
0
Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication

KADIR AKBUDAK, Bilkent University
OGUZ SELVITOPI, Bilkent University
CEVDET AYKANAT, Bilkent University

We investigate outer-product–parallel, inner-product–parallel and row-by-row-product–parallel formulations of
sparse matrix-matrix multiplication (SpGEMM) on distributed memory architectures. For each of these three for-
mulations, we propose a hypergraph model and a bipartite graph model for distributing SpGEMM computations
based on one-dimensional (1D) partitioning of input matrices. We also propose a communication hypergraph model
for each formulation for distributing communication operations. The computational graph and hypergraph models
adopted in the first phase aim at minimizing the total message volume and balancing the computational loads of
processors, whereas the communication hypergraph models adopted in the second phase aim at minimizing the total
message count and balancing the message volume loads of processors. That is, the computational partitioning models
reduce the bandwidth cost and the communication hypergraph models reduce the latency cost. Our extensive par-
allel experiments on up to 2048 processors for a wide-range of realistic SpGEMM instances show that although the
outer-product–parallel formulation scale better, the row-by-row-product–parallel formulation is more viable due to
its significantly lower partitioning overhead and competitive scalability. For computational partitioning models, our
experimental findings indicate that the proposed bipartite graph models are attractive alternatives to their hyper-
graph counterparts because of their lower partitioning overhead. Finally, we show that by reducing the latency cost
besides the bandwidth cost through using the communication hypergraph models, the parallel SpGEMM time can be
further improved up to 32%.

General Terms: Models of computation, Parallel computing methodologies, Parallel algorithms, Concurrent comput-
ing methodologies

Additional Key Words and Phrases: sparse matrix-matrix multiplication, SpGEMM, hypergraph partitioning, graph
partitioning, communication cost, bandwidth, latency

1. INTRODUCTION
We consider the parallelization of sparse matrix-matrix multiplication (SpGEMM) of the form
C = AB in a distributed setting. Based on one-dimensional (1D) partitioning of the input
matrices A and B, four parallel algorithms can be devised:

— columnwise partitioning of A and rowwise partitioning of B, which induce an outer-
product–parallel algorithm (OP),

— rowwise partitioning of A and columnwise partitioning of B, which induce an inner-
product–parallel algorithm (IP),

— rowwise partitioning of both A and B, which induces a row-by-row-product–parallel algo-
rithm (RRP), and

— columnwise partitioning of both A and B, which induces a column-by-column-product–
parallel algorithm (CCP).

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant
EEEAG-115E212 and ICT COST Action IC1406 (cHiPSet).
Authors’ addresses: Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat, Computer Engineering Department, Bilkent
University, Ankara 06800, Turkey; emails: {kadir, reha, aykanat}@cs.bilkent.edu.tr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 1539-9087/2015/-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:2 K. Akbudak et al.

Table I: Partitioning dimensions and data access requirements of parallel SpGEMM algo-
rithms.

Partitioning dimension Data access requirement
Parallel SpGEMM algorithm A B C A B C

OP Outer-product Parallel colwise rowwise nz-based single single multiple

IP Inner-product Parallel rowwise colwise rowwise A-resident single multiple single
colwise B-resident multiple single single

RRP Row-by-Row-product Parallel rowwise rowwise rowwise single multiple single
CCP Column-by-Column-product Parallel colwise colwise colwise multiple single single

colwise: columnwise, nz-based: nonzero-based.

OP is based on conformable columnwise partitioning of A and rowwise partitioning of B. A
processor is held responsible for computing the outer product of a column slice of A with the
respective row slice of B. In this scheme, the elements of A and B are accessed once and the
elements of the output matrix C are accessed multiple times as the partial results produced
for the same nonzeros of C need to be accumulated.

IP is based on rowwise partitioning of A and columnwise partitioning of B. A processor is
held responsible for computing the inner product of a row slice of A with a column slice of B.
IP has two variants: A-resident and B-resident. In the former, the elements of A and C are
accessed once and the elements of B are accessed multiple times, whereas in the latter, the
elements of B and C are accessed once and the elements of A are accessed multiple times.
Since these two variants are dual, we only consider the former.

RRP is based on rowwise partitioning of both A and B. A processor is held responsible for
computing the pre-multiply of a row slice of A with B. In this scheme, the elements of A and
C are accessed once and the elements of B are accessed multiple times.

CCP is based on columnwise partitioning of both A and B. A processor is held responsible
for computing the post-multiply of A with a column slice of B. In this scheme, the elements of
B and C are accessed once and the elements of A are accessed multiple times. Since RRP and
CCP display similar performance in most of our test cases, we only consider RRP.

Whenever we refer to OP, IP or RRP, we either refer to the partitioning scheme and/or
the parallel SpGEMM algorithm induced by this partitioning, which should be clear from the
context. We assume the owner computes rule, i.e., the computations related to a portion of the
matrix in a distributed setting is assigned to the processor which owns that portion. Hence,
the matrix partitions also determine the ownership of the computations.

Table I compares the described algorithms in terms of their partitioning dimensions and
data access requirements. Observe that all algorithms necessitate multiple accesses to the el-
ements of a single matrix, whereas the elements of other two matrices are accessed only once.
In a distributed setting, single accesses do not necessitate communication as the elements
of the respective matrix are processed by a single processor. Multiple accesses, on the other
hand, necessitate communication on the elements of the respective matrix if these accesses
are performed by more than one processor. The partitioning of the input matrices A and B
may or may not induce a natural partitioning of the output matrix C. We describe how to
obtain a partition of C later in detail.

Our main goal in this work is to efficiently parallelize the SpGEMM kernel for large-scale
distributed systems. For this purpose, we propose partitioning models that encode communi-
cation related objectives. Our contributions are two-fold:

— We propose and compare graph and hypergraph partitioning models for OP, IP and RRP,
a total of six models. These are computational partitioning models as they obtain a parti-

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:3

tioning of the computations on matrices. The aim of all these models is to reduce the total
message volume while maintaining the computational load balance. The hypergraph mod-
els correctly encode the message volume incurred in parallel SpGEMM, while the graph
models approximate it. However, the graph models prove themselves to be worthy alter-
natives to the hypergraph models due to their significantly lower partitioning overhead.
Among the computational partitioning models, the hypergraph model for OP is previously
investigated in a distributed setting in [Akbudak and Aykanat 2014]. Also, the hypergraph
and bipartite graph models for RRP are proposed and utilized in a shared-memory set-
ting [Akbudak and Aykanat 2017]. Nonetheless, we describe them as they are evaluated in
our experiments. The remaining three models are new and belong to this work.

— We further address the communication overheads with the proposed communication hy-
pergraph models for the SpGEMM algorithms. These are different from the computational
partitioning models as they obtain a distribution of the communication operations among
processors. The aim is to reduce the total message count while maintaining a balance on
the message volume loads of processors. The computational partitioning models aim at re-
ducing the message volume, i.e., the bandwidth cost, while the communication hypergraph
models aim at reducing the latency cost. By using the communication hypergraph models
after the computational partitioning models, we are able to address both the bandwidth
and the latency cost, both of which are important for scalability.

We conduct a thorough comparison of the aforementioned models (a total of 12 models)
for three realistic SpGEMM categories of the forms C = AAT [Bisseling et al. 1993; Boman
et al. 2005; Karypis et al. 1994], C = AA [Borštnik et al. 2014; VandeVondele et al. 2012] and
C = AB [Linden et al. 2003], and perform realistic experiments on a large-scale system up
to 2048 processors with the instances in these categories. Considering only the computational
partitioning models (6 models), compared to the recent work that uses a hypergraph model
for OP [Akbudak and Aykanat 2014], we improve the parallel SpGEMM time up to 16% on
average for the SpGEMM of the form C = AA. By using the graph models for the SpGEMM
algorithms, we decrease the partitioning overhead about 15–35x compared to [Akbudak and
Aykanat 2014] while achieving close parallel SpGEMM performance with the hypergraph
models. With the further utilization of the communication hypergraph models (6 models), the
parallel SpGEMM time is improved by up to 32%, 13% and 6% for the C = AAT , C = AA and
C = AB categories, respectively.

The rest of the paper is organized as follows. Section 2 gives the related work on paralleliza-
tion of the SpGEMM kernel. The computational graph and hypergraph partitioning models
are described in Section 3. Section 4 describes the communication hypergraph models. The
experiments are presented in Section 5. Section 6 concludes.

2. RELATED WORK
SpGEMM is a kernel operation in many applications such as molecular dynamics [Challa-
combe 2000; VandeVondele et al. 2012; Challacombe 1999; Itoh et al. 1995; Schlegel et al.
2001; Li et al. 1993; Millam and Scuseria 1997; Daniels et al. 1997; CP2K 2016], linear pro-
gramming (LP) [Karypis et al. 1994; Bisseling et al. 1993; Boman et al. 2005], domain de-
composition based finite element simulations [Total-FETI 2016; Hapla et al. 2013], multigrid
interpolation and restriction [Briggs et al. 2000], breadth-first search from multiple source
vertices [Buluç and Gilbert 2011], triangle counting in graphs [Azad et al. 2015], data summa-
rization [Ordonez et al. 2016], similarity join [Ordonez 2010], and item-to-item collaborative
filtering in recommendation systems [Linden et al. 2003], all of which benefit from parallel
processing to reduce execution times.

Parallelization of SpGEMM is well-studied for shared memory architectures [MKL 2015;
Patwary et al. 2015], GPUs [Gremse et al. 2015; Bell et al. 2012; Dalton et al. 2013; Liu and

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:4 K. Akbudak et al.

Vinter 2014] and distributed memory architectures. Among the works on parallelization for
distributed memory architectures, there are publicly available libraries such as Trilinos [Her-
oux et al. 2003] and Combinatorial BLAS (CombBLAS) [Buluç and Gilbert 2011].

The SpGEMM algorithm in the Tpetra [Nusbaum 2011] package of Trilinos uses 1D rowwise
partitioning of the input and output matrices. It uses the A-resident algorithm so that only
the rows of B are replicated via shift operations on a virtual ring of processors in K stages,
K being the number of processors. CombBLAS [Buluç and Gilbert 2012] uses the SUMMA al-
gorithm [van de Geijn and Watts 1997] for parallelization and an algorithm based on Doubly
Compressed Sparse Column format [Buluç and Gilbert 2008] as a sequential kernel. In [Ak-
budak and Aykanat 2014], three hypergraph models are proposed for outer-product–parallel
SpGEMM in order to reduce the message volume and balance the computational loads of pro-
cessors. The Distributed Block-Compressed Sparse Row library [Borštnik et al. 2014], which
is developed for linear-scaling quantum simulations performed by CP2K [CP2K 2016; Vande-
Vondele et al. 2012], uses Cannon’s algorithm [Cannon 1969] and tuned SpGEMM kernels for
dense blocks.

Theoretical lower bounds on the expected cost of communication in multiplication of sparse
random matrices are studied by [Ballard et al. 2013]. In order to match these lower bounds,
they propose 3D algorithms that are adaptations of existing dense algorithms [Demmel et al.
2013; Solomonik et al. 2011]. Recently, a fine-grain hypergraph model for SpGEMM is pro-
posed [Ballard et al. 2015]. This model encodes the data requirements of each scalar multi-
plication operation, which makes the size of the hypergraph impractical to partition with the
state-of-the-art hypergraph partitioners in case of big SpGEMM instances.

These works except [Ballard et al. 2015] do not utilize the sparsity structure of the matrices
in order to reduce the parallelization overheads. The main motivation of the models proposed
in this work is to reduce the parallelization overheads via exploiting the sparsity structures
of the matrices in the SpGEMM kernel. We investigate both graph and hypergraph models in
our work to serve this purpose.

All of the applications mentioned at the beginning of this section may easily benefit from
the proposed partitioning models. However, since our models necessitate partitioning as a
preprocessing step, the applications repeatedly performing the SpGEMM operation are better
suited for the proposed models as to amortize the preprocessing overhead. There are several
different applications that perform SpGEMM in a repeated manner in which the sparsity
patterns of the matrices in the SpGEMM remain the same throughout the iterations while
their numerical values are updated in each iteration. Examples of such applications include
similarity join [Ordonez 2010] and collaborative filtering [Linden et al. 2003] both of which
may be expressed as SpGEMM of the forms C = AWA or C = AWB. In similarity join
matrix W is used for relative ranking of the features, whereas in item-to-item collaborative
filtering it is used for adjusting the importance of items in the filtering. Repeated SpGEMM
also occurs in numerical algebra in the solution of LP problems [Karypis et al. 1994; Bisseling
et al. 1993; Boman et al. 2005] through interior point methods, in which the positive-definite
linear system (AD2AT )x = b is solved in each iteration. Here, A is the constraint matrix and
D is a positive diagonal matrix that keeps changing. In each iteration, the coefficient matrix
is formed with SpGEMM operation C = AB, with B = D2AT , which changes the numerical
values of the matrices while keeping their sparsity patterns unchanged.

3. PARTITIONING MODELS FOR REDUCING BANDWIDTH COST
We first describe the notation used to represent the hypergraph and bipartite graph models.
In the vertex, net or edge sets, the superscripts “A”, “B” and “C” show the association between
the vertex/net/edge sets and the matrices, whereas the subscripts “r”, “c” and “z” respectively
imply that these sets represent rows, columns and nonzeros of the matrices in the super-

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:5

scripts. For example, the vertices in the vertex set VC
z represent the nonzeros of matrix C,

i.e., VC
z contains a vertex for each nonzero of C. Two matrix names in a superscript indicate

a conformable representation of rows and/or columns of the respective matrices. That is, for
example, VAB

cr contains a vertex vi for each column i of A and row i of B.
The row i and column i of a matrix, say A, are respectively denoted with ai,∗ and a∗,i. The

function cols(·) is used to denote the column indices of nonzeros in a row and the function
rows(·) is used to denote the row indices of nonzeros in a column. For example, cols(ai,∗) de-
notes the column indices of the nonzeros in row i of A. The function nnz(·) is used to denote the
number of nonzeros in a row, column or a matrix. The functions nrows(·) and ncols(·) are used
to denote the number of rows and columns in a matrix, respectively. To indicate a nonzero
element, we use ai,j ∈ A.

