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model with static geometry and the full model with fluctuating Weyl field are
trained on the same data set of a c = 8 free Majorana fermion chain with 16
unit cells consisting both all possible choices of single sub-region and two
disjoint sub-regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.4: Mutual information between two disjoint sub-regions A and B of equal size
(a) |A| = |B| = 2, (b) |A| = |B| = 3, (c) |A| = |B| = 4 and (d) |A| = |B| = 5
separated by distance d. Both the ‘classical’ model with static geometry and
the full model with fluctuating Weyl field are trained on the same data set of
a c = 8 free Majorana fermion chain with 16 unit cells consisting both one
sub-region and two disjoint sub-regions. The distance d is measured in unit
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.5: Weyl field variance Eω2
x of the learned distribution as a function of layer i. 42

viii



Figure 4.6: The learned Weyl field correlation Eωxωy/
√
Eω2

xEω2
y between two sites

x 6= y from the same layer i is plotted against the geodesic distance |γxy|.
Due to the hyperbolic nature of space, the distance between neighboring
points within the same layer is larger when closer to the boundary layer
0. A best fitting exponential decay is shown (dotted) for each layer, with
inverse correlation length ∆ found to be (i) 0.56 (layer 0), (ii) 0.40 (layer 1)
and (iii) 0.31 (layer 2), indicating a larger decay rate for larger distance. As
similar effect is also known for massive scalar field. In flat space the inverse
correlation length ∆ is simply given by the mass m. However in hyperbolic
space i.e. spatial slice of AdSd of unit radius, it receives a correction such
that for large distance ∆ = (d +

√
d2 +4m2)/2 > m, while for short distance

it remains ∆∼ m as curvature of space is not noticeable. . . . . . . . . . . 43
Figure 4.7: Slices of the learned Weyl field correlation matrix Cxy := Eωxωy√

Eω2
xEω2

y
. In this

normalization, the largest possible value is the correlation between itself
which is defined to be unity. In each subplot, a row of Cxy of a fixed x is shown. 44

Figure 4.8: Eigenvalues λα of the learned Weyl covariance matrix Cxy. . . . . . . . . . 45
Figure 4.9: Selected eigenmodes φα and their corresponding eigenvalues, organised by

their symmetry properties (angular momentum). . . . . . . . . . . . . . . 46
Figure 4.10: Trained values of the scalar field mass m for different central charge c. The

‘classical’ model with static geometry is trained on single sub-region entropy,
while full model is trained on both 1 and 2 sub-regions. These correspond to
column (a) and (c) in Table 4.1 respectively. . . . . . . . . . . . . . . . . 47

ix



LIST OF TABLES

Table 4.1: A summary of three numerical experiments. As shown in column (a), the
classical model with static geometry is trained on single sub-region data of a
c = 8 free Majorana fermion chain with 16 unit cells. The trained model is
then asked to predict (i) 1 sub-region (ii) 2 sub-regions and (iii) 3 sub-regions
entropy yielding the respective RMSE. The same model is then then trained
on both single sub-region and two single sub-regions data as shown in column
(b). In column (c), the full model with fluctuating Weyl field ωx sampled from
from the generative network is trained on the same data set of in column (b). 36

x



ACKNOWLEDGEMENTS

Throughout my journey in graduate school, I have received a lot of patient support and

assistance.

I would first like to thank my advisor, Professor Yi-Zhuang You, whose expertise was

invaluable in formulating the research questions and methodology. You have demonstrated the

meaning of being a teacher with your passion in pedagogy, care to students and deep understanding

to the subject matter.

I would like to acknowledge my friends and colleagues in UCSD. I have learned so much

from the stimulating discussions and enjoyable coffee times with you all.

I would love to thank my partner Joyce Ip, who has supported and loved me wholeheartedly

for more than a decade. In addition, I would like to thank my parents for nurturing my curiosity.

Without that, life would be a boring one.

Material in Chapters 2-4 is currently being prepared for submission for publication of

the material. Lam, Jonathan C. C.; Yi-Zhuang, You. The dissertation author was the primary

investigator and author of this material.

xi



VITA

2015 BSc. in Physics, The Chinese University of Hong Kong

2015-2021 Graduate Teaching Assistant, University of California San Diego

2021 Ph. D. in Physics, University of California San Diego

xii



ABSTRACT OF THE DISSERTATION

Machine Learning Statistical Gravity from Multi-region Entanglement Entropy

by

Chun Cheong Lam

Doctor of Philosophy in Physics
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Professor Yi-Zhuang You, Chair

The holographic duality is a duality between boundary d-dimensional quantum field

theories and bulk (d+1)-dimensional gravitational theories in asymptotically anti-de Sitter (AdS)

space. It provides an appealing explanation for the emergence of spacetime geometry from

quantum entanglement, in particular via the Ryu-Takayanagi (RT) formula which assumes the

gravity theory is in the classical limit. Yet the assumption of classical geometry has lead to

exponentially small mutual information between disjoint sub-regions, which is not true in many

system such as free fermion. In this work, we study a generalized Random Tensor Network (RTN)

model with fluctuating bond dimensions, which is mapped to a statistical gravity model consisting

a massive scalar field on a fluctuating background geometry. A concrete algorithm is constructed
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to recover the underlying geometry fluctuation from multi-region entanglement entropy data

by modelling its distribution as a generative neural network. To demonstrate its effectiveness,

we train the model using entanglement entropy of a free fermion system and showed mutual

information can be mediated effectively by geometric fluctuation. Remarkably, locality emerges

from the learned geometric distribution.
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Chapter 1

Introduction

1.1 The Challenge Of Quantum Gravity

In 1687, Newton published Principia, in which he postulated his law of universal gravita-

tion

F = G
m1m2

r2 (1.1)

where F is the attractive force between the two objects of masses m1 and m2, separated by

distance r, and GN is the gravitational constant. Until a century ago, Newton’s theory was

superseded by Einstein’s general relativity. As one of the most fundamental postulates in general

relativity, the equivalence principle allowed Einstein to grant a completely new meaning to gravity.

Instead of viewing gravity as a force, the effects of gravitation are ascribed to the geometry of

spacetime. Around the same period of time, quantum mechanics was born. Buoyed by the success

of the quantum theory, quantization of gravity became the next natural endeavor in theoretical

physics. A century later, it remains difficult to describes gravity in a way that is consistent with

quantum mechanics. There are many reasons to that. From a practical point of view, classical

Einstein’s gravity is such an excellent description of the universe across many scales. It is a

blessing as well as a curse because quantum correction is expected to appear only at length scale
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near the Planck scale, around 30−35m which is many orders of magnitude beyond the reach of

current accelerator technology. Besides practical considerations, the quantization of gravity also

poses a unique technical challenge theoretically. In the quantum world, physical quantities are

constantly fluctuating. In the path integral formulation of quantum mechanics one integrates

over eiSmatter[φ|g]/~ over all possible paths of the matter field φ living on a spacetime defined by

the metric tensor g, where Smatter[φ|g] is the classical action. Therefore in a theory of quantum

gravity, spacetime itself is also fluctuating . One has to evaluate the functional integral

∫
DgDφeiSgravity[φ,g]/~ (1.2)

where Sgravity[φ,g] = Smatter[φ|g]+Sgeometry[g]. The Einstein-Hilbert action is an excellent effec-

tive action for Sgeometry[g] at the low energy scale where human can experience. It gives rise to

general relativity when evaluated at saddle point. However, it is known to be not renormalizable

— meaning it will eventually break down at some very small length-scale.

1.2 Holographic Principle

Bekenstein[Bek20] and Hawking[Haw75] showed that, in order to comply with the laws

of thermal dynamics in a gravitational system with black holes, a black hole should have an

entropy

SBH =
A

4G
(1.3)

where A is the area of its event horizon and G is the Newton’s gravitational constant. This ‘area

law’ behavior has some far-reaching consequences. On one hand, the black hole entropy is an

upper bound to that of all possible states of matter in a region of the same size. To see that,

consider a region of space of volume V bounded by area A. Suppose the matter in this region has

entropy S > SBH , then by keep putting even more matter in, a black hole would form eventually,
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with entropy SBH less than what we started. This violation of the second law of thermodynamics

implies S < SBH for all possible state of matter and a black hole to is most entropic configuration

possible. On the other hand, as a measure of the number of independent degrees of freedom, the

entropy of a physical system is normally extensive and proportional to its volume. This is known to

be true for any theory with local interaction such as field theory. The sharp contradiction between

the ‘area law’ of black hole and ’volume law’ of general physical system suggests that a quantum

theory of gravity, which describes a black hole, should have a number of degrees of freedom

which scales like a system with local interaction in one lower dimension. This observation has

ultimately lead to the holographic principle[BH86, Wit98b, Wit98a, GKP98, Mal99]. The notion

of holography establishes an important duality between two seemingly completely different and

unrelated system. On the one hand, one has a quantum mechanical system on a flat spacetime,

which a priori has nothing to do with gravity. And on the other hand one has a theory of quantum

gravity, one in which the geometry itself fluctuates quantum mechanically.

