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Abstract

Designing Algorithms for Learning and Decision-Making in Societal Systems

by

Eric V. Mazumdar

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor S. Shankar Sastry, Co-chair

The ability to learn from data and make decisions in real-time has led to the rapid deployment
of machine learning algorithms across many aspects of everyday life. Despite their potential
to enable new services and address persistent societal issues, the widespread use of these
algorithms has led to unintended consequences like flash crashes in financial markets or
price collusion on e-commerce platforms. These consequences are the inevitable result of
deploying algorithms— that were designed to operate in isolation— in uncertain dynamic
environments in which they interact with other autonomous agents, algorithms, and human
decision makers.

To address these issues, it is necessary to develop an understanding of the fundamental limits
of learning algorithms in societal-scale systems. The work in this thesis is divided into three
parts, each addressing a different aspect of learning and decision-making in societal-scale
systems: (i) learning in the presence of strategic agents, (ii) learning and decision-making in
uncertain and dynamic environments, and (iii) learning models of human decision-making
from data.

In the first part, we blend ideas from game theory and optimization to demonstrate both
theoretically and empirically how current machine learning approaches fail in multi-agent
settings. We then leverage our understanding of the underlying structure of competitive
settings to design efficient algorithms with provable guarantees of performance.

In the second part of this thesis, we combine ideas from statistics— namely the analysis
of Langevin Markov Chain Monte Carlo Algorithms (MCMC)— and machine learning to
design a versatile and computationally efficient model-based algorithm for the multi-armed
bandit problem that has guarantees of optimal performance. In, particular, we develop new
characterizations of posteriors in log-concave families of likelihoods and priors and finite-
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time convergence rates for Langevin MCMC algorithms and use these theoretical results
to show that approximate sampling algorithms like Langevin MCMC can be integrated
into Thompson Sampling (the original multi-armed bandit algorithm) without sacrificing
performance.

In the final part of this thesis we bring together ideas from behavioral economics and rein-
forcement learning to develop a method for inverse risk-sensitive reinforcement learning. We
first develop a forward model that combines ideas from prospect theory with reinforcement
learning to capture the nuances of risk-sensitive decision-making in dynamic environments.
We then propose an algorithm for solving the inverse problem of learning a model of an
agents’ decision-making process from observations of their sequential decisions in dynamic
environments.

Altogether, this thesis represents a small step in an emerging research area at the intersection
of economics, statistics, machine learning, and control. We conclude with a short discussion
of emerging problems and themes in this wider area.
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Chapter 1

Introduction

From matching drivers and riders on ride-sharing platforms to approving loans, the ability
to learn from data and make decisions in real-time has led to the rapid deployment of
machine learning algorithms at scale across many aspects of everyday life. The use of these
algorithms on such a massive scale, however, has highlighted key failings in our current
approach to algorithm design in machine learning. Indeed, the traditional machine learning
paradigm largely treats algorithms as operating in isolation, but they are in fact increasingly
deployed in uncertain dynamic environments in which they have to interact with other
autonomous agents, algorithms, and human decision makers. These interactions can give
rise to surprising and undesired behaviors, like flash crashes in financial markets1 or price
collusion on platforms2.

To confidently deploy machine learning algorithms in real world settings, it is imperative
to view them as parts of complex societal-scale systems, and to take this complexity into
account in our analysis and algorithm design. Indeed, we need to design algorithms that
take into account not only their own objectives, but also their impacts on –and interactions
with– humans and other autonomous agents in the larger system.

This dissertation lays the groundwork for developing an understanding of the fundamen-
tal limits of learning algorithms in dynamic and multi-agent environments, and designing
practical algorithms with provable guarantees of performance for societal-scale systems. In
particular, this dissertation addresses three of the core themes of this emerging research
agenda:

1. Learning in games – where we demonstrate both theoretically and empirically how
current machine learning approaches fail in multi-agent settings and then leverage an
understanding of the underlying structure of competitive settings to design efficient
algorithms with provable guarantees of performance [37, 113, 114, 116, 119].

1The stock market is now run by computers, algorithms and passive managers, The Economist, 2019.
2When Bots Collude, New Yorker, 2015.
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2. Model-based learning in uncertain dynamic environments – where we inves-
tigate how to design efficient and provably optimal model-based algorithms which can
adapt online to uncertainty in dynamic environments [117, 118, 194, 195, 196].

3. Learning interpretable and expressive models of human decision-making –
where we combine ideas from game theory and behavioral economics with machine
learning to learn models of human decision-making in dynamic environments from
data [32, 115, 153, 154].

Throughout this dissertation, we combine techniques and analysis tools from dynamical
systems theory, stochastic processes, machine learning, and statistics with ideas from game
theory and behavioral economics to understand the dynamics and inherent uncertainty of
systems where multiple agents interact. We apply our results to problems in transport
systems [32, 115, 153, 154] and more traditional machine learning domains like the training
of generative adversarial networks (GANs) [113] and robotics [117, 195].

1.1 Dissertation Overview

This dissertation expands upon several recent publications which span three broad aspects of
learning and decision-making in societal-scale systems: (i) learning and decision-making in
the presence of other autonomous agents and algorithms, (ii) learning and decision-making
in uncertain and dynamic environments, and (iii) learning models of human decision-making
from data. Each of these areas are considered separately in parts I,II, and III respectively,
and brief discussion on future work and combining these themes is presented in Part IV. We
now give a broad overview of the high-level takeaways and results of each part.

Part I: Learning in Games

With machine learning algorithms increasingly being deployed in the real world, it is crucial
that we improve our understanding of how algorithms interact, and the dynamics that can
arise from their interactions. In Part I of this dissertation, we present a sequence of results
that expand upon [37, 113, 114, 116, 119].

After introducing the class of games we consider and discussing related work on learning
in continuous games in Chapter 1, in Chapter 2, we analyze the equilibria of continuous
games using tools and ideas from dynamical systems theory. We make several connections
between the equilibria of the game and dynamical systems characterizations of equilibria for
gradient-play and discuss their implications for gradient-based learning algorithms. In Chap-
ter 3 we expand upon these connections and present convergence rates and non-convergence
guarantees for (stochastic) gradient-play in several classes of games. To emphasize the rel-
evance of these results for practitioners we present in Chapter 4 strong negative results
showing that existing multi-agent reinforcement learning algorithms have no guarantees of
convergence even in simple Markov games. We conclude this part in Chapter 5 by using our
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understanding of the optimization landscape of non-convex-non-concave zero-sum games to
design an efficiently-implementable gradient-based algorithm that does not suffer the failures
of gradient-play.

Part II: Model-Based Decision-Making Under Uncertainty

Algorithms which are deployed into societal-scale systems need to make decisions in an
online manner (i.e. make decisions as data arrives) and adapt to uncertainty in dynamic
environments while having performance and safety guarantees. The dominant paradigm for
decision-making under uncertainty is currently that of model-free learning, whereby a large
number of general-purpose algorithms with non-asymptotic guarantees have been developed
in recent years. Despite this, there is growing evidence that model-based algorithms are
more efficient in terms of data (largely because they allow for the incorporation of prior
knowledge about the problem structure), and are more amenable to safety and performance
guarantees. As such there is a pressing need to design versatile model-based algorithms for
decision-making under uncertainty.

To understand how to optimally adapt a model to uncertainty, in Part II we analyze
model-based approaches in the simplest dynamic environment: a multi-armed bandit setting.
Despite its widespread use in industry and the fact that it is nearly 100 years old, the main
model-based algorithm, Thompson Sampling, is still not well understood theoretically. In
particular, the fact that the algorithm requires samples from posterior distributions makes
it difficult to analyze outside of particularly nice problems, and it remains an open question
whether using approximate posteriors can give an optimal algorithm. In this dissertation
we present recent work that makes use of ideas from statistical machine learning and the
continuous-time analysis of Langevin Markov Chain Monte Carlo algorithms to design an
approximate Thompson Sampling algorithm with provably optimal performance guarantees
for the multi-armed bandit problem. Unlike prior work, our proof techniques were also able
to accurately capture the dependence of prior information on performance. The resulting
algorithm is the first provably optimal approximate Thompson Sampling algorithm.

Part III: Learning interpretable and expressive models of human
decision-making

As autonomous agents interact more with humans as economic agents, there is an increasing
need to design algorithms that can reason about the impact of their decisions on people in
real-time. Doing so requires efficiently making decisions in regimes with little data and using
interpretable and actionable models of human decision-making. Motivated by the observation
that firms are collecting increasingly fine-grained data on people’s sequential decisions in
dynamic environments, in Part III we focus on incorporating ideas from behavioral economics
into inverse reinforcement learning.

Most work on inverse reinforcement learning assumes that humans are simple utility
maximizers. Following the Nobel prize winning findings of economists Daniel Kahneman
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and Amos Tversky, we combine ideas from Prospect Theory and reinforcement learning to
model humans as risk-sensitive decision makers in dynamic environments. We then derive a
procedure to learn prospect-theoretic utility functions from data. In particular, we expand
upon prior work on risk-sensitive reinforcement learning to provably incorporate prospect-
theoretic utility functions into risk-sensitive Q-learning and then demonstrate how to solve
the inverse problem of finding a utility function that could best explain observed behaviors
[115, 153]. Unlike prior work, the learned utilities capture key aspects of human decision-
making like risk preferences and reference points. To validate our algorithm we implemented
it on data from ride-sharing platforms where our method was able to capture agents’ risk-
attitudes towards surge-pricing [115].
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Part I

Learning in Games
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Chapter 1

Understanding the Optimization
Landscape of Continuous Games

With machine learning algorithms increasingly being deployed in real world settings, it is
crucial that we understand how the algorithms can interact, and the dynamics that can
arise from their interactions. In recent years, there has been a resurgence in research efforts
on multi-agent learning, and learning in games. The recent interest in adversarial learning
techniques also serves to show how game theoretic tools can be being used to robustify and
improve the performance of machine learning algorithms. Despite this activity, however,
machine learning algorithms are still being treated as black-box approaches and being näıvely
deployed in settings where other algorithms are actively changing the environment.

In general, outside of highly structured settings, there exists no guarantees on the per-
formance or limiting behaviors of learning algorithms in such settings. Indeed, previous
work on understanding the collective behavior of coupled learning algorithms, either in com-
petitive or cooperative settings, has mainly looked at games where the global structure is
well understood like bilinear games [76, 99, 121, 176], convex games [123, 164], or potential
games [129], among many others. Such games are more conducive to the statement of global
convergence guarantees since the assumed global structure can be exploited.

In games with fewer assumptions on the players’ costs, however, there remains a lack of
understanding of the dynamics and limiting behaviors of learning algorithms. Such settings
are becoming increasingly prevalent as deep learning is increasingly being used in game
theoretic settings [2, 55, 68, 203].

Gradient-based learning algorithms are extremely popular in a variety of these multi-
agent settings due to their versatility, ease of implementation, and dependence on local
information. There are numerous recent papers in multi-agent reinforcement learning that
employ gradient-based methods (see, e.g.[2, 55, 203]), yet even within this well-studied class
of learning algorithms, a thorough understanding of their convergence and limiting behaviors
in general continuous games is still lacking.

Generally speaking, in both the game theory and the machine learning communities, two
of the central questions when analyzing the dynamics of learning in games are the following:
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Q1. Do learning algorithms employed by agents find equilibria that are relevant to the un-
derlying game?

Q2. Can all equilibria relevant to the game be found by the learning algorithms that agents
employ?

In the following chapters, we provide some answers to the above questions for the class of
gradient-based learning algorithms by analyzing their limiting behavior in general continuous
games. In particular, we leverage the continuous time limit of the more naturally discrete
multi-agent learning algorithms. This allows us to draw on the extensive theory of dynamical
systems and stochastic approximation to make statements about the limiting behaviors of
these algorithms in both deterministic and stochastic settings. The latter is particularly
relevant since it is common for stochastic gradient methods to be used in multi-agent machine
learning contexts.

Analyzing gradient-based algorithms through the lens of dynamical systems theory has
recently yielded new insights into their behavior in the classical optimization setting [98, 170,
197]. We show that a similar type of analysis can also help understand the limiting behaviors
of gradient-based algorithms in games. We remark, however, that there is a fundamental
difference between the dynamics that are analyzed in much of the single-agent, gradient-
based learning and optimization literature and the ones we analyze in the competitive multi-
agent case: the combined dynamics of gradient-based learning schemes in games do not
necessarily correspond to a gradient flow. This may seem a subtle point, but it it turns out
to be extremely important.

Gradient flows admit desirable convergence guarantees—e.g., almost sure convergence to
local minimizers—due to the fact that they preclude flows with the worst geometries [146].
In particular, they do not exhibit non-equilibrium limiting behavior such as periodic orbits.
Gradient-based learning in games, on the other hand, does not preclude such behavior.
Moreover, as we show, asymmetry in the dynamics of gradient-play in games can lead to
surprising behaviors such as non-relevant limiting behaviors being attracting under the flow
of the game dynamics and relevant limiting behaviors, such as a subset of the Nash equilibria
being almost surely avoided.

In the next section we introduce the general framework for modeling competitive gradient-
based learning that we analyze throughout Part I and then discuss some recent work on
gradient-based learning in games.

1.1 Gradient-Play in Continuous Games

Consider N agents indexed by I = {1, . . . , N}. Each agent i ∈ I has its own decision variable
xi ∈ Xi, where Xi is its finite-dimensional strategy space of dimension di. Define X = X1×
· · ·×XN to be the finite-dimensional joint strategy space with dimension d =

∑
i∈I di. Each

agent is endowed with a cost function fi ∈ Cs(X,R) with s ≥ 2 and such that fi : (xi, x−i) 7→
fi(xi, x−i) where we use the notation x = (xi, x−i) to make the dependence on the action of
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the agent xi, and the actions of all agents excluding agent i, x−i = (x1, . . . , xi−1, xi+1, . . . , xn)
explicit. The agents seek to minimize their own cost, but only have control over their own
decision variable xi. In this setup, agents’ costs are not necessarily aligned with one another,
meaning they are competing.

Given the game G = (f1, . . . , fN), agents are assumed to update their strategies simulta-
neously according to a gradient-based learning algorithm of the form

xi,t+1 = xi,t − γi,thi(xi,t, x−i,t), (1.1)

where γi,t is agent i’s step-size at iteration t.
We analyze the following two settings:

1. Agents have oracle access to the gradient of their cost with respect to their own choice
variable:

hi(xi,t, x−i,t) = Difi(xi,t, x−i,t),

where Difi ≡ ∂fi/∂xi denotes the derivative of fi with respect to xi.

2. Agents have an unbiased estimator of their gradient:

hi(xi,t, x−i,t) = Difi(xi,t, x−i,t) + wi,t+1,

where {wi,t} is a zero mean, finite variance stochastic process.

We refer to the former setting as deterministic gradient-based learning and the latter setting
as stochastic gradient-based learning. To simplify notation, we define:

ω(x) = (D1f1(x), . . . , DNfN(x)),

to be the vector of player derivatives of their own cost functions with respect to their own
choice variables. This is the core object of our analysis throughout the following sections.

Assuming that all agents are employing such algorithms, we aim to analyze the limiting
behavior of the agents’ strategies. To do so we leverage the following notion of a Nash
equilibrium from game theory.

Definition 1 (Local Nash equilibrium). A strategy x ∈ X is a local Nash equilibrium for the
game (f1, . . . , fN) if, for each i ∈ I, there exists an open set Wi ⊂ Xi such that that xi ∈ Wi

and fi(xi, x−i) ≤ fi(x
′
i, x−i) for all x′i ∈ Wi. If the above inequalities are strict, then we say

x is a strict local Nash equilibrium.

The focus on local Nash equilibria is due to our lack of assumptions on the agents’ cost
functions and an implicit assumption that agents do not cooperate and that there is no
order-of-play in the game. If Wi = Xi for each i, then a local Nash equilibrium x is a global
Nash equilibrium. Depending on the agents’ costs, a game (f1, . . . , fN) may admit anywhere
from one to a continuum of local or global Nash equilibria; or none at all.
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We now introduce several broad classes of games which are of particular interest in
various application domains. We call games in which we make no particular assumptions on
the players’ losses f1, ..., fN beyond fi ∈ Cs(X,R) with s ≥ 2 for i ∈ I, N -player general-sum
games or general-sum games for short.

To begin, we first define a class of games that admits particularly strong structure guar-
antees: potential games [129].

Definition 2 (Potential Games). An N-player potential game is a game in which ω corre-
sponds to a gradient flow under a coordinate transformation—that is, there exists a function
φ (commonly referred to as the potential function) such that for each i ∈ I, Difi ≡ Diφ for
fi ∈ Cs(X,R) where s ≥ 2.

We remark that due to the equivalence this class of games is sometimes referred to as an
exact potential game, and that such games enjoys many particularly nice properties owing
to the fact that the entire N -player game game be characterized by one function φ.

A second important class of games are two-player zero-sum games, which often arise
when training GANs [68], adversarial learning [140], multi-agent reinforcement learning[39],
and more broadly in the context of min-max optimization [101, 135, 151].

Definition 3 (Zero-sum game). A zero-sum game is a 2-player game where one player
seeks to minimize a function f with respect to their decision-variable and the second seeks
to maximize f (or equivalently they seek to minimize −f) with respect to theirs:

f1 = f f2 = −f for f ∈ Cs(X,R),

where s ≥ 2.

The fact that zero-sum games are fully characterized by a single function gives zero-sum
games a particularly nice structure, that, while considerably more difficult to analyze than
simple minimization problems (and therefore potential games), allows us to make stronger
statements than in the more arbitrary class of 2-player general-sum games.

To conclude, we introduce several classes of structured games that have been well analyzed
in the literature. We start with the class of convex games which have been the focus of a
large body of work stretching back to Rosen in 1965[164].

Definition 4 (Convex game). A N-player convex game is a N-player game where, for each
i ∈ I, fi(xi, x−i) is convex in xi for fixed x−i ∈ X−i:

Convex games are know to admit either a unique global Nash equilibrium or a continuum
of Nash equilibria. A subset of convex games of particular interest in recent years is the class
of monotone (or diagonally strictly convex) games:

Definition 5 (Monotone game). A monotone game is a N-player convex game where ω
satisfies:

〈ω(x)− ω(x′), x− x′〉 ≥ 0 ∀ x, x′ ∈ X.
If the inequality is strict, the game is strictly monotone.
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While monotone games are in general a strict subset of convex games, in the class zero-
sum games assuming convexity of the players’ costs is equivalent to assuming monotoncity.
That is, convex zero-sum games (alternatively known as convex-concave zero-sum games)
are equivalent to monotone zero-sum games [120]. A particularly common form of monotone
zero-sum game which has garnered much attention in recent years [44, 63] is that of bilinear
games where f(x1, x2) = xT1Ax2 for a given matrix A ∈ Rd1×d2 .

The last class of structured games of particular interest is the class of strongly-monotone
games.

Definition 6 (Strongly monotone game). A strongly monotone game is a N-player convex
game where ω satisfies:

〈ω(x)− ω(x′), x− x′〉 ≥ µ‖x− x′‖2 ∀ x, x′ ∈ X

for µ > 0.

Once again, it is clear that this is a subset of monotone games. In zero-sum games, this
is equivalent to assuming that f is strongly convex in its first argument and strongly concave
in its second.

1.2 Related Work

The study of continuous games is quite extensive (see e.g. [19, 141]), though in large part
the focus has been on games admitting a fair amount of structure. The behavior of learning
algorithms in games is also well-studied (see e.g. [57]). In this section, we comment on the
most relevant prior work.

Characterizing the properties of Nash equilibria in games has been a topic or interest
going back to Nash in his seminal work [134]. In continuous games—the area of interest of
this dissertation— the literature goes back to work by Rosen [164], in which n–player concave
games are shown to either admit a unique global Nash equilibrium or a continuum of Nash
equilibria, all of which (under the additional assumption of monotonicity) are attracting
under gradient-play. Understanding how to efficiently compute Nash equilibria in such games
continues to attract interest in machine learning (see e.g., [14, 29] and the references therein)
and theoretical computer science more generally [43].

The majority of the existing work on learning in games has focused on understanding and
designing learning rules that be used to find Nash equilibria i.e., attempting to answer Q1.
Proceeding under various structural assumptions on the players’ costs and strategies— most
of which preclude the existence of non-Nash equilibria— answering Q1 reduces to analyzing
the convergence of various learning algorithms (including gradient-play) to the unique Nash
equilibrium or the set of Nash equilibria of the game. Examples of classes of structured
games amenable to such strong guarantees are potential games [129], concave or monotone
games [29, 123, 164], and gradient-play over the space of stochastic policies in two-player
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finite-action bilinear games [176]. In [176], the authors investigate the convergence of the
gradient dynamics in such games. Additionally, the dynamics of other (non gradient-based)
algorithms like multiplicative weights have been studied in [76] among many others. In these
classes of structured games, a large line of recent work in machine learning has begun to
use tools developed in the analysis of gradient descent in optimization to understand how to
efficiently compute Nash equilibria [14, 29, 72].

In more general classes of continuous games, recent works have also looked at characteriz-
ing when Nash equilibria are attracting for gradient-based approaches. Sufficient conditions
for this to occur are the conditions for stable differential Nash equilibria introduced in [155,
156, 157] (which we adopt in our treatment) and the condition for variational stability
later analyzed in [123]. We remark that these conditions are equivalent for the classes of
games we consider and that the results in these papers only characterize the local proper-
ties of these equilibria. In the work presented in this dissertation we focus on giving global
non-convergence results and comment on other non-equilibrium attracting behaviors (i.e.,
answering Q2).

Another line of recent work worth mentioning introduces new equilibrium concepts.
Whereas the focus of the work presented in the subsequent sections is simultaneous-play
games, two recent papers [78] and [52] analyze Stackelberg (or leader-follower) continuous
games and introduce the notion of a local Stackelberg equilibrium (the analogous equilib-
rium concept to local Nash equilibria). While the focus is mainly on zero-sum games due to
their links with min-max optimization, these local Stackelberg equilibria have a number of
desirable properties (e.g., existence under weaker assumptions) and warrant investigation in
their own right. However, since the focus of this dissertation is on simultaneous-play games
these equilibria are of unknown relevance to the underlying games. For a more in depth
discussion on local Stackelberg equilibria, we refer the reader to [52] and [78].

The last line of relevant work to the results presented in subsequent chapters is the
emerging research area of efficient algorithms for min-max optimization. Driven by the
interest in adversarial and robust learning paradigms in machine learning, a large number of
recent work have leveraged tools from the analysis of gradient descent in convex optimization
to understand how to compute saddle points (or Nash equilibria) in zero-sum games (see.
e.g., [44, 78, 121, 128]). A number of works have shown that gradient-play in such games
can converge to cycles (see, e.g., [121, 193]) or even diverge completely [128]. Several papers
(including the one this dissertation draws from [116]) pointed our concurrently that there also
exist non-Nash attracting equilibria for gradient-play in zero-sum games [6, 44], meaning that
not all equilibria for gradient-play in zero-sum games are necessarily relevant to the game.

Expanding on this rich body of literature (only the most relevant of which is covered in
our short review), in Part I of this dissertation we provide answers to Q1 without imposing
structure on the game outside regularity conditions on the cost functions by exploiting the
observation that gradient-based learning dynamics are not gradient flows. We also provide
answers to Q2 by demonstrating that a non-trivial set of games admit Nash equilibria that
are almost surely avoided by gradient-play. We give explicit conditions for when this occurs.
Using similar analysis tools, we also provide new insights into the behavior of gradient-based
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learning in structured classes of games such as zero-sum and potential games.

1.3 Overview of Part I

In Chapter 2, we draw connections between the limiting behavior of this class of algorithms
and game-theoretic and dynamical systems notions of equilibria. In particular, we construct
general-sum and zero-sum games that admit non-Nash attracting equilibria of the gradient
dynamics. Such points are attracting under the learning dynamics, yet at least one player—
and potentially all of them—has a direction in which they could unilaterally deviate to
decrease their cost. Thus, these non-Nash equilibria are of questionable game theoretic
relevance and can be seen as artifacts of the players’ algorithms. In the context of zero-sum
games we also present strong characterizations of Nash equilibria that hold for ‘almost all’
zero-sum games in a formal mathematical sense.

In Chapter 3, we show that policy gradient multi-agent reinforcement learning (MARL),
generative adversarial networks (GANs), and gradient-based multi-agent multi-armed ban-
dits, among several other common multi-agent learning settings all fit into the framework of
gradient-based learning algorithms we analyze. We then proceed to prove that a subset of
the local Nash equilibria in general-sum games and potential games is avoided almost surely
when each player employs a gradient-based algorithm. We show that this holds in two broad
settings: the full information setting when each player has oracle access to their gradient but
randomly initializes their first action, and a partial information setting where each player
has access to an unbiased estimate of their gradient.

Altogether, in Chapters 2 and 3 we provide a negative answer to both Q1 and Q2 for
N–player general-sum games, and highlight the nuances present in zero-sum and potential
games. We also show that the dynamics formed from the individual gradients of agents’
costs are not gradient flows. This in turn implies that competitive gradient-based learning
in general-sum games may converge to periodic orbits, and other complex ω limit sets,
possibly including chaotic dynamics.

To highlight the fact that these issues are not of merely theoretical interest, in Chapter 4
we expand upon our non-convergence results to show that policy gradient algorithms have
no guarantees of convergence in even the simplest continuous action and state multi-agent
reinforcement learning problems— linear quadratic games.

In Chapter 5 we move away from gradient-play and develop an efficiently implementable
algorithm for zero-sum games that, unlike gradient-play, has provable guarantees of con-
vergence to Nash equilibria even in non-convex-non-concave zero-sum games. In doing so,
we highlight how many recently proposed algorithms for min-max optimization have no
guarantees of finding game relevant equilibria.
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Chapter 2

Linking Games and Dynamical
Systems

With machine learning algorithms increasingly being placed in more complex, real world set-
tings, there has been a renewed interest in continuous games [52, 123, 203], and particularly
zero-sum continuous games [44, 68, 78, 116] because of their links to adversarial learning [45,
121], robust reinforcement learning [101, 151], min-max optimization [135], and generative
adversarial networks [68].

Despite this, a systematic characterization of the equilibria of such games and of even
the limiting behaviors of simple learning algorithms in these games is sorely lacking. In
this chapter, we draw links between the limiting behavior of dynamical systems and game-
theoretic notions of equilibria in three broad classes of continuous games. A high-level
summary of the links we draw is shown in Figure 2.1.

Key to our analysis is the fact that, when each player is employing a gradient-based
learning algorithm, the joint strategy of the players—in the limit as the agents’ step-sizes go
to zero— follows the differential equation

ẋ = −ω(x). (2.1)

Thus, by analyzing properties of (2.1) we are able to say something about the dynamics
of players using gradient-based algorithms in games.

Chapter Overview

This chapter is organized as follows. In Section 2.1 we highlight connections between critical
points of (2.1) and the underlying game and further characterize the behavior of gradient-
play in neighborhoods of Nash equilibria in broad classes of games. In doing so we uncover
previously unknown phenomena like the existence of spurious stationary points in the gra-
dient dynamics which have no relevance to the underlying games.
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In Section 2.2, we also present a series of strong characterizations of the differential
topology of local Nash equilibria in zero-sum continuous games. These results expand upon
characterizations of local Nash equilibria in general-sum games that first appeared in [157].
The results presented in this chapter are a combination of results that first appeared in [116]
and [114] that have been combined for clarity of exposition.

2.1 Equilibrium Notions in Games and Dynamical

Systems

To begin, we draw links between equilibria in dynamical systems theory and equilibria of
the game.

A point x ∈ X is said to be an equilibrium, critical point, or stationary point of the
dynamics if ω(x) = 0. Stationary points of ẋ = −ω(x) are joint strategies from which, under
gradient-play, the agents do not move. We note that ω(x) = 0 is a necessary condition for a
point x ∈ X to be a local Nash equilibrium [155]. Hence, all local Nash equilibria are critical
points of the joint dynamics ẋ = −ω(x).

Central to dynamical systems theory is the study of limiting behavior and its stability
properties. A classical result in dynamical systems theory allows us to characterize the
stability properties of an equilibrium x∗ by analyzing the Jacobian of the dynamics at x∗.
The Jacobian of ω is defined by:

J(x) =

 D2
1f1(x) · · · DN1f1(x)

...
. . .

...
D1NfN(x) · · · D2

NfN(x)

 .
Since J is a matrix of second derivatives, it is sometimes referred to as the ‘game Hessian’.

Similar to the Hessian matrix of a gradient flow, J allows us to further characterize the critical
points of ω by their properties under the flow of ẋ = −ω(x). Let λi(x) ∈ spec(J(x)) for
i ∈ {1, . . . ,m} denote the eigenvalues of J at x where Re(λ1(x)) ≤ · · · ≤ Re(λm(x))—that
is, λ1(x) is the eigenvalue with the smallest real part. Given these definitions, we first define
important class of critical points known as hyperbolic critical points.

Definition 7. A critical point x is hyperbolic if J(x) has no eigenvalues with zero real part.

Hyperbolic critical points are of particular importance from the point of view of con-
vergence since they are either exponential stable or exponentially unstable under the joint
dynamics [168].

A further important property of a critical point of ω is non-degeneracy.

Definition 8. A critical point x is non-degenerate if det(J(x)) 6= 0 (i.e. x is isolated).
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Non-degenerate equilibria are isolated, meaning there exists an open neighborhood around
them devoid of critical points [157]. We remark that by definition, all hyperbolic critical
points are non-degenerate, but not all non-degenerate critical points are hyperbolic.

Given these building blocks, we now define different classes of equilibria which have
different characteristics under the flow ẋ = −ω(x). Of particular interest are asymptotically
stable equilibria.

Definition 9. A point x ∈ X is a locally asymptotically stable equilibrium of the continuous
time dynamics ẋ = −ω(x) if ω(x) = 0 and Re(λ) > 0 for all λ ∈ spec(J(x)).

Locally asymptotically stable equilibria have two properties of interest. First, they are
non-degenerate critical points, meaning that there exists a neighborhood around them in
which no other equilibria exist. Second, they are hyperbolic, and in fact exponentially
attracting under the flow of ẋ = −ω(x), meaning that if agents initialize in a neighborhood
of a locally asymptotically stable equilibrium x∗ and follow the dynamics described by ẋ =
−ω(x), they will converge to x∗ exponentially fast [168]. This, in turn, implies that a
discretized version of ẋ = −ω(x), namely

xt+1 = xt − γω(xt), (2.2)

converges locally for appropriately selected step size γ at a rate of O(1/t). Such results mo-
tivate the study of the continuous time dynamical system ẋ = −ω(x) in order to understand
convergence properties of gradient-based learning algorithms of the form (1.1).

Another important class of critical points of a dynamical system are saddle points.

Definition 10. A point x ∈ X is a saddle point of the dynamics ẋ = −ω(x) if ω(x) = 0
and λ1(x) ∈ spec(J(x)) is such that Re(λ1(x)) ≤ 0. A saddle point such that Re(λi) < 0 for
i ∈ {1, . . . , `} and Re(λj) > 0 for j ∈ {`+ 1, . . . ,m} with 0 < ` < m is a strict saddle point
of the continuous time dynamics ẋ = −ω(x).

Strict saddle points are especially relevant to our analysis since they are hyperbolic critical
points whose neighborhoods are characterized by stable and unstable manifolds [168]. When
the agents evolve according to the dynamics solely on the stable manifold, they converge
exponentially fast to the critical point. However, when they evolve solely on the unstable
manifold, they diverge from the equilibrium exponentially fast. Agents whose strategies lie
on the union of the two manifolds asymptotically avoid the equilibrium. We make use of
this general fact in Section 3.2.

To better understand the links between the critical points of the gradient dynamics and
the Nash equilibria of the game, we make use of an equivalent characterization of strict local
Nash that leverages first and second order conditions on player cost functions. This makes
them simpler objects to link to the various dynamical systems notions of equilibria than
local Nash equilibria.

Definition 11 ([155, 156]). A point x ∈ X is a differential Nash equilibrium for the game
defined by (f1, . . . , fN) if ω(x) = 0 and D2

i fi(x) � 0 for each i ∈ I.
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Figure 2.1: Links between the equilibria of generic continuous games G and their properties
under the gradient dynamics ẋ = −ω(x).

If x ∈ X is a differential Nash equilibrium where det(J(x)) 6= 0 (i.e., x is non-degenerate),
then x is referred to a non-degenerate Nash equilibrium. Non-degenerate differential Nash
equilibria are necessarily isolated critical points of gradient-play [157].

Given these different equilibrium notions of the learning dynamics and the underlying
game, let us define the following sets which will be useful in stating the results in the fol-
lowing sections. For a game G = (f1, . . . , fN), denote the sets of strict saddle points and
locally asymptotically stable equilibria of the gradient dynamics, ẋ = −ω(x), as SSP(ω)
and LASE(ω), respectively, where we recall that ω(x) = (D1f1(x), . . . , DNfN(x)). Similarly,
denote the set of local Nash equilibria, differential Nash equilibria, and non-degenerate dif-
ferential Nash equilibria of G as LNE(G), DNE(G), and NDDNE(G), respectively. As we show
in the subsequent section, NDDNE(G) = LNE(G) in ‘almost all’ continuous games. The key
takeaways of this section are summarized in Figure 2.1.

Equilibria in General-Sum Games

We first characterize the properties of local Nash equilibria under the joint gradient dynamics
in N -player general-sum games.

Proposition 1. A non-degenerate differential Nash equilibrium is either a locally asymptot-
ically stable equilibrium or a strict saddle point of ẋ = −ω(x)—i.e., NDDNE(G) ⊂ SSP(ω) ∪
LASE(ω).

Proof of Proposition 1. Suppose that x ∈ X is a non-degenerate differential Nash equilib-
rium. We claim that tr(J(x)) > 0. Since x is a differential Nash equilibrium, D2

i fi(x) � 0
for each i ∈ I; these are the diagonal blocks of J(x). Further D2

i fi(x) � 0 implies that
tr(D2

i fi(x)) > 0. Since tr(J) =
∑n

i=1 tr(D2
i fi(x)), tr(J(x)) > 0. Thus, it is not possible
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for all the eigenvalues to have negative real part. Since x is non-degenerate, det(J(x)) 6= 0
so that none of the eigenvalues can have zero real part. Hence, at least one eigenvalue has
strictly positive real part.

To complete the proof, we show that the conditions for non-degenerate differential Nash
equilibrium are not sufficient to guarantee that x is locally asymptotically stable for the
gradient dynamics—that is, not all eigenvalues of J(x) have strictly positive real part. We
do this by constructing a class of games with the strict saddle point property. Consider a
class of two player games G = (f1, f2) on R× R defined as follows:

(f1(x1, x2), f2(x1, x2)) =
(a

2
x2

1 + bx1x2,
d

2
x2

2 + cx1x2

)
.

In this game, the Jacobian of the gradient dynamics is given by

J(x) =

[
a b
c d

]
(2.3)

with a, b, c, d ∈ R. If x is a non-degenerate differential Nash equilibria, a, d > 0 and
det(J(x)) 6= 0 which implies that ad 6= cb. Choosing c, d such that ad < cb will guar-
antee that one of the eigenvalues of J(x) is negative and the other is positive, making x a
strict saddle point. This shows that non-degenerate differential Nash equilibria can be strict
saddle points of the combined gradient dynamics.

Hence, for any game (f1, . . . , fn), a non-degenerate differential Nash equilibrium is either
a locally asymptotically stable equilibrium or a strict saddle point, but it not strictly unstable
or strictly marginally stable (i.e. having eigenvalues all on the imaginary axis).

Locally asymptotically stable differential Nash equilibria satisfy the notion of variational
stability introduced in [123]. In fact, a simple analysis shows that the definitions of varia-
tionally stable equilibria and locally asymptotically stable differential Nash equilibria [156]
are equivalent in the games we consider—i.e., games where each players’ cost is at least
twice continuously differentiable. We remark that, from the definition of asymptotic stabil-
ity, the gradient dynamics have an exponential convergence rate in the neighborhood of such
equilibria.

An important point to make is that not every locally asymptotically stable equilibrium of
ẋ = −ω(x) is a non-degenerate differential Nash equilibrium. Indeed, the following proposi-
tion provides an entire class of games whose corresponding gradient dynamics admit locally
asymptotically stable equilibria that are not local Nash equilibria.

Proposition 2. In the class of general-sum continuous games, there exists a continuum of
games containing games G such that LASE(ω) 6⊂ NDDNE(G), and moreover, LASE(ω) 6⊂ LNE(G).

Proof. Consider a two player game G = (f1, f2) on R2 where

f1(x1, x2) =
a

2
x2

1 + bx1x2, and f2(x1, x2) =
d

2
x2

2 + cx1x2
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for constants a, b, c, d ∈ R. The Jacobian of ω is given by

J(x1, x2) =

[
a b
c d

]
, ∀(x1, x2) ∈ R2. (2.4)

If a > 0 and d < 0, then the unique stationary point x = (0, 0) is neither a differential
Nash nor a local Nash equilibria since the necessary conditions are violated (i.e., d < 0).
However, if a > −d and ad > cb, the eigenvalues of J have positive real parts and (0, 0) is
asymptotically stable. Further, this clearly holds for a continuum of games. Thus, the set
of locally asymptotically stable equilibria that are not Nash equilibria may be arbitrarily
large.

The, preceding proposition shows that there exists attracting critical points of the gra-
dient dynamics in general-sum continuous games that are not Nash equilibria and may not
be even relevant to the game. Thus, this provides a negative answer to Q2 (whether all
attracting equilibria in general-games are game-relevant for the learning dynamics).

Remark 1. We note that, by definition, the non-Nash locally asymptotically stable equilibria
(or non-Nash equilibria) do not satisfy the second-order conditions for Nash equilibria. Thus,
at these joint strategies, at least one player – and maybe all of them – has a direction in which
they would unilaterally deviate if they were not using gradient descent. Some— but as shown
in both [78] and [52], not all— non-Nash attracting equilibria might be local Stackelberg
equilibria under different orders-of-play in the game. Since the focus of this dissertation is
on simultaneous-play games, these non-Nash local Stackelberg equilibria are not relevant to
the game. As such, we view convergence to these points to be undesirable.

Equilibria in Potential Games

We now specialize our results to a class of games with interesting connections between the
Nash equilibria and the critical points of the gradient dynamics: potential games. Note
that a necessary and sufficient condition for (f1, . . . , fN) to be a potential game is that J is
symmetric [129]—that is, Dijfj ≡ Djifi. This gives potential games the desirable property
that the only locally asymptotically stable equilibria of the gradient dynamics are local Nash
equilibria.

Proposition 3. For an arbitrary potential game, G = (f1, . . . , fN) on Rm, if x is a lo-
cally asymptotically stable equilibrium of ẋ = −ω(x) (i.e., x ∈ LASE(ω)), then x is a non-
degenerate differential Nash equilibrium (i.e., x ∈ NDDNE(G)).

The proof that all locally asymptotically stable equilibria in potential games are differ-
ential Nash equilibria relies on the symmetry of J in potential games.

Proof of Proposition 3. The proof follows from the definition of a potential game. Since (f1,
. . . , fn) is a potential game, it admits a potential function φ such that Difi(x) = Diφ(x) for
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all x. This, in turn, implies that at a locally asymptotically stable equilibrium of ẋ = −ω(x),
J(x) = D2φ(x), where D2φ is the Hessian matrix of the function φ. Further D2φ(x) must
have strictly positive eigenvalues for x to be a locally asymptotically stable equilibrium of
ẋ = −ω(x). Since the Hessian matrix of a function must be symmetric, D2φ(x), must be
positive definite, which through Sylvester’s criterion ensures that each of the diagonal blocks
of D2φ(x) is positive definite. Thus, we have that the existence of a potential function
guarantees that the only locally asymptotically stable equilibria of ẋ = −ω(x), are differential
Nash equilibria.

The preceding proposition rules out non-Nash locally asymptotically stable equilibria
of the gradient dynamics in potential games, and implies that every local minimum of a
potential game must be a local Nash equilibrium. Thus, in potential games, unlike in general-
sum and zero-sum games, the answer to Q2 is positive. However, the following proposition
shows that the existence of a potential function is not enough to rule out local Nash equilibria
that are saddle points of the dynamics.

Proposition 4. In the class of continuous games, there exist a continuum of potential games
containing games G that admit Nash equilibria that are saddle points of the dynamics ẋ =
−ω(x)—i.e., ∃ G such that for some x ∈ LNE(G), x ∈ SSP(ω).

Proof. Consider the game (f, f) on X = R2 described by

f(x1, x2) =
a

2
x2

1 + bx1x2 +
c

2
x2

2

where a, b, d ∈ R. The Jacobian of ω is given by

J(x1, x2) =

[
a b
b c

]
, ∀ (x1, x2) ∈ R2.

If a, c > 0, then x = (0, 0) is a local Nash equilibrium. However, if ac < b2, J(x) has one
positive and one negative eigenvalue and (0, 0) is a saddle point of the gradient dynamics.
Thus, there exists a continuum of potential games where a large set of differential Nash
equilibria are strict saddle points of ẋ = −ω(x).

Proposition 4 demonstrates a surprising fact about potential games. Even though all
minimizers of the potential function must be local Nash equilibria, not all local Nash equilibria
are minimizers of the potential function.

Equilibria in Zero-Sum Games

The following proposition shows that all differential Nash equilibria in two-player zero-sum
games are locally asymptotically stable equilibria under the flow of ẋ = −ω(x).
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Proposition 5. For an arbitrary two-player zero-sum game, (f,−f) on Rm, if x is a dif-
ferential Nash equilibrium, then x is both a non-degenerate differential Nash equilibrium and
a locally asymptotically stable equilibrium of ẋ = −ω(x)—that is, DNE(G) ≡ NDDNE(G) ⊂
LASE(ω).

The proof of Proposition 5, which claims that all differential Nash equilibria in zero-sum
games are locally asymptotically stable, again just relies on basic linear algebra and the
definition of a differential Nash equilibrium.

Proof of Proposition 5. Consider a two player game (f,−f) onX1×X2 = Rm withXi = Rmi .
For such a game,

J(x) =

[
D2

1f(x) D21f(x)
−D12f(x) −D2

2f(x)

]
.

Note that D21f(x) = (D12f(x))T . Suppose that x = (x1, x2) is a differential Nash equi-
librium and let v = [v1, v2] ∈ Rm with v1 ∈ Rm1 and v2 ∈ Rm2 . Then, vTJ(x)v =
vT1 D

2
1f(x)v1 − vT2 D

2
2f(x)v2 > 0 since D2

1f(x) � 0 and −D2
2f(x) � 0 for x, a differential

Nash equilibrium. Since v is arbitrary, this implies that J(x) is positive definite and hence,
clearly non-degenerate. Thus, for two-player zero-sum games, all differential Nash equilib-
ria are both non-degenerate differential Nash equilibria and locally asymptotically stable
equilibria of ẋ = −ω(x)

This result guarantees that the differential Nash equilibria of zero-sum games are isolated
and exponentially attracting under the flow of ẋ = −ω(x). This in turn guarantees that
simultaneous gradient-play has a local linear rate of convergence to all local Nash equilibria
in all zero-sum continuous games. Thus, the answer to Q1 is the context of zero-sum games
is “yes”, since all Nash equilibria are attracting for the gradient dynamics.

In fact, in the next result we strengthen Proposition 5 to show that not only are differential
Nash equilibria attracting, but they are hyperbolic.

Proposition 6. Consider a two-player, zero-sum continuous game (f,−f). If x is a differ-
ential Nash equilibrium, it is non-degenerate, and furthermore, it is hyperbolic.

Proof. It is enough to show that all differential Nash are hyperbolic since all hyperbolic
equilibria correspond to a non-degenerate J . Further, just as we noted in the proof of
Lemma 2, stationarity, definiteness, and non-degeneracy are coordinate-invariant properties.
Thus, we simply treat the Euclidean case here.

By definition, at a differential Nash equilibrium x of a zero-sum game, ω(x) = 0,
D2

1f(x) > 0, and −D2
2f(x) > 0. Further, in zero-sum games, D2

12f = (D2
21f)T . Thus,

the bilinear map J , takes the form

J(x) =

[
D2

1f(x) D12f(x)
−D21f(x) −D2

2f(x)

]
=

[
D2

1f(x) D12f(x)
−DT

12f(x) −D2
2f(x)

]
.
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Let (λ, v) be an eigenpair of J(x). The real part of λ, denoted Re(λ), can be written as

Re(λ) = 1
2
(λ+ λ̄) = 1

2
(v∗JT (x)v + v∗J(x)v)

= 1
2
v∗(JT (x) + J(x))v

=
1

2
v∗
[
D2

1f(x) 0
0 −D2

2f(x)

]
v > 0

where the last line follows from the positive definiteness of diag(D2
1f(x),−D2

2f(x)) at a
differential Nash equilibrium. Hence, x is hyperbolic therefore det(J(x)) 6= 0.

The above proposition provides a strong result for the class of zero-sum games. In
particular, simply due to the structure of J , all differential Nash have the nice property of
being hyperbolic, and hence, exponentially attracting under gradient-play dynamics—that
is, ẋ = −ω(x) or its discrete time variant x+ = x− γω(x) for appropriately chosen stepsize
γ. Note that numerous learning algorithms in machine learning applications of zero-sum
games take this form (see, e.g., [68, 113, 116]).

Unfortunately, it is not true that every locally asymptotically stable equilibrium in two-
player zero-sum games are non-degenerate differential Nash equilibria. Indeed, there may
be many locally asymptotically stable equilibria in a zero-sum game that are not local Nash
equilibria. The following proposition highlights this fact.

Proposition 7. In the class of zero-sum continuous games, there exists a continuum of
games such that for each game G, LASE(ω) 6⊂ DNE(G) ⊂ LNE(G).

Proof. Consider the two-player zero-sum game (f,−f) on R2 where

f(x1, x2) =
a

2
x2

1 + bx1x2 +
c

2
x2

2;

and a, b, c ∈ R. The Jacobian of ω is given by

J(x1, x2) =

[
a b
−b −c

]
, ∀ (x1, x2) ∈ R2.

If a > c > 0 and b2 > ac, then J(x1, x2) has eigenvalues with strictly positive real part, but
the unique stationary point is not a differential Nash equilibrium—since −c < 0—and, in
fact, is not even a Nash equilibrium. Indeed,

−f(0, 0) > −f(0, x2) = − c
2
x2

2, ∀ x2 6= 0.

Thus, there exists a continuum of zero-sum games with a large set of locally asymptotically
stable equilibria of the corresponding dynamics ẋ = −ω(x) that are not differential Nash.

The, preceding proposition again shows that there exists non-Nash equilibria of the gradi-
ent dynamics in zero-sum continuous games. Thus, this proposition also provides a negative
answer to Q2 in the context of zero-sum games.
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2.2 Differential Topology of Local Nash Equilibria

In this section we analyze local Nash equilibria using tools from differential topology. A line
of previous work [155, 156, 157] characterized properties of local Nash equilibria in ‘generic’
general-sum continuous games. In particular they showed that in ‘almost all’ general-sum
games, local Nash equilibria are in fact differential Nash equilibria (meaning they are isolated
and strict local Nash equilibria), and that these equilibria satisfy robustness in the sense of
‘structural stability’.

In this section, we take a similar approach in the context of zero-sum games where we show
that local Nash equilibria have several important properties which make them particularly
amenable to computation. Since the set of zero-sum games is of zero measure in the space
of general-sum continuous games the results of this section are not a direct implication of
previous results. Furthermore, with the growing interest in gradient-play in zero-sum games
from the machine learning community [14, 44, 78], such an understanding of Nash equilibria
is becoming increasingly crucial.

In particular, most recent convergence analysis on gradient-play in min-max optimiza-
tion depends on an assumption of local convexity in the game space around a local Nash
equilibrium—that is, nearby Nash equilibria the Jacobian of the gradient-based learning
rule is assumed to be locally positive definite (e.g., [14, 45, 62]).

This implicit structural assumption gives rise two natural questions:

• Is this assumption satisfied for ‘almost all zero-sum games’ in the sense of genericity—
i.e., how restrictive is this assumption?;

• Is this a ‘robust’ assumption in the sense of structural stability—i.e., does the property
persist under smooth perturbations to the game?

Building on the work in [155, 156, 157] on understanding these questions in general-sum
games, this section addresses these two questions in the context of zero-sum games where
the additional structure allows for stronger results.

In particular, the results of this section are summarized as follows:

1. We prove that differential Nash equilibria are generic amongst local Nash equilibria in
continuous zero-sum games (Theorem 2). This implies that almost all zero-sum games
played on continuous functions admit local Nash equilibria that are strict and isolated.

2. Combining this fact with the fact that all differential Nash equilibria are hyperbolic in
zero-sum games (Proposition 6 from Section 2.1), we show that local Nash equilibria are
generically hyperbolic (Corollary 1) which implies strong local convergence guarantees
in ‘almost all’ zero-sum games.

3. We prove that zero-sum games are structurally stable (Theorem 3); that is, the struc-
ture of the game—and hence, its equilibria—is robust to smooth perturbations within
the space of zero-sum games.
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We remark that 2. is a much stronger statement than the genericity of differential Nash
equilibria shown in [157]. This is only possible by exploiting the additional structure of zero-
sum games, namely the fact that they are defined completely in terms of a single sufficiently
smooth function—i.e., given f ∈ Cr(X,R), the corresponding zero-sum game is (f,−f).

Remark 2. many recent works have made the assumption of hyperbolicity of local Nash equi-
libria without a thorough understanding of whether or not such an assumption is restrictive
(see e.g. [15, 44, 63, 72, 78]). The results in this section show that this assumption simply
rules out a measure zero set of zero-sum games.

Preliminaries

Before developing the main results of this section, we present our general setup, as well as
some preliminary game theoretic and mathematical definitions. To deal with the situation
where players’ action spaces are more general manifolds we re-introduce many of the objects
from Chapter 1 and Section 2.1 with the necessary mathematical rigor. We first introduce the
necessary mathematical preliminaries. An interested reader should see standard references
for a more detailed introduction [5, 97].

