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Climate differentiates forest structure across a residential 
macrosystem

Alessandro Ossola†, Matthew E. Hopton*

United States Environmental Protection Agency, Office of Research and Development, National 
Risk Management Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 USA

Abstract

The extent of urban ecological homogenization depends on how humans build, inhabit, and 

manage cities. Morphological and socio-economic facets of neighborhoods can drive the 

homogenization of urban forest cover, thus affecting ecological and hydrological processes, and 

ecosystem services. Recent evidence, however, suggests that the same biophysical drivers 

differentiating composition and structure of natural forests can further counteract the 

homogenization of urban forests. We hypothesize that climate can differentiate forest structure 

across residential macrosystems at regional-to-continental spatial scales. To test this hypothesis, 

forest structure (tree and shrub cover and volume) was measured using LiDAR data and 

multispectral imagery across a residential macrosystem composed 1.4 million residential parcels 

contained in 9 cities and 1503 neighborhoods. Cities were selected along an evapotranspiration 

(ET) gradient in the conterminous United States, ranging from the colder continental climate of 

Fargo, North Dakota (ET = 464.43 mm) to the hotter subtropical climate of Tallahassee, Florida 

(ET = 1000.47 mm). The relative effects of climate, urban morphology, and socio-economic 

variables on residential forest structure were assessed by using generalized linear models. Climate 

differentiated forest structure of the residential macrosystem as hypothesized. Average forest cover 

doubled along the ET gradient (0.39 – 0.78 m2 m−2), whereas average forest volume had a 

threefold increase (2.50 – 8.12 m3 m−2). Forest volume across neighborhoods increased 

exponentially with forest cover. Urban morphology had a greater effect in homogenizing forest 

structure on residential parcels compared to socio-economics. Climate and urban morphology 

variables best predicted residential forest structure, whereas socio-economic variables had the 

lowest predictive power. Results indicate that climate can differentiate forest structure across 

residential macrosystems and may counteract the homogenizing effects of urban morphology and 

socio-economic drivers at city-wide scales. This resonates with recent empirical work suggesting 

the existence of complex multi-scalar mechanisms that regulate ecological homogenization and 

ecosystem convergence among cities. The study initiates high-resolution assessments of forest 

structure across entire urban macrosystems and breaks new ground for research on the ecological 

and hydrological significance of urban vegetation at subcontinental scale.
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Introduction

Urbanization is a major cause of ecological homogenization whereby geographically 

separated urban ecosystems become more similar compared to the respective native 

ecosystems nearby (Groffman et al. 2014; McKinney 2006). In fact, despite being located in 

different climates and biomes, cities often host biological communities that are homogenous 

in their taxonomic, evolutionary, or functional composition (Epp Schmidt et al. 2017; 

Morelli et al. 2016; Wheeler et al. 2017). Ecological, hydrological, and biophysical 

characteristics and functions of urban ecosystems can further depart from those of native 

ecosystems to converge among distant cities (Hall et al. 2016; Pouyat et al. 2003, 2015; 

Steele et al. 2014). In this way, urban homogenization can affect numerous ecological and 

hydrological processes that underpin the provision of ecosystem services (Larson et al. 

2016), such as heat mitigation from tree canopies or stormwater infiltration through urban 

soil. This seems particularly evident when investigating residential land at regional-to-

continental spatial scales, across what have been recently defined as residential 
macrosystems (Groffman et al. 2016, 2017).

The degree of urban homogenization, however, is the product of environmental and social 

drivers that operate at multiple scales (Chowdhury et al. 2011; Jenerette et al. 2016; Yang et 

al. 2015). These drivers can regulate ecological homogenization as well as differentiation. 

Management practices of residential land are often remarkably similar in different cities 

(Groffman et al. 2016; Harris et al. 2012). Though homogenization of yard management 

likely depends on urban context and scale (Polsky et al. 2014), management can locally 

override the effects dictated by regional biophysical constraints, such as climate or soil type 

(Groffman et al. 2014). At city-wide scale, the homogenizing effects of residential land 

management upon forest cover have been related to the social composition of neighborhoods 

(Boone et al. 2010; Grove et al. 2006). In fact socio-economic variables, such as income and 

education level, often inform our understanding of urban forest cover and the theories related 

to social stratification, luxury effect, and the “ecology of prestige” (Grove et al. 2014). For 

instance, wealthier neighborhoods tend to have greater forest cover than less affluent ones, 

even across cities located in different climates and biomes (Grove et al. 2014; Jenerette et al. 

2011; Luck et al. 2009; Shanahan et al. 2014).

Urban morphology, defined as the composition and spatial arrangement of urban 

development features such as buildings, land parcels and infrastructures, has long been 

recognized as a driver in the homogenization of urban forests (Sanders 1984). The amount 

physical space for urban trees and shrubs to grow declines with density of development (i.e., 

parcels, buildings, impervious surfaces), itself a function of human demographics (Grove et 

al. 2014). In this way, forest cover and plant species diversity tend to increase in 

neighborhoods with higher residential land cover (Bigsby et al. 2014), lower parcel and 
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housing density (Cook et al. 2012; Marco et al. 2008; Smith et al. 2005; Tratalos et al. 

2007), and larger parcel size (Lowry et al. 2012; Robinson 2012). In the last century, the 

shift from compact development to urban sprawl has reshaped the morphology of most cities 

(Sanders 1984). This, together with the fact that trees and shrubs grow over time, explains 

why urban forest cover is often related to the age of neighborhoods in numerous cities 

located in different climates (Bigsby et al. 2014; Luck et al. 2009).

However, recent empirical evidence suggests that climate can differentiate urban forest 

characteristics, as observed for native forests (Bailey 2009; Zhang et al. 2016), and despite 

of urban morphology and socio-economic context. Climate can in fact affect the distribution 

of urban tree species across North America (Nowak and Greenfield 2012), as well as their 

biodiversity (Ramage et al. 2013; Yang et al. 2015; Blood et al. 2016). Climate determines 

the pool of native plant species that can survive within cities following urbanization. 