An important breakthrough was the discovery of AdS (anti-de Sitter)/CFT (conformal

field theory) correspondence which is a precise implementation of the holographic principle. As

a duality–physical equivalence between two theory, it relates the computation of the partition

function of a CFT, a particular kind of quantum field theory (QFT) suitable for describing critical

systems, to a quantum theory of gravity which has an asymptotic hyperbolic geometry. More

precisely, the mathematical backbone is given by a relation known as the ‘Gubser-Klebanov-

Polyakov-Witten’ (GKPW) rule. The relation identifies the generating functional of a CFT for an

observable O, with the partition function of a bulk gravitation theory where the asymptotically

anti-de Sitter boundary value of a field φ equated to the source h

〈
ei

∫
dxh(x)O(x)

〉
CFT

=
∫

φ→h
DgµνDφeiSgravity[φ,gµν]. (1.4)

Therefore, as a useful heuristic mnemonic, one can say that a CFT is living on the boundary of the
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AdS spacetime bulk. As an example of weak-strong duality, it is a powerful computational device.

For example, if a strongly interacting CFT has classical gravitational dual, one can compute

quantities in such a CFT non-perturbatively, by evaluating the r.h.s of eq (1.4) at the saddle point

of which the geometry is essential static. Perhaps even more interestingly, this duality allows

one to use the l.h.s. of eq (1.4), of systems that are relatively well understood, to define the path

integral of the r.h.s. In other words, a standard quantum field theory on flat spacetime could tell us

about the nature of geometric fluctuation in a quantum theory of gravity in one higher dimension,

via the holographic principle. At last but not least, it is a progress toward a UV-complete quantum

gravity theory.

1.3 The Ryu-Takayanagi Formula

The holographic duality has provided an appealing explanation for the emergence of

spacetime geometry from quantum entanglement[Van09, van10, MS13, JK13, BCCd13, Qi13,

BHM+14, Sus14, BCC+14, CL14, CCM17]. Recently, using Ads/CFT correspondence, Ryu and

Takayanagi (RT) gave a holographic interpretation[RT06b, RT06a] of the entanglement entropy in

a quantum (conformal) field theory. The holographic entanglement entropy formula proposed by

them provided a direct and quantitative relation between the quantum entanglement and spacetime

geometry in the classical limit where fluctuation of geometry in suppressed.

Consider a equal-time slice Σ of an AdS spacetime on whose boundary ∂Σ we define the

dual CFT state |ψ〉. The RT formula states that the entanglement entropy SA =−TrρA lnρA of a

subregion A defined on the boundary CFT, where ρA = TrĀ |ψ〉〈ψ| can be also computed by

SA =
1

4GN
min

γA
|γA| (1.5)

where |γA| is the area of an extremal surface through the holographic bulk that encloses the

boundary region A as illustrated in Figure 1.1. This has the same from as eq (1.3), the one
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γAA AΣ

Figure 1.1: Holographic duality and Ryu-Takayanagi formula. Boundary entanglement region
A and the corresponding extremal surface |γA| through holographic bulk.

given by Bekenstein and Hawking, but with the black hole horizon area replaced by an minimal

surface area |γA|. This formula has been extended to Rényi entanglement entropies[BMM13] and

generalized to its covariant form[HRT07].

A distinct feature of the holography entanglement entropy based on the RT formula is

that the mutual information

IA:B = SA +SB−SAB (1.6)

vanishes between two disjoint boundary regions A and B that are far separated from each

other[Hea10, Hea19], because the minimum surface enclosing the combined region AB will

be a disjoint union of γA and γB such that the entropies simply add up as SAB = SA +SB, leaving

no room for mutual information. While the vanishing mutual information is a correct feature of

holographic conformal field theories (CFT), it is generally not the case for many other quantum

systems (e.g. free-fermion CFT). One idea to remedy the problem is to introduce bulk matter

fields to mediate the mutual information [FLM13, EW15, DQSY20]. Another possibility is to

consider statistical fluctuations of bulk geometries such that γA and γB are correlated to produce

the finite mutual information. The statistical gravitational fluctuation may be viewed as an

effective description arising from tracing out bulk matter fields.
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1.4 Does Gravity Come From Quantum Information?

One on hand the emergent holographic space provides an intuitive geometric description

for the sophisticated structure of quantum many-body entanglement [HT07, CHH12, LRSV15,

BHRT15]. On the other hand it opens up the possibility to construct emergent spacetime geom-

etry from entanglement. To make progress undertsanding emergent spacetime geometry from

quantum entanglement, it is useful to construct and study toy models that capture aspects of the

entanglement-geometry duality. A family of such toy models[EV14, Swi12a, Swi12b, BPSW19]

using tensor networks have been devised. Originally, tensor networks have been constructed as

variational wavefunctions for strongly correlated systems. On one hand, as a wavefunction, a

tensor network is a representation of a quantum state. On the other hand, it is a graph whose

geometry controls many of its quantum mechanical properties, namely entanglement. As a

result, tensor networks could be a good playground to investigate the duality between quantum

entanglement and geometry. Indeed, tensor networks holography of different flavors have been

studied in detailed. In particular, the random tensor network (RTN) states were shown to satisfy

the RT formula in the large bond dimension limit[HNQ+16]. Based on that idea, a deep learning

algorithm called Entanglement Feature Learning[YYQ18] was developed, pioneering the use of

machine learning to establish a holographic bulk description from the entanglement structure.

This sets the starting point of this work.

1.5 Contribution Of This Work

In prior approaches to RTN holography, the dual bulk network geometry is assumed to be

static, analogous to the classical gravity dual in the context of AdS/CFT correspondence. While

those models recover the RT formula, they share the same feature that they do not capture mutual

information between disjoint regions effectively for non-holographic state.

In comparison, this work makes progress by including the gravitational fluctuation in the
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model. Not only it would capture more sophisticated entanglement structure but also allow us

to learn about the emergent gravity theory rather than a static classical geometry. We will focus

on (1+1)D quantum systems, and assume that the system admits an approximate semiclassical

geometry description in the holographic bulk. Based on a random tensor network model with

fluctuating bond dimensions, we first establish a holographic model for quantum entanglement

involving statistically fluctuating spatial geometry as well as matter. Applying our approach to

free-fermion CFT state with large central charge, we uncover a statistical gravity model governed

by Weyl field fluctuations propagating on the hyperbolic background geometry. Such model with

fluctuating geometry was found to be much more effective in mediating mutual information than

its classical analogue. Furthermore we show that the Weyl field fluctuation has the emergent bulk

locality by studying its bulk correlation. By analysing the spectrum and the leading collective

modes of the emergent gravity theory, familiar excitation such as s-wave, p-wave and d-wave

emerge.
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Chapter 2

Random Tensor Network Holography

The idea of tensor network holography[HNQ+16, YYQ18] provides a concrete micro-

scopic model directly connects quantum states to an emergent geometries. In such a model, the

quantum state is defined on the boundary of a tensor network whose connectivity can be inter-

preted as a discrete representation of space. Conventionally, the bond dimensions are assumed to

be fixed and large, such that the 2nd Rényi entropy of the boundary quantum state is mapped to

the free energy of an Ising model whose couplings is a function of the bond dimensions. In this

work, we consider a generalised RTN whose bond dimensions (Ising coupling) takes a non-trial

joint distribution. This results to a statistical gravity model with fluctuating matter and geometry.

2.1 Construction of RTN states

The random tensor network (RTN) model is an intuitive toy model for holographic duality,

which directly connects quantum states and emergent geometries. The original proposal[HNQ+16]

of RTN assumes a fixed bond dimension on every link of the tensor network. It can be

generalized to include bond dimension fluctuations (or more precisely, bond entanglement

fluctuations)[QYY17, VPYL18]. The generalized RTN model that we will consider in this

work is defined as follows: (i) A planar graph G = (V,E) is given to describe the background
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two-dimensional spatial geometry, where V denotes the vertex set and E denotes the edge set.

V =Vblk∪Vbdy is divided into two subsets: the bulk Vblk and the boundary Vbdy sets, see Figure

2.1(b). (ii) A local Hilbert space H e
v is associated with each pair (v,e) of vertex v ∈ V and its

adjacent edge e ∈ E (for e not adjacent to v, the associated Hilbert space is considered trivial

H e
v
∼= C), see Figure 2.1(a). (iii) A random pure state |ψv〉 ∈ Hv ≡

⊗
e∈dv H e

v is defined on

every bulk vertex v ∈ Vblk. (iv) A random entangled state |φe〉 ∈ H e ≡
⊗

v∈∂e H e
v is defined

across every edge e ∈ E. (v) RTN defines an ensemble ERTN = {|Ψ〉} of pure states in the

boundary Hilbert space Hbdy ≡
⊗

v∈Vbdy
Hv by taking a (partial) projection in the bulk Hilbert

space Hblk ≡
⊗

v∈Vblk
Hv as

|Ψ〉= 〈ψ|φ〉 : |ψ〉=
⊗

v∈Vblk

|ψv〉, |φ〉=
⊗
e∈E

|φe〉. (2.1)

The probability measure of |Ψ〉 in the RTN ensemble ERTN is given by P(|Ψ〉) = P(|ψ〉)P(|φ〉).

