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ABSTRACT OF THE DISSERTATION

Improving Fine-Grained Resource Mapping on Tightly Coupled Heterogeneous

Multi-cores

by

Robert Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Glenn D Reinman, Chair

With increasing power and application demands, heterogeneous multi-core pro-

cessors are becoming more prevalent. However, the key to proper utilization of

heterogeneous multi-cores is assigning, or mapping, the right application to the

right core type. Recent work has shown that fine-grained mapping takes advan-

tage of short program phases with highly variant performance requirements, and

can elicit greater benefits from tightly coupled heterogeneous multi-cores. This

work explores various methods to improve fine-grained mapping techniques to

better utilize heterogeneous multi-cores.
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CHAPTER 1

Introduction

The current trend in transistor fabrication is that as transistor size decreases, the

power required to run them does not scale accordingly. Yet, chip sizes remain rel-

atively constant. As transistor size decreases, Dennard scaling ends because chip

supply voltages can no longer scale with increasing transistor counts [EBA11].

The result is that increasing leakage (static power) causes runaway thermal out-

put, which chip designers call the “power wall”. The power wall forces a decision:

either not all transistors can be powered simultaneously, or chip sizes must also

decrease to scale with power demands. In order preserve computational flexibility,

manufacturers have chosen to create multi-core chips where not all parts are pow-

ered on simultaneously [RNA12] [NVI15]. This “utilization wall” [VSG10] allows

only a fraction of a chip to be powered at any point in time. In this regime, it is

imperative that computation be as energy efficient as possible.

One solution to obtaining energy efficiency, while maintaining high utility

of an increasing number of transistors, is the use of heterogeneous multi-cores.

Heterogeneous multi-core processors have been shown to be more energy effi-

cient and sometimes better in performance than traditional homogeneous multi-
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cores [BSC08, KFJ03, KTR04]. With mobile devices becoming increasingly main-

stream, the energy efficient characteristics of heterogeneous multi-cores make them

especially compelling for device manufacturers. Heterogeneous designs are reali-

ties today in the form of ARM Ltd.’s big.LITTLE cores [ARM13], and NVIDIA’s

Tegra X1 [NVI15]. The big.LITTLE design features performance oriented but

power hungry “big” out-of-order (OoO) cores, combined with “LITTLE” power

efficient but reduced performance in-order cores. The Tegra X1 also features 8

big.LITTLE cores along with 256 power efficient GPU cores.

A key factor in obtaining energy and performance efficiency on heteroge-

neous multi-cores is the use of scheduling program phases on cores which are

suited to phase characteristics. Prior works have experimented with scheduling

in a coarse-grained manner with epochs of millions of instructions [BC06, SSJ09,

KRH10, CJE12, CJ09]. However, recent work by Lukefahr [LPD12] and Padman-

abha [PLD13] show that shorter phases of thousands or hundreds of instructions

can achieve greater gains in performance and energy savings than coarse-grained

scheduling. This is because fine-grained phases can experience greater perfor-

mance variance which allows more opportunities for optimization. Coarse-grained

policies are less variant in performance because longer phases experience more

instruction level parallelism (ILP) that amortize and hide the costs of expensive

instructions. For our work, we will refer to “scheduling” as “resource mapping”,

in order to differentiate ourselves from the OS schedulers of prior work.
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Figure 1.1: Mcf, variant IPC, 500 instr epochs.

1.1 Advantages of Fine-Grained Resource Mapping

Fine-grained resource mapping can be advantageous on tightly-coupled archi-

tectures because it can utilize performance and energy differences of a general-

purpose heterogeneous core more efficiently. However, producing a resource map-

ping via sampling or reactive-based approaches can lead to inefficiencies. In cores

where fine-grained switching occurs, the short advantageous phases can end soon

after a significant sample is taken, or before a reactive approach can cater to the

program’s resource needs [LPD12, PLD13].

Shorter phases (Figure 1.1) experience more varied and extreme program IPC

than longer phases (Figure 1.2), which create more opportunities for performance

and energy optimization. Figures 1.1 and 1.2 show the IPC of the mcf benchmark

3



Figure 1.2: Mcf, steady IPC, 10K instr epochs.

for 100K instructions, in periods of 500 and 10K instructions, respectively. The

IPC of the short phases in Figure 1.1 vary from 0.15-1.7, whereas the longer phases

in Figure 1.2 vary from 0.15-0.4. Longer phases exhibit more stable IPC because

costly instructions are amortized, and consequently are unable to realize the ben-

efits of more fine-grained optimization inherent in programs. Even for moderately

sized phases of 1028 instructions or more (Figure 2.13), the performance levels

off while energy savings decrease, which means anticipating and mapping short

phases properly is important. Short phases also incur more switching, which ob-

viates the need for tightly-coupled cores with low switching overhead.
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CHAPTER 2

CHILL: Fine-Grained Mapping of Chained High

Impact Long-Latency Load Phases

We begin the journey of exploring fine-grained mapping techniques by finding

chained, high impact, long-latency load phases (CHILL). Bottlenecks in perfor-

mance can occur in fine-grained program phases during chains of high impact

long-latency loads. We design a system that detects these bottleneck phases, and

propose accelerating these phases on the out-of-order core for better performance

and energy efficiency.

2.1 CHILL Phases

Long-latency loads, or loads which miss in the last level of cache, have often been

found to be sources of bottlenecks in programs [SSJ09, CWT01, AR94]. Chains

of LLLs which depend upon each other are also important bottlenecks in program

performance because they consume memory bandwidth, MSHR entries, and other

instructions dependent on them consume space in the instruction window. These

chains of LLLs also attract more dependent non-load “shadow” instructions than
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normal individual LLLs (Figure 2.2), making these LLLs “high impact”. CHILLs

have geomean shadows of 3.15 instructions, compared to individual LLL shadows

of 2.1. We find that the IPC of CHILL phases is 9.58x worse (geomean) than

that of non-CHILL phases (Figure 2.1), and that programs can spend a geomean

of 21% of cycle time in CHILL phases. The combination of reduced IPC and the

amount of time spent on CHILL phases means that efficiently executing through

these phases is worthwhile.

CHILL phases refer to both epochs in which either actual CHILLs or their

dependent shadow instructions occur, while non-CHILL phases have neither. This

is illustrated in Figure 2.3, where a period of 20 epochs is shown from mcf. The

first three epochs contain CHILLs, and experience the lowest IPC. The next 14

epochs do not contain CHILLs, but experience variant IPC because they contain

shadow instructions dependent on the CHILLs. Knowing this, it is important to

accelerate regions beyond the epochs in which CHILLs themselves occur, in order

to capture the entire CHILL phase.

To determine which type of core is better suited to running CHILL phases, we

tested their performance on OoO and in-order cores (Figure 2.4). CHILL phases

perform better on the OoO core, with a 33.8% geomean increase in IPC over the

in-order core. Although some benchmarks like astar, bzip, and gcc exhibit small

losses in IPC on the OoO, we are still able to achieve reasonable gains.
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Figure 2.1: Worse IPC for CHILL phases.

2.2 Work Related to CHILL

2.2.1 Load Criticality and Dependence

Part of our work relies on finding LLLs at runtime, and amongst various tech-

niques we highlight the work that is more closely related to our analytical tech-

niques. Collins, et. al. speculatively pre-compute slices of programs which lead

to delinquent loads, which leads to reduced wait times for future data cache

misses [CWT01]. Panait, et. al. refine the static technique for identifying

delinquent loads via basic block profiling in post-compilation [PSW04]. Both

techniques rely on identifying possible “delinquent” loads as critical during com-

pilation or post-compilation. Our system identifies dynamic LLLs and correlates

them directly with criticality at runtime. Srinivasan, et. al. dynamically identify

critical loads in hardware based on various factors [SJL01]. They classify critical
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Figure 2.2: Shadow instr differences.

loads into three categories: 1) loads which feed mispredicted branches, 2) loads

which feed other loads that miss in L1, and 3) loads in which the number of inde-

pendent instructions within a window of instructions is below a certain threshold.

With this criticality information, they modify the cache to speed up critical loads

in a manner similar to that of a victim cache. Our analysis differs in that we find

critical phases during chains of high impact L2 load misses to be bottlenecks, and

take advantage of modern heterogeneity of processors to accelerate through bottle-

neck phases. Furthermore, our solution for utilizing this information is different

in that we take advantage of modern heterogeneity in processors to accelerate

through critical phases while saving energy.

Another class of work finds data dependencies at runtime in hardware, but

their techniques differ from our system in various ways. Roth, et. al. create a

prefetching scheme based on finding chains of pointer-based loads for linked data
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Figure 2.3: Snapshot of mcf, certain non-CLL phases require acceleration.

structures [RMS98]. Their system includes tables for loads in progress and known

dependencies. However, their technique is limited to identifying dependencies be-

tween two instructions, rather than long chains of loads. Raasch, et. al. enhance

the performance of the instruction queue with dependency lanes [RBR02]. Each

lane represents a chain of instructions dependent on a load to a particular reg-

ister. Instructions are sniffed for source dependencies, and added to chains with

estimated delays until issue time. Our mechanism differs in that we keep simpler

bit-vectors to store dependence chains, and perform merging of chains to save

space. Chen, et. al. create a system for tracking data dependencies dynamically

for enhancing branch prediction [CDA03]. They use a FIFO of bit-vectors to track

dependencies of all running instructions. Our system differs in that we only track

LLLs and their dependent instructions, and remove entries when the lifetime of

9



Figure 2.4: CHILL IPC on OoO and in-order.

the LLLs end.

