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Iron Homeostasis During Pregnancy: Maternal, Placental, and 
Fetal Regulatory Mechanisms

Veena Sangkhae1, Allison L. Fisher2, Tomas Ganz1, Elizabeta Nemeth1

1Center for Iron Disorders, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, California, USA

2Endocrine Unit and Nephrology Division, Massachusetts General Hospital, Harvard Medical 
School, Boston, Massachusetts, USA

Abstract

Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, 

iron requirements increase substantially to support both maternal red blood cell expansion 

and the development of the placenta and fetus. As insufficient iron has long been linked to 

adverse pregnancy outcomes, universal iron supplementation is common practice before and 

during pregnancy. However, in high-resource countries with iron fortification of staple foods and 

increased red meat consumption, the effects of too much iron supplementation during pregnancy 

have become a concern because iron excess has also been linked to adverse pregnancy outcomes. 

In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus 

and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many 

mechanistic regulatory systems have been deduced from animal models, we also discuss the 

principles learned from these models and how these may apply to human pregnancy.
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IRON HOMEOSTASIS DURING PREGNANCY

Iron Requirements During Pregnancy

Iron requirements in women of reproductive age are higher than those for men because 

of the loss of iron in menstrual blood (58). During pregnancy, maternal iron demands 

further increase from approximately 1 mg/day in nonpregnant females to nearly 7 mg/day 
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in the third trimester of pregnancy. Iron is essential to support development of the placenta 

and fetus and for pregnancy-related expansion of maternal red blood cell (RBC) mass. 

In total, over the course of pregnancy, approximately 1 g of additional iron is required 

to sustain healthy pregnancy. Inability to meet these requirements can result in maternal 

iron deficiency and iron deficiency anemia, which have been linked to adverse pregnancy 

outcomes (3). Table 1 summarizes iron balances in menstruating females and during each 

trimester of pregnancy, with estimates based on a 120-lb (54-kg) woman. Aside from 

menstrual blood loss, basal iron losses are similar between the nonpregnant and pregnant 

states and are estimated at 0.8 mg/day (58) or 224 mg over 9 months of gestation. During 

the first trimester of pregnancy, maternal iron requirements marginally decrease from ~1.3 

mg/day to ~0.8 mg/day due to cessation of menstruation (58).

The placenta weighs 223 g on average by the end of the second trimester (26 weeks) 

(61) and 640 g by term (40 weeks) (8, 60, 139). Assuming placental iron concentration 

is similar through gestation [71 μg iron/g placenta (8)], approximately 16 mg and 30 mg 

of iron is needed to support placental growth and development in the second and third 

trimester, respectively, with the total amount of placental iron at term estimated at ~46 mg 

(8), although the estimates go as high as 150 mg (68).

Mean fetal weight by 26 weeks is 890 g (2), and on the basis of fetal iron measurements 

from Widdowson & Spray in 1951 (139), ~60 mg of iron is needed for fetal development 

in the second trimester. In the third trimester, fetal growth outpaces placental growth and 

requires an additional 210 mg of iron (2, 139), with the total amount of iron in the fetus at 

term estimated at ~270 mg.

Maternal RBC mass expansion requires ~450 mg of iron over gestation (13), and assuming 

a linear increase over the second and third trimesters (69), ~112 mg and ~338 mg of iron, 

respectively, are required for this adaptation. In addition to the 1 g of iron required for 

pregnancy, more iron is lost through bleeding during delivery (150 mg on average), but 

maternal RBC contraction after delivery returns approximately 450 mg to the mother (13), 

so that the net loss to the mother over gestation is approximately 700 mg of iron (13, 37).

To meet these additional iron requirements during pregnancy, iron absorption from the diet 

increases and, when available, is mobilized from maternal stores. As iron deficiency is the 

most common micronutrient deficiency in the world (142), many women of reproductive 

age are already iron deficient prior to pregnancy, and those from socially disadvantaged 

populations are disproportionally affected (22). Depending on the cutoffs used to define 

iron deficiency, up to 40% of women in the first trimester of pregnancy in the United 

States may be iron deficient (11). This has led the American College of Obstetrics and 

Gynecologists and the Centers for Disease Control and Prevention to recommend universal 

oral iron supplementation for pregnant women (11). However, it is important to consider that 

in medically and nutritionally well-resourced populations, most women are iron replete with 

sufficient iron stores when entering pregnancy, thus prompting considerations of potential 

risks of indiscriminate iron supplementation (130).
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Sources of Iron

During pregnancy, dietary iron absorption increases significantly (Figure 1). Iron is present 

in food as (a) heme iron, found primarily in animal products in myoglobin and hemoglobin, 

or (b) nonheme iron, typically from plant-derived products. Both heme and nonheme iron 

are absorbed in the duodenum (proximal part of the small intestine) and share a common 

pathway out of the enterocyte to extracellular fluid and blood through the iron exporter 

ferroportin (SLC40A1) (54). In this section, intestinal absorption of heme and nonheme iron 

are briefly discussed in the context of pregnancy. A more extensive review of intestinal iron 

absorption can be found in Reference 54.

Absorption of heme iron.—The proportion of iron in the diet contained in heme is 

estimated to be ~10%. Since these estimates were developed in the 1980s, the global 

consumption of meat has dramatically increased (50), suggesting that heme-based iron now 

represents a larger fraction of iron in the diet. Moreover, heme iron is more bioavailable 

than nonheme iron (67), making it an important determinant of iron sufficiency in most 

populations. Using iron isotopes, Young et al. (147) confirmed that heme-derived iron 

utilization is greater than nonheme iron utilization in nonpregnant and pregnant females. 

However, the percentage of heme-derived iron utilization was similar between nonpregnant 

and pregnant females. Furthermore, heme iron utilization was not related to maternal iron 

status (147). Overall, these data suggest that iron uptake from heme-iron sources is not 

altered in response to pregnancy.