Similarly, exotic species can be lost from cities based on their tolerance to climatic factors, 

such as temperature extremes and water availability (Jenerette et al. 2016). The selection of 

plant species from nurseries and horticultural businesses available to residents for planting 

also likely depend on climatic factors (Ramage et al. 2013). Thus, because urban forest 

structure ultimately depends upon species identity and community composition (Threlfall et 

al. 2016), it is then reasonable to expect the structure of urban forests to be likewise affected 

by climatic factors at a macroscale level.

Comprehensive assessments of the distribution and structure of urban forests have usually 

focused on one or a few cities (Bigsby et al. 2014; Cook et al. 2012), and have placed little 

emphasis on the biophysical variables affecting urban forests at the macroscale. These 

studies found that urban morphology and socio-economic drivers can homogenize forest 

cover within cities. However, each of these studies provides little comprehensive evidence 

on the effects of climate variables in shaping the structure of urban forests. Thus, our 

knowledge on the role that climate might play in counterbalancing ecological 

homogenization of urban forests is limited. Further, our understanding on how the vertical 

structure of urban vegetation change (e.g., canopy height and volume, vegetation layers, etc.) 

across entire urban landscapes is still in its infancy (Mitchell et al. 2016; Ossola and Hopton 

2018). Early attempts to evaluate forest vertical structure across cities have relied on 

categorical data (e.g., tree, shrub, lawn cover) derived from vegetation classification (Grove 

et al. 2006b), because field-based data on forest structure are rare over large spatial scales 

(Berland and Manson 2013). This a critical gap in our understanding of urban forests 

because their vertical structure, rather than their horizontal cover, is more likely to regulate 

important ecological and hydrological processes (e.g., Berland et al. 2017; Ossola et al. 

2015a, 2016; Pataki et al. 2010), the provision of habitat for biodiversity (e.g., Beninde et al. 

2015; Ossola et al. 2015b), and numerous other ecosystem services (e.g., Davis et al. 2016; 

Lehmann et al. 2014).

In this study, we examined the relationship of climate, urban morphology, and socio-

economic variables on forest structure across a residential macrosystem in the conterminous 

United States (US) by asking: i) does climate affect the structure of residential forests over 

large spatial scales?, and ii) what is the relative importance of climate, urban morphology 

and socio-economics in structuring residential forests?. In answering these questions, we 
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further hypothesized that: i) climate can differentiate the structure of residential forests, with 

forest cover and volume predicted to increase along a large evapotranspiration (ET) gradient, 

and ii) urban morphological and socio-economic characteristics of neighborhoods 

homogenize forest structure across the residential macrosystem.

Methods

Study areas

The cities of Fargo-Moorhead, ND-MN (hereafter Fargo, ND), Milwaukee, WI, Boston, 

MA, Newark, NJ, Washington, DC (or DC), Norfolk, VA, Raleigh-Durham, NC, 

Birmingham, AL, and Tallahassee, FL were selected for the study based on their geographic 

location and data availability. Cities are distributed from the cold continental climate of 

Fargo to the hot subtropical climate of Tallahassee (Fig. 1) to ensure that the residential 

macrosystem investigated was subjected to the largest climatic gradient as possible. 

Evapotranspiration (ET) and maximum water pressure deficit (VPDmax) double along the 

climatic gradient, increasing from 464.43 to 1000.47 mm and from 8.8 to 17.6 hPa, 

respectively (Mu et al. 2013; PRISM Climate Group 2015). Mean annual temperature 

(MAT) ranges between 5.6 and 19.7 °C and mean annual precipitation (MAP) between 594 

and 1447 mm (PRISM Climate Group 2015). Cities are located in ecological regions that 

change accordingly to climate. In fact, Fargo is located in the west-central semi-arid prairies 

in a cold continental climate (Kottek et al. 2006; Omernik and Griffith 2014). Milwaukee, 

also characterized by a cold continental climate, lies in the central plains of the eastern forest 

region. Boston and Newark are surrounded by mixed forests (Kottek et al. 2006; Omernik 

and Griffith 2014), as they have a cold climate but with hotter summers. Washington DC, 

Norfolk, Raleigh-Durham, and Birmingham are located along the warmer south-eastern 

forest region in a temperate rainy climate, which becomes sub-tropical around Tallahassee 

(Kottek et al. 2006; Omernik and Griffith 2014). Thus, the volume of rural forests around 

cities, averaged within a 50 km radius from urban centers, tends to increase with ET along 

the climatic gradient (Fig. 1).

Data sources

Airborne LiDAR data were collected during leaf off conditions by federal, state, and local 

governments between March 2013 and April 2015 (Appendix A). LiDAR data had mean 

point spacing ranging between 0.332 and 0.522 m and mean vertical accuracy between 0.053 

and 0.100 m (Appendix A).

Visible and near-infrared 1 m resolution imagery (2013–2015) was obtained from the 

National Agricultural Imagery Program (NAIP, United States Department of Agriculture) 

and collected at the vegetation phenological peak (Appendix A). Despite being not 

spectrally calibrated, NAIP imagery is commonly used to discriminate accurately between 

woody, herbaceous vegetation and impervious surfaces over entire cities (e.g., Bigsby et al. 

2014; Davies et al. 2016; Ossola and Hopton 2018).

Tax parcel and land use/zoning maps, acquired from city, county, and state governments 

were used to select residential land and exclude other urban land uses (Appendix A). A total 
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of 1.4 million residential parcels, covering an area of 1400 km2 and a population of 5.8 

million inhabitants, were considered in the study (Table 1). Socio-economic indicators for 

1503 census tracts were obtained from American FactFinder for year 2010 (US Census 

Bureau 2010). These comprise a set of 35 variables related to population, income, education, 

employment, social inequality, and housing characteristics (Appendix B) and have been used 

in other studies of urban forest cover (e.g., Bigsby et al. 2014). To include recently 

developed neighborhoods in our analyses and set a common socio-economic baseline across 

cities, we used current census indicators rather than historical ones, despite the latter are 

suggested to predict better urban tree cover at small spatial scales (Boone et al. 2010).