A different set of work attempts to utilize LLL information to directly influ-

ence pipeline design. The load slice architecture [CHA15] adds OoO properties

to an in-order core. It enhances an in-order core with structures that allow out-

of-order execution of loads and the address-generating instructions which precede

them. This is accomplished by performing iterative backward dependency anal-

ysis via the backward slice technique [ZS00]. Our system differs in that we find

and accelerate the instructions after a series of chained LLLs, although the load

slice architecture’s backward dependency analysis could potentially improve our

performance during these bottlenecks. Another system that uses a similar type of

backward slice analysis is the Long Term Parking system [SCH15]. Their goal is to

decrease the number of instruction queue and and register file of an OoO core by

creating a separate staging area (long term parking) for non-critical instructions.

10



The idea is to keep non-critical instructions from polluting the OoO pipeline dur-

ing critical phases. They use the same iterative backward slice analysis [ZS00]

as in the load slice architecture, but add their analysis to the RAT during the

renaming phase. Our system differs in that we track the critical LLL phases and

their dependent instructions directly, and burst through these phases. Both sys-

tems also differ from ours by using iterative backward slice analysis, which finds

dependent instructions one at a time per loop iteration, incurring a warm up time.

In contrast, our technique is able to find the full set of dependent instructions in

one loop iteration.

2.2.2 Heterogeneity and Scheduling

Prior work show the benefits of heterogeneous cores for both energy efficiency

and performance [BSC08, KFJ03, KTR04, LPD14]. An abundance of other work

use various metrics to schedule programs statically [CJ09, SSJ09] or dynami-

cally [BC06, CJE12, KRH10]. These techniques operate at granularities from mil-

lions of instructions to milliseconds of time, and often operate in the OS [MPM14]

or even at the user-level [PLD15b].

For finer granularities, Lukefahr [LPD12, LPD16] and Padmanabha [PLD13]

show that thousands or hundreds of instructions can achieve more gains, which is

the computing substrate on which we focus. Lukefahr proposed a tightly coupled

multi-core with two backends, one OoO and one in-order, which can be dynami-

cally switched at runtime. Their mapping algorithm is based on an a priori ridge

11



regression analysis of core metrics, and uses the runtime core metrics to make

decisions based on the prior analysis. With this, they achieve fine-grained map-

ping at 1000 [LPD12] [LPD16] instructions per mapping interval. Padmanabha’s

work extends Lukefahr’s by finding program phases with branch history signa-

tures. They coalesce pieces of past branch target addresses to mark loop starting

points, and associate these points with runtime performance. Our tightly-coupled

heterogeneous core model is similar to that in [LPD12], while our mapping gran-

ularity is similar to the trace-based work [PLD13] at hundreds of instructions.

However, we differ by extending the mapping algorithm with CHILL analysis,

and we do not use the branch history signatures in the trace-based system. In

DynaMOS [PLD15a], the same authors create a technique for memoizing OoO

schedules that are consistently repetitive, and running them on the in-order core

for energy efficiency. By capturing and storing certain OoO instruction sequences,

they can replay these sequences on the in-order core for better energy efficiency.

Our system differs from DynaMOS in that it discerns problematic phases, accel-

erates these phases accordingly, and performs reactive mapping in other phases.

Another proposed fine-grained mapping scheme is a morphing core [SRA13].

Srinivasan et. al. create an architecture similar to Lukefahr’s, however, it contains

one backend that changes between OoO and in-order configurations on-the-fly. A

transition from OoO to in-order mode requires turning off parts of the fetch and

decoding logic, LSQ, ROB, RAT, and some execution units. They base their

switching mechanism on a power/Watt metric, and switch in intervals of 500

12



instructions. Our scheme differs in that we use two backends, one for each OoO

and in-order cores, with shared fetch logic. We also differ in that our switching

mechanism is based on both CHILL analysis and performance metrics, on which

we perform a priori ridge regression analysis, and adapt at runtime.

2.3 CHILL System Design

Overall, our hardware system captures retiring instructions, tracks their depen-

dencies in a table of bit-vectors which correspond to active registers, and finds

and records CHILL phases from the tables of dependencies. We also store CHILL

phase starting points by tracking the last backward branch PC, and keep count

of the duration of CHILL phases. CHILL phases end when all of the LLLs in the

chain are “killed”; when other instructions write to the same destination register

as the LLLs’. During the CHILL phases, we track shadow instructions and mi-

grate between the OoO and in-order cores in a semi-reactive manner: encountering

more shadows keeps the program on the OoO core, while fewer shadows initiate

migration to the in-order core. In non-CHILL phases, we default to a standard

reactive mapping mechanism. The tightly coupled multi-core architecture (Fig-

ure 2.5) used contains one frontend fetch engine, with two execution backends

(OoO and in-order), both feeding statistics into the CHILL system.
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Figure 2.5: Two backends, one fetch engine, with backends communicating with

CHILL system.

64 entries

64-bit bitvectors start epoch

10-bit branch PC

64-bit bitvectors
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start epoch

5 entries countdown

10-bit branch PC

duration

5
entries

current full chain

a. Current Dependencies Table (CDT) b. Pending Chains Table (PCT) c. Completed Chains Table (CCT)

Figure 2.6: CHILL system: 64 64-bit bit-vectors (CDT), 5 PCT, and 5 CCT

entries.

2.3.1 System Components

The CHILL system uses three tables (Figure 2.6) to detect and manage chains

of LLLs: Current Dependencies Table (CDT, Figure 2.6a), Pending Chains Ta-

ble (PCT, Figure 2.6b), and Complete Chains Table (CCT, Figure 2.6c). As

instructions retire, they are analyzed in the manner described in Section 2.3.2 for

dependencies to LLLs in the CDT. When a kill of a LLL occurs, certain entries
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Figure 2.7: Example of code analysis during CHILL phase.

are removed from the CDT, and placed into the PCT. The PCT holds chains

of LLLs that are being constructed and have not all been killed. When a chain

in the PCT ends, its information is passed into the CCT, which aids in predict-

ing CHILL phases. In essence, the CDT tracks all LLL dependencies, the PCT

tracks ongoing CHILLs (graduated from the CDT), and the CCT remembers the

completed CHILL phases (graduated from the PCT) for future prediction.

2.3.2 Dependence Tracking (Populating the CDT)

The CHILL dependence analysis relies on observing relations between instructions’

source and destination registers. Figure 2.7 provides an illustrative sample of

source code, with bolded instructions being LLLs. We track the dependencies in

a table of bit-vectors, seen in Figures 2.7a, b, c, and d. Each of Figures 2.7a, b, c,

and d represent the entire CDT at various points in the program, with row entries

numbered in increasing order from bottom to top. The 64 CDT entries contain a

64-bit dependence bit-vector, a 10-bit last backward branch PC, and a 5-bit start
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ld r1 imm
add r2 r1 r3
add r3 r2 r4
ld r4 r1
ld r5 r4
add r6 r4 r7
add r7 r6 r8
add r8 r5 r4

X X

Y Y
ZZ

1
1
1

1001
11001
1001
1001

11001

64 entries

Figure 2.8: CDT with code example, branch PC, and start epoch filled for CHILLs.

of epoch entry.

To begin, Figure 2.7a represents the CDT after all of the instructions in the

sample code have been retired in order. Each row in the table of bit-vectors (Fig-

ure 2.7a) represents the dependencies for the Nth register; the first row (bottom

row) represents the dependencies for register 1, etc. When a LLL is encountered,

like instructions A, D, and E, we set the Nth bit in the Nth row to 1 in order

to signify a LLL dependence (where N is the destination register number). For

example, instruction A in Figure 2.7 sets the first bit of the first bit-vector to 1.

Instruction D sets the 4th bit in the 4th bit-vector to 1, and because the result is

dependent on register 1, it stores the union of bit-vectors 1 and 4 (1001) in row 4.

Other shadow instructions which depend on the LLLs will add their dependen-

cies to the bit-vector table, such as instructions B, C, F, G, and H in Figure 2.7.
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To create the dependence bit-vector for every instruction, we use the instruction’s

source register numbers and index into those rows in the CDT. We then compute

the union of those source rows in order to find all of the other registers the in-

struction is dependent upon. Then, we use the instruction’s destination register

number to index into the CDT, and compute the union of the previous source

register rows with the destination row. The entire union of bit-vectors is stored

in the row represented by the destination register. For example, in Figure 2.7a,

instruction H creates an entry of 11001 in the 8th row of the table. The union

of the 4th and 5th rows is computed, because the instruction’s source registers

are r5 and r4. This union is then stored in the 8th entry, which signifies that

r8 depends on LLLs to r1, r4, and r5. Figure 2.8 shows the CDT filled with the

example code in Figure 2.7. If the CDT is modified with a shadow instruction,

the system indicates to the prediction mechanism in Section 2.3.5 that the epoch

has encountered high impact shadows.

Chains of LLLs can be identified as Nth rows whose Nth bit is set to 1, and

which have other bits within the bit-vector set to 1, such as rows 4 and 5 in

Figure 2.7a. Rows 2, 3, 6, 7, and 8 do not represent CHILLs because their Nth

bits are not set to 1. Although row 1 has only its first bit set to 1 and may seem

like an independent LLL, rows 4 and 5 also have their first bits set to 1, and hence

r1 is part of the CHILL of 1, 4, and 5. It should be noted that only the occurrence

of LLLs can begin the population of the bit-vectors. The core can identify loads

as being long-latency if they do not return a result within the L2 hit time, which
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Figure 2.9: R4 killed, graduating from CDT to PCT, pending (not yet completed)

CHILL phase recorded.

is 20 cycles in our system.

