
Parallel Rendering of 3D AMR Data on the SGI/Cray T3E

Kwan-Liu Ma
Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center
Hampton, Virginia 23681-2199

Email: kma@icase.edu

Abstract

This paper describes work-in-progress on developing
parallel visualization strategies for 3D Adaptive Mesh Re-
finement (AMR) data. AMR is a simple and powerful tool
for modeling many important scientific and engineering
problems. However, visualization tools for 3D AMR data
are not generally available. Converting AMR data onto a
uniform mesh would result in high storage requirements,
and rendering the uniform-mesh data on an average graph-
ics workstation can be painfully slow if not impossible. The
adaptive nature of the embedded mesh demands sophisti-
cated visualization calculations. In this work, we compare
the performance and storage requirements of a parallel vol-
ume renderer for regular-mesh data with a new parallel ren-
derer based on adaptive sampling. While both renderers
can achieve interactive visualization, the new approach of-
fers significant performance gains, as indicated by our ex-
periments on the SGI/Cray T3E.

1 Introduction

Increasingly, leading-edge scientific computations with
demanding memory and processing requirements are being
performed on massively parallel (MP) supercomputers. The
size of the resulting solution data is often too large if not
impossible for an average graphics workstation to process
efficiently for data visualization and analysis. To support
applications which use these MP supercomputers, visual-
ization tools appropriate to the parallel architecture must
be developed such that the solution data can be studied at
the highest possible resolution in an efficient manner. The
challenge, then, is to develop algorithms and methodologies
which can exploit the available parallelism to perform visu-
alization and rendering operations on the parallel systems,
and to deliver the results to the researcher’s desktop in a
timely and efficient manner.

Although there is a growing body of work in parallel

graphics and visualization, only a small subset of this has
been directed toward data on irregular, non-uniform, or un-
structured grids. Furthermore, the challenges of the new
problem sizes and the state-of-the-art computer architec-
tures extend into regimes which have not been thoroughly
explored by parallel visualization researchers.

This paper reports our experience and results from devel-
oping visualization strategies making use of MP supercom-
puters for Adaptive Mesh Refinement (AMR) data, in par-
ticular, the type of data generated from applications using
the PARAMESH package developed at NASA’s Goddard
Space Flight Center [19]. AMR is a simple and powerful
tool for modeling many important scientific and engineer-
ing problems. However, visualization tools for 3D AMR
data are not generally available because the associated mesh
contains multiresolution components. In this research, we
proceed in the following three phases:

1. Modify an existing parallel volume rendering algo-
rithm for regular-mesh data and port it to the T3E
for visualizing AMR data. The main goal is to study
the performance of the parallel rendering algorithm on
the T3E, and to demonstrate interactive 3D visualiza-
tion of the data without sacrificing accuracy and image
quality. Our experience with this renderer also helps us
estimate our potential capability to render AMR data
with improved methods.

2. Develop a new parallel renderer that can render the
AMR data directly without converting the adaptive
mesh to a uniform mesh. Our goal is to reduce run-
time memory requirements, rendering time, and thus
the number of processors needed to achieve interactive
visualization.

3. Develop support for runtime visualization. We plan to
demonstrate runtime monitoring of a parallel numeri-
cal simulation created with the PARAMESH package.
That is, visualization is generated in place on the same
MP supercomputer where the simulation runs. To per-
form runtime visualization, we need to provide the user

with an interface to interact with the simulation, and to
further reduce memory and processing requirements of
the visualization calculations to make this approach at-
tractive.

In this paper, we present our results from the first two
phases on the SGI/Cray T3E using up to 256 processors. In
Section 2, we provide a brief description of PARAMESH
and the kind of adaptive meshes it can generate. In Sec-
tion 3, we introduce volume rendering and highlight re-
search issues in parallel volume rendering. Section 4 de-
scribes the preprocessing tasks specific to the kind of AMR
data to be visualized . The new parallel rendering algorithm
is introduced in Section 5, and Test results are presented in
Section 6. In the final section, we discuss the implication of
this work and direction of future research.