Geospatial analyses and validation

Geospatial analyses were performed in ArcGIS Desktop 10.4.1 (ESRI, Redlands, CA). 

Digital terrain models (DTMs) and surface models (DSMs) for each city were interpolated 

from LiDAR ground and first returns, respectively, by using natural neighbor triangulation 

(Davis et al. 2016; Ossola and Hopton 2018). A raster cell size of 1.5 m was selected for 

interpolations (Chen et al. 2006). Normalized digital surface models (nDMSs), representing 

the height of physical features from the ground (e.g., man-made structures, trees, etc.), were 

calculated for each city by subtracting the DTM from the respective DSM.

NAIP imagery was used to calculate normalized difference vegetation indices (NDVIs) for 

each city. Supervised classification based on nDSM, NDVI, and NAIP visible and near-

infrared bands for each city, implemented through a maximum likelihood (ML) classifier, 

was used to classify i) herbaceous vegetation, ii) wooded, and iii) non-vegetated areas. A 

minimum of 100,000 raster cells were manually attributed to each of three land cover classes 

in each city through NAIP photo interpretation to calculate the spectral signature of each 

land cover class (Singh et al. 2012; Ossola and Hopton 2018). Spectral signatures were then 

used to inform the ML classifier and extend the classification to entire cities. Supervised 

classification allowed the calculation of a canopy cover mask for each city (Appendix C), 

later used to crop the respective nDSM and derive canopy height models (CHMs). Forest 

volume was calculated by multiplying each CHM by the raster cell area (2.25 m2), assuming 

the entire volume to be occupied by vegetation (Davis et al. 2016).

In each city, randomly generated points (n=100) for each vegetation cover class were 

verified by inspecting NAIP imagery to calculate the performance of each classification 

(confusion matrix), and thus classification accuracy and reliability. Because the cities of 

Fargo, ND and Washington, DC are adjacent to state boundaries, separate classifications and 

validations were performed by using NAIP datasets available for adjacent states (Appendix 

A). Mean accuracy and reliability of classification of forest cover across cities was 96.50 

± 0.77 % and 94.55 ± 1.08 %, respectively (Appendix D), which are comparable to those 

achieved in a recent study of Baltimore, MD and Raleigh, NC (Bigsby et al. 2014). 

Residential forest cover (m2 m−2) and volume (m3 m−2) were first summarized within each 

residential parcel and then averaged at census tract level. Census tracts considered for 

statistical analyses had a minimum density of 100 residential parcels per km2 with a 

minimum of 100 residential parcels per tract to exclude areas with marginal residential 

cover. Rural forest volume (m3 m−2) was calculated from a 1 km resolution global forest 
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canopy height dataset (Simard et al. 2011) by averaging all values within 50 km from urban 

centers.

Statistical analyses

Statistical analyses were performed in R 3.3.1 (R Core Team 2016) with the libraries usdm 
(Naimi 2015), caret (Kuhn et al. 2016), devtools (Wickham and Chang 2016), and 

AICcmodavg (Mazerolle 2015). A racial diversity index, computed as the Shannon-Weiner 

diversity index on the proportion of races living in each census tract, was calculated using 

the R library vegan (Oksanen et al. 2014). The age of maximum housing development of 

each census tract was calculated as the decade having the highest number of structures built.

Prior to statistical modeling, a stepwise selection based on variance inflation factors (VIF = 

2) was performed by using the “vifstep” function in the R package “usdm” (Naimi et al. 

2014) to exclude multicollinear variables at R2 > 0.5 (Zuur et al. 2010). In particular, mean 

residential parcel size, percent high school graduate, percent bachelor’s degree graduate, 

median income, percent families below poverty level, and percent renter-occupied housing 

units were excluded due to multicollinearity. Generalized linear models (GLMs) were used 

to assess the effects of climate, urban morphology, socio-economics, and their interactions 

upon residential forest structure (response variables: forest cover and volume). VIF-selected 

variables were used to compose 7 model types based on climate, urban morphology, socio-

economic variables, and their combinations (Table 2). Global models were fitted by using all 

VIF-selected variables. GLMs predicting forest volume were fitted by using linear 

regression. Logistic regression was used to predict forest cover as it has higher predictive 

power in modeling tree canopy cover compared to linear regression (Bigsby et al. 2014). 

Linear and quadratic terms were used for each GLM based on exploratory statistical 

analyses. An information-theoretic approach based on minimized Akaike Information 

Criterion (AIC) was used to select the best performing GLMs considering equally predictive 

models with ΔAIC < 3 (Burnhan and Anderson 2002). Average values are reported with the 

respective standard errors (SE).

Results

Forest volume in residential parcels increased exponentially with forest cover (Fig. 2). 

Overall, residential forest structure increased with ET (Fig. 3). Mean residential forest cover 

doubled from Fargo, ND to Tallahassee, FL (0.39 ± 0.03 and 0.78 ± 0.01 m2 m−2, 

respectively), with a three-fold increase in mean forest volume (2.50 ± 0.25 and 8.12 ± 0.26 

m3 m−2, respectively). The volumetric difference between residential and rural forests 

(averaged within 50 km from urban centers) was greater in Fargo-Moorhead and 

Tallahassee, at the extremities of the ET gradient (Table 3). As such, the residential forest in 

Tallahassee had about half volume compared to that of the surrounding rural forest, whereas 

the rural forest around DC had a volume six times greater than that of the residential forest 

(Table 3).