Bit-vector entries are cleared when a LLL is killed. Figure 2.7b shows the

result of register 4 being killed; only subsets of bit-vectors matching exactly the

4th bit-vector are set to 0. Figure 2.7c shows a superset bit-vector kill, in which

only exactly matching supersets of the 5th bit-vector are set to 0 in the table.

Finally, Figure 2.7d shows the result of a single LLL dependency being killed in

register 1, where all subsets are set to 0.

2.3.3 Collecting and Merging CHILLs (CDT to PCT)

When a LLL’s register is killed in the CDT, we begin to form chains in the PCT

(Figure 2.6b). The PCT contains 5 entries of 64-bit bit-vectors which hold chain

register identities, and the corresponding 10-bit last backward branch PCs, and a

5-bit start epoch of the first LLL in the chain. The current full chain entry is a

temporary store for the remaining unkilled LLL registers that the entire chain is
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waiting on.

Referring back to Figure 2.7 illustrates what occurs in the CDT during kills

of LLLs, and how they are graduated to the PCT. Figure 2.7a shows the state of

the CDT after retiring all instructions in the example code before any kills occur.

Upon a LLL kill, we first examine the CDT entry being killed, and traverse the

CDT to search for other entries containing the killed register’s identity, and place

this result into the current full chain entry of the PCT. In doing so, we attempt to

find the longest current chain for which the killed entry is a member. For example

in step 1 of Figure 2.9, if r4 is killed, the system uses row 4 and begins searching

from row 1. Row 1 does not contain a 1 in the fourth bit position (because r4 is

being killed), so row 1 is left untouched. The system continues until it reaches

row 5, which has a 1 in the 4th bit position, meaning that r5 somehow depends on

r4. Here, row 4 is unioned with row 5, and the result is saved in the current full

chain entry for further iterations in the CDT. Traversing rows 6, 7, and 8 result

in three more unions because all three rows contain a 1 in the 4th bit position.

After traversing the entire CDT, the final result of all the unions is 11001, and

becomes the current full chain entry, which represents all LLLs dependent on r4.

During traversal, the entire sub-bit-vector of r4 (1001) is removed from any row

which contains a perfect match, resulting in a CDT that looks like Figure 2.7b.

In other words, only the 1001 pattern is removed from every CDT row because

that was the entry in row 4 at the time of r4’s killing. Notice that killing any of

the LLLs in Figure 2.7 will result in a current full chain entry of 11001.
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Next, the system attempts to add the current full chain entry into the PCT,

seen in step 2 of Figure 2.9. If the PCT already contains entries, we search the

PCT for any matches with any of the valid bits in the current full chain. If a match

occurs, signifying a pending chain merge, the matching PCT bit-vector entry is

updated with the union of its bit-vector and the current full chain. If no current

PCT entries match any of the valid bits in the current full chain, a new PCT

entry is created with the current full chain as the bit-vector. The corresponding

backward branch PC, and start epoch from the killed CDT entry are copied into

the new PCT entry. Finally, we kill the actual identity bit in the corresponding

PCT bit-vector. For example, killing r4 will result in a PCT bit-vector of 10001,

which means that r4’s load dependencies have ended, and that registers 5 and 1

remain active in the chain.

2.3.4 CHILL Tracking (PCT to CCT)

The CCT holds CHILL phases which have been completed, which are graduated

pending chains from the PCT. Each of the 5 CCT entries is represented by a 10-

bit last backward branch PC, a 5-bit duration entry, and a 5-bit countdown entry.

After killing a PCT entry, we check whether that entry became 0, which signifies

that a pending chain has ended with no more LLLs, and is ready to become a

completed chain in the CCT. If so, a chain has ended and we must update the

CCT in Figure 2.6c. We first check whether the killed PCT’s backward branch

PC matches any entries in the CCT. If there is a match, this indicates that an
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already completed chain is being updated, and we update the CCT entry with the

oldest backward branch PC, and the longer duration. The duration is calculated

by subtracting the start epoch from the current epoch number during the kill. If

there is no matching CCT entry, we create a new one by moving the killed PCT’s

last backward branch PC, and duration into the CCT. Finally, the countdown

entry in the CCT is set to 0.

2.3.5 Prediction Mechanism

The prediction mechanism utilizes the information in the CCT, and whether the

program is encountering high impact shadow instructions. The mechanism runs

as instructions are retired, and predictions will vary depending on which core the

program is currently located. Overall, the system tries to execute the program on

the OoO when it encounters shadows during CHILL phases, and uses a standard

reactive prediction mechanism during non-CHILL phases.

When a program begins, there will be no completed chains, and the system

will have no knowledge of pending chains. To mitigate such “cold start” phases,

we check every epoch whether the CDT has created a PCT entry, or if a CDT

entry was modified with non-load shadow dependencies. If this occurs, we migrate

the program to the OoO core for the next epoch. This technique allows us to run

more optimally during cold start by running on the OoO when shadow instructions

dependent on CHILLs have an impact.

As a program executes, it will populate the PCT and CCT with pending
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chains in progress and completed chains, respectively. Every CCT entry contains

a duration field which contains the number of epochs from the first LLL in the

CHILL phase to when the last LLL in the chain is killed. We detect whether

the program is within a completed chain by comparing branch target PCs of

retiring instructions to the last backward branch PCs recorded in the CCT. If

there is a match, then the program has entered a CHILL phase, and the program

is transitioned to the OoO core for the next epoch. Upon entering a completed

chain, the system sets the countdown field of the CCT entry to match the duration

field. Every succeeding epoch, the countdown is decremented by 1. Multiple

completed chains can be active at once, and their countdowns are decremented

simultaneously.

While a program is running when there are positive countdowns in the CCT

or active pending chains in the PCT, the program will be active on the OoO

core during CHILL phases, but we also need to carefully switch to the in-order

core during opportune moments for better energy efficiency. To take advantage of

in-order energy savings during active pending chains and live completed chains,

we use a 4-bit saturation counter that counts the number of high impact shadow

instructions. If shadow instructions are encountered during the epoch, the satu-

ration counter is incremented by 1, and decremented otherwise. While executing

on the OoO, when the saturation counter falls below half of its maximum value,

we estimate that the program has not modified an active chain for a significant

period of time, and switch execution to the in-order core. If a CHILL is encoun-
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Figure 2.10: Ridge Regression Analysis Coefficient Composition

tered while on the in-order core, the saturation counter is set to its maximum

value and the program switches to the OoO in anticipation of new shadows. In

this way, we attempt to maximize performance and energy savings during CHILL

phases while in the presence of active chains.

2.3.6 Base Reactive Mechanism

During non-CHILL phases, we revert to a base reactive mechanism which depends

on measurements of MLP, ILP, L2 miss and hit rates, and branch misprediction

rates, similar to the one used in [LPD12]. For ILP and MLP measurements, we

use a system similar to one described in [CDA03], and leverage information in our

own CDT. Prior to experimental runs, we gathered data on the first 10 millions

instructions of our benchmarks with the SPEC 2006 test input. We perform a

ridge regression analysis on the metrics to determine a correlation between these

statistics on the OoO core and the in-order core’s performance, and vice versa.
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∆CPIOoOdecision =
∑

CPIobserved + α
∑

CPIpasterror + βCPIcurrenterror

− CPIin−orderestimated (2.1)

Figure 2.10 shows the results of our ridge regression analysis, and how OoO and

in-order statistics correlate to the performance of their counterparts.

With this profiling information, we estimated the performance of the non-

active core at runtime, and map the program reactively using a standard proportional-

integral controller mechanism like the one in [LPD12]. Equation 2.1 shows the

proportional-integral used to calculate a mapping decision while currently running

on the OoO core. We track the total CPIobserved and all past errors in CPIpasterror,

as part of the integral term. Our proportional term is based on the estimate

of CPI on the in-order core CPIin−orderestimated, and the error of that estimate,

CPIcurrenterror, which comprises of the difference between CPIin−orderestimated and

the observed CPI of the current epoch.

The decision is made depending on the result of ∆CPIOoOdecision. If the result

is negative, that means that the estimated in-order CPI will be better, which

indicates that the system should map to the in-order core. If the result is positive,

the overall CPI experienced on the OoO core is better than the estimated in-order

CPI, indicating that the program should remain on the OoO.
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2.3.7 CHILL Buffering

Although the CHILL system assists with quality-of-service, which does not require

absolute time constraints for its operation, we nevertheless analyze its timing

characteristics in CACTI [SJ01]. When the system encounters a CHILL kill it

accesses all 3 of the CDT, PCT, and CCT (86 max accesses), this requires 21.72

cycles. LLLs which do not kill a register require 64 accesses to the CDT, for

a total of 18.53 cycles. For all other instructions, only the CDT is accessed 3

times (destination register and 2 source registers), which requires 0.87 cycles.

Our system runs in epochs of 512 instructions, and ideally, the CHILL system

would need to finish its analysis within the span of an epoch. Our 3-wide issue

OoO core experiences an average run time of 1663.75 cycles during any epoch

with CHILL kills, while our 2-wide in-order core experiences an average run time

of 2686.25 cycles. At most, our benchmarks experience 46 LLLs during an epoch,

of which at most 6 are CHILL kills, for a total of 1404.54 cycles. Hence, in the

worst case of epochs with LLLs and CHILL kills, the CHILL system will finish its

analysis within the span of an epoch.

