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HIGHLIGHTED ARTICLE
| INVESTIGATION

Genetic Mechanisms Leading to Sex Differences Across
Common Diseases and Anthropometric Traits
Michela Traglia,*,1 Dina Bseiso,*,1 Alexander Gusev,†,‡,§,1 Brigid Adviento,* Daniel S. Park,**

Joel A. Mefford,†† Noah Zaitlen,** and Lauren A. Weiss*,2

*Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California 94143, †Broad
Institute of Harvard and MIT, Cambridge, Massachusetts 02142, ‡Department of Biostatistics and §Department of Epidemiology,
Harvard School of Public Health, Boston, Massachusetts 02115, and **Department of Bioengineering and Therapeutic Sciences,
and ††Department of Epidemiology and Biostatistics and The Pharmaceutical Sciences and Pharmacogenomics Graduate Program,

University of California, San Francisco, California 94158

ORCID ID: 0000-0002-5700-135X (M.T.)

ABSTRACT Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although
studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a
number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated
include differential genetic liability thresholds or distributions, gene–sex interaction at autosomal loci, major contribution of the
X-chromosome, or gene–environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the
overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of
assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment
in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a dispropor-
tionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric
traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of
autosome-wide genome-sex interaction in multiple sclerosis (P = 1 3 1029). We also find some evidence for hormone-responsive
gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk,
implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk.

KEYWORDS sex differences; gene–sex interactions; heritability; sex heterogeneity; hormone-responsive genes

SEX differences are a major predictor in many common
diseases, used in diagnosis, prognosis, and treatment

recommendations. We know much about the biological basis
of sex determination (She and Yang 2014), and research in
model organisms allows us to separate the effects of sex chro-
mosomes and hormonal differences (Arnold and Chen 2009;
Cox et al. 2014). However, we do not fully understand how
the biology of sex shapes disease risk and outcomes in hu-
mans (Ober et al. 2008; Ngo et al. 2014; Austad and Bartke

2015). While some studies in model organisms suggest major
roles for gene–sex interaction in complex traits (Mackay
2009; Lehtovaara et al. 2013; Bearoff et al. 2015; Parks
et al. 2015), a recent study using mouse models found few
true sex interaction effects (Krohn et al. 2014). Human stud-
ies of disease-relevant quantitative traits in founder popula-
tions suggested major sex differences in heritability and
identifiable genetic loci (Weiss et al. 2006), as well as a major
role for the X-chromosome (Pan et al. 2007). Twin studies
have been used to investigate gene–sex interaction in a vari-
ety of complex diseases and traits, with a range of findings
from little to substantial sex difference (Vink et al. 2012;
Mitchem et al. 2014; Richmond-Rakerd et al. 2014). Addi-
tionally, several studies have examined loci identified in com-
bined-sex samples to identify gene–sex interactions in these
candidate regions (Avery et al. 2006; Silander et al. 2008;
Loisel et al. 2011; Gilks et al. 2014; Yao et al. 2014;
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de Castro-Catala et al. 2015; Mersha et al. 2015). However,
few studies have applied more sophisticated genome-wide
methodologies for assessing association and determining ad-
ditive SNP-based heritability to comprehensively assess sex
differences (Zillikens et al. 2008; Chiu et al. 2010; Luo et al.
2010; Myers et al. 2014).

In this work, we selected nine common diseases, and nine
heritable traits, with rich genetic datasets available and a
variety of sex biases, to investigate several genetic hypotheses
about the drivers of sexual dimorphism. For discrete traits,
we examine consistent adherence to liability threshold (LT)
models (Hayeck et al. 2015;Weissbrod et al. 2015), which are
commonly used in contemporary heritability analyses (Cross-
Disorder Group of the Psychaitric Genomics Consortium
2013; Lee et al. 2011). Under an LT model of disease, indi-
viduals have an underlying normally distributed phenotype,
f, called the liability. When an individual’s liability is greater
than a threshold, t, they are a case, and are a control other-
wise. In order to induce a sex-biased disease prevalence, the
liability distributions, and/or thresholds, must differ between
males and females. When males and females have identical
distributions of liability, but a sex-biased prevalence exists
due to a difference in sex-specific thresholds, the lower prev-
alence sex will have an enrichment of genetic associations
due to the increased genetic load required to exceed the
higher threshold. This is mathematically equivalent to one
sex having an environmental risk factor, (e.g., if androgens
affect the mean liability, the disease prevalence will differ
between males and females), and again the lower prevalence
sex will have a relatively increased genetic load among cases.

To evaluate this LT model (hypothesis 1, Figure 1), we con-
sider autosomal genetic load in both sexes to determine
whether differences in polygenic burden can account for sex
differences in prevalence.Weuse enrichment of autosome-wide
association signal in male-specific and female-specific datasets
(1a) and polygenic additive SNP-based heritability estimates
(h2g) to determine whether males and females have different
genetic loads for common disease and anthropometric traits
(1b), and whether the genetic patterns follow those expected
under the liability threshold model based on prevalence differ-
ences, or imply the existence of nongenetic sex differences in
the mean or variance of liability or trait distributions.

Second, we globally test for evidence of gene–sex interac-
tion (hypothesis 2, Figure 1) to determine whether similar or
different autosomal loci might contribute to disease risk
across the sexes. Much of the gene–sex interaction literature
is focused on specific genetic loci that might differ in their
effects by sex. We assess more globally whether evidence
exists for sex-heterogeneity in association signal (2a), signif-
icant sex-interaction terms in h2g models, or a genetic
correlation ,1 for the same trait across the sexes (2b). We
also use simulation to examine the effects of liability variance
differences between sexes on disease prevalence that can
occur in the presence of gene–sex interactions.

Third, we dissect the role of the X-chromosome (hypoth-
esis 3, Figure 1), the major genomic sex difference (Ross

et al. 2005). The X-chromosome is gene-rich, contrasting with
the small gene-poor Y chromosome (Ellis and Affara 2006;
Mulugeta et al. 2016), and, despite dosage-compensation
mechanisms, shows gene expression differences across the
sexes (Jansen et al. 2014). The X-chromosome has been pro-
posed to contribute to autoimmune disease; metabolic and
cardiovascular traits such as fasting insulin, blood pressure,
and cholesterol levels; and anthropometric traits such as height
(Pan et al. 2007; Chen et al. 2012; Gao et al. 2014; Tukiainen
et al. 2014). We examine sex differences in association signal
on the X-chromosome between males and females (3a).

Finally, we postulate that gene-environment interactions
might generate sexual dimorphism (hypothesis 4, Figure 1),
and, at the cellular level, steroid hormones could be a signifi-
cant contributor. Thus, we specifically consider genes whose
expression is known to be responsive to androgens or estro-
gens, and assess whether SNPs in these genes contribute dis-
proportionately to association signal (4a), or heritability (4b),
in complex disease or anthropometric traits. Similarly, we ask
whether the same underlying biology is responsible for second-
ary sex characteristics like height, weight, and body pro-
portions, and we assess whether SNPs showing differential
association to anthropometric traits by sex contributemarkedly
to common, complex heritable disease (Roach et al. 2015).

Materials and Methods

Samples

WTCCC1 and WTCCC2 data were gathered from the Well-
come Trust Case Control Consortium (WTCCC; http://www.
wtccc.org.uk/). WTCCC1 includes BD (prevalence 0.005),
CAD (prevalence 0.06), CD (prevalence 0.001), HT (preva-
lence 0.26), RA (prevalence 0.005), T1D (prevalence 0.005),
and T2D (prevalence 0.08); WTCCC2 includes AS (preva-
lence 0.003) and MS (prevalence 0.001) (Table S1).

Genetic Investigation of Anthropometric Traits (GIANT)
genome-widemeta-analyzeddataweregathered fromtheBroad
Institute (http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files). The 2015 datasets
were used for all anthropometric traits, except for when un-
available [such as for Height and Weight; 2012 uploads were
used instead (Yang et al. 2012)] (Table S1).

Software

PLINK v 1.90b2n and R v 3.0.1, and METASOFT v2.0.0 were
used in association enrichment and heterogeneity analyses.
GCTA v 1.24.2 was used for REML estimates of heritability.
PCGC regression was used for Haseman-Elston regression
estimates heritability. HAPI-UR v 1.01 was used for prephas-
ing, and IMPUTE v 2.3.0 was used for imputation.

Creation of the hormone-responsive gene sets

An androgen-responsive gene list was gathered from ARGDB
(Jiang et al. 2009) (Table S2), with duplicates in name re-
moved for a total of 2616 genes. Of these 2616 genes,
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2508 are autosomal. CNTNAP2 was removed from androgen-
responsive analyses due to difficulty of matching on gene-
length in gene-permutations, as detailed below.