The vertex state distribution P(|ψ〉) = ∏v∈Vblk P(|ψv〉) is assumed to be factorized, and on each

vertex, the distribution P(|ψv〉) is taken to be the Haar measure (i.e. uniform random states in Hv)

identically. Conventionally, the edge (link) state distribution P(|φ〉) is assumed to is generally

a nontrivial joint distribution depending on all |φe〉 on all edges, which allows the quantum

entanglement across different edges to fluctuate collectively.

For any operator O(k) defined in k copies of the boundary Hilbert space H ⊗k
bdy, its expecta-

tion value in the product state |Ψ〉⊗k is defined to be

〈O(k)〉= E|Ψ〉∈ERTN

Tr
(
(|Ψ〉〈Ψ|)⊗kO(k))
〈Ψ|Ψ〉k

. (2.2)

We assume that the correlation between denominator and numerator is not important (which

is generally valid in the semiclassical regime when fluctuations are weak), so that we can
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ϕe 〉
ψv〉

v

e

ℋv

e

(a)

Vblk

Vbdy(b) (c)

dual

Figure 2.1: (a) Details of the RTN near an edge. (b) The planar graph G on which the RTN is
defined. The vertices are classified into the bulk vertices (in red) and the boundary vertices (in
green). (c) The dual graph G̃ of the RTN graph G.

approximate the ensemble average of the ratio by the ratio of separate averages,

〈O(k)〉 ' 1
Nk

E|Ψ〉∈ERTN Tr
(
(|Ψ〉〈Ψ|)⊗kO(k)), (2.3)

where Nk = E|Ψ〉∈ERTN〈Ψ|Ψ〉
k is the kth moment of the state norm squared. For example, the 2nd

Rényi entanglement entropy SA (or more precisely, the purity e−SA) of RTN states in a boundary

region A can be calculated by taking k = 2 and O(k) = XA (the swap operator supported in region

A),

e−SA ∝ E|Ψ〉∈ERTN Tr
(
(|Ψ〉〈Ψ|)⊗2XA

)
. (2.4)

We will suppress the Rényi index throughout this work, and use SA to denote the 2nd Rényi

entropy. The RTN model provides an effective description of entanglement entropies of typical

quantum states on the holographic boundary, given the background geometry G together with

fluctuations of states |ψv〉, |φe〉 in the holographic bulk.

10



2.2 Ising and Dual Ising Models

Evaluating the ensemble average in Eq. (2.4) following the approach developed in [HNQ+16],

the RTN purity e−SA can be map to the partition function of an Ising model on the graph G with

fluctuating coupling constants

e−SA = ∑
[σ,J]

P[σ|J]P[J]δ[σbdy⇔ A], (2.5)

with P[σ|J] given by

P[σ|J] = e−E[σ|J]

Z[J]
,

E[σ|J] =−∑
e∈E

(
Je

2 ∏
v∈∂e

σv

)
,

Z[J] = ∑
[σ]

e−E[σ|J]
δ[σbdy⇔ /0].

(2.6)

and P[J] given by

P[J] =
∫
|φ〉

∏
e∈E

δ
(
Je−S(|φe〉)

)
P(|φ〉). (2.7)

Here σv = ±1 is the Ising variable defined on every vertex v ∈ V , Je ≥ 0 is the ferromagnetic

coupling strength on every edge e ∈ E. Je is determined by S(|φe〉), the 2nd Rényi entropy of the

state |φe〉 (entangled between the Hilbert spaces Hv+e and Hv−e where v± are the two vertices on

the boundary of e). Je characterizes how much the tensors are entangled with each other across

the edge e in the tensor network. It corresponds to the notion of bond dimension when |φe〉 is

maximally entangled. The distribution P[J] describes the how the effective bond dimension (bond

entanglement) fluctuates in the RTN ensemble. Finally, the partition function is subject to the

11



boundary condition that is set by the boundary region A of SA,

∀v ∈Vbdy : σv =

 +1 v /∈ A,

−1 v ∈ A,
(2.8)

which is denoted as δ[σbdy⇔ A] in Eq. (2.5). The partition function Z[J] properly normalizes

the Boltzmann weight of the Ising model, such that SA = 0 when the entanglement region A = /0

is empty.

The RT formula can be recovered in the classical limit when the RTN bond dimensions are

large and fixed, which corresponds to the deep ferromagnetic phase of the Ising model (Je� 1).

As a result, the boundary condition Eq. (2.2) implied by the entanglement region A creates disjoint

domains that extend to the bulk. Thus, the free energy F [A] =− lnZ[J] is mainly controlled by

the energy cost of the shortest domain walls |γA| homologous to A. As a result, the RT formula

SA = k|γA| (2.9)

is recovered after identifying k the free energy cost of the domain wall per unit length as 1
4G .

Given that G is a planar graph, we can use the Kramers-Wannier duality to rewrite the

Ising model Eq. (2.5) on the dual lattice G̃ = (Ṽ , Ẽ), as shown in Fig. 2.1(c), where Ṽ corresponds

to the set of faces in G and Ẽ ∼= E. The dual Ising model takes the similar form

e−SA = ∑
[σ̃,J̃]

(
∏

ṽ∈∂A
σ̃ṽ

)
P[σ̃|J̃]P[J̃], (2.10)

12



with P[σ̃|J̃] given by

P[σ̃|J̃] = e−E[σ̃|J̃]

Z[J̃]
,

E[σ̃|J̃] =−∑
ẽ∈Ẽ

(
J̃ẽ

2 ∏
ṽ∈∂ẽ

σ̃ṽ

)
,

Z[J̃] = ∑
[σ̃]

e−E[σ̃|J̃],

(2.11)

and P[J̃] related to P[J] by

P[J̃] =
(

∏
e

∂Je

∂J̃ẽ

)
P[J]. (2.12)

Here σ̃ṽ =±1 is the dual Ising variable and

J̃ẽ =− ln tanh(Je/2) (2.13)

is the dual coupling. The boundary condition in the original Ising model translates to the

insertion of the dual Ising variable at every boundary point of entanglement region A (i.e. at every

entanglement cut). Therefore the purity of the RTN state can be interpreted as the boundary

correlation of dual Ising variables e−SA ∝ 〈∏ṽ∈∂A σ̃ṽ〉 in an Ising model with fluctuating couplings.

σ
˜
1

σ
˜
2

γ12A

(a)
σ
˜
1

σ
˜
2 σ

˜
3

σ
˜
4

γ12 γ34A B

(b)

Figure 2.2: (a) Two-point correlation and (b) four-point correlation of dual Ising spins.

In the classical limit when the RTN bond dimensions are large and fixed, which corre-

sponds to the deep ferromagnetic phase of the original Ising model (Je� 1). Equivalently the dual
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Ising model is deep in the high temperature paramagnetic phase (J̃ẽ� 1). In such limit, the dual

Ising correlation decays exponentially with the geodesic distance 〈σ̃1σ̃2〉 ∝ e−γ12/ξ, as illustrated

in Fig. 2.2(a), which reproduces the RT formula SA = γ12/ξ with some appropriate choice of

the correlation length ξ. Multi-region entanglement entropies will correspond to higher-point

correlations functions, such as e−SAB ∝ 〈σ̃1σ̃2σ̃3σ̃4〉 ∼ e−γ12/ξe−γ34/ξ in Fig. 2.2(b). Allowing the

dual Ising coupling J̃ to fluctuate collectively will introduce perturbations to the geodesic distance

γxy→ γ̄xy +δγxy in a correlated manner, such that

e−SAB ∼ E(e−γ12/ξe−γ34/ξ)

∼ Ee−γ12/ξEe−γ34/ξe
1

2ξ2 Eδγ12δγ34

∼ e−SAe−SBeIA:B.

(2.14)

Thus the correlated geometric fluctuation provides an effective mechanism to generate the

mutual information between far-separated regions A and B (beyond the classical RT formula).

Therefore we anticipate the fluctuating RTN model to be a more expressive holographic model for

entanglement entropies. However, it is not clear how the dual Ising coupling J̃ (or the effective

bond dimension J) should fluctuate precisely in order to quantitatively reproduce all multi-region

entanglement entropies of a given quantum many-body state. The remaining task is learn the

distribution P[J̃] (or other equivalent distributions) from data.

