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NetShare: Virtualizing Data Center Networks across Services

Terry Lam, Sivasankar Radhakrishnan, Amin Vahdat, George Varghese

UCSD

Abstract

Data centers lower costs by sharing the physical infrastruc-

ture among multiple services. However, the data center net-

work should also ideally provide bandwidth guarantees to

each service in a tunable manner while maintaining high

utilization. We describe NetShare, a new statistical multi-

plexing mechanism for Data Center networks that does this

without requiring changes to existing routers. NetShare al-

lows the bisection bandwidth of the network to be allocated

across services based on simple weights specified by a man-

ager. Bandwidth unused by a service is shared proportion-

ately by other services. More precisely, NetShare provides

weighted hierarchical max-min fair sharing, a generalization

of hierarchical fair queuing of individual links. We present

three mechanisms to implement NetShare including one that

leverages TCP flows and requires no changes to routers or

servers. We show experiments using multiple Hadoop in-

stances and a network of Fulcrum switches and show that

the instances can interfere without NetShare and yet com-

plete faster with NetShare when compared to the alternative

of static reservation.

1 Introduction

Cloud services are hosted by data centers that can hold thou-

sands of servers connected by a network of switches that

concurrently supports a large number of distinct services

(e.g., search, video, email, analytics, and utility comput-

ing). The services are implemented on a shared data center

because the cost of the physical equipment is large (more

than 100 million dollars a year for large data centers [16])

and because statistical multiplexing using Virtual Machines

(VMs) has been effective. However, the economics also re-

quires two other characteristics of the data center network,

both of which are only imperfectly provided today. First, to

be profitable, the networks must have high utilization. At

the same time, many services have stringent performance

SLAs that must be met to keep customers satisfied: thus

the network should also ideally provide bandwidth guaran-

tees to each service. Finally, any new mechanism should

not require hardware changes to existing switches as service

providers are unlikely to retrofit their networks in the short

term.

Our paper describes a new statistical multiplexing mecha-

nism for data center networks called NetShare that provides

both bandwidth guarantees and high utilization and can be

implemented without any changes to existing switches. Net-

Share provides a precise specification of bandwidth guar-

antees using hierarchical weighted max-min fair sharing in

which the bisection bandwidth of the network is i) first al-

located to services according to simple weights and ii) the

bandwidth of each service is then allocated equally among

its TCP connections. Hierarchical max-min fair sharing

generalizes the well known notion of hierarchical fair shar-

ing of links [13] to networks.

We present three simple mechanisms to implement Net-

Share. The first mechanism we call group allocation re-

lies on TCP and fair queuing but requires no software or

hardware changes to switches or endnodes. It responds to

changes in bandwidth in a few round trip delays. Unfortu-

nately, it is not optimal when some services use UDP. Our

second mechanism called rate throttling can augment link

allocation to provide strong guarantees even when some ser-

vices use UDP. Finally, analogous to the way Ethane [7]

and RCP [6] provide centralized route computation, our

third mechanism called centralized allocation requires a

new software fabric manager but can provide more general

bandwidth allocations.

NetShare can be viewed as a way to virtualize (i.e., sta-

tistically multiplex) a data center network among multiple

services or slices. Given that CPUs and disks have been

virtualized, it seems imperative to find some accompanying

notion of network virtualization so that managers can cre-

ate virtual data centers with performance guarantees over a

shared physical data center. While one can argue whether

NetShare’s definition of virtualization is the correct one,

some such proposal appears to be necessary and NetShare

is perhaps the simplest starting point. The contributions of

this paper are as follows and are presented in roughly the

same order:

• A precise specification of what it means to share data
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center bandwidth across services using hierarchical

weighted max-min fair sharing (Section 2).

• Three mechanisms to implement NetShare (Section 3)

with different tradeoffs (Table 1).

• Experiments (Section 5) using real implementations

(Fulcrum switches and multiple Hadoop applications)

and ns-2 simulations that show the benefits and scala-

bility of NetShare.

2 NetShare Specification

NetShare is inspired by fair queuing of a single link [10] or

proportionate sharing of a CPU. However, sharing a network

is more complicated because multiple resources (links in a

path) must be shared between slices. The generalization of

fair sharing to multiple resources is called Pareto Optimality

(in economics) or max-min fair sharing (in networks).

While max-min fair sharing at the TCP level is an old

goal, we argue this is the wrong model. Instead, a data cen-

ter manager wishes to share the data center between ser-

vices/application classes/corporate groups and not at the in-

dividual connection level. A large corporation may wish to

split bandwidth between a parallel CAD application, SAP,

and Microsoft Exchange. max-min fair sharing at the TCP

level is the wrong model for two reasons. First, services that

open up multiple connections get an unfair share of band-

width. Second, the manager cannot allocate more band-

width to certain services based on their importance. Google

may wish to allocate 80% of its bandwidth to Search if

Search produces 80% of revenue.

Thus we are led to consider a new model: weighted hi-

erarchical max-min fair sharing. First, the manager spec-

ifies a small number of services with weights assigned to

each class that indicate their relative importance. Next,

there is some mechanism that allocates network bandwidth

in weighted max-min fair fashion among these services. The

bandwidth assigned to each service is then recursively di-

vided (again in max-min fair fashion) among the individual

flows for that service. Note that the max-min fair defini-

tion specifies that bandwidth unused by a service is divided

among other active services in proportion to their weights.