An estrogen-responsive gene list was gathered from
ERGDB (Tang et al. 2004) (Table S3), with duplicates in
name removed for a total of 1431 genes. Of these genes,
1150 are autosomal. GRID2 was removed from estrogen-
responsive analyses due to difficulty of matching on gene-
length in gene-permutations, as detailed below.

Creation of top heterogeneous anthropometric hits

METASOFT was used on GIANT consortium data (further
elaborated on below) to ascertain the most significantly
heterogeneous SNPs between males and females for each
anthropometric trait separately (P # 0.001). These markers
were combined for a total of 8423 SNPs. This list contained

no duplicates, and was LD-pruned (r2 = 0.5) for a final
total of 8162 SNPs.

Determination of sex

PLINK –sex-check flags were used to determine the sexes of
all subjects within the WTCCC1/2 datasets. Ambiguously
identifiable individuals per PLINK’s –sex-check flag were ex-
cluded from sex-specific analyses.

Imputation

WTCCC data were prephased using three runs of HAPI-UR
with default parameters, and merged by consensus vote.
Phased genomes were then imputed to the 1000 Genomes
(phase 1 integrated v3) reference panels in 1-MB windows
using default parameters. For chrX imputation, only the non-
pseudoautosomal reference was used. The X chromosome

Figure 1 Analyses flow chart. The scheme reports four main hypothesis tested with two approaches (method A: association; method B: heritability).
Method A was applied to the imputed genotypes available for WTCCC dataset (when possible also to summary statistics available for GIANT dataset),
whereas method B was applied to both WTCCC and GIANT datasets. For each hypothesis and method, the results are reported in the Results section,
and summarized in figures and tables: results for hypothesis 1 tested in the WTCCC dataset are reported in Table 1 and in the GIANT dataset in Table 2.
Table 1 and Table 2 also report results for hypothesis 2 tested in the WTCCC dataset and GIANT dataset, respectively. Results for hypothesis 3 are
shown in Table 3. Finally, hypothesis 4 results are shown in Figure 2 and Figure 3.
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contained �10,000 and �14,000 genotyped SNPs in the
WTCCC1 and WTCCC2 data, respectively. After imputation,
64 and 69% of all reference SNPs with MAF .1% were im-
puted with high accuracy (INFO score.0.9) in the respective
cohorts; indicative of sufficient SNP density to impute a ma-
jority of the reference variants with high quality. After impu-
tation, variants with INFO score .0.5 were retained, and
dosages were rounded to hard calls. An additional round of
stringent QC was performed, removing any variants with:
MAF,0.01; missingness.5%; Hardy-Weinberg equilibrium
P , 0.01; or case-control missingness P , 0.05.

HLA removal in autoimmune diseases

For all autoimmune diseases—rheumatoid arthritis, Crohn’s
disease, type-1 diabetes, multiple sclerosis, and ankylosing
spondylitis—the HLA region was removed due to the known
significant enrichment associatedwithin that region (of extended
linkage disequilibrium) that violates the polygenic assumption of
many modest effects across the genome. The HLA region was
defined as chr6:26,000,000:34,000,000 (de Bakker et al. 2006).

Method A—association analyses

We applied two different approaches, i.e., association enrich-
ment (method A) and SNP-based heritability (method B), to
test our four main hypotheses. A complete analysis flowchart
is reported in Figure 1.

Association analyses and false discovery rate plots: In each
complex trait, we analyzed the sexes combined and separately
using the appropriate –filter-males and –filter-females PLINK
flags where needed. Through PLINK, we ran logistic regres-
sions, while using as covariates the first 10 principal compo-
nents of each phenotype to account for differences in genetic
ancestry. Sex-specific association signal enrichment was also
tested separately for the nonpseudoautosomal X chromo-
some (and chromosome 7 and 17 for comparison). The X
chromosome was coded in standard PLINK format, where
male genotypes are A = 0 and B = 1, and female geno-
types are AA = 0, AB = 1, and BB = 2. In order to com-
pare across permutations, we set a false discovery rate (FDR)
threshold, and assessed the percent of SNPs with q-value
exceeding this threshold. A threshold of q = 0.7 was chosen
to maximize the power of this comparison in small datasets.
This was determined after calculating the percentage of au-
tosomal SNPs above a range of FDR thresholds (0.1, 0.3, 0.5,
0.7, and 0.9) in the male, female, and combined-sex datasets
for WTCCC diseases. For each FDR threshold, we calculated
the number of datasets with SNP proportion below 0.0001%,
and above 1%. An FDR threshold 0.7 minimized datasets for
which our comparisons would lack power, or be based on
implausibly high proportions of SNPs (Table S4). Note that
we do not use this FDR threshold to assess significance, only
as a means of comparison across permuted datasets, as rec-
ommended previously (Liu et al. 2012a). The proportion of
SNPs with q-values that meet or fall below the FDR threshold
is referred to here as the original proportion.

This procedure was implemented for genome-wide,
chromosome-specific, hormone-responsive, and sex-heteroge-
neous SNP set analyses.

Sex permutations: To assess whether association signals are
truly female- or male-specific, we ran a series of sex permuta-
tions. Thenull hypothesisweassess is thatdifferencesobserved
in male-specific vs. female-specific datasets are random sam-
pling differences; our alternative hypothesis is that sex is driv-
ing a difference. For each complex trait, we randomly permuted
sex labelswithin case and control strata.Weproduceda complete
list of permuted individuals, combining sex-permuted controls
with the sex-permuted cases. We repeated this 100 times for a
total collection of 100 permuted male lists and 100 permuted
female lists. R was used to generate these lists in the format of
phenotype files for consequent association analyses in PLINK,
and then multiple-test corrections via FDR in R, as described
above. As a result of this step, each permutation results in a data
point—a proportion of SNPs that meet or fall below the FDR
threshold. Empirical P-values were calculated by tallying the
number of permuted sets with a proportion of significant SNPs
that exceeded the original proportion. For analysis with nomi-
nally significant and/or borderline significant empirical P-values,
P # 0.1, we repeated the random selection 1000 times, and we
obtained 1000 permuted male lists, and 1000 permuted female
lists, andweestimated empiricalP-values as described earlier.We
replaced initial P-values estimated with 100 permutations with
empirical P-values obtained with 1000 permutations.

Test for heterogeneity:METASOFTwas used to assess extent
of significant heterogeneity between the sexes by means of
Cochran’s Q test for heterogeneity. To discern whether a phe-
notype was particularly (read: significantly) heterogeneous,
we used the above FDR test and sex-permutation approach.
Empirical P-values were used to determine significance. This
analysis was done on the Wellcome-Trust cohorts, and in
genome-wide and X-linked data. For significantly heteroge-
neous phenotypes, we applied a binomial sign test to assess
the top 0.1% of hits in sex-specific datasets for effect direc-
tions matching across the sexes. Empirical P-values were cal-
culated with the sex-permutation approach. For analysis with
nominally significant empirical P-values P # 0.1, we re-
peated the sex-permutation approach 1000 times, and we
estimated empirical P-values as described earlier. We replaced
initial P-values estimated with 100 permutations with empir-
ical P-values obtained with 1000 permutations.

Gene/SNP permutations: Similar to the purpose of the sex
permutations, genepermutations aremeant to assesswhether
elevated enrichment when investigating a subset of genes is
due to those genes, and not to other factors like gene size. In
gene permutations, we sample genes that met the following
criteria: (1) the sampled gene locus includes at least one SNP
that is represented within our dataset, and (2) the sampled
gene is matched on gene length, selected within a window of
100 genes closest in length to the original gene of interest.
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SNPs for these genes (all SNPs within 5 kb of longest tran-
script) were then compiled into lists. Because association
analyses were previously run, the SNPs in each permuted list
were extracted with their corresponding P-value and quanti-
fied for the proportion of SNPs that met or fell below the FDR
threshold. In other words, the same FDR analysis was con-
ducted on each permuted gene list as it had been for the
original gene set of interest. We repeated this 100 times for
a total collection of 100 permuted estrogen-responsive gene
lists, and 100 permuted androgen-responsive gene lists.

For sex-heterogeneous SNPs, SNP permutations were per-
formedusinga similarprocedure, butmatching individual SNPs
for test statistic in the combined-sexdataset of origin (i.e., a SNP
with sex-heterogeneity for height will be matched on its test
statistic for combined-sex association for height, but tested for
association enrichment in each anthropometric trait).

Empirical P-values were determined as described earlier.
For analysis with nominally significant empirical P-values
P # 0.1, we repeated the random selection 1000 times,
and we obtained 1000 permuted estrogen-responsive gene
lists, 1000 permuted androgen-responsive gene lists, and
1000 permuted sex-heterogeneous SNPs. We estimated
empirical P-values as described earlier. We replaced initial
P-values estimated with 100 permutations with empirical
P-values obtained with 1000 permutations.

