UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Parallel Logical Inference

Permalink
https://escholarship.org/uc/item/8gz1f3mf

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Authors
Ballard, Dana H.
Hayes, Patrick J.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8gz1f3mf
https://escholarship.org
http://www.cdlib.org/

114

Parallel Logical Inference

Dana H. Ballard and Patrick J. Hayes
Computer Science Department and Cognitive Science Program

The University of Rochester
Rochester, NY 14627

February 1984
Abstract

The inference capabilities of humans suggest that they might be using
algorithms with high degrees of parallelism. This paper develops a completely
parallel connectionist inference mechanism. The mechanism handles obvious
inferences, where each clause is only used once, but may be extendable to
harder cases.

1. Motivation

The prospect of automating inferences has long been the goal of researchers in
artificial intelligence. The most obvious advantage is a more compact representation
of knowledge bases (KBs). Without inference ability all relevant facts must be
explicitly represented in the KB. Using inference, only a subset of the facts need be
explicitly represented, since the rest can be derived when required. However, despite
the huge payoff, this goal has so far proved elusive. One reason for pessimism is that
the known algorithms for reasoning fall into the class termed NP-complete. In a
nutshell, this classification means that no better algorithms are known than ones that
try out all the possibilities. For theorem proving, the number of possibilities can be
open ended. In contrast to this pessimistic result stands human performance data.
Psychologists have shown the following performance result. a huge variety of forced-
choice decisions can be made by human subjects in under a few hundred milliseconds.

This is a huge discrepancy in results. The theoretical result implies that problems
of even a modest size can overwhelm today’s computers, whereas the practical tests
show complex decision making in 100 - 400 ms. Furthermore, we know that humans
bring huge numbers of facts to bear to solve a specific problem. Thus we are led to
conclude that either: (1) humans do not make complex inferences; or (2) humans use
a better algonithm and/or data structure. In this paper we explore the second
possibility. Our aim is to show that theorem proving can be done using a parallel
probabilistic relaxation algorithm. The algorithm requires that problems be
formulated as the intersection of (possibly huge) numbers of local constraints
represented in networks. The intersection process takes a worst-case time
proportional to the diameter of the network but in practice often runs in constant
time. Of course any machine of constant size will not be able to handle hard

113

theorems in constant time. However, our conjecture is that: theorems that humans
can solve in a few hundred millisconds have a constant time solution on a parallel
machine.

For many scientific applications, an inference mechanism that handles only the
simpler cases, and fails in many cases, might not be useful. However, for human
inference mechanisms, this may not be the case. The reason is that the human
inference mechanism can be viewed as one component of several in a perception-
action process. For example, in our model, if the inference mechanism fails to
identify a visual object, one of the options available i1s to move closer and gather
more data. Thus our goal is to develop an inference mechanism that allows many
inferences to be made in parallel but may also fail in many cases.

A general formulation of theorem proving is that of Robinson [1965]: to prove S
=> W where S and W are sets of clauses, we attempt to show that S U ~W is
unsatisfiable. One classical way of doing this is to use resolution. Two clauses,
P(x)Q(x) and ~P(a), can be resolved to produce Q(a). The process of constraining the
bindings of variables in the clauses is known as unification. The resolution theorem
proving technique resolves pairs of clauses with the objective of producing the null
clause. If this is done, the unsatisfiability of the set of clauses S U ~W has been
demonstrated, and consequently the theorem S => W is true.

The approach has several important assumptions: (1) clauses may be used only
once; (2) the knowledge base must be logically consistent; and (3) the method uses a
large network that must be preconnected.

Our approach uses observations by Kowalski [1975] and Sickel [1976]. First we
try and filter the clauses using various kinds of constraints. This filtering process is
parallel and removes options that are not compatible with the constraints. Once this
is done we resolve clauses in parallel. During the development, the reader must
constantly keep in mind the nature of the result: it is not guaranteed to work, but the
hope is that it will work in most cases.

The overall organization of our parallel inference is shown in Figure 1. The
machine has three basic parts:

1) Consistency Constraints. The first part has the goal of activating
a logically consistent set of constraints. This is the focus of other
research, and we assume that the enterprise is successful.

2) Inference Constraints. Filtering constraints [Sickel, 1976;
Kowalski, 1975] deactivate parts of the network that do not
apply to the problem.

3) Resolution. The last part of the algorithm uses a second filtering
technique based on resolution. In this phase, parts of the
network are deactivated if they correspond to pairs of clauses
that would resolve where one of the pair contains a single
predicate. [f the entire network can be deactivated in this way, a
proof has been found; otherwise, the result is inconclusive..

The formulation of the algorithm is in terms of a connectionist network
[Feldman and Ballard, 1982] using a recently-developed probabilistic relaxation
algorithm [Hopfield, 1982]. One of the key contributions of this paper is to show that
theorem proving can be described in terms of this formalism. The formalism has
several advantages, but the main one is elegance: the problem can be described in
terms of nodes which have binary states. During the course of the computation,
constraints cause nodes to be turned off or on.