2.3 Effective Statistical Gravity Model

Suppose the fluctuation of J̃ is small around its static background configuration, such that

there is a meaningful notion of background geometry in the bulk. The dual Ising model can be

14



described by an effective field theory1 in the continuum limit

S[φ|g] = 1
2

∫
d2x
√

g(gi j
∂iφ∂ jφ+m2

φ
2), (2.15)

where the dual Ising variable σ̃ṽ is coarse grained to a massive real scalar field φ(x), as the Ising

model universally flows to this massive Gaussian fixed point in the paramagnetic phase. The

theory is defined in the holographic space (without time dimension). To numerically evaluate the

multi-point scalar field correlation, we can place the bulk field theory back on a lattice, say on the

dual graph G̃ = (Ṽ , Ẽ). Using Regge calculus[Reg61] to discretize the action,

S[φ|ω] = ∑
〈xy〉∈Ẽ

Axy

2

(
φx−φy

`xy

)2
+ ∑

x∈Ṽ

m2Ax

2
φ

2
x , (2.16)

where `xy can be interpreted as the geodesic distance between two vertices x and y on the

background geometry. Ax and Axy are the areas associated to the vertex x and the edge 〈xy〉

respectively. `xy,Ax,Axy are all fixed according to the choice of background metric, which will be

specified later.

A explicit relation between `xy and ˜Jxy can be found by comparing the correlation functions

〈σ̃xσ̃y〉 and 〈φxφy〉. By assumption J̃xy � 1, it is therefore advantageous to employ the high-

temperature tanh expansion

〈σ̃xσ̃y〉=
∑σ̃ σ̃xσ̃y ∏〈i j〉 e

J̃i j
2 σ̃iσ̃ j

∑σ ∏〈i j〉 e
J̃i j
2 σ̃nσ̃m

=
∑σ̃ σ̃xσ̃y ∏〈i j〉(1+ σ̃iσ̃ j tanh J̃i j

2 )

∑σ̃ ∏〈i j〉(1+ σ̃iσ̃ j tanh J̃i j
2 ).

(2.17)

1For this mapping to make sense, we had assumed that the original network of the RTN model was chosen such
that distances can be defined consistently throughout the bulk in the dual Ising model, via dist(x,y) ∝− ln〈σ̃xσ̃y〉.
Otherwise, zero probability P[J̃] will be assigned to such graph.
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In the simplest case where there is a unique shortest path γxy joining sites x and y, we have

〈σ̃xσ̃y〉= ∏
〈i j〉∈γxy

tanh
J̃i j

2
(1+ ...) (2.18)

where the ellipses denotes corrections of higher order in tanh J̃i j from longer paths. On the other

hand, the scalar field correlations decays exponentially with geodesic distances as the leading

behavior

〈φxφy〉 ≈ K exp

−m ∑
〈i j〉∈γxy

`i j

= K ∏
〈i j〉∈γxy

e−m`i j (2.19)

where K is a non-universal proportionality constant. As a result, by demanding the correlation

functions 〈σ̃xσ̃y〉 and 〈φxφy〉 to match each other (up to the proportionality constant) for any

arbitrary sites x and y, one conclude that

e−Je = tanh
J̃xy

2
≈ e−m`xy (2.20)

where the duality relation (which has the same form as it inverse) Eq (2.13) is used in the first

equality. One concludes

Je =−m`xy. (2.21)

Thus, by trading the dual spin variables σ̃x to real scalar variables φy, we arrive at the following

model

e−SA = EJ̃

〈
∏

x∈∂A
σ̃x

〉
J̃

→ E`

〈
∏

x∈∂A
φx

〉
`

=
∫

P[`]

〈
∏
i∈∂A

φx

〉
`

(2.22)

where 〈·〉`i j
denotes the expectation value with respect to a set of fixed `i j. In the continuum limit,

where the average over {`xy} is ammped to average over g, this model becomes by a statistical
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gravity model

e−SA =
∫
[φ,g]

(
∏

x∈∂A
φ(x)

)
P[φ|g]P[g],

P[φ|g] = e−S[φ|g]

Z[g]
,

Z[g] =
∫
[φ]

e−S[φ|g],

(2.23)

where the gravity is “quenched” in the sense that the metric configuration is generated with

a probability distribution P[g] independent of the scalar field φ configuration. For brevity, the

proportionality constant K in eq (2.19) has been absorbed in the definition of of the scalar field

φ→ φ/
√

K.

In two-dimensional space, the metric tensor has three independent components. However

two of them can be removed by gauge transformation gi j→ gi j +∇iξ j +∇ jξi. We can choose the

conformal gauge where the metric tensor gi j(x) is parametrized by a Weyl field ω(x) that rescales

a fixed background ḡi j(x)

gi j(x) = e2ω(x)ḡi j(x), (2.24)

such that each Weyl field configuration represents a physically distinct geometry. In this gauge

the continuum scalar field action is given by

S[φ|ω] = 1
2

∫
d2x
√

g(gi j
∂iφ∂ jφ+m2e2ω

φ
2). (2.25)

As a result, the integration
∫
[g]P[g] can be replaced by

∫
[ω]P[ω] in Eq. (2.23). The unknown

joint distribution P[ω] will be what we aim to learn from the entanglement entropy data. The

corresponding discrete action reads

S[φ|ω] = ∑
〈xy〉∈Ẽ

Axy

2

(
φx−φy

`xy

)2
+ ∑

x∈Ṽ

m2Ax

2
e2ωxφ

2
x , (2.26)
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where `xy can be interpreted as the geodesic distance between two vertices x and y on the

background geometry. Ax and Axy are the areas associated to the vertex x and the edge 〈xy〉

respectively. `xy,Ax,Axy are all fixed according to the choice of background metric, which will be

specified later. The statistical variables2 in the model are the scalar field φx and the Weyl field

ωx in the holographic bulk. The model predicts the entanglement entropy on the holographic

boundary by

e−SA =
∫
[φ,ω]

(
∏

x∈∂A
φx

)
P[φ|ω]P[ω],

P[φ|ω] = e−S[φ|ω]

Z[ω]
,

Z[ω] =
∫
[φ]

e−S[φ|ω]

(2.27)

which is the underlying lattice model that will be used in the machine learning approach.

The unknown distribution P[ω] will be parameterized by a generative model. By matching

the model prediction with the actual data of entanglement entropies calculated from a quantum

state, the algorithm can reconstruct the distribution P[ω] and infer the statistical gravity model

behind the entanglement structure.

This chapter is currently being prepared for submission for publication of the material.

Lam, Jonathan C. C.; Yi-Zhuang, You. The dissertation author was the primary investigator and

author of this material.

2The use of fixed `xy and fluctuating ωx is, in the continuum limit, equivalent to saying `xy fluctuates in the
gauge-fixed form `xy = eωx ¯̀xyeωy where ¯̀ is a fixed background.
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Chapter 3

Learning the Distribution of Geometries

Having interpreted RTNs with fluctuating bond dimensions as an ensemble average over

geometry, a natural question follows: What could be the corresponding bulk geometric distribution

P[`] (or parameterised by P[ω] in the conformal gauge) given a set of entanglement features

e−Sdata(A) from an arbitrary quantum state living on the boundary? The problem of modelling

high-dimensional probability distributions from data is not unique to physics. In fact, it has been

one of the most challenging problems in statistics and machine learning and goes by the name

generative models[GBC16]. In this chapter we review a conventional approach used in statistical

physics to infer P[`] from data. Then an alternative approach using neural networks — the route

taken in this work, is discussed.

3.1 A Statistical Physics Approach

We want to find a possible P[`] such that entropy produced by the holographic model

matches the data as close as possible

e−Smodel(A) !
= e−Sdata(A) (3.1)
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where e−Smodel(A) =
∫

D`P[`]〈∏x∈∂A φx〉` is the model defined in the previous chapter. To do so, a

more conventional approach could be to postulate an effective Hamiltonian/action S[`] such that

`’s follows the Boltzmann distribution

P[`] =
e−S[`]

Z
(3.2)

where Z =
∫

D`e−S[`]. When constructing S[`], a common approach is to combine possible terms

which are consistent with all the symmetries or gauge structure known to the system

S[`] = g1S1[`]+g2S2[`]+ · · · (3.3)

where gi are the coupling constants. Moreover, as a form of inductive bias, local terms are

generally preferred, and organized by relevance — number of derivatives. Generally speaking,

depending on the kind of question interested, a model with only a few terms may suffice. For

example, to describe the long distance spin-spin correlation in paramganetic phase, an Ising

model with only nearest neighbor coupling is good enough.

In Regge calculus’ approach to quantum gravity[Reg61, Ham08], a smooth manifold is

replaced by a triangulation made of simplices. The edges {`xy} between neighboring vertices

play the role of the metric ds2 = gi jdxidx j in the smooth manifold. In this formalism, most

geometric quantities derived from the metric have a lattice analogue in terms of {`xy}. For

example, curvature can be expressed in terms of deficit angle at a vertex, which can be computed

using the edge variables {`xy}. This is analogous to the computation of the Riemann curvature

tensor using gi j. As a result, it is possible to construct the lattice analogue of the Einstein-Hilbert

action and any higher-derivative of Ricci scalar. A number of Monte Carlo study have been done

along this direction with Euclidean path integral.