Example: Figure 1 shows a simple Data Center topology

consisting of four edge switches E1, E2, E3, and E4 and

1 core switch C1. Each edge switch is connected with a 10

Gbps link to the core. Assume that there are three services

A1, A2, and A3. Further, assume A1’s traffic needs to be

sent from switch E1 to E2. Service A2 needs to send traffic

from E1 to E2, and from E1 to E3. Service A3 needs to

send traffic from E3 to E4. Service A1 is most important

C1

E1

10

E2 E3

A1, A2 A2, A3A1,A2 

10 10
10

A3

E4

Figure 1: Example of a data center network shared

between three services A1, A2, and A3.

with a weight of 4, while A2, and A3 have a weight of 1

respectively.

The link from E1 to C1 is shared by applications A1 and

A2. Assuming weights of 4:1, A1 should be assigned 8

Gbps while A2 should be assigned 2 Gbps. However, A2
has traffic from E1 to E2 and from E1 to E3. Assum-

ing equal sharing of each edge-to-edge traffic flow within a

given service, service A2 is allocated a bandwidth of 1 Gbps

for traffic from E1 to E2, and 1 Gbps for traffic from E1 to

E3. Thus, we can view NetShare as a generalization of hi-

erarchical fair queuing on a link by link level to a network

level.

But this allows service A3 to be assigned 9 Gbps for its

traffic from switch E4 to E3 even though it has only the

same weight as service A2 with which it shares a link. This

happens because A2 is bottlenecked because of another link

(the link from E1 to C1). This kind of calculation where

a bottleneck limits the bandwidth of a flow, which then af-

fects the bandwidth available to another flow, and so on it-

eratively, is formalized in the so-called Weighted max-min

fair share calculation.

Now assume that service A1 reduces its bandwidth need

to 6 Gbps. After some amount of time (measured by the

responsiveness of the algorithm) NetShare can allocate 2

Gbps to A2’s traffic on the link from C1 to E3. This in

turn reduces A3’s share to 8 Gbps. We can formalize this

allocation as follows.

Definitions: A feasible bandwidth allocation of a set of

flows is max-min fair if and only if a rate increase of one

flow must come at the cost of a rate decrease of another flow

with a smaller rate. A feasible bandwidth allocation of a set

of flows is weighted max-min fair if and only if a weighted

rate increase of one flow must be at the cost of a weighted

rate decrease of another flow with a smaller rate.

A feasible bandwidth allocation to a set of applications is

hierarchical max-min fair if and only if a weighted rate in-

crease of a flow within one application must be at the cost of
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C1E1 E2

A3 (weight 1)

H1 10 10 10

H3

A1 (weight 4)

A2 (weight 1)

TCP at H1
limits at 2

TCP at H3
grows to 8

Figure 2: Simple fair queuing at switches together

with TCP implements max-min fair sharing of

TCP flows [17].

a weighted rate decrease of some other flow either (i) within

the same application with a smaller flow rate or (ii) within

some other application with a smaller weighted application

bisection bandwidth.

3 NetShare Algorithms

In this section, we describe how NetShare can be imple-

mented. Section 3.1 describes group allocation which relies

on TCP. Section 3.2 describes rate throttling for UDP hosts.

Finally, Section 3.3 describes a centralized bandwidth allo-

cator that can implement more general allocation policies.

3.1 Group Allocation Leveraging TCP

Our starting point is a classic result by Hahne [17] which is

paraphrased as follows in [27].

Proposition 1: [17]: A large sliding window at sources

plus fair queuing achieves max-min allocation.

The intuition is illustrated in Figure 2. Assume 3 com-

peting TCP flows: a first from service A1 that traverses bot-

tlenecked link from C1 to E2; a second from service A2
starts at host H1 and goes from E1 to C1 and from C1 to

E2; finally, a third flow from service E3 that traverses the

link from E1 to C1. Assume that A1’s flow is configured

to have a fair queuing weight of 4 at core switch C1 while

other flows are assigned weight 1.

Thus fair queuing at C1 will assign 1/5-th of the band-

width of the C1, E2 link to the A2 flow because the A1 flow

has 4 times the weight. In a few round trip delays, TCP at

H1 will adjust its rate to 2 Gbps. But this allows TCP at

H3 to grow to 8 Gbps because only 2 Gbps is used on the

link from E1 to C1. Hahne’s result formalizes this intuition

but has a number of caveats. For example, the proof [17]

applies to only some arrival distributions such as Bernoulli

arrivals.

C1E1 E2

A3 (weight 1)

H1 10 10 10

H3

A1 (weight 4)
TCP at H1
limits to 1

TCP at H3
grows to 9

H2
TCP at H2
limits to 1

A2 (weight 1)

Figure 3: Simple fair queuing at switches at the

service level together with TCP achieves hierar-

chical max-min fair sharing of services.

However, in NetShare we wish to allocate in hierarchi-

cal max-min fashion first at the service level and only then

at the TCP connection level. So consider Figure 3 which

adds one more host H2 that also belongs to service A2 with

weight 1 and shares the link from C1 to E2 with A2’s other

TCP flow from H1 and A1’s flow. Fair queuing at the TCP

connection level does not achieve hierarchical max-min fair

sharing. The TCP connection from A1 is allocated 4/6th

of the bandwidth and thus gets only 6.6 Gbps instead of 8

Gbps.

However, if we do fair queuing at the service level, then

both connections belonging to service A2 are treated identi-

cally at core router C1 (i.e., mapped to the same queue). As-

suming the fair mechanism gives both the TCP connections

from H1 and H2 equal bandwidth, both limit themselves to

1 Gbps, which then allows TCP at H3 to grow to 9 Gbps.

Thus we conjecture the following proposition:

Proposition 2: Window flow control plus fair queuing at

the service level achieves hierarchical max-min allocation.