Reference gene annotations for sampling were down-
loaded from UCSC’s genome annotation database. For
WTCCC1/2 analyses, we used the hg19 refGene.txt.gz anno-
tation file. The file was truncated to contain: (1) only auto-
somes, (2) the longest version of a gene when duplicates
were found, and (3) removal of CNTNAP2 and GRID2 due
to their inability to be properly matched.

Method B—heritability analyses

Variance-component estimation: SNP-heritability (h2g) was
estimated using variance-components and restricted maxi-
mum-likelihood (REML) (Yang et al. 2011) for studies with
individual-level data. Briefly, the variance-component model
assumes the phenotype is drawn from a multivariate normal
distribution, with variance modeled by a linear combination
of components computed from the SNPs and a normal resid-
ual. For each annotation (e.g., AR genes) a genetic related-
ness matrix (GRM) from SNPs in that annotation was jointly
evaluated with a GRM from all remaining SNPs and the iden-
tity matrix to estimate the corresponding variance parame-
ters s2

a; s
2
a9; and s2

e : The heritability proportion was then
computed as %h2a ¼ s2

a=ðs2
a þ s2

a9Þ; and the corresponding
SE estimated using the delta method. Twenty principal com-
ponents were always included as fixed-effects in the estima-
tion procedure to account for population structure. We
observed a significant association between sex and the top
20 PCs for 2/9 cohorts: AS (P = 0.003, R2 = 0.008) and
MS (P = 4 3 10221, R2 = 0.011). However, because the
R2 is low (explaining �1% of the sex label), and principal
components were always included as fixed effects, we do not
expect this to impact the results. We separately evaluated the

potential confounding effect of case-control ascertainment by
estimating genome-wide SNP-heritability using Haseman-
Elston regression (Golan et al. 2014), where the product of
individual phenotypes is regressed on the corresponding off-
diagonal GRM entries (Table S5). The same GRMs, individ-
uals, and principal components were used for both estima-
tion procedures.

A similar procedure was used for estimating autosomal
heritability of SNPs-by-sex (h2gxs). The sex GRM (Kgxs ) was
computed by setting entries in the standard GRM ðKgÞ to 0 for
individuals of different sex. The phenotypewas thenmodeled as
y ¼ h2gKg þ h2gxsKgxs þ e; and significance of h2gxs assessed by
likelihood ratio test against the one-component model.

We did not use a bivariate variance-components model to
evaluate genetic correlation between traits due to small sam-
ple size. Power calculations showed that, for the average trait
evaluated here (1300 cases and 1700 controls), the SE on the
genetic correlation is expected tobe0.21, yielding little power
to detect deviations.

Heritability permutations: To evaluate significance of the
difference in h2g between males and females, sex label per-
mutation was again used. For each trait, sex labels were
randomly shuffled and sex-specific partitioned heritability
re-estimated to get the estimates from a single permutation.
The permutation procedure was performed 1000 times, and
the fraction of instances where the absolute permuted differ-
ence was higher than the absolute observed difference used
to compute the P-value. The same variance-components and
fixed effects were used in the permutations as in the real data.

Summary statistic-based estimation: SNP-heritability was
estimated using LD-score regression (LDSC) for studies with
only summary-level data. For a single trait and functional
annotation, LDSC regresses the x2 (or Z2) association statistic
from each SNP onto the “LD-score” of that SNP: computed as
the sum of LD across all neighboring SNPs from a reference
panel. Under assumptions of independent causal effect sizes,
the slope of this regression is then proportional to the SNP-
heritability, and the intercept is proportional to the effects of
population stratification. For multiple functional annotations,
the model naturally extends to include annotation-specific
LD-scores computed only to the neighboring SNPs that belong
to the given annotation. The coefficients from this multiple
regression are then proportional to the partitioned SNP-heri-
tability for each annotation. For multiple traits, replacing the
x2 statistic with the product of associationbs from each trait in
either the single or multiple LD-score regression yields an es-
timate of genetic correlation between the traits.

LDSC was run on sex-specific summary statistics to esti-
mate total h2g and genetic correlation using default parame-
ters and default LD-scores (computed in the 1000 Genomes
EUR samples). The GIANT GWAS data were imputed (by the
original study) to �2 M HapMap3 variants. This is the rec-
ommended SNP set to use for LD-score regression, and has
been shown to yield comparable results to high-quality
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1000G imputation (Finucane et al. 2015). SE were estimated
using the weighted block-jackknife. For the novel annota-
tions of AR genes, ER genes, and GIANT heterogeneous SNPs,
additional LD-scoreswere computedusing the1000Genomes
EUR samples, and used to partition the heritability and ge-
netic correlation. Heritability partitioningwas evaluatedwith
and without the “baseline” annotations from Finucane et al.
(2015) to account for potential background enrichment from
overlapping functional categories. When baseline annota-
tions were included, the P-value of the coefficient is reported,
which corresponds to the significance of the given annotation
beyond all other annotations in the model. For the AR/ER
annotations this will yield a conservative estimate because
multiple “genic” annotations are already in the baseline
model. In contrast to the previous studies with raw data,
we are not aware of any method to evaluate G 3 Sex heri-
tability from summary data, and could not assess this effect
for the anthropometric traits.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article and are publicly available.

Results

Autosomal genetic load

We studied nine common, complex diseases from theWTCCC
studies (WTCCC 2007; Evans et al. 2011; Sawcer et al. 2011),
and nine anthropometric traits from the GIANT studies
(Randall et al. 2013; Shungin et al. 2015), to capture a variety
of sex biases (or lack thereof). Male biased diseases included
ankylosing spondylitis (AS, with M:F prevalence of 2:1)
(Chen et al. 2011; Haroon et al. 2014), and type 1 diabetes
(T1D, 3:2) (Gale and Gillespie 2001; Liu et al. 2012a; Orozco
et al. 2012). Female biased diseases included multiple scle-
rosis (MS, 1:3) (Pakpoor and Ramagopalan 2014) and rheu-
matoid arthritis (RA, 1:2) (Emery et al. 2014). Disorders
estimated to have similar lifetime prevalence by sex included
bipolar disorder (BD) (Almeida-Filho et al. 1997; Negash
et al. 2005; Diflorio and Jones 2010), coronary artery disease
(CAD) (Sharma and Gulati 2013), Crohn’s disease (CD) (Liu
et al. 2012b; Law and Li 2014), hypertension (HT)
(Nwankwo et al. 2013), and type 2 diabetes (T2D) (Orozco
et al. 2012; Hilawe et al. 2013), although sex differences
often exist in age of onset, subtype, and comorbidities. An-
thropometric traits with different means by sex were body
mass index (BMI), hip circumference (hip), hip adjusted for
BMI (hip-a), waist circumference (WC), WC adjusted for
BMI (WC-a), waist-hip-ratio (WHR), WHR adjusted for BMI
(WHR-a), height, and weight.

Under a threshold difference LT model of sex bias, we would
anticipate that diseases with increased prevalence in one sex
would have more association enrichment due to increased
genetic load in the opposite sex. This pattern did not occur

for any of the disorders with sex-biased prevalence, when sex-
specific datasets were compared with sex-permuted datasets
[Figure 1 (Method 1a) and Table S6]. We excluded the HLA
region for autosomal analysis of autoimmune diseases, as its
large effect could bias interpretation. However, when we
tested the HLA region separately, we observed greater associ-
ation enrichment in the HLA region in ASmales (P , 0.001).
As is male-biased in prevalence, neither finding supports the
threshold difference LT model (Table S6).

In order to confirm our observations using an independent
approach, we evaluated polygenic variance components for
differences in total heritability, gene set specific heritability,
and genetic correlation [Figure 1 (Method 1b)]. These anal-
yses consider both “quantitative” differences between sexes
due to different genetic variance, and “qualitative” differ-
ences due to different regions contributing to heritability.
First, we estimated SNP-based additive heritability (h2g) on
the liability scale, utilizing imputed datasets for each disease
trait, and utilizing summary statistics for each anthropomet-
ric trait. This estimate is a ratio of the SNP-genetic and envi-
ronmental terms, and resulting h2g differences between sexes
can be indicative of quantitative differences in either compo-
nent. The HLA region was excluded from autosomal herita-
bility estimates for MHC-linked autoimmune disorders as in
our association enrichment results, as its major effect (with
extensive LD) violates the polygenic model, and could thus
impact interpretation.

As in our association enrichment results, we did not find
evidence for a threshold difference LT model based on heri-
tability estimates. Of the two disorders with higher male
prevalence (AS, T1D), neither showed increased heritability
in the lower-prevalence sex (Table 1),with similar heritability
estimates for each sex in AS, and higher estimate in males for
T1D, which was not significantly different from female esti-
mates. Of the disorders with higher female prevalence (MS,
RA), we observed similar estimates across the sexes for MS,
and a higher estimate of heritability for males with RA, which
was not significant.