Epochs in which there are no LLLs of any kind experience much better CPI,

which means that either the CHILL analysis needs to be completed more quickly,

or the system needs to buffer some instruction signatures to keep pace with the

performance of the cores. The theoretical peak performance of our fastest 3-wide

issue OoO core would be 170.67 cycles per 512-instruction epoch. For epochs
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Table 2.1: Core Parameters

OoO core (1GHz) 3-wide issue, 15-25 stage pipeline, 128 ROB, 160 reg file

In-order core (1GHz) 2-wide issue, 8-10 stage pipeline, 64 entry reg file

Memory System (shared) 32kB L1 I/D-cache (4 MSHR), 2MB L2 cache (8 MSHR), 4GB RAM

with no LLLs, each instruction requires 0.87 cycles of analysis time, for a total

of 445.44 cycles. It would seem that the CHILL system needs to buffer 275

instruction signatures to keep pace during times of high performance, but this is

unnecessary because our benchmarks never achieve theoretical peak performance.

Our benchmarks run an average of 576.88 cycles per epoch on the OoO, and

1202.75 cycles on the in-order, which means that most of the time the CHILL

analysis will finish before an epoch completes. In the worst case, libquantum on

the OoO experiences 357 cycles in an epoch, which means that the CHILL system

requires 89 instruction signature buffers at most.

2.4 Methodology

We model our tightly-coupled heterogeneous core similar to the Composite Core

described in [LPD12], in which the OoO and in-order cores are modeled after

ARM’s big.LITTLE [Gre12]. The big OoO core is modeled after the Cortex-A15,

which is 3-way issue with a pipeline depth of 15-25 stages. The LITTLE in-order

core is modeled after the Cortex-A7, which has a shorter pipeline of 8-10 stages

with 2-way issue capability, depending on instruction dependencies.
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In the tightly-coupled design, the big and LITTLE share L1 and L2 caches, a

fetch unit, branch predictor, and the CHILL system. Each core has its own decode

and OoO/in-order execution engines. Switching, or migrating, from the big to

the LITTLE requires draining the OoO pipeline (commit as many instructions

as possible, and flush non-committable instructions), and traversing the RAT to

restore values from reservation stations into the architecturally visible registers.

The vice versa occurs during LITTLE to big transitions. The switching delay

depends on the number of instructions in the pipeline and the amount of register

state which needs to be preserved, which requires 30 cycles on average [LPD12].

Current OS switching on big.LITTLE takes 20ms [Gre12]. Although it is possible

to clock gate the inactive part of the core, we opt for the most pessimistic power

consumption model, in which we account for both big and LITTLE static power

during the entirety of execution. We find that this static power model would be

fairly realistic in near future tightly coupled architectures.

Our CHILL system requires 5615 bits in table space for the CDT/PCT/CCT,

and 1691 bits for 89 instruction signature buffers. Each instruction signature

entry contains 3 6-bit entries for storing 1 destination and 2 source register num-

bers, and 1 extra bit to signify whether the instruction retired was a LLL. Using

CACTI [SJ01], we find that our design requires 0.023 mm2 of area, which is neg-

ligible overall. The complete system is accessed on every CHILL kill, and once at

the end of every epoch. Non-load instructions access only the CDT. This leads to

an estimated power consumption of 0.0433W. We factor the power consumption
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into our simulations, but it does not affect our results significantly.

We run benchmarks from SPEC 2006 [Cor06] in the Simics [MCE02] and

GEMS [MSB05] simulators. Core power and energy are modeled in McPAT [LAS09].

Table 2.1 provides more details on the architectural parameters simulated. All

simulations execute over 15 million instructions, with 512-instruction epoch size,

and compiled for SPARC v9 with -O3 optimization.

2.5 Results and Analysis

2.5.1 Mapping Mechanisms

We compare CHILL against other types of fine-grained resource mapping sys-

tems. First, we compare against an oracle resource mapper, which tolerates a 5%

decrease in performance while seeking opportunities for energy efficient computa-

tion. Second, we compare with a reactive mapper with characterstics described in

Section 2.3.6. It dynamically correlates core performance to certain core statistics

gathered at runtime. Prior to simulation, the MLP, ILP, L2 hit and miss rates,

and branch misprediction characteristics are correlated to performance in pure

OoO and in-order runs. The mapping is then included in the system at runtime

for reactive mapping. Third, we compare against a reactive mapper with a 4-

bit saturation counter to help smooth perturbations inherent to a purely reactive

scheme. Finally, we compare with the trace-based performance prediction scheme

proposed in [PLD13]. This scheme relies on creating identifiers for different phases
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Figure 2.11: IPC normalized to oracle.

of execution by combining pieces of past backward branch PCs, and phases are

correlated with performance at runtime. Although there are energy improvements

to the trace-based system in DynaMOS [PLD15a], we find that the small in-order

phases of DynaMOS are not captured frequently enough to make a significant im-

pact on the trace-based system, so we elect to compare with trace-based without

DynaMOS. Both the saturated and purely reactive systems we test are similar to

the reactive system in the trace-based scheme. The advantage of the trace-based

scheme is in its identification of phases, while the reactive systems do not contain

such a feature.

2.5.2 Performance

Figure 3.8 shows IPC normalized to the oracle for all four mapping schemes. Over-

all, the CHILL system operates at a 10% loss to the oracle, while the trace-based
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Figure 2.12: Energy savings normalized to oracle.

system operates at a 37.8% loss. The saturated counter scheme loses 42.5%, while

the reactive scheme loses 42.9%. For the hmmer benchmark, the trace-based sys-

tem experiences a 1% performance loss compared to the saturated counter and

reactive systems. This is because hmmer contains more branch mispredictions

which cause more core switches than necessary because the trace-based system

uses branch PCs as phase markers. This also explains the libq drop in per-

formance for the trace-based system. Here, the saturated counter and reactive

systems experience about a 7.5% increase in performance than trace-based. The

overall performance could be improved for CHILL phases with more serious branch

misprediction rates, as in libq and mcf. Further details in performance are also

explained in Section 2.5.3
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2.5.3 Energy

Energy savings normalized to the oracle are shown in Figure 3.9. Overall, the

CHILL system operates at a 2.6% loss in energy compared to the oracle. The

trace-based system experiences a 10.8% loss, while the saturated counter and re-

active schemes experience 21.6%, and 21.7% energy losses compared to the oracle,

respectively.

There are a few instances of systems beating the oracle on energy savings. The

astar benchmark experiences relatively few CHILL phases, which means there are

more opportunities for energy-saving in-order execution. Both the CHILL and

trace-based systems detect this, with the trace-based system gaining 4% more

energy savings than CHILL. The saturated counter and reactive systems also

detect the increased opportunities for energy savings, but save about 10% less

energy than the CHILL and trace-based systems. The price for saving energy on

astar is decreased performance compared to the oracle, as seen in Figure 3.8.

The gcc benchmark experiences phases with many CHILLs, but mixed with

high branch misprediction rates during those CHILL phases. This causes the

CHILL system to run unnecessarily on the OoO during the CHILL phases, while

the trace-based, saturated counter, and reactive systems run with more energy

efficiency on the in-order. They save 30%, 7%, and 14% more than the oracle,

respectively. However, these energy savings come at costs in performance of 24.2%,

29.1%, and 28%, respectively in Figure 3.8. CHILL only operates at a 1.4% energy
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loss, with respect to the oracle, while maintaining a 3.8% loss in performance.

H264 exhibits more streaming data behavior, which the CHILL system can

detect and power through quickly and switch to the in-order core for other phases.

The CHILL system achieves 6.3% more energy efficiency than the oracle, but pays

a performance penalty of 10.3%. The branching behavior is more predictable, so

the trace-based system is also able to achieve near oracle-level energy efficiency.

For hmmer, the trace-based, saturated counter, and reactive systems collec-

tively operate at about 5% more energy efficiency than the CHILL system. This

is because hmmer has a combination of more frequent CHILL phases with vary-

ing branch misprediction rates. The frequent CHILL phases map more frequently

to the OoO core, which reduces energy savings. However, the trace-based sys-

tem is more reactive during phases with varying branch misprediction rates on

the in-order core, because its trace mechanism is based on merging backward

branch PCs. This causes more unnecessary core switching in the trace-based

system, which leads to a slight 1% performance drop, relative to the reactive sys-

tems (Figure 3.8). The saturated counter and reactive systems both have built-in

mechanisms to detect branch misprediction rates (Section 2.3.5), and are able to

obtain comparable energy efficiency. Nevertheless, the CHILL system exhibits

about 23% more in performance than the other systems.

The libq benchmark experiences relatively few CHILL phases, but has sepa-

rate periods of high branch misprediction rate. This combination of characteris-

tics allows the CHILL system to find more opportunities for energy savings, with
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Figure 2.13: Sensitivity epoch size (512 best); avg IPC/energy oracle mapping.

6.1% more savings. However, the energy savings are not as high as astar because

the varying branch misprediction rate causes more transitions between the cores,

which is also reflected in the saturated counter and reactive schemes’ energy de-

clines. The trace-based system operates at 65.8% energy efficiency because it is

based on backward branch PCs to define phases, and high branch misprediction

rates cause the system to switch cores unnecessarily. This unnecessary switching

also causes a 7% performance drop (Figure 3.8) relative to the saturated counter

and reactive systems.

2.5.4 Sensitivity

In order to determine the optimal epoch size for fine-grained scheduling in our

benchmarks, we tested multiple epoch sizings on the oracle resource mapper. Fig-

ure 2.13 shows the IPC and energy savings achieved by the oracle mapper for
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Figure 2.14: Sensitivity CCT size (5 best).

exponentially increasing numbers of instructions. The IPC remains relatively

steady after 128 instructions, and the energy savings peaks at 512 instructions.