Despite the importance of heme as a source of dietary iron, the mechanism of heme 

absorption is not well understood. Heme is thought to be absorbed by intestinal epithelial 

cells in the duodenum via receptor-mediated endocytosis, then catabolized in the cytoplasm 

possibly by heme oxygenase to release iron (102), which is then exported on the basolateral 

surface of enterocytes through ferroportin into the plasma. A significant barrier to our 

understanding of heme iron absorption is that the intestinal heme transporter has not yet 

been identified. Studies in rodent models may not be informative about this mechanism 

because rodents do not absorb dietary heme efficiently (35).

Absorption of nonheme iron.—Intestinal absorption of iron from nonheme sources 

has been extensively characterized. Briefly, luminal ferric iron (Fe3+) is reduced by a 

mucosal ferrireductase (DCYTB) to ferrous iron (Fe2+), whereupon it is taken up into 

the enterocyte by proton-coupled divalent metal transporter 1 (DMT1) with the inward 

proton gradient generated by cellular proton exporters NHE3 (Na+/H+ exchanger) and, to a 

lesser extent, NHE2 (122). In the enterocyte cytoplasm, iron is either stored as ferritin or 

exported to the plasma through ferroportin. Absorption and utilization of dietary nonheme 

iron increases during pregnancy (147). Expression of duodenal iron transporters is increased 

during pregnancy, and both nonheme iron uptake into the enterocyte and export of iron from 

the enterocyte to the serum are increased (91, 95), at least in part because of decreased 

systemic hepcidin levels (discussed later).

Supplemental iron, provided in nonprescription and prescription prenatal products, is 

routinely advised during pregnancy and is even commonly recommended for several months 
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prior to becoming pregnant. Iron in prenatal supplements is typically in the form of iron 

salts (nonheme iron) providing 26–34 mg of elemental iron per dose (range: 4.5–106 

mg/dose) (109). In the United States, more than 75% of pregnant women use prenatal 

supplements, with use increasing as pregnancy progresses (16). However, as discussed 

previously, most women in developed countries including the United States are already iron 

replete before pregnancy, raising questions about whether iron supplementation is necessary 

in this population. Iron supplementation and the effects of maternal iron status on iron 

homeostasis and fetal health are discussed later in the review.

Regulation of Maternal Iron Bioavailability

The hepatic hormone hepcidin regulates the absorption of dietary iron, concentrations of 

iron in the plasma, and the distribution of iron among organs and tissues (reviewed in 

45) (Figure 1). During pregnancy, maternal hepcidin concentrations control the delivery 

of iron to the placenta and the fetus. In the nonpregnant state, hepcidin is predominantly 

regulated by iron status, inflammation, and erythropoietic drive (reviewed in 113). However, 

regulation of hepcidin during pregnancy is not as well defined. As pregnancy progresses, 

hepcidin levels progressively decrease (Figure 1b). This decrease occurs in both human (36, 

40, 134) and rodent (95, 112) pregnancy. In humans, hepcidin levels increase slightly in the 

first trimester compared with those of nonpregnant women due to cessation of menstruation 

(58), then hepcidin levels progressively decline in the second and third trimesters (134). 

Decreased hepcidin allows for increased iron absorption (113) and release of iron from liver 

stores to maintain circulating iron levels (112) for uptake by the placenta and transfer to the 

developing fetus. Despite the importance of maternal hepcidin for maternal and fetal health 

(111), the mechanism of maternal hepcidin suppression remains unknown. On the basis of 

studies in mouse models, absence of maternal hepcidin results in viable but iron-overloaded 

offspring; however, elevation of maternal hepcidin concentrations through administration of 

exogenous hepcidin (111) results in fetal iron deficiency anemia and even death.

Hepcidin is regulated by maternal iron status.—Growing evidence suggests that 

hepcidin regulation by iron status is preserved in pregnancy. Maternal hepcidin positively 

correlates with maternal serum iron parameters (36) or ferritin (36, 57, 121) and is increased 

by iron supplementation in humans (40) and rodents (44). In animal models, despite lower 

hepcidin during pregnancy, iron deficiency further decreased maternal hepcidin (26, 44, 

112). Similarly, in a case-controlled human study by Zaman et al. (149), serum hepcidin 

levels were significantly lower in pregnant women with iron-deficiency anemia compared 

with those of pregnant women with non-iron-deficiency anemia and healthy pregnant 

women (Figure 1c).

Inflammation and hepcidin during pregnancy.—Inflammation is a potent inducer 

of hepcidin (98, 99). Although this is well described in the nonpregnant state, the effects 

of inflammation on iron homeostasis during pregnancy have only recently been examined. 

Human studies in most healthy pregnancies report no correlation between hepcidin and 

C-reactive protein or interleukin 6 (121, 124, 134), but the association exists in pregnancies 

complicated by inflammation and infections (53) (Figure 1d). As in nonpregnant states, 

iron deficiency and inflammation frequently coexist, vary in relative severity, and will exert 
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opposing effects on hepcidin levels. In animal models, where the effect of inflammation 

can be isolated, systemic maternal inflammation substantially induces maternal hepcidin 

expression (39, 112). As mentioned previously, elevated maternal hepcidin even in the 

absence of inflammation results in adverse pregnancy outcomes (32, 100, 111). Intra-

amniotic inflammation may not necessarily increase maternal hepcidin, as was seen with 

endotoxin administration in macaques where only fetal hepcidin increased (39). Therefore, 

during pregnancy, inflammation can regulate hepcidin expression; however, the severity and 

location of inflammation will determine if and whether maternal or fetal iron homeostasis is 

affected.