One disease thought to have similar lifetime prevalence
showed evidence for sexually dimorphic heritability, with HT
showing higher heritability in females in the WTCCC dataset
(P , 0.001). We re-evaluated the dichotomous traits using
a regression-based method that is not biased by case-control
ascertainment, and observed no substantial change in sex
differences (see Materials and Methods, Table S5). Several
anthropometric traits showed higher heritability inmales com-
pared with females, including WC-a, hip-a, WHR (P , 0.05)
(Table 2).

Gene 3 sex

We did not detect autosome-wide heterogeneity by compar-
ing the distribution of Cochran’s Q [Figure 1 (Method 2a)] to
the distribution of sex-permuted datasets. However, whenwe
separately assessed the HLA region, we observed significant
sex-heterogeneity for association signal on theHLA region for
MS (P , 0.001) (Table S6). For traits with, or without,
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polygenic heritability differences, gene–sex interaction could
occur at specific loci [Figure 1 (Method 2b)]. For example, a
disease could have equivalent overall heritability but with
different loci contributing in males vs. females; a difference
in environmental contribution could result in different heri-
tability, with the same loci contributing, or different loci
could result in disparate heritability estimates. For traits with
individual-level data, we were able to include an overall G 3
Sex interaction term in the heritability estimates. We ob-
served highly significant heritability of G 3 Sex for MS
(0.06 SE 0.01; P = 1 3 1029); this was striking, given
the remaining additive SNP-heritability was 0.13 (SE 0.01)
(Table 1). Although we could not specify an interaction term
due to lack of genotype data for the anthropometric traits, we
assessed traits for which genetic correlation between male-
specific and female-specific datasets was significantly ,1,
which occurred for every anthropometric trait (P , 0.05)
(Table 2). This estimate of genetic correlation is not affected
by quantitative differences in total genetic variance, and only
reflects differences in individual effect-sizes.

X-chromosome

Genetic sex differences not contained on the autosomes could
beattributabletothesexchromosomes.SincetheX-chromosome
is relatively gene-rich, contrasting with the small gene-poor Y
chromosome (Ellis and Affara 2006; Mulugeta et al. 2016), and
our disease datasets had available data, we assessed the contri-
bution of the X-chromosome. We detect a relatively modest
contribution from the X-chromosome to this group of common,
complex diseases [Figure 1 (Method 3a)]. Association enrich-
ment signal appears similar to autosomes matched by physical
length (chr7), and SNP content (chr17) (Table S7).

Wenextassessedsexdifferenceson theX-chromosome.We
note that, although females have twice the number of alleles,
and thus increased power compared to males, one might
expect greater impact of nonpseudoautosomal loci in males,
who are hemizygous, and thus express an associated allele in
every cell as the sole copy. AS andCADshowed increasedmale
signal (P = 0.050 and P = 0.037, respectively) (Table 3).

Of all the equivalent sets of permutations performed on
both chromosomes 7 and 17, only one showed a significant
female increase (T2D, chr7 P = 0.046) (Table S7). To sup-
port these data suggesting sex differences specific to the
X-chromosome, we assessed the chromosome-wide heteroge-
neity via Cochran’s Q, and compared the distribution to sex-
permuted datasets. AS, CAD, and MS showed suggestive or
significant sex-heterogeneity for association signal on the
X-chromosome (P = 0.059, P = 0.004, and P = 0.016, re-
spectively) (Table 3 and Figure S1). It is difficult to consider
equivalent male and female statistical models considering
X-inactivation (or escape), because the biology of mosaicism
is challenging to predict and compare with the typical bial-
lelic models (or hemizygosity in males). We thus performed
the binomial test to compare the direction of association, as
direction should not be impacted by model specification, re-
gardless of effect size estimates. While MS did not show
differences in direction of association in the top 0.1% of
X-chromosome SNPs, male and female top associations show
significant differences in AS (P = 0.01 females) and in CAD
(P = 0.04 males; P = 0.02 females). For AS and CAD, while
male top X-chromosome results showed an excess of top SNPs
in the same direction in females, female top X results showed a
significantly decreased proportion of top SNPs in the same di-
rection in males compared with permutations.

Gene set “environmental” contribution analyses

At the biological level, a major “environmental” influence on
the genome might be differences in levels of steroid hor-
mones, beginning early in development, and influencing
the expression ofmany genes. The first hypothesis wewanted
to assess with regard to steroid-responsive genes (Tang et al.
2004; Jiang et al. 2009) (Tables S2 and S3) was whether
these genes contribute disproportionately to association sig-
nals compared to matched gene sets [Figure 1 (Method 4a)].
In fact, compared with permuted gene sets matched for gene
length (which resulted in matching for SNP number), andro-
gen-responsive genes contributed disproportionately to asso-
ciation signal in CD, RA, hip-a, WC-a, WHR, WHR-a, height,
and weight, in at least one sex (Figure 2 and Table S8).
Although the set of estrogen-responsive genes is smaller,
we identified significant contribution to association signal
in CAD, T1D, WC-a, and WHR-a (Figure 2 and Table S8).

The second putative mechanism would be gene–sex inter-
action with respect to steroid-responsive genes, such that
these sets of genes would show evidence of sex difference
in their trait association [Figure 1 (Method 4a)]. We ob-
served sex differences significant by sex permutation for an-
drogen-responsive genes in WC-a (males), WHR (females),
WHR-a (females), height (both sexes), and weight (males),
in association signal (Table S8). We observed sex differences
for estrogen-responsive genes in CAD (females) and T1D (fe-
males), and WHR-a (males) in association signal (Table S8).

Next, we wondered whether the same SNPs showing
sexual dimorphism in anthropometric traits (P , 1023,
Randall et al. 2013) would show excess contribution to

Table 1 Autosomal SNP-based heritability and G 3 Sex
interaction in WTCCC diseases

Disease

Heritabilitya
G 3 Sex Interactiona

M h2
g (SE) F h2

g (SE) h2
gxs (SE)

ASb 0.11 (0.04) 0.15 (0.07) 0.01 (0.05)
BD 0.18 (0.08) 0.22 (0.06) 20.01 (0.06)
CAD 0.25 (0.09) 0.50 (0.22) 0.12 (0.11)
CDb 0.14 (0.06) 0.17 (0.04) 0.03 (0.05)
HT 0.18 (0.21) 0.73 (0.17)*** 0.19 (0.17)
MSb 0.17 (0.02) 0.17 (0.02) 0.06 (0.01)****
RAb 0.20 (0.11) 0.08 (0.05) 0.03 (0.06)
T1Db 0.14 (0.06) 0.08 (0.06) 0.04 (0.06)
T2D 0.31 (0.12) 0.37 (0.15) 20.06 (0.12)

h2g, heritability; SE, standard error. **** P , 0.0005, *** P , 0.001.
a Empirical P-value for difference between M and F h2g: estimation based on
1000 permutations.

b HLA locus was tested separately from the rest of the autosomes.
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common disease and trait genetic signal (compared with SNPs
matched on test statistic in the combined sample) [Figure 1
(Method 4a)].With the exception of AS, MS, HT, and T1D, we
observed a disproportionate enrichment of SNPs with sex-
heterogeneous effects in the remaining diseases and every trait
(Figure 2, Figure 3, and Table S8).

We partitioned the heritability to quantify the contribution of
all SNPs in AR/ER gene regions (Tables S9 and S10) [Figure 1
(Method 4b)]. In contrast to sex differences in total h2g, parti-
tioned heritability is normalized by total heritability, and there-
forewill beunaffectedbydifferences in theoverall environmental
component. An additional 2 kb flank was added to include
nearby regulatory elements in the promoter, and these her-
itability estimates should be interpreted as corresponding to
SNPs in or near the genes (Table S11). For the anthropometric
traits that arewell-powered tomodel overlapping annotations,
we included “baseline” annotations (Finucane et al. 2015) to
account for potential background enrichment from overlap-
ping functional categories, such as our selection of genic re-
gions. In this joint model, AR genes account for a significantly
increased proportion of heritability in both sexes for height,
and for females in BMI. ER genes account for increased pro-
portion of heritability in males in WHR-a and weight.

We observed significant sex differences in heritability for
androgen-responsive genes in CAD (females) and RA (fe-
males) (Table S9). Genetic correlation in AR genes was
significantly ,1 between males and females for BMI, hip,
WC-a, WHR, WHR-a, height, and weight, suggesting hetero-
geneity in this functional category (Table S10). Sex differ-
ences in heritability for estrogen-responsive genes were
significant for WHR-a (females), weight (males), and CAD
(females) (Tables S9 and S10). Genetic correlation in ER
genes was significantly ,1 between males and females in
WHR-a but the analysis could not be performed in hip or
weight as the estimate for one sex was nonsignificant (Table
S10). Despite the tiny size of the sex-heterogeneous SNP set,
heritability was significantly different between the sexes after
permutation in MS, RA, and T2D (P , 0.05) (Table S9).