The inner product of two vectors is denoted with “·” (e.g., ai,∗ · b∗,j) and the outer prod-
uct of two vectors is denoted with “⊗” (e.g., a∗,i ⊗ bi,∗). We do not use any symbol for scalar
multiplication (e.g., multiplying a vector with a scalar, ai,jbj,∗), vector-matrix multiply (e.g.,
pre-multiplying a matrix with a vector, ai,∗B) and matrix-matrix multiply (e.g., AB). Note
that the scalar multiplication ai,jbj,∗ refers to multiplying the scalar ai,j by the row-vector
bj,∗.

We assume there are K processors in the parallel system. The following sections use the
concept of an atomic task, which is defined to be the largest computation that cannot fur-
ther be divided among processors, i.e., an atomic task can be executed by only one processor.
The partitioning models assume that the reader is familiar with the notation for graph and
hypergraph partitioning. For details, see Appendix A.

3.1. Outer-product–parallel (OP) SpGEMM
In OP, there are two types of atomic tasks: the outer product a∗,x ⊗ bx,∗ and the reduction of
partial results for nonzero ci,j ∈ C. Here, A is partitioned columnwise and B is partitioned
rowwise:

Â = AQ = [ A1 . . . AK ] and B̂ = QB =

 B1

...
BK

 ,
where Q is the permutation matrix obtained via partitioning. Each processor Pk owns the kth
column slice of A and the respective kth row slice of B. A conformable partition of A and B is
desired in order to avoid redundant communication in local outer products. For this reason,
the processor responsible for column x of A is held responsible for row x of B as well.

The partition of A and B does not yield a natural partition of C. Partitioning C corresponds
to determining the processor that will be responsible for accumulating the partial results for
each nonzero ci,j , where ci,j =

∑
k c

(k)
i,j . Here, c(k)i,j is the partial result produced by Pk for ci,j .

We only focus on obtaining a two-dimensional (2D) partition of C, as it is shown to be more
efficient than the 1D partitions of C [Akbudak and Aykanat 2014].

The multiplication phase containing the outer products can be performed without any com-
munication. On the other hand, the computation of ci,j requires partial results c(k)i,j and may
incur communication since the partial result produced by each such Pk must be sent to the pro-
cessor responsible for computing the final value of ci,j . Hence, the computational load balance
in the outer products and reduction operations, and the communication costs in communi-
cating nonzeros of C are two main performance issues that should be taken into account for
scalability of OP.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:6 K. Akbudak et al.

HOP

vx

a∗,x/bx,∗

vy

a∗,y/by,∗

vz

a∗,z/bz,∗

ni,j

vi,j

ci,j

nh,k

vh,k

ch,k

cx
i,j

c
y
i,j

c
z
i,j

cy
h,k

czh,k

GOP

vx

a∗,x/bx,∗

vy

a∗,y/by,∗

vz

a∗,z/bz,∗

vi,j

ci,j

vh,k

ch,k

cx
i,j

c
y
i,j

c
z
i,j

cy
h,k

czh,k

ci,j ← cxi,j + cyi,j + czi,j

ch,k ← cyh,k + czh,k

Fig. 1: Hypergraph model (left) [Akbudak and Aykanat 2014] and bipartite graph model (right)
for outer-product–parallel SpGEMM with three outer products contributing to two nonzeros.
cxi,j reads as the partial result produced by the outer product a∗,x ⊗ bx,∗ for ci,j .

Note that the hypergraph model described in Section 3.1.1 is already proposed in [Akbudak
and Aykanat 2014], while the bipartite graph model in Section 3.1.2 is new and proposed in
this work.

3.1.1. Hypergraph model. The outer-product–parallel SpGEMM is modeled with the hyper-
graphHOP = {VAB

cr ∪VC
z ,NC

z }. There are (ncols(A) = nrows(B))+nnz(C) vertices and nnz(C)
nets in HOP . VAB

cr contains a vertex vx for each outer product a∗,x ⊗ bx,∗ and VC
z contains a

vertex vi,j for the reduction of each ci,j . Vertex vx also represents column x of A and row x of
B, and vi,j also represents ci,j . NC

z contains a net ni,j for each ci,j ∈ C, where ni,j captures the
dependency of ci,j to the outer products that produce partial result for ci,j . Hence, the vertices
connected by ni,j are given by

Pins(ni,j) = {vx : x ∈ cols(ai,∗) ∧ x ∈ rows(b∗,j)} ∪ {vi,j}.
The weight of vx is the computational load of the respective outer product, i.e., nnz(a∗,x) ×
nnz(bx,∗). The weight of vi,j is the computational load of the respective reduction operation,
i.e., the number of partial results produced for ci,j . With a two-constraint weight formulation
used to capture the computational loads of the outer products and reduction operations, the
vertex weights are assigned as

w1(vx) = nnz(a∗,x)× nnz(bx,∗) w2(vx) = 0
w1(vi,j) = 0 w2(vi,j) = |Pins(ni,j)| − 1.

The nets are assigned unit costs:

c(ni,j) = 1.

The left of Figure 1 illustrates how a hypergraph models three outer products contributing to
two nonzeros.

3.1.2. Bipartite graph model. The outer-product–parallel SpGEMM is also modeled with the
bipartite graph GOP = {VAB

cr ∪ VC
z , ECz′}. There are (ncols(A) = nrows(B)) + nnz(C) vertices

in GOP . The semantics of the vertices in the vertex sets VAB
cr and VC

z are the same with those

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:7

in HOP . The dependency of ci,j to the outer products, however, is captured with edges instead
of a net. ECz′ contains an edge between vx ∈ VAB

cr and vi,j ∈ VC
z if the outer product a∗,x ⊗ bx,∗

produces a partial result for ci,j . Formally, (vx, vi,j) ∈ ECz′ if ai,x ∈ A and bx,j ∈ B. Thus, an edge
represents a partial result (hence the subscript z′ rather than z). The number of edges in GOP

is equal to the number of all partial results. The adjacency list of vx is given by the vertices
corresponding to the ci,j values for which the outer product represented by vx produces a
partial result, whereas the adjacency list of vi,j is given by the vertices corresponding to the
outer products that produce a partial result for ci,j :

Adj(vx) = {vi,j : i ∈ rows(a∗,x), j ∈ cols(bx,∗)},
Adj(vi,j) = {vx : x ∈ cols(ai,∗) ∧ x ∈ rows(b∗,j)}.

In weighting the vertices, the same multi-constraint formulation in HOP is used. The edges
are assigned unit costs as they represent a single partial result:

c((vx, vi,j)) = 1.

The right of Figure 1 illustrates how a bipartite graph models three outer products contribut-
ing to two nonzeros.

3.2. Inner-product–parallel (IP) SpGEMM
In IP, an atomic task is defined as the multiplication of row x of A with each column j of B
such that the result of ax,∗ · b∗,j is nonzero, i.e., cx,j ∈ C. The inner products that involve row
x of A are given by the set {ax,∗ · b∗,j : j ∈ cols(cx,∗)}, which we denote with the vector-matrix
multiply ax,∗B. Defining each individual inner product as an atomic task would result in more
degrees of freedom due to finer granularity, which may at first seem to lead to more scalable
partitioning. Doing so however requires multiple accesses to elements of both A and B, hence
in a distributed setting the elements of both A and B would need to be communicated. For
this reason, we prefer the former, which results in multiple accesses to the elements of only
B. In this scheme, A and C are partitioned rowwise and B is partitioned columnwise:

Â = PA =

 A1

...
AK

 , B̂ = BQ = [ B1 · · · BK ] and Ĉ = PCQ =

 C1

...
CK

 ,
where P and Q are the permutation matrices obtained via partitioning. Each processor Pk

hence owns the kth row slice of A and C, and the kth column slice of B.
The rowwise partition of A naturally yields a rowwise partition of C since no task other

than ax,∗B contributes to cx,∗ and ax,∗B contributes only to cx,∗. In other words, cx,∗ = ax,∗B.
For this reason, the processor responsible for row x of A naturally becomes responsible for row
x of C as well.

For Pk to perform ax,∗B, it needs to receive the nonzeros in respective columns of B via
communication. Specifically, for a nonzero ax,i in row x of A, Pk needs to receive bi,j from
the processor that owns column j of B. After processors receive specific nonzeros needed for
their inner products, the computation of C can be performed without any communication.
Hence, the computational load balance in the inner products and the communication costs
in communicating nonzeros of B are two main performance issues that should be taken into
account for scalability of IP.

3.2.1. Hypergraph model. The inner-product–parallel SpGEMM is modeled with the hyper-
graph HIP = {VAC

rr ∪ VB
c ,NB

z }. There are (nrows(A) = nrows(C)) + ncols(B) vertices and
nnz(B) nets in HIP . VAC

rr contains a vertex vx for each vector-matrix multiply cx,∗ = ax,∗B.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:8 K. Akbudak et al.

C A

=

B

×
x
y

z

x

y

z

i h

i

h

j kj k

ax,i ax,h

ay,i ay,h

az,h

cx,j cx,k

cy,j cy,k

cz,k

bi,j

bh,j bh,k

HIP

vx

ax,∗

vy

ay,∗

vz

az,∗

vj

b∗,j

vk

b∗,k

nh,k

bh,k

nh,j

bh,j

ni,j

bi,j

ay,h

a
x,h

az,h

ax,h

a
x,i

ay,i

GIP

ux

ax,∗

uy

ay,∗

uz

az,∗

vj

b∗,j

vk

b∗,k

az,h

ay,h

ay,i

ax,i , ax,h
a
x,h

cx,j ← ax,i bi,j + ax,h bh,j

cx,k ← ax,h bh,k

cy,j ← ay,i bi,j

cy,k ← ay,h bh,k

cz,k ← az,h bh,k

Fig. 2: The matrices at top illustrate an SpGEMM instance of the form C = AB. Hypergraph
model (left) and bipartite graph model (right) for inner-product–parallel SpGEMM with three
vector-matrix multiplies needing a total of three nonzeros from two columns of B. Note that
the computation of cz,k is not shown for the sake of clarity of the model drawings.

Vertex vx also represents both row x of A and row x of C. VB
c contains a vertex vj for each

column of B. This vertex does not signify computation and its sole purpose is to enable the
columnwise partitioning of B. NB

z contains a net ni,j for each bi,j ∈ B, where ni,j captures the
dependency of ax,∗B computations to bi,j . Hence, the vertices connected by ni,j are given by

Pins(ni,j) = {vx : x ∈ rows(a∗,i)} ∪ {vj}.
The weight of vx is the computational load of the respective vector-matrix multiply ax,∗B:

w(vx) =
∑

i∈cols(ax,∗)

nnz(bi,∗),

whereas the weight of vj is zero as it does not signify computation. The nets are assigned unit
costs since they indicate the dependency on a single nonzero:

c(ni,j) = 1.

The left of Figure 2 illustrates how a hypergraph models the relations for three vector-matrix
multiplies needing a total of three nonzeros from two columns of B.

3.2.2. Bipartite graph model. The inner-product–parallel SpGEMM is also modeled with the bi-
partite graph GIP = {VAC

rr ∪ VB
c , ECz }. There are (nrows(A) = nrows(C)) + ncols(B) vertices

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:9

and nnz(C) edges in GIP . The semantics of the vertices in the vertex sets VAC
rr and VB

c are the
same with those of HIP . ECz contains an edge between vx ∈ VAC

rr and vj ∈ VB
c if the vector-

matrix multiply ax,∗B needs at least one nonzero in column j of B, or in short, if cx,j ∈ C.
Formally, ECz = {(vx, vj) : cx,j ∈ C}. The adjacency list of vx is given by the vertices corre-
sponding to the columns of B that contain at least one nonzero required for the multiplication
represented by vx, whereas the adjacency list of vj is given by the vertices corresponding to
the multiplications that need at least one nonzero in the column represented by vj :

Adj(vx) = {vj : j ∈ cols(cx,∗)},
Adj(vj) = {vx : x ∈ rows(c∗,j)}.

The weights of the vertices in GIP are the same with those of in HIP . The edge costs are
assigned the number of nonzeros needed by a vector-matrix multiply:

c((vx, vj)) = |{i : i ∈ cols(ax,∗) ∧ i ∈ rows(b∗,j)}|.
The right of Figure 2 illustrates how a bipartite graph models the relations for three vector-
matrix multiplies needing a total of three nonzeros from two columns of B.

3.3. Row-by-row-product–parallel (RRP) SpGEMM
In RRP, an atomic task is defined as the multiplication of row x of A with each row i of B,
where a nonzero ax,i is multiplied with bi,∗. This atomic task is denoted with ax,∗B. Although
the atomic task notation is the same with the one used for IP, this is a different atomic task,
as the rows, instead of columns of B are multiplied with the rows of A. The set of scalar
multiplications necessitated by row x of A is given by {ax,ibi,∗ : i ∈ cols(ax,∗)}. In this scheme,
A, B and C are all partitioned rowwise:

Â = PAQ =

 A1

...
AK

 , B̂ = QB =

 B1

...
BK

 and Ĉ = PC =

 C1

...
CK

 ,
where P and Q are the permutation matrices obtained via partitioning. Each processor Pk

hence owns the kth row slice of A, B and C.
The partition of A yields a natural partition of C since no task other than ax,∗B contributes

to cx,∗ and ax,∗B contributes only to cx,∗. In other words, cx,∗ = ax,∗B. For this reason, the
processor responsible for row x of A naturally becomes responsible for row x of C as well.

For Pk to perform ax,∗B, it needs to receive the respective rows of B via communication.
Specifically, for a nonzero ax,i in row x of A, Pk needs to receive row i of B from the processor
that owns it. After processors receive needed rows for their scalar multiplications, the com-
putation of C can be performed without any communication. Hence, the computational load
balance in the scalar multiplications and the communication costs in communicating rows of
B are two main performance issues that should be taken into account for scalability of RRP.

Note that the models in Sections 3.3.1 and 3.3.2 are utilized in [Akbudak and Aykanat
2017] for improving the performance of SpGEMM on many-core architectures. This work eval-
uates them in a distributed setting. The main difference is that partitioning methods proposed
in [Akbudak and Aykanat 2017] aim at exploiting cache locality via using larger number of
partitions and looser allowed imbalance thresholds.

3.3.1. Hypergraph model. The row-by-row-product–parallel SpGEMM is modeled with the hy-
pergraph HRRP = {VAC

rr ,NB
r }. There are nrows(A) = nrows(C) vertices and nrows(B) nets in

HRRP . VAC
rr contains a vertex vx for each vector-matrix multiply cx,∗ = ax,∗B. Vertex vx also

represents both row x of A and row x of C. NB
r contains a net ni for each row i of B, where ni

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:10 K. Akbudak et al.