2. The Filtering Process

The objective of the filtering process is to define a set of local constraints that
reflect the rules of predicate logic. Starting with a predicate logic formulation, we can
examine the set of clauses and derive constraints that must hold between them, the
predicate symbols, and the terms. These constraints are expressed in a common
network formalism. The network consists of nodes which have binary states as
described in the previous section. At each step in the filtering process the constraints
for a particular node can be evaluated by evaluating that node’s local input. If it
cannot be part of the solution based on this local evaluation, it is turned off. The
turning off of a node may cause other nodes to be turned off. This process converges
when no more node state changes can be made.

The filter network has five sets of nodes: (1) C, the set of clause nodes; (2) P, the
set of predicate letters and their complements; (3) F, the set of clause fragments; (4)
B, the set of bindings between fragments; and (5) S, the set of substitutions. In any
set of clauses there will be one cluase node, ¢ € C for each clause in the set. There
will be one clause fragment node f € F for each predicate letter mentioned in the
clause. There will be a separate binder node b € B for each possible resolution
between complementary predicates. Finally there will be a substitution node s € S
for each possible substitution involving a binder. For example, in the following set S
= {c1: P(x,a), c3: —P(b,y)},

{Cl, Cz}

{P, P}

{(c1, P), (cp, —P)}

{(c1. P) ¢, =P)}

{xb, ya}

There are five different kinds of constraints: (1) a predicate letter constraint; (2) a

clause-predicate substitution constraint; (3) a clause constraint; (4) unification
constraints; and (5) a substitution constraint.

LMY O
i1

The Predicate Letter Constraint. The predicate letter constraint is derived from
propositional logic. If in the set of clauses a predicate letter appears without its
complement or vice versa, then that symbol can be pruned from the solution. In
terms of the filter network, this constraint is easily expressed as an excitatory
constraint between different nodes representing predicate letters, as shown in Figure
2. The weights and thresholds are arranged so that both the node and its complement
must be on to keep each other turned on.

116

117

The Clause-Predicate-Substitution Constraint. This constraint is derived from the
clauses in a straightforward way. Each clause may be decomposed into triples
consisting of: (clause symbol, predicate letter, term). For example, Cy: P(x)Q(a) may

be decomposed into (Cy, P, s7) and (Cy, Q, sy) where s1 and sy are appropriate

substitutions (these will be discussed further as part of the substitution constraints).
In the filter network, there are a set of clause fragment nodes F, one for each triple.
A clause fragment node f is connected to each node in the triple by mutually
excitatory connections as shown in Figure 3. Its threshold is such that it will turn off
if any of its constituents turns off.

The Clause Constraint. The clause constraint captures the notion that a clause
can only be part of the solution if all of its fragments have viable bindings. Thus the
fragments are connected to the node with a conjunctive connection. Figure 4 shows
an example of a clause with three fragments. The conjunctive connection means that
if any of the fragments are turned off, the clause will be turned off.

The Unification Constraints. The unification constraints capture possible
bindings between terms. The clauses that can potentially resolve constrain possible
bindings, and these possible bindings are realized by a set of binding nodes B.
Bindings that are incompatible are connected by mutually inhibitory connections.
Compatible bindings are connected by mutually excitatory connections. For example,
in the set of clauses -P(a,b), P(x,y)Q(y,z), -Q(c,d), -P(a,c), the possible bindings are
xa, yb, yc, and zd. Of these, compatible pairs are: (xa, yb), (xa, yc) and (yc, zd), and
there is one incompatible pair: (yc, yd). This example is simple and does not capture
all the constraints possible in unification. At least two others are necessary. These
relate bindings between constants and variables. One is that if a variable is bound to
a constant and another variable is bound to a different constant, then the two
variables cannot be bound to each other. The other constraint is that if a variable is
bound to a constant and the same variable is bound to a second variable, then the
second variable can be bound to the constant. These constraints are summarized
below:

X,y :var;c,dconst
xc&yd => —xy
xc&xy => yc

X¢ =» =xd

In the network there are potentially |T|2 nodes where T is the set of literals used in
the formulae to denote all possible variable-constant pairings. Thus the constraints in
above are connected between all relevant groupings. A representative network
fragment is shown in Figure 5.

Substitution Constraints. The possible substitutions constrain the network in two
important ways, One additional constraint is necessary to link the different bindings
together. In the logical formalism this constraint can be derived by observing the
potential resolutions between clauses. (In Sickel's notation, these are arcs.)
Substitution nodes S relate substitutions to bindings. The second constraint relates
the substitution nodes to the clause fragment nodes. Each clause fragment node

118

mentions the terms in its predicate. If these terms are also mentioned in the
substitution then there is a two-way positive link between the two nodes. Formally, a
node s € S is positively linked to a node f € Fif fis positively linked toatermt] € T

and s is positively linked to a binding tyx where t), x € T and t] = ty. Figure 6a

shows the assignment node to relate three bindings between two clause fragments.
Since all the assignments must be satisfied, the connections into the assignment node
are conjunctive.