The GLM based on climate and urban morphology best predicted residential forest cover, 

whereas forest volume was best predicted by the global model (Table 4). Forest cover and 

volume decreased with residential parcel density and increased with residential land cover 
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(Fig. 4A, B, D, E). Mean forest cover and volume peaked in census tracts developed during 

the 1970s and 1980s, respectively (Fig. 4C, F). Residential parcel density was the best 

predictor of forest cover and volume, followed by residential land cover and ET (Appendix 

E). Residential forest volume decreased in census tracts with high unemployment rates 

(Appendix E), whereas forest volume increased with median monthly rent in some cities 

(i.e., Newark, Birmingham, and Tallahassee) but not in the others (Appendix F). Similarly, 

median annual income (excluded from GLM modeling being correlated with monthly rent) 

had either negative, positive, or no relationship with forest structure in the different cities 

(Fig. 5; Appendix F).

Residential parcel size was negatively correlated to residential parcel density (Pearson’s ρ = 

−0.594, p <0.001), and positively to residential land cover (ρ = 0.299, p <0.001). Parcel size 

had a logarithmic relationship with residential forest cover (Fig. 6A), and increased with the 

decade of maximum housing development from the 1930s to the 1980s, to then decrease in 

more recently developed neighborhoods (Fig. 6B). Median annual income was negatively 

correlated with percent vacant housing units (ρ = −0.5496, p <0.001) and unemployment 

rate (ρ = −0.519, p <0.001), and positively correlated with median rent (ρ = 0.701, p 

<0.001) and median population age (ρ = 0.485, p <0.001).

Discussion

Residential forest structure and climate

As hypothesized, residential forest cover and volume increased with ET, leading to the 

differentiation of forest structure across the residential macrosystem. Compared to urban 

morphological characteristics, however, climate had a relatively smaller effect on residential 

forest structure. Luck et al. (2009) found climate to have little effect on urban forest cover in 

nine urban areas located across two climatic zones in south-east Australia (Kottek et al. 

2006). The discrepancy between the study from Luck et al. (2009) and this study might be 

explained by the larger urban macrosystem considered here, where cities are distributed 

across three climatic zones (Kottek et al. 2006). Both residential forest cover and volume, 

however, had relatively smaller variations between Fargo and DC (0.16 m2 m−2 and 0.42 m3 

m−2, respectively), compared to those measured between DC and Tallahassee (0.55 m2 m−2 

and 5.74 m3 m−2, respectively). In this way, climatic signals in the structure of urban forests 

might be concealed when considering narrow residential macrosystems over relatively small 

spatial scales, or climatic or biophysical gradients. The use of leaf-off, rather than leaf-on, 

LiDAR data might have determined small differences in estimates of forest height ranging in 

the order of centimeters. However, these differences are negligible when considering that the 

variation in forest height and volume across the macrosystem is an order of magnitude 

greater (Table 3). In fact, evidence suggests that leaf-off LiDAR data can be reliably used to 

model forest structure, particularly in the eastern US forests (Parent 2014).

Despite growing evidence on the homogenization of lawn floras (Wheeler et al. 2017), 

climate affects how plant species are filtered in urban environments based on their climatic 

tolerance and commercial availability (Jenerette et al. 2016, Ramage et al. 2013). People’s 

perceptions, values, and management practices of urban trees and shrubs can be also affected 

by climate (Schroeder 2006). For instance, residents prefer shade trees in the hotter areas of 

Ossola and Hopton Page 7

Sci Total Environ. Author manuscript; available in PMC 2019 October 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



a climatic gradient in southern California - an effect likely to be amplified at larger spatial 

scales (Avolio et al. 2015). This suggests that in warmer climates larger tree species with 

higher leaf area could be preferred over smaller species with sparser canopies, further 

affecting the structure of residential forests.

Residential forest volume across Raleigh-Durham had higher variability (SE = 0.222 m3 m
−2) compared to other cities (average SE = 0.049 m3 m−2). In this urban area, one of the ten 

most sprawled in the US (Resnik 2010), forests contained in residential parcels may have 

retained a significant proportion of the native species originally occurring in rural forests 

prior to urbanization, as similarly reported for other cities in southeastern US (Blood et al. 

2016). Because rural forests around Raleigh-Durham are characterized by a mix of tall 

conifer species (McNab et al. 2007), this might explain the relatively high residential forest 

volume recorded in some census tracts and the overall higher variance in this urban area. 

Previous land use has been shown to impact important urban forest characteristics, such as 

forest productivity (Briber et al. 2015), and future investigations on forest structure across 

urban macrosystems could be refined to further investigate this factor.

Despite changing along the ET gradient, residential forest volume was 15–50 % of that 

measured in rural forests. This suggests that a decrease in the intensity of local 

homogenizing drivers could lead the structure of residential forests toward the structure of 

surrounding rural forests. Residential forests could be actively managed to enhance their 

structure, particularly in cities with lower forest structural complexity. The exponential 

relationship between forest cover and volume we found implies that increasing residential 

forest cover might determine increasingly larger gains in term of forest volume. In this way, 

the provision of ecosystem services related to the vertical structure of forest on residential 

parcels (e.g., stormwater canopy interception, heat mitigation, habitat for biodiversity, etc.) 

could be enhanced even through relatively small increments in forest cover. This is 

important because increasing tree canopy cover across cities is not always feasible due to 

lack of space, opportunity, and residents’ personal preferences toward private vegetation 

with low structural complexity (Shakeel and Conway 2014; Visscher et al. 2016). Devising 

urban forestry practices that consider climate and the larger biophysical settings of urban 

macrosystems could help define more realistic targets for urban forestry and greening 

programs at the national level.