2 PARAMESH - Parallel AMR Code

PARAMESH [19] is a package of Fortran 90 subroutines
designed to provide an application developer with an easy
route to extend an existing serial code which uses a logically
Cartesian structured mesh into a parallel code with adaptive
mesh refinement. The package builds a hierarchy of sub-
grids to cover the computational domain, with spatial res-
olution varying to satisfy the demands of the application.
These sub-blocks form the nodes of a tree data-structure
(quadtree in 2D or octree in 3D). Each grid block has a log-
ically Cartesian mesh, and the index ranges are the same
for every block. Thus, in 2D, if we begin with a 10×20
grid on one black covering the entire domain, the first re-
finement step would produce 4 child blocks, each with its
own 10×20 mesh, but now with mesh spacing one-half that
of its parent. Any or all of these children can themselves
be refined, in the same manner. This process continues, un-
til the domain is covered with a quilt-like pattern of blocks
with the desired spatial resolution everywhere. During the
refinement process, the refinement level is not allowed to
jump by more than one level at any location in the spatial
domain.

Figure 1 shows a simple example of a 2D mesh gen-
erated by PARAMESH and the corresponding quadtree.
Note that each block contains exactly 4×4 cell-centered
data points. More PARAMESH’s examples can be found
athttp://outside.gsfc.nasa.gov/ESS/amr.html.

This type of grid poses some challenges to 3D visualiza-
tion calculations. First, there is no existing 3D visualization
tool which can handle data on an adaptive mesh directly. Ef-
ficient, direct visualization of the AMR data requires the de-
velopment of new rendering algorithms. Second, during vi-
sualization calculations, the transition from a coarser reso-
lution block to a finer black block (or vice versa) can causes
serious aliasing artifacts if care is not taken. Third, the re-
sulting simulation data for real-world application problems

Figure 1. A 2D grid generated by PARAMESH
and the corresponding quadtree.

are large, and to generate high quality visualization the run-
time memory requirement can be so high that an average
graphics workstation becomes useless.

3 Parallel Volume Rendering

Volume rendering is a very effective 3D visualization
method because it can display more information in a sin-
gle visualization than methods such as isosurface or slicing.
In fact, we can also use volume rendering to produce iso-
surfaces or cut-planes, or a mixture of them. Most impor-
tantly, volume rendering is particularly effective for visual-
izing fine features and those features that cannot be defined
analytically.

Volume rendering is computationally expensive due to
the interpolation and shading calculations required for ev-
ery sample point in the spatial domain of the data. The level
of graphics hardware support presently available for vol-
ume rendering is still limited. The fastest software volume
renderer takes at least tens of seconds to several minutes to
produce a high resolution image of a regular volume data,
say containing 256×256×256 data points, on an average
workstation. Many optimization techniques using prepro-
cessing and special data structures have been proposed to
speed up the rendering calculations [8, 11, 6] but for very
large datasets interactive visualization is still unattainable.

Multiresolution representations, compression and fea-
ture extraction are plausible but they are not the complete
solutions. As parallel computers become more accessi-
ble, parallel and distributed rendering seems to be the most
promising solution which offers maximum flexibility with-
out sacrificing accuracy and image quality. Parallel render-
ing incorporated with multiresolution representations, com-
pression and/or, feature extraction techniques seems to be
the ultimate solution for large data visualization.

Different parallel volume rendering algorithms have
been developed for either shared memory [17, 2, 5, 18] or
distributed memory parallel computers [22, 13, 15]; by us-
ing raycasting [13, 4, 15, 18], cell projection [24, 23, 12],

Sorting

Reading and distributing data
(Object−space load partitioning)

Merging of partial images (i.e. ray segments)

Collecting and delivering
 final image results

(Image−space load partitioning)

Rendering of local data items

Disk

Display

Figure 2. A basic parallel volume rendering
algorithm.

shear-warp [1, 5, 21] or splatting algorithms [9, 16]; and for
data on particular grid structures such as rectilinear [13, 3,
4], curvilinear [2, 23], unstructured [24, 10, 12] or hybrid
grids [23]. Parallel rendering algorithms for adaptive-mesh
data are absent.