With this technology in hand, a natural, systematic approach to model P[`] could be

adding terms with increasing order of Ricci scalar and derivatives of it. To determine the
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coupling constants gi’s, one may for example resort to techniques such as variational Monte

Carlo to determine the best-fitted value for a given boundary entropy data. While this approach

often produce models that can be interpreted easily, the approach has some drawbacks: It is

rarely the case that expected value E`O[`] of an observable O[`] of interest can be computed

exactly. To estimate it, one has to perform some kind of Markov Chain Monte Carlo (MCMC)

sampling. A major difficulty in deploying such energy-based model of the form P[`] = e−S[`]/Z

is the intractability of the partition function Z. A solution is to use sampling schemes akin to

Metropolis-Hasting algorithms. However as the energy-action landscape gains complexity —

multimodality, such system becomes frustrated and the acceptance ratio vanishes1. Therefore it

becomes computationally prohibitive to make estimation with finite error bar as it is becoming

harder to obtain uncorrelated samples. A famous example is the phenomenon of critical slow-

down in Ising model. Therefore, traditional approaches to generative models often face the

dichotomy between either (i) to use a simple model that is easy to sample or (ii) to use an

expressive (e.g. energy-based) model but is expensive to sample.

In this work, we explored an alternative approach to model the geometric distribution

parameterised by P[ω] in the conformal gauge. Instead of constructing an effective Hamiltonian

and model the distribution by Boltzmann weights, we deployed a deep generative model (DGMs).

3.2 Deep Generative Models

Driven by the explosion of big data, there has been increasing interests in generative

modelling in machine learning. In particular, with the rise of deep leaning, a new family of

techniques known as deep generative models (DGM) has gained considerable attentions2. One of

1For continuous variables, Hamiltonian Monte Carlo algorithm (also known as hybrid Monte Carlo) could be a
solution to low acceptance ratio due to rough energy landscape.

2Some authors also consider energy-based model such as Deep Boltzmann Machine as a form of deep generative
model. However, we choose to reserve DGM to describe generative model using a feed-forward architecture,
excluding energy-based models.
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the major advantages of this approach is that it is easy to sample while being very expressive —

in stark contrast to the traditional energy-based model.

3.2.1 Basics of Deep Learning

The term neural network (NN) encompasses a large class of models and learning methods.

Here we describe the most ‘vanilla’ kind, which is also known as deep feedforward networks or

multilayer perceptrons (MLPs). The basic goal of such a model to approximate some function f ∗.

These models are typically formed by composing layers of simpler functions f (n)

fθ(x) = f (N) ◦ f (N−1) ◦ · · · f (1)(x) (3.4)

where θ denotes the set of parameters that defines the transformation. The number of layers N

used gives the depth of the model, thus the name ‘deep learning’. Typically, each layer is a simple

affine transformation followed an element-wise nonlinearity

f (n) = ψ(Wnx+βn) (3.5)

where Wn is the weight matrix, βn is the bias. Typical choices of nonlinearity function ψ include

the Rectified Linear Unit (ReLU) and sigmoid. It is natural to ask if any function f ∗ can be

approximated this way. The answer, originally due to Kolmogorov and Arnold, and continuously

refined by generations of machine learning theorists, is ‘yes’. This collections of closely related

results are known as universal approximation theorems[Cyb89, HSW89].

Training a NN amounts to finding the optimal parameters {Wn} and {βn} such that f best

approximates f ∗. This is done is first constructing a loss function3 L that measures, in some

sense, the difference between f and f ∗. For example,given a collection of labels yi’s and features

xi’s, the data set D = {(yi,xi)} implicitly defines the target function f ∗ via yi = f ∗(xi). A simple

3Also known as cost or utility function.
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example of possible loss function is the mean squared error (MSE)

L = ∑
i
|yi− f (xi)|2. (3.6)

Then by computing the gradient of ∂L with respect to the model parameters, the model can be

updated via stochastic gradient descent (SGD) and its modern variants. The specific algorithm

that computes the gradient with respect the parameters layer-by-layer via chain rule is called

backpropagation[RHW86], which is also known as the reverse mode of automatic differentiation.

As a concluding remark, the use of deep neural network is not new. In fact the first

working learning algorithm for deep neural network was published in 1967 known as group

method of data handling[Sch15, IL67]. However, the hardware available at that time simply could

not support such endeavor. It was until last decade or so, the availability of hardware accelerators

such as graphical processing unit (GPU) and large scale data set (e.g. ImageNet[DDS+09]) has

revitalized the field. Furthermore, the publication of open-sourced deep learning frameworks

such as TensorFlow[AAB+15] and PyTorch[PGM+19], in particular their implementations of

backpropagation, have enabled the creations of many more sophisticated models.

3.2.2 Generative Neural Networks

The heart of deep generative models is that, instead of modelling the functional form of

a probability distribution directly, it models a transformation from a (latent) variable z sampled

from a known, tractable distribution[JM15, DSB16, KSJ+16, PPM17]. It is still a field of active

research. Popular examples of such kind of model include, to name a few, generative adversar-

ial networks (GANs)[GPAM+14], variational autoencoders (VAEs)[KW13] and autoregressive

models such as PixelRNN[VOKK16].

More concretely, let z∈Rn a random variable drawn from a standard Gaussian distribution
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PZ[z]. Then by applying a neural network fθ, a transformed random variable

x = fθ(z) (3.7)

is obtained. An elementary result4 from probability theory asserts that the transformed variable

follows the distribution

PX [x] =

∣∣∣∣∣∂ f−1
θ

∂x

∣∣∣∣∣PZ[z = f−1
θ

(x)] (3.8)

where
∣∣∣∣∂ f−1

θ

∂x

∣∣∣∣ is the Jacobian of the transformation. As an example, the standard way to produce

correlated Gaussian random variables x characterized by the mean µ and covariance Σ is to use a

simple network with only one layer of affine transformation to a standard Gaussian z such that

x = µ+Wz (3.9)

where W is the Cholesky decomposition of Σ such that Σ =WW T . Depending on the specific

application, sometimes it is desirable to evaluate PX [x] explicitly. For example, when the training

involves a loss function that contains the log-likelihood lnPX [xi] where xi is a training sample. In

that case, it is crucial to design the neural network such that it has tractable inverse and Jacobian

one can see from eq (3.8). Such class of models are known as normalizing flows. It is also

possible to design a loss function to avoid using explicit evaluation of PX [x], which is the approach

taken in this work.

As a result, the task of ‘learning a distribution PX ’ is now rephrased as ‘learning a

transformation x = fθ(z)’. In most applications, such task can be archived by designing a loss

function which involves averaging g(x) over the target distribution PX , for some function g that

measure the ‘goodness’ of the distribution of X . Multiplying both sides by g(x) and integrate

4In one-dimension, |PX (x)dx|= |PZ(z)dz|.
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against x on eq (3.8), one concludes

EX |θg(x) = EZg( fθ(z)) (3.10)

where the notation EX |θ is used to emphasize the fact that the distribution of x implicitly depends

on the neural network parameters θ via eq (3.8). As a result, to compute the gradient of the loss

function, one has to evaluate ∂θEX |θg(x). One of the the most appealing feature of DGMs is

that, the r.h.s of eq (3.10), and its derivatives, can be estimated efficiently by sample mean as

uncorrelated samples of z can be generated readily without the need to run MCMC. Namely

EZg( fθ(z))≈
1
N

N

∑
i=1

g( fθ(zi)) (3.11)

∂θEZg( fθ(z))≈
1
N

N

∑
i=1

∂θg( fθ(zi)) (3.12)

where N is the number of independent samples used in the estimation. The advances in both

hardware and software has made such computation very practical. For one, independent samples

of g( fθ(zi)) can be generated and evaluated in parallel very efficiently. Moreover, the derivative

∂θg( fθ(zi)) can be computed readily by backpropagation, as implemented in any open-sourced

deep learning frameworks. This approach to computing gradients of an expectation is often

called the ‘reparameterization trick’[KB14]. With this technique, we now have a self-contained

algorithm to learn the holographic geometric distributions P[ω] from the set of purity {e−Sdata(A)}

of any generic quantum state.

3.2.3 Symmetry and Architecture

It is both practical and theoretically motivated to enforce the neural network’s architecture

such that the learned distribution will respects certain symmetries, i.e. to construct an ‘equivariant

neural network’[CW16]. This can be achieved by restricting the functional form — by properly
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designing the architecture of the network.