Homogenizing effects of urban morphology and socio-economics

Our second hypothesis, that urban morphological and socio-economic characteristics of 

neighborhoods would homogenize forest structure across the residential macrosystem, was 

partially supported. Variables representing urban morphology had, in fact, greater influence 

in homogenizing forest structure than socio-economic variables. In particular, 

neighborhoods with residential parcel density higher than 2000 parcels km−2 had less than a 

fourth of each parcel covered by woody vegetation, regardless of the city. In contrast, across 

the 9 cities, neighborhoods with an average residential forest cover exceeding 0.50 m2 m−2 

had parcels density lower than 1000 parcels km−2. As parcel density is negatively related to 

yard area, this suggest that the available physical space for vegetation to grow is an 

important factor that can lead to the homogenization of residential forest structure across 
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cities. Socio-economic variables alone had the lowest power in predicting residential forest 

cover and volume, as also observed in a study of canopy cover in Salt Lake County, UT 

(Lowry et al. 2012). Forest volume was best predicted by the global GLM, but two 

significant socio-economic variables, median monthly rent and unemployment rate, had the 

lowest importance among all significant variables. This resonates with recent evidence that 

attributed tree cover homogenization in Baltimore, MD and Raleigh, NC to urban 

morphology rather the socio-economic context of these cities (Bigsby et al. 2014). Similarly, 

weak effects of socio-economic variables upon urban tree cover and biodiversity have been 

found in other cities in North America (Berland et al. 2015; Jenerette et al. 2016). As 

pointed out in other macroecological work (Ramage et al. 2013, Jenerette et al. 2016), this 

study does not lessen the importance of socio-economic drivers in shaping urban forests. 

Instead, it reinforces that these factors might be locally-important sources of ecological 

homogenization, but their effects could be masked by more complex multiscale interactions 

with other homogenizing and differentiating drivers such as those dictated by urban form 

and climate. Further, only partial support for the luxury effect theory was found, as noticed 

in a study of urban tree cover in Los Angeles, CA (Clarke et al. 2013). A positive 

relationship between median annual income and residential forest structure was observed in 

Milwaukee, Newark, Boston, and DC, but this relationship was weak or negative in the other 

cities. This might be partially due to the resolution of census data used in the study (i.e., 

census tract vs census block level) or the development history of cities. Further, we predicted 

parameters of forest structure by using census data for the year 2010 to be able to include 

more recently developed neighborhoods. Stronger social effects could have been detected by 

using historical census data (Bigsby et al. 2014; Boone et al. 2010). In general, comparing 

forest characteristics among cities is a difficult task due to different urbanization trajectories, 

historical legacies, future development plans, and because most studies to date focused on a 

few cities (Cook et al. 2012). Synoptic analyses of urban macrosystems can improve our 

knowledge of urban forests and their structure while allowing more robust generalizations 

across spatial scales and environmental gradients.

Overall, residential parcel density was the most important driver leading to homogenization 

of forest structure across the residential macrosystem. This confirms findings from other 

cities where parcel density had a negative relationship with tree cover and above-ground 

biomass (Briber et al. 2015; Tratalos et al. 2007). Census tracts with greater residential cover 

had higher forest cover and volume, as observed for tree cover in Baltimore, MD and 

Raleigh, NC (Bigsby et al. 2014). The age of maximum housing development of 

neighborhoods had a small negative effect on the overall residential forest structure, though 

it was non-significant for forest cover. The effects of neighborhood age upon forest cover 

have been documented in numerous studies following the rationale that trees grow over time 

(Grove et al. 2006; Troy et al. 2007). However, as Bigsby et al. (2014) noticed in Raleigh, 

mean parcel size progressively increased until the 1980s to then decrease in the 2000s. The 

decade of maximum development of neighborhoods co-varied with the size of residential 

parcels across the residential macrosystem. Thus, residential forests could be structured by 

the availability of physical space for trees and shrubs to grow (Lowry et al. 2012; Robinson 

2012), as well as the time allowed for them to grow (Berland et al. 2015).
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Conclusion

Our study represents one of the first synoptic assessments of the three-dimensional structure 

of forests across urban residential macrosystems as affected by both homogenizing and 

differentiating drivers. More research is needed to understand to what extent differentiating 

and homogenizing effects of climate, urban form, and social context are consistent across 

other residential and urban macrosystems. This is particularly important when looking at 

interactions among these factors across large spatial scales and gradients in relation to 

mechanisms leading to ecological homogenization and differentiation. The use of big data, 

new GIS and remote sensing technologies, and increased computing capability offer 

promising venues for future research on forests across urban macrosystems, their emerging 

properties, and drivers of change. New investigations will provide a more complete 

understanding of how ecological and hydrological processes underpinning ecosystem 

services are generated by urban forests within and among cities.
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Appendix A.: Sources and specifications of LiDAR, multispectral imagery 

(NAIP), property and land use datasets used for the cities considered in the 

study.

City, State
Fargo, ND
Moorhead, 

MN

Milwaukee, 
WI Boston, MA Newark, 

NJ
Washington, 

DC
Norfolk, 

VA

Raleigh-
Durham, 

NC

Birmingham, 
AL

Tallahassee, 
FL

LiDAR 
dataset 
name

Fargo-
Moorhead 

LiDAR 
2014

Southeast 
WI 

Counties 
LiDAR 
2015

LiDAR Point 
Cloud MA 

Sandy CMPG 
2013

LiDAR 
Point 

Cloud NJ 
SdL5 2014

LiDAR 
Point Cloud 

MD-VA 
Sandy NCR 

2014

LiDAR 
Point 

Cloud VA 
Norfolk 

2013

North 
Carolina 

QL2 
LiDAR 
2015

LiDAR 
Point Cloud 

Jefferson 
County 2013

Leon 
County, FL 

LiDAR 
2015

LiDAR 
provider

City of 
Fargo

Milwaukee 
County USGS USGS USGS USGS NCDPS, 

NCDOT USGS Leon 
County

LiDAR 
collection 

period

10.05.2014
22.05.2014

24.03.2015
03.04.2015

16.11.2013
31.12.2014

21.03.2014
21.04.2014

10.04.2014
20.12.2014

21.03.2013
05.04.2013

10.01.2015
22.03.2015

13.04.2013
07.05.2013

15.01.2015
05.02.2015

Vertical 
accuracy 

(cm)
9.25 10 5.3 5.8 5.9 6.6 9.25 9.7 9.14

Horizontal 
accuracy 

(m)
0.67 0.27 0.36 0.5 0.5 1.0 NA 1.0 1.1

Nominal 
point 

spacing 
(m)