3.1 Basic Steps

A basic parallel volume rendering algorithm can be illus-
trated by the diagram shown in Figure 2. The first step is to
determine how the data is partitioned to ensure a statically
balanced load or to facilitate dynamic load redistribution.
Then the partitioned data are distributed to each processor.
Data distribution in particular utilizing parallel I/O can im-
pact the overall rendering efficiency. However, I/O issues
are not discussed in this paper.

3.1.1 Data Partitioning

Data partitioning is a difficult task since there are many fac-
tors contributing to the partitioning strategy selected. For
volume visualization, these factors include:

• Opacity transfer function.

• The number of data items.

• The shape and size of each data item.

• View.

The opacity transfer function essentially specifies what in
the data should be made visible. For some types of data,
the mapping from data values to opacities is straightfor-
ward. For example, intensity values of medical scanned
data are usually in direct proportion to the opacity values
used. On the other hand, finding the appropriate opacity
transfer function for flow field data, is often an exploring

process. Opacity transfer function influences load balancing
because an opaque surface blocks the volume region behind
and therefore waives the rendering of that region. Second,
there is certain overhead in processing each data item so
the number of data items assigned to a processor can af-
fect load. Next, data items of different shapes and sizes
require different computational loads. Finally, it is clear
that viewing position affects the impact of all the other three
factors. Because of these factors and the high overhead of
using dynamic load balancing, simple static load balancing
techniques that can achieve load balancing in general cases
are desirable.

3.1.2 Local rendering

After data are distributed, each processor renders its local
data items independently of other processors. A data item
can be either a point, a cell or a slice. We call a grid point a
voxel (volume element). A cell is usually composed of three
to eight voxels. For example, a three-voxel cell is a tetrahe-
dron and an eight-voxel cell is a hexahedron. A slice is a
collection of voxels or cells on the same plane. The raycast-
ing algorithms work on several voxels in the same neigh-
borhood at a time. The projection or splatting algorithms
work on one voxel or one cell a time. The algorithms based
on factorization of the viewing transformation (i.e. shear-
warp) work on one slice a time. The AMR data is block-
based so we choose a raycasting algorithm [13] that have
been studied extensively on other parallel architectures.

The local rendering step is essentially a sampling pro-
cess based on the viewing transformation. At each sample
point, a value is computed using trilinear interpolation of
nearest voxels values. The value is mapped to color and
opacity. Careful selections of colors and transparencies can
often bring out very important features in the data. To ob-
tain the final image, all color and opacity values calculated
are composited according to the (front-to-back or back-to-
front) depth order. Consequently, some form of sorting
must take place before, during or after the local rendering
step to derive the correct compositing order of the sampling
results [14]. Front-to-back compositing is based on theover
operator [20] which is:

αaccumulated+ =αcurrent sample pt × (1 − αaccumulated)

whereα is opacity. Figure 3 shows ray-casting resampling
of the data on a regular grid distributed to multiple proces-
sors. The local rendering performed by each processor pro-
duces many ray segments. Ray segments corresponding to
the same pixel are composited with a global process to de-
rive the final pixel value. The basis of a typical parallel
volume rendering algorithm is that each ray may be broken
into segments which can be computed by different proces-
sors concurrently.

A

A

A

image

seg1

seg2

seg3

seg4

p

Pixel P’s value = seg1 over (seg2 over (seg3 over seg4))

view
direction

Figure 3. Parallel ray-casting resampling.
Each subdomain is handled by a different pro-
cessor. Ray segments corresponding to the
same pixel are merged in a compositing step
to derive the final pixel value.