Mathematical Preliminaries

Throughout this section we consider full information continuous, two-player zero-sum games.
Each player i ∈ I = {1, 2} selects an action xi from a topological space Xi in order to minimize
its cost fi : X → R where X = X1 × X2 is the joint strategy space of all the agents. Note
that fi depends on x−i which is the collection of actions of all other agents excluding agent
i—that is, fi : (xi, x−i) 7→ fi(xi, x−i) ∈ R. Furthermore, each Xi can be finite-dimensional
smooth manifolds or infinite-dimensional Banach manifolds.

A smooth manifold is a topological manifold with a smooth atlas. In particular, we
use the term manifold generally; we specify whether it is a finite– or infinite–dimensional
manifold only when necessary. If a covering by charts takes their values in a Banach space
E, then E is called the model space and we say that X is a Cr–Banach manifold. For a
vector space E, we define the vector space of continuous (r + s)–multilinear maps T rs (E) =
Lr+s(E∗, . . . , E∗, E, . . . , E;R) with s copies of E and r copes of E∗ and where E∗ denotes
the dual. Elements of T rs (E) are tensors on E, and T rs (X) denotes the vector bundle of such
tensors [5, Definition 5.2.9].

Suppose f : X → M is a mapping of one manifold X into another M . Then, we can
interpret the derivative of f on each chart at x as a linear mapping df(x) : TxX → Tf(x)M.
When M = R, the collection of such maps defines a 1–form df : X → T ∗X. Indeed, a
1–form is a continuous map ω : X → T ∗X satisfying π ◦ω = IdX where π : T ∗X → X is the
natural projection mapping ω(x) ∈ T ∗xX to x ∈ X.

At a critical point x ∈ X (i.e., where df(x) = 0), there is a uniquely determined continu-
ous, symmetric bilinear form d2f(x) ∈ T 0

2 (X) such that d2f(x) is defined for all v, w ∈ TxX
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by d2(f ◦ ϕ−1)(ϕ(x))(vϕ, wϕ) where ϕ is any product chart at x and vϕ, wϕ are the local
representations of v, w respectively [142, Proposition in §7]. We say d2f(x) is positive semi–
definite if there exists α ≥ 0 such that for any chart ϕ,

d2(f ◦ ϕ−1)(ϕ(x))(v, v) ≥ α‖v‖2, ∀ v ∈ Tϕ(x)E. (2.5)

If α > 0, then we say d2f(x) is positive–definite. Both critical points and positive definiteness
are invariant with respect to the choice of coordinate chart.

Now, consider smooth manifolds X1, X2. The product space X1 × X2 is naturally a
smooth manifold [5, Definition 3.2.4]. Further, there is a canonical isomorphism at each
point such that the cotangent bundle of the product manifold splits:

T ∗(x1,x2)(X1 ×X2) ∼= T ∗x1
X1 ⊕ T ∗x2

X2 (2.6)

where ⊕ denotes the direct sum of vector spaces. There are natural bundle maps ψX1 :
T ∗(X1 × X2) → T ∗(X1 × X2) annihilating the all the components other than those corre-
sponding to Xi of an element in the cotangent bundle. In particular, ψX1(ω1, ω2) = (01, ω2)
and ψX2(ω1, ω2) = (ω1, 02) where ω = (ω1, ω2) ∈ T ∗x (X1 × X2) and 0j ∈ T ∗xjXj for each
j ∈ {1, 2} is the zero functional.

For smooth manifolds X and Y of dimension nx and ny respectively, an k–jet from X to
Y is an equivalence class [x, f, U ]k of triples (x, f, U) where U ⊂ X is an open set, x ∈ U ,
and f : U → Y is a Ck map. The equivalence relation satisfies [x, f, U ]k = [y, g, V ]k if x = y
and in some pair of charts adapted to f at x, f and g have the same derivatives up to order
k. We use the notation [x, f, U ]k = jkf(x) to denote the k–jet of f at x. The set of all
k–jets from X to Y is denoted by Jk(X, Y ). The jet bundle Jk(X, Y ) is a smooth manifold
(see [168] Chapter 2 for the construction). For each Ck map f : X → Y we define a map
jkf : X → Jk(X, Y ) by x 7→ jkf(x) and refer to it as the k–jet extension.

Definition 12. Let X, Y be smooth manifolds and f : X → Y be a smooth mapping. Let
Z be a smooth submanifold of Y and p a point in X. Then f intersects Z transversally at p
(denoted f t Z at p) if either f(p) /∈ Z or f(p) ∈ Z and Tf(p)Y = Tf(p)Z + (f∗)p(TpX).

For 1 ≤ k < s ≤ ∞ consider the jet map jk : Cs(X, Y ) → Cs−k(X, Jk(X, Y )) and let
Z ⊂ Jk(X, Y ) be a submanifold. Define⋂

| s(X, Y ; jk, Z) = {h ∈ Cs(X, Y )| jkh t Z}. (2.7)

A subset of a topological space X is residual if it contains the intersection of countably many
open–dense sets. We say a property is generic if the set of all points of X which possess
this property is residual [30]. Given these definitions, we now present two key results from
differential geometry that are crucial to our results.

Theorem 1. (Jet Transversality Theorem, Chap. 2 [168]). Let X, Y be C∞ manifolds
without boundary, and let Z ⊂ Jk(X, Y ) be a C∞ submanifold. Suppose that 1 ≤ k < s ≤
∞. Then,

⋂
| s(X, Y ; jk, Z) is residual and thus dense in Cs(X, Y ) endowed with the strong

topology, and open if Z is closed.
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Proposition 8. (Chap. II.4, Proposition 4.2 [65]). Let X, Y be smooth manifolds and Z ⊂ Y
a submanifold. Suppose that dimX < codimZ. Let f : X → Y be smooth and suppose that
f t Z. Then, f(X) ∩ Z = ∅.

The Jet Transversality Theorem and Proposition 8 can be used to show a subset of a
jet bundle having a particular set of desired properties is generic. Indeed, consider the jet
bundle Jk(X, Y ) and recall that it is a manifold that contains jets jkf : X → Jk(X, Y ) as its
elements where f ∈ Ck(X, Y ). Let Z ⊂ Jk(X, Y ) be the submanifold of the jet bundle that
does not possess the desired properties. If dimX < codim Z, then for a generic function
f ∈ Ck(X, Y ) the image of the k–jet extension is disjoint from Z implying that there is an
open–dense set of functions having the desired properties. It is exactly this approach we use
to show the genericity of non-degenerate differential Nash equilibria of zero-sum continuous
games.

Setup

Given the preliminaries we now re-define many of the objects from previous sections with
the necessary mathematical rigor. To begin, we formally define the object ω as a differential
1-form ω : X → T ∗X defined by

ω = ψX1 ◦ df − ψX2 ◦ df

where ψXi are the natural bundle maps ψX1 : T ∗X → T ∗X that annihilate those components
of the co-vector field df corresponding to X1 and analogously for ψX2 . Note that when each
Xi is a finite dimensional manifold of dimensions mi (e.g., Euclidean space Rmi), then the
differential game form has the coordinate representation,

ωψ =
∑m1

j=1
∂(f◦ψ−1)

∂yj1
dyj1 +

∑m2

j=1
∂(−f◦ψ−1)

∂yj2
dyj2,

for product chart (U, ψ) inX at x = (x1, . . . , xn) with local coordinates (y1
1, . . . , y

m1
1 , y1

2, . . . , y
m2
2 )

and where U = U1 × U2 and ψ = ψ1 × ψ2. This form captures a differential view of the
strategic interaction between the players. Note that each player’s cost function depends on
its own choice variable as well as all the other players’ choice variables. However, each player
can only affect their payoff by adjusting their own strategy.

We also define, J the generalization of the Jacobian, as the bilinear map induced by
dω which is composed of the partial derivatives of components of ω, where dω = d(ψX1 ◦
df)− d(ψX2 ◦ df). Intrinsically, dω ∈ T 0

2 (X) is a tensor field; at a point x where ω(x) = 0, it
determines a bilinear form constructed from the uniquely determined continuous, symmetric,
bilinear forms {d2fi(x)}ni=1. For example, consider a two-player, zero-sum game (f1, f2) =
(f,−f) on Rd1 ×Rd2 . In this case the matrix representation of this bilinear map is given by

J(x) =

[
D2

1f(x) D12f(x)
−DT

12f(x) −D2
2f(x)

]
,
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which is exactly the Jacobian we analyzed previously.
Given these definitions the definition of critical points for the game is as before. Further

the definitions of hyperbolicity, and non-degeneracy of critical points are the same as in
Section 2.1. We note that even in the more general manifold setting, these definitions are
invariant with respect to the coordinate chart [30, 155].

Theoretical Results

Given this setup, we specialize the results in [156] and [155] on genericity and structural
stability of differential Nash equilibria to the class of zero-sum games.

Genericity

To develop the proof that local Nash equilibria of zero-sum games are generically non-
degenerate differential Nash equilibria, we leverage the fact that it is a generic property of
sufficiently smooth functions that all critical points are non-degenerate.

Lemma 1 ([30, Chapter 1]). For Cr functions, r ≥ 2 on Rn, or on a manifold, it is a
generic property that all the critical points are non-degenerate.

The above lemma implies that for a generic function f ∈ Cr(X,R) on an m–dimensional
manifold X, the Hessian

H(x) =

 D
2
1f(x) · · · D1mf(x)

...
. . .

...
Dm1f(x) · · · D2

mf(x)


is non-degenerate at critical points—that is, det(H(x)) 6= 0. Since a zero-sum game is
completely characterized b a function f , and the critical points of f are the same as critical
points of the game, we then show that all critical points of gradient-play in zero-sum games
are generically non-degenerate.

Lemma 2. Consider f ∈ Cr(X,R) and the zero-sum game (f,−f). For any critical point
x ∈ X (i.e., x ∈ {x ∈ X| ω(x) = 0}), det(H(x)) 6= 0⇐⇒ det(Dω(x)) 6= 0.

Proof. Before proceeding we note that in the case that X is a smooth manifold, the station-
arity of critical points and definiteness of H and Dω are coordinate-invariant properties and
hence, independent of coordinate chart [30, 155, 156, 157]. Thus, to shorten the presentation
of proofs, we simply treat the Euclidean case here; showing the more general case simply
requires selecting a coordinate chart defined on a neighborhood of the differential Nash,
showing the results with respect to this chart, and then invoking coordinate invariance.

Let x = (x1, x2) where X = X1×X2 and Xi is mi–dimensional. Note that H(x) is equal
to Dω(x) with the last m2 rows scaled each by −1. Indeed,

Dω(x) =

[
D2

1f(x) D12f(x)
−DT

12f(x) −D2
2f(x)

]
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where D2
i f(x) is mi×mi dimensional for each i ∈ {1, 2} and D12f(x) is m1×m2 dimensional.

Clearly, Dω(x) = PH(x) where P = blockdiag(Im1 ,−Im2) with each Imi the mi×mi identity
matrix, so that det(H(x)) = (−1)m2 det(Dω(x)). Hence, the result holds.

This equivalence between the non-degeneracy of the Hessian and the game Jacobian Dω
allows us to lift the fact that non-degeneracy of critical points is a generic property to zero-
sum games. This leads to the following, strong result that non-degenerate differential Nash
equilibria are generic in zero-sum games.

Theorem 2. For two-player, zero-sum continuous games, non-degenerate differential Nash
are generic amongst local Nash equilibria. That is, given a generic f ∈ Cr(X,R), all local
Nash equilibria of the game (f,−f) are (non-degenerate) differential Nash equilibria.

Proof. First, critical points of a function f are those such that (D1f1(x) D2f2(x)) = 0 and
hence they coincide with critical points of the zero-sum game—i.e., those points x such that
ω(x) = (D1f(x),−D2f(x)) = 0. By Lemma 2, for any critical point x, det(H(x)) = 0 if and
only if det(Dω(x)) = 0. Hence, critical points of f are non-degenerate if and only if critical
points of the zero-sum game are non-degenerate.

Consider a generic function f and the corresponding zero-sum game (f,−f). If X is a
smooth manifold, let (U,ϕ) be a product chart on X1 × X2 that contains x. Suppose that
x is a local Nash equilibrium so that ω(x) = 0 and D2

1f(x) ≥ 0 and −D2
2f(x) ≥ 0. By the

above argument, since f is generic and the critical points of f coincide with those of the
zero-sum game, det(Dω(x)) 6= 0. By Lemma 1, critical points of a generic zero-sum game
are non-degenerate. That is, there exists an open-dense set of functions f in Cr(X,R) such
that critical points of the corresponding game are non-degenerate.

Let J2(X,R) denote the second-order jet bundle containing 2–jets j2f such that f : X →
R. Then, J2(X,R) is locally diffeomorphic to

Rm × R× Rm × R
m(m+1)

2

and the 2–jet extension of f at any point x ∈ X in coordinates is given by

(ϕ(x), (f ◦ ϕ−1)(ϕ(x)), Dϕf(x), (Dϕ)2f(x))

where Dϕf = [Dϕ
1 f D

ϕ
2 f ] with Dϕ

j = [∂(f ◦ϕ−1)/(∂y1
j ) · · · ∂(f ◦ϕ−1)/(∂ymij )] and similarly

for (Dϕ)2f . Again, we note that the properties of interest (stationarity, definiteness, and
non-degeneracy) are known to be coordinate invariant.

Consider a subset of J2(X,R) defined by

D = Rm × R× {0m} × Z(m1)× Rm1×m2 × Z(m2)

where Z(mi) is the subset of symmetric mi × mi matrices such that for A ∈ Z(mi),
det(A) = 0. Each Z(mi) is algebraic and has no interior points; hence, we can use the
Whitney stratification theorem [61, Chapter 1, Theorem 2.7] to get that each Z(mi) is the



CHAPTER 2. LINKING GAMES AND DYNAMICAL SYSTEMS 28

union of submanifolds of co-dimension at least 1. Hence D is the union of submanifolds
and has co-dimension at least m + 2. Applying the Jet Transversality Theorem (Theo-
rem 1) and Proposition 8 yields an open-dense set of functions f such that when ω(x) = 0,
det(D2

i f(x)) 6= 0, for i = 1, 2.
Now, the intersection of two open-dense sets is open-dense so that we have an open-dense

set of functions f in Cr(X,R) such that when ω(x) = 0, det(D2
i f(x)) 6= 0 for each i ∈ {1, 2}

and det(Dω(x)) 6= 0. This, in turn, implies that there is an open-dense set F of functions
f in Cr(X,R) such that for zero-sum games constructed from these functions, local Nash
equilibria are non-degenerate differential Nash equilibria. Indeed, consider an f ∈ F in this
set such that x is a local Nash equilibrium of (f,−f). Then necessary conditions for Nash
imply that ω(x) = 0, D2

1f(x) ≥ 0 and −D2
2f(x) ≥ 0. However, since f ∈ F , det(D2

1f(x)) 6= 0
and det(−D2

2f(x)) = (−1)m2 det(D2
2f(x)) 6= 0. Hence, x is a differential Nash equilibrium.

Moreover, since f ∈ F , det(H(x)) 6= 0 which is equivalent to det(Dω(x)) 6= 0 (by Lemma 2).
Thus, x is a non-degenerate differential Nash.

As shown in Proposition 6, all differential Nash for zero-sum games are non-degenerate
simply by the structure of Dω. This further implies that local Nash equilibria are generically
hyperbolic critical points, meaning there are no eigenvalues of Dω with zero real part.

Corollary 1. Within the class of two-player zero-sum continuous games, local Nash equilib-
ria are generically hyperbolic critical points.

Proof. Consider a two-player, zero-sum game (f,−f) for some generic sufficiently smooth
f ∈ Cr(X,R). Then, by Theorem 2, a local Nash equilibria x is a differential Nash equilibria.
Moreover, by Proposition 6, x is hyperbolic so that all eigenvalues of Dω(x) must have
strictly positive real parts. This implies that all such points are hyperbolic critical points of
the gradient dynamics ẋ = −ω(x).

Remark 3. Genericity gives a formal mathematical rigor to the term ’almost all’ for a
certain property—in this case, non-degeneracy and further hyperbolicity of local Nash. Thus,
corollary 1 implies that in ‘almost all’ zero-sum games, local Nash equilibria are locally
exponentially attracting for gradient-play (or gradient-descent-ascent as it is known in the
min-max optimization literature).

Structural Stability

In this section we show that local Nash equilibria in generic zero-sum games are structurally
stable, meaning that they persist under smooth perturbations within the class of zero-sum
games.

Theorem 3. For zero-sum games, differential Nash equilibria are structurally stable: given
f ∈ Cr(X1 × X2,R), g ∈ Cr(X1 × X2,R), and a differential Nash equilibrium (x1, x2) ∈
X1 × X2, there exists a neighborhoods U ⊂ R of zero and V ⊂ X1 × X2 such that for all
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t ∈ U there exists a unique differential Nash equilibrium (x̃1, x̃2) ∈ V for the zero-sum game
(f + tg,−f − tg).

Proof. Define the smoothly perturbed cost function f̃ : X1 × X2 × R → R by f̃(x, y, t) =
f(x, y) + tg(x, y), and its differential game form ω̃ : X1 ×X2 × R→ T ∗(X1 ×X2) by

ω̃(x, y, t) = (D1(f̃(x, y) + tg(x, y),−D2(f̃(x, y) + tg(x, y)),

for all t ∈ R and (x, y) ∈ X1 ×X2.
Since (x1, x2) is a differential Nash equilibrium, Dω̃(x, y, 0) is necessarily non-degenerate

(see the proof of Corollary 1). Invoking the implicit function theorem [97], there exists
neighborhoods V ⊂ R of zero and W ⊂ X1 ×X2 and a smooth function σ ∈ Cr(V,W ) such
that for all t ∈ V and (x1, x2) ∈ W ,

ω̃(x1, x2, s) = 0 ⇐⇒ (x1, x2) = σ(t).

Since ω̃ is continuously differentiable, there exists a neighborhood U ⊂ W of zero such
that Dω̃(σ(t), t) is invertible for all t ∈ U . Thus, for all t ∈ U , σ(t) must be the unique Nash
equilibrium of (f + tg|W ,−f − tg|W ).

We note that both the genericity and structural stability results follow largely from the
fact that the class of two-player zero-sum games are defined completely in terms of a single
(sufficiently) smooth function f ∈ Cr(X,R), so that its fairly straightforward to lift the
properties of genericity and structural stability to the class of zero-sum games from the class
of smooth functions. We also remark that the perturbations considered here are those such
that the game remains in the class of zero-sum games; that is, the function f is smoothly
perturbed and this induces the perturbed zero sum game (f + tg,−f − tg).

Examples

To illustrate the implications of structural stability, we provide a simple example. Consider
a classic set of zero-sum continuous games known as biliear games. Such games have sim-
ilar characteristics as bimatrix games played on the simplex; in particular, bimatrix games
have the same cost structure as bilinear games where the stratgegy space of the former is
considered to be a probability distribution over the finite set of pure strategies. This is
particularly interesting since it demonstrates that interior equilibria of such games can be
altered arbitrarily small perturbations.

Example 1. Consider two-players with decision variables x ∈ Rdx and y ∈ Rdy respectively,
playing a zero-sum game on the function:

f(x, y) = xTAy
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Where A ∈ Rdx×dy . The x player would like to minimize f while the y player would like to
maximize it. Looking at ω for this game, we can see that the local Nash equilibria live in
N (A)×N (AT ), where N (A) and N (AT ) denote the nullspaces of A and AT respectively:

ω(x, y) =

[
Ay
−ATx

]
We note that the local Nash equilibria are not differential Nash equilibria, and that Dω has
purely imaginary eigenvalues everywhere since it is skew-symmetric. Thus the local Nash
equilibria are non-hyperbolic and this a non-generic case. Letting fε = f(x, y) − ε

2
||x||2, we

see that ω for this perturbed game (denoted ωε) has the form:

ωε(x, y) =

[
Ay − εx
−ATx

]
This perturbation fundamentally changes the critical points, and looking at Dωε, we can see
that for any ε > 0, there are no more local Nash equilibria:

Dωε(0, 0) =

[
−εIdx A
−AT 0

]
Since any arbitrarily small perturbation of this form can cause all of the local Nash equilibria
to change, these games cannot be structurally stable.

We now show how this behavior extends to more complicated settings. Specifically we
present an example of a game of rock-paper-scissors where both players have stochastic
policies over the three actions which are parametrized by weights. The following example
highlights how this classic problem is non-generic and the behavior changes drastically when
the loss is perturbed in a small way.

Example 2. Consider the game of rock-paper-scissors where each player has three actions
{0, 1, 2}, with payoff matrix:

M =

 0 −1 1
1 0 −1
−1 1 0


Each player i ∈ {1, 2} has a policy or mixed strategy πi parametrized by a set of weights
{wij}j∈{0,1,2} of the form:

πi(j) =
exp(−βiwij)∑2
k=0 exp(−βiwij)

Where βi is a hyper-parameter for player i that determines the ’greediness’ of their policy
with respect to their set of weights. For simplicity, we treat πi as a vector in R3. Each player
would like to maximize their expected reward given by

f(w1, w2) = πT1 Mπ2.

We note that there is a continuum of local Nash equilibria for the policies πi = [1
3
, 1

3
, 1

3
] for

i ∈ {1, 2} and that this is achieved whenever each player has all of their weights equal.
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Figure 2.2: The trajectory of the policy of player 1 under gradient-play for A. rock-paper
scissors and B. a perturbed version of rock-paper-scissors. A. Player 1 cycles around the
local Nash equilibrium of

(
1
3
, 1

3
, 1

3

)
from either initialization (shown with circles). We remark

that player 1’s time average policy is in fact
(

1
3
, 1

3
, 1

3

)
. B. Player 1 diverges from the local

Nash equilibrium from either initialization for the perturbed game given by (2.8).

In Fig. 2.2 we show the trajectories of the policy of player 1, when β1 = β2 = 1 and both
players use gradient descent to update their weights at each iteration. In Figure 2.2A. we
see that player 1 cycles around the local Nash equilibrium in policy space. In Figure 2.2B.
we show the trajectories of the policy of player 1, starting from the same initializations, but
for a perturbed version of the game defined by

fε(w1, w2) = πT1 Mπ2 + εg(w1, w2) (2.8)

where ε = 1e-3 and g(x, y) = ||y||2 − ||x||2. Here we can see that this relatively small
perturbation causes a drastic change in the behavior where player 1 diverges from the Nash
of the original game and converges to the sub-optimal policy of always playing action zero.

2.3 Chapter Summary

Most general-purpose learning algorithms are based on local information such as gradient
updates, and as such, representations of Nash equilibria that are amenable to computation
such as the differential Nash concept studied in this section are extremely relevant. Much
of the existing convergence analysis for machine learning algorithms proceeds under the
structural assumptions implicit in the definition of the differential Nash equilibrium concept.
In this chapter, we show that characterizations such as these are generic and structurally
stable and we further investigate the implications of their structure for gradient-play. In
particular, in zero-sum games our results show that local Nash equilibria have very strong
local guarantees of convergence for gradient-play in ‘almost all’ zero-sum games.
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More generally, the main takeaways of this chapter are summarized in Figure 2.1. In
particular, the results from both Sections 2.1 and 2.2 allow us to answer Q2 from Chapter 1
for the class of gradient-based learning algorithms. For zero-sum games and general-sum
games, Propositions 7 and 2 (combined with the genericity results from Section 2.2 and
[157] respectively) shows that LNE(G) ⊂ LASE(ω), meaning that there exist attracting, non-
Nash equilibria for gradient-play. Thus, in these classes of games the answer to Q2 (whether
all attractors for gradient-play are relevant to the game) is “no”. In potential games, however,
since LASE(ω) ⊂ LNE(G) the answer is “yes”.

In the next chapter, we provide answers to Q1 (whether all game relevant equilibria can
be reliably found using gradient-based algorithms) by showing that all local Nash equilibria
in LNE(G) ∩ SSP(ω) are avoided almost surely by gradient-based algorithms. In particular,
since LNE(G) ∩ SSP(ω) 6= ∅ in potential and general-sum games, one cannot give a positive
answer to Q1 in either of these classes of games.



33

Chapter 3

Gradient-Based Learning in
Continuous Games

In this chapter, we provide convergence and non-convergence results for gradient-based algo-
rithms. Recall that agents are assumed to update their strategies simultaneously according
to a gradient-based learning algorithm of the form

xi,t+1 = xi,t − γi,thi(xi,t, x−i,t), (3.1)

where γi,t is agent i’s step-size at iteration t, and the map h reflects one of two settings:

1. Each agent has oracle access to the gradient of its cost with respect to its own choice
variable:

hi(xi,t, x−i,t) = Difi(xi,t, x−i,t),

where Difi ≡ ∂fi/∂xi denotes the derivative of fi with respect to xi.

2. Each agent has an unbiased estimator of their gradient:

hi(xi,t, x−i,t) = Difi(xi,t, x−i,t) + wi,t+1,

where {wi,t} is a zero mean, finite variance stochastic process.

Throughout this section we refer to the former setting as deterministic gradient-based learn-
ing and the latter setting as stochastic gradient-based learning. In Section 3.1 we show that
a large number of multi-agent learning algorithms and machine learning paradigms fit into
one of these two settings.

Given the characterizations of Nash equilibria and their behaviors under the continuous-
time flow ẋ = −ω(x) for

ω(x) = (D1f1(x), . . . , DNfN(x)),

from Chapter 2, in this chapter we build upon the intuition that both settings outlined above
should have the same limiting behavior as the limiting continuous-time ODE. Indeed, the
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first can simply be seen as the forward Euler discretization of the ODE while the second is
simply a stochastic approximation of the first. We make this intuition formal in subsequent
sections.

Before doing so, we comment briefly on the large body of recent work on understanding
gradient-play (and variants of gradient-play) in continuous games. As mentioned in Chap-
ter 1, the machine learning community has recently begun adapting tools and techniques first
developed in optimization to understanding how to solve min-max optimization problems
(or equivalently zero-sum games) [44, 45, 62, 128], and more general classes of games [14,
29]. The vast majority of these works proceed under strong structural assumptions on the
games (like e.g,., monotonicity or convexity) and analyze (sometimes stochastic) gradient-
play. In the context of zero-sum games, many works in recent years have also analyzed the
proximal point algorithm [53], and its approximations like extra-gradient algorithms [135]
or optimistic gradient descent-ascent [45, 128] . We remark that this class of algorithms can
simply be seen as the backward Euler discretization of ẋ = −ω(x), and as such, it retains
the same essential behaviors as gradient-play with respect to Nash equilibria. Differences
only appear in degenerate classes of games like bilinear games where the discretization has
a large impact on the convergence of the algorithms.

In this chapter we proceed without making strong structural assumptions on the players
losses and give global non-convergence guarantees to a subset of Nash equilibria for gradient-
play. These results also extend to the analysis of proximal point algorithms as well.

3.1 Classes of Gradient-Based Learning Algorithms

The stochastic gradient-based learning setting we study is general enough to include a variety
of commonly used multi-agent learning algorithms. The classes of algorithms we include is
hardly an exhaustive list, and indeed many extensions and altogether different algorithms
exist that can be considered members of this class. In this section, we provide a detailed
analysis of these different algorithms including the derivation of the gradient-based update
rules. In each of these cases, one can view an agent employing the given algorithm as
building an unbiased estimate of their gradient from their observation of the environment.
We note that the derivation of gradient-based approaches for multi-armed bandits can be
found in [179] among other classic references on reinforcement learning.

The takeaways of this section are shown in Table 3.1 in which we provide the gradient-
based update rule for six different example classes of learning problems: (i) gradient-play in
non-cooperative continuous games, (ii) GANs, (iii) multi-agent policy gradient, (iv) individ-
ual Q-learning, (v) multi-agent gradient bandits, and (vi) multi-agent experts.

Online Optimization: Gradient Play in Non-Cooperative Games

We first show that classical online optimization algorithms fit into the framework we describe.
In this case, each agent is directly trying to minimize its own function fi(xi, x−i), which
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Class Gradient Learning Rule

Gradient-Play x+
i = xi − γiDifi(xi, x−i)

Training GANs
θ+ = θ − γE[DθL(θ, w)]
w+ = w + γE[DwL(θ, w)]

MA Policy Gradient x+
i = xi − γiE[DiJi(xi, x−i)]

Individual Q-learning q+
i (ui) = qi(ui) + γi(ri(ui, π−i(qi, q−i))− qi(ui))

MA Gradient Bandits x+
i,` = xi,` + γiE[βiRi(ui, u−i)|ui = `], ` = 1, . . . ,mi

MA Experts x+
i,` = xi,` + γiE[Ri(ui, u−i)|ui = `], ` = 1, . . . ,mi

Table 3.1: Example problem classes that fit into competitive gradient-based learning rules.
Details on the derivation of these update rules as gradient-based learning schemes is provided
in Section 3.1.

can depend on the current iterate of the other agents. There are many examples in the
optimization literature of this type of setup. We note that in the full information case, the
competitive gradient-based learning framework we describe here is simply gradient play [57],
a very well-studied game-theoretic learning rule.

Of more interest are some gradient-free online optimization algorithms that also fit into
the framework we describe. The game can be described as follows. At each iteration, t of the
game, every player publishes its current iterate xi,t. Player i, implementing this algorithm,
then updates its iterate by taking a random unit vector u, and querying fi(xi + δiu, x−i).
The update map is given by xi,t+1 = xi,t − γifi(xi + δiu, x−i)u. It is shown in [54] that
fi(xi + δiu, x−i)u is an unbiased estimate of the gradient of a smoothed version of fi—i.e.
f̂i(xi, x−i) = Ev[fi(x + δv, x−i)]. Thus the loss function being minimized by the agent is f̂i.
In this case, the results on characterizing limiting behavior presented in Section 3.3 apply.

Training of Generative Adversarial Networks

Generative adversarial networks take a game theoretic approach to fitting a generative model
in complex structured spaces. Specifically, they approach the problem of fitting a generative
model from a data set of samples from some distribution Q ∈ ∆(Y ) as a zero-sum game be-
tween a generator and a discriminator. In general, both the generator and the discriminator
are modeled as deep neural networks. The generator network outputs a sample Gθ(z) ∈ Y in
the same space Y as the sampled data set given a random noise signal z ∼ F as an input. The
discriminator Dw(y) tries to discriminate between a true sample and a sample generated by
the generator—that is, it takes as input a sample y drawn from Q or the generator and tries
to determine if its real or fake. The goal, is to find a Nash equilibrium of the zero-sum game
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under which the generator will learn to generate samples that are indistinguishable from the
true samples—i.e. in equilibrium, the generator has learned the underlying distribution.

To prevent instabilities in the training of GANs with zero-one discriminators, the Wasser-
stein GAN attempts to approximate the Wasserstein-1 metric between the true distribution
and the distribution of the generator. In this setting, Dw(·) is a 1-Lipschitz function leading
to the problem

infθ supw Ey∼Q[Dw(y)]− Ez∼F [Dw(Gθ(z))]

which has corresponding dynamics wt+1 = wt + γ∇wL(θt, wt) and θt+1 = θt − γ∇θL(θt, wt)
where L(θ, w) = Ey∼Q[Dw(y)]− Ez∼F [Dw(Gθ(z))] and where γ is the learning rate.

GANs are notoriously difficult to train. The typical approach is to allow each player to
perform (stochastic) gradient descent on the derivative of their cost with respect to their
own choice variable. There are two important observations about gradient-based learning
approaches to training GANs that are relevant to this chapter. First, the equilibrium that
is sought is generally a saddle point and second, the dynamics of GANs are complex enough
to admit limit cycles [121]. None-the-less, training GANs with gradient descent is still very
common. We note that our results suggest that, on top of periodic orbits and oscillations,
training GANs with gradient descent can result in convergence to non-Nash equilibria.

Multi-Agent Reinforcement Learning Algorithms

Consider a setting in which all agents are operating in an MDP. There is a shared state space
S. Each agent, indexed by I = {1, . . . , n} has its own action space Ui and reward function
Ri : S × U → ∆R where U = U1 × · · · ×Un. We note the reward functions could themselves
be random, but for illustrative purposes we suppose they are deterministic. Finally, the
dynamics of the MDP are described by a state transition kernel P : S × U → ∆S and an
initial state distribution P0. Each agent i also has a policy, πi, that returns a distribution
over Ui for each state s ∈ S. We define a trajectory of the MDP, τ as τ = {(st, ui,t, u−i,u)}T−1

t=0 .
Thus, a trajectory is a finite sequence of states, the actions of each player in that state, and
the reward agent i received in that state, where T is the time horizon. Given fixed policies
we can define a distribution over the space of all trajectories Γ, namely PΓ(π), by

PΓ(τ ; π) = P0(s0)
∏

i∈I πi(ui,0|s0) · · ·P (st|st−1, ut−1)
∏

i∈I πi(ui,t|st) · · ·

The goal of each single agent in this setup is to maximize its cumulative expected reward
over a time horizon T . That is, the agent is trying to find a policy πi so as to maximize some
function, which in keeping with our general formulation in Section 1.1, we write as −fi since
this problem is a maximization. When an agent is employing policy gradient in this MARL
setup, we assume that its policy comes from a parametric class of policies parametrized by
xi ∈ Xi ⊂ Rmi . To simplify notation, we write the parametric policy as πi(xi) where for
each xi, given an state s, πi(xi) is a probability distribution on actions ui which we denote
by πi(xi)(·|s).
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The policy gradient MARL algorithm can be reformulated in the competitive gradient-
based learning framework. An agent i using policy gradient is trying to tune the param-
eters xi of their policy to maximize their expected reward over a trajectory of length T .
We define the reward of agent i over a trajectory of the MDP, τ ∈ Γ, to be Ri(τ) =∑T−1

t=0 Ri(st,i,t , u−i,t). Thus, each agent’s loss function fi, in keeping with our notation, is
given by fi(xi, x−i) = −Ji(πi(xi), π−i) = −Eτ∼PΓ(π)[Ri(τ))]. The actions of agent i in the
continuous game framework described in previous sections are the parameters of its policy,
and thus their action space is Xi ⊂ Rmi . We note that we have made no assumptions on the
other player’s actions x−i. That is, they do not need to be employing the same parameter-
ized policy class or exactly the same gradient-based update procedure; the only requirement
is that they also be using a gradient based multi-agent learning algorithm, and that their
actions give rise to a set of policies π−i that govern the way they choose their actions in the
MDP.

In the full information case, at each round, t of the game, a player plays according to
πi(xi,t) for a time horizon T , and then performs a gradient update on their parameters where
Difi(xi, x−i) = DiJi(πi(xi), π−i,t) is given by

DiJi(πi(xi), π−i) = Eτ∼PΓ(π)

[∑T−1
t=0 Ri(st, ut)

∑t
j=0∇xi log πi(xi)(ui,j|sj)

]
(3.2)

The derivation of this gradient is exactly the same as that of classic policy gradient. From
(3.2) it is clear that an unbiased estimate of the gradient can be constructed. At each
time t in the policy gradient update procedure, agent i receives a T horizon roll-out, say
zi,t = {(sk, ui,k, ri,k)}T−1

k=0 , and constructs the unbiased estimate of the gradient—i.e. D̂iJi =∑T−1
k=0 ri,k

(∑k
j=0∇xi log πi(xi,t)(ui,j|sj)

)
. We note that in this case, the agent does not need

to know the policies of the other agents, or anything about the dynamics of the MDP.
The agent can construct the estimator solely from the sequence of states, the reward they
received in those states, and their own actions. With these two derivations of the gradient
for the full information and gradient-free cases, policy gradient for MARL conforms to the
competitive gradient-based learning framework and hence, the results of Section 3 apply
under appropriate assumptions.

3.2 Convergence and Non-Convergence of

Deterministic Gradient-Play

We first address convergence to equilibria in the deterministic setting in which agents have
oracle access to their gradients at each time step. This includes the case where agents
know their own cost functions fi and observe their own actions as well as their competitors’
actions—and hence, can compute the gradient of their cost with respect to their own choice
variable.
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Since we have assumed that each agent i ∈ I has their own learning rate (i.e. step sizes
γi), the joint dynamics of all the players are given by

xt+1 = g(xt) (3.3)

where g : x 7→ x − γ � ω(x) with γ = (γi)i∈I and γ > 0 element-wise. By a slight abuse
of notation, γ � ω(xt) is defined to be element-wise multiplication of γ and ω(·) where γ1 is
multiplied by the first m1 components of ω(·), γ2 is multiplied by the next m2 components,
and so on.

We remark that this update rule immediately distinguishes gradient-based learning in
games from gradient descent. By definition, the dynamics of gradient descent in single-
agent settings always correspond to gradient flows —i.e x evolves according to an ordinary
differential equation of the form ẋ = −∇φ(x) for some function φ : Rd → R. Outside of
the class of exact potential games we defined in Chapter 2, the dynamics of players’ actions
in games are not afforded this luxury—indeed, J is not in general symmetric (which is a
necessary condition for a gradient flow). This makes the potential limiting behaviors of
ẋ = −ω(x) highly non-trivial to characterize in general-sum games.

The structure present in a gradient-flow implies strong properties on the limiting behav-
iors of x. In particular, it precludes the existence of limit cycles or periodic orbits (limiting
behaviors of dynamical systems where the state of system cycles infinitely through a set of
states with a finite period) and chaos (an attribute of nonlinear dynamical systems where
the system’s behavior can vary extremely due to slight changes in initial position) [168].
We note that both of these behaviors can occur in the dynamics of gradient-based learning
algorithms in games1.

Despite the wide breadth of behaviors that gradient dynamics can exhibit in competitive
settings, we are still make statements about convergence (and non-convergence) to certain
types of equilibria. To do so, we first make the following standard assumptions on the
smoothness of the cost functions fi and the magnitude of the agents’ learning rates γi.

Assumption 1. For each i ∈ I, fi ∈ Cs(X,R) with s ≥ 2, supx∈X ‖J(x)‖2 ≤ L < ∞, and
0 < γi < 1/L where ‖ · ‖2 is the induced 2-norm.

Given these assumptions, the following result rules out converging to strict saddle points.

Theorem 4. Let fi : X → R and γ satisfy Assumption 1. Suppose that X = X1×· · ·×XN ⊆
Rm is open and convex. If g(X) ⊂ X, the set of initial conditions x ∈ X from which
competitive gradient-based learning converges to strict saddle points is of measure zero.

We remark that the above theorem holds for X = X1×· · ·×XN = Rm in particular, since
g(X) ⊂ X holds trivially in this case. It is also important to note that, as we point out in

1The Van der Pol oscillator and Lorenz system (see e.g [168]) can be seen as the resulting gradient
dynamics in a 2-player and 3-player general-sum game respectively. The first is a classic example of a system
where players converge to cycles and the second is an example of a chaotic system.
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Chapter 2, local Nash equilibria can be strict saddle points. Thus, all local Nash equilibria
that are strict saddle points for ẋ = −ω(x) are avoided almost surely by gradient-play
even with oracle gradient access and random initializations. This holds even when players
randomly initialize uniformly in an arbitrarily small ball around such Nash equilibria. In
Chapter 4, we show that many linear quadratic dynamic games have a strict saddle point as
their global Nash equilibrium.

The core of the proof of Theorem 4 is the celebrated stable manifold theorem from dy-
namical systems theory. Using the notation φt = φ◦· · ·◦φ to denote the t–times composition
of a function φ : Rd → Rd, we present the theorem below for completeness.

Theorem 5 (Center and Stable Manifolds [175, Theorem III.7], [177]). Let x0 be a fixed
point for the Cr local diffeomorphism φ : U → Rd where U ⊂ Rd is an open neighborhood
of x0 in Rd and r ≥ 1. Let Es ⊕ Ec ⊕ Eu be the invariant splitting of Rd into generalized
eigenspaces of Dφ(x0) corresponding to eigenvalues of absolute value less than one, equal to
one, and greater than one. To the Dφ(x0) invariant subspace Es⊕Ec there is an associated
local φ–invariant Cr embedded disc W cs

loc called the local stable center manifold of dimension
dim(Es ⊕ Ec) and ball B around x0 such that φ(W cs

loc) ∩ B ⊂ W cs
loc, and if φt(x) ∈ B for all

t ≥ 0, then x ∈ W sc
loc.

Importantly, this theorem allows us to characterize— locally— the set of initial conditions
under which dynamics converge to equilibria. This is a crucial step in the proof of Theorem 4.

Proof of Theorem 4. The proof is composed of two parts: (a) the map g is a diffeomor-
phism, and (b) application of the stable manifold theorem to conclude that the set of initial
conditions is measure zero.

(a) g is diffeomorphism We claim the mapping g : Rm → Rm is a diffeomorphism. If we
can show that g is invertible and a local diffeomorphism, then the claim follows. Consider
x 6= y and suppose g(y) = g(x) so that y − x = γ · (ω(y) − ω(x)). The assumption
supx∈Rm ‖J(x)‖2 ≤ L < ∞ implies that ω satisfies the Lipschitz condition on Rm. Hence,
‖ω(y) − ω(x)‖2 ≤ L‖y − x‖2. Let Γ = diag(Γ1, . . . ,Γn) where Γi = diag((γi)

mi
j=1)—that

is, Γi is an mi × mi diagonal matrix with γi repeated on the diagonal mi times. Then,
‖x− y‖2 ≤ L‖Γ‖2‖y − x‖2 < ‖y − x‖2 since ‖Γ‖2 = maxi |γi| < 1/L.

Now, observe that Dg = I − ΓJ(x). If Dg is invertible, then the implicit function
theorem [97, Theorem C.40] implies that g is a local diffeomorphism. Hence, it suffices to
show that ΓJ(x) does not have an eigenvalue of 1. Indeed, letting ρ(A) be the spectral radius
of a matrix A, we know in general that ρ(A) ≤ ‖A‖ for any square matrix A and induced
operator norm ‖ · ‖ so that ρ(ΓJ(x)) ≤ ‖ΓJ(x)‖2 ≤ ‖Γ‖2 supx∈Rm ‖J(x)‖2 < maxi |γi|L < 1
Of course, the spectral radius is the maximum absolute value of the eigenvalues, so that the
above implies that all eigenvalues of ΓJ(x) have absolute value less than 1.

Since g is injective by the preceding argument, its inverse is well-defined and since g is a
local diffeomorphism on Rm, it follows that g−1 is smooth on Rm. Thus, g is a diffeomorphism.
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(b) Application of the stable manifold theorem Consider all critical points to the
game—i.e. Xc = {x ∈ X| ω(x) = 0}. For each p ∈ Xc, let Bp be the open ball derived from
Theorem 5 and let B = ∪pBp. Since X ⊆ Rm, Lindelõf’s lemma [84]—every open cover has a
countable subcover—gives a countable subcover of B. That is, for a countable set of critical
points {pi}∞i=1 with pi ∈ Xc, we have that B = ∪∞i=1Bpi .

Starting from some point x0 ∈ X, if gradient-based learning converges to a strict saddle
point, then there exists a t0 and index i such that gt(x0) ∈ Bpi for all t ≥ t0. Again, applying
Theorem 5 and using that g(X) ⊂ X—which we note is obviously true if X = Rm—we get
that gt(x0) ∈ W cs

loc ∩X.
Using the fact that g is invertible, we can iteratively construct the sequence of sets defined

by W1(pi) = g−1(W cs
loc∩X) and Wk+1(pi) = g−1(Wk(pi)∩X). Then we have that x0 ∈ Wt(pi)

for all t ≥ t0. The set X0 = ∪∞i=1 ∪∞t=0 Wt(pi) contains all the initial points in X such that
gradient-based learning converges to a strict saddle. Since pi is a strict saddle, I − ΓJ(pi)
has an eigenvalue greater than 1. This implies that the co-dimension of Eu is strictly less
than m. (i.e. dim(W cs

loc) < m). Hence, W cs
loc ∩X has Lebesgue measure zero in Rm.

Again since. g is a diffeomorphism, g−1 ∈ C1 and is further locally Lipschitz and null set
preserving. Hence, Wk(pi) has measure zero for all k by induction so that X0 is a measure
zero set since it is a countable union of measure zero sets.

In potential games we can strengthen the above non-convergence result and give conver-
gence guarantees.

Corollary 2. Consider a potential game (f1, . . . , fN) on open, convex X = X1×· · ·×XN ⊆
Rm and where each fi ∈ Cs(X,R) for s ≥ 3. Let ν be a prior measure with support X which
is absolutely continuous with respect to the Lebesgue measure and assume limt→∞ g

t(x) exists.
Then, under Assumption 1, competitive gradient-based learning converges to non-degenerate
differential Nash equilibria almost surely. Moreover, the non-degenerate differential Nash to
which it converges is generically a local Nash equilibrium.

Corollary 2 guarantees that in potential games, gradient-play will converge to a differen-
tial Nash equilibrium. The proof of follows from the symmetry of J in potential games, and
our observations in Chapter 2.

Proof of Corollary 2. Since the game admits a potential function φ, there is a transforma-
tion of coordinates such that agents following the dynamics xt+1 = xt − γ � ω(xt) converge
to the same equilibria as the gradient dynamics xt+1 = xt − γ �Dφ(xt). Hence, the analy-
sis of the gradient-based learning scheme reduces to analyzing gradient-based optimization
of φ. Moreover, existence of a potential function also implies that Dijfj ≡ Djifi so that
J is symmetric. Indeed, writing ω(x) as the differential form

∑n
i=1Difi(x)dxi and noting

that d ◦ d = 0 for the differential operator d, we have that d(ω) =
∑

i d(Difi) ∧ dxi =∑
i,j:j>i (Dijfj −Djifi) dxi∧dxj = 0 where ∧ is the standard exterior product [97]. Symme-

try of J implies that all periodic orbits are equilibria—i.e. the dynamics do not possess any
limit cycles. By Theorem 4, the set of initial points that converge to strict saddle points is
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of measure zero. Since all the stable critical points of the dynamics are equilibria, with the
assumption that limt→∞ g

t(x) exists for all x ∈ X, we have that Pν [limt→∞ g
t(x) = x∗] = 1

where x∗ is a non-degenerate differential Nash equilibrium which is generically a local Nash
equilibrium [157].

Combining this with Theorem 4 and the insights from Chapter 2 guarantees that the
differential Nash equilibrium it converges to is a local minimizer of the potential function.
A simple implication of this result is that gradient-based learning in potential games cannot
exhibit limit cycles or chaos.

Of note is the fact that the agents do not need to be performing gradient-based learning
on φ to converge to Nash almost surely. That is, they do not need to know the function φ;
they simply need to follow the derivative of their own cost with respect to their own choice
variable, and they are guaranteed to converge to a local Nash equilibrium that is a local
minimizer of the potential function.

Remark 4. We note that convergence to Nash equilibria is a known characteristic of gradient-
play in potential games. However, our analysis also highlights that gradient-play will avoid a
subset of the Nash equilibria of the game (namely local Nash equilibria that are saddle points
of the potential function as shown in Proposition 4). This is surprising given the particularly
strong structural properties of such games.

Implications and Interpretation of Convergence Analysis

Both Theorem 4 and Corollary 2 show that gradient-play in multi-agent settings avoids
strict saddles almost surely even in the deterministic setting. Combined with the analysis in
Chapter 2 which shows that (local) Nash equilibria can be strict saddles of the dynamics for
general-sum games, this implies that a subset of the Nash equilibria are almost surely avoided
by individual gradient-play, a potentially undesirable outcome in view of Q1 (whether all
Nash equilibria are attracting for the learning dynamics). In Chapter 4, we show that the
global Nash equilibrium is a saddle point of the gradient dynamics in a large number of
randomly sampled LQ dynamic games. This suggests that policy gradient algorithms may
fail to converge in such games, which is highly undesired. This is in stark contrast to the
single agent setting where policy gradient has been shown to converge to the unique solution
of LQR problems [51].

In Chapter 2, we also showed that local Nash equilibria of potential games can be strict
saddles points of the potential function. Non-convergence to such points in potential games
is not necessarily a bad result since this in turn implies convergence to a local minimizer
of the potential function (as shown in [98, 144]) which are guaranteed to be local Nash
equilibria of the game. However, these results do imply that one cannot answer “yes” to Q1
in potential games since some of the Nash equilibria are not attracting under gradient-play.

In zero-sum games, where local Nash equilibria cannot be strict saddle points of the
gradient dynamics, our result suggests that eventually gradient-based learning algorithms
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will escape saddle points of the dynamics, though it is impossible to rule out converging to
cycles or non-Nash equilibria without making additional structural assumptions.

The almost sure avoidance of all equilibria that are saddle points of the dynamics further
implies that if (2.1) converges to a critical point x, then x ∈ LASE(ω)—i.e., x is locally
asymptotically stable for ẋ = −ω(x). This may not be a desired property however, since we
showed in Chapter 2 that zero-sum and general-sum games both admit non-Nash LASE.

Since gradient-play in games generally does not result in a gradient flow, other types
of limiting behaviors such as limit cycles can occur in gradient-based learning dynamics.
Theorem 4 says nothing about convergence to other limiting behaviors. In the following
sections we prove that the results described in this section extend to the stochastic gradient
setting. We also formally define periodic orbits in the context of dynamical systems and
state stronger results on avoidance of some more complex limiting behaviors like linearly
unstable limit cycles.

3.3 Convergence and Non-Convergence of Stochastic

Gradient-Play

We now analyze the stochastic case in which agents are assumed to have an unbiased esti-
mator for their gradient. The results in this section allow us to extend the results from the
deterministic setting to a setting where each agent builds an estimate of the gradient of their
loss at the current set of strategies from potentially noisy observations of the environment.
Thus, we are able to analyze the limiting behavior of a class of commonly used machine
learning algorithms for competitive, multi-agent settings. In particular, we show that agents
will almost surely not converge to strict saddle points. In Theorem 8, we show that the gra-
dient dynamics will actually avoid more general limiting behaviors called linearly unstable
cycles which we define formally.