As stated in Section 1.1, longer epoch sizes experience more uniform performance

behavior, and experience less opportunities for energy savings. We use 512 in-

struction sized epochs in our system to obtain the best combination of IPC and

energy savings.

To find the optimal number of CCT entries, and consequently PCT entries,

we tested for how often the CCT entries were actively reused for increasingly

more total CCT entries. A reused CCT entry means that the entry has an active

countdown initiated, and that there are active pending chains with the same

branch PC as the CCT entry. This indicates that a past chain of long-latency

loads is again experiencing a CHILL phase currently. Figure 2.14 shows that
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most benchmarks experience the most reuse at 2 entries. We omit astar and libq

because although they experience reuse of CCT entries, they also have high data

locality. This leads them to experience past CHILL phases without long-latency

loads because the data is being reused. Most of the gains in astar and libq come

from our cold start policy for pending chains described in Section 2.3.5. Hmmer

experiences its maximum reuse of 101% with 4 entries, indicating that sometimes

more than one pending chain is correlated to one CCT entry. To accommodate

hmmer, we use 5 CCT and 5 PCT entries in our system.

2.6 Conclusion

High performance variance in fine-grained program phases exposes opportunities

for performance and energy savings, especially on tightly-coupled heterogeneous

multi-cores. A particularly important fine-grained program phase occurs during

bottleneck CHILL phases. These phases are troublesome because they produce

long-latency loads, and clog the instruction window with other dependent shadow

instructions. However, the shadow instructions present opportunities for phases

of high ILP and performance. We have designed a system to track and predict

bottleneck CHILL phases, map the phases to suitable cores, and achieve near

oracle performance and energy savings.
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CHAPTER 3

Limiting the Effects of Branch Impact Phases in

Fine-Grained Mapping

When a conditional branch instruction is encountered during fetch and decode in

a pipeline, the result of the condition is not determined until the execute stage

[HP03]. This results in a potential performance bubble, where fetch needs to be

stalled while the core awaits the resulting path of the branch. To potentially

eliminate this performance bubble, chip architects speculate on the path of the

branch with branch prediction hardware. The prediction hardware speculates on

which path the branch will most likely take, and then speculatively fetches and

executes instructions down that path, until the results of the branch’s condition

is known. Sometimes, this path speculation is incorrect, leading to a branch

misprediction. Mispredictions are resolved by flushing the pipeline to eliminate

the wrongly speculated branch path instructions.

Past works have noted that branch misprediction penalties can be high, and

more recent works have also observed that such phases can be run on in-order cores

[LPD12, PLD13]. These mispredictions can be particularly harmful when running
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on an OoO core because many speculative instructions could be issued into the

pipeline. Upon the branch misprediction’s pipeline flush, all of the speculative

instructions are wasted. Mispredictions will happen regardless of the accuracy of

the branch predictor, making this type of penalty unavoidable. However, we can

utilize a fast-switching heterogeneous core to reduce the harm of these painful

phases.

3.1 Related Work

Although certain prior work have noted in passing that branch mispredictions

might be better handled on in-order cores [LPD12, PLD13], they do not dis-

tinguish between truly harmful mispredictions and ones with less impact. Our

work will find the branch mispredictions with high impact, and run those on the

in-order core. By only handling the high impact mispredictions, we avoid unnec-

essary switching of cores during mispredictions with low impact, and we save en-

ergy recovering from high impact mispredictions on the in-order core. DynaMOS

[PLD15a] uses a technique where repetitive OoO schedules are memoized, and run

on the in-order core for more energy efficiency. They target predictable branch be-

havior in order to find consistently repetitive instruction sequences, which creates

an OoO-in-IO computational model. Our work will differ in that we will find the

misbehaving branches, and minimize the negative effects of their faulty behavior

on the in-order cores.
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There is also an abundance of work which deal with reducing branch mis-

prediction penalties by recovering the branch-independent instructions without

re-fetching them [GAS04, CFS99, CV01, CTW04, KMS05, JAO15]. The DCI

system [CFS99] attempts to dynamically find control-independent instructions,

and execute them out-of-order during branch mispredictions, thereby overlapping

useful computation with a branch misprediction. They accomplish this by using

a shadow ROB, which records dependencies between newly issued instructions

and branches. To find instructions fully independent of a branch path, they also

record and use bitmasks of registers consumed by branch paths. In contrast, the

Skipper system [CV01] does not execute any of the speculated branch path, and

instead only executes control-independent instructions (after the speculated path)

while a branch result is in progress. In the SBR system [GAS04], the authors try

to elide branch mispredictions as much as possible. They track the convergence

points of branches using an Alternate Target Buffer, where the addresses of the

next sequential instruction of the block after a branch are kept. Upon a mispre-

dicted branch, any faultily updated registers have their values restored to their

pre-branch state with “mov” operations. This preserves the data dependences of

the convergent path. Collins, et. al. [CTW04] attempt to make the prediction of

branch reconvergence points more accurate by tracking reconvergence type data in

at runtime. In Wish Branches [KMS05], the authors compile two different versions

of branches: normal branch code, and predicate branch code (where conditions

are turned in to data dependences). Their architecture uses misprediction rates
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to determine dynamically when to selectively use the predicated branch code. Fi-

nally, the Mower system [JAO15] attempts to reduce the branch misprediction

penalty by directly reducing the overheads associated with flushing mispredicted

instructions. This is done by walking the ROB to find mispredicted instructions,

and associating them to register file, LSQ, reservation stations, and RAT entries.

Essentially, the renaming of new convergent instructions is overlapped with flush-

ing the ROB during the walk. In summary, the ideas of these works are based

on dynamically discovering instructions independent of branches at runtime, and

either preserving them in the pipeline so they do not need to be re-fetched after

a misprediction, or speculatively executing them for performance benefits. While

this type of prior work is complementary to ours, we will differ by running the

high impact mispredictions on the in-order core, rather than optimizing execution

on an OoO.

3.2 Branch Impact Motivation Statistics

The negative impact of branch mispredictions cannot be overstated. Mispredic-

tions cause the speculative instructions to be flushed from the pipeline, thereby

creating wasted cycles and instructions. On OoO cores, the number of flushed

instructions due to mispredictions is naturally greater than that of in-order cores.

OoOs have deeper pipelines built for such speculation, but suffer a greater penalty

when the speculation is incorrect. Figure 3.1 shows that OoO cores experience a
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Figure 3.1: Instructions flushed per branch misprediction.

much larger flush penalty per branch misprediction. On average, the OoO core

flushes 12.49 instructions during a misprediction, while the in-order core flushes

0.72 instructions. For every benchmark, the OoO waste is greater than in-order

waste.

Over time, this waste on OoOs becomes more problematic. As more branches

are encountered through the course of a program, more chances for mispredictions

and consequent flushes will occur. Figure 3.2 illustrates the percentage of waste

which occurs across entire benchmarks, relative to the total number of retired

instructions. The OoO core experiences 27.29% waste, while the in-order core

experiences 1.56% waste. Again, every benchmark naturally experiences more

total percentage waste on the OoO than on the in-order core.
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Figure 3.2: Percent wasted instructions (relative to total retired instructions).

The wasted instructions also translate to a certain percentage of wasted pro-

gram cycles. Figure 3.3 shows the percentage of wasted cycles across entire bench-

marks. The OoO core wastes 19.07% of all cycles during branch mispredictions

on average, while the in-order core wastes 1.8%. These numbers coincide with

the wasted instruction statistics in Figure 3.1 because most of these speculative

instructions have only spent 1-2 cycles in the pipeline without retiring or commit-

ting.

To be clear, we present these statistics as an opportunity for improvement,

rather than as an argument against OoO cores in general. The benefits of branch

prediction have been made clear for the past three decades. When branch predic-

tion is accurate, then the correctly speculated instructions provide a performance
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Figure 3.3: Total cycles wasted due to branch mispredictions.

boost. However, the penalties of branch mispredictions are still rather numerically

significant, which presents an opportunity for optimization. Our work focuses on

running branch misprediction phases on the in-order core, to reduce such penal-

ties.

3.3 Methodology: Selection of Linear Regression

Our scheme to identify problematic program phases where branch mispredictions

may occur, relies on using a linear regression to correlate speculated instructions

from branch mispredictions, to cycles wasted. We hypothesized that certain types

of instructions which are dependent on branches, would have various impact on

wasted cycle time. For example, long latency loads and other control flow instruc-
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avg OoO short 
waste

avg OoO long 
waste

avg OoO cntl 
waste avg OoO bmiss

avg OoO flush 
cycle waste

bzip 46.161 0.047 15.404 18.170 132.029
deal 116.833 0.076 28.792 20.820 543.202
gcc 166.811 0.244 66.395 24.528 278.415
gobmk 186.954 0.136 80.378 13.880 239.899
h264 129.126 0.026 34.420 18.723 176.958
hmmer 209.796 0.013 60.679 15.352 316.550
libq 588.970 0.007 353.340 2.328 525.081
milc 85.922 0.006 5.221 4.928 1313.464
namd 325.610 0.465 35.390 10.105 1195.575
omnet 235.328 0.178 135.358 14.195 339.502
perl 490.563 0.401 185.238 26.270 1651.238
povray 244.601 0.032 69.941 19.312 235.815
soplex 147.318 0.198 42.032 8.339 1088.385
sphinx 602.319 0.015 205.275 14.136 758.867
xalanc 255.816 0.314 143.074 13.091 357.133
median 209.796 0.076 66.395 14.195 357.133
stdev 174.503 0.152 93.558 6.713 478.895

Figure 3.4: Average out-of-order core waste per branch misprediction.

tions would be more negatively impacted if they were dependent on a mispredicted

branch because more cycles would be spent on such instructions, and subsequently

wasted due to a pipeline flush.