3.1.3 Parallel image compositing

Following local rendering, all processors participate in a
global process to composite the partial images generated
into the final complete images for different image areas.
Image-space load partitioning is as important as the object-
space load partitioning to ensure overall rendering effi-
ciency. Possible partitioning methods include pixel inter-
leaving, block/strip interleaving, scanline interleaving and
adaptive decomposition. Each method has different com-
putational overhead and flexibility. In essence, each pro-
cessor is responsible for a set of pixels and thus must al-
locate memory space to store color, opacity and depth val-
ues for each pixel. Therefore, the image space assignment
should be done in such a way that overloading a few partic-
ular processors will never happen. This overloading prob-
lem is worst for highly adaptive mesh in which some very
fine mesh structures occupies a relatively very small spa-
tial region. We have found that in this situation a finer-level
partitioning like pixel interleaving scales well with a large
number of processors.

Parallel image compositing requires communication be-
tween processors. The order in which the compositing of
ray segments is conducted is important. The simplest ap-
proach, which we call direct-send, is to have each processor
send ray segments directly to the processor responsible for
compositing them. This approach has been used by sev-
eral researchers [4, 15, 10, 12] but it has trouble with link
contention when many processors try to send ray segments

to the same destination. Lee, et al. [7] proposed a parallel
compositing algorithm to avoid link contention on a mesh
network. For anm×n mesh, compositing is first performed
along the column direction and then along the row direction
(or vice versa). A total of(m−1)×(n−1) steps are carried
out. In each step, every processor forwards a set of ray seg-
ments generated locally to the processor responsible for the
corresponding image area. This compositing algorithm is
essentially an optimized version of the direct-send method.
The send is ordered to avoid link contention. As a result, it
is a completely synchronous algorithm.

A binary method which pairs up processors in order of
compositing can remove the link contention problem but at
each phase of compositing, half of the processors would be-
come idle. Then, at the top of the compositing tree, only one
processor is active, doing the final composite for the entire
image. In this way, when a massively parallel computer
with a large number of processors is used, compositing
would become a serious bottleneck. Ma et al. [13] devel-
oped a parallel image compositing algorithm calledbinary-
swapto keep all processors busy during the whole course of
the compositing. The key idea is that, at each compositing
stage, the two processors involved in a composite operation
split the image plane into two pieces, and each processor
takes responsibility for one of the two pieces. Consequently,
as the compositing proceeds, the image each processor han-
dles becomes smaller. We can therefore take advantage of
nearest neighbor communication for some particular types
of network (i.e. tree or hypercube) by swapping large im-
ages during earlier phases of the compositing between pro-
cessors that are physically next to each other. For example,
efficient binary swap compositing using a k-d tree structure
was demonstrated on the CM5 [13]. Nevertheless, binary
swap is also a completely synchronized process so it is not
applicable to an asynchronous algorithm.

3.1.4 Image output

The end of the parallel compositing process typically leaves
a subimage on each processor. Even though many parallel
rendering algorithms have demonstrated impressive render-
ing rates, to support interactive visualization, an efficient
mechanism is needed to assemble the subimages and de-
liver the final image to a display device or disk to keep up
with the rendering rates. In addition to using high speed
links and dedicated frame buffers, software techniques such
as pipelining and compression should be used whenever ap-
propriate.

4 Preprocessing AMR Data

In the AMR data sets we obtained for testing, blocks
of data are organized hierarchically according to their spa-

a cell a vertex
Cell−centered Data Vertex−centered Data

A B

C D

Figure 4. The original cell-centered data and
the resulting vertex-centered data.

tial relationships. The data are floating point values and
cell-centered. For each cell, eight variables are stored. To
volume render such data, some preprocessing must be per-
formed. First, we convert the cell-centered data to vertex-
centered data by using linear interpolation. Figure 4 shows
a 2D example of converting a 4×4 block of cell-centered
data into a 5×5 block of vertex-centered data. The data
value at the dark colored vertex (or node) is calculated by
using the four cells (i.e. Cell A, B, C and D) sharing that
vertex. For vertices at the block boundary, interpolation
must be done between blocks. Note that in 3D cases, a
vertex may be shared by as many as eight blocks, possi-
bly with different resolutions. For a 3D dataset withNb

blocks of nx × ny × nz cells, this conversion generates
Nb × (nx + 1) × (ny + 1) × (nz + 1) vertices.

