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Abstract 
Differences in working memory capacity (WMC) relate to 

performance on a variety of problem solving tasks. High WMC is 

beneficial for solving analytical problems, but can hinder 

performance on insight problems (DeCaro & Beilock, 2010). One 

suggested reason for WMC-related differences in problem solving 
performance is differences in strategy selection, in which high 

WMC individuals tend toward complex algorithmic strategies 

(Engle, 2002). High WMC might increase the likelihood of non-

optimal performance on Luchins’ (1942) water jar task because high 

WMC solvers tend toward longer solutions, not noticing when 
shorter solutions become available. We present empirical data 

showing this effect, and a computational model that replicates the 

findings by choosing among problem solving strategies with 

different WM demands. The high WMC model used a memory-

intensive strategy, which led to long solutions when shorter ones 
were available. The low WMC model was unable to use that 

strategy, and switched to shorter solutions. 

Keywords: Working memory capacity; problem solving; 
strategy selection; computational modeling 

 

 

Background 

Problem solving, like cognitive processes generally, is 

bounded by resource limitations  (Simon, 1972). In particular, 

the capacity of working memory (WMC) has repeatedly been 

found to be related to problem solving performance. In a 

major review, Wiley and Jarosz (2012) concluded that, “In 

analytical problem solving, the superior executive function 

associated with WMC seem to generally support more 

successful problem solving.” (p. 219). 

 However, as Wiley and Jarosz point out, this conclusion 

may only hold for analytical problem solving. In this type of 

process, problems are solved by extrapolating from prior 

experience, and the problem solver makes steady, step by step 

progress towards the goal.  

 In contrast, creative problem solving is characterized by 

the need to override prior experience in order to identify 

solutions that do not confirm to or follow from that 

experience (Ohlsson, 1992, 2011). Evidence is accumulating  

that in creative problem solving, the relationship between 

WMC and performance works differently than the “more is 

better” relation observed in analytical problem solving. 

Several studies have documented a reversed relation, in 

which problem solvers with lower working memory capacity 

performing better on insight problems than solvers with  

greater capacity. For example, DeCaro, Van Stockum, and 

Wieth (2015) found that low WMC participants 

outperformed high WMC participants on match stick 

arithmetic problems (Knoblich et al., 1999) and insight word 

problems (Schooler, et al., 1993, Wieth & Burns, 2006).  

Similarly, other studies have found that if WMC is reduced 

through alcohol intoxication (Jarosz, Colflesh, & Wiley, 

2012) or solving problems during one’s non-optimal time of 

day (Wieth & Zacks, 2012), insight problem solving 

improved while analytical problem solving suffered. This 

outcome is counterintuitive and stands in need of explanation. 

Why is lower capacity associated with greater probability of 

reaching an insight solution? 

 One possible explanation is that WMC influences the types 

of strategies used during problem solving. Those with high 

WMC are better able to control attention, giving them an 

increased ability to suppress distracting information and 

process more information relevant to the task at hand (Engle, 

2002; McCabe, Roediger, McDaniel, Balota, & Hambrick, 

2010). Beilock and DeCaro (2007) suggested that individuals 

with lower WMC may lack the attentional control required to 

accurately use complex problem solving strategies and 

instead use associatively based strategies, whereas 

individuals with high WMC are able to use complex 

strategies. However, “sometimes high WMC participants 

may attempt to use complex strategies when simpler, more 

elegant, or more direct approaches are available” (Wiley & 

Jarosz, 2012, p. 210). Reliance on complex strategies are 

often beneficial on analytical problems which require the 

solver to hold multiple steps in working memory while 

progressing toward the goal (Jarosz, 2015). However, insight 

problems often trigger an inappropriate representation of the 

problem (Ohlsson, 1992), and using a complex strategy based 

on this representation will lead the solver toward impasse. 

The solution to an insight problem typically requires that 

complex yet familiar problem solving strategies are 

abandoned in favor of searching for a novel solution 

(Knoblich, Ohlsson, & Raney, 2001).  

 

The Present Study 

The purpose of the present paper is to describe a 

computational model of the classical findings on the water jar 

task. The latter was introduced into problem solving research 

by Luchins (1942). In this task, the solver is presented with a 

set of three jars of specified values, and is instructed to use 

only these jars to obtain a desired amount of water. The 

original problem set included a single practice problem to 

acquaint the solver with the task, followed by a set of ten 
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problems (see Table 1). The practice problem is solved by 

filling jar A, then subtracting water with jar B three times (A 

- 3B). Next, problems 1-5 can be solved by filling jar B, then 

subtracting water with jar A once and jar C twice (B - A - 

2C). Problems 6-7 are solvable using the previous long 

formula, but can also be solved using a shorter formula of 

filling jar A and either adding or subtracting jar C (A +/- C). 

