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Denitrovibrio acetiphilus Myhr and Torsvik 2000 is the type species of the genus Denitrovi-
brio in the bacterial family Deferribacteraceae. It is of phylogenetic interest because there are 
only six genera described in the family Deferribacteraceae. D. acetiphilus was isolated as a 
representative of a population reducing nitrate to ammonia in a laboratory column simulating 
the conditions in off-shore oil recovery fields. When nitrate was added to this column unde-
sirable hydrogen sulfide production was stopped because the sulfate reducing populations 
were superseded by these nitrate reducing bacteria. Here we describe the features of this ma-
rine, mesophilic, obligately anaerobic organism respiring by nitrate reduction, together with 
the complete genome sequence, and annotation. This is the second complete genome se-
quence of the order Deferribacterales and the class Deferribacteres, which is the sole class in 
the phylum Deferribacteres. The 3,222,077 bp genome with its 3,034 protein-coding and 51 
RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain N2460T (= DSM 12809) is the type strain of 
the species Denitrovibrio acetiphilus, which is the 
type species of the genus Denitrovibrio [1]. When 
this genus was described in 2000, it was the 
second validly published genus name in the phy-
lum Deferribacteres Garrity and Holt 2001. Based 
on an extended analysis of 16S rRNA gene se-
quences, the phylum Deferribacteres was recently 
described as comprising the genera Deferribacter, 
Denitrovibrio, Flexistipes, Geovibrio and Mucispiril-
lum [2]. However, the species Calditerrivibrio ni-

troreducens unequivocally also belongs to this 
phylum (Figure 1) [9]. 
In offshore oil extraction, reservoir souring by sul-
fate-reducing bacteria is of great economic con-
cern. Seawater which naturally contains sulfates is 
injected into the reservoirs to enhance oil recov-
ery. This sulfate load initiates the growth of sul-
fate-reducing bacteria producing H2S as the end 
product of sulfate respiration. Besides being toxic 
and corrosive, H2S increases the sulfur content of 
the oil and may contribute to the plugging of the 
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reservoir [10,11]. Strain N2460T was isolated 
from a laboratory model column simulating ma-
rine anoxic mineral oil reservoir conditions. The 
aim of these model experiments was to evaluate 
the feasibility to stop bacterial sulfate reduction 
by the addition of nitrate. The idea was to shift 
(redox) conditions in such a way that nitrate re-
ducing populations supersede the sulfate-
reducing populations. In the field, expensive bio-
cides had often to be added to the injection water 
to prevent the negative effects of souring. For that 
reason, the application of nitrate or nitrite as a 
substitute showed great economic promise in oil 
exploitation [10]. There are several other older 
patents concerning the addition of nitrate or ni-
trite to aqueous systems with the aim to avoid bio-
logical H2S production and the associated odor 
nuisance (“Patent 4,681,687 cites the use of so-
dium nitrite to control SRB and H2S in flue gas de-
sulfurization sludge”; US patent 5,405,531 of 1995 
cites the injection of nitrate, nitrite and molybdate 
to inhibit sulfate reducing bacteria and hence pre-
vent sulfide production). The application in order 
to manipulate the microbial communities in oil 
reservoirs has also been termed “Bio-Competitive 
Exclusion technology” [12]. 
In the laboratory model column from which strain 
N2460T was isolated, bacterial sulfate reduction 
with crude oil as carbon and energy source was 
established first. Subsequently, the column was 
inoculated with an enrichment of nitrate-reducing 
bacteria deriving from ballast water, and 0.5 mM 
sodium nitrate was added to the circulating sea-

water [1]. Strain N2460T was isolated after further 
enrichment in marine medium with acetate and 
nitrate as the electron donor and acceptor, respec-
tively. As appraised by microscopic observation, 
the main population after nitrate application to 
the model column consisted of Denitrovibrio ace-
tiphilus-like bacteria. 
There are no reports of other strains of D. aceti-
philus having been isolated. The species of the 
closest related genera, Geovibrio and Deferribac-
ter, share 16S rRNA sequence identities of 85.3-
85.9% and 84.2-85.7%, respectively [13]. The se-
quence similarity with phylotypes in environmen-
tal screenings and metagenomic libraries were all 
below 90%, except one single hit in the Wallaby 
gut metagenome (ADGC01007328, unpublished, 
94%), indicating an extremely poor representa-
tion of closely related strains in the habitats ana-
lyzed (status March 2010). Here we present a 
summary classification and a set of features for D. 
acetiphilus strain N2460T, together with the de-
scription of the complete genome sequencing and 
annotation. 