Next, we have the option of mapping the data onto a uni-
form mesh so we can utilize an existing volume renderer.
Mapping the data onto a uniform mesh results in a signifi-
cant increase in storage requirements. For a dataset withNb

blocks ofnx × ny × nz vertices organized as anNl-level
octree, it takes(2Nl+1)3×sizeof(float) bytes rather than
nx×ny ×nz ×Nb×sizeof(float) bytes to store one vari-
able. In this work, we actually generated such uniformly
sampled data so that a comparison can be made with direct
rendering of the AMR data.

Finally, the floating-point data values are quantized to
8-bit values because the renderer typically uses a lookup
table of 256 entries for color and opacity mapping in the
rendering step. Consequently, this quantization step reduces
the storage requirement by at least a factor of four.

5 Rendering AMR Data

To visualize the AMR data, we have taken two different
approaches. The first approach is the simplest but also the
most expensive one: we map the data onto a uniform mesh

and then apply a parallel volume renderer to the uniform
data [13]. Data are distributed among processors by evenly
partitioning the spatial domain such that each processor
handles a subdomain containing about the same number of
voxels. The projected area of each subdomain is also ap-
proximately the same because of the uniform mesh. The
renderer uses the binary-swap compositing algorithm for
merging the ray segments [13]. The opacity function se-
lected will determine the level of load imbalance.

The second approach is to render the AMR data directly.
This requires the development of a new parallel rendering
algorithm. While the development of the new renderer is
still under way, its prototype version allows us to demon-
strate the potential improvement we can achieve.

The new algorithm distributes the blocks of data in a
round robin fashion to achieve static load balancing. Lo-
cal rendering is performed at each processor by ray-casting
each block independently of other blocks and processors.
Note that an immediate consequence of rendering at the
block level is that many small ray segments are generated
which would impose more communication between proces-
sors if we send them to the destination processors once they
are generated. We therefore buffer ray segments into larger
messages which are not delivered until the buffer becomes
full [12]. In this way, we avoid sending many small mes-
sages which are costly due to the high message overhead.

Image space partitioning uses pixel interleaving to
achieve maximum independence of viewing direction. Un-
like the renderer we used for the uniform-mesh data, this
renderer overlaps the local rendering and image composit-
ing steps, and operates in a highly asynchronous fashion.

When rendering a block, sampling can be done in two
different ways. One way which is straightforward to imple-
ment but quite expensive computationally is to sample at a
fixed interval along the ray regardless of the resolution of
the block. The other way is to sample adaptively accord-
ing to the resolution of the block. Adaptive rendering is the
natural thing to do for adaptive meshes. While adaptive ren-
dering can reduce computational cost in a significant way, it
must be implemented carefully to achieve exactly the same
image quality. Each sample value must be weighted appro-
priately to ensure accurate image results. We are currently
working on this problem.

6 Test Results

We have tested the two different rendering algorithms
described in previous sections on the SGI/Cray T3E com-
puter operated at the NASA Goddard Space Flight Cen-
ter. The T3E is a distributed-memory massively parallel
computer. Normal configurations of the machine may con-
sist of 32 to 2048 Processor Elements (PEs) each with 128
megabytes to 2 gigabytes of DRAM memory. Although

this memory is attached directly to each PE (physically
distributed), it is globally addressable. We do not exploit
this feature since we use MPI for explicit message pass-
ing to access non-local data. In the Goddard T3E, each PE
is 300MHz DEC Alpha 21164 microprocessor with peak
performance of 600 million floating point operations per
second. All PEs are connected by a high-bandwidth, low-
latency bidirectional three-dimensional torus system inter-
connect network. This topology ensures short connection
paths and high bisection bandwidth (the maximum rate at
which one half of the system can exchange data with the
other half). Adaptive routing allows messages on the in-
terconnect network to be rerouted around temporary “hot
spots”. Interprocessor data payload communication rates
are 480 megabytes per second in every direction through the
torus; in a 512-PE CRAY T3E system, bisection bandwidth
exceeds 122 gigabytes per second.