More specifically, let Q represents a symmetry transformation that we wish to impose on

the target distribution PX . We wish to strictly enforce that

PX [Qx] = PX [x]. (3.13)

Recall a typical generative neural network consists of consecutive layers of simple transformations

x = fN ◦ · · · f2 ◦ f1(z) (3.14)

to a latent variable z which is sampled from a simple distribution such as a standard Gaussian.

A sufficient condition for eq (3.13) to hold is to require the same condition holds at each layer.

In other words, P[Qzn] = P[zn] where zn is the output of the nth layer. It turns out that this

is guaranteed if the two conditions (i) P[Qzn−1] = P[zn−1] and (ii) Q fn(zn−1) = fn(Qzn−1) are

satisfied. To see that, using eq (3.8),

P[Qzn] =

∣∣∣∣∂ fn(Qzn−1)

∂Qzn−1

∣∣∣∣−1

P[Qzn−1]

=

∣∣∣∣∂ fn(Qzn−1)

∂Qzn−1

∣∣∣∣−1

P[zn−1] [by (i)]

=

∣∣∣∣∂Q fn(zn−1)

∂Qzn−1

∣∣∣∣−1

P[zn−1] [by (ii)]

=

∣∣∣∣∂ fn(zn−1)

∂zn−1

∣∣∣∣−1

P[zn−1] = P[zn]. (3.15)

Thus, by appropriately restricting the functional form of each layer one can strictly enforce certain

symmetry in the learned distributions. For example, the use of convolutional layers results in

translation symmetry.
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3.3 General Algorithm

Given a set of entanglement features {e−Sdata(A)} of various choices of subregion A, our

goal is to find a possible P[ω] such that entropy produced by the holographic model matches the

data as close as possible e−Smodel(A) !
= e−Sdata(A). Here we describe the procedure to do so. An

overview of the algorithm is illustrated in Figure 3.1.

Pθ[ω]

{z}

{ω}

{〈Π∂A ϕ〉ω}

SA ϑ SA

P (z)

prior

ϑ

para.

A

query

neural net fϑ

bulk model
solver

-ln avgω

entanglement
dataset

loss ℒ

Figure 3.1: Flow diagram of the machine learning algorithm.Black arrows denotes the forward
evaluation of the loss function. Red dashed arrows denotes the gradient back propagation to
train the parameter.

To recap, we have a holographic model of a fluctuating space Σ, which is characterised

by the background {`xy} and Weyl field {ωx}. The model describes the entanglement entropy of
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system defined on the boundary ∂Σ via

e−Smodel(A) = Eω

〈
∏

x∈∂A
φx

〉
ω

=
∫

P[ω]

〈
∏

x∈∂A
φx

〉
ω

. (3.16)

Therefore, to compute the Smodel(A), one has to first compute the scalar field correlation

〈∏x∈∂A φx〉ω at fixed Weyl field configuration and then average over the Weyl field ω.

3.3.1 Scalar Field Correlation Functions

For any given Weyl field configuration {ωi}, the bulk scalar field is Gaussian

S[φ|ω] = 1
2

{
∑
〈xy〉

Axy

(
φx−φy

`xy

)2

+∑
x

m2Vie2ωxφ
2
x

}

=: ∑
x,y

φx[Lxy +diag(m2Vke2ωk)]φy (3.17)

where

Lxy =


−Axy/`

2
xy if x,y are neighbor

∑k∈neighbor(x)Vxk/`
2
xk if x = y

0 otherwise

(3.18)

is the graph Laplacian. Thus, the 2-point functions can be computed via matrix inverse

〈
φxφy

〉
ω
= [L+diag(m2Vke2ωk)]−1

xy . (3.19)

Higher-order correlations follow from Wick’s theorem. For example,

〈φ1φ2φ3φ4〉ω = 〈φ1φ2〉ω 〈φ3φ4〉ω + 〈φ1φ3〉ω 〈φ2φ4〉ω + 〈φ1φ4〉ω 〈φ2φ3〉ω . (3.20)
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3.3.2 Weyl Field Generator

Using the techniques described in session 3.2.2, the problem of learning the distribution

P[ω] is now recast into finding an optimal transformation implemented by a neural network. In

particular, the average over geometries now reads

Eω

〈
∏

x∈∂A
φx

〉
ω

= Ez

〈
∏

x∈∂A
φx

〉
ω= fθ(z)

(3.21)

where fθ is a neural network parameterised by θ and z is a standard Gaussian random variable.

3.3.3 Loss Function

A possible way to measure similarity between the data and the model prediction is the

mean squared relative error (MSRE) loss:

Ldata =
1
|A | ∑

A∈A

∣∣∣∣∣e−Sdata(A)− e−Smodel(A)

e−Sdata(A)

∣∣∣∣∣
2

(3.22)

which is approximately equal to 1
|A |∑A∈A |Sdata(A)−Smodel(A)|2. In general, the set A of all

possible choices of entanglement region A grows exponentially as 2N where N is the size of the

quantum system of interest. The standard approach to such big data set is to only select a random

subset of sample A in each iteration of gradient descent. This creates a sources of randomness

and lead to stochastic gradient descent. Alternatively one can also simply use a truncated data set

throughout. E.g. a set of A’s that only contains at most two disjoint regions. This is the approach

we have taken in this work. In case of degeneracy where there are more than one geometric

distribution Pθ[ω] giving the same Ldata, regularization can be introduced by adding appropriate

perturbations to Ldata. See section 4.7.2 for more details.

With a concrete loss function in hand, one can optimize of the parameters of the network

θ, as well as other parameters in the model such as the normalization constant in eq (2.19) by
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gradient descent using the ‘reparameterization trick’ introduced in section 3.2.2, i.e. computing

by sampling derivative of the l.h.s of eq (3.21). Notice that the statistical noise from estimated

gradient is also a source of randomness. Upon convergence, a neural network that generates

samples of geometry {ωx} is at our disposal. Questions regarding various statistical properties of

{ωx} can be answered by interrogating the trained network.

This chapter is currently being prepared for submission for publication of the material.

Lam, Jonathan C. C.; Yi-Zhuang, You. The dissertation author was the primary investigator and

author of this material.
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Chapter 4

Numerical Results

We apply the method described in the previous chapter to a free fermion system, which

does not have a classical gravity dual. We found that bulk geometric fluctuation is an effective

way to mediate mutual information. Upon training completion, the learned geometric distribution

was analyzed. In particular, locality of Weyl field correlation emerged, suggesting the existence

of of a local effective action.

4.1 Entanglement Entropy Data

While efficient experimental approaches[BEJ+19, HKP20] have been developed to esti-

mate Rényi entropies from randomized measurements, which enables the acquisition of large

amount of entanglement data to drive the entanglement feature learning, preparing a entanglement

dataset by numerically computing entanglement entropies from a given quantum many-body state

remains difficult in general. As a proof of concept, we choose the ground state of a free fermion

system for demonstration purpose. Consider N copies of the (1+1)D massless Majorana fermion
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chain, described by the Hamiltonian

H =
N

∑
a=1

∑
j

iχ j,aχ j+1,a (4.1)

where {χn,a,χm,b}= δnmδab. Each unit cell contains two sites. The long distance behavior of this

critical system is described of a (1+1)D CFT with central charge c = N/2. Asymptotically, the

nth Renyi entropy of a single-region A reads[CC04]

S(n)A =
c
6

(
1+

1
n

)
ln
(
|A|
δ

)
(4.2)

where δ is a non-universal constant acting as a UV-cutoff. For arbitrary choice of subregion A

(e.g. when A consists of multiple disjoint subregions), the 2nd-Renyi entropy can be efficiently

computed from the fermion correlation function[PE09]. More specifically, let [CA]i j = 〈χiχ
†
j〉A

be the ground state correlation matrix restricted to the subregion A. The 2nd Rényi entropy

reads[PE09]

S(2)A =
1
2

Tr ln
(
C2

A +(1−CA)
2) . (4.3)

When collecting the entropy, entanglement cuts are always placed between the unit cells. In other

words, the region A always contain complete unit cells. In the following, a chain of 32 sites (16

unit cells) with periodic boundary condition is used.