Problem 8 can only be solved using the shorter formula, and 

problems 9-10 can once again be solved with either the long 

or short formula. The main finding of interest is that the 

participants showed a strong tendency to use the long path on 

the problems that could also be solved by the shorter and 

more elegant, single-step path. However, after being given a 

problem that could only be solved with the shorter solution, 

they then applied that shorter solution to the two subsequent 

problems that could be solved with either the short or the long 

solution. The tendency to continue using the more 

complicated, but previously successful solution was called 

the Einstellung effect by Luchins  (1942), and is now more 

commonly referred to as mental set (Smith & Blankenship, 

1991). 

 Because the later problems in the water jar task can be 

solved using two different solutions, it is a particularly  

interesting task for examining how strategy use varies with  

WMC. Switching to the shorter solution is an insight-like 

process because it requires the solver to change their 

representation of the problem. In contrast, continuing to use 

the longer solution suggests that the solver may be using 

complex algorithmic strategies which tend to be better for 

analytical problem solving. Based on previous  problem 

solving research, it would then be expected that low WMC 

individuals may be more likely to switch to the shorter 

solution than high WMC individuals, and high WMC 

individuals are more likely to experience mental set.  

  Two recent studies using the water jar task have found this 

effect (Beilock & DeCaro, 2007; Van Stockum & DeCaro , 

2015). Our model provides a possible explanation why less 

working memory capacity might be associated with higher 

probability of finding and using the short solution on water 

jar problems. 

 

Table 1: Classic water jar problem set (Luchins, 1942). 

 

Problem Formula(s) Jar A Jar B Jar C Goal 

0 Practice 29 3 0 20 

1 Long 21 127 3 100 

2 Long 14 163 25 99 

3 Long 18 43 10 5 

4 Long 9 42 6 21 

5 Long 20 59 4 31 

6 Long, Short 23 49 3 20 

7 Long, Short 15 39 3 18 

8 Short 28 76 3 25 

9 Long, Short 18 48 4 22 

10 Long, Short 14 36 8 6 

  

 Problem solving typically relies on prior knowledge and 

experience, and successful problem solutions and task 

performances are generated by extrapolating that prior 

experience and applying it to a new problem or situation. 

Such analytical problem solving necessarily involves 

potentially complex interactions between working memory  

and long-term memory, because the latter has to be engaged 

in locating the relevant prior experience, retrieve it, and adapt 

it to the task at hand.  

 However, insight problems are characterized by the need 

to override prior experience and engage other processes than 

memory retrieval in order to achieve a novel solution path.  

The latter might include so-called weak methods, problem 

solving strategies of high generality (Laird & Newell, 1983). 

If the cognitive load required to access long-term memory is 

greater than the cognitive load imposed by those alternative 

processes, then working memory capacity might be one of the 

factors that impacts the probability that a problem solver will 

cease trying to use prior experience and instead engage 

problem solving processes that are abstract and local and 

hence might find a different solution than the one implied by 

prior experience. 

 It is plausible that the participants store information about 

the longer path in memory during the initial five problems, 

and that they draw upon that information when solving each 

successive problem. However, memory encoding is seldom 

perfect and similar items, such as steps in the water jar 

problem, are subject to interference. Applying what is 

remembered from a previous problem might impose 

significant cognitive load. 

   However, people also possess general or abstract problem 

solving processes. A common type of strategy is to compare 

the current state of the problem at hand with the desired or 

designated goal state, and be guided by how or in what 

respect they differ. Strategies of this sort are commonly  

referred to as means-ends strategies (Newell & Simon, 1972). 

The latter type of computation can be performed on 

information that is visible to the participants (current water 

levels in the jars and the desired goal state), and so do not 

impose high cognitive load nor require operations on long-

term memory. The participants might prefer to work a 

problem by extrapolating prior experience, and only switch 

to an abstract and local difference-reduction strategy when 

prior experience imposes too high a cognitive load or turns 

out to be unsuccessful. 