Weseparatelyanalyzedeachof the “baseline”annotations—
which include major regulatory and evolutionary functional
groups—for deviations in genetic correlation. After correcting

for the 51 annotations tested, conserved regions (Lindblad-Toh
et al. 2011)were the only annotation that remained significant,
with genetic correlation,1 for BMI, hip, WC, andWHR. Con-
served regions have previously been identified as enriched for
heritability across many traits (Finucane et al. 2015), and this
depletion in genetic correlation implicates conserved regions in
harboring sex-specific effects. The depletion is striking given
that these regions harbor 43% of the anthropometric trait h2g
on average.

Interpretation of results under the LT model

To better understand the results of the analyses presented
above, we consider several LT models that can lead to sex
biased prevalence. As we observed little difference in genetic
load by sex (Table 1), we evaluated the effects of variance
instead of threshold differences. The variance of the liability
can have dramatic effects on disease prevalence, which will be
larger in the higher variance sex if the mean liabilities and
thresholds are equal. To compute the disease prevalence for
a given threshold and variance, we computed the area under
the normal curve withmean 0, and specified variance that falls
beyond the specified threshold. This was achieved using the
pnorm function in the R statistical package (Table S12). For
rare diseases, even a small increase in the variance of the
liability can have a dramatic effect on disease prevalence. Con-
sider a disease similar to MS with prevalence 0.1%. If the
liability variance is increased to 1.2 in females vs. 1.0 in males,
the disease prevalence will be 2.4 times higher in females.

Gene–sex interactions arising from the autosomes as we
observed for MS (or dominance effects on the sex chromo-
somes, not evaluated here) can result in differences in liabil-
ity between sexes without having large-scale effects on
heritability estimates. We simulated a disease under an LT
model with population prevalence 2%. (We used a preva-
lence of 2% instead of 0.1% for computational efficiency,
but the same principles will hold at any prevalence.) We
sampled 1000 individuals genotyped at 10 SNPs, which were
drawn from a binomial distribution with allele frequencies
drawn uniformly between 0.05 and 0.95. Males and females
were sampled randomly, and an unobserved environmen-
tal factor was drawn for each individual from a normal

Table 2 Autosomal SNP-based heritability and genetic correlation in GIANT anthropometric traits

Phenotype

Heritability Genetic Correlation

M h2
g (SE) F h2

g (SE) P-valuea covg (SE) rg (SE) P-valuea

BMI 0.18 (0.01) 0.17 (0.01) NS 0.15 (0.01) 0.89 (0.02) 5.6 3 10210

HIP 0.19 (0.02) 0.18 (0.01) NS 0.17 (0.01) 0.90 (0.03) 6.2 3 1024

HIP-a 0.21 (0.01) 0.15 (0.01) 5.5 3 1023 0.17 (0.01) 0.92 (0.03) 2.6 3 1023

WC 0.18 (0.02) 0.16 (0.01) NS 0.16 (0.01) 0.91 (0.03) 1.6 3 1023

WC-a 0.18 (0.01) 0.11 (0.01) 2.1 3 1025 0.11 (0.01) 0.75 (0.05) 2.0 3 1028

WHR 0.14 (0.01) 0.11 (0.01) 4.0 3 1022 0.09 (0.01) 0.74 (0.05) 9.2 3 1027

WHR-a 0.13 (0.01) 0.11 (0.01) NS 0.08 (0.01) 0.67 (0.06) 2.3 3 1029

Height 0.26 (0.02) 0.25 (0.02) NS 0.25 (0.02) 0.95 (0.02) 2.0 3 1022

Weight 0.19 (0.01) 0.19 (0.01) NS 0.18 (0.01) 0.93 (0.03) 1.0 3 1022

h2g, heritability; SE, standard error; covg, genetic covariance; rg, genetic correlation; NS, not significant.
a Empirical P-value for difference between M and F h2g: estimation based on block jackknife.

986 M. Traglia et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS8.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS11.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.193623/-/DC1/TableS12.pdf


distribution, with mean 1.0 in males and 2.0 in females, and
variance 1.0 in both sexes. The total additive heritability was
20%, and the G 3 Sex interaction heritability was 30%. In
each of 100 simulations, we estimated the heritability in the
entire population as well as males and females separately.We
also estimated the prevalence of the disease in each sex. As
expected (Hill et al. 2008), we observed similar average her-
itabilities on the liability scale of 35.3, 34.9, and 36.1% in all
individuals, females, and males, respectively. Our observed
G 3 Sex heritability in MS was only 6%, suggesting that the
absorption of this effect into the sex specific estimates is even
more likely to occur.

Discussion

In this study, we set out to perform a survey of the influence of
sexon thegenetic risk for common, complexheritabledisease,
and anthropometric traits. Utilizing SNP GWAS results
(method A), we assessed sex-specific association enrichment
(hypothesis 1), global gene–sex interaction (hypothesis 2),
sex differences on the X-chromosome (hypothesis 3), and the
influence of steroid-responsive genes and sex-heterogeneous
loci associated with secondary sex characteristics (hypoth-
esis 4). We examined polygenic heritability (method B) to
substantiate our observations. We found that sex-specific
mechanisms were not limited to diseases or traits with no-
table prevalence or mean differences. In general, we sought
to perform a broad survey of potential mechanisms for sex-
ual dimorphism, and to examine patterns of genetic evi-
dence supporting these mechanisms across traits. Because
many tests were performed, individual results with respect
to a given disease/trait should be interpreted with caution
in the absence of further follow-up. However, general prin-
ciples of sexual dimorphism are substantiated by observa-
tions replicated in several complex traits.

When assessing sex differences in genetic load,we did not
findglobal evidence for thepredicted thresholddifference LT
model (hypothesis 1), e.g., the lower-prevalence sex show-
ing higher genetic load. We found an example of association
enrichment in the HLA locus in males for male-biased AS.
We also found evidence that hypertension shows increased
heritability in females despite similar prevalence to males
(Biino et al. 2013). Sex specific heritability was previously
evaluated in much smaller sample for the anthropometric
traits, with inconsistent effects, and the large studies used
here resolves this difference (Shungin et al. 2015). We
found evidence for sex differences in heritability in several
anthropometric traits, although, interestingly, for traits with
potentially greater selective impact for females (hip-a,
WC-a, and WHR), males have significantly higher heritabil-
ity, in contrast to some previous findings for fitness traits
(Pettay et al. 2005). While the LT is a popular model, alter-
natives exist, and these may better explain the observed
data. Further research should include delineating the im-
pact of sex differences in genetically or environmentally
mediated trait or liability variance on heritability estimates,
and assessment of the influence of ascertainment, which
may differ by sex for case-control traits (Zaitlen et al.
2012a, 2012b; Yang et al. 2014). The extent to which data
do, or do not, reflect given sex bias models constrains the set
of possible biological mechanisms inducing sex-biased prev-
alence. Further, clinical interpretations of sex-specific risk
should consider these results. For example, counseling rel-
atives of a proband of the lower-prevalence sex that they are
at increased risk compared to relatives of a proband of the
higher-prevalence sex is based on the threshold difference
LTmodel. In the context of GWAS, alternative analysis strat-
egies could both provide biological insights as well as im-
prove power. Random effects meta-analysis (Han and Eskin
2011) can reveal variants with different effect sizes between
sexes, and retrospective likelihood models can reduce
power-loss when sex is included as a covariate in ascer-
tained studies (Zaitlen et al. 2012b).