Classification and features 
Figure 1 shows the phylogenetic neighborhood of 
D. acetiphilus strain N2460T in a 16S rRNA based 
tree. The two 16S rRNA gene sequences in the ge-
nome differ by one nucleotide from each other, 
and differ by up to one nucleotide from the pre-
viously published 16S rRNA sequence (AF146526) 
generated from DSM 12809. 

 

 
Figure 1. Phylogenetic tree highlighting the position of D. acetiphilus strain N2460T relative to the other 
species within the phylum Deferribacteres. The tree was inferred from 1,460 aligned characters [3,4] of the 
16S rRNA sequence under the maximum likelihood criterion [5] and rooted with Caldithrix abyssi 
('Unclassified Deferribacterales'). The branches are scaled in terms of the expected number of substitutions 
per site. Numbers above branches are support values from 800 bootstrap replicates [6] if larger than 60%. 
Strains with a genome sequencing project registered in GOLD [7] are printed in blue; published genomes 
in bold [8]. 
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Cells of strain N2460T are vibroid bacteria mea-
suring 1.7-2.0 x 0.5-0.7 µm (Figure 2 and Table 1), 
multiplying by budding and showing rapid 
corkscrew movement. The strain is obligately 
anaerobic, and its growth is inhibited by oxygen 
and by anoxic non-reduced conditions. The bacte-
rium is very versatile regarding the salt concen-
tration of its environment as it grows in salt con-
centrations of 0 – 6% NaCl (w/v). It grows at tem-
peratures between 4 and 40°C with an optimum at 
35-37°C and at pH 6.5-8.6. The shortest doubling 
time at 35°C is about 8h. Vitamins are required for 
growth [1]. 
Under the enrichment conditions, the cells gain 
energy by nitrate dissimilation with ammonia as 
the end product. In addition, the bacteria are able 
to grow on fumarate by fermentation [1]. The res-
piratory metabolism is restricted to a very limited 
substrate spectrum as the bacteria do not grow 
with benzoic acid, short chain alcohols, alkanes, 
carbohydrates, hydrogen or fatty acids other than 
acetate or pyruvate as the electron donor. Howev-
er, this specialization on acetate needs not limit the 
spread of the organism in nature for acetate is a 
common fermentation product in almost any anox-
ic environment. As activity of 2-oxoglutarate dehy-
drogenase was present but carbon-monoxide de-
hydrogenase activity – the key-enzyme of the 
acetyl-CoA pathway –was absent in the cells, it was 
concluded that metabolization of acetate occurs via 
citric acid cycle [1]. 
As found for most strictly anaerobic nitrate reduc-
ing bacteria such as Wolinella succinogenes [23], D. 
acetiphilus reduces nitrate to the end product am-

monia when growing by anaerobic respiration. This 
pathway should be delineated from the respiratory 
denitrification of facultatively anaerobic organisms 
which reduce nitrate to nitrous oxide or dinitrogen. 
Several obligately anaerobic nitrate-to-ammonium 
reducers gain energy only from the first reduction 
step from nitrate to nitrite (nitrate reductases). 
Some of these organisms may use this 6-electron 
transfer reduction as an electron sink for the rege-
neration of oxidized coenzymes during fermenta-
tion of carbohydrates, catalyzed by nitrite depen-
dent reductase. In other anaerobes, such as W. suc-
cinogenes, Desulfovibrio desulfuricans or D. gigas, 
however, the reduction of nitrite to ammonia is al-
so coupled to the electron transport phosphoryla-
tion [1]. Whether or not strain N2460T is capable of 
gaining energy from the reduction of nitrite to am-
monia is an unresolved question yet. 
Another feature of the dissimilatory metabolism of 
strain N2460T still awaits clarification: are these 
bacteria able to perform iron reduction as are sev-
eral of its close phylogenetic relatives such as De-
ferribacter thermophilus or Geovibrio ferrireducens? 
Attempts to test for this ability in the lab failed be-
cause the addition of ferric pyrophosphate raised 
the redox potential to such an extend that growth 
of D. acetiphilus, which is sensitive to non-reduced 
conditions, was inhibited [1]. No other electron ac-
ceptor than nitrate (optimum concentration 8 mM) 
was found to support growth of strain N2460T so 
far [1]. In this property, D. acetiphilus resembles 
another member of the Deferribacteres, C. nitrore-
ducens which, however, is much more versatile re-
garding the electron donors than D. acetiphilus [9]. 