To perform our analysis, we make use of tools and ideas from the literature on stochastic
approximations (see e.g [26]). We note that the convergence of stochastic gradient schemes
in the single-agent setting has been extensively studied [28, 122, 147, 161]. We extend this
analysis to the behavior of stochastic gradient algorithms in games.

We assume that each agent updates their strategy using the update rule

xi,t+1 = xi,t − γi,t(Difi(xi,t, x−i,t) + wi,t+1) (3.4)

for some zero-mean, finite-variance stochastic process {wi,t}.
In particular, we make the following standard assumptions on the noise processes [161,

163].

Assumption 2. The stochastic process {wi,t+1} satisfies the assumptions E[wi,t+1| F ti ] = 0,
t ≥ 0 and E[‖wi,t+1‖2| F ti ] ≤ σ2 < ∞ a.s., for t ≥ 0, where Fi,t is an increasing family of
σi-fields—i.e. filtration, or history generated by the sequence of random variables—given by
Fi,t = σi(xi,k, wi,k, k ≤ t), t ≥ 0.



CHAPTER 3. GRADIENT-BASED LEARNING IN CONTINUOUS GAMES 43

We also make new assumptions on the players’ step-sizes. These are standard assumptions
in the stochastic approximation literature and are needed to ensure that the noise processes
are asymptotically controlled.

Assumption 3. For each i ∈ I, fi ∈ Cs(X,R) with s ≥ 2, Difi is Li–Lipschitz with
0 < Li < ∞, the step-sizes satisfy γi,t ≡ γt for all i ∈ I and

∑
t γt = ∞ and

∑
t(γt)

2 < ∞,
and supt ‖xt‖ <∞ a.s.

Once again, our results make use classical results from dynamical systems theory, namely
Theorem 1 from [147] which guarantees that stochastic approximation schemes avoid unsta-
ble equilibria of the limiting ode.

Theorem 6 (Theorem 1 [147]). Consider a general stochastic approximation framework of
the form:

xt+1 = xt + γt(h(xt)) + εt

for h : X → TX with h ∈ C2 where X ⊂ Rd and TX denotes the tangent space. Suppose
γt is Ft–measurable and E[εt|Ft] = 0.

Let the stochastic process {xt}t≥0 be defined as above for some sequence of random vari-
ables {εt} and {γt} and let p ∈ X with h(p) = 0 with W a neighborhood of p. Assume that
there are constants η ∈ (1/2, 1] and c1, c2, c3, c4 > 0 for which the following conditions are
satisfied whenever xt ∈ W and t sufficiently large:

a. p is a strict saddle point of ẋ = −h(x),

b. c1/t
η ≤ γt ≤ c2/t

η,

c. E[(wt · v)+|Ft] ≥ c3/t
η for every unit vector v ∈ TX,

d. ‖wt‖2 ≤ c4/t
η.

Then P (xt → p) = 0.

Given this result, the following theorem extends the results of Theorem 4 to the stochastic
gradient dynamics in games.

Theorem 7. Consider a game (f1, . . . , fN) on X = X1×· · ·×Xn = Rm. Suppose each agent
i ∈ I adopts a stochastic gradient algorithm that satisfies Assumptions 2 and 3. Further,
suppose that for each i ∈ I, there exists a constant bi > 0 such that E[(wi,t · v)+|Fi,t] ≥ bi for
every unit vector v ∈ Rmi. Then, competitive stochastic gradient-based learning converges to
strict saddle points of the game on a set of measure zero.

The proof follows directly from showing that (3.4) satisfies Theorem 6. The assumption
that E[(wi,t · v)+|Fi,t] ≥ bi rules out degenerate cases where the noise forces the stochastic
dynamics onto the stable manifold of strict saddle points.
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Theorem 7 implies that the dynamics of stochastic gradient-based learning defined in
(3.4), have the same limiting properties as the deterministic dynamics vis-à-vis saddle points.
Thus, the implications described in Section 3.2 extend to the stochastic gradient setting. In
particular, stochastic gradient-based algorithms will avoid a non-negligible subset of the Nash
equilibria in general-sum and potential games. Further, in zero-sum and general-sum games,
if the players fo converge to a critical point, that point may be a non-Nash equilibrium.

Further Convergence Results for Stochastic Gradient-Play in
Games

As we demonstrated in Section 3.2, outside of potential games, the dynamics of gradient-
based learning algorithms in games are not gradient flows. As such, the players’ actions
can converge to more complex sets than simple equilibria. A particularly prominent class
of limiting behaviors for dynamical systems are known as limit cycles (see e.g [168]). Limit
cycles (or periodic orbits) are sets of states S such that each state x ∈ S is visited at periodic
intervals ad infinitum under the dynamics. Thus, if the gradient-based algorithms converge
to a limit cycle they will cycle infinitely through the same sequence of actions. Like equilibria,
limit cycles can be stable or unstable under the dynamics ẋ = −ω(x), meaning that the
dynamics can either converge to or diverge from them depending on their initializations.

We remark that the existence of oscillatory behaviors and limit cycles has been observed in
the dynamics of of gradient-based learning in various settings like the training of Generative
Adversarial Networks [45], and multiplicative weights in finite action games [121]. We simply
emphasize that the existence of such limiting behaviors is due to the fact that the dynamics
are no longer gradient flows. This fact also allows for other complex limiting behaviors like
chaos2 to exist in the dynamics of gradient-based learning in games.

In the following subsections we formalize the notion of a limit cycle and its stability
in the stochastic setting. Using these concepts, we then provide an analogous theorem to
Theorem 7 which states that competitive stochastic gradient-based learning converges to
linearly unstable limit cycles—a parallel notion to strict saddle points but pertaining to
more general limit sets—on a set of measure zero, provided that analogous assumptions to
those in the statement of Theorem 7 hold. Providing such guarantees requires a bit more
mathematical formalism which we develop in the next subsection.

Avoidance of Repelling Sets

To show that stochastic gradient-based learning avoid more general limiting behaviors than
saddle points, we need further assumptions on our underlying space—i.e. we need the under-
lying decision spaces of each agent—i.e. Xi for each i ∈ I—to be smooth, compact manifolds

2A general term used to characterize dynamical systems where arbitrarily small perturbations in the
initial conditions lead to drastically different solutions to the differential equations
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without boundary3. The stochastic process {xn} which follows (3.4) is defined on X—that
is, xn ∈ X for all n ≥ 0. As before, it is natural to compare sample points {xn} to solutions
of ẋ = −ω(x) where we think of (3.4) as a noisy approximation. The asymptotic behavior
of {xn} can indeed be described by the asymptotic behavior of the flow generated by ω.

We also need a formal notion of cycles. A non-stationary periodic orbit of ω is called a
cycle. Let ξ ⊂ X be a cycle of period T > 0. Denote by ΦT the flow corresponding to ω. For
any x ∈ ξ, spec(DΦT (x)) = {1} ∪ C(ξ) where C(ξ) is the set of characteristic multipliers.
We say ξ is hyperbolic if no element of C(ξ) is on the complex unit circle. Further, if C(ξ)
is strictly inside the unit circle, ξ is called linearly stable and, on the other hand, if C(ξ)
has at least one element on the outside of the unit circle—that is, DΦT (x) for x ∈ ξ has
an eigenvalue with real part strictly greater than 1—then ξ is called linearly unstable. The
latter is the analog of strict saddle points in the context of periodic orbits. We denote by
{xt} sample paths of the process (3.4) and L({xt}) is the limit set of any sequence {xt}t≥0

which is defined in the usual way as all p ∈ X such that limk→∞ xtk = p for some sequence
tk → ∞. It was shown in [22] that under less restrictive assumptions than Assumptions 2
and 3, L({xt}) is contained in the chain recurrent set of ω and L({xt}) is a non-empty,
compact and connected set invariant under the flow of ω.

Theorem 8. Consider a game (f1, . . . , fn) where each Xi is a smooth, compact manifold
without boundary. Suppose each agent i ∈ I adopts a stochastic gradient-based learning
algorithm that satisfies Assumptions 2 and 3 and is such that sample points xt ∈ X for
all t ≥ 0. Further, suppose that for each i ∈ I, there exist a constant bi > 0 such that
E[(wi,t · v)+|Fi,t] ≥ bi for every unit vector v ∈ Rmi. Then competitive stochastic gradient-
based learning converges to linearly unstable cycles on a set of measure zero—i.e. P (L(xt) =
ξ) = 0 where {xt} is a sample path.

As we noted, periodic orbits are not necessarily excluded from the limiting behavior of
gradient-based learning in games. We leave out the proof of Theorem 8 since after some
algebraic manipulation, it is a direct application of Theorem 2.1 in [24] which is re-stated
below.

Theorem 9 (Theorem 2.1 [24]). Consider a general stochastic approximation framework of
the form:

xt+1 = xt + γt(h(xt)) + εt

for h : X → TX with h ∈ C2 where X ⊂ Rd and TX denotes the tangent space. Suppose
γt is Ft–measurable and E[εt|Ft] = 0.

Let ξ ⊂ X be a hyperbolic linearly unstable cycle of h. Assume the following:

a h ∈ C2;

b c1/t
η ≤ γt ≤ c2/t

η with 0 < c1 ≤ c2 and 0 < η ≤ 1;

3The torus T = S1 × S1 is an example. The interested reader can consult, e.g., [97] for more details on
differential geometry.
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c there exists b ≥ 0 such that for all unit vectors v ∈ Rm, E[(wt · v)+|Ft] ≥ b.

Then P (L({xt}) = ξ) = 0.

Morse-Smale Games

In pursuit of a more general class of games with desirable convergence properties, we now
introduce a generalization of potential games, namely Morse-Smale games, for which the
combined gradient dynamics correspond to a Morse-Smale vector field [74, 143]. In such
games players are guaranteed to converge to only (linearly stable) cycles or equilibria. In
such games, however, players may still converge to non-Nash equilibria and avoid a subset
of the Nash equilibria.

For a class of games admitting gradient-like vector fields we can go beyond non-convergence
results and give convergence guarantees. Following [24], we introduce a new class of games,
which we call Morse-Smale games, that are a generalization of potential games. Such games
represent an important class since the vector field of ω corresponds to Morse-Smale vector
field which is known to be generic in R2 and are otherwise structurally stable [74, 143].

Definition 13. A game (f1, . . . , fn) with fi ∈ Cr for some r ≥ 3 and where strategy spaces
Xi is a smooth, compact manifold without boundary for each i ∈ I is a Morse-Smale game if
the vector field corresponding to the differential ω is Morse-Smale—that is, the following hold:
(i) all periodic orbits ξ (i.e. equilibria and cycles) are hyperbolic and the stable and unstable
manifolds of any two periodic orbits ξ and ξ′ intersect transversally: W s(ξ) t W u(ξ′), (ii)
every forward and backward omega limit set is a periodic orbit, (iii) and ω has a global
attractor.

The conditions of Morse-Smale in the above definition ensure that there are only finitely
many periodic orbits. The dynamics of games with more general vector fields, on the other
hand, can admit chaos (e.g. the classic Lorentz attractor can be cast as gradient-play in a 3-
player game). Hyperbolic equilibria and periodic orbits are the only types of limiting behavior
that have been shown to correspond to strategies relevant to the underlying game [21]. The
simplest example of a Morse-Smale vector field is a gradient flow. However, not all Morse-
Smale vector fields are gradient flows and hence, not all Morse-Smale games are potential
games.

Example 3. Consider the n-player game with Xi = R for each i ∈ I and fn(x) = xn(x2
1 −

1), fi(x) = xixi+1, ∀i ∈ I/{n} This is a Morse-Smale game that is not a potential game.
Indeed, ẋ = −ω(x) where ω = [x2, x3, . . . , xn−1, x

2
1 − 1] is a dynamical system with a Morse-

Smale vector field that is not a gradient vector field [40].

Essentially, in a neighborhood of a critical point for a Morse-Smale game, the game be-
havior can be described by a Morse function φ such that near critical points ω can be written
as Dφ and away from critical points ω points in the same direction as Dφ—i.e. ω ·Dφ > 0.
Specializing the class of Morse-Smale games, we have stronger convergence guarantees.
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Theorem 10. Consider a Morse-Smale game (f1, . . . , fn) on smooth boundaryless com-
pact manifold X. Suppose Assumptions 2 and 3 hold and that {xt} is defined on X. Let
{ξi, i = 1, . . . , l} denote the set of periodic orbits in X. Then

∑l
i=1 P (L({xt}) = ξi) = 1

and P (L({xt}) = ξi) > 0 implies ξi is linearly stable. Moreover, if the periodic orbit ξi with
P (L({xt}) = ξi) > 0 is an equilibrium, then it is either a non-degenerate differential Nash
equilibrium—which is generically a local Nash—or a non-Nash locally asymptotically stable
equilibrium.

The proof of Theorem 10 follows by invoking Corollary 3 which is stated below.

Corollary 3 (Corollary 2.2 [24]). Assume that there exists δ ≥ 1 such that
∑

n≥0 γ
1+δ
n <∞

and that h is a Morse-Smale vector field. If we denote by {ξi, i = 1, . . . , l} the set of periodic
orbits in X, then

∑l
i=1 P (L({xt}) = ξi) = 1. Further, if conditions (i)–(iii) of Theorem 9

hold, then P (L({xt}) = ξi) > 0 implies ξi is linearly stable.

Thus, in Morse-Smale games, with probability one, the limit sets of competitive gradient-
based learning with stochastic updates are attractors (i.e., periodic orbits, which includes
limit cycles and equilibria) of ẋ = −ω(x) and if any attractor has positive probability of
being a limit set of the players’ collective update rule, then it is (linearly) stable. Moreover,
attractors that are equilibria are either non-degenerate differential Nash equilibria (gener-
ically local Nash equilibria) or non-Nash locally asymptotically stable equilibria, but not
saddle points.

If we further restrict the class of games to potential games, the results for Morse-Smale
games imply convergence to Nash almost surely, a particularly strong convergence guarantee.

Corollary 4. Consider the game (f1, . . . , fn) on smooth boundaryless compact manifold
X = X1 × · · · × Xn admitting potential function φ. Suppose each agent i ∈ I adopts a
stochastic gradient-based learning algorithm that satisfies Assumptions 2 and 3 and such
that {xt} evolves on X. Further, suppose that for each i ∈ I, there exist a constant bi > 0
such that E[(wi,t · v)+|Fi,t] ≥ bi for every unit vector v ∈ Rmi. Then, competitive stochastic
gradient-based learning converges to a non-degenerate differential Nash equilibrium almost
surely.

The proof of Corollary 4 follows from the fact that potential games are trivially Morse-
Smale games that admit no periodic cycles as we showed in the proof of Corollary 2.

Proof of Corollary 4. Consider a potential game (f1, . . . , fn) where each Xi is a smooth,
compact boundaryless manifold. Then ω = Dφ for some φ ∈ Cr which implies that ω is a
gradient flow and hence, does not admit limit cycles. Let {ξi, i = 1, . . . , l} be the set of
equilibrium points in X. Under the assumptions of Theorem 10,

∑l
i=1 P (L({xt}) = ξi) = 1

and, if P (L({xt}) = ξi) > 0, then ξi is a linearly stable equilibrium point which is a non-
degenerate differential Nash equilibrium of the game due to the fact that Dω(x) is symmetric
in potential games. Hence, a sample path {xt} converges to a non-degenerate differential
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Nash equilibrium with probability one. Moreover, by [157], we know it is generically a local
Nash.

We note, that even though a potential function is enough to guarantee convergence to a
local Nash equilibrium, potential games can still admit local Nash equilibria that are strict
saddle points as shown in Section 2. Thus, even this relatively well-behaved class of games
has problems when applying a gradient-based learning scheme.

3.4 Chapter Summary

Our results suggest that gradient-play in multi-agent settings has fundamental problems.
Depending on the players’ costs, in general games and even potential games, which have a
particularly nice structure, a subset of the Nash equilibria will be almost surely avoided by
gradient-based learning when the agents randomly initialize their first action. In zero-sum
and general-sum games, even if the algorithms do converge, they may have converged to a
point that has no game theoretic relevance, namely a non-Nash locally asymptotically stable
equilibrium.

Lastly, these results show that limit cycles persist even under a stochastic update scheme.
This explains the empirical observations of limit cycles in gradient dynamics presented in [45,
76, 99]. It also implies that gradient-based learning in multi-agent reinforcement learning,
multi-armed bandits, generative adversarial networks, and online optimization all admit limit
cycles under certain loss functions. Our empirical results show that these problems are not
merely of theoretical interest, but also have great relevance in practice.

Which classes of games have all Nash being attracting for gradient-play and which classes
preclude the existence of non-Nash equilibria is an open and particularly interesting ques-
tion. Further, the question of whether gradient-based algorithms can be constructed for
which only game-theoretically relevant equilibria are attracting is of particular importance
as gradient-based learning is increasingly implemented in game theoretic settings. Indeed,
more generally, as learning algorithms are increasingly deployed in markets and other com-
petitive environments understanding and dealing with such theoretical issues will become
increasingly important.
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Chapter 4

Gradient-Based Learning in
Multi-Agent Reinforcement Learning

Interest in multi-agent reinforcement learning has seen a recent surge of late, and policy-
gradient algorithms are championed due to their potential scalability. Indeed, recent impres-
sive successes of multi-agent reinforcement learning have made use of policy optimization
algorithms such as multi-agent actor-critic [77, 103, 178], multi-agent proximal policy opti-
mization [17], and even simple multi-agent policy-gradients [92] in problems where the various
agents have high-dimensional continuous state and action spaces like StarCraft [190].

Despite these successes, a theoretical understanding of these algorithms in multi-agent
settings is still lacking. Missing perhaps, is a tractable yet sufficiently complex setting in
which to study these algorithms. Recently, there has been much interest in analyzing the con-
vergence and sample complexity of policy-gradient algorithms in the classic linear quadratic
regulator (LQR) problem from optimal control [82]. The LQR problem is a particularly apt
setting to study the properties of reinforcement learning algorithms due to the existence of
an optimal policy which is a linear function of the state and which can be found by solving a
Ricatti equation. Indeed, the relative simplicity of the problem has allowed for new insights
into the behavior of reinforcement learning algorithms in continuous action and state spaces
[46, 51, 110].

An extension of the LQR problem to the setting with multiple agents, known as a linear
quadratic (LQ) game, has also been well studied in the literature on dynamic games and
optimal control [19]. As the name suggests, an LQ game is a game in which multiple agents
attempt to control a shared linear dynamical system subject to quadratic costs. Since the
players have their own costs, the notion of ‘optimality’ in such games is a Nash equilibrium,
properties of which have been well analyzed in the literature [18, 50, 105, 152].

Like LQR for the classical single-agent setting, LQ games are an appealing setting in
which to analyze the behavior of multi-agent reinforcement learning algorithms in contin-
uous action and state spaces since they admit global Nash equilibria in the space of linear
feedback policies. Moreover, these equilibria can be found by solving a coupled set of Ricatti
equations. As such, LQ games are a natural benchmark problem on which to test policy-
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gradient algorithms in multi-agent settings. Furthermore, policy gradient methods open up
the possibility to new scalable approaches to finding solutions to control problems even with
constraints. In the single-agent setting, it was recently shown that policy-gradient has global
convergence guarantees for the LQR problem [51]. These results have recently been extended
to projected policy-gradient algorithms in zero-sum LQ games [204].

Chapter Overview

In this chapter we present a negative result, showing that policy-gradient in general-sum LQ
games does not enjoy even local convergence guarantees, unlike in LQR. In particular, we
show that, if each player randomly initializes their policy and then uses a policy-gradient
algorithm, there exists an LQ game in which the players would almost surely avoid a Nash
equilibrium. Further, our numerical experiments indicate that LQ games in which this occurs
may be quite common. We also observe empirically that when players fail to converge to
the Nash equilibrium they do converge to stable limit cycles. These cycles do not seem to
have any readily apparent relationship to the Nash equilibria of the game.

We note that non-convergence to Nash equilibria is not in itself a new phenomenon (see
e.g. [35, 37, 45, 113, 116]) and that the existence of cycles in the dynamics of learning
dynamics in games has also been repeatedly observed in various contexts [114, 116, 121,
145]. However, such phenomena have not yet been shown to occur in the dynamics of
multi-agent reinforcement learning algorithms in continuous action and state spaces. Since
such algorithms have had such striking successes in recent years, we believe a theoretical
understanding of their behaviors can lay the groundwork for the development of more efficient
and theoretically sound multi-agent learning algorithms.

Organization.

Section 4.1 introduces n-player general-sum LQ games and presents previous results on the
existence of the Nash equilibrium in such games. In Section 4.2, we show that these games
are not convex games and that all the stationary points of the joint policy-gradient dynamics
are Nash equilibria. Following this, we give sufficient conditions under which policy-gradient
almost surely avoids a Nash equilibrium in Section 4.3. Given these theoretical results, in
Section 4.4 we present empirical results demonstrating that a large number of 2-player LQ
games satisfy these sufficient conditions. Numerical experiments showing the existence of
limit cycles in the gradient dynamics of general-sum LQ games are also presented. The paper
is concluded with a discussion in Section 4.5.
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4.1 Linear Quadratic Games

We consider n-player LQ games subject to a discrete-time dynamical system defined by

z(t+ 1) = Az(t) +
∑n

i=1Biui(t) z(0) = z0 ∼ D0, (4.1)

where z(t) ∈ Rm is the state at time t, D0 is the initial state distribution, and ui(t) ∈ Rdi

is the control input of player i ∈ 1, . . . , n. For LQ games, it is known that under reasonable
assumptions, linear feedback policies for each player that constitute a Nash equilibrium exist
and are unique if a set of coupled Ricatti equations admit a unique solution [19]. Thus, we
consider that each player i searches for a linear feedback policy of the form ui(t) = −Kiz(t)
that minimizes their loss, where Ki ∈ Rdi×m. We use the notation d =

∑n
i=1 di for the

combined dimension of the players’ parameterized policies.
As the name of the game implies, the players’ loss functions are quadratic functions given

by
fi(u1, . . . , un) = Ez0∼D0

[∑∞
t=0 z(t)TQiz(t) + ui(t)

TRiui(t)
]
,

where Qi and Ri are the cost matrices for the state and input, respectively.

Assumption 4. For each player i ∈ {1, . . . , n}, the state and control cost matrices satisfy
Qi � 0 and Ri � 0.

We note that the players are coupled through the dynamics since z(t) is constrained
to obey the update equation given in (4.1). We focus on a setting in which all players
randomly initialize their strategy and then perform gradient descent simultaneously on their
own cost functions with respect to their individual control inputs. That is, the players use
policy-gradient algorithms of the following form:

Ki,n+1 = Ki,n − γiDifi(K1,n, . . . , Kn,n) (4.2)

where Difi(·, ·) denotes the derivatives of fi with respect to the i–th argument, and {γi}ni=1

are the step-sizes of the players. We note that there is a slight abuse of notation here in
the expression of Difi as functions of the parameters Ki as opposed to the control inputs
ui. To ensure there is no confusion between t and n, we also point out that n indexes the
policy-gradient algorithm iterations while t indexes the time of the dynamical system.

To simplify notation, define

ΣK = Ez0∼D0

[∑∞
t=0 z(t)z(t)T

]
,

where we use the subscript notation to denote the dependence on the collection of controllers
K = (K1, . . . , Kn). Define also the initial state covariance matrix

Σ0 = Ez0∼D0 [z0z
T
0 ].

Direct computation verifies that for player i, Difi is given by:

Difi(K1, . . . , Kn) = 2(RiKi −BT
i PiĀ)ΣK , (4.3)
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where Ā = A−
∑n

i=1BiKi, is the closed–loop dynamics given all players’ control inputs and,
for given (K1, . . . , Kn), the matrix Pi is the unique positive definite solution to the Bellman
equation:

Pi = ĀTPiĀ+KT
i RiKi +Qi, i ∈ {1, . . . , n}. (4.4)

Given that the players may have different control objectives and do not engage in coor-
dination or cooperation, the best they can hope to achieve is a Nash equilibrium.

Definition 14. A feedback Nash equilibrium is a collection of policies (K∗1 , . . . , K
∗
n) such

that:
fi(K

∗
1 , . . . , K

∗
i , . . . , K

∗
n) ≤ fi(K

∗
1 , . . . , Ki, . . . , K

∗
n), ∀ Ki ∈ Rdi×m.

for each i ∈ {1, . . . , n}.

Under suitable assumptions on the cost matrices, the Nash equilibrium of an LQ game is
known to exist in the space of linear policies [19, 102]. However, this Nash equilibrium may
not be unique. To the best of our knowledge, there are no general set of conditions under
which the Nash equilibrium is unique in general-sum LQ games outside of the scalar dynamics
setting [50]. There are, however, algebraic geometry methods to compute all Nash equilibria
in LQ games [152]. We make use of a simpler algorithm to find Nash equilibria which solves
coupled Ricatti equations using the method of Lyapunov iterations. The method is outlined
in [102] for continuous time LQ games, and an analogous procedure can be followed for
discrete time. Convergence of this method requires the following assumption.

Assumption 5. For at least one player i ∈ {1, . . . , n}, the system (A,Bi) is stabilizable.

Assumption 5 is a necessary condition for the players to be able to stabilize the system.
Indeed, the player’s costs are finite only if the closed loop system Ā is asymptotically stable,
meaning that |R(λ)| < 1 for all λ ∈ spec(Ā), where R(λ) denotes the real part of λ and
spec(M) is the spectrum of a matrix M .

4.2 Analyzing the Optimization Landscape of LQ

Games

Having introduced the class of games we consider we now analyze the optimization landscape
in general-sum LQ games. Letting x = (K1, . . . , Kn), the object of interest is the map
ω : Rmd → Rmd defined as follows:

ω(x) =

D1f1(K1, . . . , Kn)
...

Dnfn(K1, . . . , Kn)

 .
Note that Difi = ∂fi/∂Ki has been converted to an mdi dimensional vector and each Ki has
also been vectorized. This is a slight abuse of notation and throughout we treat the Ki’s as
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both vectors and matrices; in general, the shape should be clear from context, and otherwise
we make comments where necessary to clarify.

Before analyzing the stationary points of policy-gradient in LQ games, we show that the
class of LQ games we consider are not convex games. This holds despite the linearity of the
dynamics and the positive definiteness of the cost matrices. This fact makes the analysis of
such games non-trivial since the lack of strong structural guarantees on the players’ costs
allows for non-trivial limiting behaviors like cycles, non-Nash equilibria, and chaos in the
joint gradient dynamics. [116].

Proposition 9. There exists a n-player LQ game satisfying assumptions 4 and 5 that is not
a convex game.

Proof. The proof of Proposition 9 follows directly from the non-convexity of the set of sta-
bilizing policies for the single-agent LQR problem which was shown in [51]. Holding every
other players’ actions fixed, a player i is faced with a simple LQR problem. Since this
problem is non-convex, LQ games are not convex games.

In the absence of strong structural guarantees on the players’ costs, simultaneous gradient-
play in general-sum games can converge to strategies that are not Nash equilibria [116]. The
following theorem shows that, despite the fact that LQ games are not convex for each player,
such non-Nash equilibria cannot exist in the gradient dynamics of general-sum LQ games.
Indeed, we show that a point x is a critical point of the policy gradient dynamics in a n-player
LQ game if and only if it is a Nash equilibrium. We note that critical points of gradient-play
are strategies x = (K1, . . . , Kn) such that ω(x) = 0. Such points are of particular importance
since a necessary condition for a point x to be a Nash equilibrium is that it is a critical point.

Theorem 11. Consider the set x∗ = (K∗1 , . . . , K
∗
n) of stabilizing policies such that ΣK∗ > 0.

Difi(K
∗
1 , . . . , K

∗
n) = 0 for each i ∈ {1, . . . , n}, if and only if x∗ is a Nash equilibrium.

Proof. We first prove the forward direction and show that if Difi(x
∗) = 0 for each i ∈

{1, . . . , n}, then x∗ is a Nash equilibrium. We show this by contradiction. Suppose the
claim does not hold so that ΣK∗ > 0 and Difi(K

∗
1 , . . . , K

∗
n) = 0 for each i ∈ {1, . . . , n}, yet

(K∗1 , . . . , K
∗
n) is not a Nash equilibrium. That is, without loss of generality, there exists a

K̄1 such that
f1(K̄1, K

∗
2 , . . . , K

∗
n) < f1(K∗1 , . . . , K

∗
n).

Now, fixing (K∗2 , . . . , K
∗
n), player 1 can be seen as facing an LQR problem. Indeed, letting

(K∗2 , . . . , K
∗
n) be fixed, player 1 aims to find a ‘best response’ in the space of linear feedback

policies of the form u1(t) = Kz(t) with K ∈ Rdi×m that minimizes f1(·, K∗2 , . . . , K∗n) subject
to the dynamics defined by

z(t+ 1) = (A−
∑n

i=2BiKi) z(t) +B1u1(t).

Note that this system is necessarily stabilizable since Ā is stable. Hence, the discrete algebraic
Riccati equation for player 1’s LQR problem has a positive definite solution P such that
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R1 + BT
1 PB1 > 0 since R1 > 0 by assumption. Since ΣK∗ > 0 and D1f1(x∗) = 0, applying

Corollary 4 of [51], we have that K∗1 must be optimal for player 1’s LQR problem so that

f1(K∗1 , . . . , K
∗
n) ≤ f1(K,K∗2 , . . . , K

∗
n), ∀ K ∈ Rd1×m.

In particular, the above inequality holds for K̄1, which leads to a contradiction.
To prove the reverse direction, we note that a necessary condition for a point x to be a

Nash equilibrium for each player, is that Difi(x
∗) = 0 for each i ∈ {1, . . . , n} [156].

Theorem 11 shows that, just as in the single-player LQR setting and zero-sum LQ games,
the critical points of gradient-play in n–player general-sum LQ games are all Nash equilibria.
We note that the condition ΣK > 0 can be satisfied by choosing an initial state distribution
D0 with a full-rank covariance matrix.

A simple consequence of Theorem 11 is that when the coupled Ricatti equations char-
acterizing the Nash equilibria of the game have a unique positive definite solution and As-
sumptions 4 and 5 hold, the gradient dynamics admit a unique critical point.

Corollary 5. Under Assumption 4 and 5, if the coupled Ricatti equations admit a unique
solution and Σ0 � 0, then the map ω has a unique critical point.

Given that the critical points of the gradient dynamics in LQ games are Nash equilibria,
the aim is to show, via constructing counter-examples, that games in which the gradient
dynamics avoid the Nash equilibria do in fact exist. A sufficient condition for this would be
to find a game in which gradient-play diverges from neighborhoods of Nash equilibria.

It is demonstrated in [116] that there may be Nash equilibria that are not even locally
attracting under the gradient dynamics in n–player general-sum games in which the players’
costs are sufficiently smooth (i.e., at least twice continuously differentiable). In games that
admit such Nash equilibria, the agents could initialize arbitrarily close to the Nash equilib-
rium, simultaneously perform individual gradient descent with arbitrarily small step sizes,
and still diverge.

The class of n–player LQ games we consider does not, however, satisfy the smoothness
assumptions necessary to simply invoke the results in [116]. Indeed, the cost functions
are non-smooth and, in fact, are infinite whenever the players have strategies that do not
stabilize the dynamics. Further, the set of stabilizing policies for a dynamical system is
not even convex [51]. Despite these challenges, in the sequel we show that the negative
convergence results in [116] extend to the general-sum LQ setting. In particular, we show
that even with arbitrarily small step sizes, players using policy-gradient in LQ games may
still diverge from neighborhoods of a Nash equilibrium.
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4.3 Sufficient Conditions for Policy-Gradient to

Avoid Nash

We now give sufficient conditions under which gradient-play has no guarantees of even local,
much less global, convergence to a Nash equilibrium. Towards this end, we first show that
ω is sufficiently smooth on the set of stabilizing policies.

Let Smd ⊂ Rmd be the subset of stabilizing md–dimensional matrices.

Proposition 10. Consider an n–player LQ game. The vector-valued map ω associated with
the game is twice continuously differentiable on Smd—i.e., ω ∈ C2(Smd,Smd).

Using our notation, Lemma 6.5 in [204] shows for two-player zero-sum LQ games that
(P1, P2), and ΣK are continuously differentiable with respect to K1 and K2 when A−B1K1−
B2K2 is stable. This, in turn, implies that ω(K1, K2) is continuously differentiable with
respect to K1 and K2 when the closed loop system A− B1K1 − B2K2 is stable. The result
follows by a straightforward application of the implicit function theorem [5]. We make use
of the same proof technique here in extending the result to n–player general-sum LQ games
and, in fact, the proof implies that ω has even stronger regularity properties.

Proof. Following the proof technique of [204], we show the regularity of ω using the implicit
function theorem [5]. In particular, we show that ΣK = Ez0∼D0

[∑∞
t=0 z(t)z(t)T

]
and Pi for

i ∈ {1, . . . , n} are C1 with respect to each Ki on the space of stabilizing matrices.
For any stabilizing (K1, . . . , Kn), ΣK is the unique solution to the following discrete-time

Lyapunov equation:
ĀΣKĀ

T + Σ0 = ΣK , (4.5)

where Σ0 = Ez0∼D0 [z(0)z(0)T ] > 0 and Ā = A −
∑n

i=1BiKi. Both sides of this expression
can be vectorized. Indeed, using the same notation as in [204], let vect(·) be the map that
vectorizes its argument and let Ψ : Rm2 × Rd1×m × · · · × Rdn×m → Rm2

be defined by

Ψ(vect(ΣK), K1, . . . , Kn) =
[
Ā⊗ Ā

]
· vect(ΣK) + vect(Σ0).

Then, (4.5) can be written as

F (vect(ΣK), K1, . . . , Kn) = Ψ(vect(ΣK), K1, . . . , Kn)− vect(ΣK)

= 0.

The map F implicitly defines ΣK . Moreover, letting I denote the appropriately sized identity
matrix, we have that

∂F (vect(ΣK), K1, . . . , Kn)

∂vectT (ΣK)
=
[
Ā⊗ Ā

]
− I.

For stabilizing (K1, . . . , Kn), this matrix is an isomorphism since spec(Ā) is inside the unit
circle. Thus, using the implicit function theorem, we conclude that vect(ΣK) ∈ C1. As noted
in [204], the proof for each Pi, i ∈ {1, . . . , n} is completely analogous. Since ΣK and Pi are
C1 and ω is linear in these terms, the result of the proposition follows.



CHAPTER 4. GRADIENT-BASED LEARNING IN MARL 56

Given that ω is continuously differentiable over the set of stabilizing joint policies, the
following result gives sufficient conditions such that the set of initial conditions in a neighbor-
hood of the Nash equilibrium from which gradient-play converges to the Nash equilibrium is
of measure zero. This implies that the players will almost surely avoid the Nash equilibrium
even if they randomly initialize in a uniformly small ball around it.

Let the Jacobian of the vector field ω be denoted by Dω. Given a critical point x∗, let
λj be the eigenvalues of Dω(x∗), for j ∈ {1, . . . ,md}, where d =

∑n
i=1 di. Recall that the

state z(t) is dimension m.

Figure 4.1: Frequency (out of 1000) of randomly sampled LQ games with global Nash
equilibria that are avoided by policy-gradient. Each point represents, for the given parameter
value, the frequency of such games out of 1000 randomly sampled A matrices. The solid line
shows the average frequency of these games. (i) r is varied in (0, 1), b = 0, q = 0.01. (ii) q
is varied in (0, 1), b = 0, r = 0.1. (iii) b is varied in (−0.5, 0.5), q = 0.01, r = 0.1.

Theorem 12. Suppose that Σ0 > 0. Consider any n–player LQ game satisfying Assump-
tions 4 and 5 that admits a Nash equilibrium that is a saddle point of the policy-gradient
dynamics—i.e., LQ games for which the Jacobian of ω evaluated at the Nash equilibrium
x∗ = (K∗1 , . . . , K

∗
n) has eigenvalues λj such that R(λj) < 0 for j ∈ {1, . . . , `} and R(λj) > 0

for j ∈ {` + 1, . . . ,md} for some ` such that 0 < ` < md. Then there exists a neighborhood
U of x∗ such that policy-gradient converges on a set of measure zero.

Proof. At a high level, we characterize the set of initializations from which the players
converge to Nash equilibria. The proof makes use of classic results in dynamical systems
theory and topology to iteratively construct this set of initial conditions and characterize
its “size”. When the Nash equilibrium satisfies the strict saddle condition we show that
the set is vanishingly small such that even if the players randomly initialize uniformly in an
arbitrarily small ball around such solutions, the players will (almost surely) end up diverging
from the equilibrium.

The proof is made up of three parts: (i) we show the existence of an open-convex neigh-
borhood U of x∗ on which ω is locally Lipschitz with constant L; (ii) we show that the map
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g(x) = x−Γω(x) is a diffeomorphism on U ; and, (iii) we invoke the stable manifold theorem
to show that the set of initializations in U on which policy-gradient converges is measure
zero. The proof of

(i) ω is locally Lipschitz. Proposition 10 shows that ω is continuously differentiable on
the set of stabilizing policies Smd. Given Assumptions 4 and 5, the Nash equilibrium exists
and x∗ ∈ Smd. Thus, there must exist an open convex neighborhood U of x∗ such that
||Dω||2 < L for some L > 0.

(ii) g is a diffeomorphism. By the preceding argument, ω is locally Lipschitz on U
with Lipschitz constant L. Consider the policy-gradient algorithm with γi < 1/L for each
i ∈ {1, . . . , n}. Let Γ = diag(Γ1, . . . ,Γn) where Γi = diag((γi)

mdi
j=1)—that is, Γi is an mdi×mdi

diagonal matrix with γi repeated on the diagonal mdi times. Now, we claim the mapping
g : Rmd → Rmd : x 7→ x − Γω(x) is a diffeomorphism on U . If we can show that g is
invertible on U and a local diffeomorphism, then the claim follows. Let us first prove that g
is invertible.

Consider x 6= y and suppose g(y) = g(x) so that y − x = γ · (ω(y) − ω(x)). Since
‖ω(y) − ω(x)‖2 ≤ L‖y − x‖2 on U , ‖x − y‖2 ≤ L‖Γ‖2‖y − x‖2 < ‖y − x‖2 since ‖Γ‖2 =
maxi |γi| < 1/L.

Now, observe that Dg = I − ΓDω(x). If Dg is invertible, then the implicit function
theorem [5] implies that g is a local diffeomorphism. Hence, it suffices to show that ΓDω(x)
does not have an eigenvalue equal to one. Indeed, letting ρ(A) be the spectral radius of a
matrix A, we know in general that ρ(A) ≤ ‖A‖ for any square matrix A and induced operator
norm ‖ · ‖ so that ρ(ΓDω(x)) ≤ ‖ΓDω(x)‖2 ≤ ‖Γ‖2 supx∈U ‖Dω(x)‖2 < maxi |γi|L < 1. Of
course, the spectral radius is the maximum absolute value of the eigenvalues, so that the
above implies that all eigenvalues of ΓDω(x)) have absolute value less than one.

Since g is injective by the preceding argument, its inverse is well-defined and since g is a
local diffeomorphism on U , it follows that g−1 is smooth on U . Thus, g is a diffeomorphism.

(iii) Local convergence occurs on a set of measure zero. Let B be the open ball
derived from the central manifold theorem 5.

Starting from x0 ∈ U , if gradient-based learning converges to a strict saddle point, then
there exists an n0 such that gn(x0) ∈ B for all n ≥ n0. Applying Theorem 5, we get that
gn(x0) ∈ W cs

loc ∩B. Now, using the fact that g is invertible, we can iteratively construct the
sequence of sets defined by W1(x∗) = g−1(W cs

loc∩B)∩U and Wk+1(x∗) = g−1(Wk(x
∗)∩B)∩U .

Then we have that x0 ∈ Wn(x∗) for all n ≥ n0. The set U0 = ∪∞k=1Wk(x
∗) contains all the

initial points in U such that gradient-based learning converges to a strict saddle.
Since x∗ is a strict saddle, I − ΓDω(x∗) has an eigenvalue greater than one. This

implies that the co-dimension of the unstable manifold is strictly less than md so that
dim(W cs

loc) < md. Hence, W cs
loc ∩ B has Lebesgue measure zero in Rmd. Using again that g

is a diffeomorphism, g−1 ∈ C1 so that it is locally Lipschitz and locally Lipschitz maps are
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null-set preserving. Hence, Wk(x
∗) has measure zero for all k by induction so that U0 is a

measure-zero set since it is a countable union of measure-zero sets.

Theorem 12 gives sufficient conditions under which, with random initializations of Ki,
policy-gradient methods would almost surely avoid the critical point. Let each players’ initial
strategy Ki,0 be sampled from a distribution pi,0 for i ∈ {1, ..., n} , and let p0 be the resulting
the joint distribution of (K1,0, . . . , Kn,0).

Corollary 6. Suppose D0 is chosen such that Σ0 � 0, and consider an n–player LQ game
satisfying Assumptions 4 and 5 in which there is a Nash equilibrium which is a saddle point
of the policy-gradient dynamics. If each player i ∈ {1, . . . , n} performs policy-gradient with
a random initial strategy Ki,0 ∼ pi,0 such that the support of p0 is U , they will almost surely
avoid the Nash equilibrium.

Corollary 6 shows that even if the players randomly initialize in a neighborhood of a Nash
equilibrium that is a saddle point of the joint gradient dynamics they will almost surely avoid
it. The proof follows trivially from the fact that the set of initializations that converge to
the Nash equilibrium is of measure zero in U .

In the next section, we generate a large number of LQ games that satisfy the conditions
of Corollary 6. Taken together, these theoretical and numerical results imply that policy-
gradient algorithms have no guarantees of local, and consequently global, convergence in
general-sum LQ games.

Remark 5. Theorem 12 gives us sufficient conditions under which policy-gradient in general-
sum LQ games does not even have local convergence guarantees, much less global convergence
guarantees. We remark that this is very different from the single-player LQR setting, where
policy-gradient will converge from any initialization in a neighborhood of the optimal solution
[51]. In zero-sum LQ games, the structure of the game also precludes any Nash equilibrium
from satisfying the conditions of Theorem 12 [116], meaning that local convergence is always
guaranteed. In [204], the guarantee of local convergence is strengthened to that of global
convergence for a class of projected policy-gradient algorithms in zero-sum LQ games.

We conclude by noting that the non-convergence results we present extend to a stochastic
setting in which the players have access to unbiased estimates of their gradients and the
step-sizes are monotonically decreasing as time progresses. Indeed, classical results from the
stochastic approximations literature (see e.g. [26, 147]) guarantee under mild assumptions
on the estimators that such stochastic dynamics will have the same asymptotic behavior
vis-a-vis saddle points as the deterministic dynamics they seek to follow.

4.4 Generating Counterexamples

Since it is difficult to find a simple closed form for the Jacobian of ω due to the fact that the
matrices Pi implicitly depend on all the Ki, we perform random search to find instances of
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LQ games in which the Nash equilibrium is a strict saddle point of the gradient dynamics.
For each LQ game we generate, we use the method of Lyapunov iterations to find a global
Nash equilibrium of the LQ game and numerically approximate the Jacobian to machine
precision. We then check whether the Nash equilibrium is a strict saddle. Surprisingly, such
a simple search procedure finds a large number of LQ games in which policy-gradient avoids
Nash equilibria.

For simplicity, we focus on two-player LQ games where z ∈ R2 and d1 = d2 = 1. Thus,
each player i = 1, 2 has two parameters to learn, which we denote Ki,j, j = 1, 2.

In the remainder of this section, we detail our experimental setup and then present our
findings.

Experimental setup

To search for examples of LQ games in which policy-gradient avoids Nash equilibria, we
fix B1, Q1, and R1 and parametrize B2, Q2, and R2 by b, q, and r, respectively. For
various values of the parameters b, q, and r, we uniformly sample 1000 different dynamics
matrices A ∈ R2×2 such that A,B1, Q1 satisfies Assumption 5. Then, for each of the 1000
different LQ games we find the optimal feedback matrices (K∗1 , K

∗
2) using the method of

Lyapunov iterations (i.e., a discrete time variant of the algorithm outlined in [102]), and
then numerically approximate Dω(K∗1 , K

∗
2) using auto-differentiation1 tools and check its

eigenvalues.
The exact values of the matrices are defined as follows:

A ∈ R2×2 : ai,j ∼ Uniform(0, 1) i, j = 1, 2,

B1 =

[
1
1

]
, B2 =

[
b
1

]
, Q1 =

[
0.01 0

0 1

]
, Q2 =

[
1 0
0 q

]
,

R1 = 0.01, R2 = r.

Numerical results

Using the setup outlined in the previous section we randomly generated LQ games to search
for counterexamples. We first present results that show that these counterexamples may
be quite common. We then use policy-gradient in two of the LQ games we generated and
highlight the existence of limit cycles and the fact that the players’ time-averaged strategies
do not converge to the Nash equilibrium.

Avoidance of Nash in a nontrivial class of LQ games. As can be seen in Figure 4.1,
across the different parameter values we considered, we found that anywhere from 0% to

1We use auto-differentiation due to the fact that finding an analytical expression for Dω is unduly
arduous even in low dimensions due to the dependence of Pi and ΣK1,K2

on (K1,K2), both of which are
implicitly defined.
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Figure 4.2: Payoffs of the two players in two general-sum LQ game where there is a Nash
equilibrium that is avoided by the gradient dynamics. We observe empirically that in both
games the two players diverge from the local Nash equilibrium and converge to a limit cycle
around the Nash equilibrium.

25% of randomly sampled LQ games, had Nash equilibria that are strict saddle points of the
gradient dynamics. Therefore, in up to 25% of the LQ games we generated policy-gradient
would almost surely avoid a Nash solution. Of particular interest, for all values of q and r
that we tested, when b = 0 at least 5% of the LQ games had a global Nash equilibrium with
the strict saddle property.

These empirical observations imply that policy-gradient in competitive settings, even
in the relatively straightforward setting of linear dynamics, linear policies, and quadratic
costs, could fail to converge to a Nash equilibrium in up to one out of four such problems.
This suggests that for more complicated cost functions, policy classes, and dynamics, Nash
equilibria may often be avoided by policy-gradient.

We remark that each point in Figure 4.1 represents the number of counterexamples found
(out of 1000) for each parameter value, meaning that for r ≈ 0.35, b = 0, and q = 0.01 we were
able to consistently generate around 250 different examples of games where policy-gradient
almost surely avoids the only stationary point of the dynamics.

Note also that we were unable to find any counterexamples when b was varied in (−0.5, 0.5)
and q = 0.01, r = 0.1. This suggests that depending on the structure of the dynamical system
it may be possible to give stronger convergence guarantees.

Convergence to Cycles. Figures 4.2–4.3 show the payoffs and parameter values of the
two players when they use policy-gradient in two general-sum LQ games we identified as
being counterexamples for convergence to the Nash equilibrium.
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Figure 4.3: Parameter values of the two players in two general-sum LQ game where the
Nash equilibrium is avoided by the gradient dynamics. We empirically observe in both games
described in (4.6) that players converge to the same cycle from different initializations. Time
is shown by the progressive darkening of the players’ strategies.

In the two games, we initialize both players in a ball of radius 0.25 around their Nash
equilibrium strategies and let them perform policy-gradient with step size 0.05. We observe
that in both games the players diverge from the Nash equilibrium and converge to limit
cycles.

For the two games in Figures 4.2–4.4, the game parameters are such that b = 0, r = 0.01,
and q = 0.147. The two A matrices are defined as follows:

(i): A =

[
0.588 0.028
0.570 0.056

]
, (ii): A =

[
0.511 0.064
0.533 0.993

]
. (4.6)

We also chose the initial state distribution to be [1, 1]T or [1, 1.1]T with probability 0.5
each.

The eigenvalues of the corresponding game Jacobian Dω evaluated at the Nash equilib-
rium are as follows:

(i): spec(Dω(K∗1 , K
∗
2)) = {10.88, 2.02,−0.21,−0.06}

(ii): spec(Dω(K∗1 , K
∗
2)) = {9.76, 0.54,−0.01± 0.08j}.

Thus, these games do satisfy the conditions of Corollary 6 for the avoidance of Nash equi-
libria. We conclude this section by noting that, as shown in Figure 4.4, the players’ average
payoffs do not necessarily converge to the Nash equilibrium payoffs.

Cycles in 3-player games. We conclude our numerical results by noting that these ob-
servations extend to N > 2 numbers of players. In particular, we use policy gradients in a
3-player LQ game and (as shown in Figure 4.5) we again observe convergence to limit cycles.
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Figure 4.4: Time average parameter values of the two players in the general-sum LQ game
with dynamics given in (4.6). We empirically observe that in both games the players’ time
average strategy does not converge to the Nash equilibrium strategy. Time is shown by
progressive darkening of the players’ strategies.

Figure 4.5: Payoffs of the three players in a LQ game. We observe empirically that the three
players converge to a limit cycle instead of to a Nash equilibrium.

For this game A is the same as in example (ii) above and the first two players i = 1, 2
have the same cost matrices Qi, Ri as in example (ii), and the third player has B3 = [0, 1]T ,
R3 = 0.01, and Q3 = 1

2
Q2.



CHAPTER 4. GRADIENT-BASED LEARNING IN MARL 63

4.5 Chapter Summary

We have shown that in the relatively straightforward setting of n–player LQ games, agents
performing policy-gradient have no guarantees of local, and therefore global, convergence to
the Nash equilibria of the game even if they randomly initialize their first policies in a small
neighborhood of the Nash equilibrium. Since we also showed that the Nash equilibria are
the only critical points of the gradient dynamics, this means that, for this class of games,
policy-gradient algorithms may have no guarantees of convergence to any set of stationary
policies.

Since linear dynamics, quadratic costs, and linear policies are a relatively simple setup
compared to many recent deep multi-agent reinforcement learning problems [17, 77], we
believe that the issues of non-convergence are likely to be present in more complex scenarios
involving more complex dynamics and parametrizations of the policies. This can be viewed
as a cautionary note, but it also suggests that the algorithms that have yielded impressive
results in multi-agent settings can be further improved by leveraging the underlying game-
theoretic structure.