We estimated a substantial G 3 Sex interaction term in
heritability for MS. MS is by far the largest and best-powered
study evaluated, and, based on estimated SE, we still cannot
rule out the presence of interaction for other diseases. For
every anthropometric trait, genetic correlation appeared
significantly ,1. Although the genetic correlation between
sexes was still relatively high for many of these traits, the
large anthropometric datasets allowed for powerful tests,
confirming that less than complete correlation in genetic
contribution to males and females is pervasive (hypothe-
sis 2). Similarly, a study (Rawlik et al. 2016) published
while this work was under review found that the genetic
correlation between the traits measured in men and women
was significantly below 1 (complete correlation) across sev-
eral quantitative traits including height, BMI, WC, HIP, and
WHR, supporting our evidence for G 3 Sex interaction.
There is precedent in both model organism (Nuzhdin et al.
1997; Dilda and Mackay 2002; Leips and Mackay 2002;

Table 3 Sex-differences in X-chromosome association signal and
heterogeneity in WTCCC diseases

Prev
Association

Heterogeneity
Sign Testa

Disease M:F M Pb F Pb Pb M%c F%d

AS 2:1 0.0500e NS 0.0600e 77.3 9.3**
BD 1:1 NS NS NS — —

CAD 1:1 0.0370e NS 0.0040e 71.3* 8.0*
CD 1:1 NS NS NS — —

HT 1:1 NS NS NS — —

MS 1:3 NS NS 0.0016e 82.0 75.7
RA 1:2 NS 0.1000e NS — —

T1D 3:2 NS NS NS — —

T2D 3:2 NS NS NS — —

Prev, ratio in prevalence.
a Sign test based on 0.1% of male and female top hits applied only to significant
heterogeneity results.

b Empirical P-value estimation based on 100 permutations.
c Empirical P-value estimation based on 100 permutations showing increase.
d Empirical P-value estimation based on 100 permutations showing decrease.
e Empirical P # 0.1 were replaced with empirical P-values estimated with 1000 per-
mutations. ** P , 0.01 ; * P , 0.05
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Mackay and Anholt 2006) and gene expression (Trabzuni
et al. 2013; Yao et al. 2014; Kukurba et al. 2016) data for
autosomal G 3 Sex interaction, supporting the plausibility
of our results. In addition, consistent with Rawlik et al.
(2016), our well-powered study highlighted no significant
differences for male and female heritability for BMI and
height. However, we observed significant male enrichment
forWHR heritability, in contrast with the female enrichment
showed by Rawlik et al. (2016). Heritability estimates can
differ due to a different amount of genetic variance present
in a population, or different amounts of nongenetic variance
in a trait. The study designs for GIANT (meta-analysis of
34 studies from different populations) and Rawlik et al.
(2016) (UK Biobank) likely lead to the observed differences
in heritability estimates. Population-specific and sex-specific
properties of environment, such as lifestyle, diet, and smoking
status, are important for anthropometric measures, and could
contribute to differences between studies, as could popula-
tions with different genetic ancestry leading to differing genet-
ic variation.

In order to better understand our lack of evidence for
threshold differences and strong evidence for G 3 Sex in-
teraction, we performed simulations. Our simulated models
showed a small difference in estimated heritability, but, in
the presence of G 3 Sex interaction, led to an increase in
variance in one sex. We thus demonstrated how a 66.6%
increase in disease prevalence can exist between sexes with
only a 1.1% difference in additive heritability estimates.
Given that the phenotypic variance of many traits is differ-
ent between the sexes in the GIANT data (Randall et al.
2013; Shungin et al. 2015), difference in variance of disease-
related risk factors, as well as differences in mean values of
risk factors, may contribute to observed differences in prev-
alence. In the context of GWAS, a difference in variance
between sexes, as opposed to difference in mean, is not
captured by a standard fixed effect regression term for
sex. Performing sex-stratified analyses, or using a double
generalized linear model to account for the difference in
variance between sexes, will improve power.

When assessing the most obvious difference in the
genome, the X-chromosome, in contrast to previous studies
(Pan et al. 2007), we did not find strikingly disproportion-
ate contribution from the X chromosome, although we did
observe sex differences in X-chromosome signal, including
evidence for female-limited X associations and effect size
heterogeneity (hypothesis 3). A previous linkage study
concluded there is no role for the X-chromosome in AS
(Hoyle et al. 2000), in contrast to our results suggesting
association enrichment on the X specific to males. Although
blood pressure and cholesterol levels have been associated
with X-linked loci, similar evidence for X-chromosome sex
differences have not previously been associated with cardio-
vascular disease (Chang et al. 2014), and a study of stroke
specifically suggested a role for hormones, but not sex chro-
mosomes (Manwani et al. 2014; Winham et al. 2015). Ad-
ditionally, a recent well-powered X-WAS meta-analysis
showed no evidence of genome-wide X-chromosome loci
contributing to CAD (Loley et al. 2016). Consistently, we
did not find any genome-wide associated locus on X chro-
mosome (Figure S1). However, our study was designed to
assess global rather than locus-specific genetic contribu-
tions to disease, thus we were able to identify significant
chromosome-wide heterogeneity across sexes and male as-
sociation enrichment for CAD on the X chromosome. Like-
wise, MS has been suggested to have X-linked risk via mouse
models and association with X aneuploidy (D’Alessandro et al.
1990; Smith-Bouvier et al. 2008; Seminog et al. 2015), but,
to our knowledge, not genome-wide studies before ours
(Chang et al. 2014). Additionally, a recent study (Chang
et al. 2014) hypothesized sexually dimorphic effect sizes
for X-linked genes in autoimmune diseases. Although the
latter authors showed individual X-linked genes with sexu-
ally dimorphic association, our study did not detect signifi-
cant chromosome-wide sex heterogeneity for the samedisorders,
i.e., CD, RA, and T2D. Our power for single-chromosome
analyses was extremely limited, and these data were not avail-
able for the anthropometric data—ourmost powerful datasets.
For example, we observe a large estimated difference in RA,

Figure 2 Venn diagram of association enrichment of
androgen-responsive (AR) and estrogen-responsive (ER) genes
and heterogeneous SNPs (Het-SNPs) in WTCCC diseases and
GIANT anthropometric traits. Diseases/traits with significant
association enrichment in males (M) are represented in the
left diagram, diseases/traits with significant association enrich-
ment in females (F) are represented in the right diagram.
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but it doesnot reach significance.Thus largerdata sets areneeded
to robustly estimate the contribution of the X-chromosome
to prevalence differences through changes in mean and var-
iance of the liability. The X-chromosome may have a differ-
ent role in traits subject to strong natural selection, such as
those directly related to reproduction, in comparison to
common diseases with onset primarily after historic repro-
ductive ages (Kosova et al. 2010).

In order to assess potential consequences to genetic risk
of sex differences in steroid hormone levels, we assessed the
contribution of steroid-responsive genes to each trait. We
founda strong contribution of hormone-responsive genes to
several diseases and anthropometric traits, with examples
of sex-interaction in this contribution (hypothesis 4). Re-
cently, a gene involved in androgen synthesis was associ-
ated with RA (Stark et al. 2015), and we show that
androgen-responsive genes across the genome are enriched
for association signal and sex differences. Although estro-
gen biology has been associated with comorbidities of T1D
(Ryba et al. 2011; Ryba-Stanisławowska et al. 2014;
Słomiński et al. 2015), our results are the first to suggest
a global impact on risk. Interestingly, we observed several
examples of an increased proportion of heritability in AR
genes in females, and for ER genes in males. These results
could imply that increased levels or variance in androgens
in males and estrogens in females reduce the relative im-
pact of genetic variation in genes responsive to these
hormones.

Finally, and strikingly, we observed that SNPs showing
heterogeneity in association with anthropometric traits
make an exceptional contribution to common, complex
traits, including those without major prevalence differ-

ences. Although there has been a previously noted relation-
ship between hypertension and height, our findings
suggest that many observed disease differences by sex
are generated by the same mechanisms determining sec-
ondary sex characteristics. Our observation is one of asso-
ciation enrichment for anthropometric sex-heterogeneous
SNPs, and thus does not directly correspond with sex-
heterogeneity in the target disease, but does highlight
the pleiotropy of the biology involved in sexual dimor-
phism. This implies that sex differences in disease pre-
valence, symptoms, and outcomes may be governed by
universal biological pathways, rather than disease-specific
pathophysiology or environmental/behavioral risk factors.
Further research may clarify whether identification of
these putative factors could improve sex-specific diagnosis,
treatment, or prevention.

Acknowledgments

We thank Bogdan Pasaniuc, Kathryn Tsang, Ileena Mitra,
and Jonathan Bravier for helpful discussion and assis-
tance. A full list of the investigators who contributed to
the generation of the WTCCC data is available from www.
wtccc.org.uk. This study makes use of data generated by
the WTCCC. We gratefully acknowledge the datasets
made available by the GIANT consortium. This work
was supported by a Staglin Family/International Mental
Health Research Organization Assistant Professorship
(L.A.W.), by K25HL121295 (N.Z., D.S.P.), by National
Institutes of Health (NIH) F32 GM106584 (A.G.), and
by NIH grant CA08816 (J.A.M.). Funding for the WTCCC
project was provided by the Wellcome Trust under award
076113.

Figure 3 True enrichment and permutation-based enrichment for heterogeneous markers in WTCCC diseases and GIANT anthropometric traits.
Enrichment distributions for 100 permuted males and 100 permuted females are represented with boxplots. Diamonds show the true significant
enrichment for males and females. Males are represented in light grey, females in white. ** P , 0.01, *P , 0.05.

Genetics of Sex Differences 989

http://www.wtccc.org.uk
http://www.wtccc.org.uk


Literature Cited

Almeida-Filho, N., J. Mari Jde, E. Coutinho, J. F. Franca, J.
Fernandes et al., 1997 Brazilian multicentric study of psychiat-
ric morbidity. Methodological features and prevalence estimates.
Br. J. Psychiatry 171: 524–529.