Hepcidin regulation by erythropoietin/erythroferrone.—Erythropoietin (EPO), a 

renal and hepatic hormone induced by hypoxic stimuli including anemia, is essential 

for erythropoiesis and stimulates erythropoietic activity. During pregnancy, EPO synthesis 

gradually increases (10) because of dilutional anemia, but the effect is blunted by increased 

blood flow and oxygen delivery to the kidneys, the organs that sense hypoxia and 

produce EPO (10). Increased EPO levels support the expansion of RBC mass associated 

with pregnancy. More recently, EPO has been demonstrated to upregulate erythroferrone 

(ERFE), the erythroid regulator of iron homeostasis (72). ERFE regulates iron homeostasis 

by sequestering hepcidin inducer bone morphogenetic protein 6 (BMP6), thus lowering 

hepcidin levels. In nonanemic human and rodent pregnancies, serum ERFE levels are 

not significantly affected by pregnancy status (138). However, in mouse models of iron-

restricted or iron-deficient pregnancy with ensuing anemia, maternal ERFE levels are 

significantly elevated (111, 115). Elevated maternal ERFE has also been reported in anemic 

human pregnancies (30). Mechanistic studies in mouse models showed that ERFE knockout 

mice are fertile (72) and that maternal hepcidin is appropriately suppressed, indicating that 

ERFE is not the physiological pregnancy hepcidin suppressor. In iron-deficient dams, ERFE 

deficiency had only very minor effects on maternal erythropoiesis (115). Thus, maternal 

ERFE may be a useful marker of iron deficiency anemia in pregnancy but does not strongly 

regulate maternal iron homeostasis.

Pregnancy-specific hepcidin regulator.—Maternal hepcidin is profoundly decreased 

during pregnancy, but many studies measuring hepcidin include iron-deficient pregnancies, 

confounding our understanding of the effect of pregnancy on hepcidin. In studies including 

only iron-sufficient pregnancies, as determined by hemoglobin and ferritin, hepcidin was 

still decreased in the third trimester (62, 124), suggesting the existence of pregnancy-related 

hepcidin regulation. This concept is particularly supported by a downward shift in the 

correlation curves of serum hepcidin versus serum ferritin from the first to second trimester 

in human pregnancy (57). In both trimesters, serum hepcidin positively correlated with 

serum ferritin, but hepcidin levels were nearly 10-fold lower in the second trimester over 

a similar range of ferritins. The timing of maternal hepcidin suppression also suggests 

pregnancy-specific regulation of hepcidin. In both humans and rodents, hepcidin levels 

decrease prior to a decrease in maternal iron stores (7, 112). The identity of the pregnancy-

specific hepcidin regulator(s) remains to be established.
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Hormonal regulation of hepcidin.—Estrogen, progesterone, and prolactin are 

hormones that increase substantially over the course of pregnancy (118); all have been 

implicated in hepcidin regulation and thus could modulate iron homeostasis during 

pregnancy.

Estrogen (17β-estradiol).—Estrogens increase approximately 10-fold over the course 

of pregnancy, with levels peaking in the third trimester in humans at approximately 70 

nM (118). A number of studies have described a role for estrogen in iron metabolism. An 

early study in 2009 was performed in largemouth bass, where experimental exposure of fish 

to 17β-estradiol (E2) reduced the constitutive expression of hepcidin-1 in the liver (106). 

Since then, several mouse and human studies have supported a role of estrogen in hepcidin 

regulation but report conflicting results on the direction of hepcidin change. A functional 

estrogen response element has been reported in the hepcidin promotor region (66, 145).

In some studies, E2 was a negative regulator of hepcidin. Hepcidin was suppressed in vitro 

in human hepatic cell lines Huh7 and HepG2 treated with 100 nM of E2, and the effect 

was blocked by an E2 receptor antagonist ICI182780. Hepcidin was also suppressed in 

vivo in mice following E2 injection (145). In ovariectomized mice, where estrogen is low, 

hepcidin levels were elevated compared with those of sham surgery mice (66). In female 

rats fed a low-iron diet, multiple treatments with E2 to mimic pregnancy conditions resulted 

in a dose-dependent increase in liver iron concentrations, and although hepcidin was not 

measured in this study, outcomes were consistent with decreased hepcidin levels (65). In 

humans, stimulation of endogenous estrogen production in nonpregnant women resulted 

in an approximately threefold decrease in hepcidin levels (80). However, other studies 

report that estrogen does not affect or may even induce hepcidin expression. Treatment of 

human hepatoma cells with increasing E2 doses resulted in no change in hepcidin (150) 

or in increased hepcidin expression (70). Ovariectomized mice had decreased hepcidin 

levels along with increased ferroportin expression and increased serum and liver iron 

concentrations (70), suggesting that estrogen (or other hormones produced by the ovary) 

functions as a hepcidin inducer.

Although these studies were performed in highly simplified models in vitro, or in a 

nonpregnant state in vivo, their findings are relevant to pregnancy, as estrogen is greatly 

induced during pregnancy. As estrogen is essential for healthy pregnancy and low third-

trimester urinary estriol is associated with fetal death or anencephaly (94), studying the 

specific role of estrogen in iron metabolism during pregnancy is challenging but important 

because of possible interactions of estrogen with other pregnancy hormones. In summary, 

the data on the role of estrogen in hepcidin regulation and iron homeostasis are inconclusive, 

highlighting the need for more definitive studies.

Progesterone.—Progesterone increases approximately fivefold over the course of 

pregnancy (118). However, progesterone treatment in zebrafish (5 μM) increased hepcidin 

mRNA expression 10-fold, and in the human hepatic cell line HepG2 (30 μM) it was 

increased 30-fold. This increase in hepcidin expression is reported to occur not through 

the classical nuclear progesterone receptor but through the membrane-bound progesterone 

receptor PGRMC1 (progesterone receptor membrane component 1) (84). During pregnancy, 

Sangkhae et al. Page 6

Annu Rev Nutr. Author manuscript; available in PMC 2024 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however, overall hepcidin levels decrease. Among the possible limitations of these studies of 

progesterone effects are the short timing of the experiment (8 h) and the high concentrations 

of progesterone used. Progesterone in the third trimester of pregnancy is approximately 400 

nM.