C A

=

B

×
x
y

z

x

y

z

i j

i

j

h m n

ax,i ax,j

ay,i ay,j

az,j

cx,∗

cy,∗

cz,∗

bi,∗

bj,∗

HRRP

vx

ax,∗

vy

ay,∗

vz

az,∗
nj

bj,∗

ni

bi,∗

ay,j

a
x,j

az,j

ax,i

ay,i

GRRP

vx

ax,∗

vy

ay,∗

vz

az,∗
vj

bj,∗

vi

bi,∗

ay,j

a
x,j

az,j

ax,i

ay,i

cx,∗ ← ax,i bi,∗ + ax,j bj,∗

cy,∗ ← ay,i bi,∗ + ay,j bj,∗

cz,∗ ← az,j bj,∗

Fig. 3: The matrices at top illustrate an SpGEMM instance of the form C = AB. Hypergraph
model (left) and bipartite graph model (right) for row-by-row-product–parallel SpGEMM with
three vector-matrix multiplies needing two rows of B.
captures the dependency of ax,∗B computations to bi,∗. Hence, the vertices connected by ni are
given by

Pins(ni) = {vx : x ∈ rows(a∗,i)}.
The weight of vx is the computational load of the respective vector-matrix multiply:

w(vx) =
∑

i∈cols(ax,∗)

nnz(bi,∗).

Note that a single weight is enough here since there exists a single computational phase and
the rows are needed by tasks as a whole (not specific nonzeros as in IP). The nets are assigned
the costs of number of nonzeros in the respective rows of B in order to indicate the dependency
to rows as a whole:

c(ni) = nnz(bi,∗).

The left of Figure 3 illustrates how a hypergraph models the relations for three vector-matrix
multiplies needing two rows of B.

3.3.2. Bipartite graph model. The row-by-row-product–parallel SpGEMM is also modeled with
the bipartite graph GRRP = {VAC

rr ∪ VB
r , EAz }. There are (nrows(A) = nrows(C)) + nrows(B)

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:11

vertices and nnz(A) edges in GRRP . The semantics of the vertex set VAC
rr in both HRRP and

GRRP are the same. However, there is an additional vertex set VB
r in the bipartite graph model,

where VB
r contains a vertex vi for each row of B. These vertices do not signify computation,

rather, they exist to help capturing computational dependencies and partitioning of B (in
HRRP the nets are used for this purpose). EAz contains an edge between vx ∈ VAC

rr and vi ∈ VB
r

if the vector-matrix multiplies ax,∗B needs row i of B for the computation of cx,∗. Formally,
(vx, vi) ∈ EAz if i ∈ cols(ax,∗). Row i of B is actually needed for each nonzero in a∗,i, hence, there
are nnz(A) number of edges. The adjacency list of vx is given by the vertices corresponding
to the rows of B that are required by the multiplication represented by vx, whereas the ad-
jacency list of vi is given by the vertices corresponding to multiplications that need the row
represented by vi:

Adj(vx) = {vi : i ∈ cols(ax,∗)},
Adj(vi) = {vx : x ∈ rows(a∗,i)}.

The weight of vx is the same with that of in HRRP , whereas the weight of vi is zero as it does
not signify computation. The edge costs are assigned the number of nonzeros in the respective
rows of B whose corresponding vertices they are adjacent to:

c((vx, vi)) = nnz(bi,∗).

The right of Figure 3 illustrates how a bipartite graph models the relations for three vector-
matrix multiplies needing two rows of B.

3.4. Decoding Partitions
We now describe how to decode the partitions for OP, IP and RRP in order to obtain a distri-
bution of the matrices and the computations on them. Without loss of generality, we assume
that processor Pk is associated with the computational tasks corresponding to the vertices in
part Vk of the partition obtained.

OP. Consider a K-way vertex partition ΠOP = {V1, . . . ,VK} on HOP or GOP . We use the
same partition notation for both HOP and GOP as they have the same vertex sets. A part Vk
may contain vertices from both VAB

cr (e.g., vx) and VC
z (e.g., vi,j). A vertex vx ∈ Vk is decoded by

assigning column x of A, row x of B and the outer product a∗,x ⊗ bx,∗ to Pk. Similarly, a vertex
vi,j ∈ Vk is decoded by assigning ci,j , the reduction of partial results for ci,j , and the possible
communication operation on ci,j to Pk.

IP. Consider a K-way vertex partition ΠIP = {V1, . . . ,VK} on HIP or GIP . Again, we use
the same partition notation for both as their vertex sets are the same. A part Vk may contain
vertices from both VAC

rr (e.g., vx) and VB
c (e.g., vj). A vertex vx ∈ Vk is decoded by assigning

row x of A, row x of C and the vector-matrix multiply cx,∗ = ax,∗B to Pk. Similarly, a vertex
vj ∈ Vk is decoded by assigning column j of B and the possible communication operation on
this column to Pk.

RRP. We consider the partitions on the hypergraph and bipartite graph models separately
as their vertex sets are different. Consider a K-way partition ΠRRP = {V1, . . . ,VK} on HRRP .
A vertex vx ∈ Vk is decoded by assigning row x of A, row x of C and the vector-matrix multiply
cx,∗ = ax,∗B to Pk. Observe that this partition does not directly induce a partition of the rows
of B. However, B can easily be partitioned by associating row i of B corresponding to net ni
with one of the processors corresponding to one of the parts in the connectivity set of this
net. Doing otherwise, i.e., assigning row i to a part that is not in the connectivity set of the
respective net, incurs extra communication.

A K-way vertex partition ΠRRP = {V1, . . . ,VK} on GRRP is decoded in a similar manner. A
part Vk may contain vertices from both VAC

rr (e.g., vx) and VB
r (e.g., vi) in the bipartite graph

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:12 K. Akbudak et al.

Table II: Comparison of partitioning models.

Hypergraph Bipartite graph
Requires
symbolic

multiplication?

Number of Number of

Vertices Nets Pins Vertices Edges

OP Yes ncols(A) + nnz(C) nnz(C) #flops/2 + nnz(C) ncols(A) + nnz(C) #flops/2

IP Yes nrows(A) + ncols(B) nnz(B) #flops/2 + ncols(B) nrows(A) + ncols(B) nnz(C)

RRP No nrows(A) nrows(B) nnz(A) nrows(A) + nrows(B) nnz(A)

model. A vertex vx ∈ Vk is decoded in the same way as it is done in HRRP . A partition of the
bipartite graph, however, also contains the partitioning information of B within as the rows
of B are represented by the vertices in VB

r . Simply, a vertex vi ∈ Vk is decoded by assigning
row i of B to Pk.

Partitioning constraint and objective. The partitioning constraint of balancing part weights
in both HOP and GOP corresponds to maintaining computational load balance in outer prod-
uct computations and reduction of partial results for nonzeros of C, while in HIP , GIP , HRRP

and GRRP , it solely corresponds to maintaining computational load balance in the respective
vector-matrix multiply. The partitioning objective of minimizing cutsize in HOP , HIP , HRRP

and in GOP , GIP , GRRP differ as the hypergraph models correctly encapsulate the message
volume incurred during parallel SpGEMM, while the bipartite graph models encapsulate an
approximation of the same metric. In OP, the bipartite graph model encodes the data depen-
dencies as if a processor Pk will send multiple partial results (say ck1

i,j , c
k2
i,j , c

k3
i,j , all produced

by Pk) for the same nonzero ci,j to Pl that is responsible from reducing this nonzero (i.e.,
ci,j = ck1

i,j + ck2
i,j + ck3

i,j) without first summing them itself. This overestimates the message
volume incurred in parallel SpGEMM (here, the bipartite graph model encodes it as three
elements being sent, however, it is only one as Pk first sums them). In a similar manner, in
IP or RRP, the bipartite graph model encodes the data dependencies as if a processor Pk ex-
pands (sends) the same column b∗,j or row bi,∗ to Pl multiple times, where in reality it will be
sent only once as they are the same values, which again overestimates the message volume.
Note that the bandwidth requirements of the bipartite graph models are equal to #flops/2 in
the worst case, which occurs when all edges are on the cut. The respective hypergraph mod-
els refrain from these issues by correctly encoding the multi-way directed relations with nets
instead of edges.

3.5. Comparison of partitioning models
We compare the models described so far in Table II. The models are compared with respect
to their sizes and symbolic multiplication requirements. In the table, #flops refers to the
number of multiply-and-add operations performed for C = AB under the assumption that
each scalar multiplication requires an addition. Hence, #flops/2 ≥ nnz(C), and in general
#flops � nnz(C). Note that #flops/2 is equal to the number of partial results produced for
nonzeros of C.

A symbolic multiplication for an SpGEMM algorithm is required when the computation
pattern of the output matrix C is needed to determine the topology of the respective model.
OP and IP require a symbolic multiplication since the partitioning models for both require
full access to the actual computation that forms C. RRP on the other hand does not require
a symbolic multiplication as the topology can be directly obtained from the sparsity patterns
of A and B. This can be apparently seen in Table II as the number of pins in the hypergraph
models and number of edges in the bipartite graph models for OP and IP involve nnz(C) and/or

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:13

#flops, both of which can only be determined by performing a symbolic multiplication. In this
regard, it can be said that RRP has an inherent advantage over OP and IP.

When the hypergraph models are compared among themselves, it can be said that the hy-
pergraph model for OP has the highest number of vertices, whereas the hypergraph model
for RRP has the smallest. The hypergraph model for RRP among them again has the small-
est number of nets and pins. Hence, it is expected that the hypergraph model for RRP will
have a lower partitioning overhead compared to the other two. Among the bipartite graph
models, the one for OP has the highest number of vertices and edges, hence it is expected to
have the highest partitioning overhead among the models. When a hypergraph model and a
bipartite graph model are compared for a specific SpGEMM algorithm, although their sizes
seem comparable, in practice the bipartite graph model is likely to have a considerably lower
partitioning overhead as the graph partitioners are usually faster than the hypergraph parti-
tioners due to the inherent complexity of dealing with hypergraphs [Çatalyürek and Aykanat
1999a].

4. PARTITIONING MODELS FOR REDUCING LATENCY COST
In this section, we propose new models to reduce the latency cost of parallel SpGEMM. All
models described up to this section aim at reducing the total message volume. In order to
address the latency cost, we make use of a model called communication hypergraph. This
model is successfully used to improve the performance of 1D- and 2D-parallel sparse matrix-
vector multiplication on distributed systems [Uçar and Aykanat 2004]. Here, we describe three
such novel models for OP, IP and RRP.

4.1. Basics
The main goal of the communication hypergraph model is to obtain a distribution of commu-
nication operations among processors. The hypergraph and bipartite graph models described
in Section 3 are computational partitioning models as the vertices of these models represent
computational tasks. In the communication hypergraph model, however, the vertices repre-
sent communication operations and the nets represent the processors in the system. A com-
munication operation in an SpGEMM algorithm is determined according to the adopted par-
titioning and can be of two types: (i) sending matrix elements possibly to multiple processors,
or (ii) receiving matrix elements possibly from multiple processors. The former is referred to
as an expand type of operation and the latter is referred to as a reduce type of operation.

If a processor participates in a communication operation, the net corresponding to that pro-
cessor connects the vertex representing the respective communication operation. Since the
communication operations are to be distributed among K processors, a K-way partitioning is
performed and as a result of this partitioning, the communication operations corresponding to
the vertices in the kth part are, without loss of generality, associated with processor Pk. The
partitioning objective of minimizing cutsize (2) minimizes the total message count, while the
partitioning constraint of maintaining balance on part weights (1) preserves a balance on the
message volume loads of processors. For more details, see [Uçar and Aykanat 2004] and [Selvi-
topi and Aykanat 2016].

To denote the communication operations in parallel SpGEMM, we use the sets X and R
for parallelizations that contain eXpand type and Reduce type of communication operations,
respectively. Each element of these sets is a two-tuple in which the first entry of the tuple is
the data being communicated and the second entry is the set of processors that communicate
this data. The elements of X and R are used to form the communication hypergraphs.

The communication hypergraph models rely on the partitioning information obtained with
the computational partitioning models and they differ in their formation with respect to the
computational model utilized. In order to avoid confusion between the computational parti-

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:14 K. Akbudak et al.

tioning models and the communication hypergraph models, we respectively use “nodes” and
“processor nets” to refer to the vertices and the nets of the communication hypergraphs.

4.2. Outer-product–parallel (OP) SpGEMM
The responsibility of a communication operation on ci,j in OP is originally assigned to pro-
cessor Pk if the vertex representing ci,j is in part Vk as the result of partitioning the com-
putational model HOP or GOP (Section 3.4). The proposed communication hypergraph model
presents an alternative way for the assignment of communication operations on nonzeros of
C with the reduction of the latency cost being the primary objective.

In OP, the communication operations are denoted with ROP and they are reduce type oper-
ations that are performed on nonzeros of C. Hence, |ROP | ≤ nnz(C), as not all nonzeros of C
may necessitate communication. An element inROP is given by the tuple (ci,j ,Pi,j), where Pi,j

is the set of processors that participate in communicating ci,j , and |Pi,j | > 1 since otherwise
no communication is needed.

In the computational hypergraph model for OP, the set of communication operations is
determined from the set of external nets, hence, |ROP | is equal to the number of external nets
in a partition of HOP . Utilizing the partition ΠOP = {V1, . . . ,VK} of HOP = {VAB

cr ∪ VC
z ,NC

z },
the communication operations and the processors that participate in reducing ci,j are formed
as follows:

Pi,j = {Pk : vx ∈ Pins(ni,j) ∧ vx ∈ VAB
cr ∧ vx ∈ Vk}.

Recall that vx represents column x ofA and row x ofB and the outer product of them, a∗,x⊗bx,∗,
and ni,j is the net that captures the dependency on ci,j .

In the computational bipartite graph model, the set of communication operations is given by
the set of boundary vertices belonging to VC

z , hence, |ROP | is equal to the number of boundary
vertices of this set in a partition of GOP . For the partition ΠOP on GOP = {VAB

cr ∪ VC
z , ECz′},

Pi,j = {Pk : vx ∈ Adj(vi,j) ∧ vx ∈ VAB
cr ∧ vx ∈ Vk}.