We detailed the breakdown of average numbers of speculative instruction types

in Figure 3.4. “Short waste” instructions are integer and floating point operations.

“Long waste” instructions are long latency loads, and L2 cache hits. “Control

waste” instructions are other flushed branch instructions, but are dependent on

another branch misprediction. We also tracked the total number of branch misses

per scheduling epoch (“bmiss”). Finally, we correlated all of these statistics with

the cycles wasted during branch mispredictions per epoch (“flush cycle”) on the

opposite (in-order) core type. In other words, we use the OoO metrics of branch

waste, and correlate that to wasted cycles on the in-order core (not depicted), and
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avg OoO short 
waste

avg OoO long 
waste

avg OoO cntl 
waste avg OoO bmiss

avg OoO flush 
cycle waste

bzip 46.161 0.047 15.404 18.170 132.029
deal 116.833 0.076 28.792 20.820 543.202
gcc 166.811 66.395 278.415
gobmk 186.954 0.136 80.378 13.880 239.899
h264 129.126 0.026 34.420 18.723 176.958
hmmer 209.796 0.012 60.679 15.352 316.550
libq 0.007 525.081
milc 85.922 0.006 5.221
namd 325.610 35.390 10.105
omnet 235.328 0.178 135.358 14.195 339.502
perl
povray 244.601 0.032 69.941 19.312 235.815
soplex 147.318 0.198 42.032 8.339
sphinx 0.015 14.136 758.867
xalanc 255.816 143.074 13.092 357.133

Figure 3.5: Selected linear regression baseline benchmarks after elimination (in

bold).

vice versa. Note that Figure 3.4 presents average statistics per epoch for the OoO

core.

Our linear regression modeling takes per epoch breakdowns of mispredicted

instruction flushes (like the statistics in Figure 3.4 but not averaged across all

epochs), and correlates those types of waste to the actual branch misprediction

cycles wasted on the other core type. However, because every benchmark is differ-

ent, we pared down the number of benchmarks used to create the linear regression.

To do this, we observed the median of every category of waste, and eliminated

from consideration every benchmark which did not fall within one standard de-

viation. In the end, we only selected benchmarks for the linear regression which

experienced no eliminations in any waste categories (Figure 3.5). The selection

process only considers the OoO statistics because that is where the majority of
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Figure 3.6: Branch impact linear ridge regression composition.

the waste occurs. When performing the in-order -> OoO regression, we use the

in-order statistics and correlate them with OoO waste, but they are not used in

the selection process because the waste is mostly too small to be useful. Using this

selection process, we were able to train the linear regression model on the selected

benchmarks, and apply the trained regression to all benchmarks. We train on a

series of 2 million instructions.

The training process generates the factors and constants of the linear regres-

sion. Figure 3.6 shows the weight each feature contributes to the regression, for

each prediction mode (OoO -> in-order, and in-order -> OoO). Long events, like

L2 misses and hits, contribute significantly to the model. This makes sense be-

cause L2 misses and hits require significant execution time, and often have several
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CPIin−orderbranchimpact =
∑

CPIobservedbranchimpact + α
∑

CPIpasterror

+ βCPIcurrenterror (3.1)

∆CPIOoOdecision =
∑

CPIobserved + α
∑

CPIpasterror + βCPIcurrenterror

− CPIin−orderestimated − CPIin−orderbranchimpact (3.2)

instructions dependent upon them. When L2 misses and hits are speculated, they

bring many of their dependent instructions speculatively into the pipeline, making

their impact on a misprediction weighty. The regression breakdown also shows

other branch misses and control instructions to be impactful. This is because

they too bring more speculated instructions into the pipeline, making a potential

misprediction more hurtful to the program’s performance.

The linear regression we chose is calculated at runtime to be a cycles per in-

struction performance metric. Equation 3.1 shows the linear regression created

to measure the negative impact of branch mispredictions, with the correspond-

ing proportional-integral controller. CPIcurrenterror represents the proportional

part of the controller, accounting for error in waste estimation during the current

epoch. CPIpasterror represents the integral part of the controller, which is a sum-

mation of the error from the past 5 epochs. Both alpha and beta are determined

experimentally.

To make a fine-grained core decision while running on the OoO core, Equa-
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tion 3.2 shows the process. The original estimation from Composition Cores is

used, but with the CPIin−orderbranchimpact from Equation 3.1 factored as a part of

the calculation. Estimated branch impact wasted cycles are subtracted from the

decision calculation, in order to add negative weight to the original performance

estimate of the in-order core. If the resulting CPIOoOdecision is positive, meaning

that the cycles spent on the OoO core is greater than the in-order core, then de-

cision is made to switch to the in-order. While running on the in-order core, the

same type of calculation is made, but with opposite estimates.

Note that in general, not all branch misprediction program phases will be

mapped to the in-order core. Sometimes a branch misprediction phase can still be

run on the OoO, if its negative impact is not high enough to cross the threshold set

by the linear regression. This is the purpose of the selection process (Figure 3.5), to

select benchmarks fairly, such that branch misprediction phases with high impact

are captured. If we attempted to run all branch misprediction phases on the in-

order core, we would miss opportunities for correct speculation that are helpful

to program performance.

3.4 Architectural Modifications

Figure 3.7 shows the tightly-coupled heterogeneous multi-core architecture we

simulate. The architecture is similar to Composite Cores, in that there is one core

with two decode and execution backends, one each of an OoO engine and in-order

47



fetch

decode

decode

Branch Impact System

OoO backend

in-order backend

RAT

Physical 
Register 
File LSQ ROB

Logical 
Register 
File

L1 
Data 
Cache

Figure 3.7: Architectural overview of branch impact in relation to heterogeneous

multi-core components.

engine. The branch impact decision making system features the original metrics

of Composite Core performance estimates, but also adds the branch impact waste

estimation. Fetch, cache, and the decision making system are all shared by both

exeuction backends. Also shared is the register and core state transfer system

described in Composite Cores [LPD12].

3.5 Simulation Methodology

Our simulation parameters match ARM’s big.LITTLE [Gre12] as described in 2.4.

The big OoO core is modeled after the Cortex-A15, which is 3-way issue with a

pipeline depth of 15-25 stages. The LITTLE in-order core is modeled after the

Cortex-A7, which has a shorter pipeline of 8-10 stages with 2-way issue capability,

depending on instruction dependencies. Each of these cores correlates to their
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respective backends from Figure 3.7. We model power savings as clock gating

each of the backends. This sort of static power model is in line with current

technology, although greater savings could be produced if we had used power

gating.

We run benchmarks from SPEC 2006 [Cor06] in the Simics [MCE02] and

GEMS [MSB05] simulators. Core power and energy are modeled in McPAT [LAS09].

Table 2.1 provides more details on the architectural parameters simulated. All

simulations execute over 15 million instructions, with 512-instruction epoch size,

and compiled for SPARC v9 with -O3 optimization.

The branch predictor used is a YAGS (yet another g-share) predictor [ET98].

We recognize the fact that the choice of branch predictor can determine how many

mispredictions may occur. A bad branch predictor will incur more mispredictions,

while a strong one will incur fewer, thereby possibly skewing our branch impact

results. To our knowledge, YAGS is still the basis for many modern branch predic-

tion schemes in industry, which affirms our choice. Regardless, no branch predictor

is perfect, which means that branch impact estimation is relevant irrespective of

branch predictor choice.

The GEMS simulator also handles branch mispredictions in a fair manner.

It flushes the entire pipeline upon a misprediction, which is what is expected in

industry chips. There exists work which attempts to constrain the flushing to only

speculated instructions (mentioned in Section 3.1). However, we are not aware of

industry-wide adaptation of such techniques, and we do not generate a comparison
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with them. We also note that the branch impact instructions counted are only

speculated instructions, and not all flushed instructions.

3.6 Results

We compared our scheme against Composite Cores and a throttled branch pre-

diction OoO core. Our scheme was implemented as an addition to Composite

Cores, so their work is a natural point of comparison. Because our work observes

that OoO cores experience rather heavy misprediction penalties, a natural solu-

tion would be to throttle speculation during branches, which would reduce any

misprediction penalty while not switching cores. The throttling scheme we chose

imposed a 45 instruction limit on the instruction window while any unresolved

conditional branch was in the pipeline. We chose a limit of 45 because our in-order

core has an instruction window of 15, and the OoO core has 3-way issue and fetch

stages. This turns out to be roughly one third of the original instruction window

size of the OoO core. Note that the branch throttled OoO is also implemented

on top of a Composite Core baseline, meaning that the in-order core can still be

used, and throttling only occurs on the OoO execution phases.

In terms of performance, our scheme achieves 0.4% more IPC than Composite

Cores, and 21.6% more IPC than a branch throttle OoO (Figure 3.8). It is reason-

able for our scheme to perform relatively the same as Composite Cores because we

are executing more frequently on the in-order core to reduce waste on the OoO.
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Figure 3.8: IPC normalized to Composite Cores.

The in-order core invariably has worse overall performance, which offsets the per-

formance wasted from branch mispredictions on the OoO. Both schemes outdo

the branch throttled OoO because the OoO experiences the branch misprediction

waste.