Because we planned to conduct a large number of tests
using a large number of processors, with a limited alloca-
tion of computer time, we selected a relatively small AMR
dataset for our performance study. In fact, large data de-
manding more computational load would mask the paral-
lelization penalties associated with our algorithms because
the communication cost would be negligible compared to
the computational cost. This test dataset was generated
from a magnetohydrodynamics (MHD) simulation of solar
wind. It contains eight variables in 361 8×8×8 blocks. Fig-
ure 5 and 6 show volume visualization of the first variable
which is density. Both images display a bow shock, with
highest density in the shock itself. In Figure refvis1, the
block structure is superimposed into the visualization while
mesh within each block is not shown. In Figure refvis2,
both the exterior surface and interior of the shock are re-
vealed by enhancing low and hight values with the opacity
transfer function.

The corresponding octree of this data has seven levels
so after it is resampled into a uniform mesh, it contains
512×512×512 voxels. The storage requirement is thus in-
creased by a factor of 800. For a larger AMR data set, a par-
allel computer with sufficient memory space must be used
just to make possible the rendering of the uniformly sam-
pled data.

Figure 7 presents the total rendering time using up to 256
processors. Here, total rendering time only includes the lo-
cal rendering time and image compositing time. Time for
I/O and initialization of the renderer is not included. Loga-
rithmic scale is used for bothx andy axes to make the plots
easy to interpret. Three different cases are considered:

• Uniform sampling on uniform mesh.

• Uniform sampling on adaptive mesh.

• Adaptive sampling on adaptive mesh.

Figure 5. Visualization of the solution data
from a MHD simulation using PARAMESH
with block structure superimposed.

Figure 6. Visualization of solution data from a
MHD simulation using PARAMESH, in which
high and low density values are enhanced.

0.5

1

5

50

100

200

2 4 8 16 32 64 128 256

T
ot

al
 R

en
de

rin
g

T
im

e
(s

ec
on

ds
)

Number of Processors

Data: 316 8x8x8 blocks
Image: 512x512 pixels

Uniform sampling uniform-mesh
Uniform sampling adaptive-mesh

Adaptive sampling adaptive-mesh

Figure 7. Total rendering time on T3E using
up to 256 processors.

We see that uniform sampling on adaptive mesh takes
slightly longer than on uniform mesh. This is due to the
overhead of processing individual blocks and transferring
the larger number of ray segments generated. Most im-
portantly, adaptive sampling using 32 processors achieves
roughly the same rendering rates as uniform-sampled ren-
dering using 256 processors. This is a speedup factor of
eight for the new rendering algorithm we are currently de-
veloping. The saving comes from taking fewer samples
along each ray in the coarse mesh blocks, and can be char-
acterized by

2Nl+1

(Nb×nx×ny×nz)
1
3

relative to a similar ray-casting resampling approach.
We should point out a drawback of using a small data set

for testing. For adaptive rendering using a large number of
processors, each processor has only a very small number of
blocks to render, like one or two. A large block projected
to a large screen area always takes much longer time to ren-
der than a small block, even though they contain the same
number of vertices. This results in load imbalance and loss
of efficiency for the 128- and 256-processor cases as shown
in Figure 7. Since our main goal here is to demonstrate that
adaptive rendering requires fewer processors as well as a
much smaller memory space to achieve interactive render-
ing rates, this small data set serves the purpose. However,
further performance study using a large data set is needed
to determine the true scalability of the new rendering algo-
rithm.