 
Figure 2. Scanning electron micrograph of D. acetiphilus strain N2460T 
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Table 1. Classification and general features of D. acetiphilus strain N2460T according to the MIGS recommendations [14] 
MIGS ID Property Term Evidence code 

 

Classification 
 

Domain Bacteria TAS [15] 
Phylum Deferribacteres TAS [16-18] 
Class Deferribacteres TAS [16,19] 
Order Deferribacterales TAS [16,19] 
Family Deferribacteraceae TAS [16,20] 
Genus Denitrovibrio TAS [1] 
Species Denitrovibrio acetiphilus TAS [1] 
Type strain N2460 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape vibroid TAS [1] 
 Motility motile TAS [1] 
 Sporulation spores not observed TAS [1] 
 Temperature range mesophile, 4-40°C TAS [1] 
 Optimum temperature 35-37°C TAS [1] 
 Salinity halophilic, grows at 0 - 6% (w/v) NaCl, TAS [1] 
MIGS-22 Oxygen requirement obligately anaerobic, nitrate reducer TAS [1] 

 Carbon source 
acetate or pyruvate (dissimilation), 
fumarate (fermentation) 

TAS [1] 

 Energy source chemoorganotroph TAS [1] 
MIGS-6 Habitat marine TAS [1] 
MIGS-15 Biotic relationship free living NAS 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [21] 
 Isolation oil reservoir, model column TAS [1] 
MIGS-4 Geographic location Bergen (Norway) TAS [1] 
MIGS-5 Sample collection time about or before 2000 TAS [1] 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

60.388 
5.331 

NAS 

MIGS-4.3 Depth unknown  
MIGS-4.4 Altitude unknown  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [22]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

Chemotaxonomy 
Phospholipid fatty acids are the major fraction of the 
polar lipids contained in bacterial cells. The principal 
constituents of the phospholipids in N2460T are un-
saturated hexadecenoic acid and octadecenoic acid; 
other compounds are other straight chain saturated 
and unsaturated fatty acids [1]. The species Flexis-
tipes sinusarabici, which also belongs to the phylum 
Deferribacteres, contains saturated hexadecanoic 
acid and octadecanoic acid as major compounds as 
well as iso- and anteiso-branched fatty acids in its 
polar lipids [1]. The predominant compounds in 
whole cell lipids of C. nitroreducens are iso-
tetradecanoic and anteiso-pentadecanoic acid [9]. 

Thus, the yet described composition of the fatty ac-
ids within the Deferribacteres shows a wide variabil-
ity. The presence of respiratory lipoquinones have 
not been reported, but it may be predicted that they 
should be present, since this is a feature of all mem-
bers of the phylum examined to date. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [24], and is part of 
the Genomic Encyclopedia of Bacteria and Archaea 
project [25]. The genome project is deposited in the 
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Genomes OnLine Database [7] and the complete ge-
nome sequence in GenBank. Sequencing, finishing 
and annotation were performed by the DOE Joint 

Genome Institute (JGI). A summary of the project 
information is shown in Table 2. 

 
Table 2. Genome sequencing project information 

MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 
Libraries used 

Three genomic libraries: Sanger 8 kb, 
pMCL200 and fosmid libraries; one 454 
pyrosequence standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX 

MIGS-31.2 Sequencing coverage 7.8× Sanger; 27.5× pyrosequence 

MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 Genbank ID CP001968 

 Genbank Date of Release March 11, 2010 

 GOLD ID Gc01249 

 NCBI project ID 29431 

 Database: IMG-GEBA 2502422320 

 Source material identifier DSM 12809 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
D. acetiphilus strain N2460T, DSM 12809, was 
grown anaerobically in DSMZ medium 881 (Deni-
trovibrio medium) [26] at 30°C. DNA was isolated 
from 1-1.5 g of cell paste using Qiagen Genomic 
500 DNA Kit (Qiagen, Hilden, Germany) with lysis 
modification st/L according to Wu et al. [25]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website. Pyro-
sequencing reads were assembled using the 
Newbler assembler version 1.1.02.15 (Roche). 
Large Newbler contigs were broken into 3,494 
overlapping fragments of 1,000 bp and entered 
into assembly as pseudo-reads. The sequences 
were assigned quality scores based on Newbler 
consensus q-scores with modifications to account 
for overlap redundancy and adjust inflated q-
scores. A hybrid 454/Sanger assembly was made 
using the parallel phrap assembler (High Perfor-
mance Software, LLC). Possible misassemblies 
were corrected with Dupfinisher or transposon 
bombing of bridging clones [27]. A total of 1,442 