3. The Resolution Process

The filtering constraints combine to reduce the network to a state where none of
the bindings are inconsistent. If there are choices, they are decided arbitrarily. For
example, the set {cy: P(x), cy: —P(a), c3: —P(b)} results in a network with two
inconsistent substitutions: xa and xb. The probabilistic relaxation algorithm will
make an arbitrary choice between these two possibilities. Thus the objective of the
filtering process is to reduce the network to an essential state, wherein only one
clause fragment can resolve with its complement. This might seem very restrictive,
but the filter network can make many examples into this form. For example, the
proof used by Henschen [1976] to introduce resolution can be reduced to this form
without using resolution. However, the usefulness of this strategy will have to be
tested with many different examples.

Once the network has been put into an essential state, the way constraints are
handled can be changed slightly and the network will perform resolution. To do this,
three changes are made:

1) the thresholds on clauses are changed so that singleton clause
nodes are turned off;

2) the thresholds on clauses are changed so that dropping one
fragment input does not turn off the node unless it is the last
one; and

3) the binder network is fixed, so that no further changes take
place.

The effect of turning off singleton clauses is to remove the fragment associated with

their complements. Turning off all the nodes in this fashion is equivalent to finding a
proof by resolution.

4. Examples

To describe the process, consider the example where S U =W is given by:
{P(x)Q(y)W(y), = W(z), -~P(a), 7Q(b)}. The network is shown in Figure 7. Note that
all the clauses are essential. Removing any clause will cause all the nodes in the
network to be turned off. For example, without clause Cy, fg is turned off. This
could propagate as follows: —Q, Q, a3, f5, ¢, f}, f5, P, =P, 51, 89, €1, f3, W. = W. Of

course, many other sequences are possible; the exact sequence in any given case
depends on the probabilistic relaxation process.

119

Let us change the substitutions slightly and see what happens. Suppose ¢ is

changed to P(z)Q(y)W(y). This modification is shown as a dotted line in Figure 7.
Now the substitution constraint network comes into play. The network is prewired so
that if za and yb are turned on, then they will turn off yz. Once this is done its effect
will propagate through sy to turn off the entire network.

To continue the example, we now describe the resolution phase. Note that in this
case turning of all the singleton clauses, ¢y, 3, and cg, is sufficient to turn off the

remaining clause cj. Note that the clauses in {P(x)Q(y), W(y)—P(a), =Q(b), =W(2)}

can also be turned off in the same manner, but not those in {P(x)Q(y), W(y)—P(a),
—1828;\4\/(2)}, which has no singletons, or those in {P(x)Q(y)W(y), =W(z)—P(a),

5. Summary and Conclusions

The implementation of the first order logic constraints results in two coupled
networks: (1) a clause network that represents the clause syntax; and (2) a binding
network that represents the relationships between terms in different clauses. The
method for resolving bindings, unification, can be as complex as the entire inference
mechanism. Thus for our purposes we depend on the actual bindings in the KB to
have a simple structure.

At the outset, the possibility of reusing clauses was ruled out, but there are some
limited cases that can be handled. To see the necessity of reusing clauses, consider
{SU = W} = {Cq:P(a), C3:P(b), C3:=P(x)Q(x), C4:—Q(a)~Q(b)}. This can be
handled by resolution in a straightforward way. The resolution tree is: ((Cy, C3),
((Cy, C3), Cy)). However, note that C3 appears twice. The consequence of this is that

since the unification constraints do not allow xa and xb simultaneously, the network
will not pass the filter test. To handle this case we note that both possibilities for C3

involve constant bindings. Thus we can resolve this by making two copies of Cj:

—P(a)Q(a) and —P(b)Q(b). Once this is done, the inference mechanism will find the
proof.

The main intent of this paper has been to force a new look at formal inference
mechanisms from the standpoint of performance. Our contention is that models that
do not have a parallel implementation are unlikely candidates for models of human
inference. This realization may prove catalytic for approaches that try to unify the
complementary goals of competence and performance.

The technical contribution of this paper is in the detailed specification of a
network and inference mechanism. The network runs in parallel and can handle
obvious inferences in first order logic. The running time is bounded from below by
O(1) which occurs when all the constraints are local and O(diameter of network)
which occurs when the constraints have to propagate the full extent of the network.

6. References

Feldman, J.A. and D.H. Ballard, "Connectionist models and their properties,”
Cognitive Science 6, 205-254, 1982.

120

Henschen, L.J., "A tutorial on resolution,” /EEE Trans. Computers C-25, 8, 170-772,
August 1976,

Hopfield, J.J., "Neural networks and physical systems with emergent collective

computational abilities," Proc., National Academy of Sciences USA 79, 2554
2558, 1982.

Kowalski, R., "A proof procedure using connection graphs,” JACM 22, 4, 572-595,
1975.

Robinson, J.A., "A machine-oriented logic based on the resolution principle,” JACM
12, 1, 23-41, January 1965.

Sickel, S., "A search technique for clause interconectivity graphs,” [EEE Trans.
Computers C-25, 8, 823-835, August 1976.

)

Para lle L
Filter

121

gither: not a thm

Paralle/

Resolution

Ne fwork N

7 or:
need more resources

.o .
> Inconclusive: loop

turned
off?

in nefwork,

Fig. 1

122

	cogsci_1984_114-123