That is, to compute the final value of ci,j , the processor responsible for ci,j receives a partial
result from each Pk ∈ Pi,j .
ROP is then used to form the communication hypergraph HCOM

OP = {U ,N} for the outer-
product–parallel SpGEMM. U contains a node ui,j for each (ci,j ,Pi,j) ∈ ROP and N contains a
processor net pk for each processor Pk. pk connects ui,j if Pk produces a partial result for ci,j :

Pins(pk) = {ui,j : ui,j ∈ U ∧ Pk ∈ Pi,j} ∪ {ufk}.
This processor net also connects another node ufk , which is referred to as a fixed node. Fixed
nodes are included to later decode the assignment of communication operations to processors
and ufk is fixed to part Uk in the partitioning, for k = 1, . . . ,K. All nodes have unit weights,
which is the preferred case when the communication operations are of reduce type [Uçar and
Aykanat 2004]. Note that if we had utilized non-unit weights, we would have balanced the
load on received matrix elements, not sent, which would not be very useful. Processor nets are
assigned unit costs.

4.3. Inner-product–parallel (IP) SpGEMM
The responsibility of a communication operation on b∗,j in IP is originally assigned to proces-
sor Pk if the vertex representing b∗,j is in part Vk as the result of partitioning the computa-
tional models HIP or GIP (Section 3.4). As in OP, the purpose of the proposed communication
hypergraph model for IP is to reduce the latency cost.

In IP, the communication operations are denoted with XIP and they are expand type of
operations that are performed on columns of B (specific nonzeros of these columns). Hence,
|XIP | ≤ ncols(B), as not all columns of B may necessitate communication. An element in XIP

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:15

is given by the tuple (b∗,j ,Pj), where Pj is the set of processors that participate in communi-
cating nonzeros of b∗,j , and |Pj | > 1.

In the computational hypergraph model for IP, |XIP | is smaller than or equal to the number
of external nets in a partition of HIP as the nets in HIP represent the nonzeros of B and
the communication operations are defined on columns of B. Utilizing the partition ΠIP =
{V1, . . . ,VK} ofHIP = {VAC

rr ∪VB
c ,NB

z }, the communication operations and the processors that
participate in expanding nonzeros of b∗,j are formed as follows:

Pj = {Pk : ni,j ∈ Nets(vj), vx ∈ Pins(ni,j) ∧ vx ∈ VAC
rr ∧ vx ∈ Vk}.

Recall that vx represents row x of A and its multiplication with B, ax,∗B, vj represents column
j of B, and ni,j is the net that captures the dependency on bi,j .

In the computational bipartite graph model, |XIP | is equal to the number of boundary ver-
tices belonging to VB

c in a partition of GIP . For the partition ΠIP of GIP = {VAC
rr ∪ VB

c , ECz },

Pj = {Pk : vx ∈ Adj(vj) ∧ vx ∈ VAC
rr ∧ vx ∈ Vk}.

That is, the processor responsible for b∗,j sends certain or all nonzeros of this column to each
Pk ∈ Pj for the inner product computations.
XIP is then used to form the communication hypergraph HCOM

IP = {U ,N} for the inner-
product–parallel SpGEMM. U contains a node uj for each (b∗,j ,Pj) ∈ XIP and N contains a
processor net pk for each processor Pk. pk connects uj if Pk needs at least one nonzero from
b∗,j :

Pins(pk) = {uj : uj ∈ U ∧ Pk ∈ Pj} ∪ {ufk}.
This processor net also connects another node ufk (fixed node), which is included to later
decode the assignment of communication operations and is fixed to part Uk in the partitioning.
The weight of uj is equal to the volume incurred in communicating b∗,j and it is given from
the partition on HIP

w(uj) =
∑

ni,j∈Nets(vj)

λ(ni,j)− 1.

It is not possible to directly form the vertex weights using the partition on GIP . For this reason
the matrices in SpGEMM are used to form the vertex weights. Processor nets are assigned
unit costs.

4.4. Row-by-row-product–parallel (RRP) SpGEMM
Originally, for the computational model HRRP , the responsibility of a communication opera-
tion on bi,∗ is assigned to a processor corresponding to one of the parts connected by ni (note
that ni represents bi,∗), i.e., a processor corresponding to one of the parts in Λ(ni) (Section 3.4).
For the computational model GRRP , the responsibility is assigned to processor Pk if the vertex
representing bi,∗ is in part Vk (Section 3.4). As in the two previous communication hypergraph
models, the purpose of the proposed communication hypergraph model for RRP is also to re-
duce the latency cost.

In RRP, the communication operations are denoted with XRRP and they are expand type
operations that are performed on rows of B. Hence, |XRRP | ≤ nrows(B), as not all rows of B
may necessitate communication. An element in XRRP is given by the tuple (bi,∗,Pi), where Pi

is the set of processors that participate in communicating bi,∗, and |Pi| > 1.
In the computational hypergraph model for RRP, |XRRP | is equal to the number of ex-

ternal nets in a partition of HRRP . Utilizing the partition ΠRRP = {V1, . . . ,VK} of HRRP =
{VAC

rr ,NB
r }, the communication operations and the processors that participate in expanding

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:16 K. Akbudak et al.

bi,∗ are formed as follows:

Pi = {Pk : vx ∈ Pins(ni) ∧ vx ∈ Vk}.

Recall that vx represents row x of A and its multiplication with B, ax,∗B, and ni is the net that
captures the dependency on row i of B.

In the computational bipartite graph model, |XRRP | is equal to the number of boundary
vertices belonging to VB

r in a partition of GRRP . For the partition ΠRRP of GRRP = {VAC
rr ∪

VB
r , EAz },

Pi = {Pk : vx ∈ Adj(vi) ∧ vx ∈ Vk}.
That is, the processor responsible for bi,∗ sends this row to each Pk ∈ Pi to be multiplied with
a nonzero in a specific row of A.
XRRP is then used to form the communication hypergraph HCOM

RRP = {U ,N} for the row-by-
row-product–parallel SpGEMM. U contains a node ui for each tuple (bi,∗,Pi) ∈ XRRP and N
contains a processor net pk for each processor Pk. pk connects ui if Pk needs row bi,∗:

Pins(pk) = {ui : ui ∈ U ∧ Pk ∈ Pi} ∪ {ufk}.

This processor net also connects another node ufk (fixed node), which is included to later
decode the assignment of communication operations and is fixed to part Uk in the partitioning.
The weight of ui is equal to the volume incurred in communicating bi,∗ and it is determined
from the partitions on HRRP and GRRP as

w(ui) = c(ni)(λ(ni)− 1) and w(ui) = nnz(bi,∗)× (|{Pk : vx ∈ Adj(vi) ∧ vx ∈ Vk}| − 1),

respectively. Processor nets are assigned unit costs.

4.5. Decoding Partitions
We now describe how to decode the partitions obtained as a result of partitioning the commu-
nication hypergraphs for OP, IP and RRP in order to determine the assignment of communi-
cation operations.

OP. Obtaining a K-way partition ΠCOM
OP = {U1, . . . ,UK} of HCOM

OP induces a distribution of
communication operations, where the responsibilities of reduce operations corresponding to
the nodes in Uk are assigned to processor Pk. A processor net pk signifies that Pk receives a
message that contains partial results for nonzeros of C from the processors corresponding to
the parts in Λ(pk) − {Uk}. Note that Uk ∈ Λ(pk) because of the fixed node ufk included in the
partitioning.

IP and RRP. Obtaining a K-way partition ΠCOM
IP = {U1, . . . ,UK} of HCOM

IP and ΠCOM
RRP =

{U1, . . . ,UK} of HCOM
RRP induces a distribution of communication operations, where the respon-

sibilities of expand operations corresponding to the nodes in Uk are assigned to processor Pk

in both schemes. In IP, a processor net pk signifies that Pk sends a message that contains
nonzeros of columns of B to the processors corresponding to the parts in Λ(pk)−{Uk}. In RRP,
it is the same except this message contains the rows of B. Again, note that Uk ∈ Λ(pk) because
of the fixed node ufk included in the partitioning.

Partitioning constraint and objective. In partitioning all three communication hypergraph
models, the partitioning objective of minimizing cutsize corresponds to minimizing the total
message count, whereas the partitioning constraint of maintaining balance relates to balanc-
ing the message volume loads of processors.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:17

5. EXPERIMENTS
5.1. Setup
The hypergraph models described in Sections 3.1.1, 3.2.1 and 3.3.1 are partitioned using
PaToH [Çatalyürek and Aykanat 1999b] and the bipartite graph models described in Sec-
tions 3.1.2, 3.2.2 and 3.3.2 are partitioned using MeTiS [Karypis and Kumar 1999]. We also
used parallel graph partitioner ParMeTiS [Karypis and Kumar 1998] to further reduce the
partitioning overhead of the bipartite graph models. The maximum allowed imbalance thresh-
old for all partitioners is set to 10%. Since the partitioners contain randomization, we partition
the graphs and hypergraphs three times with different seeds and report the averages.

The communication hypergraphs described in Section 4 are partitioned using the direct
K-way hypergraph partitioner kPaToH [Aykanat et al. 2008]. We preferred kPaToH instead
of PaToH for partitioning the communication hypergraphs as these hypergraphs contain fixed
vertices and kPaToH utilizes a matching algorithm for assigning fixed nodes to parts in the
initial partitioning phase, while PaToH performs the same task in a random manner.

All parallel SpGEMM algorithms are implemented in C and they utilize MPI for commu-
nication. Local SpGEMM computations are implemented using the Gustavson’s SpGEMM
algorithm [Gustavson 1978]. The sequential SpGEMM implementation uses Gustavson’s al-
gorithm as well. The sequential times are used to obtain the speedups of the parallel algo-
rithms. We used our own sequential implementation of SpGEMM rather than the sequential
implementation of CSparse [Davis 2006] since we found ours to be faster. The runtimes of
SpGEMM algorithms are the averages of 10 runs performed after a warm-up phase of 3 runs.

The experiments are performed on a BlueGene/Q system. A node in this system consists
of 16 PowerPC A2 cores and 16 GB RAM. Cores are clocked at 1.6 GHz. The nodes are con-
nected with a 5D torus network with a bandwidth capacity of 40 GBps. BlueGene/Q’s MPI
implementation is based on MPICH2.

5.2. Datasets
We evaluate three categories of SpGEMM: C=AAT , C=AA and C=AB. Table III displays
the properties of the input and output matrices in these categories.

For C=AAT , we test 10 LP constraint matrices from the UFL sparse matrix collec-
tion [Davis and Hu 2011]. For C=AA, we test 25 instances, 23 of which are again from the
UFL sparse matrix collection. The remaining two instances cp2k-h2o-e6 and cp2k-h2o-.5e7
are obtained from H2O simulations performed by CP2K [CP2K 2016], which involve parallel
SpGEMM in order to calculate the sign of a given sparse matrix.

For C=AB, we test ten instances from the UFL sparse matrix collection. Two instances in-
volving amazon0302 and amazon0312 matrices are used for item-to-item collaborative filtering
in recommendation systems [Linden et al. 2003]. Here, A represents the similarity between
items and B represents the users’ preferences. To generate B, we utilize a Zipf distribution
(with exponent set to 3.0) to determine the item preferences and a uniform distribution to de-
termine the users that prefer a specific item. The multiplication of these two matrices gives the
candidate items to be recommended to each user. Another application that utilizes SpGEMM
form C=AB is the setup phase of Algebraic Multigrid (AMG) [Bell et al. 2012]. The Galerkin
product RAP in the setup phase is a costly operation that necessitates two SpGEMMs of type
C=AB. For our experiments, we only consider the parallelization of interpolation, i.e., AP .
Using the tool† provided by the authors of that work, we generated the interpolation opera-
tors for seven matrices (boneS01, cfd2, denormal, finance256, offshore, s3dkq4m2, shipsec5).
A suffix “.P” in the table indicates the operator matrix. The last instance in this category
contains thermomech dK and thermomech dM, which are conformable for multiplication.

†https://github.com/pyamg/pyamg

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:18 K. Akbudak et al.

Table III: Properties of input and output matrices.
Input matrices Output

matrixNumber of nnz in row nnz in column

Matrix rows columns nonzeros avg max avg max nnz

C = AAT

cont11 l 1,468,599 1,961,394 5,382,999 4 5 3 7 18,064,261
fome13 48,568 97,840 285,056 6 228 3 14 658,136
fome21 67,748 216,350 465,294 7 96 2 3 640,240
fxm3 16 41,340 85,575 392,252 9 57 5 36 765,526
fxm4 6 22,400 47,185 265,442 12 57 6 24 526,536
pds-30 49,944 158,489 340,635 7 96 2 3 468,266
pds-40 66,844 217,531 466,800 7 96 2 3 637,867
sgpf5y6 246,077 312,540 831,976 3 61 3 12 2,776,645
watson 1 201,155 386,992 1,055,093 5 93 3 9 1,937,163
watson 2 352,013 677,224 1,846,391 5 93 3 15 3,390,279

C = AA

2cubes sphere 101,492 101,492 1,647,264 16 31 16 31 8,974,526
598a 110,971 110,971 1,483,868 13 26 13 26 7,104,683
bcsstk32 44,609 44,609 2,014,701 45 216 45 216 6,819,653
bfly 49,152 49,152 196,608 4 4 4 4 540,672
brack2 62,631 62,631 733,118 12 32 12 32 3,944,481
cca 49,152 49,152 139,264 3 3 3 3 311,296
cp2k-h2o-.5e7 279,936 279,936 3,816,315 14 24 14 27 17,052,039
cp2k-h2o-e6 279,936 279,936 2,349,567 8 20 8 20 7,846,956
cvxbqp1 50,000 50,000 349,968 7 9 7 9 1,099,432
fe rotor 99,617 99,617 1,324,862 13 125 13 125 7,175,441
fe tooth 78,136 78,136 905,182 12 39 12 39 4,914,718
finance256 37,376 37,376 298,496 8 55 8 55 2,297,728
majorbasis 160,000 160,000 1,750,416 11 11 11 18 8,243,392
mario002 389,874 389,874 2,101,242 5 7 5 7 6,449,598
mark3jac140 64,089 64,089 399,735 6 44 6 47 1,817,705
oilpan 73,752 73,752 3,597,188 49 70 49 70 11,609,864
onera dual 85,567 85,567 419,201 5 5 5 5 1,279,793
pkustk03 63,336 63,336 3,130,416 49 90 49 90 8,924,832
poisson3Da 13,514 13,514 352,762 26 110 26 110 2,957,530
raefsky3 21,200 21,200 1,488,768 70 80 70 80 4,053,376
srb1 54,924 54,924 2,962,152 54 270 54 270 8,388,936
tandem dual 94,069 94,069 460,493 5 5 5 5 1,420,681
tmt sym 726,713 726,713 5,080,961 7 9 7 9 14,503,181
torso2 115,967 115,967 1,033,473 9 10 9 10 2,858,293
wave 156,317 156,317 2,118,662 14 44 14 44 10,973,239