We have no formal proof of this result which we leave

as an open problem. It has the same caveats as the Hahne

result [17] but has some further wrinkles. For example, it

assumes the individual TCP flows share the service band-

width equally. However, it is well known that TCP flows

with shorter round trip delays can get larger shares. Fortu-

nately, in a data center network such cases should be rare

as most connections are likely to use a similar number of

hops. A second subtlety is the use of ECMP path split-

ting which is common in data centers. The Hahne result

assumes a single path. Max-min allocation with path split-

ting in general topologies requires complex optimization al-

gorithms [22, 9].

Despite the lack of formal proof, we have found in our ex-

periments with real switches and ns-2 experiments on data

center topologies that Proposition 2 holds even with multi-

path topologies. Proposition 2 suggests an extremely simple
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C1E1 E2H1 10 10 10

H3

A1 (weight 4)
rate throttler
limits to 1

H2
rate throttler
limits to 1

A2 (weight 1)

H4

TCP at H3
grows to 8

A3 (weight 1)

feedback received rate via control message

rate measurement
measures 1 Gbps

Figure 4: Simple fair queuing at switches at the

service level together with rate measurement and

rate throttling implements hierarchical max-min

fair even with UDP.

mechanism that requires no software or hardware changes to

endnodes or switches.

Group Allocation Mechanism: For every switch and ev-

ery outbound link configure separate fair queuing queues for

each service/application class with weights specified by the

manager.

For example, in Fulcrum switches [1] we have used

DRR [29] to configure fair queuing and TOS bits to dis-

tinguish services. The queue weights are then set (on all

outbound links) to the NetShare weights specified by the

manager. Note that this is not the same as reservation. If a

service is inactive or is routed on a different path it will not

consume bandwidth on this link.

3.2 Rate Throttling for UDP

Group allocation relies on TCP senders. However, many im-

portant applications including Tibco’s multicast protocols,

Veritas, and Oracle [4] do not use TCP. Buggy or erroneous

settings can cause such traffic to flood the network. Thus,

we seek a a simple mechanism that can preserve the goals

of NetShare and yet work with UDP sources.

First, what goes wrong in Figure 3 if H1 and H2 use

UDP? In that case, H1 could continue to send at 10 Gbps

on the link to E1 and the fair queuing mechanism at E1 will

assign it 5 Gbps on the link to C1 (dropping the remaining

traffic) providing only 5 Gbps to A3’s traffic from H3. This

is unfortunate because the fair queuing mechanism at C1
will only allocate 1 Gbps to the traffic from H1. Thus if H1
sends at 10 Gbps, 5 Gbps of traffic is dropped at E1 and 4

Gbps is dropped at C1. There is no congestion collapse but

the allocation is far from optimal.

We propose a simple idea to effectively replace TCP. As-

sume that each host has rate throttling shim layer just below

UDP. For example, in Figure 3 suppose that H1 sends at 10

Gbps to some other host H4 as shown in Figure 4. The rate

throttling layer at H4 measures a received traffic of 1 Gbps

from H1. This is sent back to the corresponding layer at H1
which rate limits the traffic to close to 1 Gbps.

Unfortunately, H1 cannot rate limit exactly to 1 Gbps.

This is because if say the flow from H2 disappears, H1
could grow to 2 Gbps. But the rate limit at H1 will pre-

vent H1 from ever finding that it can grow. Thus we need

to set the throttled rate to somewhat more (say x%) than the

measured rate to allow ramp up. Higher values of x allow

faster ramp-up but increase the amount by which a flow can

overshoot its allocation. We chose a value of x = 20% as a

compromise.

The throttling code we use is slightly more complicated

and is described in Algorithm 1. Note that Rate Throttling

requires weighted fair queuing at each router as well. We

assume the receiver measures received throughput in some

period T (we use 50 msec in our experiments) and sends a

control (e.g., ICMP) message to the sender with the current

measured rate C every T msec. The sender then executes

Algorithm 1 to set the throttled rate R.

First, the code adds some hysteresis to prevent changes

when the difference between the last measured rate (stored

in L) and the current rate is too small (less than 5%). Next,

if the current measured rate is greater than the last measured

rate, the new sending rate is set to 20% higher than the mea-

sured rate C. If the current measured rate is smaller than the

last measured rate, the new sending rate is set to 10% higher

than the measured rate C.

There are two final subtleties. First, even if the difference

is too small, if the sender had increased on the last iteration

(this is kept track of by flag f ), the sending rate is set to

10% higher than the measured rate C. This limits the final

overshoot to 10%. For example, suppose the target max-min

rate is 100 and the last measured rate is 94 and the current

measured rate is 100. The sender goes 20% higher in the

next iteration to roughly 114. However, if the next measured

rate is also 100, the next iteration will set the sending rate to

110. Thus after a brief overshoot of at most 20% the final

overshoot will be 10%. Finally, we do not let the rate to

fall below a threshold, because if a flow’s rates becomes too

small it will take too long to ramp up.

Implementation Choices: Rate throttling can be imple-

mented entirely in the hosts through a kernel patch. This

can gradually be deployed at all data center hosts; in the

interim if fair queuing is used, minimum bandwidths will

be provided though statistical multiplexing may be reduced.