Prolactin.—During healthy pregnancy, serum prolactin levels steadily increase throughout 

gestation starting in the first trimester (105). Treatment of HepG2 cell lines with 

prolactin reduced hepcidin mRNA levels (137), and treatment of hyperprolactinemic women 

with the prolactin-reducing drug bromocriptine mesylate increased hepcidin levels (137), 

whereas another study found that pathological hyperprolactinemia did not influence serum 

hepcidin-25 levels (80). Both studies were performed in the nonpregnant state. Additional 

studies are required to determine if there is a definitive role for prolactin in regulating 

hepcidin in pregnancy.

Other possible regulators of hepcidin during pregnancy.—Several other factors 

may contribute to hepcidin regulation during pregnancy, but the extent of their contribution, 

if any, remains to be determined.

Plasma dilution.—During pregnancy, blood plasma volume increases by nearly 50%, 

which could lead to dilution of blood proteins (34). However, in rodent studies, the decrease 

in maternal serum hepcidin was equivalent to the decrease in maternal liver Hamp mRNA 

(112), indicating that plasma dilution alone does not account for decreased hepcidin levels 

observed during pregnancy. It remains to be determined whether abnormally elevated 

hepcidin levels during pregnancy could be indicative of a failure of plasma dilution.

GDF15.—At relatively high concentrations, growth differentiation factor 15 (GDF15) [also 

known as macrophage inhibitory cytokine-1 (MIC-1) or placental transforming growth 

factor beta (PT-GFB)] has been shown to suppress hepcidin in vitro in primary human 

hepatocytes (129). GDF15 is highly expressed by the placenta (77). In humans, maternal 

serum concentrations of GDF15 increase with pregnancy progression, with an approximate 

10-fold increase in the first trimester compared with nonpregnant controls (36). However, 

the same study reported no correlation between hepcidin and GDF15. The hepcidin response 

to increasing GDF15 concentrations appears to be biphasic, with hepcidin suppression seen 

only at very high concentrations of GDF15 (129), making it unlikely that GDF15 mediates 

the suppression of hepcidin in pregnancy.

Soluble hemojuvelin.—Soluble hemojuvelin (sHJV) is generated by proteolytic cleavage 

of the glycosylphosphatidylinositol-linked membrane form of hemojuvelin. sHJV suppresses 

hepcidin by antagonizing BMP-SMAD signaling, presumably by binding and sequestering 

bone morphologic proteins (5). Interestingly, during human pregnancy, maternal sHJV 

concentrations increase significantly in the third trimester and correlate with hepcidin (36). 

Authors of the study postulate that tissue hypoxia induced by fetal growth could upregulate 

HJV cleavage, resulting in the increase in the soluble form; however, systematic studies are 

needed to determine if sHJV regulates hepcidin during pregnancy.
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Fetal Hepcidin Regulation

The fetal liver can produce hepcidin during embryonic development and could thus regulate 

placental iron transport and fetal iron homeostasis. Indeed, an increase in fetal hepcidin 

in mice, through transgenic Hamp overexpression or as a result of matriptase-2 (Tmprss6) 

mutations (32, 100, 141), caused dose-dependent fetal iron-deficiency anemia and even 

resulted in fetal death. Thus, regulation of fetal hepcidin during pregnancy could be 

important for maintenance of fetal iron homeostasis.

Measurement of fetal hepcidin in mice in a healthy pregnancy indicated that fetal hepcidin 

expression is very low (100, 111). However, fetal hepcidin is responsive to stimuli (Figure 

1) and can be suppressed by iron deficiency (115) or induced by iron loading (71). Fetal 

hepcidin is also regulated by ERFE during iron-deficiency anemia, and, in a mouse study, 

lack of fetal ERFE resulted in increased hepcidin, decreased fetal iron endowment, and 

diminished fetal erythropoiesis and caused fetal tissue iron deficiency (115).

Fetal hepcidin can also be potently induced by inflammation (39). Endotoxin-induced intra-

amniotic inflammation in the rhesus macaque model of pregnancy greatly increased fetal 

plasma hepcidin and caused hypoferremia in the fetus, without affecting maternal plasma 

hepcidin (39). Intra-amniotic infection had a similar effect in human preterm neonates, 

causing increased cord blood hepcidin concentrations and hypoferremia (39).

Of note, mouse studies showed that fetal hepcidin is strongly increased by labor (100), 

highlighting the need for caution when interpreting cord blood measurements in human 

studies.

PLACENTAL IRON TRANSPORT

Iron is transported unidirectionally from the maternal to fetal circulation across the placental 

syncytiotrophoblast, the layer that mediates nutrient and waste exchange (reviewed in 114). 

Over an average singleton human pregnancy, the placenta transports approximately 270 mg 

of iron to the fetus and retains approximately 45 mg (8, 13, 37, 139).

Placental Import of Transferrin-Bound Iron

Uptake of transferrin (Tf)-bound iron from the maternal circulation is mediated by the 

iron importer transferrin receptor 1 (TFR1) on the apical membrane of the placental 

syncytiotrophoblast (9, 18, 49), facing the maternal circulation (Figure 2). Fe3+-transferrin 

binds to TFR1, and the complex is internalized by clathrin-mediated endocytosis. In the 

endosome, the acidic environment (pH 5.4) facilitates dissociation of Fe3+ from transferrin. 