 

A Computational Model 

Our model assumes that people have multiple strategies for 

solving water jar problems that vary with respect to the WMC 

they require. WMC interacts with problem solving by 

impacting strategy choice. The current version of the model 

utilizes three different problem solving strategies . This was 

not meant to be an exhaustive list of all possible strategies, 

but to exemplify plausible strategies that a human solver 

might use for the water jar task. One strategy was solving 

from memory. In this strategy, if there are steps from a 

previously successful solution path stored in memory, the 

model can follow the path to check if that will solve the next  
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problem. This strategy could be considered a type of case-

based reasoning (Riebeck & Schank, 1989). 

 A second strategy is a difference reduction strategy, which 

is a simplified form of a means-ends analysis (Newell & 

Simon, 1972).. This strategy finds a starting value by 

evaluating which two operations will put the solver closest to 

the goal value and will pick the first operation of the two. For 

each subsequent step, the solver picks a value to add or 

subtract from the current state that will bring the current state 

closest to the goal value. 

   In order to prevent infinite loops of adding and subtracting 

the same value, the model uses a form of the no-loop heuristic 

(Atwood & Polson, 1976). If the solver is about to undo a 

previous step by adding the same value that was subtracted in 

the previous step or vice versa, it will instead randomly pick 

a jar. 

   The third problem solving strategy is guided random 

solving. For this strategy, at each step the solver determines 

whether a value needs to be added or subtracted in order to 

get closer to the goal, and then randomly selects a jar to 

perform the operation.  

 One potential way in which the model can deviate from 

human performance is that unless a limit is placed onto the 

model, the difference reduction and random solving 

strategies are both capable of performing an infinite number 

of steps until a solution is reached, whereas a human solver 

would only be capable of performing a limited number of 

steps. In order to resolve this problem, the number of steps 

that could be taken by either of these strategies was limited 

to a maximum of seven steps. A limit of seven steps was 

chosen because people on average can hold about seven or 

fewer items in memory depending on the type of information  

being stored (Baddeley & Hitch, 1974; Cowan, 2010; Miller, 

1956).  

 The model was implemented in python 3.4 and is 

approximately 300 lines of code. Working memory was a 

fixed size storage for which the capacity could be specified. 

If a problem successfully solved a problem using any 

strategy, the solution path was saved into the model’s long 

term memory, which then was available to be used by the 

memory strategy. For the memory strategy, the number of 

steps that can be saved is limited by WMC. This means that 

if the solution path was four steps long, but WMC only allows 

memory for three steps, only the first three steps will be 

saved. The steps were saved as a list of steps for which each 

step had an operation (add or subtract), and the jar used to 

perform the operation (A, B, or C), For example, the path for 

the longer solution would appear in WM as: ((add, B), (sub, 

A), (sub, C), (sub, C)). This solution path would remain in 

WM until a problem is solved using a different solution, and 

then the new solution would be saved into WM.  

 The model selects strategies in order from highest to lowest 

WM demand. It will first attempt the solving from memory  

strategy, followed by the difference reduction strategy, 

followed by the guided random strategy. This order was 

chosen because studies of WMC and strategy choice in 

problem solving have found that those with higher WMC 

tend to use more demanding strategies, sometimes instead of 

using less demanding, but valid strategies. This suggests that 

if a more demanding strategy can be used, it is more likely  

that it will be used (Beilock & DeCaro, 2007; Wiley & Jarosz, 

2012).  

   However, because human solvers do not always select 

strategies in such a deterministic way, there is some noise in 

the strategy selection so that ten percent of the time it will 

skip the solve from memory strategy, and if it skips the first 

strategy, in ten percent of those cases, it will also skip the 

difference reduction strategy and go straight to the random 

solving strategy. We have not yet found a way to ground this 

parameter in the empirical data. 
 

 

Empirical Study 

Participants were 67 undergraduate students who were 

enrolled in an introductory psychology course and received 

credit for participation in this study.  

 

Materials and Measures  

Working Memory Capacity. WMC was measured using the 

automated symmetry span task (aSymspan; Redick, et al., 

2012), and the automated running span task (aRunspan; 

Broadway & Engle, 2010). The aSymspan is a computer-

based complex span task in which a memory task and 

processing task are interleaved.  

   In the aSymspan, participants judge whether an image is 

symmetrical across a vertical axis followed, and are then 

presented with a red square located in a 4x4 grid. After 2-5 

trials, participants are then shown a grid and asked to click on 

the locations of the red squares in the order they were 

presented. Participants complete 12 sets of trial, 3 of each 

length. A participant’s score is the number of red squares 

correctly remembered, and can range from 0-42. 