The other choice is to perform the rate throttling in the net-

work using say OpenFlow [24] switches and a platform like

FlowVisor [26]. Egress switches perform rate measurement

and the ingress switches do rate limiting. While we could
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Algorithm 1 Compute NetShare Rates at Rate Throttler

Let L denote last measured rate

Let C denote current measured rate at receiver

Let f denote a flag indicating that the flow increased on

last iteration.

Let R denote current rate limit

if (|(L−C)/L| ≥ 0.05) then {is rate change substantial}
if C − L > 0 then {increasing, increase by 20%}

R← C ∗ 1.2
f ← true

end if

if C − L < 0 then {decreasing, increase by 10%}
R← C ∗ 1.1

end if

else

if f = true then {limit overshoot}
R← C ∗ 1.1
f ← false

end if

end if

if R < T then {do not lower below threshold}
R← T

end if

L← C

use existing TCP-friendly UDP congestion control protocols

like DCCP [23] at hosts, the advantage of rate throttling is

that it is simple to implement even at switches. Note that

most TCP-friendly congestion protocols measure drops and

use the TCP equation [25] unlike our simple scheme.

3.3 Centralized Bandwidth Allocator

While NetShare based on fair queuing is efficient, it can

only calculate a hierarchical max-min allocation. A more

general policy would allow some connections between im-

portant servers to be allocated higher bandwidth. As a more

complex example of a useful allocation policy, consider

the single link example shown in Figure 5 with 3 services

A1, A2, A3 sharing a congested link from an edge to a core

switch.

If the link bandwidth is 10 Gbps and each service has

the same weight, then each service is guaranteed 1/3 of the

bandwidth i.e., 3.33 Gbps. However, if A3 idles, then A1
and A2 get 5 Gbps each. Suppose, however, we wish to limit

the “excess” bandwidth that A2 gets. Then we can define

a second set of weights for sharing the excess bandwidth

that becomes available when some services are idle. For

example, if we define the excess bandwidth weight of A1 to

be twice as much as that of A2, then if A3 idles, 3.33 Gbs of

bandwidth becomes available. This excess is now allocated

C1E1

A1, min weight = 1, excess weight = 2

A2, min weight = 1, excess weight = 1

A3, min weight = 1, excess weight = 1

Figure 5: Allocation mechanisms that divide ex-

cess bandwidth using different weights.

among A1 and A2 in the ration 2:1, so that A1 gets 2.22

Gbps of the excess and A2 gets 1.1 Gbps. Thus, in sum A1
gets 5.55 Gbps and A2 gets 4.4 Gbps. By setting the the

excess weight to zero we can prevent a service from getting

any excess bandwidth.

However, such an allocation is impossible using fair

queuing at switches. Instead, inspired by centralized rout-

ing schemes like RCP [6] or [7] we propose the use of a

centralized bandwidth allocator based on four simple mech-

anisms.

1. Rate Measurement: The rate of each flow (TCP or

UDP) for each service is measured at either the switches

(using ACLs) or at the hosts (using a shim layer) in inter-

vals of T seconds and used to predict a demand for the next

interval.

2. Rate Reporting: The predicted rates are sent to a cen-

tralized bandwidth allocator (implemented on a PC in the

network) that is also supplied with the service weights and

the topology via routing updates.

3. Centralized Calculation: The centralized allocator

calculates rates for each flow and each service and sends

back rate updates to the switches or hosts. For example, it is

easy to implement the standard water filling algorithm ([5])

to calculate max-min allocations. It is also easy to general-

ize to minimum and excess weights.

4. Rate Enforcement: Token bucket rate limiters are

used at the hosts or ingress switch ports to limit the rates

to the calculated rates. As in rate-throttling, each flow (es-

pecially TCP flows) must be allocated say 10% higher than

its optimal centralized allocation to allow it to grow.

We have designed and implemented such a centralized al-

locator. The predictor in Step 1 is a standard least squares

predictor using the last 5 measurements of offered traffic.

The algorithm in Step 3 is a variant of the standard water-

filling algorithm [5] which starts by finding the weighted

bottleneck. This is the link with the smallest value of

Bj/Σsws, where Bj is the bandwidth of link j and we take

the sum of the weights of all services s that traverse link j.

For example, in Figure 3, the initial bottleneck is the link
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from C1 to E2 which has the value 10/5 = 2. The algo-

rithm allocates 8 to service A1 and 2 to service A2. Next,

the algorithm allocates equal shares to H1 and H2 flows

within service A2 to give them 1 Gbit each. This second

step (connection allocation) differs from the standard water-

filling algorithm but is needed for hierarchical max-min al-

location. These values are then subtracted off each link that

these flows use and the algorithm recurses to examine the

link from E1 to C1. This allows the flow from H3 to be

allocated 9 Gbps.

The generalizations we proposed can easily be added to

the main iterative step without increasing complexity. For

example, a connection can be allocated more shares at each

step. Further, we can allocate the excess bandwidth on the

current bottleneck link using two weights at each step.

We used some algorithmic techniques to reduce complex-

ity to O(FPS) where F is the number of flows, P is the

average path length of all flows, and S is the number of ser-

vices. First, we maintained two auxiliary data structures:

one that maps from links to flows that traverse the link,

and one that maps from flow to the set of links used by the

flow. Second, the bottleneck link is determined by a bucket-

sorting heap which removes the logarithmic term. In a real

data center, the diameter is typically small (4 to 6) and we

assume the number of key services is small < 20). Thus the

resulting complexity is linear in the number of flows.