0.7 
a

0.7 
a

0.7 0.7 0.7 0.7 0.7 
a

0.6 
a

0.41 
a

Minimum 
point 0.289 0.367 0.391 0.325 0.289 0.309 0.280 0.303 0.201
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spacing 
(m)

Mean 
point 

spacing 
(m)

0.375 0.457 0.508 0.522 0.410 0.418 0.403 0.403 0.332

Maximum 
point 

spacing 
(m)

0.463 1.349 
b

1.231 
b

1.088 
b

0.946 
b

1.162 
b

0.484 0.583 0.640

Total 
LiDAR 
points

3.023 · 109 4.180 · 109 2.689 · 109 3.235 · 109 3.579 · 109 4.756 · 109 5.998 · 109 7.977 · 109 16.38 · 109

Number 
of LiDAR 

tiles
151 88 295 379 253 338 405 544 722

USDA 
NAIP 

collection 
year

ND 2014
MN 2015 WI 2015 MA 2014 NJ 2015 MD 2015

VA 2014 VA 2014 NC 2014 AL 2013 FL 2015

Parcel, 
land use 

data 
provider

City of 
Fargo

Milwaukee 
County

City of Boston, 
Commonwealth 

of MA
NJ State

Arlington 
County and 

DC

Cities of 
Norfolk 

and 
Virginia 
Beach

Durham 
and Wake 
Counties

Jefferson 
County

Leon 
County

a
The original unit of measure of these LiDAR datasets is the US foot. These have been converted to meter using the 

equivalency 1 foot = 0.3048 meter.
b
Some LiDAR tiles partially cover water bodies and consequently have relatively higher point spacing compared to tiles 

covering land.

Appendix B.: Details of the socio-economic indicators aggregated at 

census tract level (year 2010) obtained from the American FactFinder of the 

US Census Bureau (https://factfinder.census.gov/).

Socio-economic indicator Description

DP0020001 Median age (both sexes)

DP0090001 White alone or in combination with one or more other races

DP0090002 Black or African American alone or in combination with one or more other races

DP0090003 American Indian and Alaska Native alone or in combination with one or more other races

DP0090004 Asian alone or in combination with one or more other races

DP0090005 Native Hawaiian and Other Pacific Islander alone or in combination with one or more 
other races

DP0090006 Some Other Race alone or in combination with one or more other races

DP0120002 Population in households

DP0120014 Population in group quarters

DP0130002 Family households

DP0130010 Nonfamily households

DP0160001 Average household size

DP0170001 Average family size

DP0180002 Occupied housing units
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Socio-economic indicator Description

DP0180003 Vacant housing units

DP0210002 Owner-occupied housing units

DP0210003 Renter-occupied housing units

HC01_EST_VC16 Percent high school graduate or higher (table S1501)

HC01_EST_VC17 Percent bachelor’s degree or higher (table S1501)

HC01_EST_VC01 All families (table S1702)

HC02_EST_VC01 Percent families below poverty level (table S1702)

HD01_VD01 Gini Index (table B19083)

HC02_EST_VC02 Median income (dollars) per household (table S1903)

HC01_EST_VC24 Working-age population 20 to 64 years (table S2301)

HC02_EST_VC24 In labor population 20 to 64 years (table S2301)

HC03_EST_VC24 Employed population 20 to 64 years (table S2301)

HC04_EST_VC24 Unemployment rate 20 to 64 years (table S2301)

HD01_VD01 Median contract rent (table B25058)

HD01_VD02 Buildings built in 2005 or later (table B25034)

HD01_VD03 Buildings built 2000 to 2004

HD01_VD04 Buildings built 1990 to 1999

HD01_VD05 Buildings built 1980 to 1989

HD01_VD06 Buildings built 1970 to 1979

HD01_VD07 Buildings built 1960 to 1969

HD01_VD08 Buildings built 1950 to 1959

HD01_VD09 Buildings built 1940 to 1949

HD01_VD10 Buildings built 1939 or earlier

Appendix C.: Example of two neighborhoods in Boston, MA in false 

infrared imagery to highlight vegetation (in red, upper panel) and the 

canopy cover map (in green, lower panel) derived from supervised 

classification on NAIP and LiDAR data.
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Appendix D.: Confusion matrices calculated to test accuracy, reliability, and 

Kappa statistic of the maximum likelihood supervised classification of 

urban vegetation in the urban areas investigated based on data fusion of 

the NAIP imagery, NDVI, and nDSM. Reliability represents type I errors 

(false positives), accuracy represents type II errors (false negatives), and 

Kappa evaluates the overall performance of classification. (*) Vegetation 

classification for Fargo-Moorhead, ND-MN, and Washington, DC was 

Ossola and Hopton Page 13

Sci Total Environ. Author manuscript; available in PMC 2019 October 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



modeled separately based on the two respective NAIP datasets available 

for bordering states (Appendix A).