The gains of our scheme come mostly from energy savings obtained by running

more frequently on the in-order core. Overall, our scheme saves 26.2% more energy

than Composite Cores, and only uses 35.55% of the energy that a branch throttled

OoO core uses (Figure 3.9). In general, this result is intuitive because our scheme

finds more opportunities for in-order core usage, while reducing wasted time spent

on the OoO core. While the inherent performance of the in-order is worse than the

OoO, more energy is saved during in-order exeuction. The branch throttled OoO
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Figure 3.9: Energy consumed, normalized to throttled out-of-order.

would naturally experience the most energy consumption because it experiences

the branch misprediction waste while running on the power hungry OoO. While

the branch throttled OoO certainly experiences a reduced quantity of branch

misprediction waste, for several benchmarks the level of waste is still too high

for the throttling to overcome. The throttling also limits the effectiveness of the

OoO, causing longer execution while consuming high OoO power.

The hmmer benchmark is different in that it exhibits 21% worse performance

and consumes 17% more energy than Composite Cores. This is because hmmer

experiences nearly all of its program phases with at least one branch misprediction

event. Its branch impact composition (Figure 3.4) is also closest to the median of

all the benchmarks, while experiencing variance nearly as much as the standard
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Figure 3.10: Branch impact sensitivity analysis of epoch size on performance and

energy consumption.

deviations. Hence, hmmer flip flops constantly between the OoO and in-order

cores, causing inefficiency in both performance and energy consumption.

A few other data points exhibit decreases in performance, but have reasonable

levels of energy savings. Omnet shows 8% decrease in performance, but also allows

for 20.9% more energy savings. Perlbench has a 12.3% decrease in performance,

but experiences 14.7% energy savings, which is close to a 1-to-1 tradeoff. Finally,

soplex loses 11.1% performance, but redeems this loss with 18.5% energy savings.

Branch impact is best exploited in a fine-grained manner. Figure 3.10 shows

sensitivity analyses of the effects of various epoch sizes on performance and energy
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consumption. As epoch length increases, performance levels off after 512 instruc-

tion length epochs. Smaller epochs experience a bit worse performance because

there is more backend switching activity, causing more time to be spent in transi-

tion and slowing the program down. This effect is mitigated somewhat at larger

epochs, but epochs beyond 512 instructions are less able to take advantage of fine-

grained behavior. Energy consumption encounters a trough at 512 instructions

per epoch, but increases afterward. This is because larger epoch sizes are also less

able to take advantage of fine-grained behavior. Again, small epoch sizes (below

512) consume more energy because they encounter increased switching frequency.

3.7 Conclusion

In general, we found that the negative impact of branch mispredictions can be mit-

igated on tightly coupled heterogeneous general-purpose multi-cores. We sorted

out highly impactful branch misprediction phases with a linear regression, and ran

these phases on the in-order backend to mitigate mis-speculation penalties. Our

system matches the performance of prior work, but reduces the energy consumed

by avoiding mis-speculation performance losses.
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CHAPTER 4

Analyzing the Benefits of Early Scheduled

Instructions on Out-of-Order Cores

Determining whether a program phase is suitable for OoO execution can be chal-

lenging. In Composite Cores [LPD12], the authors use ILP and MLP metrics

while running on the OoO engine. ILP was defined as the number of instructions

which stalled in the issue queue, as an inverse metric of ILP. MLP was defined

as the number of MSHR entries used, representing the number of last level cache

misses. While running on the in-order core, ILP and MLP were measured with

a table based dependence tracking mechanism adapted from Chen, Dropsho, and

Albonesi [CDA03]. The metrics for ILP and MLP obtained on the in-order core

require some processing time to analyze, while the metrics on the OoO may not

be adequate enough to determine OoO suitability. Our work seeks to obtain a

more accurate picture of OoO core suitability with a different set of metrics.
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4.1 Motivation

As instructions are fetched on processors, they are issued or scheduled for execu-

tion, typically in program order on in-order cores. OoO cores have mechanisms

whereby instructions can be scheduled out of program order. Usually, this oc-

curs because an older instruction is waiting on data, but younger instructions

have their source operands fulfilled before an older instruction. Often, the older

instruction in this situation is an LLL, or an instruction dependent on an LLL,

both of which need to wait for memory to supply data. This leads to some younger

instructions being scheduled earlier than some older instructions, which we call

“early scheduled instructions” (ESI).

The presence of ESI is direct evidence that an OoO core’s resources are being

utilized. More ESI in an OoO core indicate that the OoO resources are more

likely to be used efficiently. This implies that the program phase requires the

OoO resources, and should continue to run on the OoO core. Figure 4.1 shows

binned average ESI counts, categorized by different performance ranges. The blue

bars represent benchmark epochs with the lowest IPC (< 0.5); red bars represent

a medium IPC (0.5 - 1); and yellow bars represent the best IPC (1 - 2). Each bar

is normalized the the lowest IPC bin for its respective benchmark. The highest

IPC bin of 1 - 2 observes 19% more ESI count than the lowest bin, while the

medium bin exhibits 3.4% more ESI than the lowest bin. Note that the IPC of

the in-order core for these benchmarks is below 0.5 for all epochs. This means
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Figure 4.1: Greater average ESI per better IPC bin (bin sizes: 0 - 0.5, 0.5 - 1, 1 -

2); normalized to each benchmark’s “less than 0.5” bin

that in order to obtain better performance on these benchmarks, certain phases

need to be run on the OoO core. On average, a better IPC is represented by a

greater ESI count.

A couple benchmarks show lower ESI counts in their medium bins, when com-

pared their lowest bins. Hmmer and mcf have roughly 25% less ESI during their

medium IPC phases. This is due to these benchmarks having several long latency

loads, and consequent dependent instructions, in their low IPC phases. These

phases have naturally low IPCs because they wait for long latency loads to com-

plete. Yet, they have abnormally high ESI (in comparison to the rest of their

own program phases) because the pipeline fills with instructions dependent on

57



average short ESI average long ESI average cntl ESI
average IO cycle 
difference

astar 221.870 1.739 72.463 -687.452
bzip2dryer 157.268 0.160 56.309 -435.327
gobmk 182.367 0.204 99.869 -3303.261
h264ref 175.938 0.262 45.675 -453.249
hmmer 203.994 0.160 61.557 -506.439
libquantum 309.281 0.417 88.875 -933.541
mcf 166.286 33.756 107.961 -2095.241
sjeng 198.777 5.619 73.190 -360.189
median 190.572 0.340 72.827 -596.945
stdev 48.195 11.653 21.689 -1055.760

Figure 4.2: Average ESIs for different types of instructions, with corresponding

in-order decrease in performance; training selected from benchmarks fitting in one

standard deviation from median in all four statistical categories

the long latency loads. Regardless, the general trend of these benchmarks show

that higher ESI generally corresponds to better performance on an OoO core.

Our work seeks to find program phases where ESI count is high enough to

indicate that running the phase on the OoO core will be profitable. Although

we have discussed various methods for scheduling in Section 2.2.2, to the best of

our knowledge, this is the first use of an ESI metric to determine program phase

suitability for an OoO core.

4.2 Selecting Linear Regression Training Data

In order to take advantage of the ESI trend, we need to project it onto in-order

core performance. This helps the system determine whether to switch to the in-

order core if abnormally low ESI is observed, or to stay on the OoO core if high
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average short ESI average long ESI average cntl ESI
average IO cycle 
difference

astar 221.870 1.739 72.463 -687.452
bzip2dryer 157.268 0.160 56.309 -435.327
gobmk 182.367 99.869
h264ref 175.938 45.675 -453.249
hmmer 203.994 0.160 61.557 -506.439
libquantum 0.417 88.875 -933.541
mcf 166.286
sjeng 198.777 5.619 73.190 -360.189

Figure 4.3: Benchmarks chosen (in bold) from fitting in one standard deviation

from median in all four statistical categories

ESI is anticipated. To do this, we obtained a breakdown of ESI components, and

correlated them with the difference in performance between the OoO and in-order

cores. The differences in performance were obtained from traces of benchmarks

run on pure OoO and pure in-order core simulations. Figure 4.2 shows the average

ESI breakdowns and their corresponding in-order core performance loss for each

benchmark.

The breakdowns of ESI in Figures 4.2 and 4.3 were chosen by instruction type.

“Short ESI” represents integer and floating point operations. “Long ESI” are L2

hits and misses. “Cntl ESI” represent any control instructions. The in-order

cycle differences are negative because they represent cycle loss compared to an

OoO core.

To obtain a hardware-friendly ESI prediction mechanism, we chose to use a

linear regression which gathers the ESI breakdown features, and correlates them

to in-order core performance loss at runtime. First, we need to pare down the set

of benchmarks to find a subset of benchmarks as a representative training set for
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Figure 4.4: ESI linear ridge regression composition.

generating linear regression constants and coefficients. We did this by using the

features in Figure 4.2 and eliminating any benchmarks which do not fully fit within

one standard deviation of the median for each feature. Consequently, Figure 4.3

shows the result of such an elimination process, with the bolded benchmarks

chosen as the selected linear regression training set. From there, we derived the

linear regression constants required to represent this set of benchmarks.