C = AB

amazon0302 (A) 262,111 262,111 1,234,877 5 5 5 420 2,717,029amazon0302-user (B) 262,111 50,000 576,413 2 302 12 27
amazon0312 (A) 400,727 400,727 3,200,440 8 10 8 2,747 7,031,743amazon0312-user (B) 400,727 50,000 882,813 2 1,675 18 38
boneS01 (A) 127,224 127,224 6,715,152 53 81 53 81 1,161,045boneS01.P (B) 127,224 2,394 470,235 4 10 196 513
cfd2 (A) 123,440 123,440 3,087,898 25 30 25 30 1,374,012cfd2.P (B) 123,440 4,825 528,769 4 10 110 181
denormal (A) 89,400 89,400 1,156,224 13 13 13 13 560,020denormal.P (B) 89,400 6,000 278,565 3 4 46 55
finance256 (A) 37,376 37,376 298,496 8 55 8 55 487,583finance256.P (B) 37,376 2,432 120,831 3 20 50 128
offshore (A) 259,789 259,789 4,242,673 16 31 16 31 3,558,234offshore.P (B) 259,789 9,893 1,159,999 4 13 117 221
s3dkq4m2 (A) 90,449 90,449 4,820,891 53 54 53 54 486,853s3dkq4m2.P (B) 90,449 1,734 249,749 3 4 144 150
shipsec5 (A) 179,860 179,860 10,113,096 56 126 56 126 1,273,553shipsec5.P (B) 179,860 2,959 541,099 3 13 183 456
thermomech dK (A) 204,316 204,316 2,846,228 14 20 14 20 7,874,148thermomech dM (B) 204,316 204,316 1,423,116 7 10 7 10

nnz: number of nonzeros.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:19

Table IV: Performance comparison of OP, IP and RRP using hypergraph models.
K=512 K=1024

Msg. vol. (103) Avg. msg. count Speedup Msg. vol. (103) Avg. msg. count Speedup

Matrix OP IP RRP OP IP RRP OP IP RRP OP IP RRP OP IP RRP OP IP RRP

C = AAT

cont11 l 247 414 412 5.8 6.4 5.6 436 409 410 350 578 586 5.8 6.4 5.6 813 735 749
fome13 59 261 264 27.8 44.2 32.1 196 135 140 73 315 316 27.6 52.2 31.5 210 140 175
fome21 38 152 152 14.3 26.7 17.3 217 123 136 50 203 201 14.0 26.6 16.3 220 148 191
fxm3 16 61 208 200 6.2 7.9 4.7 179 100 139 179 406 383 6.1 7.6 4.7 206 116 177
fxm4 6 86 221 227 4.6 8.0 5.2 140 100 111 190 416 416 5.2 9.1 5.8 172 106 141
pds-30 31 126 128 14.8 27.4 17.7 177 107 118 41 169 168 13.6 25.5 15.8 182 107 154
pds-40 39 153 153 15.6 27.6 18.8 204 132 134 50 205 204 14.4 26.6 16.5 236 143 181
sgpf5y6 27 341 330 9.0 14.3 7.7 228 113 150 43 521 518 8.9 17.0 8.5 279 103 170
watson 1 28 214 220 4.3 2.8 2.6 311 236 224 43 325 327 5.1 3.8 3.3 395 312 298
watson 2 32 174 192 3.9 3.6 3.3 386 282 253 51 424 417 4.6 4.0 3.6 532 397 375
Average 49 212 214 8.6 11.8 8.4 232 153 166 78 330 328 8.8 12.7 8.5 284 181 225

C = AA

2cubes sphere 2580 2223 2234 16.1 20.5 15.6 380 336 355 3353 2964 2970 17.1 23.5 16.5 345 536 588
598a 1996 1498 1510 12.6 14.7 11.9 335 348 358 2675 2082 2089 13.9 16.9 12.8 572 573 598
bcsstk32 3676 3673 3681 8.4 12.1 7.1 254 307 313 5973 5795 5745 9.3 14.7 7.6 270 487 509
bfly 28 111 112 31.5 51.7 31.9 105 86 109 32 137 137 21.0 38.6 21.2 130 108 138
brack2 1096 844 847 11.9 15.8 10.1 208 206 235 1552 1223 1232 13.7 18.0 11.2 251 231 297
cca 18 55 55 19.8 32.4 19.9 81 74 88 24 70 70 14.1 24.5 14.4 88 79 108
cp2k-h2o-.5e7 1607 2282 2237 14.3 17.1 14.3 374 355 362 2092 2954 2903 13.5 17.4 13.6 410 622 648
cp2k-h2o-e6 367 704 695 15.5 15.0 12.4 373 357 360 478 919 919 14.4 14.5 11.6 545 588 606
cvxbqp1 176 197 198 9.2 11.4 8.1 172 157 172 249 273 277 8.4 10.6 7.2 235 206 223
fe rotor 1871 1470 1478 15.3 20.7 13.6 286 257 290 2566 2084 2098 16.6 23.8 14.5 441 349 433
fe tooth 1267 987 992 12.6 15.9 11.1 226 221 250 1764 1391 1406 14.4 18.3 11.9 297 296 346
finance256 425 474 475 15.2 12.8 9.9 153 178 190 541 674 678 17.7 20.7 13.0 174 189 221
majorbasis 881 572 465 5.9 6.2 3.6 335 343 348 1283 868 733 6.2 6.8 3.9 554 536 567
mario002 187 266 264 4.7 5.7 5.1 409 396 391 269 380 379 4.7 5.8 5.3 727 680 672
mark3jac140 185 398 348 21.3 30.4 19.5 153 130 157 262 525 461 20.9 35.6 19.8 202 156 185
oilpan 3596 4393 4307 6.1 8.1 5.6 382 362 374 5514 6670 6515 6.7 9.9 5.9 695 666 688
onera dual 101 204 205 10.5 12.1 9.9 193 173 184 136 274 275 10.5 12.6 9.9 232 215 225
pkustk03 3912 4328 4321 7.5 10.7 6.4 365 351 365 6128 6654 6607 8.4 12.6 6.6 642 608 652
poisson3Da 2452 1774 1744 23.0 39.9 20.5 232 160 230 3304 2606 2514 24.5 42.0 21.7 274 180 292
raefsky3 4233 4694 4587 7.5 10.2 6.1 306 323 338 7251 7782 7564 9.4 12.4 6.9 488 470 526
srb1 4182 4463 4400 7.0 8.8 5.6 249 360 370 6216 6744 6655 7.6 10.7 5.8 256 636 666
tandem dual 104 220 220 10.7 12.1 9.8 200 179 190 138 293 295 10.7 12.7 9.9 262 225 246
tmt sym 548 559 557 5.4 5.7 5.0 445 442 443 782 802 798 5.6 5.9 5.0 827 809 803
torso2 342 300 318 5.4 5.6 4.7 299 313 327 501 447 465 5.6 6.0 5.0 487 479 482
wave 2830 2112 2120 14.9 18.9 14.1 290 271 299 3719 2870 2881 15.8 20.4 14.6 354 417 476
Average 696 829 818 11.0 13.9 9.7 252 243 264 971 1172 1156 11.3 15.0 9.8 340 351 394

C = AB

amazon0302 0 812 216 0.0 461.0 70.9 359 30 133 0 841 250 0.0 517.4 55.5 684 19 213
amazon0312 0 1564 662 0.0 488.9 124.9 310 63 128 0 1681 784 0.0 692.5 114.3 668 26 149
boneS01 562 639 581 8.9 12.4 9.1 365 352 354 921 951 865 10.1 13.9 9.6 562 548 589
cfd2 643 645 552 10.6 12.3 10.4 301 296 299 891 926 795 11.7 14.6 11.9 447 412 427
denormal 131 168 149 5.4 6.1 5.3 252 276 272 192 246 216 5.7 6.5 5.5 384 376 362
finance256 250 211 184 13.7 14.0 10.6 104 99 119 330 295 259 18.0 20.1 13.3 112 87 117
offshore 1152 1147 1013 14.2 19.9 13.8 462 374 386 1544 1571 1376 15.6 22.3 14.6 755 584 651
s3dkq4m2 210 280 239 3.9 6.7 6.0 360 366 357 327 437 374 4.0 7.7 6.5 576 569 574
shipsec5 474 583 498 7.8 10.0 7.6 382 373 377 732 851 739 8.2 11.2 7.8 616 651 674
thermomech dK 550 404 406 5.3 5.7 5.3 347 420 415 806 591 595 5.5 5.9 5.4 654 756 750
Average 406 519 379 8.0 21.6 13.2 305 202 257 594 707 529 8.7 25.3 13.6 494 239 381

bold value: the best value attained in the respective performance metric for a given matrix and a K value.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:20 K. Akbudak et al.

C = AAT C = AA C = AB
SpGEMM category

0

200

400

600

800

1000

1200

1400

V
ol

um
e

in
w

or
ds

(1
03

)

Message volume
OP IP RRP

C = AAT C = AA C = AB
SpGEMM category

0

5

10

15

20

25

30

A
ve

ra
ge

m
es

sa
ge

co
un

t

Message count
OP IP RRP

C = AAT C = AA C = AB
SpGEMM category

0

100

200

300

400

500

600

Sp
ee

du
p

Speedup
OP IP RRP

Fig. 4: Comparison of parallel SpGEMM algorithms for 1024 processors. The graphs accom-
pany the values in Table IV. For message volume and count the lower the better, whereas for
speedup the higher the better.

5.3. Performance Comparison of Parallel SpGEMM Algorithms
In Table IV, we compare the performance of parallel SpGEMM algorithms OP, IP and RRP in
terms of communication cost metrics and obtained speedups for K = 512 and 1024. The two
measured cost metrics are total message volume in terms of kilo words and average number of
messages sent by a processor (or average message count). The results are grouped separately
for three categories of SpGEMM. We present the detailed results for each matrix as well as the
averages (geometric means) over the three categories. A bold value indicates the best value
attained in the respective performance metric for a given matrix and K value. The results
in the table are obtained with the hypergraph models. The average values obtained by the
algorithms on 1024 processors are also illustrated with bar charts in Figure 4 to provide a
visual comparison. We compare the performance of bipartite graph and hypergraph models in
the following section as the focus of this section is the comparison of the parallel SpGEMM
algorithms among themselves.

In the C=AAT category, OP attains significantly less message volume, achieving 76–77%
less message volume than IP and RRP on average for all K. This can be attributed to the fact
that fat and short LP constraint matrices are amenable to better partitioning along the longer
dimension, which is the case for OP. In terms of average message count, OP and RRP achieve
close performance, while IP incurs 37–49% more messages than these two on average. In this
category, OP obtains the highest speedups in all test instances due to its significantly lower
message volume. However, with increasing K, the speedup performance of RRP gets closer to
that of OP due to the increased importance of latency. For example, at K = 512, OP achieves
40% better speedup than RRP on average, while at K = 1024 this performance gap reduces
to 26%. For a visual comparison of OP, IP and RRP on 1024 processors in these metrics of
interest, see Figure 4.

In the C=AA category, IP and RRP obtain very close total message volumes, where OP
performs better than these two by obtaining 15–17% less message volume on average. RRP
achieves the lowest message count, obtaining 12–13% and 30–35% less messages on average
than OP and IP, respectively. In this category, RRP obtains the highest speedups, which is
closely trailed by OP: out of 50 test instances, RRP obtains the highest speedups in 30 of
them and OP in 20 of them, while IP in none of them. The better performance of OP and
RRP in this category can be attributed to their lower message counts compared to IP. Again,
the gap in speedup performances increase in favor of RRP when K is increased from 512 to
1024. Observe that the message volumes of the SpGEMM algorithms in the C=AA category
are significantly higher than those in the C=AAT category. This can partially be attributed

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:21

OP IP RRP
Parallel SpGEMM algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

or
m

al
iz

ed
va

lu
es

w
.r.

t.
hy

pe
rg

ra
ph

1.
22

1.
02

0.
971.

05 1.
131.
171.

22 1.
29

1.
01

0.
34

0.
23

0.
52

C = AAT

msg volume
msg count

parallel SpGEMM time
partitioning time

OP IP RRP
Parallel SpGEMM algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

va
lu

es
w

.r.
t.

hy
pe

rg
ra

ph

1.
01 1.
02 1.

09

1.
00 1.
02 1.

10

0.
98 1.

05

1.
05

0.
40

0.
07

0.
34

C = AA

msg volume
msg count

parallel SpGEMM time
partitioning time

OP IP RRP
Parallel SpGEMM algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

va
lu

es
w

.r.
t.

hy
pe

rg
ra

ph

0.
99

1.
27

1.
04

1.
03 1.

13

1.
001.

08 1.
11

1.
03

0.
25

0.
18 0.

25

C = AB

msg volume
msg count

parallel SpGEMM time
partitioning time

Fig. 5: The communication statistics, parallel SpGEMM times and the partitioning times of
the bipartite graph models normalized with respect to those of the hypergraph models, for
K=1024.

to the fact that the matrices in the C=AAT category have relatively less nonzeros than the
matrices in the C=AA category as seen in Table III.

In the C=AB category, in both amazon instances, OP has the best performance in both
communication cost metrics, whereas IP has the worst. The inferior performance of IP is be-
cause there are more rows than columns in B (see Table III), causing the columns of B to be
denser compared to the rows of B, and thus making the partitioning process more difficult
for IP. This consequently incurs high message count. OP incurs no communication in these
two instances (zero message volume and count) as large number of rows in B have very small
number of nonzeros, which reduces the probability of multiple processors contributing to the
same nonzero of C. The better performance of OP in these two metrics is reflected in the
speedups for amazon instances. In seven AMG instances, OP and RRP perform close in terms
of parallel SpGEMM time and IP performs the worst. For the thermomech instance, IP and
RRP obtain better speedups than OP due to their relatively lower message volume. Overall,
the best speedup values are obtained by OP, followed by RRP. If extraordinary performance of
OP in amazon instances are put aside, it can be said that OP and RRP are equally preferable
to IP in this category.