We implemented the centralized algorithm on several

large simulated 2-tier data center topologies. On a simulated

topology with 16 cores, 128 edge switches and 128 million

flows, the algorithm took less than 100 msec a standard In-

tel Core2Duo 3GHz desktop. Smaller and more common

topologies took less than 10 msec. This is important be-

cause this is the only extra term that affects responsiveness

to bandwidth changes compared to rate throttling. It also

suggests that the measurement in Step 1 should not be done

over intervals finer than 10’s of msec.

Table 1 shows the tradeoffs between the three Netshare

algorithms: group allocation, rate throttling, and central-

ized allocation. Note that increasing generality must be paid

for by smaller responsiveness and more software deploy-

ment. None of the algorithms require hardware changes to

switches.

4 Implementation

In this section, we show the effectiveness of NetShare in

sharing real data center applications, providing both band-

width isolation and statistical multiplexing. Data centers

(e.g., Google, Walmart data centers) host multiple concur-

rent applications (e.g., MapReduce instances, data mining

Figure 6: A topology with one core and three pods

Figure 7: A topology with two cores

instances). For simplicity, we model each application as a

MapReduce instance using Hadoop[2].

We implemented NetShare on a small scale data center

testbed consisting of a 24-port Fulcrum Monaco 10GigE

switch[1], a commercial switch with an extensive program-

ming API for advanced customization. Twelve switch ports

are directly connected to servers. Each server has 2 quad

core Intel Xeon E5520 2.26GHz processors, 24 GB of

RAM, and 8 TB of local disk storage. The remaining twelve

ports are all connected to a Glimmerglass optical MEMS

switch which is used like a patch panel to setup loopbacks

between these twelve ports on the Fulcrum switch. This

gives us the flexibility to partition the 24 port physical

switch into virtual switches using VLANs and create inter-

esting multi-switch data center topologies through the loop-

backs.

In particular, we configured the simple data center topol-

ogy shown in Figure 6 with one core switch and three edge

switches. Figure 7 shows another data center topology that

we used with two core switches and three edge switches.

Here, we configured multipathing on the edge switches to

utilize both core switches through Equal Cost Multipath

(ECMP). All ports in the topology were configured to run

at 1Gbps to stress the network. End to end RTT between

any two nodes is less than 100us. Note that the physical

links are short optical fiber cables, so link latency is mainly

due to processing overhead at the switches and end hosts.

Also, in our topologies, the term pod corresponds to an edge

switch and there are four servers connected to each pod.

We implemented Group Allocation by configuring Deficit

6



Table 1: Comparison of different NetShare mechanisms

Deployment Responsiveness Generality

Group Allocation Configuration at routers < 1 msec Only TCP flows

Only Hierarchical max-min

Rate Throttling Configuration at routers 10-50 msec Only Hierarchical max-min

Added endnode or router software

Centralized Allocation Centralized allocation software 10 - 100 msec More general allocation policies

Added router software

Round Robin (DRR) at a service level. DRR already existed

on the switch but we had to implement UDP rate throttling

in the switches; we did not modify servers. To classify ap-

plication traffic, we marked the application ID in the Type

of Service (ToS) field in the packet header.

5 Evaluation

We describe experiments using a single path topology in

Section 5.1 and using a multipath topology in Section 5.2.

We describe experiments to evaluate the effectiveness of

rate throttling in Section 5.3 the scalability of NetShare in

Section 5.4. All experiments were conducted on the testbed

except the scalability experiments which used ns-2.

5.1 Single Path Experiments

We evaluated the performance of 2 Hadoop applications A1
and A2 (that model two concurrent Map-Reduce “services”)

, in a topology with a single core switch as shown in Fig-

ure 6. HDFS was configured with a replication factor of 6

to stress the system by transferring more data through the

network for replication; this only affects the phase where

the sorted results are written back to HDFS. We also set the

HDFS block size to 256MB. One of the servers was con-

figured as a master while all the servers were configured as

slaves. The two instances were configured to use 8 disks

each (4 for HDFS and 4 for the task tracker) on each server.

We first generated 96GB of data for each instance using

the Hadoop RandomWriter application (8 maps per slave ×
12 slaves). We subsequently ran 2 Hadoop Sort jobs in the

2 Hadoop instances A1 and A2. A1 used a total of 96 maps

(8 per slave) and 96 reducers (8 per slave) while A2 used 96

maps (8 per slave) and 48 reducers (4 per slave).

In the map phase, there is minimal network utilization

and the jobs are mainly CPU/disk bottlenecked. During the

reduce phase, there is considerable data shuffling and the

network is highly utilized. Note that A2 uses twice as many

reducers and so generates twice as many TCP connections

to other slaves as A1. When we ran the experiment without

configuring any fair queuing (no NetShare), we observed

that A1 used nearly twice as much bandwidth as A2 corre-

sponding to the ratio of connections that it opens.

Figure 8a shows the bandwidth observed at a represen-

tative port on the core switch for the 2 applications with-

out fair queuing (no NetShare). It shows the ratio in which

the bandwidth is shared on the core switch link. Figure 8b

shows the bandwidth used by A1 on all the 3 core switch

ports. Figure 8c shows the bandwidth used by application

A2 on all the 3 core switch ports. Once again, A2 uses

twice the bandwidth on all core links because it has twice

the connections.

A1 completed sorting in 2586s. A2 completed sorting

the data in 3028s. The difference in completion times is not

twice because for the first 500s both are in the map phase

and do not need much network bandwidth; for the next ≈
2000s, A2 gets twice the bandwidth and A1 runs two times

slower. Finally, from 2000s onwards, A1 runs 3 times faster

because it has the core links to itself. Thus the second half

of its sort shuffle takes 2000/3 ≈ 660. Thus the total sorting

time for A2 should be around 500 + 2000 + 660 = 3160.