Finally, we show in Figure 8 that partitioning the spa-
tial domain evenly and coarsely as done by the uniform-
sampled renderer leads to load imbalance because of the

0

0.2

0.4

0.6

1 32 64 128 256

W
ai

t T
im

e
(s

ec
on

ds
)

Processor ID

Uniform resampling uniform mesh

Figure 8. Wait time for the 256-processor
case.

opacity transfer function used. This problem will likely be
eliminated with the new rendering algorithm which uses
finer partitioning and distributes data in a more random
fashion. We are implementing a higher-resolution timing
mechanism which will allow us to measure the wait time in
the asynchronous rendering process. We expect this will be
an order of magnitude smaller and quite even across proces-
sors.

7 Conclusions

Applications of advanced modeling techniques such as
AMR, three-dimensional visualization techniques such as
volume rendering, and state-of-the-art parallel computers
such as the SGI/Cray T3E, together are among the fron-
tiers of computational science. This paper reports our
first attempt at combining these technologies and some ex-
perimental results. As we see an increasing use of the
PARAMESH package in the modeling of many nationally-
relevant scientific problems, the strategies we produce in
this research will benefit users of PARAMESH (and other
AMR technologies) in a significant way.

We have made possible three-dimensional visualiza-
tion of AMR data generated from simulations using the
PARAMESH package. Near-interactive rendering rates
have been achieved. We have also demonstrated that it is
much more efficient to render the AMR data directly rather
than a finer, uniform resampling of the data. For the par-
ticular test case we show, the storage space is reduced by
a factor of 800 and the rendering is speeded up by a factor
8. This allows us to use fewer processors to achieve desir-
able rendering rates. Our experience with AMR data and
the T3E will help us develop an even more efficient and ac-
curate algorithm for direct, adaptive rendering.

In addition, volume rendering can generate realistic vi-
sualization results if a sophisticated lighting model is used.
To include lighting effects, we usually approximate the sur-
face orientation at each voxel with the first gradient of voxel
values. The orientation at each voxel is a vector and has
three components. The extra storage space for saving these

gradient values can be tremendous. However, we should
include lighting calculations for final, high quality render-
ing. Other future work includes developing techniques to
view the computational grid itself and display solution data
superposed on a highly-magnified grid. These are of very
strong interest to developers for debugging purposes.

8 Acknowledgements

This work was supported by the National Aeronautics
and Space Administration under Contract No. NAS1-
97046. The experiments described here were performed on
the computer systems provided by NASA’s HPCCP/CAS
Project. We thank the system support personnel at NASA
Goddard Space Flight Center for assistance in using their
facilities. The author would also like to thank Michael
Gross and Dan Spicer at Goddard for providing the datasets
and discussion of the visualization requirements for AMR
data, Ming-Yun Shih for writing the program to preprocess
the datasets, and Tom Crockett for his comments on the
manuscript.

References

[1] M. B. Amin, A. Grama, and V. Singh. Fast volume render-
ing using an efficient, scalable parallel formulation of the
shear-warp algorithm. InProceedings of 1995 Symposium
on Parallel Rendering, pages 7–14, 1995.

[2] J. Challinger. Scalable Parallel Volume Raycasting for Non-
rectilinear Computational Grids. InProceedings of Parallel
Rendering Symposium, pages 81–88, 1993. San Jose, Octo-
ber 25-26.

[3] B. Corrie and P. Mackerras. Parallel volume rendering and
data coherence. InProceedings of Parallel Rendering Sym-
posium, pages 23–26, 1993. San Jose, October 25-26.

[4] W. M. Hsu. Segmented ray casting for data parallel vol-
ume rendering. InProceedings of Parallel Rendering Sym-
posium, pages 7–14, 1993. San Jose, October 25-26.

[5] P. Lacroute. Real-Time Volume Rendering on Shared Mem-
ory Multiprocessors Using the Shear-Warp Factorization. In
Proceedings of Parallel Rendering Symposium, pages 15–
22, 1995.