4.2 Model Specifications

4.2.1 Background Geometry

Since we intend to apply our approach to CFT data, it is natural to choose the two-

dimension hyperbolic geometry (the spatial slice of AdS3) as the background geometry. We

employed the following global coordinate metric s2 = dρ2 + sinh2
ρ dθ2 where 0≤ θ < 2π and
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0≤ ρ≤ ρbdy. Here ρbdy sets the IR cutoff of the hyperbolic space which is related to the UV cutoff

scale of the holographic CFT. The geodesic distance between any two points on the boundary

ρ = ρbdy separated by θ is given by

γ(θ) = arccosh(1+2sinh2
ρbdy sin2(θ/2)) eρbdy�1−−−−−→ 2

(
lnsin(θ/2)+ρbdy

)
. (4.4)

Without loss of generality, we chose to discretize space with a triangular lattice with periodic

ρ

ρ0 = 0

ρ1

ρ2

ρ3 = ρbdy

Δθ

θ

A△,2A▽,2

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx yℓx y

Figure 4.1: Triangular lattice in (ρ,θ) coordinate.

boundary condition along the θ-direction. Each layer contains 16 vertices matching the number

of unit cells in the fermion chain used. All vertices in the same layer are of the same ρ-coordinate

and their θ-coordinates are uniformly spaced, see Figure 4.1. The geodesic distance `xy between

two vertices x and y is given by

cosh`xy = coshρx coshρy− sinhρx sinhρy cos(θx−θy). (4.5)
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The area of an elementary triangle in the ith layer reads

tan
A4,i

4
= tanh

(
ρi+1−ρi

2

)
tanh

(bi

4

)
, (4.6)

tan
A5,i

4
= tanh

(
ρi−ρi−1

2

)
tanh

(bi

4

)
, (4.7)

coshbi = cosh2
ρi− sinh2

ρi cos∆θ, (4.8)

which defines the vertex and edge areas in the barycentric scheme[Ham08]. Specifically, the

vertex area Ax is given by

Ax =
1
3
(2A4,i +2A5,i +A4,i−1 +A5,i+1), (4.9)

for ρx = ρi. The edge area Axy is given by

Axy =


1
3(A4,i +A5,i) ρx = ρy = ρi;

1
3(A4,i +A5,i+1) ρx = ρi,ρy = ρi+1;

1
3(A4,i−1 +A5,i) ρx = ρi,ρy = ρi−1.

(4.10)

These equations defines the choice of `xy, Ax and Axy, which all relies on the values of ρi in

each layer. Thus the discretization scheme in the radial dimension is specified by how ρi is

spaced from ε to ρbdy where ε = 0.1 is used instead of strictly zero for better numerical stability.

Different choice of the discretization scheme is just a coordinate re-parametrization which should

not matter in the continuum limit. However, for a finite lattice {ρi} would to fine-tuned according

to the entropy data in the following way.

For concreteness, we have prepared a data set {e−Sdata(A)} using the free Majorana chain

with c = 8 which contains only single region A’s. Then a ‘classical’ version of our model
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described in eq (3.16), with static Weyl field ωi ≡ 0

e−Smodel(A) =

〈
∏
i∈∂A

φi

〉
ω≡0

(4.11)

is used to predict the purity e−Smodel(A) for all choices of single region A. Together with radial

coordinates {ρi}, the normalization constant K and the the scalar field mass parameter m will also

be treated as trainable parameters of the model. Using the MSRE loss as defined in eq (3.22), the

gradient with respect to each trainable parameters were computed and then used to update their

values. These procedures are implemented in the TensorFlow[AAB+15] framework using the

Adam[KB14], a modern variant of SGD. Upon convergence, the single-region MSRE loss of the

trained model has decreased to ∼ 10−6. This indicates a classical model without any geometric

fluctuations, is capable to describe the single region entropy as predicted by the RT formula.

See Figure (4.2). As a benchmark, the double-region RMSE was evaluated to be ∼ 10−1 with

the trained model. Notice that the model did not use any double-region data in training for this

benchmark.

The situation becomes very different once multi-region entanglement entropies are in-

troduced to the training data set. As we argued, static bulk geometry is not a very efficient way

to encode mutual information. This is seen by training the same classical model with a data set

{e−Sdata(A)} containing both single- and double-region A’s. Upon convergence, the both single-

and double-region RMSE have decreased to ∼ 10−2. In particular, the single-region RMSE is

orders of magnitude larger than before. This can be seen as a compromise of the classical model

trying to match both kinds of data as much as possible. As a comparison, the full model with

fluctuating Weyl (which is discussed in the next sections) does not face such dilemma. See Figure

(4.3). The implication of mutual information is discussed in section 4.4. A summary of these

results using a classical model can be found in Table 4.1, together with those from a model with

fluctuating Weyl field, which will be discussed in the next section.
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Figure 4.2: True vs predicted single-region second Rényi entropy. The ‘classical’ model with
static bulk geometry is trained on a data set of a c = 8 free Majorana fermion chain with 16 unit
cells consisting all possible choices of single sub-region.

Table 4.1: A summary of three numerical experiments. As shown in column (a), the classical
model with static geometry is trained on single sub-region data of a c = 8 free Majorana fermion
chain with 16 unit cells. The trained model is then asked to predict (i) 1 sub-region (ii) 2
sub-regions and (iii) 3 sub-regions entropy yielding the respective RMSE. The same model
is then then trained on both single sub-region and two single sub-regions data as shown in
column (b). In column (c), the full model with fluctuating Weyl field ωx sampled from from the
generative network is trained on the same data set of in column (b).

Model (a) static geo. (b) static geo. (c) fluctuating geo.

RMSE
Traning

1 sub-region 1, 2 sub-region(s) 1, 2 sub-region(s)

(i) 1 sub-region 8.7×10−6 2.1×10−2 1.5×10−3

(ii) 2 sub-regions 1.1×10−1 3.9×10−2 5.7×10−3

(iii) 3 sub-regions 7.5×10−1 6.0×10−1 3.1×10−1
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Figure 4.3: True vs predicted single-region second Rényi entropy. Both the ‘classical’ model
with static geometry and the full model with fluctuating Weyl field are trained on the same data
set of a c = 8 free Majorana fermion chain with 16 unit cells consisting both all possible choices
of single sub-region and two disjoint sub-regions.
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4.2.2 Network Architecture

When designing the generative network for the Weyl field ω, we have strictly enforced

P[ω] to be invariant under the two symmetries

ω(θ,ρ)→ ω(θ+a,ρ) [translation] (4.12)

ω(θ,ρ)→ ω(−θ,ρ) [reflection] (4.13)

in response to the Hamiltonian eq (4.1) used to generate boundary data. As discussed in sec-

tion (3.2.3), this can enforced layer-wise by adopting an appropriate architecture such as a

convolutional layer. The standard 1-D convolutional1 layer computes the following:

x[i, j] = ∑
i′, j′

f [i′, j′]z[i+ i′, j′] (4.14)

where z is the input array and f is a filter array with trainable elements. Notice that only the first

dimension (length) of the input array is convolved while second one (channels) are mixed. As a

result the output distribution preserves translation symmetry in the first dimension, for example

Ex[i, j]x[n,m] = Ex[i+ k, j]x[n+ k,m] (4.15)

assuming Ez[i, j]z[n,m] = Ez[i+ k, j]z[n+ k,m] for any k, while allowing more general depen-

dence along the second dimension. As a fundamental building block of many computer-vision

deep learning models, the GPU implementations of convolutional layers have been highly opti-

mized. It is therefore of practical advantage to adapt such operations the Weyl field generator.

Had the Weyl field been defined on a square lattice, one can directly use this elementary operation

by identifying the first dimension as the θ- while the second one as the ρ-coordinate, such that

the P[ω] to be invariant under translation θ→ θ+ a. A complication arose due to the use of

1which actually computes the cross-correlation which amounts to redefining the filter to its mirror image.
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a triangular lattice instead of a square lattice. This was solved by relabelling the sites on the

triangular lattice along a zigzag path along the ρ-direction to have the same first array index before

invoking the standard convolution. A mirrored operation is then applied, which is equivalent to

having a symmetric filter f [i′, j′] = f [−i′, j′].

Thus, by stacking convolutional layers, one obtain a generative network with the desired

symmetry. Theoretically, the deeper network, the more expressive it would be. But it is also

more expensive to train. Thus, the depth of a network is often treated as a hyperparameter which

modellers might find a balance between parsimony and performance. Incidentally, we found

that a single convolution layer without non-linearity, suffice to illustrate the role of geometric

fluctuations in mediating mutual information. Consequently, in the following the Weyl field is

generated by convolving a standard Gaussian z. I.e. ω =Wz where W is the matrix that defines

the convolution in the triangular lattice as described above.

4.3 Training

Having obtained the background geometry characterised by {`i j} from the last section,

we would now introduce the complete model with a fluctuating Weyl field. From now on, the

background geometry characterised by {`i j} as well the scalar field normalization K are frozen.

However, the scalar field mass m could acquire correction due to fluctuating geometry. Thus

it would be allowed to adjust as a part of the optimization. The renormalization of m would

be discussed in detail in the section 4.6. More training details such as use of regularisation are

discussed in section 4.7.
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4.4 Mutual Information

Upon convergence, the single- and double-region RMSE loss converge to∼ 10−4 and 10−3

respectively, clearly outperforming the ‘classical’ version described in section 4.2.1. The utility

of geometric fluctuation can be seen even more clearly by computing the mutual information

between two disjoint sub-regions, as shown in Figure (4.4). This is in accordance with our

expectation that geometric fluctuation is an effective way to mediate mutual information.