5.4. Performance Comparison of Hypergraph and Bipartite Graph Models
We compare the hypergraph and bipartite graph models in terms of communication cost met-
rics, parallel SpGEMM times obtained using these models and the partitioning overhead.
The point of this section is to justify the claim that although the bipartite graph models may
perform slightly worse in communication cost metrics compared to their hypergraph counter-
parts, they achieve comparable speedup performance with a significantly lower partitioning
overhead. The results obtained by the bipartite graph models are normalized with respect to
those by the hypergraph models and they are displayed in Figure 5 for categories C = AAT ,
C = AA and C = AB. We present the results for onlyK=1024 as the results for otherK values
are similar. In each bar chart in Figure 5, there is a separate bar group for each of OP, IP and
RRP. The four bars in each bar group respectively represent the total message volume, total
message count, parallel SpGEMM time and the partitioning time of the respective bipartite
graph model, all of which are normalized with respect to those of the hypergraph model, i.e.,
the values obtained by the bipartite graph model for OP are normalized with respect to those
of the hypergraph model for OP, etc.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:22 K. Akbudak et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA
T

OP-HY
OP-BG
IP-HY
IP-BG

RRP-HY
RRP-BG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA

OP-HY
OP-BG
IP-HY
IP-BG

RRP-HY
RRP-BG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AB

OP-HY
OP-BG
IP-HY
IP-BG

RRP-HY
RRP-BG

Fig. 6: Performance profiles for the parallel SpGEMM times obtained by the hypergraph (in-
dicated by “HY”) and the bipartite graph (indicated by “BG”) models for OP, IP and RRP.

For the instances in all categories, the bipartite graph models usually yield slightly higher
message volume than their hypergraph counterparts (see first bar of each bar group), the ex-
ceptions being RRP in the C = AAT category and OP in the C = AB category. The bipartite
graph models usually perform worse in this metric since the hypergraph models correctly en-
capsulate the partitioning objective of minimizing the total message volume. The bipartite
graph models also obtain higher message counts compared to the hypergraph models: 0–5%,
2–17% and 0–13% higher in OP, IP and RRP, respectively, on average. Figure 5 shows that
although generally performing slightly worse in both cost metrics, the bipartite graph models
often attain comparable speedup performance (especially for the instances in the C=AA and
C=AB category) with respect to their hypergraph counterparts in significantly less partition-
ing time. The bipartite graph models obtain partitions in 60–75%, 77–93% and 48–75% less
time than the hypergraph models for OP, IP and RRP, respectively. A more detailed analysis
of the parallel SpGEMM times follows.

In Figure 6, we present the performance profiles for the parallel SpGEMM times obtained by
the hypergraph and bipartite graph models for OP, IP and RRP to provide a better comparison.
The performance profiles are proposed in [Dolan and Moré 2002] and they are especially useful
when the number of compared schemes and/or test instances is high. A point (x, y) in the figure
reads as the respective scheme is within the x factor of the best results in y fraction of the test
cases. In other words, the closer the performance profile of a scheme to the y-axis, the better
it is. In the figure, “HY” stands for the hypergraph model and “BG” stands for the bipartite
graph model. A test instance is the parallel SpGEMM time obtained by a partitioning model
for a given matrix and a K value. Considering three values of K = 256, 512 and 1024, there are
a total of 30, 75 and 30 instances in the C=AAT , C=AA and C=AB categories, respectively.
These profiles are in agreement with the arguments in Section 5.3. For the C=AAT category,
the hypergraph model for OP performs the best, followed by the bipartite graph model for OP.
For the C=AA category, the hypergraph model for RRP performs the best, followed by the
hypergraph model for OP. For the C=AB category, the hypergraph model for OP performs
the best.

Figures 5 and 6 show that the bipartite graph models are viable alternatives to their hy-
pergraph counterparts, staying generally within the 10% of the hypergraph models’ parallel
SpGEMM times for the C = AA and C = AB categories, while this value is higher in the
C = AAT category. They are further justified with their lower partitioning overhead.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:23

Table V: Message volume obtained by the bipartite graph (BG) and hypergraph (HY) models
on denser matrices for C = AA and 1024 parts.

Message volume (103)
Sparsity (%) OP IP RRP

Matrix A C HY BG HY BG HY BG
bcsstk29 0.316 1.004 3556 3507 3770 4729 3672 5288
bcsstk35 0.159 0.501 5122 4505 5051 5243 5008 5599
bcsstk36 0.215 0.684 4828 4343 4909 4920 4797 5246
crplat2 0.296 0.839 4420 4201 4806 5183 4661 5941
crystk02 0.497 2.013 10946 11441 10111 17148 9988 18193
FEM 3D thermal1 0.135 0.565 2422 2469 1929 1982 1894 1973
gyro m 0.113 0.639 1984 1977 1399 1542 1372 1512
igbt3 0.196 0.534 766 703 872 910 816 986
inlet 0.239 0.980 1890 1933 1523 1964 1458 1636
k3plates 0.307 0.843 1696 1466 1826 2219 1759 2333
lhr10 0.204 1.097 1804 1795 1644 2265 1551 1621
lhr14 0.151 0.813 1797 1835 1715 2637 1580 1684
msc23052 0.217 0.686 4934 4415 4938 4914 4866 5230
nmos3 0.112 0.309 770 735 965 837 883 828
olafu 0.389 1.300 7396 7855 7107 10707 7032 10871
pkustk01 0.202 0.769 5342 5264 5495 6834 5313 8492
pkustk02 0.694 2.138 12673 21463 10931 16960 10730 15204
rim 0.199 0.810 6603 6339 5806 9119 5690 9034
ted AB 0.464 2.491 10023 10609 7401 11011 7278 10339
tube1 0.194 0.543 2688 2492 3090 3016 2971 3098
Average 0.235 0.852 3444 3431 3294 4020 3186 3961
BG/HY – – – 1.00 – 1.22 – 1.24

5.5. Effect of Matrix Density in Partitioning
In this section, we investigate the partitioning performance of bipartite graph and hyper-
graph models with the matrices that are denser than the ones in Table III. We only consider
the SpGEMM of the form C = AA as this category contains more matrices than the others.
Two metrics are of interest: sparseness of A and sparseness of C. Regarding the 25 matri-
ces in Table III in category C = AA, the average sparseness of A is 0.014% and the average
sparseness of C is 0.055%. The sparseness ratios of the tested 20 denser matrices are given in
Table V. The average sparseness of A and C in these denser matrices are respectively 0.235%
and 0.852%, amounting to an increase of 15x-16x in matrix density compared to the matrices
in Table III. Table V presents the message volumes obtained by the partitioning models (the
target metric that these models aim to reduce) for three SpGEMM algorithms and K = 1024
parts.

The results indicate that the quality of the partitions obtained by the bipartite graph models
worsens compared to the hypergraph models for SpGEMM algorithms IP and RRP, while it
does not change for OP. For the matrices in Table III, BG respectively obtains 1%, 2% and 9%
higher volume than HY for OP, IP and RRP (see Figure 5), whereas for denser matrices in
Table V, these values are 0%, 22% and 24%. The degradations in RRP and IP are explained
by the fact that the flaws of the graph models compared to the hypergraph models increase
with increasing granularity of the communicated elements. In RRP, whole B matrix rows
are communicated, in IP the subcolumns of B matrix are communicated and in OP, only
individual partial results for the C matrix elements are communicated. In other words, the

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:24 K. Akbudak et al.

Table VI: Sequential partitioning overheads of the parallel algorithms in seconds. The hyper-
graph models are indicated by “HY” and the bipartite graph models are indicated by “BG”.

OP IP RRP
K HY BG HY BG HY BG

256 42.50 9.52 33.97 1.60 7.40 1.22
512 46.80 12.01 38.47 2.67 8.65 1.99

1024 49.90 17.28 42.67 4.84 9.94 3.50

Table VII: Amortization of parallel bipartite graph partitioning overheads with respect to
CombBLAS in terms of number SpGEMMs.

K OP IP RRP
256 322.7 7.4 7.7

1024 397.1 7.3 8.0

highest communication granularity belongs to RRP, followed by IP, and then OP–which is
unit. This also explains why the difference between graph and hypergraph models for OP
does not change with changing sparseness of the matrices.

5.6. Partitioning Overhead and Amortization
In this section, we first compare the partitioning overheads of SpGEMM algorithms with
both hypergraph and bipartite graph models. This comparison is performed on a local system
with sequential partitioning. Then, we analyze the amortization of the partitioning overhead.
This analysis is performed on the BlueGene/Q system with parallel partitioning and parallel
SpGEMM.

Table VI compares the partitioning times of the hypergraph and bipartite graph models
for different number of partitions and SpGEMM algorithms. The partitioning is performed
sequentially on a local system. We used PaToH for partitioning hypergraphs and MeTiS for
partitioning bipartite graphs. The obtained times are averaged over all matrices, regardless of
the category. Among the compared models, the hypergraph model for OP is the most expensive
one costing around 42–50 seconds. Note that this hypergraph model was proposed in [Akbudak
and Aykanat 2014]. The bipartite graph model proposed in this work for OP improves this
partitioning time by 65–78%. The hypergraph and bipartite graph models for IP and RRP
further improve the partitioning time drastically compared to those for OP. Especially the
bipartite graph models for IP and RRP are noteworthy, which respectively cost 1.6–4.8 and
1.2–3.5 seconds. This is about 15–35x improvement in the partitioning time over the recent
work by [Akbudak and Aykanat 2014]. Partitioning the hypergraph model for RRP is faster
than partitioning the hypergraph models for OP and IP since the number of nets in RRP is
nrows(B) while it is nnz(C) in OP and nnz(B) in IP. Partitioning the bipartite graph model
for RRP is faster than partitioning the bipartite graph models for OP and IP as well since the
number of edges in RRP is nnz(A) while it is #flops/2 in OP and nnz(C) in IP. RRP is slightly
faster than IP since A is generally more sparse than C.

Table VII displays the number of SpGEMMs required to amortize the partitioning over-
head by comparing the bipartite graph models to CombBLAS [Buluç and Gilbert 2011]. Note
that CombBLAS does not rely on an intelligent partitioning model based on sparsity pat-
terns of matrices. Instead it uses 2D block distribution of matrices for parallelization. We
used ParMeTiS to partition the bipartite graph models in parallel on BlueGene/Q. Then we

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:25

compared the parallel SpGEMM times obtained by using the partitions produced by the bipar-
tite graph models and those obtained by CombBLAS. The SpGEMM counts in the table are
computed according to the formula TParMeTiS/(TCombBLAS−Tscheme), where TParMeTiS is the par-
allel partitioning time, TCombBLAS is the parallel SpGEMM time attained by CombBLAS and
Tscheme is the parallel SpGEMM time attained by using one of the OP, IP and RRP schemes.
CombBLAS works for processor counts that are perfect squares, so there are no results for 512
processors regarding amortization. The results are averaged over all matrices. On 256 proces-
sors, OP, IP and RRP respectively necessitates 322.7, 7.4 and 7.7 SpGEMMs to amortize the
cost of partitioning, while on 1024 processors these values are 397.1, 7.3 and 8.0. These values
show that parallel SpGEMM can greatly benefit from the proposed partitioning models.

5.7. Effect of Reducing Latency Cost
Table VIII presents the communication statistics and parallel SpGEMM times obtained by
further reducing the latency costs of the models via utilizing the communication hypergraphs.
Recall that the communication hypergraphs utilize the partitions obtained with the compu-
tational partitioning models. In other words, after obtaining a partition with a computational
model, we utilize the communication hypergraph on this partition to further reduce the la-
tency cost. The communication statistics include three metrics: total message volume, mes-
sage volume imbalance on sent matrix elements and average message count. The values in
the table are the normalized values and the normalization is performed as follows: For each
partitioning model and the SpGEMM algorithm, the results obtained by further applying the
communication hypergraph are normalized with respect to the results obtained by its baseline
counterpart in which only the message volume is reduced. In the table, the average normal-
ized values are presented separately for three different categories, for K=256, 512 and 1024.
In the C = AB category for OP, we did not utilize the communication hypergraphs for amazon
matrices as these matrices had already very low communication overhead when partitioned
with the computational hypergraph and bipartite graph models (see Table IV).

The two communication cost metrics considered in the communication hypergraphs are the
total message count and the message volume imbalance, in which the former is reduced and
a constraint on the latter is enforced. Accordingly, using the communication hypergraphs af-
ter the hypergraph and bipartite graph models leads to improvements in these two metrics.
For the computational hypergraph models, the total message count is reduced by 28–35%,
18–30% and 10–43% for the C=AAT , C=AA and C=AB categories, respectively, by using
the communication hypergraphs. These improvements are 30–36%, 19–30% and 15–29% for
the computational bipartite graph models. The communication hypergraphs often improve
the message volume imbalance as well. The best improvements in this metric are usually ob-
tained by RRP, followed by IP, and then OP. Notice that the improvements in OP are limited.
This is because of the utilization of unit weights for the vertices in the communication hyper-
graph for OP, which does not capture, but approximates the send volume. The communication
hypergraphs offer a trade-off between the message count and the message volume, favoring
the former at the expense of the latter [Uçar and Aykanat 2004]. The volume is usually in-
creased by the communication hypergraphs since in order to reduce latency, they may assign
the communication tasks to the processors that do not depend on those tasks. In other words,
the responsibility of a communicated entity may be given to a processor even though that pro-
cessor does not need that entity in its computations. This is seen in the table as the message
volumes of all SpGEMM algorithms are increased when the communication hypergraphs are
utilized. The degradations in the message volume are relatively higher in IP for the C=AAT

category due to the existence of coarser vertices in the respective communication hypergraph.
The matrices in the C=AAT category benefit from reducing the latency cost as the parallel

SpGEMM time is reduced by up to 13% for K = 256, 25% for K = 512 and 32% for K = 1024.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:26 K. Akbudak et al.

Table VIII: Communication statistics for the communication hypergraphs. The results ob-
tained by utilizing the communication hypergraph are normalized with respect to the results
for the respective hypergraph/bipartite graph model.