[6] P. Lacroute and M. Levoy. Volume rendering using a shear-
warp factorization of the viewing transformation. InSIG-
GRAPH 94 Conference Proceedings, pages 451–457, 1994.

[7] T.-Y. Lee, C. S. Raghavendra, and J. N. Nicholas. Image
composition schemes for sort-last polygon rendering on 2d
mesh multicomputers.IEEE Transactions on Visualization
and Computer Graphics, 2(3):202–217, September 1996.

[8] M. Levoy. Efficient ray tracing of volume data.ACM Trans-
actions on Graphics, 9(3), July 1990.

[9] P. Li, S. Whitman, R. Mendoza, and J. Tsiao. ParVox - a par-
allel volume rendering system for distributed visualization.
In Proceedings of 1997 Symposium on Parallel Rendering,
pages 7–14, 1997.

[10] K.-L. Ma. Parallel volume ray-casting for unstructured-grid
data on distributed-memory architectures. InProceedings of
the Parallel Rendering ’95 Symposium, pages 23–30, 1995.
Atlanta, Georgia, October 30-31.

[11] K.-L. Ma, M. Cohen, and J. Painter. Volume seeds: A vol-
ume exploration technique.The Journal of Visualization and
Computer Animation, 2:135–140, 1991.

[12] K.-L. Ma and T. W. Crockett. A scalable paral-
lel cell-projection volume rendering algorithm for three-
dimensional unstructured data. InProceedings of 1997 Sym-
posium on Parallel Rendering, pages 95–104, 1997.

[13] K.-L. Ma, J. S. Painter, C. Hansen, and M. Krogh. Par-
allel Volume Rendering Using Binary-Swap Compositing.
IEEE Computer Graphics and Applications, 14(4):59–68,
July 1994.

[14] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting
classification of parallel rendering.IEEE Computer Graph-
ics and Applications, 14(4):23–32, July 1994.

[15] U. Neumann. Parallel volume-rendering algorithm perfor-
mance on mesh-connected multicomputers. InProceedings
of Parallel Rendering Symposium, pages 97–104, 1993. San
Jose, October 25-26.

[16] U. Neumann.Volume Reconstruction and Parallel Render-
ing Algorithms: A Comparative Analysis. PhD thesis, UNC
Chapel Hill, 1993.

[17] J. Nieh and M. Levoy. Volume rendering on scalable shared-
memory MIMD architectures. In1992 Workshop on Volume
Visualization, pages 17–24, 1992. Boston, October 19-20.

[18] M. E. Palmer, S. Taylor, and B. Totty. Exploiting deep par-
allel memory hierarchies for ray casting volume rendering.
In Proceedings of 1997 Symposium on Parallel Rendering,
pages 15–22, 1997.

[19] PARAMESH. URL:http://outside.gsfc.nasa.gov/ESS/
eazydir/inhouse/macenice/paramesh/paramesh.html, 1998.
NASA Goddard Space Flight Center.

[20] T. Porter and T. Duff. Compositing Digital Images.Pro-
ceedings of SIGGRAPH ’84, 18(3), July 1984.

[21] K. Sano, H. Kitajima, H. Kobayashi, and T. Nakamura.
Parallel processing of the shear-warp factorization with the
binary-swap method on a distributed-memory multiproces-
sor system. InProceedings of 1997 Symposium on Parallel
Rendering, pages 87–94, 1997.

[22] P. Schröder and G. Stoll. Data parallel volume rendering as
line drawing. In1992 Workshop on volume Visualization,
pages 25–31, 1992. Boston, October 19-20.

[23] J. Wilhelms, A. V. Gelder, P. Tarantino, and J. Gibbs. Hier-
archical and parallelizable diret volume rendering. InPro-
ceedings of the Visualization ’96 Conference, pages 57–64,
October 1996.

[24] P. L. Williams. Parallel Volume Rendering Finite Element
Data. InProceedings Computer Graphics International ’93,
1993. Lausanne, Switzerland, June.