We remark that we only analyzed the deterministic policy–gradient setting, though the
findings extend to settings in which players construct unbiased estimates of their gradients
[179] and even actor-critic methods [178]. Indeed all of these algorithms will suffer the same
problems since they all seek to track the same limiting continuous–time dynamical system
and straightforward application of the results in Section 3 (or equivalently [116]) would yield
the same non-convergence results for stochastic algorithms.

Our numerical experiments also highlight the existence of limit cycles in the policy-
gradient dynamics. Unlike in classical optimization settings in which oscillations are normally
caused by the choice of step sizes, the cycles we highlight are behaviors that can occur even
with arbitrarily small step sizes. They are a fundamental feature of learning in multi-agent
settings and have been observed in the dynamics of many learning algorithms [75, 116, 121,
145]. We remark, however, that there is no obvious link between the limit cycles that arise
in the gradient dynamics of the LQ games and the Nash equilibrium of the game. Indeed,
unlike with other game dynamics in more simple games, such as the well-studied replicator
dynamics in bilinear games [121] or multiplicative weights in rock-paper-scissors [75], the
time average of the players’ strategies does not coincide with the Nash equilibrium. This
may be due to the fact that the Nash equilibrium is a saddle point of the gradient dynamics
and not simply marginally stable, though the issue warrants further investigation.

This chapter highlights how algorithms developed for classical optimization or single-
agent optimal control settings may not behave as expected in multi-agent and competitive
environments. Algorithms and approaches that have provable convergence guarantees and
performance in competitive settings, while retaining the scalability and ease of implemen-
tation of simple policy-gradient methods, are therefore a crucial and promising open area
of research. In the next chapter we develop one such algorithm in the context of zero-sum
continuous games.
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Chapter 5

Finding Local Nash Equilibria (and
Only Local Nash Equilibria) in
Zero-sum Games

The classical problem of finding Nash equilibria in multi-player games has been a focus
of intense research in computer science, control theory, economics and mathematics [19, 43,
138]. Some connections have been made between this extensive literature and machine learn-
ing [see, e.g., 16, 35, 55], but these connections have focused principally on decision-making
by single agents and multiple agents, and not on the burgeoning pattern-recognition side of
machine learning, with its focus on large data sets and simple gradient-based algorithms for
prediction and inference. This gap has begun to close in recent years, due to several new
directions of research: formulations of learning problems as involving competition between
subsystems that are construed as adversaries [68], concern over mismatch between assump-
tions and data-generating mechanisms [64, 201], the need to robustify learning systems
with regard to against actual adversaries [199], and an increasing awareness that real-world
machine-learning systems are often embedded in larger economic systems or networks [80].

These emerging connections bring significant algorithmic and conceptual challenges to
the fore. Indeed, while gradient-based learning has been a major success in machine learn-
ing, both in theory and in practice, work on gradient-based algorithms in game theory has
often highlighted their limitations. For example, gradient-based approaches are known to
be difficult to tune and train [15, 45, 76, 125], and recent work has shown that gradient-
based learning will almost surely avoid a subset of the local Nash equilibria in general-sum
games [116]. Moreover, there is no shortage of work showing that gradient-based algorithms
can converge to limit cycles or even diverge in game-theoretic settings [25, 45, 76, 121].

These drawbacks have led to a renewed interest in new approaches to finding the Nash
equilibria of non-convex-concave zero-sum games, or equivalently, to solving saddle point
problems. Recent work has attempted to use second-order information to reduce oscillations
around equilibria and speed up convergence to fixed points of the gradient dynamics [15,
125]. Other recent approaches have attempted to tackle the problem from the variational
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inequality perspective but also with an eye on reducing oscillatory behaviors [63, 124].
None of these approaches, however, address a fundamental issue that arises in non-convex-

concave zero-sum games. As we will discuss, the set of attracting fixed points for the gradient
dynamics in such games can include critical points that are not Nash equilibria. In fact, any
saddle point of the underlying function that does not satisfy a particular alignment condi-
tion of a Nash equilibrium is a candidate attracting equilibrium for the gradient dynamics.
Further, as we show, these points are attracting for a variety of recently proposed adjust-
ments to gradient-based algorithms, including consensus optimization [125], the symplectic
gradient adjustment [15], and a two-timescale version of simultaneous gradient descent [73].
Moreover, we show by counterexample that these algorithms can all converge to non-Nash
stationary points.

We present a new gradient-based algorithm for finding the local Nash equilibria of two-
player zero-sum games and prove that the only stationary points to which the algorithm
can converge are local Nash equilibria. Our algorithm makes essential use of the underly-
ing structure of zero-sum games. To obtain our theoretical results we work in continuous
time—via an ordinary differential equation (ODE)—and our algorithm is obtained via a
discretization of the ODE. While a naive discretization would require a matrix inversion and
would be computationally burdensome, our discretization is a two-timescale discretization
that avoids matrix inversion entirely and is of a similar computational complexity as that of
other gradient-based algorithms. The resulting algorithm has stronger guarantees both with
respect to the critical points to which it can converge and the manner in which it converges
to them as compared to previous work on finding local Nash equilibria in non-convex-concave
games. We note that these are local properties of the algorithm and that stronger guarantees
can only be given by assuming more structure in the game.

This chapter is organized as follows. In Section 5.1 we define our notation, the problem
we address, and highlight relevant related work. In Section 5.2 we define the limiting ODE
that we would like our algorithm to follow and show that it has the desirable property that
its only limit points are local Nash equilibria of the game. In Section 5.4 we introduce local
symplectic surgery, a two-timescale procedure that asymptotically tracks the limiting ODE
and show that it can be implemented efficiently. Finally, in Section 5.5 we present two
numerical examples to validate the algorithm.

5.1 Preliminaries

We consider a two-player game in which one player tries to minimize a function, f : Rd → R,
with respect to their decision variable x ∈ Rdx , and the other player aims to maximize f
with respect to their decision variable y ∈ Rdy , where d = dy + dx. We write such a game as
G = {(f,−f),Rd}, since the second player can be seen as minimizing −f . We assume that
neither player knows anything about the critical points of f , but that both players follow
the rules of the game. Such a situation arises naturally when training machine learning
algorithms (e.g., training generative adversarial networks or in multi-agent reinforcement
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learning). Without restricting f , and assuming both players are non-cooperative, the best
they can hope to achieve is a local Nash equilibrium; i.e., a point (x∗, y∗) that satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗),

for all x and y in neighborhoods of x∗ and y∗ respectively. Such equilibria are locally optimal
for both players with respect to their own decision variable, meaning that neither player has
an incentive to unilaterally deviate from such a point. As discussed in Chapter 2, generically,
local Nash equilibria will satisfy slightly stronger conditions, namely they will be differential
Nash equilibria (DNE).

Both differential and local Nash equilibria in two-player zero-sum games are, by definition,
special saddle points of the function f that satisfy a particular alignment condition with
respect to the player’s decision variables. Indeed, the definition of differential Nash equilibria,
which holds for almost all local Nash equilibria in a formal mathematical sense, makes this
condition clear: the directions of positive and negative curvature of the function f at a
local Nash equilibria must be aligned with the minimizing and maximizing player’s decision
variables respectively.

Issues with gradient-based algorithms in zero-sum games

Having introduced local Nash equilibria as the solution concept of interest, we now consider
how to find such solutions, and in particular we highlight some issues with gradient-based
algorithms in zero-sum continuous games. The most common method of finding local Nash
equilibria in such games is to have both players randomly initialize their variables (x0, y0)
and then follow their respective gradients. That is, at each step n = 1, 2, ..., each agent
updates their variable as follows:

xn+1 = xn − γnDxf(xn, yn), yn+1 = yn + γnDyf(xn, yn),

where {γn}∞n=0 is a sequence of step sizes. The minimizing player performs gradient descent
on their cost while the maximizing player ascends their gradient. We refer to this algorithm
as simultaneous gradient descent (GDA). To simplify the notation, we let z = (x, y), and
define the vector-valued function ω : Rd → Rd as:

ω(z) =

[
Dxf(x, y)
−Dyf(x, y)

]
.

In this notation, the GDA update is given by:

zn+1 = zn − γnω(zn). (5.1)

Since (5.1) is in the form of a discrete-time dynamical system, we proceed as in previous
Chapters and examine its limiting behavior through the lens of dynamical systems theory.
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Intuitively, given a properly chosen sequence of step sizes, (5.1) should have the same
limiting behavior as the continuous-time flow:

ż = −ω(z). (5.2)

We can analyze this flow in neighborhoods of equilibria by studying the Jacobian matrix of
ω, denoted J : Rd → Rd×d:

J(z) =

[
D2
xxf(x, y) D2

yxf(x, y)
−D2

xyf(x, y) −D2
yyf(x, y)

]
. (5.3)

We remark that the diagonal blocks of J(z) are always symmetric and D2
xyf = (D2

yxf)T .
Thus J(z) can be written as the sum of a block symmetric matrix S(z) and a block anti-
symmetric matrix A(z), where:

S(z) =

[
D2
xxf(z) 0
0 −D2

yyf(z)

]
, A(z) =

[
0 D2

yxf(z)
−D2

xyf(z) 0

]
.

Given the structure of the Jacobian, we can now draw links between differential Nash
equilibria and equilibrium concepts in dynamical systems theory.

As shown in Chapter 2, the fact that all differential Nash equilibria are critical points of
ω coupled with the structure of J in zero-sum games guarantees that all differential Nash
equilibria of the game are LASE of the gradient dynamics. However the converse is not
true. The structure present in zero-sum games is not enough to ensure that the differential
Nash equilibria are the only LASE of the gradient dynamics. When either D2

xxf or D2
yyf

is indefinite at a critical point of ω(z), the Jacobian can still have eigenvalues with strictly
positive real parts as shown below.

Example 4. Consider a matrix M ∈ R2×2 having the form:

M =

[
a c
−c −b

]
,

where a, b ∈ R and a, b > 0. These conditions imply that M cannot be the Jacobian of ω
at an local Nash equilibria. However, if b < a and c2 > ab, both of the eigenvalues of M
will have strictly positive real parts, and such a point could still be a LASE of the gradient
dynamics.

Such points, which we refer to as non-Nash LASE of (5.2), are what makes having
guarantees on the convergence of algorithms in zero-sum games particularly difficult. By
definition, at least one of the two players has a direction in which they would move to unilat-
erally decrease their cost, meaning that such points are not locally optimal for at least one of
the players. These points arise solely due to the gradient dynamics, and persist even in other
gradient-based dynamics suggested in the literature. In Appendix 5.1, we show that three
recent algorithms for finding local Nash equilibria in zero-sum continuous games—consensus
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optimization, symplectic gradient adjustment, and a two-time scale version of GDA—are
susceptible to converge to such points and therefore have no guarantees of convergence to
local Nash equilibria. We note that such points can be very common since every saddle point
of f that is not a local Nash equilibrium is a candidate non-Nash LASE of the gradient dy-
namics. Further, local minima or maxima of f could also be non-Nash LASE of the gradient
dynamics.

To understand how non-Nash equilibria can be attracting under the flow of −ω, we again
analyze the Jacobian of ω. At such points, the symmetric matrix S(z) must have both
positive and negative eigenvalues. The sum of S with A, however, has eigenvalues with
strictly positive real part. Thus, the anti-symmetric matrix A(z) can be seen as stabilizing
such points. Previous gradient-based algorithms for zero-sum games have also pinpointed
the matrix A as the source of problems in zero-sum games, however they focus on a different
issue. Consensus optimization [125] and the symplectic gradient adjustment [15] both seek
to adjust the gradient dynamics to reduce oscillatory behaviors in neighborhoods of stable
equilibria. Since the matrix A(z) is anti-symmetric, it has only imaginary eigenvalues. If it
dominates S, then the eigenvalues of J can have a large imaginary component. This leads
to oscillations around equilibria that have been shown empirically to slow down convergence
[125]. As shown in next subsection neither of the adjustments are able to rule out convergence
to non-Nash equilibria.

Counter-examples for other algorithms

We now show that three state-of-the art algorithms for finding the local Nash equilibria of
zero-sum games are all attracted to non-Nash equilibria. This implies that these algorithms
do not have guarantees on the local optimality of their limit points and cannot give guarantees
on convergence to local Nash equilibria. To do this we construct a simple counter-example in
R2 that demonstrates that all of the algorithms are attracted to some non-Nash limit point.
The particular game we use is described below.

Example 5. Consider the game G = {(f,−f),R2} where:

f(x, y) =
1

2

[
x
y

]T [
1 1
1 0.1

] [
x
y

]
.

Staying with our earlier notation, the player with variable x seeks to minimize f , and the
player with variable y minimizes −f .

This game has only one critical point, (x, y) = (0, 0), and the combined gradient dynamics
for this game are linear and are given by:

ω(x, y) =

[
1 1
−1 −0.1

] [
x
y

]
.

For all x, y ∈ R the Jacobian of ω is given by:

J(x, y) =

[
1 1
−1 −0.1

]
.
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Since the diagonal is not strictly positive, (x, y) = (0, 0) is not an LNE. However, since the
eigenvalues of J(x, y) are 0.45 + 0.835i and 0.45 − 0.835i, (x, y) = (0, 0) is a LASE of the
gradient dynamics.

We first show that even running SGA on two timescales as suggested by [73], cannot
guarantee convergence to only local Nash equilibria. We assume that the maximizing player
is on the slower timescale, and, in the following proposition, show that SGA on two timescales
can still converge to non-Nash fixed points.

Proposition 11. Simultaneous gradient ascent on two timescales can converge to non-Nash
equilibria.

Proof. Consider the game introduced in Example 5, and the following dynamics:

xn+1 = xn − an(ω1(xn, yn))

yn+1 = yn − bn(ω2(xn, yn)),

where ωi denotes the ith component of ω as described in Example 5 and an, bn are sequences
of step sizes satisfying Assumption 9.

Since the dynamics ẋ = −x − y have a unique equilibrium x = −y for a fixed y ∈ R
and the x process is on the faster timescale, Chapter 4 in [26], assures us that xn → −yn
asymptotically. Now, assuming that xn has converged, we analyze the slower timescale.
Plugging in for xn, we get that, asymptotically, the dynamics will track:

ẏ = −y + 0.1y = −0.9y.

Since these dynamics have a unique (exponentially) stable equilibrium at y = 0, (xn, yn)→
(0, 0). As we showed, the origin is non-Nash, so we are done.

The previous proposition shows that a two-timescale version of simultaneous gradient
ascent will still be susceptible to non-Nash equilibria. This implies that such an approach
cannot guarantee convergence to local Nash equilibria. We now show that the consensus
optimization approach introduced in [125], can also converge to non-Nash points.

Proposition 12. Consensus optimization can converge to non-Nash equilibria.

Proof. The update in consensus optimization is given by:

zn+1 = zn − γ
(
ω(zn) + λJT (zn)ω(zn)

)
,

where λ > 0 is a hyperparameter to be chosen. We note that the signs are different than
in [125] because we consider simultaneous gradient descent as the base algorithm while they
consider simultaneous gradient ascent. The limiting dynamics of this approach is given by:

ż = −
(
ω(zn) + λJT (zn)ω(zn)

)
.
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At a critical point z where ω(z) = 0, the Jacobian of this dynamics is given by:

JCO(z) = (J(z) + λJT (z)J(z)).

Now, in the game described in Example 5, the Jacobian of the consensus optimization
dynamics would be:

JCO(x, y) =

[
1 + 2λ 1 + 1.1λ
−1 + 1.1λ −0.1 + 1.01λ

]
.

For λ > 0, JCO(x, y) has eigenvalues with strictly positive real parts, which implies that, with
any choice of the hyper-parameter λ, consensus optimization will converge to the non-Nash
equilibrium at (0,0) in Example 5.

The preceding proposition shows that the adjustment to the gradient dynamics proposed
in [125] does not solve the issue of non-Nash fixed points. This is not surprising since
the primary goal for the algorithm is to reduce oscillation around equilibria and speed up
convergence to the stable equilibria of the gradient dynamics. We note that as shown in
Theorem 13, the proposed algorithm also achieves this goal.

The final algorithm we consider is the symplectic gradient adjustment proposed in [15]. In
the text, the authors do remark that the adjustment is not enough to guarantee convergence
to only Nash equilibrium. For completeness, we make this assertion concrete by showing
that the adjustment term is not enough to avoid the non-Nash equilibrium in Example 5.

Proposition 13. The symplectic gradient adjustment to the gradient dynamics can converge
to non-Nash equilibria.

Proof. The dynamics resulting from the symplectic gradient adjustment is given by:

zn+1 = zn − γ
(
ω(zn) +

λ

2
(J(zn)− JT (zn))Tω(zn)

)
,

where λ > 0 is a hyperparameter to be chosen. The limiting dynamics of this algorithm is
given by:

ż = −
(
ω(zn) +

λ

2
(J(zn)− JT (zn))Tω(zn)

)
.

At a critical point z where ω(z) = 0, the Jacobian of the above dynamics is given by:

JSGA(z) = (J(z) +
λ

2
(J(z)− JT (z))TJ(z)).

Now, in the game described in Example 5, the Jacobian of the SGA dynamics is given by:

JSGA(x, y) =

[
1 + λ 1 + 0.1λ
1 + λ −0.1 + λ

]
.

This has eigenvalues with strictly positive real parts for all values of λ > 0, which implies
that the symplectic gradient adjustment will converge to the non-Nash equilibrium at (0,0)
in Example 5.
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Other proposals have approached the issue of finding local Nash equilibria from the
perspective of variational inequalities [63, 124]. In [124] and [63] extragradient methods
were used to solve coherent saddle point problems and reduce oscillations when converging
to saddle points. In such problems, however, the theoretical treatment focuses on settings
in which all saddle points of the function f are local Nash equilibria or the cost function is
implicitly assumed to be convex-concave. This in turn implies that the Jacobian satisfies
the conditions for a Nash equilibrium everywhere. Thus the issue of converging to non-Nash
equilibria is assumed away. The behavior of these approaches in more general zero-sum
games with less structure (like the training of GANs) is therefore not clear. Moreover, since
these approaches rely on averaging the gradients or are derived from implicit discretizations
of the same limiting o.d.e. as GDA, they do not fundamentally change the nature of the
critical points of GDA.

The problem of non-Nash equilibria has recently been addressed in the saddle point
optimization literature [6]. The proposed algorithm, extreme curvature exploitation, only
converges to saddle points satisfying the alignment conditions of local Nash equilibria but
requires accurately computing the minimum eigenvalues of the diagonal blocks of the Jaco-
bian, as well as their associated eigenvectors at each iteration. This makes the algorithm
hard to implement in high-dimensional settings and slow to converge in practice as can be
seen in Section 5.5. Further, this algorithm still exhibits the oscillatory behaviors of GDA
around Nash equilibria.

In the following sections we propose an algorithm for which the only LASE are the
differential Nash equilibria of the game. We also show that, regardless of the choice of hyper-
parameter, the Jacobian of the new dynamics at LASE has real eigenvalues, which means
that the dynamics cannot exhibit oscillatory behaviors around differential Nash equilibria.
Finally, we show that the algorithm can be efficiently implemented and that its speed and
performance are comparable to GDA and consensus optimization when training a small
GAN.

5.2 The limiting differential equation

In this section we define the continuous-time flow that our discrete-time algorithm should
ideally follow.

Assumption 6 (Lipschitz assumptions on f and J). Assume that f ∈ C3(Rd,R) and ω is
Lω-Lipschitz. Finally assume that all critical points of ω are hyperbolic.

Note that we do not require J(z) to be invertible everywhere, but only at the critical points
of f , and the assumption on the hyperbolicity of critical points holds generically for zero-sum
games on continuously differentiable functions f from the results in Chapter 2 and [114].

Now, consider the continuous-time flow:
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ż = −1

2

(
ω(z) + J−1(z)JT (z)ω(z)

)
. (5.4)

The dynamics introduced in (5.4) can be seen as an adjusted version of the gradient
dynamics where the adjustment term only allows trajectories to approach critical points of
ω along the players’ axes. If a critical point is not locally optimal for one of the players (i.e.,
it is a non-Nash critical point) then that player can push the dynamics out of a neighborhood
of that point.

As we show in the following theorem the Jacobian of the adjustment is similar to JT

when ||ω(z)||2 is small. This approximation is exact at critical points of ω. Adding this
adjustment term to ω exactly cancels out the rotational part of the vector field contributed by
the antisymmetric matrix A(z) in a neighborhood of critical points. Since we identified A(z)
as the source of oscillatory behavior and non-Nash equilibria in Section 5.1, this adjustment
addresses both of these issues. The following theorem establishes this formally.

Theorem 13. Under Assumption 6 and if for all z ∈ Rd such that ω(z) 6= 0 we have:

S(z)ω(z) 6= 0,

then the continuous-time dynamical system in(5.4) satisfies:

• z is a LASE of ż = −h(z) ⇐⇒ z is a differential Nash equilibrium of G =
{(f,−f),Rd}.

• If z is a critical point of h(z), then the Jacobian of h at z has real eigenvalues.

Proof. To prove Theorem 13, we first show that:

h(z) = 0 ⇐⇒ ω(z) = 0.

Clearly, ω(z) = 0 =⇒ h(z) = 0. To show the converse, we assume that h(z) = 0 but
ω(z) 6= 0. This implies that:

JT (z)ω(z) = −J(z)ω(z) =⇒ 2S(z)ω(z) = 0

Since we assumed that this cannot be true, we must have that h(z) = 0 =⇒ ω(z) = 0.
Having shown that under our assumptions, the critical points of h are the same as those

of ω, we now note that the Jacobian of h(z) at a critical point must have the form:

Jh(z) =
1

2

(
J(z) + J−1(z)JT (z)J(z)

)
= J−1(z)S(z)J(z).

At critical points, J(z) is invertible and λ(z) = 0 by assumption. Given that ω(z) = 0, terms
that include ω(z) disappear, and the adjustment term contributes only a factor of JT (z) to
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the Jacobian of h at a critical point. This exactly cancels out the antisymmetric part of the
Jacobian of ω. The Jacobian of h is therefore similar to a symmetric matrix at critical points
of ω and has positive eigenvalues only when D2

xxf(z) � 0 and D2
yyf(z) ≺ 0.

Since these are also the conditions for differential Nash equilibria, all differential Nash
equilibria of G must be LASE of ż = −h(z). Further, non-Nash LASE of ż = −ω(z) cannot
be LASE of ż = −h(z), since by definition either D2

xxf(z) or D2
yyf(z) is indefinite at such

points. To show the second part of the theorem, we simply note that Jh must be symmetric
at all critical points which in turn implies that it has only real eigenvalues.

Theorem 13 shows that the only attracting hyperbolic equilibria of the limiting ordinary
differential equation (ODE) are the differential Nash equilibria of the game. Also, since Jh(z)
is symmetric at critical points of ω, if either D2

xxf(z) or −D2
yyf(z) has at least one negative

eigenvalue then such a point would be a linearly unstable equilibrium of ż = −h(z). Such
points are linearly unstable and are therefore almost surely avoided when the algorithm is
randomly initialized [24, 168]. Theorem 13 also guarantees that the continuous-time solutions
do not oscillate near critical points. Reducing oscillations near critical points is the main
goal of consensus optimization [125] and the symplectic gradient adjustment [15]. However,
for both algorithms, the extent to which they are able to reduce the oscillations depends on
the choice of hyperparameter.

Remark 6. The assumption that ω(z) is not in the nullspace of S(z) when ω(z) is nonzero
ensures that the adjustment does not create new critical points. This can cause problems in
settings with little to no second order curvature like e.g., in bilinear games, but in the next
section we show how to alleviate this problem by introducing some regularization. We also
further expand on this theorem in full generality in Section 5.6.

.

5.3 Rates in Structured Games

In this section, we derive rates of convergence for local symplectic surgery in structured
classes of games. In particular, we show how, by design, local symplectic surgery achieves
the optimal rate in strongly-monotone games and how adding regularization to symplectic
surgery gives efficient, last-iterate convergence guarantees in bilinear, and convex-concave
games.

Remark 7. We remark that other algorithms such as extra-gradient algorithms or proximal-
point methods can also achieve such rates in structured games, but, unlike LSS, have no
guarantees of convergence to game-relevant equilibria in less structured settings.
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Last-iterate convergence in strongly monotone games

To begin, we focus on convergence in strongly monotone zero-sum games, which have been
analyzed in [14, 29]. Recall, that a zero-sum game is µ-strongly monotone if ω satisfies:

(ω(z)− ω(z′))
T

(z − z′) ≥ µ‖z − z′‖2 ∀z ∈ Rd.

In this class of games—also known as strongly-convex, strongly concave games—there is
a unique critical point of the gradient dynamics which is also a global Nash equilibrium.
Further, by definition, we are guaranteed that the matrix S(z) is positive definite for all z,
and consequently that J(z) is invertible everywhere.

Given this assumption, we show that the simple Euler discretization of (5.4) given by:

zt+1 = zt − γ
(
ω(zt) + J−1(zt)J

T (zt)ω(zt)
)
, (5.5)

converges at a fast rate. The proof relies on the intuition that the function,

V (z) =
1

2
‖ω(z)‖2,

serves as a Lyapunov function for the continuous-time dynamics since:

V̇ (z) < −ω(z)TS(z)ω(z) < −µ‖ω(z)‖2

We make this concrete in the following theorem, and doing so requires a smoothness as-
sumption on the Lyapunov function, which is common in the analysis of other second-order
algorithms in the literature (see e.g., [4, 15, 52]):

Assumption 7. V (x) = 1
2
‖ω(z)‖2 is L-smooth, meaning that:

‖JT (z)ω(z)− JT (z′)ω(z′)‖ ≤ L‖z − z′‖ ∀z, z′

Given this assumption, let κ = L
µ

we now prove that our discretized process enjoys fast
convergence in strongly monotone games.

Theorem 14. Under Assumption 7, suppose the game is µ-strongly monotone, then for
0 < γ <, the iterates of (5.5) satisfy, for all t > 0:

‖ω(zt+1)‖2 ≤
(

1− µγ
(

1− 2γ
2κ3

µ2

))t
‖ω(z0)‖2

and choosing γ < µ2

2κ3 results in exponentially fast convergence.
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Proof. To begin, we take a Taylor expansion of ‖ω(zt+1)‖2, where for simplicity we let,
h(z) = ω(z) + J−1(z)JT (z)ω(z), and z∗ the unique critical point of ω.

1

2
‖ω(zt+1)‖2 ≤ 1

2
‖ω(zt)‖2 − γω(zt)

TJ(zt)
[
ω(zt) + J−1(zt)J

T (zt)ω(zt)
]

+
Lγ2

2
‖h(zt)‖2

≤ (
1

2
− µγ)‖ω(zt)‖2 + Lγ2‖ω(zt)‖2 + Lγ2‖J−1(zt)J

T (zt)ω(zt)‖2

≤ (
1

2
− µγ + Lγ2)‖ω(zt)‖2 +

L3

µ4
γ2‖ω(zt)‖2

‖ω(zt+1)‖2 ≤
(

1− 2µγ

(
1− γ 2κ3

µ2

))
‖ω(zt)‖2

where we used the fact that JTJ > µ2I (see e.g., [4].), the smoothness of JT (z)ω(z), κ > 1
and the fact that strong monotonicity implies that: µ‖z − z′‖ ≤ ‖ω(z) − ω(z′)‖. We also

for simplicity, assumed that µ < 1 to help us simplify. Thus, choosing γ < µ2

2κ3 , makes the
leading term on the right hand side above strictly less than 1. By recursion, we find our
result.

.

Last-iterate convergence in convex-concave games

A key class of games where the approach of cancelling out the symplectic part of the vector
field poses problems is in bilinear games. To rectify this, we introduce a regularized version
of the discrete-time system:

zt+1 = zt − γt(ω(zt) + J−1(zt)(J
T (zt) + λI)ω(zt)) (5.6)

with the introduction of the parameter λ. This version of the algorithm enjoys fast,
last-iterate convergence in bilinear games. To see this, we note that in bilinear games we
have:

ω(z) = Jz J(z) = J = −JT (z)∀z ∈ Rd

Thus, in this case the dynamics above simplify to:

zt+1 = zt − γ(Jzt + J−1(JT + λI)Jzt)

= zt − γλzt,
which results in the following bound:

‖zT‖ ≤ (1− γλ)2‖zT−1‖

≤
T−1∏
t=1

(1− γλ) ‖z0‖.
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Choosing γ < 1 and λ < 1 gives a problem-independent linear rate of convergence:

‖zT‖ ≤ (1− γλ)T−1‖z0‖

This highlights the need for some form of regularization to allow us to obtain rates in
convex-concave games where we do not have the additional structure of strong monotonicity.
In the next theorem we give rates for this regularized process without assuming strong
monotonicity. To do so, we need another layer of smoothness on ω:

Assumption 8. f is Lω-smooth, meaning that:

‖ω(z)− ω(z′)‖ ≤ Lω‖z − z′‖ ∀z, z′

Letting κ = Lω
σ

, we now prove the following theorem:

Theorem 15. Under Assumptions 7 and 8, suppose f is strictly convex-concave and L-
smooth in x and y respectively. Further assume that JT (z)J(z) > σ2 for all z. Then the

process in (5.6) with stepsize γ < min
(

1
8κ2λ,

1
4L
λ, σ

2

8

)
, and λ < 1 satisfies:

‖ω(zt+1)‖2 ≤
(

1− γλ

2

)
‖ω(zt)‖2

Further assuming that κ2 > L and σ2 > 1
κ2 the process satisfies:

‖ω(zt+1)‖2 ≤
(

1− λ2

16κ2

)
‖ω(zt)‖2

We remark that. the assumption that JT (z)J(z) > σ2 does not imply strong monotoncity,
and is in fact a form of the sufficiently bilinear assumption which is common in the analysis
of second-order dynamics in zero-sum games(see e.g., [4]). Indeed, in bilinear games this is
equivalent to assuming that the anti symmetric matrix A(z) satisfies A(z)TA(z) � σ2I ∀z.

Proof. Once again, we have that 1
2
‖ω(z)‖2 is L-smooth, and the loss function is convex-

concave and L-smooth in x and y respectively. Denote hλ(z) = ω(z)+J−1(z)(JT (z)λ(t))ω(z),
then taking the Taylor expansion of 1

2
‖ω(z)‖2 gives:

1

2
‖ω(zt+1)‖2 ≤ 1

2
‖ω(zt)‖2 − γω(zt)

TS(zt)ω(zt)− γλ‖ω(zt)‖2 +
γ2L

2
‖hλ(zt)‖2.

Since f is convex-concave, S � 0. Thus, this simplifies to:

‖ω(zt+1)‖2 ≤ ‖ω(zt)‖2 − 2γλ‖ω(zt)‖2 + γ2L‖hλ(zt)‖2.
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Algorithm 1 Local Symplectic Surgery

Input Functions f , ω, J , λ; Step sizes an, bn; Initial values (x0, y0, v0)
Initialize (x, y, v, n)← (x0, y0, v0, 0)
while not converged do
gx ← Dx [f(x, y) + v]
gy ← Dy [−f(x, y) + v]
gv ← Dv

[
||J(x, y)v − J(x, y)Tω(x, y) + λω(x, y)||22

]
(x, y, v)← (x− angx, y − angy, v − bngv)
n← n+ 1

end while
Output (x∗, y∗)← (x, y)

Expanding the last term gives us that:

‖ω(zt+1)‖2 ≤ (1− 2γλ+ 2γ2L)‖ω(zt)‖2 + 4γ2ω(zt)
TJT (zt)(J

T (zt)J(zt))
−1J(zt)ω(zt)

+ 4γ2λ2ω(zt)
T (JT (zt)J(zt))

−1ω(zt)

≤
(

1− 2γλ+ 2γ2L+
4γ2L2

ω + 4γ2λ2

σ2

)
‖ω(zt)‖2

=

(
1− 2γ

(
λ− γL− 2γL2

ω + 2γλ2

σ2

))
‖ω(zt)‖2

Choosing γ < min
(

σ2

8L2
ω
λ, 1

4L
λ, σ

2

8

)
, and λ < 1 gives us that:

‖ω(zt+1)‖2 ≤
(

1− γλ+
γλ2

2

)
‖ω(zt)‖2

Since λ < 1 we can further simplify to find that:

‖ω(zt+1)‖2 ≤
(

1− γλ

2

)
‖ω(zt)‖2

5.4 Efficient Implementation through a

Two-Timescale Approximation

Given the limiting ODE, we could perform a straightforward Euler discretization to obtain
a discrete-time update having the form: zn+1 = zn − γh(zn).
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However, due to the matrix inversion, such a discrete-time update would be prohibitively
expensive to implement in high-dimensional parameter spaces such as those encountered
when training GANs. To solve this problem, we now introduce a two-timescale approxima-
tion to the continuous-time dynamics that has the same limiting behavior, but is much faster
to compute at each iteration than the simple discretization. Since this procedure serves to
exactly remove A(z), the symplectic part of the Jacobian, in neighborhoods of hyperbolic
critical points, we refer to this two-timescale procedure as local symplectic surgery (LSS).
In Appendix 5.6 we derive the two-timescale update rule for the time-varying version of the
limiting ODE and show that it also has the same properties.

The two-timescale approximation to (5.4) is given by:

zn+1 = zn − anh1(zn, vn) vn+1 = vn − bnh2(zn, vn), (5.7)

where h1 and h2 are defined as:

h1(z, v) =
1

2
(ω(z) + v)

h2(z, v) = JT (z)J(z)v −
(
JT (z)

)2
ω(z),

and the sequences of step sizes {an}∞n=0,{bn}∞n=0 satisfy the following assumptions:

Assumption 9 (Assumptions on the step sizes). The sequences {an}∞n=0 and {bn}∞n=0 satisfy:

•
∑∞

i=1 ai =∞, and
∑∞

i=1 bi =∞;

•
∑∞

i=1 a
2
i <∞, and

∑∞
i=1 b

2
i <∞;

• limn→∞
an
bn

= 0.

We note that h2 is Lipschitz continuous in v uniformly in z under Assumption 6.
The v process performs gradient descent on a regularized version of least squares, where

the regularization is governed by λ(z). If the vn process is on a faster time scale, the intuition
is that it will first converge to J(zn)−1JT (zn)ω(zn), and then zn will track the limiting ODE
in (5.4). In the next subsection we prove that this behavior holds even in the presence of
noise.

Before showing this, however, we briefly note that the key benefit to the two-timescale
process is that zn+1 and vn+1 can be computed efficiently since neither require a matrix
inversion. In fact, the computation can be done with auto-differentiation tools with the same
order of complexity as that of GDA, consensus optimization, and the symplectic gradient
adjustment. In particular, using Jacobian-vector products, the computation of h1 and h2

can be done relatively quickly.
We first note that a Jacobian-vector product calculates JT (z)u for a constant vector

u ∈ Rd, by calculating the gradient of ωT (z)u with respect to v. This allows us to write the
x and y updates in Algorithm 1 in a clean form. The next proposition shows that, using
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the structure of J that was discussed in Section 5.1, the term J(z)v can also be efficiently
computed. Together these results show that the per-iteration complexity of LSS is on the
same order as that of consensus optimization and the symplectic gradient adjustment.

Proposition 14. The computation of J(z)v requires two Jacobian-vector products, for v ∈
Rd a constant vector.

Proof. Let v = (v1, v2)T where v1 ∈ Rdx and v2 ∈ Rdy . Then J(z)v can be written as:

J(z)v =

[
I 0
0 −I

]
JT (z)

[
v1

0

]
+

[
−I 0
0 I

]
JT (z)

[
0
v2

]
.

We note that the above expression is only possible due to the structure of the Jacobian in
two-player zero-sum games. Having written J(z) as above, it is now clear that computing
J(z)v will require two Jacobian-vector products.

This simple technique gives rise to the procedure outlined in Algorithm 1.

Long-term behavior of the two-timescale approximation

We now show that LSS asymptotically tracks the limiting ODE even in the presence of noise.
This implies that the algorithm has the same limiting behavior as (5.4). In particular, our
setup allows us to treat the case where one only has access to unbiased estimates of h1 and h2

at each iteration. This is the setting most likely to be encountered in practice, for example
in the case of training GANs in a mini-batch setting. We assume that we have access to
estimators ĥ1 and ĥ2 such that:

E
[
ĥ1(z, v)

]
= ω(z) + v

E
[
ĥ2(z, v)

]
= JT (z)J(z)v + (JT (z))2ω(z).

To place this in the form of classical two-timescale stochastic approximation processes, we
write each estimator ĥ1 and ĥ2 as the sum of its mean and zero-mean noise processes M z

and M v respectively. This results in the following two timescale process:

zn+1 = zn − an[ω(zn) + vn +M z
n+1] (5.8)

vn+1 = vn − bn[JT (zn)J(zn)vn + (JT (zn))2ω(zn) +M v
n+1]. (5.9)

We assume that the noise processes satisfy the following standard conditions [23, 26]:

Assumption 10. Assumptions on the noise: Define the filtration Fn:

Fn = σ(z0, v0,M
v
1 ,M

z
1 , ...,M

z
n,M

v
n),

for n ≥ 0. Given Fn, we assume that:
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• M v
n+1 and M z

n+1 are conditionally independent given Fn for n ≥ 0.

• E[M v
n+1|Fn] = 0 and E[M z

n+1|Fn] = 0 for n ≥ 0.

• E[||M z
n+1|||Fn] ≤ cz(1 + ||zn||) and E[||M v

n+1|||Fn] ≤ cv(1 + ||zn||) almost surely for
some positive constants cz and cv.

Given our assumptions on the estimator, cost function, and step sizes we now show that
(5.8) asymptotically tracks a trajectory of the continuous-time dynamics almost surely. Since
h1, h2, and v∗(z) = J(z)−1JT (z)ω(z) are not uniformly Lipschitz continuous in both z and v,
we cannot directly invoke results from the literature. Instead, we adapt the proof of Theorem
2 in Chapter 6 of [26] to show that vn → v∗(zn) almost surely. We then invoke Proposition 4.1
from [23] to show that zn asymptotically tracks (5.4). We note that this approach only holds
on the event {supn ||zn||+||vn|| <∞}. Thus, if the stochastic approximation process remains
bounded, then under our assumptions we are sure to track a trajectory of the limiting ODE.

Lemma 3. Under Assumptions 6-10, and on the event {supn ||zn||2 + ||vn||2 <∞}:

(zn, vn)→ {(z, v∗(z)) : z ∈ Rd},

almost surely.

Proof. We first rewrite (5.8) as:

zn+1 = zn − bn
[
an
bn
h1(zn, vn) + M̄ z

n+1

]
vn+1 = vn − bn[h2(zn, vn) +M v

n+1],

where M̄ z
n+1 = an

bn
M z

n+1. By assumption, an
bn
→ 0. Since h1 is locally Lipschitz continuous, it

is bounded on the event {supn ||zn||2 + ||vn||2 <∞}. Thus, an
bn
h1(zn, vn)→ 0 almost surely.

From Lemma 1 in Chapter 6 of [26] , the above processes, on the event {supn ||zn||2 +
||vn||2 < ∞}, converge almost surely to internally chain-transitive invariant sets of v̇ =
−h2(z, v) and ż = 0. Since, for a fixed z, h2(z, v) is a Lipschitz continuous function of v
with a globally asymptotically stable equilibrium at (JT (z)J(z) + λ(z)I)−1ω(z), the claim
follows.

Having shown that ||vn − v∗(zn)||2 → 0 almost surely, we now show that zn will asymp-
totically track a trajectory of the limiting ODE. Let us first define z(t, s, zs) for t ≥ s to be
the trajectory of ż = −h(z) starting at zs at time s.

Theorem 16. Given Assumptions 6-10, let tn =
∑n−1

i=0 ai. On the event {supn||zn||2 +
||vn||2 <∞}, for any integer K > 0 we have:

lim
n→∞

sup
0≤h≤K

‖zn+h − z(tn+h, tn, zn)‖2 = 0.
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The proof of Theorem 16 relies on a combination of Proposition 4.1 and 4.2 from [23]
which gives us conditions under which a stochastic approximation process is an asymptotic
pseudo-trajectory of the underlying ODE:

Proposition 15. Let h be a continuous globally integrable vector field. Further, let x(t, s, xs)
for t ≥ s be a trajectory of the dynamical system ẋ = −h(x) starting from state xs at time
s. Finally let the stochastic approximation process be given by:

xn+1 = xn + an(h(xn) + χn +Mn+1),

where:

1. supn ||xn|| <∞

2. supn E[||Mn||2 <∞

3.
∑∞

i=0 a
2
n <∞

4.
∑∞

i=0 an =∞

5. limn→∞ χn = 0 almost surely.

Then:
lim
n→∞

sup
0≤h≤K

||xn+h − x(tn+h, tn, xn)‖ = 0.

Given this proposition, we now develop the proof.

Proof. We first rewrite the zn process as:

zn+1 = zn − an
[
h(z)− JT (zn) (v∗(zn)− vn) +M z

n+1

]
.

We note that, from Lemma 3, (v∗(zn)− vn) → 0 almost surely. Since ||JT (zn)||2 < Lω, we
can write this process as:

zn+1 = zn − an
[
h(z)− χn +M z

n+1

]
,

where χn → 0 almost surely. Since h is continuously differentiable, it is locally Lipschitz, and
on the event {supn||zn|| + ||vn|| < ∞} it is bounded. It thus induces a continuous globally
integrable vector field, and therefore satisfies the assumptions for Propositions 4.1 in [23].
Further, by assumption the sequence of step sizes and martingale difference sequences satisfy
the assumptions of Proposition 4.2 in [23]. Invoking Proposition 4.1 and 4.2 in [23] gives us
the desired result.

Theorem 16 guarantees that LSS asymptotically tracks a trajectory of the limiting ODE.
Coupled with standard assumptions on the noise, classic results from the stochastic approx-
imation literature (e.g., [147]) guarantees that the process will avoid non-Nash equilibria
of the gradient dynamics which are saddle points of the dynamics. Thus the only locally
asymptotically stable points for LSS must be the differential Nash equilibria of the game.
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5.5 Numerical Examples

We now present two numerical examples that illustrate the performance of both the limiting
ODE and LSS. The first is a zero-sum game played over a function in R2 that allows us
to observe the behavior of both the limiting ODE around both local Nash and non-Nash
equilibria. In the second example we use LSS to train a small generative adversarial network
(GAN).

Figure 5.1: Convergence of extreme curvature exploitation, consensus optimization, the
symplectic gradient adjustment and GDA to different equilibria in the zero-sum game played
on (5.10). The local Nash equilibria are denoted by ’x’ and the non-Nash equilibrium by a
star. Consensus optimization, GDA, and the symplectic gradient adjustment both converge
to non-Nash equilibria. Extreme curvature exploitation avoids the non-Nash equilibrium.

2-D example

For the first example, we consider the game based on the following function f in R2 :

f(x, y) = e−0.01(x2+y2)((0.3x2 + y)2 + (0.5y2 + x)2). (5.10)
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This function is a fourth-order polynomial that is scaled by an exponential to ensure that it is
bounded. The gradient dynamics ż = −ω(z) associated with function have four LASE, three
of the which are local Nash equilibria. In Figure 5.1, we plot the sample paths of extreme
curvature exploitation, consensus optimization, the symplectic gradient adjustment (SGA),
simultaneous gradient descent (GDA) and our limiting ODE from the same initial positions,
shown with red dots. We clearly see that GDA, consensus optimization, and the symplectic
gradient adjustment converge to all four LASE, depending on the initialization. Extreme
curvature exploitation, on the other hand, only converges to the local Nash equilibria.

In Figure 5.2 we empirically validate that LSS asymptotically tracks the limiting ODE.
When the fast timescale has not converged, the process tracks the gradient dynamics. Once
it has converged however, we see that it closely tracks the limiting ODE which leads it to
converge to only the local Nash equilibria. Figure 5.2. also highlights how, unlike extreme
curvature exploitation, our algorithm does not oscillate around equilibria, which can lead to
faster convergence. This also empirically validates the second part of Theorem 13.

The discretized full information process is calculated as:

zt+1 = zt − γ(ω(z) + v),

where v = J−1(z)JT (z)ω(z). For the two-timescale process, since there is no noise we use
constant step sizes and the following update:

zn+1 = zn − γ1(ω(zn) + vn)

vn+1 = vn − γ2(JT (zn)J(zn)vn −
(
JT (zn)

)2
ω(zn)),

where γ = 0.0015,γ1 = 0.0001, and γ2 = 0.0005.
For consensus optimization, the symplectic gradient adjustment, and extreme curvature

exploitation the updates are given by:

zn+1 = zn − γ(ω(zn)− γCOJT (zn)ω(zn)),

zn+1 = zn − γ(ω(zn)− γSGAAT (zn)ω(zn)),

zn+1 = zn − γ(ω(zn)− γCURV u(zn)),

respectively, where γ = 0.002, γCO = γSGA = 0.1, γCURV = 1.0, and u(zn) is the
adjustment as described in [6].

Generative adversarial network

We now train a generative adversarial network with LSS, GDA, the symplectic gradient
adjustment (SGA), consensus optimization (CO), and extreme curvature (EC) exploitation.
Both the discriminator and generator are fully connected neural networks with four hidden
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Figure 5.2: Behavior of the two-timescale approximation with respect to the limiting ODE.
The two-timescale procedure closely tracks the limiting ODE from three of the four initial-
izations, but converges to a different Nash equilibrium in the fourth due to approximation
errors early in the process.

layers of 64 neurons each. The tanh activation function is used since it satisfies the smooth-
ness assumptions for our functions. For the latent space, we use a 64-dimensional Gaussian
with mean zero and covariance Σ = 0.01I64. The ground truth distribution is a mixture of
16 Gaussians used in [15] to test for mode collapse, each with covariance Σ = 0.02I2. In
Figure 5.3, we show the generator after 30000 iterations of the various algorithms, initialized
with the same weights and biases. We observe that LSS converges to the true distribution
while the other algorithms have worse performance, showing how the adjusted dynamics can
lead to convergence to better equilibria.

We caution that convergence rate per se is not necessarily a reasonable metric on which
to compare performance in the GAN setting or in other game-theoretic settings. Indeed,
competing algorithms may converge faster than our method when used to train GANs, but
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Figure 5.3: The output of a GAN trained with LSS, GDA, Consensus optimization (CO),
the symplectic gradient adjustment (SGA), and Extreme curvature exploitation (EC) after
30000 iterations of training.

since the competitors could be converging quickly to a non-Nash equilibrium, which is not
desirable. Indeed, the optimal solution is known to be a local Nash equilibrium for GANs [68,
132]. LSS may initially move towards a non-Nash equilibrium, while subsequently escaping
the neighborhood of such points before converging. This will lead to a slower convergence
rate, but a better quality solution.

In Figure 5.4 we show further numerical experiments that show the training of the same
generative adversarial network described in Section 5.5 in wall-clock time, starting with
the same initialization. This is to account for the fact that the different algorithms have
different per-iteration complexities. In 300 seconds, LSS runs for around 12,000 iterations
while GDA, symplectic gradient adjustment (SGA), and consensus optimization (CO), and
extreme curvature (EC) complete 70,000, 40,000, 25,000, and 6000 iterations respectively. In
Figure 5.4, we observe that LSS correctly recovers the ground truth distribution in around
200 seconds while GDA takes longer to converge. This suggests that LSS, despite having a
slower per-iteration complexity may be faster at converging in neighborhoods of equilibria.
Figure 5.4 also highlights the benefits of LSS over extreme curvature exploitation. LSS is able
to perform twice the number of iterations in the same amount of time as extreme curvature
exploitation completes, all the while successfully converging to the correct distribution.

In Figure 5.5 we see that LSS recovers the ground truth distribution, when GDA quickly
converges to a suboptimal equilibrium. While the other algorithms are slow to converge in
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Figure 5.4: The output of the generator trained with A. LSS, B. GDA, C. extreme curvature
exploitation, and D. consensus optimization over training in wall-clock time. We see that
LSS converges to the correct distribution, while GDA converges quickly to an incorrect
distribution. Extreme curvature exploitation is slow to converge in wall-clock time while
consensus optimization fails to properly identify the individual Gaussians.

a similar amount of time (without carefully tuning hyper-parameters)
These experiments highlight the benefits of LSS over both GDA, the symplectic gradient

adjustment, consensus optimization, and extreme curvature exploitation. The performance
of GDA seems highly reliant on the initialization, and the algorithm can quickly converge to
undesired equilibria and remain stuck there. LSS, on the other hand, is more computationally
intensive to compute than GDA, but seems to consistently find better quality solutions in
fewer iterations than the other benchmark algorithms. Extreme curvature exploitation moves
towards better quality solutions, but seems prohibitively expensive to implement efficiently
in complex settings.

For the training of the generative adversarial network, we randomly initialize the weights
and biases using the standard TensorFlow initializations. For both the implementation of
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Figure 5.5: The output of the generator trained with A. LSS, B. GDA, C. extreme curvature
exploitation, and D. consensus optimization over training in wall-clock time. We see that
GDA converges quickly to the correct distribution faster than LSS. Extreme curvature ex-
ploitation is slow to converge in wall-clock time while consensus optimization fails to properly
identify the individual Gaussians.