4.5 Properties of the Learned Geometric Distribution

With the trained generative network, one can study various statistical properties of the

learned Weyl field distribution P[ωi]. In the simplest case where the distribution is a Gaussian

with zero mean, it suffices to study the covariance matrix

Σmodel = Eωω
T . (4.16)

Firstly, from the diagonal entries we saw the fluctuations Eω2
i grows as approaching the boundary

as shown in Figure 4.5. As a passing note we remark that a similar phenomenon is also known

for massive scalar field in AdS space. Secondly, the correlation between Weyl field in the same

layer closely follows an exponential decay

Cxy := Eωxωy√
Eω2

xEω2
y
∼ exp(−∆|γxy|) (4.17)

where ∆ is the inverse correlation length, |γxy| is the geodesic distance between. This is an

unequivocal sign of locality. See Figure 4.7. In other words, the machine has come to the

conclusion that a local Weyl field is the optimal way to encode holographic entanglement entropy.

This is remarkable in light of locality was never explicitly given to the generative model during
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Figure 4.4: Mutual information between two disjoint sub-regions A and B of equal size (a)
|A| = |B| = 2, (b) |A| = |B| = 3, (c) |A| = |B| = 4 and (d) |A| = |B| = 5 separated by distance
d. Both the ‘classical’ model with static geometry and the full model with fluctuating Weyl
field are trained on the same data set of a c = 8 free Majorana fermion chain with 16 unit cells
consisting both one sub-region and two disjoint sub-regions. The distance d is measured in unit
cells.
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Figure 4.5: Weyl field variance Eω2
x of the learned distribution as a function of layer i.
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Figure 4.6: The learned Weyl field correlation Eωxωy/
√
Eω2

xEω2
y between two sites x 6= y from

the same layer i is plotted against the geodesic distance |γxy|. Due to the hyperbolic nature of
space, the distance between neighboring points within the same layer is larger when closer to
the boundary layer 0. A best fitting exponential decay is shown (dotted) for each layer, with
inverse correlation length ∆ found to be (i) 0.56 (layer 0), (ii) 0.40 (layer 1) and (iii) 0.31 (layer
2), indicating a larger decay rate for larger distance. As similar effect is also known for massive
scalar field. In flat space the inverse correlation length ∆ is simply given by the mass m. However
in hyperbolic space i.e. spatial slice of AdSd of unit radius, it receives a correction such that
for large distance ∆ = (d +

√
d2 +4m2)/2 > m, while for short distance it remains ∆ ∼ m as

curvature of space is not noticeable.
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Figure 4.7: Slices of the learned Weyl field correlation matrix Cxy := Eωxωy√
Eω2

xEω2
y
. In this normal-

ization, the largest possible value is the correlation between itself which is defined to be unity.
In each subplot, a row of Cxy of a fixed x is shown.
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training2.

Furthermore, it is curious to see what elementary excitations are present in the learned

distribution. By computing the spectrum decomposition of

Cxy = ∑
α

λαφα(x)φα(y) (4.18)

where λα is the eigenvalue of the αth eigenmode φα, some familiar patterns like s-wave and

p-wave emerge. For example see Figure 4.8 and 4.9.

0 10 20 30 40 50 60
index 

10 3

10 2

10 1

100

ei
ge

nv
al

ue
 

Figure 4.8: Eigenvalues λα of the learned Weyl covariance matrix Cxy.

2It is true that the use of L2 norm regularization encourage sparsity, but not necessarily locality which requires
knowledge of bulk geometry.
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Figure 4.9: Selected eigenmodes φα and their corresponding eigenvalues, organised by their
symmetry properties (angular momentum).
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4.6 Mass Renormalization

Geometric fluctuation effectively introduces interaction between the bulk scalar field.

As a result, the bare mass m needs to be renormalized. Remarkably, a similar phenomenon is

observed in our holographic model. We trained a ‘classical’ model without Weyl fluctuations on

single-region data, followed by a full model with fluctuating Weyl field trained on both single-

and double-region data. In both cases the scalar field mass m were trainable. For the range

of central charge 5.5 ≤ c ≤ 8 studied, we saw the trained values of the (bare) mass in the full

model are systematically larger than that of a static geometry. See Figure 4.10. This effect can

5.5 6.0 6.5 7.0 7.5 8.0
central charge c

0.25

0.30

0.35

m
as

s m

static
fluctuating

Figure 4.10: Trained values of the scalar field mass m for different central charge c. The
‘classical’ model with static geometry is trained on single sub-region entropy, while full model
is trained on both 1 and 2 sub-regions. These correspond to column (a) and (c) in Table 4.1
respectively.

also be understood heuristically by considering the single-region purity: with a static geometry,
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e−Smodel = 〈φφ〉 ∼ e−m0γ0 where γ0 is the geodesic connecting the entanglement cut through the

bulk. With Gaussian geometric fluctuation, γω = γ0 +δγω, then

e−Smodel =∼ Eωe−mγω = e−m(γ0−
m
2 Eω(δγω)

2). (4.19)

For these two models to produce the same result, one concludes m > m0, in qualitative agreement

with what we observed.

4.7 More Training Details

4.7.1 Pretraining

Even with a linear Weyl field generator, the optimization problem is non-convex. It is

because non-linearity entered the loss function at several stages — exponentiation of the Weyl

field, matrix inversion at eq (3.19) and wick contractions such as eq (3.20). We found that it is

more efficient to initialize the network by pretraining it with a simpler task. Namely instead of

asking the network to predict e−S(A), it was first fitted to produce a target Weyl covarinace Σ0 by

minimizing the MSE loss

Lpretrain = |Σmodel−Σ0|2 . (4.20)

where Σmodel :=EωωT can be estimated by sample mean. However, for a linear model that consist

a single convolutional layer ω = Wz applied to standard Gaussian z ∼ N (0, I), the generated

Weyl field is simply another Gaussian with covariance

Σmodel =WW T . (4.21)
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A convenient choice of Σ0 could be just the scalar field propagator

Σ0 =C[L+diag(m2Ax)]
−1 (4.22)

for some value of m and C where L and Ax are defined in eq (3.18). With such initialization, the

model is trained by the MRSE as defined in eq(3.22). The MRSE loss was found to converge

much quicker. We also found that with proper regularization, the precise value of m and C used

in pretraining does not affect the final result significantly. See section 4.7.2.

4.7.2 Regularization

A natural question is about the uniqueness of bulk geometric distribution parameterised

by P[ω]. To address this question empirically, one may repeat the training procedures with

different initialization and compare the final learned distributions. For linear network, it suffices

to study the learned covariance defined by eq (4.21). It was observed the learned covariances vary

significantly from trials to trials, while all producing very similar RMSE loss.

Guided by the principle of Oscam’s razor, we then asked: what is the simplest bulk

geometric distribution P[ω] that can explain the boundary entropy data? Quantitatively, we

propose to regularize the optimization problem by adding two terms to the loss defined in eq

(3.22) so that

Ltotal = Ldata + εsmoothLsmooth + εnormLnorm (4.23)

Lsmooth =

∣∣∣∣∣∣∣∣LΣmodel

Σmodel

∣∣∣∣∣∣∣∣
F

(4.24)

Lnorm = ||Σmodel||F (4.25)

where L is the graph Laplacian defined in eq (3.18), εsmooth and εsmooth are some small numbers,

|| · ||F denotes the Frobenius matrix norm and element-wise division is used in eq (4.24). We
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emphasized that the neither Lsmooth nor Lnorm explicitly encourage/discourage locality of Σmodel.

A standard practice in machine learning is to tune hyperparameters like εsmooth and εsmooth

by optimizing the out-of-sample performance. Due to limited resources, we did not tune those

parameters systematically. Instead we used fixed values εsmooth = 10−4 and εsmooth = 10−3. The

addition of regularisation losses had negligible effect on model’s performance in terms of Ldata.

However, we found the over a number of trials (N = 10), with (i) random convolutional filter

initialization (ii) random pretraining parameters within ranges 0.1 < m < 0.3 and 0.1 <C < 0.3,

the converged models produce the same Σmodel within 10%. In this sense, this regularised inverse

problem — inferring bulk from boundary seems to have a unique solution.

This chapter is currently being prepared for submission for publication of the material.

Lam, Jonathan C. C.; Yi-Zhuang, You. The dissertation author was the primary investigator and

author of this material.
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Chapter 5

Conclusion

The RT formula has offered an explicit quantitative relation between boundary entan-

glement and bulk geometry assuming geometric fluctuations are negligible. One implication of

such assumption is vanishing mutual information on the boundary, which is generally not true.

In order to build a holographic description for a wider class of boundary quantum systems, we

have incorporated the effect of bulk geometric fluctuations. More specifically, by considering a

generalized RTN model with fluctuating bond dimensions, an emergent statistical gravity model

emerged as an effective description. With the help of modern machine learning techniques, the

nature of bulk gravitational fluctuations were uncovered from boundary entanglement data. We

believe the hybrid approach that we have taken — physics informed machine learning could also

benefit other fields in theoretical physics.
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