Fargo, ND*
(2014 NAIP North Dakota)

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 87 11 2 100 0.870 -

Herbaceous 
vegetation 0 100 0 100 1.000 -

Non-vegetated 0 0 0 0 0.000 -

Total 87 111 2 200 0.000 -

Accuracy 1.000 0.901 0.000 0.000 0.935 -

Kappa - - - - - 0.871

Moorhead, MN*
(2015 NAIP Minnesota)

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 94 3 3 100 0.940 -

Herbaceous 
vegetation 1 99 0 100 0.990 -

Non-vegetated 0 0 0 0 0.000 -

Total 95 102 3 200 0.000 -

Accuracy 0.989 0.971 0.000 0.000 0.965 -

Kappa - - - - - 0.931

Milwaukee, WI

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 91 9 0 100 0.910 -

Herbaceous 
vegetation 7 93 0 100 0.930 -

Non-vegetated 0 0 0 0 0.000 -

Total 98 102 0 200 0.000 -

Accuracy 0.929 0.912 0.000 0.000 0.920 -

Kappa - - - - - 0.840
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Boston, MA

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 91 9 0 100 0.910 -

Herbaceous 
vegetation 1 99 0 100 0.990 -

Non-vegetated 0 0 0 0 0.000 -

Total 92 108 0 200 0.000 -

Accuracy 0.989 0.917 0.000 0.000 0.950 -

Kappa - - - - - 0.900

Newark, NJ

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 95 5 0 100 0.950 -

Herbaceous 
vegetation 4 95 1 100 0.950 -

Non-vegetated 0 0 1 0 0.000 -

Total 99 100 0 200 0.000 -

Accuracy 0.960 0.950 0.000 0.000 0.950 -

Kappa - - - - - 0.900

Washington, DC*
(2014 NAIP Virginia)

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 98 0 2 100 0.980 -

Herbaceous 
vegetation 6 94 0 100 0.940 -

Non-vegetated 0 0 2 0 0.000 -

Total 104 94 0 200 0.000 -

Accuracy 0.942 1.000 0.000 0.000 0.960 -

Kappa - - - - - 0.921
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Washington, DC*
(2015 NAIP Maryland)

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 99 1 0 100 0.990 -

Herbaceous 
vegetation 9 92 0 100 0.920 -

Non-vegetated 0 0 0 0 0.000 -

Total 107 93 0 200 0.000 -

Accuracy 0.925 0.989 0.000 0.000 0.955 -

Kappa - - - - - 0.910

Norfolk, VA

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 94 2 4 100 0.940 -

Herbaceous 
vegetation 1 99 0 100 0.940 -

Non-vegetated 0 0 0 0 0.000 -

Total 95 101 4 200 0.000 -

Accuracy 0.989 0.980 0.000 0.000 0.965 -

Kappa - - - - - 0.931

Raleigh-Durham, NC

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 97 1 2 100 0.970 -

Herbaceous 
vegetation 6 93 1 100 0.930 -

Non-vegetated 0 0 0 0 0.000 -

Total 103 94 3 200 0.000 -

Accuracy 0.942 0.989 0.000 0.000 0.950 -

Kappa - - - - - 0.901
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Birmingham, AL

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 99 1 0 100 0.990 -

Herbaceous 
vegetation 3 97 0 100 0.970 -

Non-vegetated 0 0 0 0 0.000 -

Total 102 98 0 200 0.000 -

Accuracy 0.971 0.990 0.000 0.000 0.980 -

Kappa - - - - - 0.960

Tallahassee, FL

Classification

Woody 
vegetation

Herbaceous 
vegetation

Non-
vegetated Total Reliability Kappa

Ground 
truth

Woody 
vegetation 95 5 0 100 0.950 -

Herbaceous 
vegetation 2 98 0 100 0.980 -

Non-vegetated 0 0 0 0 0.000 -

Total 97 103 0 200 0.000 -

Accuracy 0.979 0.951 0.000 0.000 0.965 -

Kappa - - - - - 0.930

Appendix E.: 

Summary statistics of the best fitting GLM (climate – urban morphology model) predicting 

residential forest vegetation cover (m2 m−2). Significant variables are in bold, marginally 

non-significant variables are indicated by an asterisk (*). Variables are ranked by 

importance.

Response variable: 
forest cover

Predictor variable Term Estimate Standard error Z value Probability Variable 
importance

Intercept 12.764 6.834 1.868 0.062

Residential parcel 
density

Linear −18.331 3.269 −5.608 < 0.001 100.00

Residential land cover Linear 13.099 2.508 5.223 < 0.001 90.859

ET Quadratic 4.887 2.438 2.005 0.045 14.416

Maximum housing 
development

Linear −0.007 0.003 −1.982 0.048 13.874

Residential parcel 
density

Quadratic −4.241 2.479 −1.710 0.087* 7.423
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Response variable: 
forest cover

Predictor variable Term Estimate Standard error Z value Probability Variable 
importance

Residential land cover Quadratic −3.770 2.302 −1.638 0.102 5.701

ET Linear 3.305 2.365 1.398 0.162 0.000

Null deviance 123.038 on 1493 degree of freedom

Residual deviance 42.143 on 1486 degree of freedom

AIC 1217.4

Summary statistics of the best fitting GLM (global model) predicting residential forest 

vegetation volume (m3 m−2). Significant variables are in bold.

Response variable: 
forest volume

Predictor variable Term Estimate Standard 
error

Z value Probability Variable 
importance

Intercept 4.682 0.749 6.250 < 0.001

Residential parcel 
density

Linear −9.801 0.380 −25.762 < 0.001 100.00

Residential land cover Linear 5.885 0.291 20.230 < 0.001 78.287

ET Linear 3.638 0.275 13.250 < 0.001 50.888

Residential land cover Quadratic −2.531 0.236 −10.733 < 0.001 41.008

Residential parcel 
density

Quadratic −2.614 0.273 −9.590 < 0.001 36.524

Maximum housing 
development

Linear −0.002 0.0003 −6.065 < 0.001 22.687

ET Quadratic 0.935 0.247 3.775 < 0.001 13.699

Median monthly rent Linear 0.714 0.306 2.330 < 0.05 8.029

Median monthly rent Quadratic −0.528 0.235 −2.250 0.025 8.291

Unemployment rate Quadratic 0.492 0.233 −2.104 0.036 7.139

Race diversity index Linear −0.028 0.024 −1.191 0.234 3.556

Vacant residential units Linear −0.017 0.016 −1.020 0.308 2.886

Median age Linear 0.001 0.001 0.573 0.566 1.133

Income inequality (Gini) Linear 0.043 0.093 0.461 0.645 0.691

Unemployment rate Linear −0.084 0.296 −0.285 0.776 0.000

Null deviance 356.83 on 1493 degree of freedom

Residual deviance 137.37 on 1478 degree of freedom

AIC 708.26
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Appendix F.: Relationship between forest cover and median annual income 

summarized at census tract level in the nine cities investigated. Cities are 

ordered by increasing ET.
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FIG. 1. 
Cities selected in the study (in bold) in relation to mean annual temperature (MAT), 

evapotranspiration (ET), maximum water vapor pressure deficit (VPDmax), precipitation 

(MAP), and rural forest volume (green lines) averaged within a 50 km radius from each 

urban center. MAT, MAP and VPDmax are calculated from 30-year normals at 800 m 

resolution (PRISM Climate Group 2015). ET is calculated from the 1 km resolution MODIS 

Global Evapotranspiration MOD16 Project (Mu et al. 2013). Rural forest volume (m3 m−2) 

is calculated from the 1 km resolution global forest canopy height dataset from Simard et al. 