GDA and LSS used to generate Figures 5.3,5.4, and 5.5 we used the RMSProp optimizer
with step size 2e − 4 for the x and y processes. For the v process in LSS, we used the
RMSProp optimizer with step size 2e−5. We note that these do not satisfy our assumptions
on the step size sequences for the two-timescale process, but are meant to show that the
approach still works in practical settings. Lastly, we use a batch size of 128. For consensus
optimization we set the hyper-parameter to 1.0 and for curvature exploitation we performed
5 iterations of the power method per gradient step to find the suitable eigenvalue-eigenvector
pairs and used a hyper-parameter of 1.0.
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5.6 Time-varying adjustment

In this section we analyze a slightly different version of (5.4) that allows us to remove the
assumption that ω(z) is never in the nullspace of S(z). Though this assumption is relatively
mild we can remove it entirely while retaining our theoretical guarantees. The new dynamics
are constructed by adding a time-varying term to the dynamics that goes to zero only when
ω(z) is zero, and it even serves the same purpose as the regularizer in the bilinear game
example. This guarantees that the only critical points of the limiting dynamics are the
critical points of ω. The analysis of these dynamics is slightly more involved and requires
generalizations of the definition of a LASE to handle time-varying dynamics. We first define
an equilibrium of a potentially time-varying dynamical system θ̇ = g(θ, t) as a point θ∗ such
that g(θ∗, t) ≡ 0 for all t ≥ 0. We can now generalize the definition of a LASE to the
time-varying setting.

Definition 15. A strategy θ∗ ∈ Rd is a locally uniformly asymptotically stable equilibrium
of the time-varying continuous time dynamics θ̇ = −f(θ, t) if θ∗ is an equilibrium of θ̇ =
−f(θ, t), and Dθf(θ∗, t) ≡ J(θ∗) and Re(λ) > 0 for all λ ∈ spec(J(z∗)).

Locally uniformly asymptotically stable equilibria, under this definition, also have the
property that they are locally exponentially attracting under the flow, θ̇ = −f(θ, t). Further,
since the linearization around a locally uniformly asymptotically stable equilibrium is time-
invariant, we can still invoke converse Lyapunov theorems like those presented in [168] when
deriving the non-asymptotic bounds.

Having defined equilibria and a generalization of LASE for time-varying systems, we now
introduce a time-varying version of the continuous-time ODE presented in Section 5.2 which
allows us to remove the assumption that ω(z) is never in the nullspace of S(z). The limiting
ODE is given by:

ż = −hTV (z, t) = −(h(z, t), (5.11)

where h(z, t) is given by:

h(z, t) = ω(z) + J−1(z)
(
JT (z) + λ(z, t)I

)
ω(z)

and λ(z, t) satisfies:

• 0 ≤ λ1(z, t) ≤ ξ2 for all z ∈ Rd and t > 0.

• λ1(z, t) = 0 ⇐⇒ ω(z) = 0.

• ω(z) = 0 =⇒ Dzλ1(z) = 0,

• if ω(z) 6= 0, λ1(z, t)→ 0 as t→∞.
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Thus we require that the time-varying adjustment term gTV must be bounded and is
equal to zero only when ω(z) = 0. Most importantly, we require that for any z that is not a
critical point of ω, gTV must be changing in time. An example of a gTV that satisfies these
requirements is:

gTV (z, t) = ξ1

(
1− e−ξ2||ω(z)||2

)
/t, (5.12)

These conditions, as the next theorem shows, allow us to guarantee that the only locally
asymptotically stable equilibria are the differential Nash equilibria of the game.

Theorem 17. Under Assumption 6 the continuous-time dynamical system ż = −hTV (z, t)
satisfies:

• z is a locally uniformly asymptotically stable equilibrium of ż = −hTV (z, t) ⇐⇒ z is
a DNE of the game {(f,−f),Rd}.

• If z is an equilibrium point of ż = −hTV (z, t), then the Jacobian of hTV at z is time-
invariant and has real eigenvalues.

Proof. We first show that:

hTV (z, t) ≡ 0 ∀t ≥ 0 ⇐⇒ ω(z) = 0.

By construction ω(z) = 0 =⇒ hTV (z, t) ≡ 0 ∀t ≥ 0. To show the converse, we assume that
there exists a z such that hTV (z, t) ≡ 0 ∀ t ≥ 0 but ω(z) 6= 0. This implies that:

2S(z)ω(z) = −λ(z, t)ω(z) ∀t ≥ 0.

Since z is a constant and ω(z) 6= 0, λ(z, t) > 0, and is changing for all t, this cannot hold
since λ(z, t) cannot be an eigenvalue of S(z) for all t.

Dtu(t) = 0 ∀t ≥ 0.

Thus, we have a contradiction and hTV (z, t) ≡ 0 ∀t ≥ 0 =⇒ ω(z) = 0.
Having shown that the critical points of ż = −hTV (z, t) are the same as that of ż = −ω(z),

we now note that the Jacobian of hTV (z, t), at critical points, must be S(z). Under the same
development as the proof of Theorem 13 the Jacobian of hTV is given by:

JTV (z) = J(z) + JT (z) + (Dzλ(z, t)).

Again, by construction Dzλ(z, t) = 0 when ω(z) = 0. The third term therefore disappears
and we have that JTV (z) = S(z). The proof now follows from that of Theorem 13.
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5.7 Chapter Summary

We have introduced local symplectic surgery, a two-timescale algorithm for finding the local
Nash equilibria of zero-sum continuous games. We have shown that the only hyperbolic
critical points to which it can converge are the local Nash equilibria of the underlying game.
This significantly improves upon previous efficient methods for finding such points which, as
shown in Appendix 5.1, cannot give such guarantees.

We emphasize that our analysis has been limited to neighborhoods of equilibria; the
proposed algorithm can converge in principle to limit cycles at other locations of the space.
These are hard to rule out completely. Moreover, some of these limit cycles may actually have
some game-theoretic relevance [21, 76]. Another limitation of our analysis is that we have
assumed the existence of local Nash equilibria in games. Showing that they exist and finding
them is very hard to do in general. Our algorithm will converge to local Nash equilibria,
but may diverge when the game does not admit equilibria or when the algorithm does not
approach any equilibria in its region of attraction. Thus, divergence of our algorithm is not
a certificate that no equilibria exist. Such caveats, however, are the same as those for other
gradient-based approaches for finding local Nash equilibria.

Another drawback to our approach is the use of second-order information. Though
the two-timescale approximation does not need access to the full Jacobian of the gradient
dynamics, the update does involve computing Jacobian-vector products. This is similar to
other recently proposed approaches but will be inherently slower to compute than pure first-
or zeroth-order methods. Bridging this gap while retaining similar theoretical properties
remains an interesting avenue of further research. In summary, we have shown that some
of the inherent flaws of gradient-based methods in zero-sum games can be overcome by
designing algorithms to take advantage of structural aspects of the game-theoretic setting.
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Part II

Decision-Making under Uncertainty
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Chapter 6

Model-Based Approaches for
Multi-Armed Bandits

Sequential decision making under uncertainty has become one of the fastest developing fields
of machine learning, with applications from healthcare, to social-networks, and recommen-
dation systems. A central theme in such problems is addressing exploration-exploitation
tradeoffs [12, 94], wherein an algorithm must balance between exploiting its current knowl-
edge and exploring previously unexplored options.

The classic stochastic multi-armed bandit problem has provided a theoretical laboratory
for the study of exploration/exploitation tradeoffs [91]. A vast literature has emerged that
provides algorithms, insights, and matching upper and lower bounds in many cases. The
dominant paradigm in this literature has been that of frequentist analysis ; cf. in particu-
lar the analyses devoted to the celebrated upper confidence bound (UCB) algorithm [12].
Interestingly, however, Thompson sampling, a Bayesian approach first introduced almost a
century ago [180] has been shown to be competitive and sometimes outperform UCB algo-
rithms in practice [36, 171]. Further, the fact that Thompson sampling, being a Bayesian
method, explicitly makes use of prior information, has made it particularly popular in in-
dustrial applications [see, e.g., 166, and the references therein]— reflecting the need for
explainable algorithms which can readily incorporate domain knowledge (i.e., model-based
algorithms).

Although most theory in the bandit literature is focused on non-Bayesian methods, there
is a smaller, but nontrivial, theory associated with Thompson sampling. In particular,
Thompson sampling has been shown to achieve optimal risk bounds in multi-armed bandit
settings with Bernoulli rewards and beta priors [8, 83], Gaussian rewards with Gaussian
priors [8], one-dimensional exponential family models with uninformative priors [86], and
finitely-supported priors and observations [69]. Thompson sampling has further been shown
to asymptotically achieve optimal instance-independent performance [165].

Despite these appealing foundational results, the deployment of Thompson sampling in
complex problems is often constrained by its use of samples from posterior distributions,
which are often difficult to generate in regimes where the posteriors do not have closed
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forms. A common solution to this has been to use approximate sampling techniques to
generate samples from approximations of the posteriors [36, 66, 104, 166]. Such approaches
have been demonstrated to work effectively in practice [160, 186], but it is unclear how
to maintain performance over arbitrary time horizons while using approximate sampling.
Indeed, to the best of our knowledge the strongest regret guarantees for Thompson sampling
with approximate samples, due to Lu and Van Roy [104], require a model whose complexity
grows with the time horizon to guarantee optimal performance. Further, it was recently
shown theoretically by Phan, Yadkori, and Domke [150] that a näıve usage of approximate
sampling algorithms with Thompson sampling can yield a drastic drop in performance.

As such, even in the well studied and relatively simple setting of multi-armed bandits,
there is still a lack of understanding on how to design versatile model-based algorithms
for sequential decision-making under uncertainty— a key ingredient in developing reliable
algorithms for societal-systems.

Contributions In the following chapters we analyze Thompson sampling with approxi-
mate sampling methods in a class of multi-armed bandit algorithms where the rewards are
unbounded, but their distributions are log-concave. In Chapter 7 we derive novel posterior
contraction rates for posteriors when the rewards are generated from such distributions and
under general assumptions on the priors. Using these rates, we show in Chapter 8 that
Thompson sampling with samples from the true posterior achieves finite-time optimal fre-
quentist regret. Further, the regret guarantee we derive has explicit constants and explicit
dependencies on the dimension of the parameter spaces, variance of the reward distributions,
and the quality of the prior distributions.

In Chapter 9 we present a simple counterexample demonstrating the relationship between
the approximation error to the posterior and the resulting regret of the algorithm. Building
on the insight provided by this example, we propose two approximate sampling schemes
based on Langevin dynamics to generate samples from approximate posteriors and analyze
their impact on the regret of Thompson sampling. We first analyze samples generated from
the unadjusted Langevin algorithm (ULA) and specify the runtime, hyperparameters, and
initialization required to achieve an approximation error which provably maintains the op-
timal regret guarantee of exact Thompson sampling over finite-time horizons. Crucially, we
initialize the ULA algorithm from the approximate sample generated in the previous round
to make use of the posterior concentration property and ensure that only a constant number
of iterations are required to achieve the optimal regret guarantee. Under slightly stronger as-
sumptions, we then demonstrate that a stochastic gradient variant called stochastic gradient
Langevin dynamics (SGLD) requires only a constant batch size in addition to the constant
number of iterations to achieve logarithmic regret. Since the computational complexity of
this sampling algorithm does not scale with the time horizon, the proposed method is a
true “anytime” algorithm. Finally, we conclude Chapter 9 by validating these theoretical re-
sults in numerical simulations where we find that Thompson sampling with our approximate
sampling schemes maintain the desirable performance of exact Thompson sampling.
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Our results suggest that the tailoring of approximate sampling algorithms to work with
Thompson sampling can overcome the phenomenon studied in Phan, Yadkori, and Domke
[150], where approximation error in the samples can yield linear regret. Indeed, our results
suggest that it is possible for Thompson sampling to achieve order-optimal regret guarantees
with an efficiently implementable approximate sampling algorithm.

6.1 Preliminaries

In this work we analyze Thompson sampling strategies for the K-armed stochastic multi-
armed bandit (MAB) problem. In such problems, there is a set of K options, or “arms,”
A = {1, ..., K}, from which a player must choose at each round t = 1, 2, .... After choosing
an arm At ∈ A in round t, the player receives a real-valued reward XAt drawn from a fixed
yet unknown distribution associated with the arm, pAt . The random rewards obtained from
playing an arm repeatedly are i.i.d. and independent of the rewards obtained from choosing
other arms.

Throughout this paper, we assume that the reward distribution for each arm is a member
of a parametric family parametrized by θa ∈ Rda , such that the true reward distribution is
pa(X) = pa(X; θ∗a), where θ∗a is unknown. Moreover, we assume throughout this chapter that
the parametric families are log-concave and Lipschitz smooth in θa:

Assumption 11 (Assumption on the family pa(X|θa) around θ∗a). Assume that log pa(x|θa)
is La-smooth and ma-strongly concave around θ∗a for all X ∈ R:

− log pa(x|θ∗a)−∇θ log pa(x|θ∗a)> (θa − θ∗a) +
ma

2
‖θa − θ∗a‖2 ≤ − log pa(x|θa)

≤ − log pa(x|θ∗a)−∇θ log pa(x|θ∗a)> (θa − θ∗a) +
La
2
‖θa − θ∗a‖2, ∀θa ∈ Rda , x ∈ R.

Additionally we make assumptions on the true distribution of the rewards:

Assumption 12 (Assumption on true reward distribution pa(X|θ∗a)). For every a ∈ A as-
sume that pa(X; θ∗a) is strongly log-concave in X with some parameter νa, and that ∇θ log pa(x|θ∗a)
is La-Lipschitz in X:

− (∇x log pa(x|θ∗a)−∇x log pa(x
′|θ∗a))

T
(x− x′) ≥ νa‖x− x′‖2

2, ∀x, x′ ∈ R.

‖∇θ log pa(x|θ∗a)−∇θ log pa(x
′|θ∗a)‖ ≤ La‖x− x′‖2, ∀x, x′ ∈ R.

Parameters νa and La provide lower and upper bounds to the sub- and super-Gaussianity
of the true reward distributions. We further define κa = max {La/ma, La/νa} to be the
condition number of the model class. Finally, we assume that for each arm a ∈ A there is a
linear map such that for all θa ∈ Rda , Ex∼pa(x|θa) [X] = αTa θa, with ‖αa‖ = Aa.
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We now review Thompson sampling, the pseudo-code for which is presented in Algo-
rithm 2. A key advantage of Thompson sampling over frequentist algorithms for multi-armed
bandit problems is its flexibility in incorporating prior information. In this paper, we as-
sume that the prior distributions over the parameters of the arms have smooth log-concave
densities:

Assumption 13 (Assumptions on the prior distribution). For every a ∈ A assume that
log πa(θa) is concave with La-Lipschitz gradients for all θa ∈ Rda:1

‖∇θπa(θa)−∇θπa(θ
′
a)‖ ≤ La‖θa − θ′a‖, ∀θa, θ′a ∈ Rda .

We remark that we do not assume the prior is strongly log-concave, but that some
structure is needed to prove finite-time concentration rates for the posterior. In particular,
Assumption 13 allows us to prove the following proposition.

Proposition 16. If the prior distribution over θa satisfies Assumption 13. Then:

sup
Rda
∇ log πa(θa)

T (θa − θ∗a) ≤ g∗a − log πa(θ
∗
a)

Where g∗a = maxθ∈Rd log πa(θa).

Proof. Let log πa(θa) = g(θa). From the concavity of g, we know that

∇g(θa)
T (θa − θ∗a) ≤ g(θa)− g(θ∗a)

Since this holds for all θ ∈ Rda , we take the supremum of both sides and get that:

sup
Rda
∇g(θa)

T (θa − θ∗a) ≤ g∗ − g(θ∗a)

Let Ba := g∗a − log πa(θ
∗
a). Note that if the prior is centered on the correct value of θ∗a,

then Ba = 0. The parameter Ba is the prior dependence that appears in our concentration
and regret bounds throughout the paper.

Given the priors and likelihoods, Thompson sampling proceeds by maintaining a posterior
distribution over the parameters of each arm a at each round t. Given the likelihood family,
p(X|θa), the prior, π(θa), and the n data samples from an arm a, Xa,1, · · · , Xa,n, let Fn,a :
Rda → R be Fn,a(θa) = 1

n

∑n
i=1 log pa(Xa,i|θa), be the average log-likelihood of the data.

Then the posterior distribution over the parameter θa at round t, denoted µ
(n)
a , satisfies:

pa(θa|Xa,1, · · · , Xa,n) ∝ πa(θa)
t∏
i=1

(pa(Xt|θa))1{At=a} = exp (nFn,a(θa) + log π(θa)) .

1We remark that the Lipschitz constants are all assumed to be the same to simplify notation.
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Algorithm 2 Thompson sampling

Input : Priors πa for a ∈ A, posterior scaling parameter γa
1 Set µa,t = πa for a ∈ A for t = 0, 1, · · · do

2 Sample θa,t ∼ µ
(Ta(t))
a [γa]

Choose action At = argmaxa∈A α
T
a θa,t.

Receive reward XAt .

Update (approximate) posterior distribution for arm At: µ
(Ta(t+1))
a .

For any γa > 0 we denote the scaled posterior2 as µ
(n)
a [γa], whose density is proportional to:

exp (γa(nFn,a(θa) + log π(θa))) . (6.1)

Letting Ta(t) be the number of samples received from arm a after t rounds, a Thompson
sampling algorithm, at each round t, first samples the parameters of each arm a from their
(scaled) posterior distributions: θa,t ∼ µ

(Ta(t))
a [γa] and then chooses the arm for which the

sample has the highest value:
At = argmax

a∈A
αTa θa,t.

A player’s objective in MAB problems is to maximize her cumulative reward over any fixed
time horizon T . The measure of performance most commonly used in the MAB literature
is known as the expected regret R(T ), which corresponds to the expected difference between
the accrued reward and the reward that would have been accrued had the learner selected
the action with the highest mean reward during all steps t = 1, · · · , T .3 Recalling that r̄a is
the mean reward for arm a ∈ A, the regret is given by:

R(T ) := E

[
T∑
t=1

r̄a∗ − r̄At

]
,

where r̄a∗ = maxa∈A r̄a. Without loss of generality, we assume throughout this chapter that
the optimal arm, a∗ = argmaxa∈A r̄a, is arm 1. Further, we assume that the optimal arm is
unique4: r̄1 > r̄a for a > 1.

Traditional treatment of Thompson sampling algorithms often overlooks one of its most
critical aspects: ensuring compatibility between the mechanism that produces samples from
the posterior distributions and the algorithm’s regret guarantees. This issue is usually ad-
dressed by assuming that the prior distributions and the reward distributions are conjugate

2In Chapter 8 we explain the use of scaled posteriors is required to obtain optimal regret guarantees for
our bandit algorithms.

3We remark that the analysis of Thompson sampling has often been focused on a different quantity
known as the Bayes regret, which is simply the expectation of R(T ) over the priors: Eπ[R(T )]. However,
in an effort to demonstrate that Thompson sampling is an effective alternative to frequentist methods like
UCB, we analyze the frequentist regret R(T ).

4We introduce this assumption merely for the purpose of simplifying our analysis.
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pairs. Although this approach is simple and prevalent in the literature [see, e.g., 166], it fails
to capture more complex distributional families for which this assumption may not hold.
Indeed, it was recently shown in Phan, Yadkori, and Domke [150] that if the samples come
from distributions that approximate the posteriors with a constant error, the regret may
grow at a linear rate. A more nuanced understanding of the relationship between the quality
of the samples and the regret of the algorithms is, however, still lacking.
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Notation

Before summarizing the contents of Part II, we first give an overview of all of the notation
used throughout this part of the dissertation.

Symbol Meaning

A set of arms in bandit environment
K number of arms in the bandit environment |A|
T Time horizon
At arm pulled at time t by the algorithm At ∈ A
Ta(t) number of times arm a has been pulled by time t
XAt reward from choosing arm At at time t
θa parameters of likelihood functions such that, θa ∈ Rda

da dimension of parameter space for arm a
pa(x|θa) parametric family of reward distributions for arm a
πa(θa) prior distribution over the parameters for arm a

µ
(n)
a

probability measure associated with the posterior
over the parameters of arm a after n samples from arm a

µ
(n)
a [γa]

probability measure associated with the (scaled) posterior
over the parameters of arm a after n samples from arm a

µ̂
(n)
a

probability measure resulting from running the Langevin MCMC algorithm

described in Algorithm 3 which approximates µ
(n)
a

µ̄
(n)
a [γa]

probability measure resulting from an approximate sampling method

which approximates µ
(n)
a [γa]

θ∗a true parameter value for arm a

θa,t
sampled parameter for arm a at time t of

the Thompson Sampling algorithm: θa,t ∼ µ
(n)
a

r̄a mean of the reward distribution for arm a: r̄a = E[Xa|θ∗a]
αa vector in Rda such that r̄a = αTa θ

∗
a

ra,t(Ta(t)) estimate of mean of arm a at round t: ra,t(Ta(t)) = αTa θa,t
Aa norm of αa
ma Strong log-concavity parameter of the family pa(x; θ) in θ for all x.

νa
Strong log-concavity parameter of the
true reward distribution pa(x; θ∗) in x.

Fn,a(θa)
Averaged log likelihood over

the data points: Fn,a(θa) = 1
n

∑n
i=1 log pa(Xi, θa)

La
Lipschitz constant for the true reward distribution

and likelihood families pa(x; θ∗) in x.

κa condition number of the likelihood family κa = max
(
La
ma
, La
νa

)
.

Ba reflects the quality of the prior: Ba = maxθ πa(θ)
πa(θ∗)
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6.2 Overview of Part II

Part II of this dissertation focuses on the analysis of Thompson sampling with approxi-
mate sampling methods in a class of multi-armed bandit algorithms where the rewards are
unbounded, but their distributions are log-concave. In Chapter 7 we derive new posterior
contraction rates for posteriors when the rewards are generated from such distributions and
under general assumptions on the priors. Using these rates, we show in Chapter 8 that
Thompson sampling with samples from the true posterior achieves finite-time optimal fre-
quentist regret. Further, the regret guarantee we derive has explicit constants and explicit
dependencies on the dimension of the parameter spaces, variance of the reward distributions,
and the quality of the prior distributions.

In Chapter 9 we present a simple counter-example demonstrating the relationship between
the approximation error of the approximation to the posterior and the resulting regret of the
algorithm. Building on the insight provided by this example, we analyze two approximate
sampling schemes and their impact on the regret of Thompson sampling. We first analyze
the regret of Thompson sampling when the samples are generated from the unadjusted
Langevin algorithm (ULA). We specify the runtime and hyperparameters needed to achieve
an approximation error which provably maintains the optimal regret guarantee of the exact
algorithm over finite-time horizons. Under slightly stronger assumptions, we then show that
a stochastic gradient variant of ULA also achieves logarithmic regret. Notably both the
iteration complexity and the sample complexity for stochastic gradient estimate do not scale
with the time horizon, yielding a true ‘anytime’ algorithm.

Our results suggest that the tailoring of approximate sampling algorithms to work with
Thompson sampling can overcome the phenomenon studied in [150] where approximation
error in the samples results in linear regret. Indeed, our results suggest that it is possible for
Thompson sampling to achieve order-optimal regret guarantees with approximate sampling.
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Chapter 7

Posterior Concentration Results

Core to the analysis of Thompson sampling is understanding the behavior of the posterior
distributions over the parameters of the arms’ distributions as the algorithm progresses and
samples from the arms are collected. In particular, characterizing how the posterior density
over the parameters given data,

P (θ|X1, ..., Xn),

concentrates around the true parameter value, is an essential step in developing a deeper
understanding of Thompson Sampling.

The literature on understanding how posteriors evolve as data is collected goes back to
Doob [47] and his proof of the asymptotic normality of posteriors. More recently, there has
been a line of work [see, e.g., 60, 187] that derives rates of convergence of posteriors in various
regimes, mostly following the framework first developed in Ghosal, Ghosh, and Vaart [59] for
finite- and infinite-dimensional models. Such results, though quite general, do not have ex-
plicit constants or forms which make them amenable for use in analyzing bandit algorithms.
Indeed, finite-time rates remain an active area of research but have been developed using
information-theoretic arguments [172], and more recently through the analysis of stochastic
differential equations [130], though in both cases the assumptions, burn-in times, and lack
of precise constants make them difficult to integrate with the analysis of Thompson sam-
pling. Due to this, Thompson sampling has, for the most part, been only well understood
for conjugate prior/likelihood families like beta/Bernoulli and Gaussian/Gaussian [8], or in
more generality in well-behaved families such as one-dimensional exponential families with
uninformative priors [86] or finitely supported prior/likelihood pairs [69].

In this Chapter we derive posterior concentration rates for parameters in d-dimensions
and for a large class of priors and likelihoods by analyzing the moments of a stochastic
differential equation for which the posterior is the limiting distribution. Our results expand
upon the recent derivation of novel contraction rates for posterior distributions presented in
Mou et al. [130] to hold for a finite number of samples and may be of independent interest.
We make use of these concentration results to show that Thompson sampling with such
priors and likelihoods results in order-optimal regret guarantees.
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7.1 Posterior Concentration in Log-Concave Families

To begin, we note that classic results [139] guarantee that, as t→∞ the distribution Pt of
θt which evolves according to:

dθt =
1

2
∇θFn,a(θt)dt+

1

2n
∇θ log πa(θt))dt+

1
√
nγa

dBt, (7.1)

is given by:
lim
t→∞

Pt(θ|X1, ..., Xn) ∝ exp(−γa (nFn,a(θ) + log πa(θ))),

almost surely. Comparing with Eq. (6.1), this limiting distribution is the scaled posterior

distribution µ
(n)
a [γa]. Thus, by analyzing the limiting properties of θt as it evolves accord-

ing to the stochastic differential equation, we can derive properties of the scaled posterior
distribution.

To do so, we first show that with high probability the gradient of Fn,a(θ
∗) concentrates

around zero (given the data X1, ..., Xn). More precisely we show using well known results
on the concentration of Lipschitz functions of strongly log-concave random variables that
∇θFa,n(θ∗a) has sub-Gaussian tails:

Proposition 17. The random variable ‖∇θFa,n(θ∗a)‖ is La

√
da
nνa

-sub-Gaussian.

The proof follows from the concentration of Lipschitz functions under strongly log-concave
densities and relies on Assumption 12.

Proof. Recall that the true density pa(x|θ∗a) is νa-strongly log-concave in x and that∇θ log pa(x|θ∗a)
is La-Lipschitz in x. Notice that ∇θFa(θ

∗
a) = 0 since θ∗a is the point maximizing the popula-

tion likelihood.
Let’s consider the random variable Z = ∇θ log pa(x|θ∗a). Since E[Z] = ∇θFa(θ

∗
a), the

random variable Z is centered.
We start by showing Z is a subgaussian random vector. Let v ∈ Sda be an arbitrary

point in the da−dimensional sphere and define the function V : Rda → R as V (x) =
〈∇θ log pa(x|θ∗a), v〉. This function is La−Lipschitz. Indeed let x1, x2 ∈ Rda be two arbi-
trary points in Rda :

|V (x1)− V (x2)| = |〈∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a), v〉|
≤ ‖∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a)‖2‖v‖2

= ‖∇θ log pa(x1|θ∗a)−∇θ log pa(x2|θ∗a)‖2

≤ La‖x1 − x2‖

The first inequality follows by Cauchy-Schwartz, the second inequality by the Lipschitz
assumption on the gradients. After a simple application of Proposition 2.18 in Ledoux [96],
we conclude that V (x) is subgaussian with parameter La√

νa
.
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Since the projection of Z onto an arbitrary direction v of the unit sphere is subgaussian,
with a parameter independent of v, we conclude the random vector Z is subgaussian with
the same parameter La√

νa
. Consequently, the vector ∇θFa,n(θ∗a), being an average of n i.i.d.

subgaussian vectors with parameter La√
νa

is also subgaussian with parameter La√
nνa

.

Since ∇θFa,n(θ∗a) is a subgaussian vector with parameter La√
nνa

, Lemma 1 of [79] implies

it is norm subgaussian with parameter La
√
da√

nνa
.

Conditioning on this high-probability event, we then analyze how the potential function:

V (θt) =
1

2
eαt||θt − θ∗||22,

evolves along trajectories of the stochastic differential equation, where α > 0. By bounding
the supremum of V (θt), we construct bounds on the higher moments of the random variable
||θ − θ∗||. These moment bounds translate directly into the posterior concentration bound

of θ ∼ µ
(n)
a around θ∗ presented in the following theorem.

Theorem 18. Suppose that Assumptions 11-13 hold, then for δ ∈ (0, e−1/2):

P
θ∼µ(n)

a [γa]

(
‖θa − θ∗a‖2 >

√
2e

man

(
da
γa

+ logBa +

(
32

γa
+ 8daκ2

a

)
log (1/δ)

))
< δ,

where Ba = maxθ∈Rd
πa(θ)
πa(θ∗a)

.

Theorem 18 guarantees that the scaled posterior distribution over the parameters of the
arms concentrate at rate 1√

n
, where n is the number of times the arm has been pulled.

Proof. The proof makes use of the techniques used to prove Theorem 1 in Mou et al. [130]:
analyzing how a carefully designed potential function evolves along trajectories of the s.d.e.
By a careful accounting of terms and constants, however, we are able to keep explicit con-
stants and derive tighter bounds which hold for any finite number of samples. Throughout
the proof we drop the dependence on a and condition on the high-probability event, Ga,n(δ1),
defined in Proposition 17, which guarantees that the norm of the likelihood gradients con-
centrates with probability at least 1− δ1.

Consider the s.d.e.:

dθt =
1

2
∇θFn(θt)dt+

1

2n
∇θ log π(θt))dt+

1
√
nγ
dBt,

and the potential function given by:

V (θ) =
1

2
eαt‖θ − θ∗‖2

2,
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for a choice of α > 0. The idea is that bounds on the p-th moments of V (θt) can be
translated into bounds on the p-th moments of V (θ) where θ ∼ µ(n), due to the fact that
limt→∞ θt = θ ∼ µ(n). The square-root growth in p of these moments will imply that ‖θ−θ∗‖2

has subgaussian tails with a rate that we make explicit.
We begin by using Ito’s Lemma on V (θt):

V (θt) = T1 + T2 + T3 + T4,

where:

T1 = −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖2
2ds

T2 =
1

2n

∫ t

0

eαs〈θs − θ∗,∇θ log π(θs)〉ds

T3 =
d

2nγ

∫ t

0

eαsds

T4 =
1
√
nγ

∫ t

0

eαs〈θs − θ∗, dBs〉.

Let us first upper bound T1:

T1 = −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖2
2ds

= −1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θs)−∇θFn(θ∗)〉ds+
α

2

∫ t

0

eαs‖θs − θ∗‖2
2ds

− 1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θ∗)〉ds

(i)

≤ α−m
2

∫ t

0

eαs‖θs − θ∗‖2
2ds−

1

2

∫ t

0

eαs〈θ∗ − θs,∇θFn(θ∗)〉ds

(ii)

≤ α−m
2

∫ t

0

eαs‖θs − θ∗‖2
2ds+

1

2

∫ t

0

eαs‖θ∗ − θs‖ ‖∇θFn(θ∗)‖︸ ︷︷ ︸
:=ε(n)

ds,

where in (i) we use the strong-concavity property from Assumption 11, and in (ii) we use
Cauchy-Shwartz.

Using Young’s inequality for products, where the constant is m, gives:

T1 ≤ 2α−m
4

∫ t

0

eαs‖θs − θ∗‖2
2ds+

ε(n)2

4m

∫ t

0

eαsds.

Finally, choosing α = m/2 the first term on the RHS vanishes. Evaluating the integral in
the second term on the RHS gives:

T1 ≤ ε(n)2

2m2

(
eαt − 1

)
≤ ε(n)2

m2
eαt.
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Given our assumption on the prior, our choice of α = m
2

and simple algebra, we can upper
bound T2 and T3 as:

T2 =
1

2n

∫ t

0

eαs〈θs − θ∗,∇θ log π(θs)〉ds ≤
logB

2αn
(eαt − 1) ≤ logB

nm
eαt

T3 =
d

2nγ

∫ t

0

eαsds ≤ d

γnm
eαt.

We proceed to bound T4. Let’s start by defining:

Mt =

∫ t

0

eαs〈θs − θ∗, dBs〉,

so that:

T4 =
Mt√
nγ
.

Combining all the upper bounds of T1, T2, T3, and T4 we have that:

V (θt) ≤
(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt +

Mt√
γn
.

To find a bound for the p−th moments of V , we upper bound the p-th moments of the
supremum of Mt where p ≥ 1:

E
[

sup
0≤t≤T

|Mt|p
]

(i)

≤ (8p)
p
2E
[
〈M,M〉

p
2
T

]
= (8p)

p
2E

[(∫ T

0

e2αs‖θs − θ∗‖2
2

) p
2

ds

]
(ii)

≤ (8p)
p
2E

[(
sup

0≤t≤T
eαt‖θt − θ∗‖2

2

∫ T

0

eαsds

) p
2

]

= (8p)
p
2E

[(
sup

0≤t≤T
eαt‖θt − θ∗‖2

2

(eαT − 1)

α

) p
2

]
(iii)

≤
(

8peαT

α

) p
2

E

[(
sup

0≤t≤T
eαt‖θt − θ∗‖2

2

) p
2

]
.

Inequality (i) is a direct consequence of the Burkholder-Gundy-Davis inequality [159], (ii)
follows by pulling out the supremum out of the integral, (iii) holds because eαT − 1 ≤ eαT .

Now, let us consider the moments of V (θt):

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ E
[(

sup
0≤t≤T

(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt +

|Mt|√
γn

)p] 1
p

≤ E
[(

sup
0≤t≤T

(
ε(n)2

m2
+

d

γnm
+

logB

nm

)
eαt + sup

0≤t≤T

|Mt|√
γn

)p] 1
p
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Via the Minkowski Inequality, and the fact ε(n) is independent of t, we can expand the above
as:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤
(

d

γnm
+

logB

nm

)
eαT︸ ︷︷ ︸

:=UT

+
eαT

m2
E
[
ε(n)2p

] 1
p + E

[(
sup

0≤t≤T

|Mt|√
n

)p] 1
p

Since, from Proposition 17, we know that ε(n) is a L
√

d
nν

-sub-Gaussian vector, we know

that:

E
[
ε(n)2p

] 1
p ≤

(
2L

√
2dp

nν

)2

Using our upper bound on the supremum of Mt gives:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ UT +
eαT8dL2

νm2n
p+ E

[(
8peαT

γαn

) p
2
(

sup
0≤t≤T

eαt‖θt − θ∗‖2
2

) p
2

] 1
p

(7.2)

We proceed by bounding the second term on the RHS of the expression above:

E

[(
8peαT

αn

) p
2
(

sup
0≤t≤T

eαt‖θt − θ∗‖2
2

) p
2

] 1
p (i)

≤ E
[

2p−1

2

(
8peαT

αγn

)p
+

1

2p

(
sup

0≤t≤T
eαt‖θt − θ∗‖2

2

)p] 1
p

(ii)

≤ 2
p−2
p E

[(
8peαT

αγn

)p] 1
p

+
1

2
E
[(

sup
0≤t≤T

eαt‖θt − θ∗‖2
2

)p] 1
p

(iii)

≤ 16 E
[(

peαT

αγn

)p] 1
p

+
1

2
E
[(

sup
0≤t≤T

eαt‖θt − θ∗‖2
2

)p] 1
p

︸ ︷︷ ︸
I

Inequality (i) follows from using Young’s inequality for products on the term inside the
expectation with constant 2p−1, inequality (ii) is a consequence of the Minkowski inequality

and (iii) because 2
p−2
p ≤ 2. We note now that the second term I on the right hand side

above is exactly:

1

2
E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

Plugging this into Equation 7.2 and rearranging gives:

1

2
E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ UT +
16eαT

αγn
p+

eαT8dL2

νm2n
p,
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which finally results in:

E
[(

sup
0≤t≤T

V (θt)

)p] 1
p

≤ 2

mn

(
d

γ
+ logB +

(
32

γ
+

8dL2

νm

)
p

)
eαT . (7.3)

Given this control on the moments of the supremum of V (θt) (recall V (θ) = 1
2
eαt‖θ−θ∗‖2

2),
we finally construct the bound on the moments of ‖θT − θ∗‖:

E[‖θT − θ∗‖p]
1
p = E

[
e−

pαT
2 V (θT )

p
2

] 1
p

(i)

≤ E

[
e−

pαT
2

(
sup

0≤t≤T
V (θt)

) p
2

] 1
p

= e−
αT
2

E

[(
sup

0≤t≤T
V (θt)

) p
2

] 2
p


1
2

(ii)

≤ e−
αT
2

(
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

)
eαT
) 1

2

=

√
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

) 1
2

.

Inequality (i) follows from taking the supremum of V (θt), inequality (ii) from plugging in
the upper bound from Equation 7.3.

Taking the limit as T → ∞ and using Fatou’s Lemma, we therefore have that the

moments of E[‖θ − θ∗‖p]
1
p , with probability at least 1− δ1, grow at a rate of

√
p:

E[‖θ − θ∗‖p]
1
p ≤ lim inf

T→∞
E[‖θT − θ∗‖p]

1
p (7.4)

=

√
2

mn

(
d

γ
+ logB +

(
16

γ
+

4dL2

νm

)
p

) 1
2

. (7.5)

To simplify notation, let D =
(
d
γ

+ logB
)

, and σ =
(

16
γ

+ 4dL2

νm

)
. Therefore we have:

E[‖θ − θ∗‖p]
1
p ≤

√
2

mn
(D + σp) (7.6)

The result (7.6), guarantees us that the norm of the uncentered random variable θ − θ∗
has subgaussian tails. We make the parameters explicit via Markov’s inequality:

P
θ∼µ(n)

a
(‖θ − θ∗‖ > ε) ≤ E[‖θ − θ∗‖p]

εp

≤

(√
2 (D + σp)√
mnε

)p

.
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Choosing p = 2 log 1/δ and letting

ε = e
1
2

√
2

mn
(D + σp)

gives us our desired solution:

P
θ∼µ(n)

a [γa]

(
‖θ − θ∗‖2 >

√
2e

mn

(
d

γ
+ logB +

(
32

γ
+

8dL2

νm

)
log (1/δ)

))
< δ,

for δ ≤ e−0.5.

7.2 Chapter Summary

We remark that the posterior concentration result we derived in this chapter in Theorem 18
has a number of desirable properties. Through the presence of Ba, it reflects an explicit
dependence on the quality of the prior. In particular, B = 0 if the prior is properly centered
such that its mode is at θ∗ or if the prior is uninformative or nearly flat everywhere. We
further remark that the concentration result also scales with the variance of θa which is on the
order of d

mn
. The bound also has an explicit dependence on the quality of the data received

from the arm through its dependence on 1/δ1. Lastly, we remark that this concentration
result holds for any n > 0 and the constants are explicitly defined in terms of the smoothness
and structural assumptions on the priors, likelihoods, and reward distributions. This makes
it more amenable for use in constructing regret guarantees, since we do not have to wait for
a burn-in period for the result to hold as in [172] and [130]. Moreover, the dependence on
the dimension of the parameter space and constants is explicit. These properties allow us to
use this result to prove the order-optimal regret of exact Thompson Sampling (in this family
of bandit problems) in the next chapter.
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Chapter 8

Exact Thompson Sampling

In this chapter we build upon the posterior concentration results from Chapter 7 to give
finite-time regret guarantees for exact Thompson sampling in log-concave bandits— a larger
family of priors and posteriors than have previously been analyzed in the literature. For
clarity of exposition, in the first section we given an overview of the proof of logarithmic
regret of Thompson Sampling in log-concave bandit problems, and present the details of the
proof in Section 8.2

8.1 Regret Bounds for Exact Thompson Sampling in

Log-Concave Bandits

To analyze the regret of exact Thompson sampling we proceed as is common in regret proofs
for multi-armed bandits by upper bounding Ta(T ), the number of times a sub-optimal arm
a ∈ A is pulled up to time T . Without loss of generality we assume throughout this section
that arm 1 is the optimal arm, and define the filtration associated with a run of the algorithm
as Ft = {A1, X1, A2, X2, ..., At, Xt}.

We first define the low-probability event that the mean calculated from the value of θa,t
sampled from the posterior at time t ≤ T , ra,t(Ta(t)), is greater than r̄1− ε (recall that r̄1 is
the optimal arm’s mean): Ea(t) = {ra,t(Ta(t)) ≥ r̄1 − ε} for some ε > 0. Given these events,
we proceed to decompose the expected number of pulls of a sub-optimal arm a ∈ A as:

E[Ta(T )] = E

[
T∑
t=1

I(At = a)

]
= E

[
T∑
t=1

I(At = a,Ec
a(t))

]
︸ ︷︷ ︸

I

+E

[
T∑
t=1

I(At = a,Ea(t))

]
︸ ︷︷ ︸

II

. (8.1)

These two terms satisfy the following standard bounds (see, e.g., [94]):
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Lemma 4 (Bounding I and II). For a sub-optimal arm a ∈ A, we have that:

I ≤ E

[
T−1∑
s=1

1

p1,s

− 1

]
; (8.2)

II ≤ 1 + E

[
T∑
s=1

I
(
pa,s >

1

T

)]
, (8.3)

where pa,s = P(ra,t(s) > r̄1 − ε|Ft−1), for some ε > 0.

The proof of these results are standard for the regret of Thompson sampling and can be
found in Section 8.2, Lemmas 6 and 7, for completeness.

Given Lemma 4, we see that to bound the regret of Thompson Sampling it is sufficient
to bound the two terms I and II.

To bound term I, we first show that for all times t = 1, ..., T , and number of samples
collected from arm 1, the probability p1,n = P(r1,t(n) > r̄1 − ε|Ft−1) is lower bounded
by a constant depending only on the quality of the prior for arm 1. This guarantees the
posterior for the optimal arm is approximately optimistic with at least a constant probability,
and requires a proper choice of γ1. We note the unscaled posterior provides the correct
concentration with respect to the number of data samples Ta(t), when Ta(t) is large. This is
sufficient to upper bound the trailing terms of I, that is, summands in Equation 8.2 for large
s. Unfortunately concentration is not enough to bound term I, since the early summands
of Equation 8.2 corresponding to small values of s could be extremely large. Intuitively,
the random variable r1,t(s) can be thought of as centered around the posterior mean of arm
1. Though this is close to the true value of r̄1 with high probability, when T1(t) is small,
concentration alone does not preclude the possibility that the posterior mean underestimates
r̄1 by a value of at least ε. In order to ensure p1,s is large enough in these cases, we require
r1,t(s) to have sufficient variance to overcome this potential underestimation bias. We show

that a scaled posterior µ
(Ta(t))
a [γa] with γa = (8daκ

3
a)
−1

in Algorithm 2 ensures r1,t(s) has
enough variance.

Lemma 5. Suppose the likelihood and reward distributions satisfy Assumptions 11-13, then
for all n = 1, ..., T and γ1 = 1

8d1κ3
1
:

E
[

1

p1,n

]
≤ C

√
B1κ1,

where C is a universal constant independent of the problem-dependent parameters.

We find that a proper choice of γ1 is required to ensure that that the posterior on the
optimal arm has a large enough variance to guarantee a degree of optimism despite the
randomness in its mean. Scaling up the posterior was also noted to be necessary in linear
bandits (see, e.g., [3, 9]) to ensure optimal regret. In practice, since we do not know a priori
which is the optimal arm, we must scale the posterior of each arm by a parameter γa.
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The quantity B1 = maxθ π1(θ)
π1(θ∗1)

captures a worst case dependence on the quality of the prior

for the optimal arm, and can be seen as the expected number of samples from the prior until
an optimistic sample is observed.

By using this upper bound in combination with the posterior concentration result derived
in Theorem 18, we can further bound I and II. We note that in contrast with simple subgaus-
sian concentration bounds, our posterior concentration rates have a bias term decreasing at
a rate of 1/

√
number of samples. In our analysis we carefully track and control the effects of

this bias term ensuring it does not compromise our log-regret guarantees. Indeed, using the
posterior concentration in the bounds from Lemma 4 we show that, for γa = 1

8daκ3
a

there are
two universal constants C1, C2 > 0 independent of the problem-dependent parameters such
that:

I ≤ C1

√
κ1B1

⌈
A2

1

m1∆2
a

(D1 + σ1)

⌉
+ 1;

II ≤ C2A
2
a

ma∆2
a

(Da + σa log(T )),

where for a ∈ A, Da and σa are given by:

Da = logBa + d2
aκ

3
a, σa = daκ

3
a + daκ

2
a.

Finally, combining all these observations we obtain the following regret guarantee:

Theorem 19 (Regret of Exact Thompson Sampling). When the likelihood and true reward
distributions satisfy Assumptions 11-13 and γa = 1

8daκ3
a

we have that the expected regret after
T > 0 rounds of Thompson sampling with exact sampling satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
logBa + d2

aκ
3
a + daκ

3
a log(T )

)
+
√
κ1B1

CA2
1

m1∆a

(
logB1 + d2

1κ
3
1

)
+ ∆a,

where C is a universal constant independent of problem-dependent parameters.

The proof of the theorem follows directly from the bounds on term I and II in (8.1). We

remark that this regret bound gives an O
(

log (T )
∆

)
asymptotic regret guarantee, but holds

for any T > 0. This further highlights that Thompson sampling is a competitive alternative
to UCB algorithms since it achieves the optimal problem-dependent rate for multi-armed
bandit algorithms first presented in Lai and Robbins [91].

Our bound also has explicit dependencies on the dimension of the parameter space of
the likelihood distributions for each arm, as well as on the quality of the priors through the
presence of Ba and B1. We note that the dependence on the priors does not distinguish
between “good” and “bad” priors. Indeed, the parameter Ba ≥ 1 is worst case, and does
not capture the potential advantages of good priors in Thompson sampling, that we observe
in our numerical experiments in Section 9.5. Further, we remark that our bound exhibits a
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worse dependence on the prior for the optimal arm (O(
√
B1 log(B1))) than for sub-optimal

arms (O(log(Ba))). This is also a worst case dependence which captures the expected number
of samples from the prior until an approximately optimistic sample is observed, which we
believe to be unavoidable.

Finally, we note that our regret bound scales with the variances of the reward and like-
lihood families since 1

ma
and 1

νa
reflect the variance of the likelihoods in θ and the rewards

Xa respectively.

8.2 Detailed Proofs of the Regret of Exact Thompson

Sampling

We now present the detailed proof of logarithmic regret of Thompson sampling under our
assumptions with samples from the true posterior. We begin with the decomposition of the
number of times a sub-optimal arm has been pulled from (8.1).

E[Ta(T )] = E

[
T∑
t=1

I(At = a)

]
= E

[
T∑
t=1

I(At = a,Ec
a(t))

]
︸ ︷︷ ︸

I

+E

[
T∑
t=1

I(At = a,Ea(t))

]
︸ ︷︷ ︸

II

.

In Lemma 6 we upper bound (I), and then bound term (II) in Lemmas 7. We note that
this proof follows a similar structure to that of the regret bound for Thompson sampling for
Bernoulli bandits and bounded rewards in [7]. However, to give the regret guarantees that
incorporate the quality of the priors as well as the potential errors and lack of independence
resulting from the approximate sampling methods we discuss in Section 9 the proof is more
complex.

Lemma 6 (Bounding I). For a sub-optimal arm a ∈ A, we have that:

I = E

[
T∑
t=1

I(At = a,Ec
a(t))

]
≤ E

[
T−1∑
s=1

1

p1,s

− 1

]
.

where pa,s = P(ra,t(s) > r̄1 − ε|Ft−1), for some ε > 0.

Proof. To bound term I of (8.1), we first recall At is the arm achieving the largest sample
reward mean at round t. Further, we define A′t to be the arm achieving the maximum sample
mean value among all the suboptimal arms:

A′t = argmax
a∈A,a6=1

ra(t, Ta(t)).
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Since E [I(At = a,Ec
a(t))] = P (At = a,Ec

a(t)), we aim to bound P(At = a,Ec
a(t)|Ft−1). We

note that the following inequality holds:

P(At = a,Ec
a(t)|Ft−1) ≤ P(A′t = a,Ec

a(t)|Ft−1)(P(r1(t, T1(t)) ≤ r̄1 − ε|Ft−1))

= P(A′t = a,Ec
a(t)|Ft−1)(1− P(E1(t)|Ft−1)). (8.4)

We also note that the term P(A′t = a,Ec
a(t)|Ft−1) can be bounded as follows:

P(At = 1, Ec
a(t)|Ft−1)

(i)

≥ P(A′t = a,Ec
a(t), E1(t)|Ft−1)

= P(A′t = a,Ec
a(t)|Ft−1)P(E1(t).|Ft−1) (8.5)

Inequality (i) holds because {A′t = a,Ec
a(t), E1(t)} ⊆ {At = 1, Ec

a(t), E1(t)}. The equality
is a consequence of the conditional independence of E1(t) and {A′t = a,Ec

a(t)} (conditioned
on Ft−1). 1

Assuming P(E1(t)|Ft−1) > 0 and2 putting inequalities 8.4 and 8.5 together gives the
following upper bound for P(At = a,Ec

a(t)|Ft−1):

P(At = a,Ec
a(t)|Ft−1) ≤ P(At = 1, Ec

a(t)|Ft−1)

(
1− P(E1(t)|Ft−1)

P(E1(t)|Ft−1)

)
.

Letting P (E1(t)|Ft−1) := p1,T1(t) and noting that{At = 1, Ec
a(t)} ⊆ {At = 1} :

P(At = a,Ec
a(t)|Ft−1) ≤ P(At = 1|Ft−1)

(
1

p1,T1(t)

− 1

)
. (8.6)

Now, we use this to give an upper bound on the term of interest:

1The conditional independence property holds for all of our sampling mechanisms because the sample
distributions for the two distinct arms (a, 1) are always conditionally independent on Ft−1

2In all the cases we consider, including approximate sampling schemes, this property holds. In that case,
since the Gaussian noise in the Langevin diffusion ensures all sets of the form (a, b) have nonzero probability
mass.
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E

[
T∑
t=1

I(At = a,Ec
a(t))

]
(i)
= E

[
T∑
t=1

E [I (At = a,Ec
a(t)) |Ft−1]

]
(ii)
= E

[
T∑
t=1

P (At = a,Ec
a(t)|Ft−1)

]
(iii)

≤ E

[
T∑
t=1

P(At = 1|Ft−1)

(
1

p1,T1(t)

− 1

)]
(iv)
= E

[
T∑
t=1

E [I(At = 1)|Ft−1]

(
1

p1,T1(t)

− 1

)]
(v)
= E

[
T∑
t=1

I(At = 1)

(
1

p1,T1(t)

− 1

)]
(vi)

≤ E

[
T−1∑
s=1

1

p1,s

− 1

]
.