Arnold, A. P., and X. Chen, 2009 What does the “four core geno-
types” mouse model tell us about sex differences in the brain
and other tissues? Front. Neuroendocrinol. 30: 1–9.

Austad, S. N., and A. Bartke, 2015 Sex differences in longevity
and in responses to anti-aging interventions: a mini-review. Ger-
ontology 62: 40–46.

Avery, C. L., B. I. Freedman, A. T. Kraja, I. B. Borecki, M. B. Miller
et al., 2006 Genotype-by-sex interaction in the aetiology of
type 2 diabetes mellitus: support for sex-specific quantitative
trait loci in hypertension genetic epidemiology network partic-
ipants. Diabetologia 49: 2329–2336.

Bearoff, F., L. K. Case, D. N. Krementsov, E. H. Wall, N. Saligrama
et al., 2015 Identification of genetic determinants of the sexual
dimorphism in CNS autoimmunity. PLoS One 10: e0117993.

Biino, G., G. Parati, M. P. Concas, M. Adamo, A. Angius et al.,
2013 Environmental and genetic contribution to hypertension
prevalence: data from an epidemiological survey on Sardinian
genetic isolates. PLoS One 8: e59612.

Chang, D., F. Gao, A. Slavney, L. Ma, Y. Y. Waldman et al.,
2014 Accounting for eXentricities: analysis of the X chromo-
some in GWAS reveals X-linked genes implicated in autoim-
mune diseases. PLoS One 9: e113684.

Chen, H.-H., T.-J. Chen, Y.-M. Chen, C. Ying-Ming, and D.-Y. Chen,
2011 Gender differences in ankylosing spondylitis-associated
cumulative healthcare utilization: a population-based cohort
study. Clinics (Sao Paulo) 66: 251–254.

Chen, X., R. McClusky, J. Chen, S. W. Beaven, P. Tontonoz et al.,
2012 The number of X chromosomes causes sex differences in
adiposity in mice. PLoS Genet. 8: 1–14.

Chiu, Y.-F., L.-M. Chuang, H.-Y. Kao, K.-C. Shih, M.-W. Lin et al.
2010 Sex-specific genetic architecture of human fatness in
Chinese: the SAPPHIRe Study. Hum. Genet. 128: 501–513.

Cox, K. H., P. J. Bonthuis, and E. F. Rissman, 2014 Mouse model
systems to study sex chromosome genes and behavior: rele-
vance to humans. Front. Neuroendocrinol. 35: 405–419.

Cross-Disorder Group of the Psychiatric Genomics ConsortiumLee,
S. H., S. Ripke, B. M. Neale, and S. V. Faraone, 2013 Genetic
relationship between five psychiatric disorders estimated from
genome-wide SNPs. Nat. Genet. 45: 984–994.

D’Alessandro, E., M. Di Cola, M. L. Lo Re, C. Ligas, C. Vaccarella
et al., 1990 Nonrandom chromosome changes in multiple scle-
rosis. Am. J. Med. Genet. 37: 406–411.

de Bakker, P. I. W., G. McVean, P. C. Sabeti, M. M. Miretti, T. Green
et al., 2006 A high-resolution HLA and SNP haplotype map for
disease association studies in the extended human MHC. Nat.
Genet. 38: 1166–1172.

de Castro-Catala, M., N. Barrantes-vidal, T. Sheinbaum, A. Moreno-
Fortuny, T. R. Kwapil et al., 2015 COMT-by-sex interac-
tion effect on psychosis proneness. BioMed Res. Int. 2015:
829237.

Diflorio, A., and I. Jones, 2010 Is sex important? Gender differ-
ences in bipolar disorder. Int. Rev. Psychiatry 22: 437–452.

Dilda, C. L., and T. F. C. Mackay, 2002 The genetic architecture of
Drosophila sensory bristle number. Genetics 162: 1655–1674.

Ellis, P. J., and N. A. Affara, 2006 Spermatogenesis and sex chro-
mosome gene content: an evolutionary perspective. Hum. Fertil.
9: 1–7.

Emery, P., A. Kavanaugh, Y. Bao, A. Ganguli, and P. Mulani,
2014 Comprehensive disease control (CDC): what does
achieving CDC mean for patients with rheumatoid arthritis?
Ann. Rheum. Dis. 74: 2165–2174.

Evans, D. M., C. C. A. Spencer, J. J. Pointon, Z. Su, D. Harvey et al.
2011 Interaction between ERAP1 and HLA-B27 in ankylosing
spondylitis implicates peptide handling in the mechanism for
HLA-B27 in disease susceptibility. Nat. Genet. 43: 761–767.

Finucane, H. K., B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef
et al., 2015 Partitioning heritability by functional category us-
ing genome-wide association summary statistics. Nat. Genet. 47:
1228–1235.

Gale, E. A., and K. M. Gillespie, 2001 Diabetes and gender. Dia-
betologia 44: 3–15.

Gao, F., D. Chang, A. Biddanda, L. Ma, Y. Guo et al., 2014 XWAS:
a software toolset for genetic data analysis and association stud-
ies of the X chromosome. J. Hered. 106: 666–671.

Gilks, W. P., J. K. Abbott, and E. H. Morrow, 2014 Sex differences
in disease genetics: evidence, evolution, and detection. Trends
Genet. 30: 453–463.

Golan, D., E. S. Lander, and S. Rosset, 2014 Measuring missing
heritability: inferring the contribution of common variants. Proc.
Natl. Acad. Sci. USA 111: E5272–E5281.

Han, B., and E. Eskin, 2011 Random-effects model aimed at dis-
covering associations in meta-analysis of genome-wide associa-
tion studies. Am. J. Hum. Genet. 88: 586–598.

Haroon, N. N., J. M. Paterson, P. Li, and N. Haroon,
2014 Increasing proportion of female patients with ankylosing
spondylitis: a population-based study of trends in the incidence
and prevalence of AS. BMJ Open 4: e006634.

Hayeck, T. J., N. A. Zaitlen, P. R. Loh, B. Vilhjalmsson, S. Pollack
et al., 2015 Mixed model with correction for case-control as-
certainment increases association power. Am. J. Hum. Genet.
96: 720–730.

Hilawe, E. H., H. Yatsuya, L. Kawaguchi, and A. Aoyama,
2013 Differences by sex in the prevalence of diabetes mellitus,
impaired fasting glycaemia and impaired glucose tolerance in
sub-Saharan Africa: a systematic review and meta-analysis. Bull.
World Health Organ. 91: 671–682.

Hill, W. G., M. E. Goddard, and P. M. Visscher, 2008 Data and
theory point to mainly additive genetic variance for complex
traits. PLoS Genet. 4: e1000008.

Hoyle, E., S. H. Laval, A. Calin, B. P. Wordsworth, and M. A. Brown,
2000 The X-chromosome and susceptibility to ankylosing
spondylitis. Arthritis Rheum. 43: 1353–1355.

Jansen, R., S. Batista, A. I. Brooks, J. A. Tischfield, G. Willemsen
et al., 2014 Sex differences in the human peripheral blood
transcriptome. BMC Genomics 15: 33.

Jiang, M., Y. Ma, C. Chen, X. Fu, S. Yang et al., 2009 Androgen-
responsive gene database: integrated knowledge on androgen-
responsive genes. Mol. Endocrinol. 23: 1927–1933.

Kosova, G., M. Abney, and C. Ober, 2010 Colloquium papers: her-
itability of reproductive fitness traits in a human population.
Proc. Natl. Acad. Sci. USA 107(Suppl. 1): 1772–1778.

Krohn, J., D. Speed, R. Palme, C. Touma, R. Mott et al.,
2014 Genetic interactions with sex make a relatively small
contribution to the heritability of complex traits in mice. PLoS
One 9: e96450.

Kukurba, K. R., P. Parsana, B. Balliu, K. S. Smith, Z. Zappala et al.,
2016 Impact of the X chromosome and sex on regulatory var-
iation. Genome Res. 26: 768–777.

Law, S., and K. K. Li, 2014 Gender-related differences in clinical
course of Crohn’s disease in an Asian population: a retrospective
cohort review. Arq. Gastroenterol. 51: 90–96.

Lee, S. H., N. R. Wray, M. E. Goddard, and P. M. Visscher,
2011 Estimating missing heritability for disease from ge-
nome-wide association studies. Am. J. Hum. Genet. 88: 294–
305.

Lehtovaara, A., H. Schielzeth, I. Flis, and U. Friberg, 2013 Heritability
of life span is largely sex limited in Drosophila. Am. Nat. 182: 653–
665.

990 M. Traglia et al.



Leips, J., and T. F. C. Mackay, 2002 The complex genetic archi-
tecture of Drosophila life span. Exp. Aging Res. 28: 361–390.