Sanger finishing reads were produced to close 
gaps, to resolve repetitive regions, and to raise the 
quality of the finished sequence. The final assem-
bly contains 29,464 Sanger reads and 450,080 py-
ro-sequencing reads. Together, the combination of 
the Sanger and 454 sequencing platforms pro-
vided 35.3× coverage of the genome. The error 
rate of the completed genome sequence is less 
than 1 in 100,000. 

Genome annotation 
Genes were identified using Prodigal [28] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [29]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [30]. 

http://standardsingenomics.org/�
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Genome properties 
The genome is 3,222,077 bp long and comprises 
one main circular chromosome with an overall 
G+C content of 42.5% (Table 3 and Figure 3) 
which is in very good accord with the figure given 
earlier after HPLC-determination (42.6%) [1]. Of 
the 3,085 genes predicted, 3,034 were protein-
coding genes, and 51 RNAs; 70 pseudogenes were 
also identified. The majority of the protein-coding 
genes (74.4%) were assigned a putative function 
while those remaining were annotated as hypo-
thetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

Insights in the genome 
Anaerobic dissimilatory nitrate reduction can be 
carried out by denitrifying bacteria which are fa-
cultative anaerobes releasing the end product di-
nitrogen or by strict anaerobes which reduce ni-

trate to the end product ammonium. The first step, 
the reduction from nitrate to nitrite occurs in both 
metabolic types. The respective enzymes are en-
coded by gene families nar (nitrate reductase) and 
nap (periplasmic nitrate reductase) [31]. The ope-
rons encoding the nitrite reduction in denitrifying 
bacteria are named nir, nor and nos whereas the 
respective genes in the nitrate ammonifying bac-
teria are nrf [23]. The annotation of the N2460T 
genome identified three genes encoding subunits 
of respiratory nitrate reductase (EC 1.7.99.4). 
These were identified as resembling known narG, 
narH and narL genes, thus they most probably en-
code for the alpha-, beta- and gamma-subunit of 
nitrate reductase. The automated search also de-
tected  Dacet_0792 resembling in part the gene 
nfrB encoding for a compound of the multi-unit 
cytochrome c nitrite reductase. 
 

 
 
 
 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 3,222,077 100.00% 

DNA coding region (bp) 3,006,341 93.30% 

DNA G+C content (bp) 1,370,563 42.54% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 3,085 100.00% 

RNA genes 51 1.65% 

rRNA operons 2  

Protein-coding genes 3,034 98.35% 

Pseudo genes 70 2.27% 

Genes with function prediction 2,296 74.42% 

Genes in paralog clusters 469 15.20% 

Genes assigned to COGs 2,287 74.13% 

Genes assigned Pfam domains 2,407 78.02% 

Genes with signal peptides 620 20.10% 

Genes with transmembrane helices 755 24.47% 

CRISPR repeats 0  
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Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand 
(color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 145 5.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 147 5.8 Transcription 

L 180 7.1 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 23 0.9 Cell cycle control, mitosis and meiosis 

Y 0 0.0 Nuclear structure 

http://standardsingenomics.org/�
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Table 4 (cont.) Number of genes associated with the general COG functional categories 

Code value %age Description 
V 46 1.8 Defense mechanisms 

T 257 10.2 Signal transduction mechanisms 

M 155 6.2 Cell wall/membrane/envelope biogenesis 

N 103 4.1 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 74 2.9 Intracellular trafficking and secretion 

O 89 3.5 Posttranslational modification, protein turnover, chaperones 

C 220 8.7 Energy production and conversion 

G 92 3.7 Carbohydrate transport and metabolism 

E 182 7.2 Amino acid transport and metabolism 

F 62 2.5 Nucleotide transport and metabolism 

H 126 5.0 Coenzyme transport and metabolism 

I 47 1.9 Lipid transport and metabolism 

P 140 5.6 Inorganic ion transport and metabolism 

Q 20 0.8 Secondary metabolites biosynthesis, transport and catabolism 

R 263 10.4 General function prediction only 

S 148 5.9 Function unknown 

- 798 25.9 Not in COGs 
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