Here the equality (i) is a consequence of the tower property, and equality (ii) by noting
that:

E [I (At = a,Ec
a(t)) |Ft−1] = P (At = a,Ec

a(t)|Ft−1) .

Inequality (iii) follows by from Equation 8.6, and equality (iv) follows by definition. Finally,
equality (v) follows by the tower property and the last line each the fact that T1(t) = s and
At = 1 can only happen once for every s = 1, ..., T . This completes the proof.

Given the bound on (I) from (8.1), we now present a bound on (II).

Lemma 7 (Bounding II - exact posterior). For a sub-optimal arm a ∈ A, we have that:

II = E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ 1 + E

[
T∑
s=1

I
(
pa,s >

1

T

)]
.

where pa,s = P(ra,t(s) > r̄1 − ε|Ft−1), for some ε > 0.

Proof. The upper bound for term II in (8.1) follows the exact same proof as in [7], and we
recreate it for completeness below. Let T = {t : pa,Ta(t) >

1
T
}, then:

E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ E

[∑
t∈T

I(At = a)

]
︸ ︷︷ ︸

I

+E

[∑
t/∈T

I(Ea(t))

]
︸ ︷︷ ︸

II

. (8.7)
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By definition, term I in (8.7) satisfies:

∑
t∈T

I(At = a) =
∑
t∈T

I
(
At = a, pa,Ta(t) >

1

T

)
≤

T∑
s=1

I
(
pa,s >

1

T

)
.

To address term II in (8.7), we note that, by definition: E[I(Ea(t))|Ft−1] = pa,Ta(t). There-
fore, using the definition of the set of times T , we can construct this simple upper bound:

E

[∑
t/∈T

I(Ea(t))

]
= E

[∑
t/∈T

E [I (Ea(t)) |Ft−1]

]

= E

[∑
t/∈T

pa,t

]

≤
∑
t/∈T

1

T

≤ 1.

Using the two upper bounds for terms I and II in (8.7) gives out desired result:

E

[
T∑
t=1

I(At = a,Ea(t))

]
≤ 1 + E

[
T∑
s=1

I
(
pa,s >

1

T

)]
.

Regret of Exact Thompson Sampling

We now present two technical lemmas and their proofs which enable us to bound the regret
of exact Thompson sampling. The first is Lemma 5, which we restate below, which provides
a lower bound on the probability of an arm begin optimistic in terms of the quality of the
prior.

Lemma. Suppose the likelihood and reward distributions satisfy Assumptions 11-13, then

for all n = 1, ..., T and γ1 =
ν1m2

1

8d1L3
1
:

E
[

1

p1,n

]
≤ 64

√
L1

m1

B1.

Proof. Throughout this proof we drop the dependence on the arm to simplify notation (unless
necessary). We first analyze ‖θ∗ − θu‖2 where θu is the mode of the posterior of arm 1 after
having received n samples from the arm which satisfies:

1

n
∇ log π1(θu) +∇F1,n(θu) = 0
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Given this definition, and letting θ̂ = θu − θ∗ we have that:

θ̂T (∇Fn(θ∗)−∇Fn(θu))−
1

n
θ̂T∇ log π(θu) = θ̂T∇Fn(θ∗)

m‖θ̂‖2 ≤ m

2
‖θ̂‖2 +

1

2m
‖∇Fn(θ∗)‖2 +

logB1

n

‖θ̂‖2 ≤ 1

m2
‖∇Fn(θ∗)‖2 +

2 logB1

mn
.

Noting that |aT (θ∗ − θu)| ≤
√
A2‖θ̂‖2 we find that:

p1,s = Pr
(
αT (θ − θu) ≥ αT (θ∗ − θu)− ε

)
≥ Pr

αT (θ − θu) ≥
√

2A2 logB1

nm
+
A2

m2
‖∇Fn(θ∗)‖2︸ ︷︷ ︸

=t

 ,

where we note that ‖Fn(θ∗)‖ in Proposition 1 is a 1-dimensional dLa√
nν

sub-Gaussian random
variable.

Now, since we know that the posterior over θ is γ(n+ 1)L-smooth and γmn-strongly log
concave, with mode θu, we know from [169], Theorem 3.8, that the marginal density of αT θ

is γ(n+1)L
A2 -smooth and γmn

A2 -strongly log-concave.
Thus we have that:

Pr
(
αT (θ − θu) ≥ t

)
≥
√

nm

(n+ 1)L
Pr(Z ≥ t)

where Z ∼ N
(

0, A2

γ(n+1)L

)
.

Now using a lower bound on the cumulative density function of a Gaussian random
variable, we find that, for σ2 = A2

γ(n+1)L
:

p1,s ≥
√

nm

2π(n+ 1)L


σt

t2+σ2 e
− t2

2σ2 : t > A√
γ(n+1)L

0.34 : t ≤ A√
γ(n+1)L

Thus we have that:

1

p1,s

≤
√

2π(n+ 1)L

nm


t2+σ2

σt
e
t2

2σ2 : t > A√
γ(n+1)L

1
0.34

: t ≤ A√
γ(n+1)L

≤
√

2π(n+ 1)L

nm


(
t
σ

+ 1
)
e
t2

2σ2 : t > A√
γ(n+1)L

3 : t ≤ A√
γ(n+1)L
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Taking the expectation of both sides with respect to the samples X1, ..., Xn, letting
κ = L/m, and using the fact that n+1

n
≤ 2 for n ≥ 1 we find that:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκE


√

2A2 logB1

nm
+ A2

m2‖∇Fn(θ∗)‖2

σ
+ 1

 e
t2

2σ2



Noting that
√

2A2 logB1

nm
+ A2

m2‖∇Fn(θ∗)T‖2 ≤ A
√

2 logB1

nm
+ A

m
‖∇Fn(θ∗)‖, and letting Y =

‖∇Fn(θ∗)‖ to simplify notation, this further simplifies:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκE

[(√
4γκ logB1 +

A

mσ
Y

)
e2γκ logB1+

(n+1)γL

2m2 Y 2

]

Using the Cauchy-Schwartz inequality we can further expand this upper bound and find
that:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

·

(√
4γκ logB1E

[
e

(n+1)γL

2m2 Y 2
]

+
A

mσ

√
E [Y 2]

√
E
[
e

(n+1)γL

m2 Y 2
])

Since Y is sub-Gaussian, Y 2 is sub-exponential such that:

E
[
eλY

2
]
≤ e and E

[
Y 2
]
≤ 2

dL2

νn

for λ < nν
4dL2 . Therefore, if

γ =
νm2

8dL3
,

simplifying the bound further gives:

E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

(√
4γκ logB1e+ 2

√
eγ(n+ 1)L

m2

dL2

νn

)

≤ 6
√
πκ+ 2

√
πκe

logB1
4 (

√
logB1

2
e+ 2

√
e),

where we have used the fact that κ, d ≥ 1 and the fact that we can assume without loss of
generality that L/ν ≥ 1. Thus, this bound simplifies to:
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E
[

1

p1,s

]
≤ 6
√
πκ+ 2

√
πκe2γκ logB1

(√
4γκ logB1e+ 2

√
eγ(n+ 1)L

m2

dL2

νn

)

≤ 2
√
πκ (B1)

1
4

(√
logB1

2
e+ 7

)
≤ 4
√
πκ (B1)

1
4

(√
logB1 + 4

)
≤ 64

√
κB1

where we used the fact that x1/4(
√

log x + 4) ≤ 8
√
x for x ≥ 1 and

√
π < 2 to simplify our

bound.

The last technical lemma upper bounds the two terms defined in Lemma 4.

Lemma 8. Suppose the likelihood, true reward distributions, and priors satisfy Assumptions

11-13, then for γa = νam2
a

8daL3
a
:

T−1∑
s=1

E
[

1

p1,s

− 1

]
≤ 64

√
L1

m1

B1

⌈
8eA2

1

m∆2
a

(D1 + 4σ1 log 2)

⌉
+ 1 (8.8)

T∑
s=1

E
[
I
(
pa,s >

1

T

)]
≤ 8eA2

a

m∆2
a

(Da + 2σa log(T )) (8.9)

Where for a ∈ A, Da is given by:

Da = logBa +
8d2

aL
3
a

m2
aνa

σa =
256daL

3
a

m2
aνa

+
8daL

2
a

maνa

Proof. We begin by showing that (8.8) holds. To do so, we first note that, by definition p1,s

satisfies:

p1,s = P(r1,t(s) > r̄1 − ε|Ft−1) (8.10)

= 1− P(r1,t(s)− r̄1 < −ε|Ft−1) (8.11)

≥ 1− P(|r1,t(s)− r̄1| > ε|Ft−1) (8.12)

≥ 1− P
θ∼µ(s)

1

(
‖θ − θ∗‖ > ε

A1

)
, (8.13)

where the last inequality follows from the fact that r1,t(s) and r̄1 are Aa-Lipschitz functions

of θ ∼ µ
(s)
1 and θ∗ respectively.
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We then use the fact that the posterior distribution P
θ∼µ(s)

1
satisfies the concentration

bound from Theorem 18 for δ ∈ (0, e−1/2). Therefore, we have that:

P
θ∼µ(s)

1

(
‖θ − θ∗‖ > ε

A1

)
≤ exp

(
− 1

2σ1

(
mnε2

2eA2
1

−D1

))
, (8.14)

where we use the constant D1 and σ1 defined in the proof of Theorem 18 to simplify notation.
We remark that this bound is not useful unless:

n >
2eA2

1

ε2m
D1.

Thus, choosing ε = (r̄1 − r̄a)/2 = ∆a/2 and ` as:

` =

⌈
8eA2

1

m∆2
a

(D1 + 2σ1 log 2)

⌉
.

we proceed as follows:

T−1∑
s=`

E
[

1

p1,s

− 1

]
≤

T−1∑
s=0

1

1− 1
2
δ(s)

− 1

≤
∫ ∞
s=1

1

1− 1
2
δ(s)

− 1ds,

where:
1

2
δ(s) =

1

2
exp

(
− 1

2σ1

(
mε2

2eA2
1

s

))
≤ e−1/2,∀s ≥ `

and the first inequality follows from our choice of ` and the second by upper bounding the
sum by an integral. To finish, we write δ(s) = exp(−c ∗ s), and solve the integral to find
that: ∫ ∞

s=1

1

1− 1
2
δ(s)

− 1ds =
log 2− log (2ec − 1)

c
+ 1 ≤ log 2

c
+ 1.

Plugging in for c gives:

T−1∑
s=1

E
[

1

p1,s

− 1

]
≤

`−1∑
s=1

E
[

1

p1,s

− 1

]
+

8eA2
1

m∆2
a

2σ1 log 2 + 1

≤ 64

√
L1

m1

B1

⌈
8eA2

1

m∆2
a

(D1 + 4σ1 log 2)

⌉
+ 1
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To show that (8.9) holds, we do a similar derivation as in (8.13):

T∑
s=1

E
[
I
(
pa,s >

1

T

)]
=

T∑
s=1

E
[
I
(
P(ra,t(s)− r̄a > ∆a − ε|Ft−1) >

1

T

)]

=
T∑
s=1

E
[
I
(
P(ra,t(s)− r̄a >

∆a

2
|Ft−1) >

1

T

)]

≤
T∑
s=1

E
[
I
(
P
(
|ra,t(s)− r̄a| >

∆a

2

∣∣∣∣Ft−1

)
>

1

T

)]

≤
T∑
s=1

E
[
I
(
P
θ∼µ(s)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
>

1

T

)]
.

Using the posterior concentration result from Theorem 18 we upper bound the number of
pulls n̄ of arm a such that for all n ≥ n̄:

P
θ∼µ(n)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
≤ 1

T
.

Since the posterior for arm a after n pulls of arm a has the same form as in (8.14), and
1/T ≤ e−0.5 we can choose n̄ as:

n̄ =
8eA2

a

m∆2
a

(Da + 2σa log(T )).

This completes the proof.

Given these lemmas the proof of Theorem 19 is straightforward. For clarity, we restate
the theorem below:

Theorem. When the likelihood and true reward distributions satisfy Assumptions 11-13

and γa = νam2
a

8daL3
a

we have that the expected regret after T > 0 rounds of Thompson sampling
with exact sampling satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
logBa + d2

aκ
3
a + daκ

3
a log(T )

)
+
√
κ1B1

CA2
1

m1∆a

(
1 + logB1 + d2

1κ
3
1

)
+ ∆a

Where C is a universal constant independent of problem-dependent parameters.

Proof. We invoke Lemmas 6 and 7, to find that:

E [Ta(T )] ≤
T−1∑
s=1

E
[

1

p1,s

− 1

]
︸ ︷︷ ︸

(I)

+
T∑
s=1

E
[
I
(

1− pa,s >
1

T

)]
︸ ︷︷ ︸

(II)

(8.15)
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Now, invoking Lemma 8, we use the upper bounds for terms (I) and (II) in the regret
decomposition and expanding Da and D1 to give:

E[R(T )] ≤
∑
a>1

8eA2
a

ma∆a

(
logBa + 8daκ

3
a (da + 66 log(T ))

)
+
√
κ1B1

512eA2
a

m1∆2
a

(
1 + logB1 + 8d1κ

3
1 (d1 + 132 log(2))

)
+ ∆a

≤
∑
a>1

CA2
a

ma∆a

(
logBa + d2

aκ
3
a + daκ

3
a log(T )

)
+
√
κ1B1

CA2
1

m1∆a

(
logB1 + d2

1κ
3
1

)
+ ∆a.

8.3 Chapter Summary

In this chapter, we used our posterior contraction rates to get sharp, finite-time regret
bounds for exact Thompson sampling multi-dimensional log-concave families with arbitrary
log-concave priors. This generalizes the result of [86] to a more general class or priors and
higher dimensional parametric families. In the next section we build upon these results to
derive the first provably optimal approximate Thompson Sampling algorithm.
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Chapter 9

Approximate Thompson Sampling

In this Chapter we present two approximate sampling schemes for generating samples from
approximations of the posteriors at each round. For both, we give the values of the hyper-
parameters and computation time needed to guarantee an approximation error which does
not result in a drastic change in the regret of the Thompson sampling algorithm.

Before doing so, however, we first present a simple counterexample to illustrate that in
the worst case, Thompson sampling with approximate samples incurs an irreducible regret
dependent on the error between the posterior and the approximation to the posterior. In par-
ticular, by allowing the approximation error to decrease over time, we extract a relationship
between the order of the regret and the level of approximation.

Example 6. Consider a Gaussian bandit instance of two arms A = {1, 2} having mean
rewards r̄1 and r̄2 and known unit variances. Further assume that the unknown parameters
are the means of the distributions such that θ∗a = r̄a, and consider the case when the learner
makes use of a zero-mean, unit-variance Gaussian prior over θa for a = 1, 2. Under these as-
sumptions, after Xa,1, · · · , Xa,n samples, the posterior updates satisfy the following formulae
[131]:

Pa,n(θa) ∝ N
(

n

n+ 1
,

1

n+ 1

)
.

Let r̄1 = 1 and r̄2 = 0 such that Arm 1 is optimal. We now show there exists an approximate
posterior P̃a,t of arm 2, satisfying TV(P̃2,t, P2,t) ≤ n−α and such that if samples from P1,t

and P̃2,t were to be used by a Thompson sampling algorithm, its regret would satisfy: R(T ) =
Ω(T 1−α).

We substantiate this claim by a simple construction. Let P̃a,t be (1 − n−α)Pa,t + n−αδ2,
where δ2 denotes a delta mass centered at 2. P̃a,t is a mixture distribution between the true
posterior and a point mass.

Clearly, for all t ≥ C for some universal constant C, with probability at least n−α the
posterior sample from arm 2 will be larger than the sample from arm 1. Since t > n, t−α <
n−α for α > 0 and since the suboptimality gap equals 1, we conclude R(T ) = Ω(

∑T
t=1 t

−α).
Thus, to incur logarithmic regret, one needs TV (P̃2,t, P2,t) = Ω

(
1
n

)
.
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Example 6 extends upon the insights in [150] that constant approximation error can
incur linear regret to highlight the fact that to achieve logarithmic regret, the total variation
distance between the approximation of the posterior µ̂

(n)
a and the true posterior µ

(n)
a must

decrease as samples are collected. In particular it illustrates that the rate at which the
approximation error decreases is directly linked to the resulting regret bound.

To generate samples from approximations to posteriors we propose two Langevin Markov
Chain Monte Carlo (MCMC) algorithms. These algorithms can be seen as discretizations of
the continuous-time Langevin dynamics, the stochastic process represented by the following
stochastic differential equation :

dθt = −∇U(θt) dt+
√

2 dBt.

We first encountered this continuous time Langevin dynamics in Eq. (7.1), where we have set
U(θ) = −γa (nFn,a(θ) + log πa(θ)) = −γa

∑n
i=1 log pa (xa,i|θ)− γa log πa(θ) to prove posterior

concentration of µ
(n)
a [γa].

One important feature of the Langevin dynamics is that its invariant distribution is pro-
portional to e−U(θ). We can therefore also use it to generate samples distributed according to
the unscaled posterior distribution µ

(n)
a . Via letting U(θ) = −

∑n
i=1 log pa (xa,i|θ)− log πa(θ),

we obtain continuous time dynamics which generates trajectories that converge towards the
posterior distribution µ

(n)
a exponentially fast.

To obtain an implementable algorithm, we apply Euler-Maruyama discretization to the
Langevin dynamics and arrive at the following ULA update:

θ(i+1)h(n) ∼ N
(
θih(n) − h(n)∇U(θih(n)), 2h(n)I

)
.

Since ∇U(θ) = −
∑n

i=1∇ log pa (xa,i|θ) − ∇ log πa(θ) in the above update rule, the compu-
tation complexity within each iteration of the Langevin algorithm grows with the number
of data being collected, n. To cope with the growing number of terms in ∇U(θ), we take

a stochastic gradient approach and define Û(θ) = − n
|S|
∑

xk∈S ∇ log pa(xk|θ) − ∇ log πa(θ),

where S is a subset of the dataset {xa,1, · · · , xa,n}. For simplicity, we form S via subsam-

pling uniformly from {xa,1, · · · , xa,n}. Substituting the stochastic gradient ∇Û for the full
gradient ∇U in the above update rule results in the SGLD algorithm.

9.1 Convergence Rates for Langevin Algorithms

Given our intuition from Example 6 we first propose an unadjusted Langevin algorithm
(ULA) [48] which generates samples from an approximate posterior which monotonically ap-
proaches the true posterior as data is collected and provably maintains the regret guarantee
of exact Thompson sampling. Important to this effort, we demonstrate that the number
of steps inside the ULA procedure does not scale with the time horizon, though the num-
ber of gradient evaluations scale with the number of times an arm has been pulled. To
address this, we propose the stochastic gradient Langevin dynamics (SGLD) [192] variant
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of ULA which has appealing computational benefits: under slightly stronger assumptions,
SGLD takes constant number of iterations as well as constant number of data samples in the
stochastic gradient estimate while maintaining the order-optimal regret of the exact Thomp-
son sampling algorithm. Once again, for clarity of exposition we defer detailed proofs to the
end of the chapter in Section 9.4.

Algorithm 3 (Stochastic Gradient) Langevin Algorithm for Arm a

Input : Data {xa,1, · · · , xa,n};
MCMC sample θa,Nh(n−1) from last round

3 Set θ0 = θa,t−1 for a ∈ A
for i = 0, 1, · · ·N do

4 Uniformly subsample S ⊆ {xa,1, · · · , xa,n}.
Compute ∇Û(θih(n)) = − n

|S|
∑

xk∈S ∇ log pa(xk|θih(n))−∇ log πa(θih(n)).

Sample θ(i+1)h(n) ∼ N
(
θih(n) − h(n)∇Û(θih(n)), 2h(n)I

)
.

Output: θa,Nh(n) = θNh(n) and θa,t ∼ N
(
θNh(n) , 1

nLaγa
I
)

As described in Algorithm 3, in each round t of the bandit algorithm we run the (stochas-
tic gradient) Langevin algorithm for N steps to generate a sample of desirable quality for
each arm. In particular, we first run a Langevin MCMC algorithm to generate a sample from
an approximation to the unscaled posterior. To achieve the scaling with γa that we require
for the analysis of the regret, we add zero-mean Gaussian noise with variance 1

γaLan
to this

sample. The distribution of the resulting sample has the same characteristics as those from
the scaled posterior analyzed in Sec. 8.

Given Assumptions 14 and 13, we prove that running ULA with exact gradients provides
appealing convergence properties. In particular, for a number of iterations independent of
the number of rounds t or the number of samples from an arm, n = Ta(t), ULA converges to
an accuracy in Wasserstein-p distance which maintains the logarithmic regret of the exact
algorithm (for more information on such metrics see Villani [189]). We note parenthetically
that working with the Wasserstein-p distance provides us with a tighter MCMC convergence
analysis (than with the total variation distance used in Example 6) that helps in conjunction
with the regret bounds. The proofs of the ULA and SGLD convergence require a uniform
strong log-concavity and Lipschitz smoothness condition of the family pa(X|θa) over the
parameter θa, a strengthening of Assumption 11.

Assumption 14 (Assumption on the family pa(X|θa)— strengthened for approximate sam-
pling). Assume that log pa(x|θa) is La-smooth and ma-strongly concave over the parameter
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θa:

− log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
ma

2
‖θa − θ′a‖2 ≤ − log pa(x|θa)

≤ − log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
La
2
‖θa − θ′a‖2, ∀θa, θ′a ∈ Rda , x ∈ R.

This assumption allows us to prove a tight bound on the approximation error of ULA in
the following theorem.

Theorem 20 (ULA Convergence). Suppose that Assumptions 12- 14 hold. We take step size

h(n) = 1
32

ma

n(La+ 1
n
La)

2 = O
(

1
nLaκa

)
and number of steps N = 640

(La+ 1
n
La)

2

m2
a

= O (κ2
a) in Algo-

rithm 3. If the posterior distribution satisfy the concentration inequality that E
θ∼µ(n)

a
[‖θ − θ∗‖p]

1
p ≤

1√
n
D̃, then for any positive even integer p, we have convergence of the ULA algorithm in Wp

distance to the posterior µ
(n)
a : Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃, ∀D̃ ≥

√
32
ma
dap.

Although the number of iterations required for ULA to converge is constant with respect
to the time horizon t, the number of gradient computations over the likelihood function within
each iteration is Ta(t). To tackle this issue, we sub-sample the data at each iteration and use a
stochastic gradient MCMC method [106]. To be able to get convergence guarantees despite
the larger variance this method incurs, we make a slightly stronger Lipschitz smoothness
assumption on the parametric family of likelihoods.

Assumption 15 (Joint Lipschitz smoothness of the family log pa(X|θa): for SGLD). Assume
a joint Lipschitz smoothness condition, which strengthens Assumptions 14 and 12 to impose
the Lipschitz smoothness on the entire bivariate function log pa(x; θ):1

‖∇θ log pa(x|θa)−∇θ log pa(x
′|θa)‖ ≤ La ‖θa − θ′a‖+ L∗a ‖x− x′‖ , ∀θa, θ′a ∈ Rda , x, x′ ∈ R.

Under this stronger assumption, we prove the fast convergence of the SGLD method in
the following Theorem 21. Specifically, we demonstrate that for a suitable choice of stepsize
h(n), number of iterations N , and size of the minibatch k = |S|, samples generated by
Algorithm 3 are distributed sufficiently close to the true posterior to ensure the optimal
regret guarantee. By examining the number of iterations, N , and the size of the minibatch,
k, we confirm that the algorithmic and sample complexity of our method do not grow with
the number of rounds t, as advertised.

Theorem 21 (SGLD Convergence). Suppose that Assumptions 12- 14 hold, and further
assume that the family log pa(x; θ), prior distributions, and that the true reward distributions

satisfy Assumption 15. If we take the batch size k = O (κ2
a), step size h(n) = O

(
1
n

1
κaLa

)
and

1For simplicity of notation, we let Lipschitz constants L∗
a = La in the main paper.
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number of steps N = O (κ2
a) in the SGLD algorithm, then for δ1 ∈ (0, 1), with probability

at least 1 − δ1 with respect to Xa,1, ...Xa,n, we have convergence of the SGLD algorithm in
the Wasserstein-p distance. In particular, between the n-th and the (n+ 1)-th pull to arm a,

samples θa,t approximately follow the posterior µ
(n)
a :

Wp

(
µ̂(n)
a , µ(n)

a

)
≤
√

8

nma

(
da + logBa +

(
32 + 8daκ

2
a

)
p
) 1

2 ,

where µ̂
(n)
a is the probability measure associated with any of the sample(s) θ

a,Nh
(n)
a

between

the n-th and the (n+ 1)-th pull of arm a.

We remark that we are able to keep the number of iterations, N , for both algorithms
constant by initializing the current round of the approximate sampling algorithm using the
output of the last round of the Langevin MCMC algorithm. If we initialized the algorithm
independently from the prior, we would need O(log Ta(t)) iterations to achieve this result,
which would in turn yield a Thompson sampling algorithm for which the computational com-
plexity grows with the time horizon. We note that this warm-starting procedure complicates
the regret proof for the approximate Thompson sampling algorithms since the samples used
by Thompson sampling are no longer independent.

By scrutinizing the stepsize h(n) and the accuracy level of the sample distribution in

the Wasserstein distance Wp

(
µ̂

(n)
a , µ

(n)
a

)
, we note that we are taking smaller steps to get

increasingly accurate MCMC samples as more data are being collected. This is due to the
need of decreasing the error incurred by discretizing the continuous Langevin dynamics and
stochastically estimating the gradient of the log posterior. However, the number of iterations
and subsampled gradients are not increasing since the concentration of the posterior provides
us with stronger contraction of the continuous Langevin dynamics and requires less work
because µ

(n)
a and µ

(n+1)
a are closer.

We restate Theorem 21 and give explicit values of the hyper-parameters in Theorem 23
in the appendix, but remark that the proof of this theorem is novel in the MCMC literature.
It builds upon and strengthens [49] by taking into account the discretization and stochastic
gradient error to achieve strong convergence guarantees in the Wasserstein-p distance up
to any finite order p. Other related works on the convergence of ULA can provide upper
bounds in the Wassertein distances up to the second order (i.e., for p ≤ 2) [see, e.g., 38, 42,
107, 188]. This bound in the Wasserstein-p distance for arbitrarily large p is necessary in
guaranteeing the following Lemma 9, a similar concentration result as in Theorem 18 for the
approximate samples θa,t ∼ µ̄

(n)
a [γa].

Lemma 9. Suppose that Assumptions 12- 14 hold, and further assume that the family
log pa(x; θ), prior distributions, and that the true reward distributions satisfy Assumption 15,
then for δ ∈ (0, e−1/2), the sample θa,t resulting from running the (stochastic gradient) ULA
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with N steps, a step size of h(n), and a batch size k as defined in Theorem 21 satisfies:

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
36e

man

(
da + logBa + 2

(
σa +

da
18κaγa

)
log 1/δ

))
< δ.

where σa = 16 + 4daκ
2
a.

9.2 Regret of Approximate Thompson Sampling with

Langevin Algorithms

Given that the concentration results of the samples from ULA and SGLD have the same form
as that of exact Thompson sampling, we now show that approximate Thompson sampling
achieves the same finite-time optimal regret guarantees (up to constant factors) as the exact
Thompson sampling algorithm. To show this, we require an analgous result to Lemma 5 on
the anti-concentration properties of the approximations to the scaled posteriors:

Lemma 10. Suppose that Assumptions 12- 14 hold, and further assume that the family
log pa(x; θ), prior distributions, and that the true reward distributions satisfy Assumption 15,

then, if γ1 = O
(

1
d1κ3

1

)
, for all n = 1, ..., T all samples from the the (stochastic gradient) ULA

method with the hyperparameters and runtime as described in Theorem 21 satisfy:

E
[

1

p1,n

]
≤ C

√
B1,

where C is a universal constant independent of problem-dependent parameters.

The proof of Lemma 10 is similar to that of Lemma 5, but we are able to save a factor of√
κ1 due to the fact that the last step of the approximate sampling scheme samples θa,t from

a Gaussian distribution as opposed to a strongly-log concave distribution which we must
approximate with a Gaussian.

Given this lemma and our concentration results presented in the previous Chapter, the
proof of logarithmic regret is essentially the same as that of the regret for exact Thompson
sampling. However, more care has to be taken to deal with the fact that the samples
from the approximate posteriors are no longer independent due to the fact that we warm-
start our proposed sampling algorithms using previous samples. We cope with this issue by
constructing concentration rates (of a similar form as in Lemma 9) on the distributions of
the samples given the initial sample is sufficiently well behaved (see Lemmas 17 and 18).
We then show that this happens with sufficiently high probability to maintain similar upper
bounds on terms I and II from Lemma 4 in Lemma 19, which in turn allows us to prove
the following Theorem in Appendix 9.4.
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Theorem 22 (Regret of Thompson sampling with a (stochastic gradient) Langevin algo-
rithm). Suppose that Assumptions 12- 14 hold, and further assume that the family log pa(x; θ),
prior distributions, and that the true reward distributions satisfy Assumption 15, then the
expected regret after T > 0 rounds of Thompson sampling with the (stochastic gradient) ULA
method with the hyper-parameters and runtime as described in Theorem 21 satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
logBa + da + d2

aκ
2
a log T

)
+
√
B1

CA2
1

m1∆a

(
1 + logB1 + d2

1κ
2
1 + d1κ

2
1 log T

)
+ 3∆a,

where C is a universal constant that is independent of problem dependent parameter and the

scale parameter γa = O
(

1
daκ3

a

)
.

We note that Theorem 21 allows for SGLD to be implemented with a constant number of
steps per iteration and a constant batch size with only the step size decreasing linearly with
the number of samples. Combining this with our regret guarantee shows that an anytime
algorithm for Thompson sampling with approximate samples can indeed achieve logarithmic
regret.

Further, we remark that this bound exhibits a worse dependence on the quality of
the prior on the optimal arm than in the exact sampling regime. In particular, we pay
a d2

1

√
B1 log T in this regret bound as opposed to d2

1

√
B1. Our regret bound in the approx-

imate sampling regime does exhibit a slightly better dependence on the condition number
of the family. This, we believe, is an artifact of our analysis and is due to the fact that a
lower bound on the exact posterior was needed to invoke Gaussian anti-concentration results
which were not needed in the approximate sampling regime due to the design of the proposed
sampling algorithm. We empirically validate these results in numerical experiments at the
end of the chapter.

9.3 Detailed Proofs of for the Convergence of

Langevin Algorithms

In this section we supply the proofs of concentration for approximate samples from both the
ULA and SGLD MCMC methods. In particular we quantify the computation complexity of
generating samples which are distributed close enough to the posterior. To do so, we require
a slightly stronger assumption on the family of likelihoods for the MCMC sampling methods
to converge.

Assumption 16 (Assumption on the family pa(X|θa): strengthened for approximate sam-
pling). Assume that log pa(x|θa) is La-smooth and ma-strongly concave over the parameter
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θa:

− log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
ma

2
‖θa − θ′a‖2 ≤ − log pa(x|θa)

≤ − log pa(x|θ′a)−∇θ log pa(x|θ′a)> (θa − θ′a) +
La
2
‖θa − θ′a‖2, ∀θa, θ′a ∈ Rda , x ∈ R.

Before presenting our proofs, we first include a table summarizing the notation we use
within Algorithm 3.

Symbol Meaning

N number of steps of the approximate sampling algorithm
h(n) step size of the approximate sampling algorithm after n samples from the arm
θih(n) MCMC sample generated within i-th iteration of Algorithm 3
µih(n) measure of θih(n)

k batch-size of the stochastic gradient Langevin algorithm

Convergence of the Unadjusted Langevin Algorithm (ULA)

We first prove tight bounds on the approximation error of ULA. If function log pa(x; θ)
satisfies the Lipschitz smoothness condition in Assumption 11, then we can leverage gra-
dient based MCMC algorithms to generate samples with convergence guarantees in the
p-Wasserstein distance. As stated in Algorithm 3, we initialize ULA in the n-th round from
the last iterate in the (n− 1)-th round. Given this, we prove Theorem 20, which is restated
below.

Theorem (ULA Convergence). Assume that the likelihood log pa(x; θ) and prior πa satisfy

Assumption 14 and Assumption 13. We take step size h(n) = 1
32

ma

n(La+ 1
n
La)

2 = O
(

1
nLaκa

)
and

number of steps N = 640
(La+ 1

n
La)

2

m2
a

= O (κ2
a) in Algorithm 3. If the posterior distribution

satisfy the concentration inequality that E
θ∼µ(n)

a
[‖θ − θ∗‖p]

1
p ≤ 1√

n
D̃, then for any positive

even integer p, we have convergence of the ULA algorithm in Wp distance to the posterior

µ
(n)
a : Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃, ∀D̃ ≥

√
32
ma
dap.

Proof of Theorem 20. We use induction to prove this theorem.

• For n = 1, we initialize at θ0 which is within a
√

da
ma

-ball from the maximum of

the target distribution, θ∗p = arg max pa(θ|x1), where pa(θ|x1) ∝ pa(x1|θ)πa(θ) and
negative log pa(θ|x1) is ma-strongly convex and (La + La)-Lipschitz smooth. Invoking

Lemma 16, we obtain that for dµ
(1)
a = pa(θ|x1)dθ, Wasserstein-p distance between the

target distribution and the point mass at its mode: Wp

(
µ

(1)
a , δ

(
θ∗p
))
≤ 5

√
1
ma
dap.

Therefore, Wp

(
µ

(1)
a , δ (θ0)

)
≤ Wp

(
µ

(1)
a , δ

(
θ∗p
))

+
∥∥θ0 − θ∗p

∥∥ ≤ 6
√

1
ma
dap. We then
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invoke Lemma 12, with initial condition µ0 = δ
(
θ∗p
)
, to obtain the convergence in the

N -th iteration of Algorithm 3 after the first pull to arm a:

W p
p

(
µNh(1) , µ(1)

a

)
≤
(

1− ma

8
h(1)
)p·N

W p
p

(
δ (θ0) , µ(1)

a

)
+ 25p (La + La)

p

mp
a

(dap)
p/2 (h(1)

)p/2
,

where we have substituted in the strong convexity ma for m̂ and the Lipschitz smooth-
ness (La + La) for L̂. Plugging in the step size,

h(1) =
1

32

ma

(La + La)
2 ≤ min

{
ma

32 (La + La)
2 ,

1

1024

m2
a

(La + La)
2

D̃2

dap

}
,

and number of steps N = 20
ma

1
h(1) = 640 (La+La)2

m2
a

, W p
p

(
µ̂

(1)
a , µ

(1)
a

)
= W p

p

(
µNh(1) , µ

(1)
a

)
≤

2D̃p.

• Assume that after the (n− 1)-th pull and before the n-th pull to the arm a, the ULA

algorithm guarantees that Wp

(
µ̂

(n−1)
a , µ

(n−1)
a

)
≤ 2√

n−1
D̃. We now prove that after the

n-th pull and before the (n+ 1)-th pull, it is guaranteed that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃.

We first obtain from the assumed posterior concentration inequality:

Wp(µ
(n)
a , δ (θ∗)) ≤ E

θ∼µ(n)
a

[‖θ − θ∗‖p]
1
p ≤ 1√

n
D̃. (9.1)

Therefore, for n ≥ 2,

Wp

(
µ(n)
a , µ(n−1)

a

)
≤ Wp(µ

(n)
a , δ (θ∗)) +Wp(µ

(n−1)
a , δ (θ∗)) ≤ 3√

n
D̃.

We combine this bound with the induction hypothesis and obtain that

Wp

(
µ(n)
a , µ̂(n−1)

a

)
≤ Wp

(
µ(n)
a , µ(n−1)

a

)
+Wp

(
µ(n−1)
a , µ̂(n−1)

a

)
≤ 8√

n
D̃.

From Lemma 12, we know that for m̂ = n · ma and L̂ = n · La + La, with initial
condition µ0 = µ̂

(n−1)
a , with accurate gradient,

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
µ̂(n−1)
a , µ(n)

a

)
+ 25p L̂

p

m̂p
(dap)

p/2 (h(n)
)p/2

.

If we take step size h(n) = 1
32

m̂

L̂2
≤ min

{
m̂

32L̂2
, 1

1024
1
n
m̂2

L̂2

D̃2

dap

}
and number of steps taken

in the ULA algorithm from (n− 1)-th pull until the n-th pull to be: N̂ ≥ 20
m̂

1
h(n) ,

W p
p

(
µ̂(n)
a , µ(n)

a

)
= W p

p

(
µN̂h(n) , µ

(n)
a

)
(9.2)

≤
(

1− m̂

8
h(n)

)p·N̂
8pD̃p

np/2
+ 25p L̂

p

m̂p
(dap)

p/2 (h(n)
)p/2

(9.3)

≤ 2D̃p

np/2
, (9.4)
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leading to the result that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃.

Since at least one round would have passed from the (n − 1)-th pull to the n-th pull

to arm a, taking number of steps in each round t to be N = 20
m̂

1
h(n) = 640

(La+ 1
n
La)

2

m2
a

suffices.

Therefore, N = 640
(La+ 1

n
La)

2

m2
a

= O
(
L2
a

m2
a

)
.

Convergence of the stochastic gradient Langevin algorithm
(SGLD)

If log pa(x; θ) satisfies a stronger joint Lipschitz smoothness condition in Assumption 15,
similar guarantees can be obtained for stochastic gradient MCMC algorithms.

Theorem 23 (SGLD Convergence). Assume that the family log pa(x; θ) and prior πa satisfy
Assumption 14, Assumption 13, and Assumption 15. We take number of data samples

in the stochastic gradient estimate k = 32 (L∗a)2

maνa
= 32κ2

a, step size h(n) = 1
32

ma

n(La+ 1
n
La)

2 =

O
(

1
nLaκa

)
and number of steps N = 1280

(La+ 1
n
La)

2

m2
a

= O (κ2
a) in Algorithm 3. If the posterior

distribution satisfy the concentration inequality that E
θ∼µ(n)

a
[‖θ − θ∗‖p]

1
p ≤ 1√

n
D̃, then for

any positive even integer p, we have convergence of the ULA algorithm in Wp distance to the

posterior µ
(n)
a : Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃, ∀D̃ ≥

√
32
ma
dap.

Proof of Theorem 23. Similar to Theorem 20, we use induction to prove this theorem. After

the first pull to arm a, we take the same 640
(La+ 1

n
La)

2

m2
a

number of steps to converge to

W p
p

(
µ̂

(1)
a , µ

(1)
a

)
≤ 2D̃p.

Assume that after the (n − 1)-th pull and before the n-th pull to the arm a, the SGLD

algorithm guarantees that Wp

(
µ̂

(n−1)
a , µ

(n−1)
a

)
≤ 2√

n−1
D̃. We prove that after the n-th pull

and before the (n + 1)-th pull, it is guaranteed that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃. Following the

proof of Theorem 20, we combine the assumed posterior concentration inequality and the
induction hypothesis to obtain:

Wp

(
µ(n)
a , µ̂(n−1)

a

)
≤ Wp

(
µ(n)
a , µ(n−1)

a

)
+Wp

(
µ(n−1)
a , µ̂(n−1)

a

)
≤ 8√

n
D̃.

Denote function U as the negative log-posterior density over parameter θ. From Lemma 12,
we know that for m̂ = n ·ma and L̂ = n · La + La, with initial condition that µ0 = µ̂

(n−1)
a ,

if the difference between the stochastic gradient ∇Û and the exact one ∇U is bounded as
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E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p ∣∣θ] ≤ ∆p, then

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
µ̂(n−1)
a , µ(n)

a

)
+ 25p L̂

p

m̂p
(dap)

p/2 (h(n)
)p/2

+ 22p+3 ∆p

m̂p
.

We demonstrate in the following Lemma 11 that

∆p ≤ 2
np/2

kp/2

(√
dapL

∗
a√

νa

)p
.

Lemma 11. Denote Û as the stochastic estimator of U . Then for stochastic gradient esti-
mate with k data points,

E
[∥∥∥∇Û(θ)−∇U(θ)

∥∥∥p ∣∣θ] ≤ 2
np/2

kp/2

(√
dapL

∗
a√

νa

)p
.

If we take the number of samples in the stochastic gradient estimator k = 32 (L∗a)2

maνa
, then

∆p ≤ 2
32p/2

(n ·ma)
p/2 · (p · da)p/2 ≤ 2−2p−5 m̂pD̃p

np/2
for any p ≥ 2. Consequently, 22p+3 ∆p

m̂p
≤

1
4
D̃p

np/2
.

If we take step size h(n) = 1
32

m̂

L̂2
≤ min

{
m̂

32L̂2
, 1

1024
1
n
m̂2

L̂2

D̃2

dap

}
and number of steps taken in

the SGLD algorithm from (n− 1)-th pull till n-th pull to be: N̂ ≥ 40
m̂

1
h(n) ,

W p
p

(
µ̂(n)
a , µ(n)

a

)
= W p

p

(
µN̂h(n) , µ

(n)
a

)
≤
(

1− m̂

8
h(n)

)p·N̂
8pD̃p

np/2
+ 25p L̂

p

m̂p
(dap)

p/2 (h(n)
)p/2

+ 22p+3 ∆p

m̂p

≤ 2D̃p

np/2
,

leading to the result that Wp

(
µ̂

(n)
a , µ

(n)
a

)
≤ 2√

n
D̃. Since at least one round would have past

from the (n − 1)-th pull to the n-th pull to arm a, taking number of steps in each round t
to be N = 40

m̂
1

h(n) suffices.

Therefore, N = 1280
(La+ 1

n
La)

2

m2
a

= O
(
L2
a

m2
a

)
.

Proof of Lemma 11. We first develop the expression:

E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p] = npE

[∥∥∥∥∥ 1

n

n∑
i=1

∇ log p(xi|θa)−
1

k

k∑
j=1

∇ log p(xj|θa)

∥∥∥∥∥
p]

=
np

kp
E

[∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj|θa)

)∥∥∥∥∥
p]
.
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We note that

∇ log p(xj|θa)−
1

n

n∑
i=1

∇ log p(xi|θa) =
1

n

∑
i 6=j

(∇ log p(xj|θa)−∇ log p(xi|θa)) .

By the joint Lipschitz smoothness Assumption 15, we know that ∇ log p(x|θa) is a Lipschitz
function of x:

‖∇ log p(xj|θa)−∇ log p(xi|θa)‖ ≤ L∗a ‖xj − xi‖ .

On the other hand, the data x follows the true distribution p(x; θ∗), which by Assumption 12
is νa-strongly log-concave. Applying Theorem 3.16 in [191], we obtain that

(∇ log p(xj|θa)−∇ log p(xi|θa))

is 2L∗a√
νa

-sub-Gaussian. Leveraging the Azuma-Hoeffding inequality for martingale difference

sequences [191], we obtain that sum of the (n− 1) sub-Gaussian random variables:(
∇ log p(xj|θa)−

1

n

n∑
i=1

∇ log p(xi|θa)

)
,

is 2
√
n−1L∗a
n
√
νa

-sub-Gaussian. In the same vein,
(∑k

j=1

(
1
n

∑n
i=1∇ log p(xi|θa)−∇ log p(xj|θa)

))
is

2
√
k(n−1)L∗a
n
√
νa

-sub-Gaussian. We then invoke the
2
√
dak(n−1)L∗a
n
√
νa

-sub-Gaussianity of∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj|θa)

)∥∥∥∥∥
and have

E

[∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj|θa)

)∥∥∥∥∥
p]
≤ 2

(
2
√
dak(n− 1)pL∗a
en
√
νa

)p

.

Therefore,

E
[∥∥∥∇U(θ)−∇Û(θ)

∥∥∥p] =
np

kp
E

[∥∥∥∥∥
k∑
j=1

(
1

n

n∑
i=1

∇ log p(xi|θa)−∇ log p(xj|θa)

)∥∥∥∥∥
p]

≤ 2
np/2

kp/2

(
2
√
dapL

∗
a

e
√
νa

)p
≤ 2

np/2

kp/2

(√
dapL

∗
a√

νa

)p
.
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Concentration of Approximate Samples from the (Stochastic
Gradient) Langevin Algorithm

In this section, we examine convergence of the (stochastic gradient) Langevin algorithm to
the posterior distribution over a-th arm at the n-th round. Since only the a-th arm and n-th
round are considered, we drop these two indices in the notation whenever suitable. We also
define some notation that will only be used within this subsection. For example, we focus
on the θ parameter and denote the posterior measure dµ

(n)
a (x; θ) = dµ∗(θ) = exp (−U(θ)) dθ

as the target distribution.

Symbol Meaning

µ∗ posterior distribution, µna
U potential (i.e., negative log posterior density)
θ∗U minimum of the potential U (or mode of the posterior µ∗)
θt interpolation between θih(n) and θ(i+1)h(n) , for t ∈ [ih(n), (i+ 1)h(n)]
µt measure associated with θt

θ∗t
an auxiliary stochastic process with initial distribution µ∗

which follows dynamics (9.9)
m̂ strong convexity of the potential U , nma

L̂ Lipschitz smoothness of the potential U , nLa + La

We also formally define the Wasserstein-p distance used in the main text. Given a pair
of distributions µ and ν on Rd, a coupling γ is a joint distribution over the product space
Rd × Rd that has µ and ν as its marginal distributions. We let Γ(µ, ν) denote the space of
all possible couplings of µ and ν. With this notation, the Wasserstein-p distance is given by

W p(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd×Rd

‖x− y‖p dγ(x, y). (9.5)

We use the following (stochastic gradient) Langevin algorithm to generate approximate

samples from the posterior distribution µ
(n)
a (θ) at n-th round. For i = 0, · · · , T ,

θ(i+1)h(n) ∼ N
(
θih(n) − h(n)∇Û(θih(n)), 2h(n)I

)
, (9.6)

where ∇Û(θih(n)) is a stochastic estimate of ∇U(θih(n)). We prove in the following Lemma 12
the convergence of this algorithm within n-th round.

Lemma 12. Assume that the potential U is m̂-strongly convex and L̂-Lipschitz smooth. Fur-
ther assume that the p-th moment between the true gradient and the stochastic one satisfies:

E
[∥∥∥∇U(θih(n))−∇Û(θih(n))

∥∥∥p ∣∣∣θih(n)

]
≤ ∆p.
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Then at i-th step, for µih(n) following the (stochastic gradient) Langevin algorithm with h ≤
m̂

32L̂2
,

W p
p (µih(n) , µ∗) ≤

(
1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗) + 25p L̂
p

m̂p
(dp)p/2

(
h(n)

)p/2
+ 22p+3 ∆p

m̂p
. (9.7)

Remark 8. When ∆p = 0, Lemma 12 provides convergence rate of the unadjusted Langevin
algorithm (ULA) with the exact gradient.

Proof of Lemma 12. We first interpolate a continuous time stochastic process, θt, between
θih(n) and θ(i+1)h(n) . For t ∈ [ih(n), (i+ 1)h(n)],

dθt = ∇Û(θih(n))dt+
√

2dBt, (9.8)

where Bt is standard Brownian motion. This process connects θih(n) and θ(i+1)h(n) and ap-
proximates the following stochastic differential equation which maintains the exact posterior
distribution:

dθ∗t = ∇U(θ∗t )dt+
√

2dBt. (9.9)

For a θ∗t initialized from µ∗ and following equation (9.9), θ∗t will always have distribution µ∗.
We therefore design a coupling between the two processes: θt and θ∗t , where θt follows

equation (9.8) (and thereby interpolates Algorithm 3) and θ∗t initializes from µ∗ and follows
equation (9.9) (and thereby preserves µ∗). By studying the difference between the two
processes, we will obtain the convergence rate in terms of the Wasserstein-p distance.

For t = ih(n), we let θih(n) to couple optimally with θ∗
ih(n) , so that for(

θih(n) , θ∗ih(n)

)
∼ γ∗ ∈ Γopt

(
µih(n) , µ∗ih(n)

)
,

E
[∥∥θih(n) − θ∗

ih(n)

∥∥p] = W p
p (µih(n) , µ∗). For t ∈ [ih(n), (i + 1)h(n)], we choose a synchronous

coupling γ̄
(
θt, θ

∗
t |θih(n) , θ∗

ih(n)

)
∈ Γ (µt(θt|θih(n)), µ∗t (θ

∗
t |θih(n))) for the laws of θt and θ∗t . (A

synchonous coupling simply means that we use the same Brownian motion Bt in defining θt
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and θ∗t .) We then obtain that for any pair (θt, θ
∗
t ) ∼ γ̄,

d‖θt − θ∗t ‖p

dt
= ‖θt − θ∗t ‖p−2

〈
θt − θ∗t ,

dθt
dt
− dθ∗t

dt

〉
= p‖θt − θ∗t ‖p−2 〈θt − θ∗t ,−∇U(θt) +∇U(θ∗t )〉

+ p‖θt − θ∗t ‖p−2
〈
θt − θ∗t ,∇U(θt)−∇Û(θih(n))

〉
≤ −pm̂ ‖θt − θ∗t ‖

p + p ‖θt − θ∗t ‖
p−1
∥∥∥∇U(θt)−∇Û(θih(n))

∥∥∥ (9.10)

≤ −pm̂ ‖θt − θ∗t ‖
p (9.11)

+ p

p− 1

p

(
pm̂

2(p− 1)

)
‖θt − θ∗t ‖

p +
1

p

1(
pm̂

2(p−1)

)p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p


(9.12)

≤ −pm̂
2
‖θt − θ∗t ‖

p +
2p−1

m̂p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p , (9.13)

where equation (9.12) follows from Young’s inequality.
Equivalently, we can obtain

de
pm̂
2
t‖θt − θ∗t ‖p

dt
≤ e

pm̂
2
t 2p−1

m̂p−1

∥∥∥∇U(θt)−∇Û(θih(n))
∥∥∥p .