Lindblad-Toh, K., M. Garber, O. Zuk, M. F. Lin, B. J. Parker et al.,
2011 A high-resolution map of human evolutionary constraint
using 29 mammals. Nature 478: 476–482.

Liu, L. Y., M. A. Schaub, M. Sirota, and A. J. Butte, 2012a Sex
differences in disease risk from reported genome-wide associa-
tion study findings. Hum. Genet. 131: 353–364.

Liu, L. Y., M. A. Schaub, M. Sirota, and A. J. Butte,
2012b Transmission distortion in Crohn’s disease risk gene
ATG16L1 leads to sex difference in disease association. Inflamm.
Bowel Dis. 18: 312–322.

Loisel, D. A., Z. Tan, C. J. Tisler, M. D. Evans, R. E. Gangnon et al.,
2011 IFNG genotype and sex interact to influence the risk of
childhood asthma. J. Allergy Clin. Immunol. 128: 524–531.

Loley, C., M. Alver, T. L. Assimes, A. Bjonnes, A. Goel et al.,
2016 No association of coronary artery disease with
X-chromosomal variants in comprehensive international meta-
analysis. Sci. Rep. 6: 35278.

Luo, B. F., L. Du, J. X. Li, B. Y. Pan, J. M. Xu et al.,
2010 Heritability of metabolic syndrome traits among healthy
younger adults: a population based study in China. J. Med.
Genet. 47: 415–420.

Mackay, T. F. C., 2009 The genetic architecture of complex be-
haviors: lessons from Drosophila. Genetica 136: 295–302.

Mackay, T. F. C., and R. H. Anholt, 2006 Of flies and man:
Drosophila as a model for human complex traits. Annu. Rev.
Genomics Hum. Genet. 7: 339–367.

Manwani, B., K. Bentivegna, S. E. Benashski, V. R. Venna, Y. Xu
et al., 2014 Sex differences in ischemic stroke sensitivity are
influenced by gonadal hormones, not by sex chromosome com-
plement. J. Cereb. Blood Flow Metab. 35: 221–229.

Mersha, T. B., L. J. Martin, J. M. Biagini Myers, M. B. Kovacic, H. He
et al., 2015 Genomic architecture of asthma differs by sex.
Genomics 106: 15–22.

Mitchem, D. G., A. M. Purkey, N. M. Grebe, G. Carey, C. E. Garver-
Apgar et al., 2014 Estimating the sex-specific effects of genes
on facial attractiveness and sexual dimorphism. Behav. Genet.
44: 270–281.

Mulugeta, E., E. Wassenaar, E. Sleddens-linkels, W. F. Van IJcken,
E. Heard et al., 2016 Genomes of Ellobius species provide in-
sight into the evolutionary dynamics of mammalian sex chro-
mosomes. Genome Res. 26: 1202–1210.

Myers, R. A., N. M. Scott, W. J. Gauderman, W. Qiu, R. A. Mathias
et al., 2014 Genome-wide interaction studies reveal sex-specific
asthma risk alleles. Hum. Mol. Genet. 23: 5251–5259.

Negash, A., A. Alem, D. Kebede, N. Deyessa, T. Shibre et al.,
2005 Prevalence and clinical characteristics of bipolar I disor-
der in Butajira, Ethiopia: a community-based study. J. Affect.
Disord. 87: 193–201.

Ngo, S. T., F. J. Steyn, and P. A. McCombe, 2014 Gender differ-
ences in autoimmune disease. Front. Neuroendocrinol. 35: 347–
369.

Nuzhdin, S. V., E. G. Pasyukova, C. L. Dilda, Z. B. Zeng, and T. F. C.
Mackay, 1997 Sex-specific quantitative trait loci affecting lon-
gevity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94:
9734–9739.

Nwankwo, T., S. S. Yoon, V. Burt, and Q. Gu, 2013 Hypertension
among adults in the United States: National Health and Nutri-
tion Examination Survey, 2011–2012. NCHS Data Brief (133):
1–8.

Ober, C., D. A. Loisel, and Y. Gilad, 2008 Sex-specific genetic
architecture of human disease. Nat. Rev. Genet. 9: 911–
922.

Orozco, G., J. P. A. Ioannidis, A. Morris, and E. Zeggini, 2012 Sex-
specific differences in effect size estimates at established com-
plex trait loci. Int. J. Epidemiol. 41: 1376–1382.

Pakpoor, J., and S. V. Ramagopalan, 2014 Russell W Brain and
the aetiology of multiple sclerosis—a historical perspective.
QJM 107: 423–427.

Pan, L., C. Ober, and M. Abney, 2007 Heritability estimation of sex-
specific effects on human quantitative traits. Genet. Epidemiol.
31: 338–347.

Parks, B. W., T. Sallam, M. Mehrabian, N. Psychogios, S. T. Hui
et al., 2015 Genetic architecture of insulin resistance in the
mouse. Cell Metab. 21: 334–346.

Pettay, J. E., L. E. B. Kruuk, J. Jokela, and V. Lummaa,
2005 Heritability and genetic constraints of life-history trait
evolution in preindustrial humans. Proc. Natl. Acad. Sci. USA
102: 2838–2843.

Randall, J. C., T. W. Winkler, Z. Kutalik, S. I. Berndt, A. U. Jackson
et al., 2013 Sex-stratified genome-wide association studies in-
cluding 270,000 individuals show sexual dimorphism in genetic
loci for anthropometric traits. PLoS Genet. 9: e1003500.

Rawlik, K., O. Canela-xandri, and A. Tenesa, 2016 Evidence for
sex-specific genetic architectures across a spectrum of human
complex traits. Genome Biol. 17: 166.

Richmond-Rakerd, L. S., W. S. Slutske, A. C. Heath, and N. G.
Martin, 2014 Genetic and environmental influences on the
ages of drinking and gambling initiation: evidence for distinct
aetiologies and sex differences. Addiction 109: 323–331.

Roach, R. E. J., A. Venemans, S. C. Cannegieter, and W. M. Lijfering,
2015 Differential risks in men and women for first and recur-
rent venous thrombosis: the role of genes and environment: reply.
J. Thromb. Haemost. 13: 886–887.

Ross, M. T., D. V. Grafham, A. J. Coffey, S. Scherer, K. McLay et al.,
2005 The DNA sequence of the human X chromosome. Nature
434: 325–337.

Ryba, M., E. Malinowska, K. Rybarczyk-Kapturska, A. Brandt, M.
Myśliwiec et al., 2011 The association of the IVS1-397T.C
estrogen receptor a polymorphism with the regulatory condi-
tions in longstanding type 1 diabetic girls. Mol. Immunol. 49:
324–328.

Ryba-Stanisławowska, M., K. Rybarczyk-Kapturska, A. Brandt, M.
Myśliwiec, and J. Myśliwska, 2014 IVS1–397T.C estrogen
receptor a polymorphism is associated with low-grade systemic
inflammatory response in type 1 diabetic girls. Mediators In-
flamm. 2014: 1–8.

Sawcer, S., G. Hellenthal, M. Pirinen, C. C. A. Spencer, N. A. Patsopoulos
et al., 2011 Genetic risk and a primary role for cell-mediated im-
mune mechanisms in multiple sclerosis. Nature 476: 214–219.

Seminog, O. O., A. B. Seminog, D. Yeates, and M. J. Goldacre,
2015 Associations between Klinefelter’s syndrome and autoim-
mune diseases: English national record linkage studies. Autoim-
munity 48: 125–128.

Sharma, K., and M. Gulati, 2013 Coronary artery disease in
women: a 2013 update. Glob. Heart 8: 105–112.

She, Z.-Y., and W.-X. Yang, 2014 Molecular mechanisms involved
in mammalian primary sex determination. J. Mol. Endocrinol.
53: R21–R37.

Shungin, D., T. W. Winkler, D. C. Croteau-Chonka, T. Ferreira, A. E.
Locke et al., 2015 New genetic loci link adipose and insulin
biology to body fat distribution. Nature 518: 187–196.

Silander, K., M. Alanne, K. Kristiansson, O. Saarela, S. Ripatti et al.,
2008 Gender differences in genetic risk profiles for cardiovas-
cular disease. PLoS One 3: e3615.

Słomiński, B., J. Myśliwska, and A. Brandt, 2015 Grade of inflamma-
tion in boys with type 1 diabetes depends on the IVS1–397T.C
estrogen receptor a polymorphism. J. Diabetes Complications 29:
801–807.

Smith-Bouvier, D. L., A. A. Divekar, M. Sasidhar, S. Du, S. K. Tiwari-
Woodruff et al., 2008 A role for sex chromosome complement
in the female bias in autoimmune disease. J. Exp. Med. 205:
1099–1108.

Genetics of Sex Differences 991



Stark, K., R. H. Straub, J. Rovenský, S. Blažičková, G. Eiselt et al.,
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