Fe3+ is reduced to Fe2+ by ferrireductases, possibly by STEAP3 (six-transmembrane 

epithelial of prostate) or STEAP4, which are expressed in mouse and human placentae 

(101). Following the release of iron, the apotransferrin-TFR1 complex is recycled back 

to the membrane. The pH of the extracellular space (pH 7.4) facilitates dissociation of 

apotransferrin from TFR1, releasing apotransferrin back into the circulation. TFR1 is then 

again available for uptake of iron-rich holotransferrin.
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Transplacental Iron Trafficking

It is not fully understood how Fe2+ is subsequently transported across the endosomal 

membrane into cytoplasm. In erythroid cells, DMT1 (SLC11A2) transports iron across 

the vesicular membrane (56). In humans, DMT1 localizes to both the apical and basal 

membranes of the syncytiotrophoblast (49, 56, 85). In the mouse placenta, DMT1 partially 

colocalizes with endocytosed Tf-TFR1, suggesting a role in iron export from the endosome 

(19). However, DMT1 is dispensable in the placenta, as genetic ablation in mice does not 

affect iron endowment (56). Other potential transporters include ZIP8 (Zrt/Irt-like protein) 

and ZIP14, members of the SLC39A (solute carrier family 39A) family. ZIP8 (SLC39A8) 

and ZIP14 (SLC39A14) are abundantly expressed in placenta (136). Similar to DMT1, 

ZIP14 is dispensable in the placenta, as null mice have normal iron stores (64). In contrast, 

ZIP8 deficiency causes anemia and lethality of mouse embryos (43), showing that ZIP8 

is essential for development. The contribution of ZIP8 to placental iron metabolism and 

transport remains to be elucidated.

Within the syncytiotrophoblast, iron is stored as ferritin or is exported across the basal 

syncytiotrophoblast membrane to the fetal circulation. In most tissues, ferritin iron can 

be released through the process of ferritinophagy (116), and this may also occur in the 

placenta, providing additional iron for export to fetal blood. How iron trafficking occurs 

within the syncytiotrophoblast is unknown but may involve iron chaperones PCBP1 and 

PCBP2 (poly(rC)-binding proteins), like in other cell types (108, 144).

Placental Iron Export

Iron is transported out of the syncytiotrophoblast by the sole iron exporter ferroportin 

(9). Ferroportin is expressed on the basal membrane of human and mouse placental 

syncytiotrophoblasts facing the fetal circulation (112) (Figure 2) and is essential for 

placental iron transport and fetal iron endowment. Global ablation of the ferroportin gene 

Slc40a1 is lethal to mouse embryos by E9.5 (31), and Slc40a1 hypomorphs are severely 

anemic (92, 97). Selective expression of Slc40a1 in the placenta but not the embryo 

rescued lethality, demonstrating the placenta-specific role of ferroportin in iron transport 

(31). How iron reaches the fetal circulation after exiting the syncytiotrophoblast and how it 

crosses the fetal endothelium is unclear. Iron undergoes oxidation to the ferric form before 

loading onto fetal transferrin. Ceruloplasmin (CP), hephaestin (HEPH), and zyklopen (ZP) 

are multicopper ferroxidases expressed in the placenta (24, 55). Knockout mouse models 

indicate their individually dispensable roles in the placenta (42, 59, 63, 135). Their specific 

functions in placental iron transport remain to be clarified.

Differences Between Human and Mouse Placentae

Animal models are invaluable for understanding iron transport mechanisms, especially 

during pregnancy. The availability of a wide array of genetically modified mice makes them 

a commonly utilized animal model. Specifically for pregnancy studies, key iron regulatory 

and transport mechanisms are similar between human and mouse placentae (28). However, 

there are important anatomical, structural, and cellular differences, including differences in 

the number of fetuses, uterine shape, and the site of progesterone synthesis in late gestation 

(104). Structurally, both human and mouse placentae are hemochorial (i.e., maternal 
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blood is in direct contact with chorionic villi); however, the syncytiotrophoblast, the cells 

responsible for nutrient and waste transfer between mother and fetus, differs. The human 

syncytiotrophoblast is a single cell layer, whereas in the mouse placenta it is composed of 

two distinct layers (SynT-I and SynT-II) (107) that communicate via gap junctions (Figure 

2). Although the key placental iron transporters, transferrin receptor and ferroportin, are 

mechanistically required for both human and mouse placental iron uptake and export, noted 

differences between the species and possible redundancies in iron transport proteins have 

made it challenging to analyze iron handling within the placenta.

Transport of Alternative Iron Species Across the Placenta

Holotransferrin from the maternal circulation is thought to be the main iron species taken up 

by the placenta (Figure 2). In mice, global Tfrc deficiency resulted in embryonic anemia and 

lethality before E12.5 (81), but it is not clear whether this was a result of impaired placental 

transport or impaired fetal erythroid iron uptake or both. All Tfrc-deficient embryos were 

anemic (81), but evidence of RBC production was observed in some Tfrc-deficient embryos, 

suggesting that iron sources other than transferrin-bound iron may temporarily support 

erythropoiesis, albeit ineffectively. Iron may also be complexed to other plasma molecules 

such as citrate, other organic anionic acids, and albumin, forms collectively referred to 

as nontransferrin bound iron (NTBI), usually when transferrin is highly saturated. It is 

unlikely that maternal circulation in healthy pregnancy contains NTBI considering the 

relatively low transferrin saturation. However, it is possible that iron exported out of the 

syncytiotrophoblast to the fetus can exist in the NTBI form (33) (Figure 2) and that it can 

support embryogenesis to a certain extent. Furthermore, it is unknown whether heme or 

ferritin crosses the placenta. Proteins involved in heme transport and metabolism that are 

expressed in the placenta include heme exporters FLVCR1 and FLVCR2 (feline leukemia 

virus subgroup C receptor-related proteins 1 and 2) (73), heme-hemopexin receptor 

LRP1 (LDL receptor-related protein 1) (20), and heme oxygenases (89). Animal studies 

demonstrated the transport of labeled ferritin to the fetus (75), although the physiological 

relevance of this is unclear, as circulating ferritin is typically iron poor. Ferritin uptake by the 

placenta might involve TFR1 (83) and/or SCARA5 (scavenger receptor class A member 5) 

(82). Although the transporters for NTBI, ferritin, and heme are expressed in the placenta, it 

is unknown whether any of these molecules represent a significant iron source for placental 

transport or fetal development.