By the fundamental theorem of calculus,

‖θt − θ∗t ‖p ≤ e−
pm̂
2 (t−ih(n)) ∥∥θih(n) − θ∗ih(n)

∥∥p +
2p−1

m̂p−1

∫ t

ih(n)

e−
pm̂
2

(t−s)
∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p ds.

(9.14)

Taking expectation on both sides, we obtain that

E [‖θt − θ∗t ‖p] = E
[
E
[
‖θt − θ∗t ‖p | θih(n) , θ∗ih(n)

]]
≤ e−

pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]
+

2p−1

m̂p−1

∫ t

ih(n)

e−
pm̂
2

(t−s)E
[∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p] ds. (9.15)

In the above expression, the integral and expectation are exchanged using Tonelli’s theorem,
since ∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p
is positive measurable.
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We further expand the expected error E
[∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p]:
E
[∥∥∥∇U(θs)−∇Û(θih(n))

∥∥∥p]
= E

[∥∥∥∇U(θs)−∇U(θih(n)) +∇U(θih(n))−∇Û(θih(n))
∥∥∥p]

≤ 1

2
E [‖2 (∇U(θs)−∇U(θih(n)))‖p] +

1

2
E
[∥∥∥2

(
∇U(θih(n))−∇Û(θih(n))

)∥∥∥p]
= 2p−1E [‖∇U(θs)−∇U(θih(n))‖p] + 2p−1E

[
E
[∥∥∥∇U(θih(n))−∇Û(θih(n))

∥∥∥p ∣∣∣θih(n)

]]
≤ 2p−1L̂p · E [‖θs − θih(n)‖p] + 2p−1∆p. (9.16)

Plugging into equation (9.14), we have that

E [‖θt − θ∗t ‖p]

≤ e−
pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]
+ 22p−2 L̂p

m̂p−1

∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖θs − θih(n)‖p] ds+ 22p−2(t− ih(n))
∆p

m̂p−1
. (9.17)

We provide an upper bound for
∫ t
ih(n) e

− pm̂
2

(t−s)E [‖θs − θih(n)‖p] ds in the following lemma.

Lemma 13. For h(n) ≤ m̂

32L̂2
, and for t ∈ [ih(n), (i+ 1)h(n)],∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖θs − θih(n)‖p ds]

≤ 23p−3L̂p
(
t− ih(n)

)p+1
W p
p (µih(n) , µ∗) +

8p

2

(
t− ih(n)

)p/2+1
(dp)p/2 + 22p−2(t− ih(n))p+1 ·∆p.

(9.18)

Applying this upper bound to equation (9.17), we obtain that for h(n) ≤ m̂

32L̂2
, and for

t ∈ [ih(n), (i+ 1)h(n)],

E [‖θt − θ∗t ‖p] ≤ e−
pm̂
2 (t−ih(n))E

[∥∥θih(n) − θ∗ih(n)

∥∥p]+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1
W p
p (µih(n) , µ∗)

+ 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1
(dp)p/2 + 24p−4 L̂p

m̂p−1
(t− ih(n))p+1 ·∆p

+ 22p−2(t− ih(n))
∆p

m̂p−1

≤
(

1− m̂

4

(
t− ih(n)

))p
E
[∥∥θih(n) − θ∗ih(n)

∥∥p]+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1
W p
p (µih(n) , µ∗)

+ 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1
(dp)p/2 + 22p(t− ih(n))

∆p

m̂p−1
.
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Recognizing that γ̂ (θt, θ
∗
t ) = E(

θ
ih(n) ,θ

∗
ih(n)

)
∼γ∗
[
γ̄
(
θt, θ

∗
t |θih(n) , θ∗ih(n)

)]
is a coupling, we achieve

the upper bound for W p
p (µt, µ

∗):

W p
p (µt, µ

∗) ≤ E(θt,θ∗t )∼γ̂ [‖θt − θ∗t ‖p]

≤
(

1− m̂

4

(
t− ih(n)

))p
E(

θ
ih(n) ,θ

∗
ih(n)

)
∼γ∗
[∥∥θih(n) − θ∗ih(n)

∥∥p]
+ 25p−5 L̂2p

m̂p−1

(
t− ih(n)

)p+1
W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1
(dp)p/2

+ 22p(t− ih(n))
∆p

m̂p−1
.

≤
(

1− m̂

8

(
t− ih(n)

))p
W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1

(
t− ih(n)

)p/2+1
(dp)p/2

(9.19)

+ 22p(t− ih(n))
∆p

m̂p−1
. (9.20)

Taking t = (i+ 1)h(n), the recurring bound reads

W p
p

(
µ(i+1)h(n) , µ∗

)
≤
(

1− m̂

8
h(n)

)p
W p
p (µih(n) , µ∗) + 25p−3 L̂p

m̂p−1
(dp)p/2

(
h(n)

)p/2+1
+

4p

m̂p−1
h(n)∆p.

We finish the proof by invoking the recursion i times:

W p
p (µih(n) , µ∗) ≤

(
1− m̂

8
h(n)

)p
W p
p

(
µ(i−1)h(n) , µ∗

)
+ 25p−3 L̂p

m̂p−1
(dp)p/2

(
h(n)

)p/2+1
+

4p

m̂p−1
h(n)∆p

≤
(

1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗)

+
i−1∑
k=0

(
1− m̂

8
h(n)

)p·k
·

(
25p−3 L̂p

m̂p−1
(dp)p/2

(
h(n)

)p/2+1
+

4p

m̂p−1
h(n)∆p

)

≤
(

1− m̂

8
h(n)

)p·i
W p
p (µ0, µ

∗) + 25p L̂
p

m̂p
(dp)p/2

(
h(n)

)p/2
+ 22p+3 ∆p

m̂p
. (9.21)
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Supporting proofs for Lemma 12

Proof of Lemma 13. We use the update rule of ULA to develop
∫ t
ih(n) e

− pm̂
2

(t−s)E [‖θs − θih(n)‖p] ds:∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖θs − θih(n)‖p ds]

=

∫ t

ih(n)

e−
pm̂
2

(t−s)E
[∥∥∥−(s− ih(n))

(
∇U(θih(n))−

(
∇U(θih(n))−∇Û(θih(n))

))
+
√

2(Bs −Bih(n))
∥∥∥p] ds

≤ 22p−2(t− ih(n))p
∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖∇U(θih(n))‖p] ds

+ 23p/2−1

∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖Bs −Bih(n)‖p] ds

+ 22p−2(t− ih(n))p
∫ t

ih(n)

e−
pm̂
2

(t−s)E
[∥∥∥∇U(θih(n))−∇Û(θih(n))

∥∥∥p] ds

≤ 22p−2L̂p
(
t− ih(n)

)p+1 E [‖θih(n) − θ∗U‖
p] + 23p/2−1

∫ t

ih(n)

E [‖Bs −Bih(n)‖p] ds

+ 22p−2
(
t− ih(n)

)p+1
∆p. (9.22)

where θ∗U is the fixed point of U . We then use the following lemma to simplify the above
expression.

Lemma 14. The integrated p-th moment of the Brownian motion can be bounded as:∫ t

ih(n)

E ‖Bs −Bih(n)‖p ds ≤ 2

(
dp

e

)p/2 (
t− ih(n)

)p/2+1
. (9.23)

We also provide bound for the p-th moment of ‖θih(n) − θ∗U‖.

Lemma 15. For θih(n) ∼ µih(n),

E ‖θih(n) − θ∗U‖
p ≤ 2p−1W p

p (µihn , µ
∗) +

10p

2

(
dp

m̂

)p/2
. (9.24)

Plugging the results into equation (9.22), we obtain that for h(n) ≤ m̂

32L̂2
, and for t ∈
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[ih(n), (i+ 1)h(n)],∫ t

ih(n)

e−
pm̂
2

(t−s)E [‖θs − θih(n)‖p ds]

≤ 23p−3L̂p
(
t− ih(n)

)p+1
W p
p (µihn , µ

∗) +
40p

8
L̂p
(
t− ih(n)

)p+1
(
dp

m̂

)p/2
+

(
8

e

)p/2
(dp)p/2

(
t− ih(n)

)p/2+1
+ 22p−2(t− ih(n))p+1 ·∆p

≤ 23p−3L̂p
(
t− ih(n)

)p+1
W p
p (µihn , µ

∗) +
8p

2

(
t− ih(n)

)p/2+1
(dp)p/2 + 22p−2(t− ih(n))p+1∆p.

(9.25)

Proof of Lemma 14. The Brownian motion term can be upper bounded by higher moments
of a normal random variable:∫ t

ih(n)

E ‖Bs −Bih(n)‖p ds ≤
(
t− ih(n)

)
E ‖Bt −Bih(n)‖p =

(
t− ih(n)

)p/2+1 E ‖v‖p ,

where v is a standard d-dimensional normal random variable. We then invoke the
√
d sub-

Gaussianity of ‖v‖ and have (assuming p to be an even integer):

E ‖v‖p ≤ p!

2p/2 (p/2)!
dp/2 ≤ e1/12p

√
2πp(p/e)p

2p/2
√
πp(p/2e)p/2

dp/2 ≤ 2

(
dp

e

)p/2
.

Proof of Lemma 15. For the E ‖θih(n) − θ∗U‖
p term, we note that any coupling of a distribu-

tion with a delta measure is their product measure. Therefore, E ‖θih(n) − θ∗U‖
p relates to the

p-Wasserstein distance between µih(n) and the delta measure at the fixed point θ∗U , δ (θ∗U):

E ‖θih(n) − θ∗U‖
p = W p

p (µih(n) , δ (θ∗U)) ≤ (Wp (µih(n) , µ∗) +Wp (µ∗, δ (θ∗U)))p

≤ 2p−1W p
p (µih(n) , µ∗) + 2p−1W p

p (µ∗, δ (θ∗U)) .

We then bound W p
p (µ∗, δ (θ∗U)) in the following lemma.

Lemma 16. Assume the posterior µ∗ is m̂-strongly log-concave. Then for θ∗U = arg maxµ∗,

W p
p (µ∗, δ (θ∗U)) ≤ 5p

(
dp

m̂

)p/2
. (9.26)

Therefore,

E
∥∥∥θ(n)

ih(n) − θ∗n
∥∥∥p ≤ 2p−1W p

p (µih(n) , µ∗) +
10p

2

(
dp

m̂

)p/2
.
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Proof of Lemma 16. We first decompose Wp (µ∗, δ (θ∗U)) into two terms:

Wp (µ∗, δ (θ∗U)) ≤ Wp (µ∗, δ (Eθ∼µ∗ [θ])) + ‖θ∗U − Eθ∼µ∗ [θ]‖ .

By the celebrate relation between mean and mode for 1-unimodal distributions [see, e.g., 20,
Theorem 7], we can first bound the difference between mean and mode:

(θ∗U − Eθ∼µ∗ [θ])T Σ−1 (θ∗U − Eθ∼µ∗ [θ]) ≤ 3.

where Σ is the covariance matrix of µ∗. Therefore,

‖θ∗U − Eθ∼µ∗ [θ]‖2 ≤ 3

m̂
. (9.27)

We then bound Wp (µ∗, δ (Eθ∼µ∗ [θ])). Since the coupling between µ∗ and the delta mea-
sure δ (Eθ∼µ∗ [θ]) is their product measure, we can directly obtain that the p-Wasserstein
distance is the p-th moments of µ∗:

W p
p (µ∗, δ (Eθ∼µ∗ [θ])) =

∫
‖θ − Eθ∼µ∗ [θ]‖p dµ∗(θ).

We invoke the Herbst argument [see, e.g., 95] to obtain the p-th moment bound. We first
note that for an m̂-strongly log-concave distribution, it has a log Sobolev constant of m̂.
Then using the Herbst argument, we know that x ∼ µ∗ is a sub-Gaussian random vector
with parameter σ2 = 1

2m̂
:∫
eλu

T (θ−Eθ∼µ∗ [θ])dµ∗(θ) ≤ e
λ2

4m̂ , ∀ ‖u‖ = 1.

Hence θ is 2
√

d
m̂

norm-sub-Gaussian, which implies that

(Eθ∼µ∗ [‖θ − Eθ∼µ∗ [θ]‖p])1/p ≤ 2e1/e

√
dp

m̂
. (9.28)

Combining equations (9.27) and (9.28), we obtain the final result that

W p
p (µ∗, δ (θ∗U)) ≤

(
2e1/e

√
dp

m̂
+

√
3

m̂

)p

≤ 5p
(
dp

m̂

)p/2
.

To conclude this section we provide the results which guarantee concentration of the
approximate samples resulting from ULA and SGLD.
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Lemma 17. Assume that the likelihood log pa(x; θ), prior distribution, and true distributions
satisfy Assumptions 1-3, and that arm a has been chosen n = Ta(t) times up to iteration
t of the Thompson sampling algorithm. Further, assume that we choose the stepsize step

size h(n) = 1
32

ma

n(La+ 1
n
La)

2 = O
(
ma
nL2

a

)
, and number of steps N = 640

(La+ 1
n
La)

2

m2
a

= O
(
L2
a

m2
a

)
in

Algorithm 3 then for δ2 ∈ (0, e−1/2):

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
Γ

∣∣∣∣Zn−1

)
< δ2,

where,

Γ =
36e

man

(
da + logBa + 2σ log 1/δ1 + 2

(
σa +

mada
18Laγa

)
log 1/δ2

)
and Zt−1 = {‖θa,t−1 − θ∗a‖ ≤ C(n)} for:

C(n) =

√
18e

nma

(da + logBa + 2σ log 1/δ1)
1
2 ,

σ = 16 + 4daL2
a

νama
, and where θa,t−1 is the sample from the previous round of the Thompson

sampling algorithm for arm a.

Proof. We begin as in the proof of Theorem 21, except that we now take µ0 = δθa,t−1 , where
θa,t−1 is the sample from the previous step of the algorithm:

W p
p

(
µih(n) , µ(n)

a

)
≤
(

1− m̂

8
h(n)

)p·i
W p
p

(
δ(θa,t−1), µ(n)

a

)
+

80p

2

L̂p

m̂p
(dp)p/2

(
h(n)

)p/2
.

We first use the triangle inequality on the first term on the RHS:

Wp

(
δ(θa,t−1), µ(n)

a

)
≤ Wp

(
δ(θa,t−1), δθ∗a

)
+Wp

(
δ(θ∗a), µ

(n)
a

)
= ‖θ∗a − θa,t−1‖+ +Wp

(
δ(θ∗a), µ

(n)
a

)
≤ C(n) +

D̃√
n
,

where we have used the fact that ‖θ∗a − θa,t−1‖ ≤ C(n) by assumption, and the definition of

D̃ from the proof of Theorem 20: D̃ =
√

2
ma

(da + logBa + σp)
1
2 .

Since:

C(n) =

√
18e

ma

(da + logBa + 2σ log 1/δ1)
1
2 ,
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we can further expand this upper bound:

Wp

(
δθa,t−1 , µ

(n)
a

)
≤ D̃√

n
+ C(n)

≤ 8

√
2

man
(da + logBa + 2σ log 1/δ1 + σp)

1
2 ,

where to derive this result we have used the fact that
√

2(x+ y) ≥
√
x+
√
y.

Letting D̄ =
√

2
man

(da + logBa + 2σ log 1/δ1 + σp)
1
2 , we see that our final result is:

Wp

(
δθa,t−1 , µ

(n)
a

)
≤ 8√

n
D̄,

where D̃ < D̄. Using the same choice of h(n) and number of steps N as in the proof or
Theorem 20 guarantees us that:

W p
p

(
µih(n) , µ(n)

a

)
≤ 2

(
D̄√
n

)p
.

Further combining this with the triangle inequality, and the fact that D̃ < D̄ gives us that:

Wp (µih(n) , δθ∗) ≤
D̃√
n

+
D̄√
n
≤ 3

D̄√
n
.

Now, since the sample returned by the Langevin algorithm is given by:

θa = θN + Z, (9.29)

where Z ∼ N
(

0, 1
nLaγa

I
)

, it remains to bound the distance between the approximate pos-

terior µ̂
(n)
a of θa and the distribution of θNh(n) . Since θa− θNh(n) = Z, for any even integer p,

we find that:

W p
p

(
µ̄(n)
a , µ̄(n)

a [γa]
)

=

 inf
γ∈Γ

(
µ̄

(n)
a ,µ̄

(n)
a [γa]

)
∫
‖θa − θN‖p dθadθN

1/p

≤ E[‖Z‖p]
1
p

≤

√
d

nLaγa

(
2p/2Γ(p+1

2
)

√
π

)1/p

≤

√
d

nLaγa

(
2p/2

(p
2

)p/2)1/p

≤

√
dp

nLaγa
,
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where we have used upper bound of the Stirling type for the Gamma function Γ(·) in the
second last inequality.

Thus, we have, via the triangle inequality once again, that:

Wp

(
µ̄(n)[γa]
a , δθ∗

)
≤ 3

D̄√
n

+

√
dp

nLaγa

≤
√

36

man

(
da + logBa + 2σa log 1/δ1 +

(
σa +

da
18Laγa

)
p

) 1
2

,

which, by the same derivation as in the proof of Theorem 18, gives us the desired result.

We remark that via an identical argument, the following Lemma holds as well:

Lemma 18. Assume that the family log pa(x; θ) and the prior πa satisfy Assumptions 1-15
and that arm a has been chosen n = Ta(t) times up to iteration t of the Thompson sampling

algorithm. If we take number of data samples in the stochastic gradient estimate k = 32 (L∗a)2

maνa
,

step size h(n) = 1
32

ma

n(La+ 1
n
La)

2 = O
(
ma
nL2

a

)
and number of steps N = 1280

(La+ 1
n
La)

2

m2
a

= O
(
L2
a

m2
a

)
in Algorithm 3, then for δ2 ∈ (0, e−1/2)::

P
θa,t∼µ̄(n)

a [γa]

(
‖θa,t − θ∗a‖2 >

√
Γ

∣∣∣∣Zn−1

)
< δ2.,

where,

Γ =
36e

man

(
da + logBa + 2σ log 1/δ1 + 2

(
σa +

mada
18Laγa

)
log 1/δ2

)
and Zt−1 = {‖θa,t−1 − θ∗a‖ ≤ C(n)} for the parameters:

C(n) =

√
18e

nma

(da + logBa + 2σ log 1/δ1)
1
2 , σ = 16 +

4daL
2
a

νama

,

and θa,t−1 being the sample from the previous round of the Thompson sampling algorithm
over arm a.

9.4 Detailed Proofs of the Regret of Approximate

Sampling

For the proof of Theorem 22, we proceed similarly as for the proof of Theorem 19, but require
another intermediate lemma to deal with the fact that the samples from the arms are no
longer conditionally independent given the filtration (due to the fact that we use the last
sample as the initialization of the filtration). To do so, we first define the event:

Za(T ) = ∩T−1
t=1 Za,t,
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where:

Za,t =

{
‖θa,t − θ∗a‖ <

√
18e

nma

(
da + logBa + 2

(
16 +

4dL2
a

νama

)
log 1/δ1

) 1
2

}
,

Lemma 19. Suppose the likelihood and reward distributions satisfy Assumptions 1-4, Then
the regret of a Thompson sampling algorithm with approximate sampling can be decomposed
as:

E[R(T )] ≤
∑
a>1

∆aE

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2∆a (9.30)

Proof. We begin by conditioning on the event Za(T )∩Z1(T ) for each a ∈ A, where we note
that by construction pZ = P((Za(T )c∪Z1(T )c)) ≤ P(Z1(T )c) +P(Za(T )c) = 2Tδ1) (since via
Lemma 9, the probability of each event in Za(T )c and Z1(T )c is less than δ1).

Therefore, we must have that:

E[Ta(T )] ≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ E

[
Ta(T )

∣∣∣∣∣ (Za(T )c ∪ Z1(T )c)

]
pZ

≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2Tδ3E

[
Ta(T )

∣∣∣∣∣ (Za(T )c ∪ Z1(T )c)

]

≤ E

[
Ta(T )

∣∣∣∣∣Za(T ) ∩ Z1(T )

]
+ 2δ3T

2,

where in the first line we use the fact that 1 − pZ ≤ 1 and in the last line we used the fact
that Ta(T ) is trivially less than T . Choosing δ1 = 1/T 2 ≤ e−1/2 completes the proof.

With this decomposition in hand, we can now proceed as in Lemma 5 to provide anti-
concentration guarantees for the approximate posteriors.

Lemma 20. Suppose the likelihood and true reward distributions satisfy Assumptions 1-4:
then if γ1 = νm2

32(16Lνm+4dL3)
, for all n = 1, ..., T all samples from the the (stochastic gradient)

ULA method with the hyperparameters and runtime as described in Theorem 21 satisfy:

E
[

1

p1,n

]
≤ 27

√
B1

Proof. We begin by using the last step of our Langevin Dynamics and show that it exhibits
the desired anti-concentration properties. In particular, we know that θ1,t ∼ N (θ1,Nh,

1
γ
I),

such that:
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p1,s = Pr
(
αT (θ − θ1,Nh) ≥ αT (θ∗ − θ1,Nh)− ε

)
≥ Pr

Z ≥ A‖θ1,Nh − θ∗‖︸ ︷︷ ︸
:=t


where Z ∼ N (0, A2

nLγ
I) by construction.

Now using a lower bound on the cumulative density function of a Gaussian random
variable, we find that, for σ2 = A2

nLγ
:

p1,s ≥
√

1

2π

{
σt

t2+σ2 e
− t2

2σ2 : t > A√
nLγ

0.34 : t ≤ A√
nLγ

Thus we have that:

1

p1,s

≤
√

2π

{(
t
σ

+ 1
)
e
t2

2σ2 : t > A√
nLγ

3 : t ≤ A√
nLγ

Taking the expectation of both sides with respect to the samples X1, ..., Xn, we find that:

E
[

1

p1,s

]
≤ 3
√

2π +
√

2πE
[(√

nLγ‖θ1,Nh − θ∗‖+ 1
)
enLγ‖θ1,Nh−θ∗‖

2
]

≤ 3
√

2π +
√

2πnLγ
√

E [‖θ1,Nh − θ∗‖2]
√

E
[
enLγ‖θ1,Nh−θ∗‖

2
]

+
√

2πE
[
e
nLγ

2
‖θ1,Nh−θ∗‖2

]
Now, we remark that, from Theorems 20 and 23, we have that for both approximate

sampling schemes:

E
[
‖θ1,Nh − θ∗‖2

]
≤ 18

mn

(
d+ logB + 32 +

8dL2

νm

)
Further, we note that ‖θ1,Nh − θ∗‖2 is a sub-exponential random variable. To see this,

we analyze its moment generating function:

E[enLγ‖θ1,Nh−θ
∗‖2 ] = 1 +

∞∑
i=1

E
[

(nLγ)i‖θ1,Nh − θ∗‖2i

i!

]

Borrowing the notation from the proof of Theorem 18, we know that
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E
[
‖θ1,Nh − θ∗‖2p

]
≤ 3

(
2D

mn
+

4σp

mn

)p
where:

D = d+ logB and σ = 16 +
4dL2

νm
Plugging this in above gives:

E[eγ‖θ1,Nh−θ∗‖
2

] ≤ 1 + 3
∞∑
i=1

(
2nLγD+4nLγσi

mn

)i
i!

≤ 1 +
3

2

∞∑
i=1

1

i!

(
4nLγD

mn

)i
+

3

2

∞∑
i=1

1

i!

(
8nLγσi

nm

)i
≤ 3

2
e

4nLγD
mn +

3

2

∞∑
i=1

(
8nLγeσ

nm

)i
where, we have use the identities (x+y)i ≤ 2i−1(xi+yi) for i ≥ 1, and i! ≥ (i/e)i to simplify
the bound.

If γ ≤ m
32Lσ

, then we have that:

E[enLγ‖θ1,Nh−θ∗‖
2

] ≤ 3

2

(
e

4nLγD
m + 2.5

)
,

which, together with the upper bound on γ gives:

E
[

1

p1,s

]
≤ 3
√

2π +
3

2

√
16πnLγ

m
(D + 2σ)

(
e

2nLγD
m + 2

)
+

3

2

√
2π
(
e

4nLγD
m + 7.5

)
≤ 3
√

2π +
3

2

(√
π(d+ logB)

2σ
+
√
π

)(
e
d+logB

16σ + 2
)

+
3

2

√
2π
(
e
d+logB

8σ + 2.5
)
,

where we used the sub-additivity of
√
x, the fact that

√
3
2
< 3

2
,
√

2.5 < 2 and substituted

in the values for σ and D to simplify the bound. Finally since L2

mν
> 1, we find that

σ > max(4d, 1), allowing us to simplify the bound further to:

E
[

1

p1,s

]
≤ 3
√

2π +
3

2

√
π

8
+

logB

2

(
2B1/16 + 2

)
+

3

2

√
2π
(
2B1/8 + 2.5

)
≤ 18 +

3√
2

(
B1/16 +B1/16

√
logB + logB + 2B1/8

)
︸ ︷︷ ︸

I

≤ 18 + 12/
√

2
√
B ≤ 27

√
B,
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where to simplify the bound we used the fact that
√
π < 2 and I ≤ 4

√
B and that 18 +

12/
√

2x ≤ 27x for x ≥ 1.

With this lemma in hand, we can now proceed as in Lemma 8 to finalize the proof of
Theorem 22.

Lemma 21. Suppose the likelihood, true reward distributions, and priors satisfy Assumptions
1-4, the samples are generated from the sampling schemes described in Theorem 23 and
Theorem 20, and γa = ma

32Laσa
then:

T−1∑
s=1

E
[

1

p̂1,s

− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1

⌈
144eA2

1

m∆2
a

(d1 + logB1 + 4σ1 log T + 12d1σ1 log 2)

⌉
+ 1

(9.31)

T∑
s=1

E
[
I
(
p̂a,s >

1

T

) ∣∣∣∣Za(T )

]
≤ 144eA2

a

m∆2
a

(da + logBa + 10daσa log(T )), (9.32)

where p̂a,s is the distribution of a sample from the approximate posterior µ̂a after s samples
have been collected, and for a ∈ A, σa is given by:

σa = 16 +
4daL

2
a

maνa
.

Proof. We begin by showing that (9.31) holds. To do so, we proceed identically as in the
proof of Lemma 8 to note that, by definition p̂1,s satisfies:

p̂1,s = P(r1,t(s) > r̄1 − ε|Ft−1) (9.33)

= 1− P(r1,t(s)− r̄1 < −ε|Ft−1) (9.34)

≥ 1− P(|r1,t(s)− r̄1| > ε|Ft−1) (9.35)

≥ 1− P
θ∼µ̂(s)

1

(
‖θ − θ∗‖ > ε

A1

)
, (9.36)

where the last inequality follows from the fact that r1,t(s) and r̄1 are Aa-Lipschitz functions

of θ ∼ µ
(s)
1 and θ∗ respectively.

We then use the fact that conditioned on Z1(T ), the approximate posterior distribution
P
θ∼µ̂(s)

1
satisfies the identical concentration bounds from Lemmas 18 and Lemma 17. Sub-

stituting in the assumed value of γ1, and simplifying, we have that the distribution of the
samples conditioned on Z1(T ) satisfy:

P
θ1,t∼µ̄(s)

1 [γ1]

(
‖θ1,t − θ∗1‖2 >

√
36e

m1n
(d1 + logB1 + 4σ1 log T + 6d1σ1 log 1/δ2)

∣∣∣∣Zn−1

)
< δ2.
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Equivalently, we have that:

P
θ∼µ̄(s)

1
[γ1]

(
‖θ − θ∗‖ > ε

A1

)
≤ exp

(
− 1

6d1σ1

(
m1nε

2

36eA2
1

− D̄1

))
, (9.37)

where we define D̄1 = d1 + logB1 + 4σ log T , to simplify notation. We remark that this
bound is not useful unless:

n >
16eA2

1

ε2m1

D̄1.

Thus, choosing ε = (r̄1 − r̄a)/2 = ∆a/2, we can choose ` as:

` =

⌈
144eA2

1

m∆2
a

(D̄1 + 6d1σ1 log 2)

⌉
.

With this choice of `, we proceed exactly as in the proof of Lemma 8 to find that :

T−1∑
s=1

E
[

1

p̂1,s

− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1`+

T−1∑
s=`

E
[

1

p1,s

− 1

∣∣∣∣Z1(T )

]
≤ 27

√
B1

⌈
144eA2

1

m∆2
a

(D̄1 + 12d1σ1 log 2)

⌉
+ 1,

where we used the upper bound from Lemma 20 to bound the first ` terms in the first
inequality.

To show that (9.32) holds, we use a similar derivation as in (9.36):

T∑
s=1

E
[
I
(
pa,s >

1

T

) ∣∣∣∣Za(T )

]
≤

T∑
s=1

E
[
I
(
P
θ∼µ̄(s)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
>

1

T

) ∣∣∣∣Za(T )

]
Since on the event Za(T ), the posterior concentration result from Lemmas 18 and Lemma 17
holds, it remains to upper bound the number of pulls n̄ of arm a such that for all n ≥ n̄:

P
θ∼µ̄(n)

a [γa]

(
‖θ − θ∗‖ > ∆a

2Aa

)
≤ 1

T
.

Since the posterior for arm a after n pulls of arm a has the same form as in (8.14), we
can choose n̄ as:

n̄ =
144eA2

a

m∆2
a

(D̄a + 6daσa log(T )).

Using the fact that da >≥ 1 to simplify the bound completes the proof.

Putting together the results of Lemmas 19 and 21 gives us our final theorem:
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Theorem (Regret of Thompson sampling with (stochastic gradient) Langevin algorithm).
When the likelihood and true reward distributions satisfy Assumptions 1-4: we have that
the expected regret after T > 0 rounds of Thompson sampling with the (stochastic gradient)
ULA method with the hyper-parameters and runtime as described in Lemmas 17 (and 18

respectively), and γa = νam2
a

32(16Laνama+4daL3
a)

= O
(

1
daκ3

a

)
satisfies:

E[R(T )] ≤
∑
a>1

CA2
a

ma∆a

(
da + logBa + d2

aκ
2
a log T

)
+
C
√
B1A

2
1

m1∆a

(
1 + logB1 + d1κ

2
1 log T + d2

1κ
2
1

)
+ 3∆a,

where C is a universal constant that is independent of problem-dependent parameters and
κa = La/ma.

Proof. To begin, we invoke Lemma 19, which shows that we only need to bound the number
of times a suboptimal arm a ∈ A is chosen on the ‘nice’ event Z1(T ) ∩ Za(T ) where the
gradient of the log likelihood has concentrated and the approximate samples have been in
high probability regions of the posteriors. We then invoke Lemmas 6 and 7, to find that:

E

[
Ta(T )

∣∣∣∣∣Z1(T ) ∩ Za(T )

]
≤ 1 + ` (9.38)

+
T−1∑
s=`

E
[

1

p1,s

− 1

∣∣∣∣Z1(T )

]
︸ ︷︷ ︸

(I)

+
T∑
s=1

E
[
I
(

1− pa,s >
1

T

) ∣∣∣∣Za(T )

]
︸ ︷︷ ︸

(II)

(9.39)

Now, invoking Lemma 8, we use the upper bounds for terms (I) and (II) in the regret
decomposition, use our choice of both δ1 and δ3 = 1/T 2, expanding Da and D1, and use the
fact that dxe ≤ x+ 1 to give that:

E[R(T )] ≤
∑
a>1

144eA2
a

ma∆a

(
da + logBa + 10da

(
16 +

4daL
2
a

νama

)
log(T )

)
+ 27

√
B1

144eA2
1

m1∆a

(
1 + d1 + logB1 + 4

(
16 +

4d1L
2
a

ν1m1

)
(log T + 3d1 log 2)

)
+ 3∆a.

≤
∑
a>1

CA2
a

ma∆a

(
da + logBa + d2

aκ
2
a log T

)
+
C
√
B1A

2
1

m1∆a

(
1 + logB1 + d1κ

2
1 log T + d2

1κ
2
1

)
+ 3∆a.

Using the fact that κa ≥ 1 and that d1 ≥ 1 allows us to simplify to get our desired result.
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9.5 Numerical Experiments

In this section we empirically validate the effectiveness of approximate Thompson sampling
in log-concave multi-armed bandit instances. We benchmark against both UCB and exact
Thompson Sampling across three different Gaussian multi-armed bandit instances with 10
arms. We remark that the use of Gaussian bandit instances is due to the fact that the
closed form for the posteriors allows for us to properly benchmark against exact Thompson
Sampling and UCB, though our theory applies to a broader family of prior/likelihood pairs.

Experimental Setup

In all three instances we keep the reward distributions for each arm fixed such that their
means are evenly spaced from 0 to 10 (r̄1 = 1, r̄2 = 2, and so on), and their variances are all
1. In each instance we use different priors over the means of the arms to analyze whether the
approximate Thompson Sampling algorithms preserve the performance of exact Thompson
Sampling.

In the first instance, the priors reflect the correct orderings of the means. We use Gaussian
priors with variance 4, and means evenly spaced between 5 and 10 such that Eπ1 [X] = 5, and
Eπ10 [X] = 10. In the second instance, the prior for each arm is a Gaussian with mean 7.5
and variance 4. Finally, the third instance is ‘adversarial’ in the sense that the priors reflects
the complete opposite ordering of the means. In particular, the priors are still Gaussians
such that their means are evenly spaced between 5 and 10 with variance 4, but this time
Eπ1 [X] = 10, and Eπ10 [X] = 5.

As suggested in our theoretical analysis in Section 9, we use a constant number of steps
for both ULA and SGLD to generate samples from the approximate posteriors. In particular,
for ULA, we take N = 100 and double that number for SGLD N = 200. We also choose the
stepsize for both algorithms to be 1

32Ta(t)
. For SGLD, we use a batch size of min(Ta(t), 32).

Further, since da = κa = 1 since this is a Gaussian family, we take the scaling to be γa = 1.
The regret is calculated as

∑T
t=1 r̄10− r̄At for the three algorithms and is averaged across

100 runs. Finally, for the implementation of UCB, we used the time-horizon tuned UCB [94]
and the known variance, σ2 of the arms in the upper confidence bounds (to maintain a level
playing field between algorithms):

UCBa(t) =
1

Ta(t)

t−1∑
i=1

XAi1 {Ai = a}+

√
4σ2 log 2T

Ta(t)
.

Empirical Results

We observe significant performance gains from the (approximate) Thompson sampling ap-
proach over the deterministic UCB algorithm when the priors are suggestive or even non-
informative of the appealing arms. When the priors are adversarial to the algorithm, the
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Figure 9.1: Performance of exact and approximate Thompson Sampling vs UCB on Gaussian
bandits with a. ‘good priors’ (priors reflecting the correct ordering of the arms’ means), b.
the same priors on all the arms’ means, and c. ‘bad’ priors (priors reflecting the exact
opposite ordering of the arms’ means). Each line is the regret averaged across 100 runs of
the algorithm.

UCB algorithm outperforms the Thompson sampling approach as expected. (This case cor-
responds to the constant Ba in the Theorems 19 and 22 being large). Also as the theory
predicts, we observe little difference between the exact and the approximate Thompson sam-
pling methods in terms of the regret. If we zoom in and scrutinize further, we can see that
exact Thompson Sampling slightly outperforms the Thompson sampling with SGLD in the
‘googd’ prior case. This might be due to the added stochasticity from the approximate
sampling techniques, which adds unnecessary exploration.

9.6 Chapter Summary

Although Thompson sampling has been used successfully for decades and has been shown to
have appealing theoretical properties there remains a lack of understanding of how approxi-
mate sampling affects its regret guarantees.

In this chapter we first derived new posterior contraction rates for log-concave likelihood
families with arbitrary log-concave priors which captured key dependencies between the
posterior distributions and various problem-dependent parameters like the prior quality and
the parameter dimension. We then used these rates to show that exact Thompson sampling
in MAB problems where the reward distributions are log-concave achieves the optimal finite-
time regret guarantee for MAB bandit problems shown in [91]. As a direction for future work,
we note that although our regret bound demonstrates a dependence on the quality of the
prior, it still is unable to capture the potential advantages of good priors.

We then demonstrated that Thompson sampling using samples generated from ULA, and
under slightly stronger assumptions, SGLD, could still achieve the optimal regret guarantee
with constant algorithmic as well as sample complexity in the stochastic gradient estimate.
Thus, by designing approximate sampling algorithms specifically for use with Thompson
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sampling, we were able to construct a computationally tractable anytime Thompson sampling
algorithm with approximate samples with end-to-end guarantees of logarithmic regret.
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Part III

Learning Models of Human
Decision-Making
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Chapter 10

Models of Human Decision-Making

The modeling and learning of human decision-making behavior is increasingly becoming
important as critical systems begin to rely more on automation and artificial intelligence.
Yet, in this task we face a number of challenges, not least of which is the fact that humans are
known to behave in ways that are not completely rational. For example, there is mounting
evidence to support the fact that humans often use reference points—e.g., the status quo or
former experiences or recent expectations about the future that are otherwise perceived to
be related to the decision the human is making [87, 183]. It has also been observed that
their decisions are impacted by their perception of the external world (exogenous factors)
and their present state of mind (endogenous factors) as well as how the decision is framed
or presented [184].

The success of descriptive behavioral models in capturing human behavior has long been
touted by the psychology community and, more recently, by the economics community. In
the engineering context, humans have largely been modeled, under rationality assumptions,
from the so-called normative point of view where things are modeled as they ought to be,
which is counter to a descriptive as is point of view.

However, risk-sensitivity in the context of learning to control stochastic dynamic systems
(see, e.g., [27, 58, 111]) has been fairly extensively explored in engineering and computer
science. Many of these approaches are targeted at mitigating risks due to uncertainties in
controlling a system such as a plant or robot. Much of this work simply handles risk-aversion
by leveraging techniques such as exponential utility functions or minimizing mean-variance
type criteria.

Complex risk-sensitive behavior arising from human interaction with automation is only
recently coming into focus. Human decision makers can be at once risk-averse and risk-
seeking depending their frame of reference. The adoption of diverse behavioral models in
engineering—in particular, in learning and control—is growing due to the fact that humans
are increasingly playing an integral role in automation both at the individual and societal
scale. Learning accurate models of human decision-making is important for both prediction
and description. For example, control/incentive schemes need to predict human behavior
as a function of external stimuli including not only potential disturbances but also the con-
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trol/incentive mechanism itself. On the other hand, policy makers and regulatory agencies,
e.g., are interested in interpreting human reactions to implemented regulations and policies.

Approaches for integrating the risk-sensitivity in the control and reinforcement learning
problems via behavioral models have recently emerged [90, 109, 126, 133, 174]. These ap-
proaches largely assume a risk-sensitive Markov decision process (MDP) formulated based
on a model that captures behavioral aspects of the human’s decision-making process. We
refer the problem of learning the optimal policy in this setting as the forward problem. We
are interested in solving the so-called inverse problem which seeks to estimate the decision-
making process given a set of demonstrations. In order to do so, a well formulated forward
problem with convergence guarantees is required.

Inverse reinforcement learning in the context of recovering policies directly (or indirectly
via first learning a representation for the reward) has long been studied in the context
expected utility maximization and MDPs [1, 137, 158]. We may care about, e.g., producing
the value and reward functions (or at least, characterize the space of these functions) that
produce behaviors matching that which is observed. On the other hand, we may want to
extract the optimal policy from a set of demonstrations so that we can reproduce the behavior
in support of, e.g., designing incentives or control policies. In this paper, our focus is on the
combination of these two tasks.

We model human decision-makers as risk-sensitive Q-learning agents where we exploit
very rich behavioral models from behavioral psychology and economics that capture a whole
spectrum of risk-sensitive behaviors and loss aversion. We first derive a reinforcement learn-
ing algorithm that leverages coherent risk metrics and behavioral value functions such as
those deriving from prospect theory. We provide convergence guarantees via a contraction
mapping argument. In comparison to previous work in this area [173], we show that the
behavioral value functions we introduce satisfy the assumptions of our theorems.

Given the forward risk-sensitive reinforcement learning algorithm, we propose a gradient-
based learning algorithm for inferring the decision-making model parameters from demonstrations—
that is, we propose a framework for solving the inverse risk-sensitive reinforcement learning
problem with theoretical guarantees. We show that the gradient of the loss function with
respect to the model parameters is well-defined and computable via a contraction map ar-
gument. We demonstrate the efficacy of the learning scheme on the canonical Grid World
example and a passenger’s view of ride-sharing modeled as an MDP with parameters esti-
mated from real-world data.

10.1 Related Work

Before presenting our results, we first comment on related work. The primary motivation for
most other works in this domain is to get a prescriptive model or algorithm for humans amidst
autonomy so that the human can be controlled and accounted for. For example, in [174]—
one of the motivating previous works for the forward MDP model we use in this paper—their
approach to learning the decision-making model is to parameterize unknown quantities of
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interest, sample the parameter space, and use a model selection criteria (specifically, the
Bayesian information criteria) to select parameters that best fit the observed behavior. We,
on the other hand, derive a well-formulated gradient-based procedure for finding the value
function and policy best matching the observed behavior. Moreover, in contrast to [174],
we introduce new value functions that satisfy our theorems for the forward and inverse
problems and retain the salient features of the empirically observed behavioral psychology
and economics models.

In [109], the authors take a similar approach to ours in leveraging risk metrics to capture
risk sensitivity. However, they focus their efforts on estimating the risk metric used by the
human decision maker by leveraging the well-known representation theorem for coherent
risk metrics [56]. They couple the resulting optimization problem with classical inverse
reinforcement learning procedures for learning the reward (that is, they parameterize the
reward function over a set of basis functions), yet their approach does not differentiate
between the reward and the decision-making model.

Our approach, in comparison, focuses on estimating the value function and the agent’s
behavior which also induces the risk metric via the acceptance level set. Specifically, we
consider a broad class of risk metrics generated by value functions, formulate the MDP
model based on this, and learn the parameters of the value function that generates the
risk metric and results in a policy that best matches the agent’s observed behavior. The
parameters of the value function, which ultimately drive the decision making model and
specify the risk measure, are highly interpretable in terms of the degree of risk sensitivity
and loss aversion. Thus, our technique supports prescriptive and descriptive analysis, both
of which are important for the design of incentives and policies that takes into consideration
the nuances of human decision-making behavior.

10.2 Overview of Part III

The remainder of this part of the dissertation is organized as follows. In Chapter 11, we
overview the model we assume for risk-sensitive agents and show that it is amenable to
integration of behavioral models from prospect theory. We then present our risk-sensitive Q-
learning convergence results. In Chapter 12, we formulate the inverse reinforcement learning
problem and propose a gradient–based algorithm to solve it. Examples that demonstrate
the ability of the proposed scheme to capture a wide breadth of risk-sensitive behaviors are
provided in Section 12.2. Finally, we conclude with some discussion and comments on future
work in Section 12.3.
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Chapter 11

Risk-Sensitive Reinforcement
Learning

In order to learn a decision-making model for an agent who faces sequential decisions in an
uncertain environment, we leverage a risk-sensitive Q-learning model that integrates coherent
risk metrics with behavioral models. In particular, the model we use is based on a model
first introduced in [70] and later refined in [126, 174].

The primary difference between the work presented in this chapter and previous work
is that we (i) introduce a new prospect theory based value function and (ii) provide a
convergence theorem whose assumptions are satisfied for the behavioral models we use.
Under the assumption that the agent is making decisions according to this model, in the
sequel we formulate a gradient–based method for learning the policy as well as parameters
of the agent’s value function.

11.1 Markov Decision Processes

Throughout this part of the dissertation we consider a class of finite MDPs consisting of a
state space X, an admissible action space A(x) ⊂ A for each x ∈ X, a transition kernel
P (x′|x, a) that denotes the probability of moving from state x to x′ given action a, and a
reward function1 r : X × A ×W → R where W is the space of bounded disturbances and
has distribution Pr(·|x, a). Including disturbances allows us to model random rewards; we
use the notation R(x′, a) to denote the random reward having distribution Pr(·|x, a).

In the classical expected utility maximization framework, the agent seeks to maximize
the expected discounted rewards by selecting a Markov policy π—that is, for an infinite
horizon MDP, the optimal policy is obtained by maximizing

J(x0) = maxπ E [
∑∞

t=1 γ
tR(xt, at)] (11.1)

1We note that it is possible to consider the more general reward structure r : X × A × X ×W → R,
however we exclude this case in order to not further bog down the notation.
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where x0 is the initial state and γ ∈ (0, 1) is the discount factor.
The risk-sensitive reinforcement learning problem transforms the above problem to ac-

count for a salient features of the human decision-making process such as loss aversion,
reference point dependence, and risk-sensitivity. Specifically, we introduce two key compo-
nents, value functions and valuation functions, that allow for our model to capture these
features. The former captures risk-sensitivity, loss-aversion, and reference point dependence
in its transformation of outcome values to their value as perceived by the agent and the latter
generalizes the expectation operator to more general measures of risk—specifically, coherent
risk measures.

11.2 Value Functions

Given the environmental and reward uncertainties, we model the outcome of each action as
a real-valued random variable Y (i) ∈ R, i ∈ I where I denotes a finite event space and Y
is the outcome of i–th event with probability µ(i) where µ ∈ ∆(I), the space of probability
distributions on I. Much like the standard expected utility framework, an agent makes
choices based on the value of their outcome as defined by their value function v : R→ R.

There are a number of existing approaches to defining value functions that capture risk-
sensitivity and loss aversion. These approaches derive from a variety of fields including
behavioral psychology/economics, mathematical finance, and even neuroscience.

One of the principal features of human decision-making is that losses are perceived more
significant that a gain of equal true value. The models with the greatest efficacy in capturing
this affect are convex and concave in different regions of the outcome space. Prospect theory,
developed by Kahneman and Tvsersky [81, 182], is built on one such model. The form of
the value function introduced in prospect theory is given by

v(y) =

{
k+(y − yo)ζ+ , y > yo
−k−(yo − y)ζ− , y ≤ yo

(11.2)

where yo is the reference point that the decision-maker compares outcomes against in deter-
mining if the decision is a loss or gain.

The parameters (k+, k−, ζ+, ζ−) control the degree of loss-aversion and risk-sensitivity.
For example, the following are risk preferences for different parameter values:

(i) 0 < ζ+, ζ− < 1: risk-averse preferences on gains and risk-seeking preferences on losses
(concave in gains, convex in losses);

(ii) ζ+ = ζ− = 1: risk-neutral preferences;

(iii) ζ+, ζ− > 1: risk-averse preferences on losses and risk-seeking preferences on gains
(convex in gains, concave in losses).
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Experimental results for a series of one-off decisions have indicated that typically both
ζ+ and ζ− are less than one thereby indicating that humans are risk-averse on gains and
risk-seeking on losses—that is, v is concave for y > yo and convex otherwise).

In addition to the non-linear transformation of outcome values, in prospect theory the
effect of under/over-weighting the likelihood of events that has been commonly observed in
human behavior is modeled via warping of event probabilities [67, 198]. Other concepts such
as framing effects, reference dependence, and loss aversion—captured, e.g., in the (k+, k−)
parameters in (11.2)—have also been widely observed in experimental studies on human
decision-making (see, e.g., [33, 167, 185]).

Outside of the prospect theory value, other mappings have been proposed to capture
risk-sensitivity. For example, the mapping proposed in [126] where the authors develop a
risk-sensitive reinforcement learning procedure, is the linear mapping

v(y) =

{
(1− κ)y, y > yo
(1 + κ)y, y ≤ yo

(11.3)

with κ ∈ (−1, 1). This value function can be viewed as a special case of the prospect value
function introduced above.

Another example is the entropic map which is given by

v(y) = exp(λy) (11.4)

where λ controls the degree of risk-sensitivity. The entropic map, however, is either convex
or concave on the entire outcome space.

Motivated by the empirical evidence supporting the prospect theoretic value function
and numerical considerations of our algorithm, which are discussed in greater detail in sub-
sequent sections, we introduce a new value function which retains the shape of the prospect
theory value function—i.e. its convex–concave structure—while improving the performance
(in terms of convergence speed) of the gradient-based inverse reinforcement learning al-
gorithm we propose in Section 12. In particular, we define the locally Lipschitz-prospect
(`-prospect) value function given by

v(y) =

{
k+(y − yo + ε)ζ+ − k+ε

ζ+ , y > yo
−k−(yo − y + ε)ζ− + k−ε

ζ− , y ≤ yo
(11.5)

with k+, k−, ζ+, ζ− > 0 and ε > 0, a small constant. This value function is Lipschitz contin-
uous on a bounded domain. Moreover, the derivative of the `-prospect function is bounded
away from zero at the reference point. Hence, in practice it has better numerical properties.

We remark that, for given parameters (k+, k−, ζ+, ζ−), the `-prospect function has the
same risk-sensitivity as the prospect value function with those same parameters. Moreover,
as ε → 0 the `-prospect value function approaches the prospect value function and thus,
qualitatively speaking, the degree of Lipschitzness decreases as ε→ 0.

The fact that each of these value functions are defined by a small number of parameters
that are highly interpretable in terms of risk-sensitivity and loss-aversion is one of the mo-
tivating factors for integrating them into a reinforcement learning framework. It is our aim
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to design learning algorithms that will ultimately provide the theoretical underpinnings for
designing incentives and control policies taking into consideration salient features of human
decision-making behavior.

11.3 Valuation Functions via Coherent Risk Metrics

To further capture risk-sensitivity, valuation functions generalize the expectation operator,
which considers average or expected outcomes,2 to measures of risk.