(2011).
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FIG. 2. 
Relationship between residential forest cover and volume across the 9 cities investigated. 

Points represent average values calculated at census tract level.
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FIG. 3. 
Relationship between evapotranspiration (ET) and forest cover (A) and volume (B) in 

residential parcels averaged at census tract level. Jittering of data points from the same city 

has been introduced to avoid overplotting, thus differences in ET do not reflect real values 

(provided in Table 3). Boxplots represent median (central bar), first and third quartiles 

(hinges), and 1.5 times the inter-quartile range (whiskers). Letters at the bottom of each 

boxplot represent statistically similar mean values following a Kruskal-Wallis test and a 

post-hoc Dunn test.
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FIG. 4. 
Relationship between residential forest cover, volume and i) residential parcel density (A, 

D), ii) residential land cover (B, E) and iii) decade of maximum housing development (C, F). 

Point shape and color refer census tracts from each city as represented in the legend in panel 

A. Urban morphology variables represented are significant predictors of forest volume in the 

best fitting GLMs predicting forest cover and volume (Table 4, Appendix E). Boxplots 

represent median (central bar), first and third quartiles (hinges), and 1.5 times the inter-

quartile range (whiskers). Jittering of data points has been introduced to avoid overplotting 

of tracts developed in the same decade in panels C and F.
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FIG. 5. 
Relationship between forest volume and median annual income summarized at census tract 

level in the nine cities investigated. Cities are ordered by increasing ET. The relationships 

between forest cover and median annual income are presented in Appendix F.
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FIG. 6. 
Relationship between mean residential parcel size and A) residential forest cover and B) 

decade of maximum housing development across the 9 cities investigated. Points represent 

average values calculated at census tract level. Boxplots represent median (central bar), first 

and third quartiles (hinges), and 1.5 times the inter-quartile range (whiskers). Jittering of 

data points has been introduced to avoid overplotting of tracts developed in the same decade 

in panel B.
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TABLE 2.

Variables (and units) used for generalized linear models (GLMs) predicting forest cover and volume in 

residential parcels. Variables have been selected through stepwise selection based on variance inflation factors 

(VIF) to avoid multicollinearity at R2=0.50 (Zuur et al. 2010). Global models are fitted by using all variables. 

Hybrid models are fitted by using each variable of each of two categories (e.g., climate-urban morphology 
model).

Category Selected variables

Climate Evapotranspiration, ET (mm yr−1)

Urban morphology Residential parcel density (units km−2)

Residential land cover (%)

Maximum housing development (decade)

Socio-economic Vacant residential units (%)

Median population age (y)

Race diversity index

Income inequality - Gini index

Unemployment rate 20 to 64 years (%)

Median monthly rent ($)
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TABLE 3.

Cities investigated in the study ranked by increasing potential evapotranspiration (ET) in relation to rural 

forest volume, residential forest volume, and their ratio. ET is calculated from the MODIS Global 

Evapotranspiration MOD16 Project (Mu et al. 2013) and rural forest volume from Simard et al. (2011) by 

averaging values within 50 km from urban centers.

City ET (mm yr−1) Mean rural forest volume 
(m3 m−2)

Mean residential forest volume 
(m3 m−2)

Residential to rural forest 
volume ratio (%)

Fargo, ND
Moorhead, MN 464.43 5.72 2.50 43.63

Milwaukee, WI 539.56 7.85 2.20 27.99

Boston, MA 682.63 15.78 2.55 16.16

Newark, NJ 698.99 12.92 2.13 16.48

Washington, DC 741.82 15.91 2.38 14.97

Norfolk, VA 763.83 15.88 3.71 23.35

Raleigh-Durham, NC 806.78 18.02 6.49 36.00

Birmingham, AL 852.23 17.80 4.40 24.70

Tallahassee, FL 1000.47 15.69 8.12 51.76
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TABLE 4.

Generalized linear models (GLMs) predicting residential forest cover (m2 m−2) and volume (m3 m−2) ranked 

by decreasing Akaike information criterion (AIC). Models were composed by using the respective climate, 

urban morphology, and socio-economic variables reported in Table 2.

Response variable: residential forest cover

Model N. parameters AIC ΔAIC AIC weights

Climate – urban morphology 8 1217.41 0.00 1.00

Global 15 1230.86 13.45 0.00

Climate 3 1233.26 15.85 0.00

Climate – socio-economics 10 1243.20 25.79 0.00

Urban morphology 6 1254.10 36.69 0.00

Urban morphology – socio-economics 13 1259.91 42.50 0.00

Socio-economics 8 1356.38 138.97 0.00

Response variable: residential forest volume

Model N. parameters AIC ΔAIC AIC weights

Global 17 708.26 0.00 0.99

Climate – urban morphology 9 718.10 9.84 0.01

Urban morphology – socio-economics 15 904.67 196.41 0.00

Urban morphology 7 917.35 222.45 0.00

Climate – socio-economics 12 1448.79 740.54 0.00

Climate 4 1642.94 934.68 0.00

Socio-economics 10 1972.88 1281.17 0.00
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