Note that if A2 was running continuously (as can happen

in a production network), the completion time will go up to

4500 which is nearly twice as slow.

When DRR was configured with equal weights for the

2 Hadoop instances (NetShare Group Allocation), we ob-

served that A1 and A2 were able to utilize almost equal

bandwidth on the core switch links although A1 had more

connections open.

Figure 9a shows the bandwidth observed at a representa-

tive port on the core switch for the 2 applications with Net-

Share using equal weights for both applications. It shows

that the bandwidth is shared by the 2 applications almost

equally on the core switch link. Figure 9b shows the band-

width used by application A1 on all the 3 core switch ports.

Figure 9c shows the bandwidth used by application A2 on

all the 3 core switch ports. The bandwidth is shared almost

equally by the 2 applications on all the core switch ports.
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Figure 8: Single Path Experiment without NetShare
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Figure 9: Single Path Experiment with NetShare Group Allocation (via DRR)

In this case, A1 completed sorting the data in 3070s. A2
completed sorting the data in 3212s. The smaller differ-

ence in completion times arises because NetShare shares

bandwidth equally despite the larger number of connections

opened by A1. Notice that the maximum completion time

for both instances is almost equal with or without NetShare.

This is because the total amount of work that is done (sort-

ing 96 x 2 GB) of data is the same in both experiments.

5.2 Multipath Experiments

To examine how NetShare performs with multipathing as

is common in data centers, we deployed the same Hadoop

experiment described earlier in the 1 core switch topology

but this time using the 2 core switch topology shown in

Figure 7. Each edge/pod switch performs ECMP (Equal

Cost Multipath) to hash flows onto the two paths for inter-

pod flows. Again the core switches were the bottlenecks

with an oversubscription factor of 2:1 for interpod traffic.

We again setup Hadoop Sort applications A1 with 96 maps

and 96 reducers, and A2 with 96 maps and 48 reducers.

First we ran the sort jobs without NetShare in the net-

work. In this case, A1 used twice the bandwidth (summed

over all core links, the “bisection bandwidth”) when com-

pared to A2 because it opens up nearly twice the connec-

tions. Figure 10a shows the bandwidth observed at a rep-

resentative port on one of the core switches for the 2 appli-

cations without NetShare. Figure 10b shows the bandwidth

used by application A1 on all the 6 core switch ports. Fig-

ure 10c shows the bandwidth used by application A2 on all

6 core switch ports.

In the multipath case, A1 completed sorting the data in

1558s. In the single path case, A1 completed sorting in

2586s. Since 500s is devoted to the map phase, the actual

sort phase has been sped up by almost a factor of 2, as ex-

pected with twice the bisection bandwidth.

Next, we set up NetShare by configuring DRR with equal

weights for the 2 applications. Figures 11a, b, and c show

the bandwidth distribution on a representative core link, the

bandwidth distribution on all 6 core ports for A1, and the

bandwidth distribution on all 6 core ports for A2 respec-

tively. Note that the bandwidths on the various core links

are not shared as uniformly because of hashing effects and

because the sort does not saturate all links consistently.

However, A1 completed sorting in 1633s while A2 com-

pleted sorting the data in 1810s compared to sorting in 3070s

and 3212s with a single core. After factoring out the 500s

for the map phase (that is unaffected by the extra band-

width), the bisection bandwidth appears to be nearly equally

shared between the two “services”. Some difference is not
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Figure 10: Multipath Experiment without NetShare
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Figure 11: Multipath Experiments with NetShare Group Allocation via DRR

surprising because A1 and A2 have different access patterns

and thus do not always contend for the core links at the same

time.

5.3 How Effective is Rate Throttling?

In order to evaluate the performance of rate throttling, we

used the same testbed as described earlier in the 1 core

switch configuration (Figure 6). We used 3 applications for

this experiment. Application A1 generates a TCP flow from

host H1 to host H5, Application A2 generates a UDP flow

from host H2 to host H9. Application A3 generates a UDP

flow from host H3 to host H10. For the DRR and rate throt-

tling experiments, the weights of the applications A1, A2,

A3 were set to 1:3:9 respectively.

The traffic pattern we generated as an input to the exper-

iment is shown in Table 2. Note that during time 5-35s, A3
is inactive and thus the TCP flow A1 (weight 1) contends

with the UDP flow A2 (weight 2) for the core link E1, C.

Next, from time 35-65, the two UDP applications A2 and

A3 (with weights 3 and 9) contend for the core link C, E3.

In the third phase (time 65-95) the TCP application A1 con-

tends with the high weight UDP application but only on the

link from edge router E2 to core router C. Thus the UDP

application can only interfere with TCP acknowledgements

for A1 destined to Host H1.

Time(s) A1 A2 A3 Bottlenecks

5-35 X X X E1, C
35-65 X X X C, E3
65-95 X X X E2, C
95-125 X X X All of the above

Table 2: Traffic pattern that indicates times during

which different flows are active.