PHYSIOLOGICAL AND PATHOLOGICAL REGULATION OF PLACENTAL AND 

FETAL IRON HOMEOSTASIS

Iron delivery to the fetus is dependent on transport across the placenta. The human fetus 

obtains 80% of its iron endowment in the third trimester of pregnancy (13, 37, 139); 

thus, placental iron transport during this period is expected to be maximal. Indeed, studies 

in human and mouse placentae demonstrate increased expression of iron transporters as 

pregnancy progresses (15, 112), presumably to facilitate iron delivery to the fetus when 

growth is maximal. Normal body iron content in healthy term newborns is 75 mg/kg, with 

1.35 mg of iron/kg/day accruing in the third trimester (139). Most fetal iron is in oxygen-

transporting hemoglobin (75–80%), and the rest performs many diverse functions in iron-
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containing proteins in tissues (10%) or is stored as ferritin (10–15%). Cord blood ferritin 

and hepcidin concentrations were reported to increase with gestational age (87, 90, 123), 

in agreement with maximal fetal iron accrual in late pregnancy; yet, one study reported no 

correlation of cord blood hepcidin or ferritin with gestational age in adolescent pregnancies 

(78). The relationship between body iron, hepcidin, and ferritin levels is well established 

(46); however, interpretation of these measurements in pregnancy may be confounded 

by the physiologic effects of labor and delivery or by the presence of inflammation in 

complicated pregnancies (39, 78, 79, 87, 127). Although not all of the mechanisms are 

well understood, it has become clear that placental and fetal iron homeostasis is regulated 

by maternal, placental, and fetal signals that alter iron availability and distribution, but the 

relative contribution of these signals varies in different pathophysiological conditions.

Inflammation and Hepcidin

Placental iron transport is reliant on iron availability in the maternal circulation, which 

is ensured by the suppression of the maternal hormone hepcidin (112). Placental iron 

transfer to the fetus is inversely corelated with maternal hepcidin concentrations (148), and 

conditions such as inflammation, which induce maternal hepcidin, would be expected to 

limit iron availability for placental iron transfer. Indeed, in mice, induction of acute systemic 

inflammation by lipopolysaccharide (LPS) injection overcomes the pregnancy-dependent 

suppression of maternal hepcidin, causing hypoferremia in the dam and embryo (39, 

112). Independently of inflammation, prolonged elevations in plasma hepcidin elicited 

by administering a hepcidin mimetic throughout pregnancy in mice caused severe iron 

restriction and anemia in dams and embryos (111), confirming that elevated maternal 

hepcidin itself is sufficient to cause adverse pregnancy outcomes. In healthy human 

pregnancies, hepcidin did not correlate with inflammatory markers (121) except in some 

deliveries (79), suggesting that mild inflammation during pregnancy does not appreciably 

affect hepcidin production. However, chronic maternal inflammation caused by obesity 

is associated with increased risk of infant anemia (146), possibly through prolonged 

elevations in hepcidin levels in obese women causing iron restriction (23, 29, 133). Other 

inflammatory conditions such as preeclampsia are also associated with increased hepcidin 

levels (131), potentially affecting iron availability for placental transfer. Importantly, in 

a cohort of pregnancies complicated by inflammation and nutrient deficiencies, higher 

maternal hepcidin was identified as a main determinant of intrauterine growth restriction 

(53), suggesting that hepcidin-mediated iron restriction, particularly when chronic, may be 

an important pathological factor in adverse pregnancy outcomes.

Given the orientation of placental ferroportin on the basal membrane facing the fetal 

circulation, placental ferroportin is exposed to regulation by fetal hepcidin. Indeed, 

transgenic embryos overexpressing hepcidin are iron deficient and anemic compared with 

their wild-type littermates (100). Furthermore, embryos with null mutations in Tmprss6, 
a repressor of hepcidin expression, have 60-fold increased hepcidin levels compared with 

those of control embryos, lower iron stores, and lower expression of placental ferroportin, 

showing that fetal hepcidin can regulate placental ferroportin (141). However, in the absence 

of inflammation, placental and fetal hepcidin concentrations under physiologic conditions 

are too low to regulate iron transfer across the placenta (71, 100, 112, 141). Nevertheless, 
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certain pathological conditions such as intra-amniotic infection or inflammation can 

induce fetal hepcidin sufficiently to alter fetal iron distribution (127) (Figure 1d). In 

macaque pregnancies complicated by intra-amniotic inflammation where inflammation was 

restricted to the fetal compartment, maternal hepcidin was not elevated, whereas fetal 

hepcidin was increased and associated with fetal hypoferremia (39), demonstrating that 

in pathologically inflamed pregnancies the fetus can regulate its own iron homeostasis 

by inducing hepcidin. Whether this elevated fetal hepcidin regulates both placental iron 

transport and systemic fetal iron flows remains to be confirmed. In human pregnancies 

with intra-amniotic infection or inflammation, a similar fetal response was observed where 

human fetuses exposed antenatally to intra-amniotic infection had elevated cord blood 

plasma hepcidin levels and hypoferremia. In general, cytokine-driven increases in hepcidin 

and consequent hypoferremia (98) are important host defense mechanisms to prevent the 

spread of pathogenic bacteria by limiting iron availability and, in particular, decreasing the 

concentration of NTBI, a form highly accessible to many pathogens (125, 126). Thus, the 

ability of the fetus to respond to inflammatory signals by sequestering iron away from 

extracellular bacteria may be an important protective mechanism during intra-amniotic 

infections, although chronic elevation of fetal hepcidin would likely be detrimental by 

causing fetal iron restriction and anemia.

Iron Deficiency

Pregnancy is a major challenge to systemic iron homeostasis, and women with insufficient 

iron stores before pregnancy are at increased risk of developing iron deficiency and anemia. 