C = AAT C = AA C = AB

K=256 512 1024 256 512 1024 256 512 1024

OP

Total Message
volume

HY 1.44 1.42 1.38 1.62 1.59 1.52 1.55 1.53 1.48
BG 1.48 1.45 1.41 1.62 1.59 1.56 1.54 1.52 1.48

Message volume
imbalance

HY 0.94 0.95 0.91 0.91 0.88 0.74 0.84 0.80 0.80
BG 1.03 1.01 0.99 0.98 0.94 0.90 1.00 0.96 0.89

Average
message count

HY 0.70 0.69 0.70 0.75 0.74 0.74 0.85 0.82 0.81
BG 0.64 0.66 0.70 0.76 0.75 0.74 0.80 0.78 0.76

Parallel
SpGEMM time

HY 0.93 0.89 0.87 0.98 0.95 0.87 1.01 0.99 0.97
BG 0.87 0.78 0.84 0.98 0.96 0.91 1.02 1.00 0.97

IP

Total Message
volume

HY 2.16 2.05 1.98 2.05 1.87 1.71 1.86 1.63 1.45
BG 2.93 2.46 2.15 2.03 1.87 1.72 1.83 1.63 1.47

Message volume
imbalance

HY 0.90 0.92 0.93 0.78 0.71 0.58 0.72 0.72 0.66
BG 0.78 0.86 0.89 0.83 0.80 0.70 0.78 0.81 0.85

Average
message count

HY 0.72 0.66 0.65 0.76 0.78 0.82 0.78 0.79 0.84
BG 0.65 0.64 0.65 0.77 0.77 0.81 0.82 0.82 0.87

Parallel
SpGEMM time

HY 1.01 0.89 0.87 1.05 1.00 0.94 1.03 0.99 0.95
BG 0.88 0.75 0.68 1.00 0.96 0.92 1.01 0.98 0.95

RRP

Total Message
volume

HY 1.10 1.24 1.30 1.52 1.46 1.39 1.48 1.43 1.35
BG 1.53 1.50 1.48 1.47 1.42 1.36 1.47 1.41 1.34

Message volume
imbalance

HY 0.46 0.44 0.39 0.55 0.48 0.38 0.62 0.52 0.46
BG 0.57 0.58 0.54 0.79 0.73 0.66 0.79 0.75 0.70

Average
message count

HY 0.71 0.68 0.67 0.70 0.71 0.72 0.76 0.75 0.73
BG 0.67 0.65 0.67 0.70 0.70 0.70 0.76 0.74 0.73

Parallel
SpGEMM time

HY 0.93 0.83 0.82 0.99 0.97 0.89 1.02 1.00 0.94
BG 0.92 0.87 0.81 0.97 0.94 0.91 1.01 0.99 0.95

The improvements in the parallel SpGEMM runtimes for the matrices in the C=AA category
are lower. The reason for this is that the message volumes of the matrices in this category are
higher than those of the matrices in the C=AAT category (see Table IV), which makes the
latency cost relatively less critical for the parallel performance so reducing it does not pay off
as much as it does in the C=AAT category. In Table VIII, a common trend observed in all cat-
egories is that with increasing K, the parallel SpGEMM times get better with the utilization
of the communication hypergraphs. This is because the latency cost becomes more impor-
tant at higher processor counts (as the message count usually increases more sharply than
the message volume in the case of strong scaling). For this reason, it can be said that using
communication hypergraphs are beneficial for improving scalability of any of the SpGEMM
algorithms.

In Figure 7, for a more detailed analysis, we present the performance profiles for the parallel
SpGEMM times obtained by the bipartite graph models for OP, IP and RRP and the communi-

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:27

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA
T

OP-BG
OP-BG-L

IP-BG
IP-BG-L
RRP-BG

RRP-BG-L
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA

OP-BG
OP-BG-L

IP-BG
IP-BG-L
RRP-BG

RRP-BG-L
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
th

e
 t
e
s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AB

OP-BG
OP-BG-L

IP-BG
IP-BG-L
RRP-BG

RRP-BG-L

Fig. 7: Performance profiles for the parallel SpGEMM times obtained by the computational
bipartite graph models (indicated by “BG”) and further using the communication hypergraphs
(indicated by “L”) for OP, IP and RRP.

cation hypergraphs further utilized to improve the latency cost of their baseline counterparts.
We do not present the profiles for the hypergraph models as they resemble those for the bipar-
tite graph models. In the figure, “BG” indicates the bipartite graph model and “L” indicates
the models that further utilize the respective communication hypergraph. For C=AAT and
C=AA categories, further reducing the latency cost usually pays off as the communication
hypergraphs for OP, IP and RRP improve the parallel SpGEMM time (compare OP-BG with
OP-BG-L, IP-BG with IP-BG-L, etc.). In the C = AAT category, OP-BG-L clearly attains the
best performance, while in the C = AA category, RRP-BG-L attains the best performance.
Both of these schemes make use of the communication hypergraph. In the C=AB category,
while OP-BG is better than OP-BG-L, RRP-BG and RRP-BG-L as well as IP-BG and IP-BG-L
exhibit close performance.

As a final comparison, we present the performance profiles of the partitioning models that
utilize the communication hypergraphs in Figure 8 separately for the C=AAT , C=AA and
C=AB categories. This comparison determines the best partitioning model, as the models
that utilize the communication hypergraphs are usually better than their counterparts that
do not so.

In the C=AAT category, the best performing models clearly belong to OP, followed by RRP,
and IP performs the worst. The best two performing models are OP-HY-L and OP-BG-L. For
a specific SpGEMM algorithm, the performance of the bipartite graph model is usually close
to that of the hypergraph model (compare RRP-HY-L with RRP-BG-L, IP-HY-L with IP-BG-L
etc.), OP being the exception. Note that the arguments of Sections 5.3 and 5.4 are in agreement
with the performances of the partitioning models in the figure.

In the C=AA category, the best performing models can be said to be belonging to RRP,
closely followed by OP. The best performing models are RRP-HY-L, RRP-BG-L and OP-HY-L,
where the former two exhibit more stable performance. Again, the performance of a bipar-
tite graph model for a specific SpGEMM algorithm is usually close to the performance of its
hypergraph counterpart.

In the C=AB category, the best performing model is clearly RRP-HY-L, followed by IP-HY-L
and OP-HY-L.

5.8. Scalability Analysis
In Figure 9, we compare OP, IP and RRP in terms of their strong scaling performance for
K=256, 512, 1024 and 2048. For a specific SpGEMM algorithm, the best performing parti-

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:28 K. Akbudak et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

fr
a
c
ti
o
n
 o

f 
te

s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA
T

OP-HY-L
OP-BG-L
IP-HY-L
IP-BG-L

RRP-HY-L
RRP-BG-L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
te

s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AA

OP-HY-L
OP-BG-L
IP-HY-L
IP-BG-L

RRP-HY-L
RRP-BG-L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2

fr
a
c
ti
o
n
 o

f 
te

s
t 
c
a
s
e
s

Parallel SpGEMM time relative to the best

Performance profile, C=AB

OP-HY-L
OP-BG-L
IP-HY-L
IP-BG-L

RRP-HY-L
RRP-BG-L

Fig. 8: Performance profiles for the parallel SpGEMM times obtained by the schemes that
utilize the communication hypergraphs. The hypergraph and bipartite graph models are re-
spectively indicated by “HY” and “BG”. “L” indicates that the communication hypergraph is
utilized in the respective scheme.

tioning model among four alternatives at K=2048 is selected for comparison. For example, for
OP, the best partitioning model among the hypergraph model, the bipartite graph model and
the two respective communication hypergraphs is selected for comparison (e.g., the best of OP-
HY, OP-BG, OP-HY-L and OP-BG-L, etc.). We include five matrices for the C=AAT category
and seven matrices for the C=AA category.

As seen in Figure 9, for the matrices in the C=AAT category, OP usually exhibits the best
scalability, followed by RRP. Yet in matrices such as fome21, fxm4 6 and sgpf5y6, RRP slowly
closes the performance gap with OP as K increases. For the matrices in the C=AA category,
RRP scales better than OP and IP. Again, observe that RRP’s performance gets better with
increasing K, where the gap between RRP and the other schemes gets wider for most of the
matrices in this category.

In Figure 10, we investigate the effect of reducing latency cost on scalability. The dashed
lines in the figure indicate the models in which only the bandwidth cost is reduced (i.e., with-
out the communication hypergraph), while the solid lines indicate the models in which both
the bandwidth and latency costs are reduced (i.e., with the communication hypergraph). For a
specific SpGEMM algorithm, again, the best performing model (either hypergraph or bipartite
graph) at K=2048 is selected for display. For example, for OP, the best of the hypergraph and
bipartite graph models (e.g., the best of OP-HY and OP-BG) is compared with the best of the
respective communication hypergraphs for these two models (e.g., the best of OP-HY-L and
OP-BG-L).

Figure 10 shows that reducing latency cost often pays off as better scalability due to the
reasons discussed in Section 5.7. In general, the performance gap increases in favor of the
models that utilize the communication hypergraphs with increasing K.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:29

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Fig. 9: Speedup curves comparing the SpGEMM algorithms.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:30 K. Akbudak et al.

OP IP RRP

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Sp
ee

du
p

Number of processors Number of processors Number of processors

Fig. 10: Speedup curves showing merits of using the communication hypergraphs.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:31

5.9. Overall Assessment
Among all partitioning models, it can be said that the partitioning models for RRP that fur-
ther utilize the communication hypergraphs (i.e., RRP-HY-L and RRP-BG-L) are the most
appealing models as since:

(1) They perform the best in the C = AA category. Although not performing the best in the
C = AAT category they still exhibit average performance, ranking second after OP. In the
C=AB category, RRP-HY-L leads other schemes.

(2) They perform better with increasing K, meaning they exhibit better scalability (Sec-
tion 5.8).

(3) Partitioning the graphs/hypergraphs for RRP are faster than partitioning them for OP and
IP; for example, partitioning the bipartite graph model for RRP is 15–35x faster than par-
titioning the hypergraph model for OP, where this factor is 5–8x for the bipartite graph
model for OP (Section 5.4).

(4) Finally, RRP does not require a symbolic multiplication, whereas the other two schemes
require it in the formation of the models (Section 3.5).

(5) We can go further and prefer RRP-BG-L over RRP-HY-L due to faster partitioning of
graphs, as partitioning the graphs for RRP is 3–6x faster than partitioning the hypergraphs
for RRP.

To sum up, although the partitioning models based on OP show stronger speedup performance
(especially in the C=AAT category), they suffer from high partitioning overhead and symbolic
multiplication requirements, thus leaving RRP as a better alternative to OP. Another impor-
tant finding is that the performance of the bipartite graph models for RRP and IP in message
volume is negatively affected with increasing density of matrices.

6. CONCLUSION
We proposed bipartite graph and hypergraph partitioning models for efficient parallelization
of the SpGEMM kernel on distributed memory architectures. These models enable different
1D partitionings of the input matrices in the kernel. Our models consider both the bandwidth
and the latency components of the communication costs in a two-phase methodology in order
to improve scalability. The extensive experiments on different categories of SpGEMM opera-
tions show that the 1D rowwise partitioning of both input matrices is the best alternative due
to its good parallel performance, better scalability and very low partitioning overhead. The
experiments also show that although the bipartite graph models perform slightly worse than
the hypergraph models in parallel performance, their significantly low partitioning overhead
makes them very attractive.

A. APPENDIX: HYPERGRAPH AND BIPARTITE GRAPH PARTITIONING
A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets (hyperedges) N .
Every net n ∈ N connects a subset of vertices. The vertices connected by a net n are called
its pins and denoted as Pins(n). The nets that connect a vertex v are called its nets and
denoted as Nets(v). The size of a given hypergraph is defined in terms of three attributes:
the number of vertices |V|, the number of nets |N | and the number of pins, which is equal to∑

n∈N |Pins(n)| =
∑

v∈V |Nets(v)|. Each net n is associated with cost c(n). In case of multi-
constraint partitioning, a vertex v is associated with T weights, where T is the number of
constraints.

A bipartite graph G = (VA ∪VB , E) is defined as two disjoint sets of vertices VA and VB , and
a set of edges E . Each edge (v, u) connects a vertex v ∈ VA and another vertex u ∈ VB . Adj(v)
is used to denote the set of vertices adjacent to vertex v ∈ G. The size of a bipartite graph is
defined in terms of two attributes: the number of vertices |VA ∪ VB | and the number of edges

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:32 K. Akbudak et al.

|E|. An edge (v, u) has a cost c((v, u)). In case of multi-constraint partitioning, a vertex v is
associated with T weights.

Given a hypergraph H or a bipartite graph G, Π(V) = {V1, . . . ,VK} is called a K-way vertex
partition of H or G if the K parts are mutually exclusive and exhaustive. A K-way vertex
partition of H or G is said to satisfy the partitioning constraint if

Wt(Vk) ≤W avg
t (1 + ε), for k = 1, . . . ,K; and for t = 1, . . . , T. (1)

Here, for constraint t, the weight Wt(Vk) of a part Vk is defined as the sum of the weights wt(v)
of the vertices in that part (i.e., Wt(Vk) =

∑
v∈Vk wt(v)), W avg

t is the average part weight (i.e.,
W avg

t =(
∑

v∈V wt(v))/K), and ε is the predetermined, maximum allowable imbalance ratio.
In a partition Π(V) of H, a net that has at least one pin (vertex) in a part is said to connect

that part. Connectivity set Λ(n) of a net n is defined as the set of parts connected by n. Con-
nectivity λ(n) = |Λ(n)| of a net n denotes the number of parts connected by n. A net n is said
to be external if it connects more than one part (i.e., λ(n) > 1), and internal otherwise (i.e.,
λ(n) = 1). The set of cut nets in a partition is denoted as Ncut. The partitioning objective is
to minimize the cutsize defined over the cut nets. There are various cutsize definitions. The
relevant one utilized in this work is [Çatalyürek and Aykanat 1999a]:

cutsize(Π(V)) =
∑

n∈Ncut

c(n)(λ(n)− 1) (2)

Here, each cut net n incurs a cost of c(n)(λ(n)− 1) to the cutsize. The hypergraph partitioning
problem is known to be NP-hard [Lengauer 1990].