  The aRunspan is a computer-based simple span task in there 

is not a separate processing and memory component of the 

task. Participants are told to remember the last specified 

amount of letters in a string (3-7). Then participants are 

shown a string of letters of unknown length one at a time. 

Participants are then shown a screen with letters and are 

asked to click on the specified letters in the order they 

appeared. Score is the number of letters correctly 

remembered, and can range from 0-75. The WMC measures 

took approximately 5-10 minutes each to complete.  

  Problem Solving. Participants completed the water jar 

problems shown in Table 1 in the order presented. Problems  

were presented on paper with one problem per page. 

Participants first received an instruction page which included 

a completed example problem, and the practice problem 

(problem 0). Once participants correctly solved the example 

problem, they were given the rest of the task to complete. 

This task took approximately 15-20 minutes to complete. 

 

Modeling Results 

In order to explore whether the model replicates WMC-

related differences in performance on the water jar task, the 

model was run 20 times, 10 with high WMC and 10 with low 
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WMC. For high WMC, the model was capable of 

remembering five steps, and for low WMC, the model was 

capable of remembering three. The classic Luchins (1942) 

problem set was used, and problems were performed in the 

order listed in Table 1.  

   Overall, the high WMC version of the model had higher 

accuracy in solving the water jar problems than the low 

WMC solver. The proportion correct was .97 for high WMC 

and .80 for low WMC. However, when broken down by 

problem, it can be seen that the differences in accuracy are 

driven by a few specific problems (see Table 2). More 

specifically, the low WMC solver failed to solve problem 5 

all ten times, problem 3 nine times, and problem 4 three 

times. In contrast, the high WMC solver failed problem 5 in 

two instances, but successfully solved problems 3 and 4 every 

time. Errors occurred on these problems when the solver used 

the difference reduction or random strategies. 

 

Table 2. Proportion correct on each water jar problem as a 

function of WMC. 

 

 Low WMC High WMC 

Problem Model Human Model Human 

0 1.00 1.00 1.00 1.00 

1 1.00 0.91 0.90 0.95 

2 1.00 0.91 1.00 1.00 

3 0.10 0.91 1.00 0.82 

4 0.70 1.00 1.00 1.00 

5 0.00 1.00 0.80 0.95 

6 1.00 0.95 1.00 0.91 

7 1.00 1.00 1.00 1.00 

8 1.00 0.68 1.00 0.59 

9 1.00 1.00 1.00 0.95 

10 1.00 1.00 1.00 0.95 

Total 0.80 0.94 0.97 0.92 

 

 Strategy use also varied by WMC (see Table 3 for a 

summary). The low WMC solver was unable to successfully 

use the solving from memory strategy, and instead used the 

difference reduction strategy, and rarely the random strategy 

to successfully solve the problems.  The high WMC solver 

successfully solved from memory on half of the problems, 

and solved using the difference reduction strategy on just 

under half of the problems. For the high WMC, when the 

solver did not solve from memory, the majority of these 

instances were problems in which the most recent 

successfully solved problem had a different solution formula, 

so there was not a relevant path stored in memory. 

 

 

 

 

 

 

 

Table 3. Proportion of strategy use as a function of WMC 

 

Strategy Low High 

Memory 0.00 0.50 

Dif. Red. 0.79 0.47 

Random 0.01 0.00 

Fail 0.20 0.03 

 

 The main question is whether the model replicated the 

finding that high WMC solvers are more likely than low 

WMC solvers to use the long solution on problems 6-7 and 

9-10. The model behaved in exactly this way (see Figure 1). 

The low WMC solver always used the short solution formulas 

instead of the long, whereas the high WMC solver used the 

long solution formula just under half the time (see Figure 2). 

When specifically examining problems 6-7, the high WMC 

solver had an even higher tendency toward using the longer 

solution, using it 90% of the time. On problems 9-10, because 

problem 8 was solved using a short solution, the high WMC 

solver overcame Einstellung and used the short solution.  

 

 
Figure 1. Proportion of long formula use on problems 6-7 and 

9-10 as a function of WMC.  

 
Figure 2. Proportion of short formula use on problems 6-7 

and 9-10 as a function of WMC. 
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Empirical Results 

Participants’ WMC score was based on a factor score created 

by calculating the shared variance between aSymspan score 

and aRunspan score. In order to compare model data to 

human data, participants were split into low, medium, and 

high WMC groups. The low and high WMC groups were 

used to compare to the model. 