We performed experiments under different scenarios. In

each case we measured the bandwidth at the receiver for the

3 applications:

• Group Allocation and Rate Throttling: First, we

measured the bandwidth achieved by the 3 flows with

Group Allocation (via DRR) and Rate Throttling (Fig-

ure 12). In this case, each application received its

weighted share of the network resources as dictated by

the application weights. For instance, during the period

5-35s, A2 gets 750 Mbps and A1 gets 250 Mbps as they

are sharing the bottleneck E1, C in the ratio 3:1 of their

weights. However, from t=95-125s A1’s TCP flow gets

close to 725Mbps, which exceeds the share allocated

by its application weight, but since A2’s UDP flow has

a downstream bottleneck on the link C, E3 only 250

Mbps of the UDP flow is “useful” (that is the through-

9
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Figure 12: NetShare with Group Allocation

(DRR) + Rate Throttling
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Figure 13: No NetShare Mechanisms

put of the UDP flow that actually reaches the receiver

H9). So in this case, A2 gets rate limited at the ingress

switch to 275 Mbps (250 * 1.1) which results in A1
getting close to 725 Mbps. Without rate throttling we

will see that A1 will send at much higher rates and get

dropped at C.

• No NetShare: Second, we measured the bandwidth

achieved with no NetShare mechanisms (Figure 13).

In this case, whenever A1 and A2 were both active in

time 5-35s, A1’s TCP flow is overwhelmed by A2’s

UDP flow and receives zero throughput. Note that from

t=65-95s, A1’s throughput does not reach 1 Gbps al-

though its path from H1 to H5 is not affected by A3’s

UDP flow. However, the ACKs from H5 to H1 share

a link with A3’s UDP flow; some of the ACKs get

dropped, this results in A1’s throughput dropping to

sometimes as low as 750 Mbps.

• Group Allocation Only: Third, we measured the

bandwidth achieved with only Group Allocation (DRR

configured with weights for A1, A2 and A3 as 1:3:9) as

shown in Figure 14. The most interesting scenario oc-

curs from t=95-125s. In that period, A2 and A3 share

the bandwidth of their shared bottleneck link in the ra-
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Figure 14: NetShare with Group Allocation Alone
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Figure 15: NetShare with Rate Throttling Alone

tio of their application weights (3:9). Thus A2 only re-

ceives 250Mbps. Unfortunately, A1 also receives only

250Mbps. this is because A2 continues to send greed-

ily at 750Mbps on the E1, C link of which 500Mbps

gets dropped at C. This motivates the need for rate

throttling.

• Rate Throttling Only: Fourth, we measured the band-

width achieved by the 3 flows with only rate limiting

but no DRR configuration as shown in Figure 15. Here

the behavior is similar to the case without any DRR

(Case 1) from t=5-95s. However from t=95-125s, ob-

serve that A1 is able to achieve nearly 450-500Mbps.

This is because A2 gets rate limited at E1 to a little

over 500Mbps, so A1 is able to use the remaining band-

width on the E1, C link. Thus rate throttling and fair

queuing are orthogonal mechanisms each of which in-

dependently adds value to NetShare.

5.4 Scalability of NetShare

In the previous sections, we performed experiments with

NetShare implementation on real switches. Due to the re-

source constraints of our hardware testbed, we explore the

10



Figure 16: Three-tiered data center topology used

for scalability experiments

scalability of NetShare with a larger data center topology by

simulation using ns-2. Because even ns-2 took too long to

run at 1 Gbps, we scaled down the speeds to 10 Mbps and

used a moderate sized 3-tier topology as shown in Figure 16.

We explored scalability by running NetShare with a varying

number of services and TCP connections per service.

The topology used four pods and three layers of switches

(core switches C1 and C2, aggregation switches M11 to

M42, and edge switches E11 to E42) as shown in Figure16.

All links between the switches are 10 Mbps. Each service

has its own dedicated node at each edge switch that alter-

nate. Figure 16 shows the pattern for two services: A1 and

A2 are assigned to nodes alternately. If there are three ser-

vices, the edge switches will each host 3 machines which

are assigned to A1, A2 and A3 respectively.

The communication pattern for each service is all-pairs,

i.e. each node opens connections to all other nodes in the

same service. We also allow each pair of nodes to open up to

C connections in parallel, where C is a parameter we vary

to explore scalability. We explore the parameter space of

the number of applications (N ), application connections (C)

and policies with and without NetShare as shown in Table 3.

We vary the parameters of the first service (A) and keep

same configurations for the remaining (N − 1) services

(B). W denotes the DRR weights for A and B respectively.

Since B represents a set of services, we report only the max-

imum and minimum bandwidths for the services in set B.

We observe that NetShare with Group Allocation via

DRR comes close to achieving the desired network sharing

independent of the number of connections that each indi-

vidual service makes. For example, as shown in Table 3,

each of the four service with two connections between any

pair of nodes get 36 Mbps. Without NetShare, one heavy-

weight service can acquire more bandwidth by increasing its

connections per node pair (e.g. upto 84 Mbps with 8 con-

nections and 106 Mbps with 16 connections). On the other

hand, NetShare always prevents that service from getting

more that 40 Mbps. Note that this is slightly above its fair

Table 3: Application bisection bandwidth under

several traffic parameters and with and without

NetShare (DRR only).

N C DRR? W
Bandwidth (Mbps)

A B

(Max)

B

(Min)

1 2 - - 131.7

1 8 - - 141.7

4 2, 2 Y 1, 1 35.6 35.1 37.0

4 2, 2 Y 1, 2 22.6 40.0 41.5

4 8, 2 Y 1, 1 40.2 34.0 36.0

4 8, 2 N - 83.8 19.4 20.6

4 8, 2 Y 1, 2 24.7 38.5 41.9

4 16, 2 Y 1, 1 40.1 35.1 35.8

4 16, 2 N - 105.5 12.2 14.0

4 16, 2 Y 1, 2 25.2 39.4 40.7

8 2, 2 Y 1, 1 18.3 17.7 19.0

8 2, 2 Y 1, 2 10.4 18.9 20.0

8 8, 2 Y 1, 1 20.4 17.1 18.5

8 8, 2 Y 1, 2 11.6 18.3 19.8

8 8, 2 N - 53.1 11.6 13.9

8 16, 2 Y 1, 1 20.2 17.1 18.4

8 16, 2 Y 1, 2 11.7 19.0 20.2

8 16, 2 N - 77.9 9.1 10.4

share (36 Mbps) but independent of the connections made

other services.