In a partition Π(V) of G, an edge is said to be cut if it is adjacent to two vertices that reside
in different parts and uncut otherwise. The set of cut edges in a partition is denoted as Ecut. A
vertex v is said to be a boundary vertex if it is connected by at least one cut edge. Otherwise,
v is said to be an internal vertex. The partitioning objective is to minimize the cutsize defined
over the cut edges. There are various cutsize definitions. The relevant one utilized in this work
is:

cutsize(Π(V)) =
∑

(v,u)∈Ecut

c((v, u)) (3)

Here, each cut edge (v, u) incurs a cost of c((v, u)) to the cutsize.

REFERENCES
Kadir Akbudak and Cevdet Aykanat. 2014. Simultaneous Input and Output Matrix Partitioning for Outer-Product–

Parallel Sparse Matrix-Matrix Multiplication. SIAM Journal on Scientific Computing 36, 5 (2014), C568–C590.
DOI:http://dx.doi.org/10.1137/13092589X

Kadir Akbudak and Cevdet Aykanat. 2017. Exploiting Locality in Sparse Matrix-Matrix Multiplica-
tion on Many-Core Architectures. IEEE Transactions on Parallel and Distributed Systems (2017).
DOI:http://dx.doi.org/10.1109/TPDS.2017.2656893

Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. 2008. Multi-level Direct K-way Hypergraph Partitioning with
Multiple Constraints and Fixed Vertices. J. Parallel and Distrib. Comput. 68, 5 (May 2008), 609–625.

Ariful Azad, Aydın Buluç, and John R. Gilbert. 2015. Parallel Triangle Counting and Enumeration using Matrix
Algebra. In Proceedings of the IPDPSW, Workshop on Graph Algorithm Building Blocks (GABB). 804 – 811.
DOI:http://dx.doi.org/10.1109/IPDPSW.2015.75

Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz, and Sivan Toledo.
2013. Communication Optimal Parallel Multiplication of Sparse Random Matrices. In Proceedings of the Twenty-
fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’13). ACM, New York, NY,
USA, 222–231. DOI:http://dx.doi.org/10.1145/2486159.2486196

Grey Ballard, Alex Druinsky, Nicholas Knight, and Oded Schwartz. 2015. Brief Announcement: Hypergraph
Partitioning for Parallel Sparse Matrix-Matrix Multiplication. In Proceedings of the 27th ACM on Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’15). ACM, New York, NY, USA, 86–88.
DOI:http://dx.doi.org/10.1145/2755573.2755613

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.

http://dx.doi.org/10.1137/13092589X
http://dx.doi.org/10.1109/TPDS.2017.2656893
http://dx.doi.org/10.1109/IPDPSW.2015.75
http://dx.doi.org/10.1145/2486159.2486196
http://dx.doi.org/10.1145/2755573.2755613


Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 0:33

Nathan Bell, Steven Dalton, and Luke N. Olson. 2012. Exposing fine-grained parallelism in algebraic multigrid meth-
ods. SIAM Journal on Scientific Computing 34, 4 (2012), C123–C152.

Rob H. Bisseling, Timothy M. Doup, and L. Daniel J.C. Loyens. 1993. A parallel Interior Point algorithm for linear
programming on a network of transputers. Annals of Operations Research 43 (1993), 51–86.

Erik G. Boman, Ojas Parekh, and Cynthia Phillips. 2005. LDRD final report on massively-parallel linear program-
ming: the parPCx system. Technical Report. SAND2004-6440, Sandia National Laboratories.

Urban Borštnik, Joost VandeVondele, Valéry Weber, and Jürg Hutter. 2014. Sparse matrix multiplication: The dis-
tributed block-compressed sparse row library. Parallel Comput. 40, 5 (2014), 47–58.

William L Briggs, Steve F McCormick, and others. 2000. A multigrid tutorial, Second Edition. Siam, Philadelphia.
Aydın Buluç and John R. Gilbert. 2008. On the representation and multiplication of hypersparse ma-

trices. In IEEE International Symposium on Parallel and Distributed Processing (IPDPS’08). 1–11.
DOI:http://dx.doi.org/10.1109/IPDPS.2008.4536313

Aydin Buluç and John R. Gilbert. 2011. The Combinatorial BLAS: design, implementation, and applications. Inter-
national Journal of High Performance Computing Applications 25, 4 (2011), 496–509.

Aydın Buluç and John R. Gilbert. 2012. Parallel Sparse Matrix-Matrix Multiplication and Indexing: Imple-
mentation and Experiments. SIAM Journal of Scientific Computing (SISC) 34, 4 (2012), 170 – 191.
DOI:http://dx.doi.org/10.1137/110848244

Lynn Cannon. 1969. A cellular computer to implement the Kalman filter algorithm. Ph.D. Dissertation. Montana State
University, Bozeman, MN.

Ümit V. Çatalyürek and Cevdet Aykanat. 1999a. Hypergraph-Partitioning Based Decomposition for Parallel Sparse-
Matrix Vector Multiplication. IEEE Trans. Parallel Distributed Systems 10, 7 (1999), 673–693.

Ümit V. Çatalyürek and Cevdet Aykanat. 1999b. PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0.
Computer Engineering Department, Bilkent University, Ankara, Turkey.

Matt Challacombe. 1999. A simplified density matrix minimization for linear scaling self-consistent field theory. The
Journal of Chemical Physics 110, 5 (1999), 2332–2342. DOI:http://dx.doi.org/10.1063/1.477969

Matt Challacombe. 2000. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory. Computer
Physics Communications 128, 12 (2000), 93 – 107. DOI:http://dx.doi.org/10.1016/S0010-4655(00)00074-6

CP2K. accessed at 2016. CP2K home page. (accessed at 2016). http://www.cp2k.org/.
Steven Dalton, Nathan Bell, and Luke Olson. 2013. Optimizing sparse matrix-matrix multiplication for the GPU.

Technical report. NVIDIA.
Andrew D. Daniels, John M. Millam, and Gustavo E. Scuseria. 1997. Semiempirical methods with conjugate gradi-

ent density matrix search to replace diagonalization for molecular systems containing thousands of atoms. The
Journal of Chemical Physics 107, 2 (1997), 425–431. DOI:http://dx.doi.org/10.1063/1.474404

T. Davis. 2006. Direct Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics.
DOI:http://dx.doi.org/10.1137/1.9780898718881

Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software
38, 1 (2011), 1.

James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz, Oded Schwartz, and
Omer Spillinger. 2013. Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication.
In Proceedings of 27th International Parallel Distributed Processing Symposium. IEEE, 261–272.
DOI:http://dx.doi.org/10.1109/IPDPS.2013.80

Elizabeth D. Dolan and Jorge J. Moré. 2002. Benchmarking optimization software with performance profiles. Mathe-
matical programming 91, 2 (2002), 201–213.

Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and Uwe Naumann. 2015. GPU-Accelerated
Sparse Matrix-Matrix Multiplication by Iterative Row Merging. SIAM Journal on Scientific Computing 37, 1
(2015), C54–C71.

Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices : Multiplication and Permuted Transposition.
ACM Trans. Math. Software 4, 3 (1978), 250–269.

Vclav Hapla, David Hork, and Michal Merta. 2013. Use of Direct Solvers in TFETI Massively Parallel Implementa-
tion. In Applied Parallel and Scientific Computing, Pekka Manninen and Per ster (Eds.). Springer Berlin Heidel-
berg, 192–205. DOI:http://dx.doi.org/10.1007/978-3-642-36803-5 14

Michael Heroux, Roscoe Bartlett, Vicki Howle, Robert Hoekstra, Jonathan Hu, Tamara Kolda, Richard Lehoucq,
Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Willen-
bring, and Alan Williams. 2003. An Overview of Trilinos. Technical Report SAND2003-2927. Sandia National
Laboratories, Albuquerque, NM.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.

http://dx.doi.org/10.1109/IPDPS.2008.4536313
http://dx.doi.org/10.1137/110848244
http://dx.doi.org/10.1063/1.477969
http://dx.doi.org/10.1016/S0010-4655(00)00074-6
http://www.cp2k.org/
http://dx.doi.org/10.1063/1.474404
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1109/IPDPS.2013.80
http://dx.doi.org/10.1007/978-3-642-36803-5_14


0:34 K. Akbudak et al.

Satoshi Itoh, Pablo Ordejn, and Richard M. Martin. 1995. Order-N tight-binding molecular dy-
namics on parallel computers. Computer Physics Communications 88, 2-3 (1995), 173 – 185.
DOI:http://dx.doi.org/DOI:10.1016/0010-4655(95)00031-A

George Karypis, Anshul Gupta, and Vipin Kumar. 1994. A Parallel Formulation of Interior Point Algorithms. In
Supercomputing 94.

George Karypis and Vipin Kumar. 1998. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix
Ordering. J. Parallel and Distrib. Comput. 48, 1 (1998), 71–95.

George Karypis and Vipin Kumar. 1999. A Fast and Highly Quality Multilevel Scheme for Partitioning Ir-
regular Graphs. SIAM Journal on Scientific Computing 20, 1 (1999). Also available on WWW at URL
http://www.cs.umn.edu/˜karypis. A short version appears in Intl. Conf. Parallel Processing 1995.

Thomas Lengauer. 1990. Combinatorial algorithms for integrated circuit layout. Willey–Teubner, Chichester, U.K.
X.-P. Li, R. W. Nunes, and David Vanderbilt. 1993. Density-matrix electronic-structure method with linear system-

size scaling. Phys. Rev. B 47, 16 (Apr 1993), 10891–10894. DOI:http://dx.doi.org/10.1103/PhysRevB.47.10891
Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommendations: Item-to-Item Collaborative

Filtering. IEEE Internet Computing 7, 1 (2003), 76–80. http://doi.ieeecomputersociety.org/10.1109/MIC.2003.
1167344

Weifeng Liu and Brian Vinter. 2014. An efficient GPU general sparse matrix-matrix multiplication for irregular data.
In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International. IEEE, 370–381.

John M. Millam and Gustavo E. Scuseria. 1997. Linear scaling conjugate gradient density matrix search as an alter-
native to diagonalization for first principles electronic structure calculations. The Journal of Chemical Physics
106, 13 (1997), 5569–5577. DOI:http://dx.doi.org/10.1063/1.473579

Intel MKL. 2015. Math Kernel Library (MKL). (2015). http://software.intel.com/en-us/articles/intel-mkl/.
Kurtis L. Nusbaum. 2011. Optimizing Tpetra’s Sparse Matrix-Matrix Multiplication Routine. Technical Report.

SAND2011-6036, Sandia National Laboratories.
Carlos Ordonez. 2010. Optimization of linear recursive queries in SQL. IEEE Transactions on knowledge and Data

Engineering 22, 2 (2010), 264–277.
Carlos Ordonez, Yiqun Zhang, and Wellington Cabrera. 2016. The Gamma matrix to summarize dense and sparse

data sets for big data analytics. IEEE Transactions on Knowledge and Data Engineering 28, 7 (2016), 1905–1918.
Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jongsoo Park, Michael J. Anderson,

Satya Gautam Vadlamudi, Dipankar Das, Sergey G. Pudov, Vadim O. Pirogov, and Pradeep Dubey. 2015. Par-
allel Efficient Sparse Matrix-Matrix Multiplication on Multicore Platforms. In High Performance Computing.
Springer, 48–57.

H. Bernhard Schlegel, John M. Millam, Srinivasan S. Iyengar, Gregory A. Voth, Andrew D. Daniels, Gustavo E. Scuse-
ria, and Michael J. Frisch. 2001. Ab initio molecular dynamics: Propagating the density matrix with Gaussian
orbitals. The Journal of Chemical Physics 114, 22 (2001), 9758–9763. DOI:http://dx.doi.org/10.1063/1.1372182

O. Selvitopi and C. Aykanat. 2016. Reducing latency cost in 2D sparse matrix partitioning models. Parallel Computing
(revised version under review) (2016).

Edgar Solomonik, Abhinav Bhatele, and James Demmel. 2011. Improving Communication Performance in Dense
Linear Algebra via Topology Aware Collectives. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, Article 77, 11 pages.
DOI:http://dx.doi.org/10.1145/2063384.2063487

Total-FETI. accessed at 2016. Total-FETI Massively Parallel Implementation Research Group. (accessed at 2016).
http://spomech.vsb.cz/feti/.

Bora Uçar and Cevdet Aykanat. 2004. Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse
Rectangular Matrices for Parallel Matrix-Vector Multiplies. SIAM Journal on Scientific Computing 26, 6 (2004),
1837–1859.

Robert A. van de Geijn and Jerrell Watts. 1997. SUMMA: scalable universal matrix multiplication algorithm. Con-
currency - Practice and Experience 9, 4 (1997), 255–274.

Joost VandeVondele, Urban Borstnik, and Jurg Hutter. 2012. Linear scaling self-consistent field calculations with
millions of atoms in the condensed phase. Journal of Chemical Theory and Computation 8, 10 (2012), 3565–3573.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 0, Publication date: 2015.

http://dx.doi.org/DOI: 10.1016/0010-4655(95)00031-A
http://dx.doi.org/10.1103/PhysRevB.47.10891
http://doi.ieeecomputersociety.org/10.1109/MIC.2003.1167344
http://doi.ieeecomputersociety.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1063/1.473579
http://software.intel.com/en-us/articles/intel-mkl/
http://dx.doi.org/10.1063/1.1372182
http://dx.doi.org/10.1145/2063384.2063487
http://spomech.vsb.cz/feti/

	Introduction
	Related Work
	Partitioning models for reducing bandwidth cost
	Outer-product–parallel (OP) SpGEMM
	Hypergraph model
	Bipartite graph model

	Inner-product–parallel (IP) SpGEMM
	Hypergraph model
	Bipartite graph model

	Row-by-row-product–parallel (RRP) SpGEMM
	Hypergraph model
	Bipartite graph model

	Decoding Partitions
	Comparison of partitioning models

	Partitioning models for reducing latency cost
	Basics
	Outer-product–parallel (OP) SpGEMM
	Inner-product–parallel (IP) SpGEMM
	Row-by-row-product–parallel (RRP) SpGEMM
	Decoding Partitions

	Experiments
	Setup
	Datasets
	Performance Comparison of Parallel SpGEMM Algorithms
	Performance Comparison of Hypergraph and Bipartite Graph Models
	Effect of Matrix Density in Partitioning
	Partitioning Overhead and Amortization
	Effect of Reducing Latency Cost
	Scalability Analysis
	Overall Assessment

	Conclusion
	APPENDIX: Hypergraph and Bipartite Graph Partitioning