Maternal iron deficiency during pregnancy compromises fetal and neonatal iron endowment 

and is associated with fetal iron deficiency and anemia in humans and animal models 

(1, 26, 39, 44, 52, 112), as well as increased maternal morbidity and mortality, preterm 

birth, low birth weight, cognitive defects in newborns, and impaired immune function (4, 

25, 27, 48, 93, 117, 120). During iron-deficiency anemia, maternal hepcidin is further 

suppressed to allow iron absorption and mobilization from stores, but this may not correct 

the problem if dietary iron availability and iron stores are already very limited. Similar to 

maternal hepcidin, fetal hepcidin also decreases in response to iron-deficiency anemia (26, 

44) (Figure 1c), presumably to promote iron transfer across the placenta and mobilize iron 

from fetal stores. Fetal hepcidin suppression during iron deficiency anemia is at least in part 

mediated by fetal ERFE (111, 115).

In iron-deficient pregnancies, the placenta itself undergoes adaptations, and increases in 

placental TFR1 were observed in both humans and animal models (12, 26, 44, 112, 147). 

Increased placental TFR1 in iron-deficient pregnancies reflects placental sensing of limited 

iron availability, a response mediated by IRP1 and IRP2 (iron regulatory proteins 1 and 2), 

which regulate proteins involved in iron uptake, storage, and export (140). Maternal obesity 

is also associated with increases in placental TFR1, likely because low iron stores are 

more common in obese women rather than as a direct effect of obesity on placental TFR1 

(47). With severe maternal iron-deficiency anemia in mice, and also in isolated primary 

human trophoblasts in vitro when exposed to iron chelator, the trophoblast decreases the 

iron exporter ferroportin, an adaptation mediated by IRP1 (112), which would lead to a 

counterintuitive iron retention in the placenta (112). Indeed, in the mouse model with severe 
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maternal and fetal iron deficiency, placental iron content was relatively stable throughout 

gestation except for only a small decrease in placental iron at E18.5. Similarly in rats, 

placentae from iron-deficient pregnancies had lower nonheme iron content but similar total 

and heme iron content compared with that of iron-adequate pregnancies (26). Maintaining 

placental iron content during limited iron availability at the expense of fetal iron deficiency 

appears counterintuitive but may be important for preserving a broad array of placental 

metabolic functions (112), which would indirectly benefit the fetus. Indeed, causing iron 

deficiency in isolated human trophoblast in vitro greatly impaired mitochondrial respiration, 

which would be expected to be detrimental to a tissue that is as highly metabolically active 

as placenta (112), highlighting the importance of placental adaptation mechanisms that 

promote placental iron acquisition and retention to maintain the placenta’s own homeostasis.

Iron Supplementation and Excess

Iron supplementation is generally recommended to prevent the adverse effects of iron 

deficiency and anemia. Maternal iron supplementation is shown to improve anemia and 

ferritin levels in pregnant women but had little effect on cord blood ferritin at delivery. 

However, infants of mothers who were iron supplemented during pregnancy had a detectable 

improvement in serum ferritin and anemia several months after delivery (96, 103).

In mice, embryos from iron-supplemented dams (from single injection of iron dextran 

or fed a 1% carbonyl iron diet) were mostly protected from iron overload due to the 

induction in maternal hepcidin (112), although placentae were iron loaded with dietary 

iron supplementation. In hepcidin-deficient dams, even embryos become iron loaded, and 

the degree of iron loading was dependent on maternal iron status (39), with increased 

maternal iron loading leading to greater embryo overload. Compared with those of embryos, 

amniotic fluid iron concentrations were unaffected by maternal iron status but increased with 

gestational age (39). The biological implications of these changes are unknown.

Pregnancy-dependent suppression of maternal hepcidin would promote the rapid absorption 

of commonly prescribed iron supplements, potentially exposing normal pregnancies to 

iron excess and NTBI. Indeed, NTBI is detectable in plasma shortly after ingesting iron 

supplements (17), but whether NTBI affects the placenta or fetal tissues is unknown. 

Maternal exposure to NTBI could also occur in pregnancies complicated by the iron-

overload disorder hereditary hemochromatosis or the blood disorder β-thalassemia, where 

excess iron absorption and the appearance of NTBI in circulation can lead to organ damage 

including diminished fertility and increased pregnancy complications. In β-thalassemia, 

transfusions and cessation of chelation during pregnancy would further increase the risk 

of generating NTBI in maternal circulation (21, 128). Women of reproductive age and 

pregnant women with milder forms of hereditary hemochromatosis are generally protected 

from iron overload because of menstruation or pregnancy losses, and pregnancy outcomes 

are favorable when properly managed (6). Pregnant women with β-thalassemia, according 

to several studies, have increased risk of adverse pregnancy outcomes, including intrauterine 

growth restriction and low birth weight, prematurity, abortion, and intrauterine fetal death 

(41, 132). High iron levels can cause tissue damage by the generation of reactive oxygen 
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species (143). However, to what extent the adverse outcomes are related to maternal anemia 

versus iron excess in the maternal, placental, or fetal compartment remains to be determined.

Although maternal iron supplementation is effective in treating iron deficiency and anemia, 

there is a U-shaped curve relating maternal iron status or iron supplementation to the 

frequency of adverse consequences in infants and young children. Maternal and neonatal 

iron deficiency is associated with impaired cognitive, motor, and behavioral development of 

children (88). On the other hand, elevated maternal serum ferritin has also been associated 

with preterm birth, low birth weight, gestational diabetes, and neurodevelopmental 

deficiencies in children (14, 51, 57, 74, 76, 119). However, the attribution of increased 

serum ferritin to iron overload requires great caution because increased ferritin can also 

result from inflammation. Excess iron supplementation in infants was associated with 

decreased growth, along with impaired cognitive and motor function (86).

In mouse models, maternal iron excess in the absence of inflammation did not cause 

adverse pregnancy outcomes such as fetal lethality or gross morphological malformations, 

although a more detailed analysis of the outcomes in offspring development is needed (38). 