Furthermore, bisection bandwidths also reflect the Net-

Share administrative weights. For example, the bisection

bandwidths for the four services, one of which having

weight 1 and the remaining having weight 2, are 22 Mbps

and 41 Mbps respectively. Also, the service with smaller

weight cannot increase its share by increasing the number of

connections between its nodes. Finally, we scale the experi-

ments from 2 to 4 to 8 services and observe similar effects.

6 Discussion

We briefly discuss NetShare guarantees and potential gener-

alizations.

NetShare and Bisection Bandwidth: The bisection band-

width of a network is the bandwidth of the smallest cut that

divides the network into two halves. A service i is deployed

over some subset of machines Si. We can definite a bi-

section bandwidth Bsi
of that subset. NetShare will allo-

cate the bisection bandwidth of a service in proportion to

11



its NetShare weight. More precisely, service i is allocated

BSi
· (wi/Σjwj) regardless of the allocations of other ser-

vices j. However, if we knew that some other service k
was not sharing any links with service i, Service i could

be assured a higher fraction of its bisection bandwidth (wk

can be removed from the denominator). This is akin to the

hose model [12]. Note if a service is deployed initially in a

rack with high bisection bandwidth and is then deployed on

machines spread across racks, its BSi
may decrease but its

assured fraction stays the same.

NetShare and Failures: Group allocation and rate throt-

tling are naturally fault tolerant. When a network failure

occurs, after routing recalculates paths, the fair queuing

changes at any affected links take place instantaneously. By

contrast, reservation based schemes that reserve bandwidth

on backup links would be unnecessarily wasteful in the nor-

mal case when failures do not occur. However, a centralized

allocator would have to learn the new routes, possibly by

listening to routing updates.

NetShare for ISPs: The economic model for ISPs is un-

clear because if a customer pays for a bandwidth slice, how

should the customer be charged for bandwidth gleaned from

unused slices? Second, if a customer slice was idle it will

take NetShare some time to return the customer’s band-

width. Customers may respond by introducing artificial

traffic. Such gaming could be ameliorated by a tit-for-tat

scheme. Neither problem is an issue with enterprise net-

works. A simple economic model is to allocate NetShare

Service weights according to revenue or to allocate costs to

each service according to weights. Gaming should be un-

likely with a central administration.

Generalizing NetShare: NetShare appears to generalize

to fat tree topologies. It possibly also generalizes to more

dynamic routing as in VL-2 [16]. VL2 provides isolation by

randomization but cannot be used to tune service allocations

via weights. One concern about deploying NetShare over

VL-2 is the speed of routing changes in VL-2 compared to

NetShare responsiveness.

7 Related Work

Flowvisor [26] virtualizes a testbed network to allow multi-

ple experiments to run concurrently but does so using waste-

ful hop-by-hop allocation. The HP QoS Framework [21] al-

lows network QoS to be implemented centrally and can be

used to implement NetShare. Fair queuing [11] and Core-

stateless fair queuing(CFSQ) [30] do not guarantee max-

min allocation. citecorelite and [28] extend CFSQ to obtain

max-min allocations but require header changes. DiffServ

allows statistical multiplexing by marking traffic exceeding

the allocated share and dropping marked packets if needed.

For lack of space, we omit experiments that show that Diff

Serv dropping reduces efficiency compared to NetShare.

Centralized algorithms for max-min allocation were de-

scribed in [5] and approximations in [3]. Many papers (e.g.,

[22, 9]) show that max-min allocations in the presence of

load balancing or multipath is, in general, NP-complete.

However, the hardness result does not apply to regular data

center topologies.

Duffield et al introduce a hose model [12] to specify ag-

gregate demand but requires complex algorithms which de-

crease responsiveness. NetShare assumes that routing is

fixed by a routing protocol such as OSPF. Thorup and Rex-

ford show that there is considerable flexibility to change

routes by changing OSPF weights [14] without pinning ev-

ery route using MPLS. Traffic engineering such as OSPF-

TE (RFC 3630) and TexCP [19] can be used to efficiently

route a traffic matrix but does not allocate bandwidth across

services. RFC 3630 (Traffic Engineering Extensions to

OSPF) only supports static reservation.

Several congestion avoidance algorithms (e.g., [20, 18,

8, 15] converge to a max-min allocation via signaling from

the network. By contrast, we generalize the technique of

[17] which uses no signaling from the network in the case

of TCP flows. Finally, NetShare differs from DRL which

controls bandwidth in and out of the cloud as opposed to

within the cloud.

8 Conclusions

The notion of a virtual data center requires both comput-

ing and bandwidth guarantees. NetShare allows managers

to use weights to tune the relative bandwidth allocation of

different services. Without NetShare, a service can be held

hostage by other services that either open multiple connec-

tions or use non-compliant congestion control protocols.

Our paper introduces three simple techniques for imple-

menting the NetShare abstraction ranging from group allo-

cation per link to centralized allocation that trade decreasing

responsiveness for more general allocation policies.
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