints accessed.  

We formalized this analysis by conducting a regression. 
In preparation, we dummy coded the condition variable so 
that the bottom-out hint condition was assigned the value 0 
and the high-level hint condition the value 1 (the choice of 
which variable to assign the value 1 is arbitrary and does not 
impact the results). We proceeded with the regression by 
entering posttest as the outcome variable, and the following 
four predictors: pretest, condition, number-of-hints 
requested, and number-of-hints requested x condition.  

The overall model we obtained, shown in Table 2, was 
significant, F(4, 42) = 11.3, p < .001, R2 = .52. Of primary 
interest is the interaction term (i.e., number-of-hints x 
condition), which informs on whether condition influenced 
the impact of number of hints requested on posttest score. 
Since the interpretation of the other coefficients is affected 
by the interaction term (Braumoeller, 2004), which 
essentially renders them “baseline” slopes (Grace-Martin, 
2000), they are not discussed here. The interaction is modest 
but significant and indicates that overall, the number of 
hints accessed had a stronger positive relationship with 
posttest for high-level hints, as compared bottom-out hints. 
This conclusion is based on the fact that the coefficient for 
the interaction term is positive, indicating that when 
students were given high-level hints (recall this was 
dummy-coded as 1), their posttest score increased by the 
corresponding amount, controlling for the influence of the 
other predictors. 

 
Table 2 
Linear regression coefficients  

Predictors B β t p 
# hints x condition  .34 .4 2.3 .022 
# hints -.37 -.57 3.6 .001 
condition -5.4 -.26 1.7 .091 
pretest .32 .43 3.2 .003 

B = Unstandardized Coefficients 
β = Standardized Coefficients 

 

Do high-level hints promote more active processing 
than bottom-out hints? 
High-level hints offer reduced assistance because they don’t 
tell the student the answer directly. Thus, these types of 
hints should promote more constructive processing on the 
part of the student. One way to check this is to analyze the 
amount of time students spent on a solution entry after they 
saw a high-level hint and compare that to the other 

Table 1 
Descriptive statistics for each condition 

 Bottom-out hints  
(n = 24)  

High-level hints  
(n = 23) 

 M SD M SD 

Pretest (/40) 10.8 14.2 15.7 14.3 

Posttest (/40) 26.2 11.3 28.1 9.5 

     
  

 

 
Figure 3. Posttest scores in the two conditions (adjusted 
by the pretest covariate); posttest was out of 40 
 
 

 
Figure 4. Relationship between number of hints accessed 
and learning for each condition 
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condition in which students only saw bottom-out hints. 
Students spent longer generating a solution entry after 
seeing a hint in the high-level hint condition (M = 18.0 sec, 
SD = 6.1) than after seeing a hint in the bottom-out hint 
condition (M = 21.2 sec, SD = 7.1). This trend did not reach 
significance but approached it after controlling for pretest 
score, F(2, 34) = 2.8, p = .1, ηp

2 = .08. While this result is 
somewhat expected as the high-level hints provided less 
information, it does open up the possibility that students in 
the bottom-out condition were not actively processing the 
contents of the hint before asking the tutor to check their 
answer (i.e., by pressing the enter button as soon as they 
finished entering the solution step).  

Another way to check if hints are influencing student 
processing is to analyze how long students waited after 
entering a solution step (and receiving feedback on it)  
before pressing the hint button. If there are differences 
between conditions, this may suggest different levels of 
processing taking place for each group. Note that the 
alternative action after entering a solution step is to enter 
another solution step – here we focus on the subset of 
actions after a solution entry pertaining to hints only 
because are interested in conditional effects of hints. When 
students requested a hint after generating a solution entry, 
they waited significantly longer to do so in the high-level 
condition (M = 17.6 sec, SD = 23.9) as compared to the 
bottom-out condition (M = 6.3 sec, SD = 3.5), F (2, 37) = 
5.2, p = .029, ηp

2 = .12 (controlling for pretest does not 
affect this result). The large standard deviation in the high-
level condition implies there is a lot of variability in this 
condition. To ensure extreme values were not affecting the 
result, we removed 3 outliers flagged by SPSS and re-ran 
the analysis. The results remained significant and so the 
outliers were not influential.  

Discussion 
The present study investigated the utility of two types of 
hints in the context of a tutoring system: bottom-out hints 
that told students exactly what step was needed to proceed 
with problem solving, versus high-level abstract hints that 
merely suggested at what was needed to generate the 
corresponding problem solution step. Thus, the two types of 
hints provided high vs. reduced assistance to problem 
solving, respectively. We did not find evidence that either 
type of hint had a differential impact on learning and in fact 
the learning outcomes were very similar between the two 
conditions. While we recognize that conclusions can not be 
drawn from non-significant results, these findings echo prior 
experimental results (e.g., Chi et al., 2011). Our findings 
also echo exploratory studies using machine learning to 
investigate student learning from different types of hints 
(Muldner et al., 2011) - this latter work also did not find a 
difference in learning from the two types of hints.  

If high-level hints are not more effective for learning, 
are they a less efficient instructional tool because they take 
longer to process and thus increase time on task? When we 
checked total time spent in each condition, we did find a 

trend that students overall took longer in the high-level hint 
condition (while this did not reach significance, that may be 
due to lack of power given the high variability). If high-
level hints do not produce more learning than bottom out-
hints but are less efficient, then that is an argument for not 
using them. Our subsequent analysis, however, suggested a 
more nuanced view of each type of hint’s impact, where the 
number of hints students accessed interacted with the type 
of hint available to influence learning. It may be that 
students benefited from both types of hints, but that if they 
accessed too many bottom-out hints, they failed to learn 
effectively because they could not resist passively copying 
from the hints. Prior research in example-based learning 
found this type of pattern, with students copying 
indiscriminately from examples (VanLehn, 1998). In 
contrast to bottom-out hints that promote more passive 
cognitive processing, high-level hints in general may 
encourage learning because they promote active processing 
of the hint content, needed to infer the additional 
information not provided by the hint. While we did not find 
strong evidence in this regard, we found some indications: 
(1) the number of hints accessed was positively associated 
with learning in the high-level hint condition, and (2) 
students waited longer in the high-level condition to request 
a hint, suggesting they were less reliant on assistance 
provided by the tutoring system and thus more constructive.  
Promoting constructive processing is generally important, 
but may be especially challenging to realize when students 
are interacting with tutoring systems rather than human 
tutors due to accountability (i.e., students may feel less 
accountable with technologies than humans), although this 
conjecture awaits validation through future studies.  

A limitation of our study is that we only measured short-
term learning. High-level hints require students to process 
the material, possibly using common-sense or overly 
general reasoning to infer new rules (Vanlehn, 1991). The 
benefit of these types of hints may not show up until some 
time has passed, and so a delayed post-test would be 
beneficial to include in future studies to measure retention in 
each condition. Another limitation is the modest sample 
size, highlighting the need for replication. In general, given 
the relatively little research on what types of hints best 
promote learning in tutoring systems, more work is needed 
to validate and extend our findings.  
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