  High and low WMC groups did not differ in overall 

accuracy, t(42) = 0.84, p = .41 (Table 2.). Additionally, there 

were no WMC differences in accuracy on any individual 

problem. The low WMC human solvers had higher accuracy 

than the low WMC model, and the high WMC human solvers 

had slightly lower accuracy than the high WMC model 

 Although not significant, we found that the high WMC 

group had a higher rate of using the long solution formula on 

problems 6-7 and 9-10 compared to the low WMC group, 

t(42) = -1.19, p = .24, and a lower rate of using the short 

solution formula, t(42) = 1.52, p = .14. When analyzed as a 

correlation across all participants, there is a negative 

correlation between WMC and using the short solution 

formula, r(65) = -.28, p = .02, and a marginal positive 

correlation between WMC and using the long solution 

formula r(65) = .22, p = .08. Compared to the model, both 

low and high WMC human solvers showed a higher tendency 

of using the long solution.   

 

Discussion 

This model demonstrated how WMC influences strategy use 

on the water jar task and how strategy selection in turn affects 

the likelihood of experiencing mental set. By placing WMC 

limits on the memory strategy, the model was able to simulate 

the finding that high WMC solvers are more likely to us e the 

long solution. When WMC was high, like human solvers, the 

model was more likely to continue using the long solution on 

problems 6-7, even though the short solution was available. 

The high WMC solver generally did not switch to the short 

solution until it failed to solve problem 8 from memory and 

used difference reduction to search for a new solution. When 

WMC was low, the solver was not able to store the full four 

step solution of the long formula, and was incapable of 

solving from memory using the long formula. The low WMC 

solver instead used the difference reduction and guided 

random solving strategies.  

 Even though the model was able to simulate WMC 

differences in formula use, compared to human performance, 

the model under predicted the likelihood of continuing to use 

the long solution once the short solution becomes available. 

There are a couple possible explanations for this finding. One 

possibility is that people resist changing strategies in a way 

that this model does not account for. Another possibility is 

that there are more strategies that could lead to using the long 

solution. Other possible strategies could include the 

undershoot or overshoot strategies used by Lovett on her 

model of the building sticks task, which is an isomorph of the 

water jar problem (Lovett, 1998; Lovett & Anderson, 1996).  

 One limitation of the model is that the low WMC solver 

failed to solve certain problems (problems 3-5) at a much 

higher rate than low WMC human solvers. This may also be 

because humans were using problem solving strategies not 

included in the model. One possible future direction would 

be to perform a think aloud study in order to learn what 

strategies people are using to solve this problem. Any new 

strategies that are learned could be incorporated into a future 

iteration of this model. 

 Another limitation to this model is that it selects its 

strategies in a pre-specified order: memory, difference 

reduction, and then random search. The only variation is that 

it sometimes skips an earlier strategy. People are not likely to 

move down a list of strategies in a particular order, especially 

if a strategy has not proven to be successful on previous 

problems. Another future direction could be to have the 

model randomly select a strategy based on the weighted 

utility of the strategy. The utility could be updated on success 

or failure of the strategy. If WMC determines which 

strategies can be used, then it would be expected that high 

and low WMC versions of the model would give higher 

utility to different strategies, with high WMC giving higher 

utility to more memory-intensive strategies. 

 Our results support the theory that strategy selection in 

problem solving is influenced by WMC limits. High WMC 

problem solvers are better able to make use of memory -

intensive strategies such as remembering entire solution 

paths or algorithms. Low WMC problem solvers are less 

likely to use these strategies because they may require storing 

more information in working memory than the solver is able, 

and have to rely on strategies with lower memory demand. 

On the water jar task, the difference in s trategy use meant that 

the high WMC solver had higher overall accuracy than the 

low WMC solver, but it was also more likely to use a non-

optimal solution when a shorter possible solution was 

introduced. The model explains the Einstellung effect as a 

consequence of the interaction between the structure of the 

task environment and the boundaries on human cognitive 

capacity. When the task environment supports extrapolating 

from prior experience and the extrapolation imposes low 

cognitive load, people will tend to respond on the basis of 

memory, with Einstellung, ruts, and mindlessness as 

consequences. But when extrapolation is capacity demanding 

and the environment allows a strategy that is based on 

perceptually available information and hence imposes low 

cognitive load, solutions that go beyond prior experience 

become possible. Hence, the counterintuitive beneficial 

effect of low WMC on insightful problem solving. 
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