Importantly, it was the combination of maternal systemic inflammation and excess iron that 

had dire consequences for fetal development. Iron excess (as a result of hepcidin deficiency 

or feeding with a 0.25–0.5% carbonyl iron diet) in dams with systemic inflammation 

caused embryo malformations and embryo demise (38). This was observed with both the 

model of acute systemic inflammation (subcutaneous LPS injection) and the model of 

obesity, suggesting that excessive iron supplementation could be harmful in pregnant women 

with underlying inflammation. Whether iron deficiency similarly potentiates inflammation-

induced fetal injury remains to be determined. Overall, these studies underscore the 

importance of accurately identifying and treating iron disorders during pregnancy for 

optimal health in infants and young children.

CONCLUSIONS AND FUTURE DIRECTIONS

Iron is essential for a healthy pregnancy to support the development of the placenta, fetal 

growth, and maternal physiologic adaptations, including expansion of maternal RBC mass. 

Like in the nonpregnant state, regulation of maternal iron homeostasis is controlled by 

hepcidin, and maternal hepcidin suppression during pregnancy is essential for adequate iron 

supply to the fetus. Abnormal maternal iron status at either extreme, either deficient or 

excess iron, has negative consequences for both the mother and the baby. Although recent 

advancements have contributed substantially to our understanding of maternal, placental, 

and fetal iron homeostasis during pregnancy, important gaps remain. Further research is 

needed to fully characterize iron regulation during pregnancy including identifying the iron-

independent mechanism of hepcidin suppression in pregnancy, elucidating the molecular 

mechanisms of placental iron transport, defining the iron species contributing to fetal 

development, and defining the cellular consequences of iron deficiency and iron excess 

in the mother, the placenta, and the fetus and their association with adverse outcomes.
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Figure 1. 
Iron flows in (a) normal nonpregnant females, (b) normal pregnancy, (c) iron-deficient 

pregnancy, and (d) inflamed pregnancy. Iron flows are shown in shades of blue and different 

arrow sizes, where darker thick arrows indicate increased iron flows and lighter dashed 

arrows indicate decreased or absent iron flows compared with normal flow. Hepcidin effects 

are shown in red. The asterisk indicates intra-amniotic infection. Abbreviations: Fe, iron; 

RBC, red blood cell; Tf, transferrin.
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Figure 2. 
Iron trafficking across the syncytiotrophoblast. (a) Human placenta, with a single layer of 

syncytiotrophoblast. (b) Mouse placenta, with two syncytiotrophoblast layers (SynT-I and 

SynT-II). In both humans and mice, transferrin-bound iron (holo-Tf) from the maternal 

circulation binds to transferrin receptor TFR1, expressed on the apical membrane of the 

placental syncytiotrophoblast (SynT-I in mice). The iron-transferrin-receptor complex is 

internalized via clathrin-mediated endocytosis, and ferric iron (Fe3+) is released from 

transferrin (Tf) in acidified endosomes. The apo-Tf/TFR1 complex is recycled back to 

the cell surface. Fe3+ in the endosome is thought to be reduced to ferrous iron (Fe2+) by 

a ferrireductase and exported into the cytoplasm through an endosomal iron transporter. 

Cytoplasmic Fe may be chaperoned, possibly by PCBP1 or PCBP2, either to ferritin for 

storage or to ferroportin (FPN) on the basal membrane (SynT-II in mice) for export toward 

the fetal circulation. In the mouse placenta (b), it is unknown how Fe is transported from 

SynT-I to SynT-II, but it likely occurs through gap junctions. The fate of iron following 

export through ferroportin is unclear; it may enter the fetal circulation as nontransferrin 

bound iron (NTBI) or be oxidized to Fe3+ by ferroxidases and loaded onto transferrin prior 

to reaching the fetal circulation. Figure adapted with permission from Reference 114.
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Table 1

Physiological iron balance in menstruating and pregnant females by gestation

Iron fate

Menstruating
females

(28 days)

First trimester
(weeks 0–13;

13 weeks total)

Second trimester
(weeks 14–26;
13 weeks total)

Third trimester
(weeks 27–40;
14 weeks total)

Pregnancy sum
(weeks 0–40;

40 weeks total)

Basal iron losses 23 mg (0.8 mg/day)a 73 mg (0.8 mg/

day)a
73 mg (0.8 mg/day)a 78 mg (0.8 mg/day)a 224 mg

Menstruation 13 mga NA NA NA NA

Placental iron NA NA 16 mg (0.2 mg/day)d,e 30 mg (0.3 mg/

day)b,d,f
46 mg

Fetal iron NA NA 60 mg (0.7 mg/day)b,c 210 mg (2.1 mg/

day)b,c
270 mg

Expansion of maternal 
RBC mass

NA NA 112 mg (1.2 mg/

day)g,h
338 mg (3.5 mg/

day)g,h
450 mgh

Total iron needs 36 mg (1.3 mg/day) 73 mg (0.8 mg/
day)

261 mg (2.9 mg/day) 656 (6.7 mg/day) 990 mg

Delivery blood loss NA NA NA NA 150 mgg

RBC mass contraction 
after delivery

NA NA NA NA −450 mgg

Net iron loss NA NA NA NA 690 mg

On the basis of data reported by aHallberg & Rossander-Hulten (58), bWiddowson & Spray (139), cAlexander et al. (2), dBarad et al. (8), eHecht 

et al. (61), fHayward et al. (60), gBothwell (13), and hHytten (69), assuming a 55-kg woman.

Menstruation calculation (58): Hb, 135 g/L blood; Fe,3.34 mg/g Hb.

Fetal iron: iron content/g fetus weight (139); average fetal weights in second trimester (2, 110) and third trimester (2).

Placental iron: iron content/g placenta weight (71.1 μg/g) (8); average placenta weight in second trimester (61) and third trimester (8, 60, 139).

Maternal RBC expansion: total iron required (13); second and third trimesters area under curve calculation assuming a linear increase in 
requirement (69). Abbreviations: Hb, hemoglobin; NA, not applicable; RBC, red blood cell.
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