The composition of the linear regression coefficient weights is shown in Fig-

ure 4.4. L2 misses and hits incur the most weight, which is sensible because they

are long latency events which carry other instruction dependent on them into

being potentially scheduled late or early. The next highest weighted are control

instructions, which also makes sense in that control speculation also carries more
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CPIin−orderloss =
∑

CPIobservedESI + α
∑

CPIpasterror

+ βCPIcurrenterror (4.1)

CPIOoOdecision : if CPIin−orderloss negative, then remain on OoO,

else switch to in− order (4.2)

dependent instructions that could be scheduled early. Note that ESI can only be

gathered while running on the OoO core, which means that this type of decision

can only be made while currently active on the OoO backend. While running

on the in-order core, we revert to the Composite Cores method of ILP and MLP

estimation based on tables of dependence analysis.

Equation 4.1 shows the linear regression based on ESI breakdown features, with

their proportional-integral controller. It estimates the in-order core performance,

relative to the current OoO core’s performance. If the estimate is negative, then

the in-order core will produce a performance loss, and the next phase will remain

on the OoO (4.2). In essence, we replace the normal Composite Cores estimation

with ESI’s in-order loss estimation, while running on the OoO core.
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Figure 4.5: Architectural overview of ESI in relation to heterogeneous multi-core

components.

4.3 ESI Architectural Modifications

The ESI system (Figure 4.5) compares similarly to Composite Cores. It features

a tightly coupled core with separate OoO and in-order execution backends. The

shared architectural features are the fetch unit, cache, the decision making system

where ESI resides, and the register and core state transfer mechanism [LPD12].

While running on the OoO backend, ESI decisions are made, and while running

on the in-order backend, the Composite Core techniques are used to make core

choices.
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4.4 ESI Simulation Methodology

We emulate an ARM big.LITTLE core [Gre12], with big and LITTLE cores acting

as our tightly coupled backend engines. The big OoO core is modeled after the

Cortex-A15, which is 3-way issue with a pipeline depth of 15-25 stages. The

LITTLE in-order core is modeled after the Cortex-A7, which has a shorter pipeline

of 8-10 stages with 2-way issue capability, depending on instruction dependencies.

Our simulations are run on the same software as described in Section 2.4. We

maintain the same backend migration mechanism. Again, clock gating is used to

model core switching power savings, which is both realistic and pessimistic.

We run benchmarks from SPEC 2006 [Cor06] in the Simics [MCE02] and

GEMS [MSB05] simulators. Core power and energy are modeled in McPAT [LAS09].

Table 2.1 provides more details on the architectural parameters simulated. All

simulations execute over 15 million instructions, with 512-instruction epoch size,

and compiled for SPARC v9 with -O3 optimization.

4.5 Results

Overall, the ESI system shows 14.5% performance improvement over the Com-

posite Cores system. As seen in Figure 4.6, none of the benchmarks suffer worse

performance. This is expected because the system chooses the OoO core more

often, which increases the chances of obtaining higher IPC.
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Figure 4.6: ESI exhibits 14.5% more IPC than Composite Cores

The increase in performance comes at the cost of increased energy usage, due

to running more often on the power hungry OoO core. Figure 4.7 shows an average

of 2.7% increase in energy consumption from the ESI system. Most benchmarks

exhibit increased energy usage, but do not exceed 11% more energy consumption

than Composite Cores (hmmer). Libquantum and mcf manage to save energy

because running they spend more time during high IPC phases, which reduces

the overall run time of the program. This reduction in run time is large enough

that the benchmarks experience reduced energy consumption.

Both astar and hmmer show roughly 11% and 12% respective increases in

energy expenditures, which can be problematic. However, they each receive 9%

and 8% respective performance boosts. This means that for every 1% performance
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Figure 4.7: ESI uses 2.7% more energy than Composite Cores

boost, they use a little over 1% more energy, which is roughly a fair tradeoff. The

other benchmarks all experience better performance/energy tradeoffs.

Finally, we show that ESI operates better in a fine-grained mapping scheme

with sensitivity analyses in Figure 4.8. Epochs of 512 instructions receive the

best performance boost, with larger epoch sizes not performing much better. The

smaller epoch sizes, under 512 instructions, incur more backend switching activity

which decreases their performance due to overhead. Similarly, energy consumption

does not become significantly better for epoch sizes greater than 512 instructions.

Although 1024 instruction epochs experience about 3% better energy savings,

it also experiences a 3% decrease in performance. Epoch sizes larger than 1024 be-
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Figure 4.8: ESI sensitivity analysis of epoch size on performance and energy

consumption.

gin to show a trend of increasing energy consumption, which represents the larger

granularities’ inability to take advantage of fine-grained behavior. Smaller epoch

sizes consume more energy than 512 instruction epochs because more switching

activity creates enough overhead to prolong execution time.

4.6 Conclusion

We have shown that ESI counts can be effective at determining core choice in fine-

grained tightly coupled heterogeneous general-purpose multi-core resource map-

ping. ESI is a direct measure of the suitability of program phases for OoO cores,
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which is able to obtain a reasonable performance gain at a small energy consump-

tion penalty. Although the ESI metric is only obtainable on the OoO core, it still

presents a unique opportunity for further resource mapping optimization.
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CHAPTER 5

Combining Linear Regression Techniques for

Fine-Grained Mapping

Finally, we combine both the branch impact and ESI linear regression techniques

into one system. We exclude the CHILL system from the combination framework

because the decisions made with CHILL were absolute. If a CHILL phase were

detected, then the Composite Cores linear regression would be skipped, and hence,

any other linear regression method would be skipped. As a result, the branch

impact and ESI regressions should be compared more accurately with themselves

and Composite Cores.

5.1 Regression Modifications

We use both the branch impact and ESI linear regression models derived in

previous Chapters. While running on the in-order backend, we use Composite

Core OoO performance estimation, in addition to OoO branch impact estimation

(Equation 5.1). This is similar to the technique originally used when running on

the in-order backend from the branch impact chapter (Section 3).
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∆CPIin−orderdecision =
∑

CPIobserved + α
∑

CPIpasterror + βCPIcurrenterror

− CPIOoOestimated − CPIOoObranchimpact (5.1)

CPIin−orderloss =
∑

CPIobservedESI + α
∑

CPIpasterror

+ βCPIcurrenterror − CPIin−orderbranchimpact (5.2)

If the core is running on the OoO backend, a combination of the ESI and

branch impact estimations is used. Equation 5.2 shows the ESI estimation, with

branch impact wasted performance factored into the decision-making process.

Branch impact is subtracted to represent further performance loss, with a negative

CPIin−orderloss still representing a decision to remain on the OoO backend.

The architecture used is the same as Figure 4.5, but with branch impact linear

regression logic added. Our simulation parameters remain the same as Section 2.4.

The assumptions about branch predictor choice and GEMS simulation limitations

from Section 3.5 also remain the same.

5.2 Results

Overall, the combination of ESI and branch impact linear regressions produces an

average of 4.7% performance loss in comparison to Composite Cores (Figure 5.1).

This represents a push and pull effect of the different goals of each system. ESI
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Figure 5.1: Combination IPC within 4.7% of Conservation Cores.

seeks to keep the program on the OoO, while branch impact favors the in-order

backend. As a result, there are inevitable inefficiencies in such a system with two

opposing ends.

The worst performing benchmarks in the combination scheme are astar and

hmmer at roughly a loss of 21% IPC each. Hmmer still straddles the the line of

the branch impact linear regression, in that it is the benchmark that is exactly

the median. Therefore, it is overly sensitive to flip-flopping across the OoO and

in-order backends. Astar experiences an abundance of branch impact phases,

and thus over-adjusts to them by running more often on the in-order core. This

tendency incurs a performance loss because the in-order core is naturally slower,

and consequently a 22 % energy loss as well (Figure 5.2). Sjeng also experiences
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Figure 5.2: Combination saves 15.8% energy compared to Conservation Cores.

an 18% performance loss because it too favors the in-order core more frequently.

It too consumes about 19% more energy due to this loss in performance.

In general, the combination scheme produces a 15.8% energy savings on aver-

age. Several benchmarks experience small or no energy savings: bzip, deal, gcc,

gobmk, h264, libq, and mcf. Gcc, h264, and mcf experience 5% drops in perfor-

mance, but the other benchmarks experience no drops in performance. This is

evidence of the push and pull factor of competing goals in ESI and branch impact

evening out for relatively no gains.

On the other hand, several benchmarks experience energy savings: milc, namd,

omnet, perl, povray, soplex, sphinx, and xalanc. These benchmarks encounter
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various degrees of branch impact dominance in the linear regression, which is

evidenced by corresponding performance losses. Most of these performance losses

are in line with expectations of running more frequently on the in-order backend.

Milc, namd, povray, and sphinx even experience performance gains due to saving

wasted cycles spent in branch misprediction phases.

5.3 Conclusions on Fine-Grained Resource Mapping

As heterogeneity on-chip increases, the constraints of Dennard scaling and the uti-

lization wall will become more important. Today, heterogeneous general-purpose

multi-cores already exist in mobile devices manufactured by ARM and Nvidia.

Many server grade chips have GPUs embedded with ISA support. Researchers

are attempting to integrate FPGAs on-chip as well. With this current trend of in-

creasing specialization and heterogeneity, fine-grained resource mapping presents

a new and exciting method for exploiting more performance and energy savings

from processors.

In the future, hardware mapping techniques might be helpful in saving pro-

grammer effort. It is already difficult to perform resource allocation on a macro-

programmer level, and we as chip architects can seek to eliminate the pain of

manually allocating computation resources as one might allocate memory in the

C programming language. If done correctly, fine-grained mapping in hardware can

be seen as a black-box optimization operation with which the future programmer
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will not need to concern herself. Although the contribution of this dissertation

is small, we humbly hope it helps further the field toward a future of effortless

resource mapping.
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