Definition 16 (Monetary Risk Measure [56]). A functional ρ : X → R∪{+∞} on the space
X of measurable functions defined on a probability space (Ω,F , P ) is said to be a monetary
risk measure if ρ(0) is finite and if, for all X,X ′ ∈ X , ρ satisfies the following:

1. (monotone) X ≤ X ′ =⇒ ρ(X) ≤ ρ(X ′)

2. (translation invariant) m ∈ R =⇒ ρ(X +m) = ρ(X) +m

If a monetary risk measure ρ satisfies

ρ(λX + (1− λ)X ′) ≤ λρ(X) + (1− λ)ρ(X ′), (11.6)

for λ ∈ [0, 1], then it is a convex risk measure. If, additionally, ρ is positive homogeneous, i.e.
it satisfies the condition that

λ ≥ 0 =⇒ ρ(λX) = λρ(X), (11.7)

then we call ρ a coherent risk measure.
We will primarily focus on convex measures of risk that are generated by a set of acceptable

positions. Let M1(Ω,F) be the space of probability measures on (Ω,F).

Definition 17 (Acceptable Positions). Consider a value function v, a probability measure
P ∈M1(Ω,F), and v0 = v(y0) with y0 in the domain of v. The set

A = {X ∈ X | EP [v(X)] ≥ v0} (11.8)

is the set of acceptable positions where v0 is the acceptance level.

The above definition can be extending to the entire class of probability measures on
(Ω,F) as follows:

A = ∩P∈M1(Ω,F){X ∈ X | EP [v(X)] ≥ v(yP )} (11.9)

with constants yP such that supP∈M1(Ω,F) yP <∞.

2In the case of two events, the valuation function can also capture warping of probabilities. Alternative
approaches to reinforcement learning based on cumulative prospect theory for the more general case have
been examined [90].
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Proposition 18 ([56, proposition 4.7]). Suppose the class of acceptable positions A is a
non-empty subset of X satisfying

1. inf{m ∈ R|X +m ∈ A} > −∞, ∀ X ∈ X , and

2. given X ∈ A, Y ∈ X , Y ≥ X =⇒ Y ∈ A.

Then A induces a monetary measure of risk ρA. If A is convex, then ρA is a convex measure
of risk. Furthermore, if A is a cone, then ρA is a coherent risk metric.

Note that monetary measure of risk induced by a set of acceptable positions A ⊂ X is

ρA(X) = inf{z ∈ R| z +X ∈ A}. (11.10)

The following proposition is key for extending the expectation operator to more general
measures of risk.

Proposition 19 ([56, proposition 4.104]). Consider the acceptance level set

A = {X ∈ X | EP [v(X)] ≥ v0} (11.11)

for a continuous value function v, acceptance level v0 = v(y0) for some y0 in the domain of
v, and probability measure P . Suppose that v is strictly increasing on (y0 − ε,∞) for some
ε > 0. Then the corresponding ρA is a convex measure of risk which is continuous from
below. Moreover, ρA(X) is the unique solution to

EP [v(X −m)] = v0. (11.12)

Proposition 19 also implies that for each value function, we can define an acceptance set
which in turn induces a convex risk metric ρ. Let us consider an example.

Example 7 (Entropic Risk Metric [56]). Consider the entropic value function v(y) =
exp(λy). It has been used extensively in the field of risk measures [56], in neuroscience
to capture risk sensitivity in motor control [133] and even more so in control of MDPs (see,
e.g., [34, 41, 111]).

The entropic value function with an acceptance level v0 can be used to define the accep-
tance set

A = {m ∈ R| E[exp(−λ(m+ Y ))] ≤ v0}. (11.13)

The risk metric in this case is given by

ρ(X) = inf{m ∈ R| E[exp(−λ(m+ Y ))] ≤ v0} (11.14)

= 1
λ

logE[exp(−λY )]− 1
λ

log(v0). (11.15)
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The parameter λ ∈ R controls the risk preference; indeed, this can be seen by considering the
Taylor expansion [56, Example 4.105]. As a further comment, this particular risk metric is
equivalent (up to an additive constant) to the so called entropic risk measure which is given
by

ρ(Y ) = sup
P ′∈M1(P )

(
EP ′ [−Y ]− 1

λ
H(P ′|P )

)
(11.16)

where M1(P ) is the set of all measures on (Ω,F) that are absolutely continuous with respect
to P and where H(·|·) is the relative entropy function. �

Let us recall the concept of a valuation function introduced and used in [11, 56, 174].

Definition 18 (Valuation Function). A mapping V : R|I| ×∆(I)→ R is called a valuation
function if for each µ ∈ ∆(I), (i) V(Y, µ) ≤ V(Z, µ) whenever Y ≤ Z (monotonic) and (ii)
V(Y + y1, µ) = V(Y, µ) + y for any y ∈ R (translation invariant).

Such a map is used to characterize an agent’s preferences—that is, one prefers (Y, µ) to
(Z, ν) whenever V(Z, ν) ≤ V(Y, µ).

We will consider valuation functions that are convex risk metrics induced by a value
function v and a probability measure µ. To simplify notation, from here on out we will
suppress the dependence on the probability measure µ.

For each state–action pair, we define V(Y |x, a) : R|I|×X ×A→ R a valuation map such
that Vx,a ≡ V(·|x, a) is a valuation function induced by an acceptance set with respect to
value function v and acceptance level v0.

If we let Vπx (Y ) =
∑

a∈A(x) π(a|x)Vx,a(Y ), the optimization problem in (11.1) generalizes
to

J̃T (π, x0) =Vπ0
x0

[
R[x0, a0] + γVπ1

x1

[
R[x1, a1] + · · ·+ γVπTxT [R(xT , aT )] · · ·

]]
(11.17)

where we define maxπ J̃(π, x0) = limT→∞ J̃T (π, x0).

11.4 Risk-Sensitive Q-Learning

In the classical reinforcement learning framework, the Bellman equation is used to derive a Q-
learning procedure. Generalizations of the Bellman equation for risk-sensitive reinforcement
learning—derived, e.g., in [126, 173]—have been used to formulate an action–value function
or Q-learning procedure for the risk-sensitive reinforcement learning problem. In particular,
as shown in [173], if V ∗ satisfies

V ∗(x0) = maxa∈A(x) Vx,a(R(x, a) + γV ∗), (11.18)

then V ∗ = maxπ J̃(π, x0) holds for all x0 ∈ X; moreover, a deterministic policy is optimal if
π∗(x) = arg maxa∈A(x) Vx,a(R + γV ∗) [173, Thm. 5.5]. The action–value function Q∗(x, a) =
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Vx,a(R + γV ∗) is defined such that (11.18) becomes

Q∗(x, a) = Vx,a
(
R + γmaxa∈A(x′) Q

∗(x′, a)
)
, (11.19)

for all (x, a) ∈ X × A.
Given a value function v and acceptance level v0, we use the coherent risk metric induced

state-action valuation function given by

Vx,a(Y ) = sup{z ∈ R| E[v(Y − z)] ≥ v0} (11.20)

where the expectation is taken with respect to µ = P (x′|x, a)Pr(w|x, a). Hence, by a direct
application of proposition 19, if v is continuous and strictly increasing, then Vx,a(Y ) =
z∗(x, a) is the unique solution to E[v(Y − z∗(x, a))] = v0.

As shown in [174, proposition 3.1], by letting Y = R + γV ∗, we have that z∗(x, a)
corresponds to Q∗(x, a) and, in particular,

E
[
v

(
r(x, a, w) + γ max

a′∈A(x′)
Q∗(x′, a′)−Q∗(x, a)

)]
= v0 (11.21)

where, again, the expectation is taken with respect to µ = P (x′|x, a)Pr(w|x, a).
The above leads naturally to a Q-learning procedure,

Q(xt, at)←Q(xt, at) + αt(xt, at)
[
v(yt)− v0

]
, (11.22)

where the non-linear transformation v is applied to the temporal difference yt = rt +
γmaxaQ(xt+1, a)−Q(xt, at) instead of simply the reward rt. Transformation of the temporal
differences avoids certain pitfalls of the reward transformation approach such as poor con-
vergence performance. This procedure has convergence guarantees even in this more general
setting under some assumptions on the value function v.

Theorem 24 (Q-learning Convergence [174, Theorem 3.2]). Suppose that v : Y → R is
in C(Y,R), is strictly increasing in y and there exists constants ε, L > 0 such that ε ≤
v(y)−v(y′)
y−y′ ≤ L for all y 6= y′. Moreover, suppose that there exists a ȳ such that v(ȳ) = v0. If the

non-negative learning rates αt(x, a) are such that
∑∞

t=0 αt(x, a) =∞ and
∑∞

t=0 α
2
t (x, a) <∞,

∀(x, a) ∈ X × A, then the procedure in (11.22) converges to Q∗(x, a) for all (x, a) ∈ X × A
with probability one.

The assumptions on αt are fairly standard and the core of the convergence proof is based
on the Robbins–Siegmund Theorem appearing in the seminal work [163].

We note that the assumptions on the value function v of Theorem 24 are fairly restrictive,
excluding many of the value functions presented in Section 11.2. For example, value functions
of the form ex and xζ do not satisfy the global Lipschitz condition.

We generalize the convergence result in Theorem 24 by modifying the assumptions on
the value function v to ensure that we have convergence of the Q-learning procedure for the
`-prospect and entropic value functions.
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Assumption 17. The value function v ∈ C1(Y,R) satisfies the following:

(i) it is strictly increasing in y and there exists a ȳ such that v(ȳ) = v0;

(ii) it is locally Lipschitz on any ball of finite radius centered at the origin;

Note that in comparison to the assumptions of Theorem 24, we have removed the as-
sumption that the derivative of v is bounded away from zero, and relaxed the global Lipschitz
assumption on v. We remark that the `-prospect and entropic value functions satisfy these
assumptions for all parameters and MDPs.

Let X be a complete metric space endowed with the L∞ norm and let Q ⊂ X be the
space of maps Q : X × A→ R. Further, define ṽ ≡ v − v0. We then re-write the Q–update
equation in the form

Qt+1(x, a) =
(

1− αt
α

)
Qt(x, a) +

αt
α

(
α(v(yt)− v0) +Qt(x, a)

)
(11.23)

where α ∈ (0,min{L−1, 1}] and we have suppressed the dependence of αt on (x, a). This is a
standard update equation form in, e.g., the stochastic approximation algorithm literature [89,
162, 181]. In addition, we define the map given by

(TQ)(x, a) = αEx′,w
[
ṽ
(
r(x, a, w) + γmax

a′∈A
Q(x′, a′)−Q(x, a)

)]
+Q(x, a) (11.24)

which we will prove is a contraction.

Theorem 25. Suppose that v satisfies Assumption 17 and that for each (x, a) ∈ X × A
the reward r(x, a, w) is bounded almost surely—that is, there exists 0 < M < ∞ such that
|r| < M almost surely. Moreover, let α ∈ (0,min{1, L−1}], for L, the Lipschitz constant of
v on BK(0).

a. Let BK(0) ⊂ Q be a closed ball of radius K > 0 centered at zero. Then, T : Q → X is
a contraction.

b. Suppose K is chosen such that

max{|ṽ(M)|, |ṽ(−M)|}
(1− γ)

< K min
y∈IK

Dṽ(y) (11.25)

where IK = [−M −K,M +K]. Then, T has a unique fixed point in BK(0).

The proof of Theorem 25 relies on the following fixed point theorem.

Theorem 26 (Fixed Point Theorem [93, Theorem 2.2]). Let (X, d) be a complete metric
space and let Bk(y) = {x ∈ X| d(x, y) < k} be a ball of radius r, where k > 0, centered at
y ∈ X. Let f : Bk(y) → X be a contraction map with contraction constant h < 1. Further,
assume that d(y, f(y)) < k(1− h). Then, f has a unique fixed point in Bk(y).
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Proof of Theorem 25.a. We claim that T is a contraction with constant ᾱ = (1−α(1−γ)εK)
where εK = min{Dṽ(y)| y ∈ IK}. Indeed, let y(Q(x, a)) = r(x, a, w) + γmaxa′ Q(x′, a′) −
Q(x, a) be the temporal difference and define g(x′, a′) = maxa′ Q(x′, a′). For any Q ∈ BK(0)
we note that the temporal differences are bounded—in fact, y(Q(x, a)) ∈ IK = [−M −
K,M + K]. Due to the monotonicity assumption on v, we have that for any y′, y ∈ IK ,
ṽ(y)− ṽ(y′) = ξ(y − y′) for some ξ ∈ [εK , L]. Recall the contraction map defined in (11.24):

(TQ)(x, a) =αEx′,w
[
ṽ
(
y(Q(x, a))

)]
+Q(x, a) (11.26)

Then, for any Q1 and Q2, we have that

(TQ1 − TQ2)(x, a) = αEx′,w[ṽ(y(Q1(x, a)))− ṽ(y(Q2(x, a)))] +Q1(x, a)−Q2(x, a)

≤ αEx′,w[ξx′,w(γ(g1(x′, a′) + g2(x′, a′))−Q1(x, a) +Q2(x, a))]

+Q1(x, a)−Q2(x, a)

≤ αγEx′,w[ξx′,w(g1(x′, a′) + g2(x′, a′))]

+ (1− αEx′,w[ξx′,w])(Q1(x, a)−Q2(x, a)).

Hence,

|(TQ1 − TQ2)(x, a)| ≤ (1− α(1− γ)Ex′,w[ξx′,w])‖Q1 −Q2‖∞
≤ (1− α(1− γ)εK)‖Q1 −Q2‖∞.

We claim that the constant ᾱK = 1−α(1−γ)εK < 1. Indeed, recall that 0 < α ≤ min{1, L−1}
so that if α = L−1, then ᾱK < 1 since L = maxy∈IK Dṽ(y) and εK = miny∈IK Dṽ(y).
On the other hand, if α = 1, then 1 ≤ L−1 ≤ (εK)−1 so that εK ≤ 1 which, in turn,
implies that ᾱK < 1. If 0 < α < min{1, L−1}, then ᾱK < 1 follows trivially from the
implications in the above two cases. Thus, T is a contraction on BK(0) with the constant
ᾱK = (1− α(1− γ)εK) < 1.

Proof of Theorem 25.b. Suppose K is chosen such that

max{|ṽ(M)|, |ṽ(−M)|}
1− γ

< K min
y∈IK

Dṽ(y). (11.27)

Now, we argue that T applied to the zero map, 0 ∈ BK(0), is strictly less than K(1− ᾱK).
Indeed, for any α ∈ (0,min{1, L−1}],

‖T (0)‖ ≤ αmax{|v(M)|, |v(−M)|} < (1− γ)KεKα = K(1− ᾱK)

Combinging the above fact with the fact that T is a contraction, the assumptions of The-
orem 26 hold and, hence there is a unique fixed point Q∗(x, a) ∈ BK(0) for each (x, a) ∈
X × A.

The following proposition shows that the `-prospect and entropic value functions sat-
isfy the assumption in (11.25). Moreover, it shows that the value functions which satisfy
Assumption 17 also satisfy (11.25).
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Proposition 20. Consider a MDP with reward r : X ×A×W → R bounded almost surely
by M and γ ∈ (0, 1) and consider the condition

max{|ṽ(M)|, |ṽ(−M)|}
(1− γ)

< K min
y∈IK

Dṽ(y). (11.28)

a. Suppose v satisfies Assumption 17 and that for some ε > 0, ε < v(y)−v(y′)
y−y′ for all y 6= y′.

Then (11.28) holds.

b. Suppose v is an `-prospect value function with arbitrary parameters (k−, k+, ζ−, ζ+)
satisfying Assumption 17. Then there exists a K such that the `-prospect value function
satisfies (11.28).

c. Suppose that v is an entropic value function. Then there exists a C > 0 such that for
any |λ| ∈ (0, C) where v satisfies Assumption 17, (11.28) holds with K = (λ)−1.

Proof of Proposition 20.a. Suppose v satisfies Assumption 17 and that for some ε > 0, ε <
v(y)−v(y′)
y−y′ for all y 6= y′. Then there exists a value of K, say K̄, such that (11.28) holds for

all K > K̄. Indeed since minK>0 εK > ε, for all K satisfying

max{|ṽ(M)|, |ṽ(−M)|}
ε(1− γ)

< K,

(11.28) must hold.

Proof of Proposition 20.b. We now show that for the `-prospect value function, (11.28) holds
for any choice of parameters (k−, k+, ζ−, ζ+). Indeed, for ζ+, ζ− ≥ 1 and any choice of k−, k+,

min
K>0

εK > ε > 0

where ε = min{limy↑0Dṽ(y), limy↓0Dṽ(y)}. Therefore, with ζ+, ζ− ≥ 1, for any K such that

max{|ṽ(M)|, |ṽ(−M)|}
ε(1− γ)

< K,

(11.28) must hold. For the case when either ζ+ < 1 or ζ− < 1 or both, we note that

min
y∈IK

Dṽ(y) = min

{
min

y∈{M+K,−M−K}
Dṽ(y), ε

}
.

so that we need only show that for ζ+ < 1 and ζ− < 1, there exists a K such that

max{|ṽ(M)|, |ṽ(−M)|}
1− γ

< KDṽ(K +M) (11.29)
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and
max{|ṽ(M)|, |ṽ(−M)|}

1− γ
< KDṽ(−K −M), (11.30)

respectively. Note that

Dṽ(y) =

{
k+ζ+(y − y0 + ε)ζ+−1, y ≥ y0

k−ζ−(y0 − y + ε)ζ−−1, y < y0

Without loss of generality, we show (11.29) must hold for ζ+ < 1 and reference point y0 = 0
(the proof for ζ− < 1 follows an exactly analogous argument). Plugging Dṽ(K +M) in and
rearranging, we get that we need to find a K such that

max{|ṽ(M)|, |ṽ(−M)|}
(1− γ)ξ+k+

< K(K +M + ε)ξ+−1

Since the right-hand side above is a function of K that is zero at K = 0 and approaches
infinity as K →∞, and the left-hand side is a finite constant, there is some K̄ such that for
all K > K̄, the above holds. Thus, for the `-prospect value function, our assumptions are
satisfied and there always exists a value of K to choose in Theorem 25.b.

Proof of Proposition 20.c. Suppose v is an entropic map. We note that, for the entropic
map, miny∈IK Dṽ(y) must occur at either K+M or −K−M if λ < 0 or λ > 0, respectively.
Without loss of generality, let λ > 0. First, consider that the derivative of ṽ,

Dṽ(y) =
1

λ
eλy,

is minimized on IK at −M − K for any M and K. Moreover, |ṽ(M)| > |ṽ(−M)|. Hence,
with K = λ−1, we can derive conditions on λ for which (11.28) holds. In other words, with
the specified K, we use (11.28) to dertermine which values of λ are admissible. Indeed, from
(11.28), we have

eλM

1− γ
<

1

λ
e−λM−1

which reduces to
λe2λM < (1− γ)e−1.

Let x = 2λM , so that
xex < 2M(1− γ)e−1.

Now, we can apply the Lambert W function which satisfies W (xex) = x for x ≥ 0, to get
that

x < W (2M(1− γ)e−1),

so that

λ <
W (2M(1− γ)e−1)

2M
.

Thus, if |λ| < W (2M(1−γ)e−1)
2M

, then for the choice K = 1
λ
, Theorem 25.b holds.
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With Theorem 25 and Proposition 20, we now prove convergence of Q-learning for risk-
sensitive reinforcement learning.

Theorem 27 (Q-learning Convergence on BK(0)). Suppose that v satisfies Assumption 17
and that for each (x, a) ∈ X × A the reward r(x, a, w) is bounded almost surely—that is,
there exists 0 < M <∞ such that |r| < M almost surely. Moreover, suppose the ball BK(0)
is chosen such that (11.25) holds. If the non-negative learning rates αt(x, a) are such that∑∞

t=0 αt(x, a) = ∞ and
∑∞

t=0 α
2
t (x, a) < ∞, ∀(x, a) ∈ X × A, then the procedure in (11.22)

converges to Q∗ ∈ BK(0) with probability one.

Given Theorem 25, the proof of Theorem 27 follows directly the same proof as provided
in [173]. The key aspect of the proof is combining the fixed point result of Theorem 25 with
Robbins–Siegmund Theorem [163].

Theorem 25, proposition 20, and Theorem 27 extend the results for risk-sensitive rein-
forcement learning presented in [173] by relaxing the assumptions on the value functions for
which the Q-learning procedure converges.

11.5 Chapter Summary

In this chapter we introduced the forward model under which we assume agents make deci-
sions in uncertain dynamic environments. We introduced formally the concept of an MDP
and built up the necessary concepts to formally define the risk-sensitive reinforcement learn-
ing problems. Crucially, this risk-sensitive reinforcement learning framework is amenable to
the integration of expressive behavioral models from behavioral economics and mathematical
finance. Building on previous work on risk-sensitive reinforcement learning we then derived
a procedure for Q-learning under more relaxed conditions on agents’ value functions that in
previous work.

In the next chapter, we investigate the inverse problem of learning an agent’s value
function or utility from data.
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Chapter 12

Inverse Risk-Sensitive Reinforcement
Learning

In this chapter, we formulate the inverse risk-sensitive reinforcement learning problem. To
begin, we select a parametric class of policies, {πθ}θ, πθ ∈ Π and parametric value function
{vθ}θ, vθ ∈ F where F is a family of value functions and θ ∈ Θ ⊂ Rd.

We use value functions such as those described in Section 11.2; e.g., if v is the prospect
theory value function defined in (11.2), then the parameter vector is θ = (k−, k+, ζ−, ζ+, γ, β).
For mappings v and Q, we now indicate their dependence on θ—that is, we will write
Q(x, a, θ) and vθ(y) = v(y, θ) where v : Y × Θ → R. Note that since y is the temporal
difference it also depends on θ and we will indicate this dependence where it is not directly
obvious by writing y(θ).

In the inverse reinforcement learning literature, it is common to assume that agents’
policies (the way they choose actions in states) are stochastic and derived from a smooth
map G that operates on the action-value function space. This defines a parametric policy
space. A common form of G is the space of Boltzmann policies of the form

Gθ(Q)(a|x) =
exp(βQ(x, a, θ))∑

a′∈A exp(βQ(x, a′, θ))
(12.1)

where β > 0 controls how close Gθ(Q) is to a greedy policy which we define to be any policy
π such that

∑
a∈A π(a|x)Q(x, a, θ) = maxa∈AQ(x, a, θ) at all states x ∈ X. We will utilize

policies of this form. Note that, as is pointed out in [136], the benefit of selecting strictly
stochastic policies is that if the true agent’s policy is deterministic, uniqueness of the solution
is forced.

We aim to tune the parameters so as to minimize some loss `(πθ) which is a function of the
parameterized policy πθ. By an abuse of notation, we introduce the shorthand `(θ) = `(πθ).
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12.1 An Optimization approach to Inverse

Risk-Sensitive Reinforcement Learning

The optimization problem is specified by

min
θ∈Θ
{`(θ)| πθ = Gθ(Q

∗), vθ ∈ F} (12.2)

Given a set of demonstrations D = {(xk, ak)}Nk=1, it is our goal to recover the policy and
estimate the value function.

There are several possible loss functions that may be employed. For example, suppose we
elect to minimize the negative weighted log-likelihood of the demonstrated behavior which
is given by

`(θ) =
∑

(x,a)∈D w(x, a) log(πθ(x, a)) (12.3)

where w(x, a) may, e.g., be the normalized empirical frequency of observing (x, a) pairs in
D, i.e. n(x, a)/N where n(x, a) is the frequency of (x, a).

Related to maximizing the log-likelihood, an alternative loss function is the relative en-
tropy or Kullback-Leibler (KL) divergence between the empirical distribution of the state-
action trajectories and their distribution under the learned policy—that is,

`(θ) =
∑

x∈Dx DKL(π̂(·|x)||πθ(·|x)) (12.4)

where
DKL(P ||Q) =

∑
i P (i) log (P (i)/Q(i)) (12.5)

is the KL divergence, Dx ⊂ D is the sequence of observed states, and π̂ is the empirical
distribution on the trajectories of D.

Computing Gradients in Inverse Risk-Sensitive Reinforcement
Learning

We propose to solve the problem of estimating the parameters of the agent’s value function
via gradient methods. This requires computing the derivative of Q∗(x, a, θ) with respect to
θ. Since Q∗(x, a, θ) is only defined as the fixed point of a contraction map. obtaining its
gradients is highly non-trivial, and in fact it is not clear if its gradients even exist.

Hence, given the form of the Q-learning procedure where the temporal differences are
transformed as in (11.22), in this section we show that it is in fact differentiable, and derive
a procedure for obtaining the derivative.

Using some basic calculus, given the form of smoothing map Gθ in (12.1), we can compute
the derivative of the policy πθ with respect to θk for an element of θ ∈ Θ:

Dθkπθ(a|x) = πθ(a|x)Dθk ln(πθ(a|x))

= πθ(a|x)β
(
DθkQ

∗(x, a, θ)−
∑

a′∈A πθ(a
′|x)DθkQ

∗(x, a′, θ)
)
. (12.6)
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We show that DθkQ
∗
θ can be calculated almost everywhere on Θ by solving fixed-point equa-

tions similar to the Bellman-optimality equations.
To do this, we require some assumptions on the value function v.

Assumption 18. The value function v ∈ C1(Y ×Θ,R) satisfies the following conditions:

(i) v is strictly increasing in y and for each θ ∈ Θ, there exists a ȳ such that v(ȳ, θ) = v0;

(ii) for each θ ∈ Θ, on any ball centered around the origin of finite radius, v is locally
Lipschitz in y with constant Ly(θ) and locally Lipschitz on Θ with constant Lθ;

(iii) there exists ε > 0 such that ε ≤ v(y,θ)−v(y′,θ)
y−y′ for all y 6= y′.

Define Ly = maxθ Ly(θ) and L = maxθ{Ly(θ), Lθ}. As before, let ṽ ≡ v−v0. We re-write
the Q–update equation as

Qt+1(x, a, θ) =
(
1− αt

α

)
Qt(x, a, θ) + αt

α

(
α(v(yt(θ), θ)− v0) +Qt(x, a, θ)

)
(12.7)

where yt(θ) = rt+γmaxaQt(xt+1, a, θ)−Qt(xt, at, θ) is the temporal difference, α ∈ (0,min{L−1, 1}]
and we have suppressed the dependence of αt on (x, a). In addition, define the map T such
that

(TQ)(x, a, θ) = αEx′,wṽ(y(θ), θ) +Q(x, a, θ) (12.8)

where y(θ) = r(x, a, w) + γmaxa′∈AQ(x′, a′, θ) − Q(x, a, θ). This map is a contraction for
each θ. Indeed, fixing θ, when v satisfies Assumption 18, then for cases where v0 = 0, T was
shown to be a contraction in [126] and in the more general setting (i.e. v0 6= 0), in [174].

Our first main result on inverse risk-sensitive reinforcement learning, which is the theo-
retical underpinning of our gradient-based algorithm, gives us a mechanism to compute the
derivative of Q∗θ with respect to θ as a solution to a fixed-point equation via a contraction
mapping argument.

Let Diṽ(·, ·) be the derivative of ṽ with respect to the i–th argument where i = 1, 2.

Theorem 28. Assume that v ∈ C1(Y × Θ,R) satisfies Assumption 18. Then the following
statements hold:

a. Q∗θ is locally Lipschitz continuous as a function of θ—that is, for any (x, a) ∈ X × A,
θ, θ′ ∈ Θ, |Q∗(x, a, θ)−Q∗(x, a, θ′)| ≤ C‖θ − θ′‖ for some C > 0;

b. except on a set of measure zero, the gradient DθQ
∗
θ is given by the solution of the

fixed–point equation

φθ(x, a) =αEx′,w
[
D2ṽ(y(θ), θ) +D1ṽ(y(θ), θ)

· (γφθ(x′, a∗x′)− φθ(x, a))
]

+ φθ(x, a) (12.9)

where φθ : X × A → Rd and a∗x′ is the action that maximizes
∑

a′∈A π(a|x′)Q(x′, a, θ)
where π is any policy that is greedy with respect to Qθ.
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To give a high-level outline of this proof, we use an induction argument combined with
a contraction mapping argument on the map

(Sφθ)(x, a) =αEx′,w
[
D2ṽ(y(θ), θ) +D1ṽ(y(θ), θ)

· (γφθ(x′, a∗x′)− φθ(x, a))
]

+ φθ(x, a). (12.10)

The almost everywhere differentiability follows from Rademacher’s Theorem (see, e.g., [71,
Thm. 3.1]).

The gradient algorithm and Theorem 28 are consistent with the gradient descent frame-
work which uses the contravariant gradient for learning as introduced in [10] for Riemannian
parameter spaces Θ. Of course, when Θ is Euclidean and the coordinate system is orthonor-
mal, the gradient we normally use (covariant derivative) coincides with the contravariant
gradient. However, using the covariant derivative does not generalize to admissible parameter
spaces with more structure.

Moreover, as is pointed out in [136], the trajectories that result from the solution to
the gradient algorithm are equivalent up to reparameterization through a smooth invertible
mapping with a smooth inverse. Contravariant gradient methods have been shown to be
asymptotically efficient in a probabilistic sense and thus, they tend to avoid plateaus [10,
149].

Given these comments, we now proceed to prove Theorem 28. To do so, we formally
define the concept of a subdifferential.

Definition 19 (Fréchet Subdifferentials). Let U be a Banach space and U∗ its dual. The
Fréchet subdifferential of f : U → R at u ∈ U , denoted by ∂f(u) is the set of u∗ ∈ U∗ such
that

lim
h→0

inf
h6=0
‖h‖−1 (f(u+ h)− f(u)− 〈u∗, u〉) ≥ 0. (12.11)

Given this definition we recall a useful property of subdifferentials.

Proposition 21 ([88, 136]). For a finite family (fi)i∈I of real-valued functions (where I is
a finite index set) defined on U , let f(u) = maxi∈I fi(u). If u∗ ∈ ∂fi(u) and fi(u) = f(u),
then u∗ ∈ ∂fi(u). If f1, f2 : U → R, α1, α2 ≥ 0, then α1∂f1 + α2∂f2 ⊂ ∂(α1f1 + α1f2).

Finally, we present a useful proposition on the convergence of subdifferentials of a se-
quence of functions which is a crucial to our proof.

Proposition 22 ([136, 148]). Suppose that (fn)n∈N is a sequence of real-valued functions on
U which converge pointwise to f . Let u ∈ U , u∗n ∈ ∂fn(u) ⊂ U∗ and suppose that (u∗n) is
weak∗–convergent to u∗ and is bounded. Moreover, suppose that at u, for any ε > 0, there
exists an N > 0 and δ > 0 such that for any n ≥ N , h ∈ BU(0, δ), a δ–ball around 0,
fn(u+ h) ≥ fn(u) + 〈u∗n, h〉 − ε‖h‖. Then u∗ ∈ ∂f(u).

Given these definitions and results now provide the proof for parts (a) and (b) of Theo-
rem 28.
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Proof of Theorem 28.a. Let Q0(x, a, θ) ≡ 0. Then it is trivial that Q0(x, a, θ) is locally
Lipschitz in θ on Θ. Supposing that Qt(x, a, θ) is Lt–locally Lipschitz in θ, then we need to
show that TQt(x, a, θ) is locally Lipschitz which we recall is defined by

(TQ)(x, a, θ) = αEx′,wṽ(y(θ), θ) +Q(x, a, θ) (12.12)

where y(θ) = r(x, a, w) + γmaxa′∈AQ(x′, a′, θ)−Q(x, a, θ).
Since ṽ ≡ v− v0, it also satisfies Assumption 18. Let Ly = max{Ly(θ)|θ ∈ Θ} and define

gt(x, θ) = maxa′ Qt(x, a
′, θ). Note that since Qt is assumed Lipschitz with constant Lt, so is

gt. Supressing the dependent of TQ on (x, a), we have that

TQt(θ)− TQt(θ
′) = αEx′,w[ṽ(y(θ), θ)− ṽ(y(θ′), θ′)] +Qt(x, a, θ)−Qt(x, a, θ

′)

= αEx′,w[ṽ(y(θ), θ)− ṽ(y(θ′), θ) + ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)] +Qt(θ)−Qt(θ
′).

Due to the monotonicity of ṽ in y, we know that for all y1, y2 there exists ξ ∈ [ε, Ly] such
that

ṽ(y1, θ)− ṽ(y2, θ) = ξ(y1 − y2).

Hence,

Ex′,w[ṽ(y(θ), θ)− ṽ(y(θ′), θ) + ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)]

= Ex′,w[ξx′,w(y(θ)− y(θ′)) + ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)]

where we simply denote the dependence of ξ on x′ and w, the components subject to ran-
domness. Then,

TQt(θ)− TQt(θ
′) = αEx′,w

[
ξx′,w(y(θ)− y(θ′)) + ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)

]
+Qt(θ)−Qt(θ

′)

= αγEx′,w[ξx′,w(gt(x
′, θ)− gt(x′, θ′))]− αEx′,w[ξx′,w(Qt(θ)−Qt(θ

′))]

+ αEx′,w[ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)] +Qt(θ)−Qt(θ
′)

= αγEx′,w[ξx′,w(gt(x
′, θ)− gt(x′, θ′))]− αEx′,w[ξx′,w](Qt(θ)−Qt(θ

′))

+ αEx′,w[ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)] +Qt(θ)−Qt(θ
′)

= (1− αEx′,w[ξx′,w])(Qt(θ)−Qt(θ
′)) + αγEx′,w[ξx′,w(gt(x

′, θ)− gt(x′, θ′))]
+ αEx′,w[ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)]

so that

‖TQt(θ)− TQt(θ
′)‖ ≤((1− α(1− γ)ε) + αLθ)Lt‖θ − θ′‖.

Hence, letting ᾱ = 1 − α(1 − γ)ε, we have that TQt(·, ·, θ) is Lt+1–locally Lipschitz with
Lt+1 = ᾱLt + αLθ. With L0 = 0, by iterating, we get that

Lt+1 = (ᾱt + · · ·+ ᾱ + 1)αLθ.

As stated in Section 12.1, T is a contraction so that T nQ0 → Q∗θ = Q∗(·, ·, θ) as n → ∞.
Hence, by the above argument, Q∗θ is αLθ/(1− ᾱ)–Lipschitz continuous.
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Proof of Theorem 28.b. Consider a fixed vector θ ∈ Rd. We now show that the operator S
acting on the space of functions φθ : X × A→ Rd and defined by

(Sφθ)(x, a) = αEx′,w
[
D2ṽ(y(θ), θ) +D1ṽ(y(θ), θ)(γφθ(x

′, a∗x′)− φθ(x, a))
]

+ φθ(x, a)
(12.13)

is a contraction where a∗x′ is the action that maximizes
∑

a′∈A π(a|x)Q(x, a, θ) for any greedy
policy π with respect to Qθ. Indeed,

(Sφθ − Sφ′θ)(x, a) = αEx′,w[D1ṽ(y(θ), θ)
(
γ(φθ(x

′, a∗x′)− φ′θ(x′, a∗x′))− (φθ(x, a)− φ′θ(x, a))
)
]

+ φθ(x, a)− φ′θ(x, a)

≤ (1− α(1− γ)Ex′,w[D1ṽ(y(θ), θ)])‖φθ − φ′θ‖∞
so that, by Assumption 18,

‖(Sφθ − Sφ′θ)(x, a)‖ ≤ (1− α(1− γ)ε)‖φθ − φ′θ‖∞.

Thus, ᾱ is the required constant for ensuring S is a contraction. We remark that S operates
on each of the d components of θ separately and hence, it is a contraction when restricted
to each individual component.

Let π denote a greedy policy with respect to Q∗θ and let πn be a sequence of policies that
are greedy with respect to Qn = T nQ0 where ties are broken so that

∑
(x,a)∈X×A |π(a|x) −

πn(a|x)| is minimized. Then for large enough n, πn = π. Denote by Sπn the map S defined
in (12.10) where πn is the implemented policy. Consider the sequence φθ,n such that φθ,0 = 0
and φθ,n+1 = Sπnφθ,n. For large enough n, φθ,n+1 = Sπφθ,n. Applying the (local) contraction
mapping theorem (see, e.g., [168, Theorem 3.18]) we get that limn→∞ S

nφ0 converges to a
unique fixed point.

Moreover, by induction and Proposition 21, φθ,n(x, a) ∈ ∂θQn(x, a, θ). Hence, by Proposi-
tion 22, the limit is a subdifferential of Q∗θ since ṽ is Lipschitz on Y and Θ and the derivatives
of ṽ are uniformly bounded. Since by part (a), Q∗θ is locally Lipschitz in θ, Rademacher’s
Theorem (see, e.g., [71, Thm. 3.1]) tells us it is differentiable almost everywhere (except a set
of Lebesgue measure zero). Since Q∗θ is differentiable, its subdifferential is its derivative.

Theorem 28 gives us a procedure—namely, a fixed–point equation which is a contraction—
to compute the derivative DθkQ

∗ so that we can compute the derivative of our loss function
`(θ). Hence the gradient method provided in Algorithm 4 for solving the inverse risk-sensitive
reinforcement learning problem is well formulated.

Algorithm 4 Gradient-Based Risk-Sensitive IRL

Input : Observed data D, Number of iterations N
5 Initialize: θ ← θ0 while k < N & ‖`(θ)− `(θ−)‖ ≥ δ do
6 ηk ← LineSearch(`(θ−)), Dθ`(θ)

θ ← θ − ηkDθ`(θ)
k ← k + 1

7 return θ
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Remark 9. The prospect theory value function v given in (11.2) is not globally Lipschitz in
y—in particular, it is not Lipschitz near the reference point yo—for values of ζ+ and ζ− less
than one. Moreover, for certain parameter combinations, it may not even be differentiable.
The `-prospect function, on the other hand, is locally Lipschitz and its derivative near the ref-
erence point is bounded away from zero. This makes it a more viable candidate for numerical
implementation. Its derivative, however, is not bounded away from zero as y →∞.

This being said, we note that if the procedure for computing Q∗ follows an algorithm which
implements repeated applications of the map T is initialized with Q0(x, a) being finite for all
(x, a) and r is bounded for all possible (x, a, w) pairs, then the derivative of ṽ will always be
bounded away from zero for all realized values of y in the procedure. An analogous statement
can be made regarding the computation of DθQ

∗. Hence, the procedures for computing Q∗ and
DθQ

∗ for all the value functions we consider (excluding the classical prospect value function)
are guaranteed to converge (except on a set of measure zero).

Let us translate this remark into a formal result. Consider a modified version of Assump-
tion 18:

Assumption 19. The value function v ∈ C1(Y ×Θ,R) satisfies the following:

(i) it is strictly increasing in y and for each θ ∈ Θ, there exists a ȳ such that v(ȳ, θ) = v0;

(ii) for each θ ∈ Θ, it is Lipschitz in y with constant Ly(θ) and locally Lipschitz on Θ with
constant Lθ.

Simply speaking, analogous to Assumption 17, we have removed the uniform lower bound
on the derivative of v. Moreover, Theorem 25 gives us that T , as defined in (12.8), is a
contraction on a ball of finite radius for each θ under Assumption 17.

Theorem 29. Assume that v ∈ C1(Y × Θ,R) satisfies Assumption 19 and that the reward
r : X×A×W → R is bounded almost surely by M > 0. Then the following statements hold.

1. For any ball BK(0), Q∗θ is locally Lipschitz-continuous on BK(0) as a function of θ—
that is, for any (x, a) ∈ X × A, θ, θ′ ∈ Θ, |Q∗(x, a, θ) − Q∗(x, a, θ′)| ≤ C‖θ − θ′‖ for
some C > 0.

2. For each θ, let BK(0) be the ball with radius K satisfying

max{|ṽ(M, θ)|, |ṽ(−M, θ)|}
1− γ

< K min
y∈IK

.Dṽ(y, θ) (12.14)

Except on a set of measure zero, the gradient DθQ
∗
θ(x, a) ∈ BK(0) is given by the

solution of the fixed–point equation

φθ(x, a) =αEx′,w
[
D2ṽ(y(θ), θ) +D1ṽ(y(θ), θ)(γφθ(x

′, a∗x′)− φθ(x, a))
]

+ φθ(x, a)

where φθ : X × A → Rd and a∗x′ is the action that maximizes
∑

a′∈A π(a|x′)Q(x′, a, θ)
with π being any policy that is greedy with respect to Qθ.
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The proof the above theorem follows the same techniques as in Theorem 25 and Theo-
rem 28. Below, we provide an outline of the proof, and for brevity, direct the reader to the
analogous sections of the two proceeding proofs as required.

Proof of Theorem 29.a. For each θ, the proof that TQ(x, a, θ) is a contraction, and thus has
a fixed point Q∗θ ∈ BK(0), follows directly that of Theorem 25 where instead of Q1 and Q2 we
have Q(θ) and Q(θ′). Given that T is a contraction, the proof that Q∗θ ∈ BK(0) is Lipschitz
with constant αLθ/(1− ᾱK) follows a similar argument to Theorem 28.

Proof of Theorem 29.b. The proof that S is a contraction on BK(0) follows a similar argu-
ment to that of Theorem 28, part (b). Indeed,

(Sφθ − Sφ′θ)(x, a) = αEx′,w[D1ṽ(y(θ), θ)
(
γ(φθ(x

′, a∗x′)− φ′θ(x′, a∗x′))− (φθ(x, a)− φ′θ(x, a))
)
]

+ φθ(x, a)− φ′θ(x, a)

≤ (1− α(1− γ)Ex′,w[D1ṽ(y(θ), θ)])‖φθ − φ′θ‖∞

so that, by Assumption 17,

‖(Sφθ − Sφ′θ)(x, a)‖ ≤ (1− α(1− γ)εK)‖φθ − φ′θ‖∞

where εK = min{D1v(y, θ)| y ∈ IK}. Note that ᾱK = 1 − α(1 − γ)εK < 1 for the same
reasons as given in the proof of Theorem 25 since α ∈ (0,min{1, L−1}].

For each θ ∈ Θ, let BK(0) be the ball with radius K satisfying

max{|ṽ(M, θ)|, |ṽ(−M, θ)|}
1− γ

< K min
y∈IK

Dṽ(y, θ).

Then, for each θ, S satisfies Theorem 26 so that it has a unique fixed point in BK(0).
Following the same argument as in the proof of Theorem 28, part (b), by induction

and Proposition 21, φθ,n(x, a) ∈ ∂θQn(x, a, θ). Hence, by Proposition 22, the limit is a
subdifferential of Q∗θ. By part (a), Q∗θ is locally Lipschitz in θ so that Rademacher’s Theorem
(see, e.g., [71, Thm. 3.1]) implies it is differentiable almost everywhere (except a set of
Lebesgue measure zero). Since Q∗θ is differentiable, its subdifferential is its derivative.

Note that for each fixed θ, condition (12.14) is the same as condition (11.25). Moreover,
proposition 20 shows that for the `-prospect and entropic value functions, such a K must
exist for any choice of parameters.

Complexity

Small dataset size is often a challenge in modeling sequential human decision-making owing in
large part to the frequency and time scale on which decisions are made in many applications.
To properly understand how our gradient-based approach performs for different amounts
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of data, we analyze the case when the loss function, `(θ), is either the negative of the log-
likelihood of the data—see (12.3) above—or the sum over states of the KL divergence between
the policy under our learned value function and the the empirical policy of the agent—see
(12.4) above. These are two of the more common loss functions used in the literature.

We first note that maximizing the log-likelihood is equivalent to minimizing a weighted
sum over states of the KL divergence between the empirical policy of the true agent, π̂n,
and the policy under the learned value function, πθ. In particular, through some algebraic
manipulation the weighted log-likelihood can be re-written as

`(θ) =
∑

x∈Dx w(x)DKL(π̂n(·|x)||πθ(·|x)) (12.15)

where w(x) is the frequency of state x normalized by |D| = N . This approach has the added
benefit that it is independent of θ and therefore will not be affected by scaling of the value
functions [136].

Both cost functions are natural metrics for performance in that they minimize a measure
of the divergence between the optimal policy under the learned agent and empirical policy
of the true agent. While the KL-divergence is not suitable for our analysis, since it is not a
metric on the space of probability distributions, it does provide an upper bound on the total
variation (TV) distance via Pinsker’s inequality:

δ(π̂n(·|x), πθ(·|x)) ≤
√

2DKL(π̂n(·|x)||πθ(·|x)) (12.16)

where δ(π(·|x), πθ(·|x)) is the TV distance between π̂n(·|x) and πθ(·|x), defined as

δ(π̂n(·|x), πθ(·|x)) = 1
2
‖πθ(·|x)− π̂n(·|x)‖1. (12.17)

The TV distance between distributions is a proper metric. Furthermore, use of the two cost
functions described above will also translate to minimizing the TV distance as it is upper
bounded by the KL divergence.

We first note that, for each state x, we would ideally like to get a bound on δ(π(·|x), πθ(·|x)),
the TV distance between the agent’s true policy π(·|x) and the estimated policy πθ(·|x). How-
ever, we only have access to the empirical policy π̂n. We therefore use the triangle inequality
to get an upper bound on δ(π(·|x), πθ(·|x)), in terms of values for which we can calculate
explicitly or construct bounds. In particular, we derive the following bound:

δ(πθ(·|x), π(·|x)) ≤ δ(π̂n(·|x), πθ(·|x)) + δ(π̂n(·|x), π(·|x)). (12.18)

Note that δ(π̂n(·|x), πθ(·|x)) is tantamount to a training error as metricized by the TV
distance, and is upper bounded by a function of the KL divergence (which appears in the
loss function) via (12.16).

The first term in (12.18), δ(π̂n(·|x), π(·|x)), is the distance between the empirical pol-
icy and the true policy in state x. Using the Dvoretzky Kiefer-Wolfowitz inequality (see,
e.g., [112, 127]), this term can be bounded above with high probability. Indeed,

Pr(‖π(·|x)− π̂n(·|x)‖1 > ε) ≤ 2|A|e−2nε2/|A|2 , ε > 0 (12.19)
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where n is the number of samples from the distribution π(·|x) and |A| is the cardinality of
the action set. Combining this bound with (12.18), we get that, with probability 1− ν,

δ(πθ(·|x), π(·|x)) ≤|A|
(

2

n
log

2|A|
ν

)1/2

+ δ(π̂n(·|x), πθ(·|x)). (12.20)

Supposing Algorithm 1 achieves a sufficiently small training error ε > 0, the second term
above can be bounded above by a calculable small amount which we define notationally
to be ε̄ > 0. Supposing ε̄ is also sufficiently small, the dominating term in the distance
between π and πθ is the first term on the right-hand side in (12.20). This gives us a O(n−1/2)
convergence rate on the per state level. This rate is seen qualitatively in our experiments on
sample complexity outlined in Section 12.2.

We note that this bound is for each individual state x. Thus, for states that are visited
more frequently by the agent, we have better guarantees on how well the policy under the
learned value function approximates the true policy. Moreover, it suggests ways of designing
data collection schemes to better understand the agent’s actions in less explored regions of
the state space.

12.2 Examples

Let us now demonstrate the performance of the proposed method on two examples. While we
are able to formulate the inverse risk-sensitive reinforcement learning problem for parameter
vectors θ that include γ and β, in the following examples we use γ = 0.95 and β = 4. The
purpose of doing this is to explore the effects of changing the value function parameters on
the resulting policy.

In all experiments, our optimization objective is the negative log-likelihood of the data,
defined in (12.3) and the valuation function we use is induced by an acceptance level set
defined for a value function that we specify and acceptance level of zero. Furthermore, for the
prospect and `-prospect value functions, we use a reference point of zero1. These choices are
aimed at further deconflating our observations of the behavior—in terms of risk-sensitivity
and loss-aversion—that results from different choices of the value function parameters from
other characteristics of the MDP or learning algorithm.

Grid World

In our first test of the proposed gradient-based inverse risk-sensitive reinforcement learning
approach, we utilize data from agents operating on the canonical Grid World MDP. In the
remainder, we describe the setup of the MDP, the three types of experiments we conduct,
and qualitative results on sample complexity. The three experiments are described as follows:

1Individually, the acceptance level and the reference point can be recentered around zero without loss of
generality.
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(a) (b)

Figure 12.1: (a) Grid World layout showing the reward structure. (b) The five behavior
profiles of risk-sensitive policies through the Grid World. These five paths correspond to the
maximum likelihood paths of agents with various parameter combinations for their prospect,
`-prospect and entropic map value functions. To generate each behavior with the prospect
and `-prospect value functions, the following parameter combinations ({k−, k+, ζ−, ζ+})
were used: Behavior 1 : {0.1, 1.0, 0.5, 1.5}; Behavior 2 : {1.0, 1.0, 1.0, 1.0}; Behavior 3 :
{1.0, 1.0, 1.1, 0.9}; Behavior 4 : {5.0, 1.0, 1.1, 0.8}; Behavior 5 : {5.0, 1.0, 1.5, 0.7}. To gen-
erate the behaviors with the entropic map value function, we varied λ from 1 to −1.

1. Learning the value function of an agent with the correct model for the value function
(e.g., learning a prospect value function when the agent also has a prospect value
function);

2. Learning the value function of an agent with the wrong model for the value function
(e.g., learning an entropic map value function when the agent has a prospect value
function);

3. Exploring the dependence of our training error on the number of sample trajectories
collected from the agent.

We measure the performance of the gradient-based approach via the TV norm, defined in
(12.17), of the difference between the policy in state x of the true agent and the policy in
state x under the learned value function.



CHAPTER 12. INVERSE RISK-SENSITIVE REINFORCEMENT LEARNING 180

Value Function Prospect `-prospect Entropic
Behavior Mean Variance Mean Variance Mean Variance

Behavior 1 1.9e-2 6.3e-4 1.3e-2 2.3e-4 1.6e-3 5.1e-6
Behavior 2 1.5e-2 2.0e-4 1.0e-2 9.6e-5 2.6e-4 1.4e-7
Behavior 3 2.0e-2 3.6e-4 1.1e-2 1.3e-4 2.2e-3 1.5e-5
Behavior 4 1.6e-2 2.0e-4 1.2e-2 1.4e-4 4.6e-4 1.8e-7
Behavior 5 4.7e-2 3.0e-3 1.0e-2 3.4e-4 6.6e-4 2.2e-7

(a) Learning with the Correct Model

Value Function Mean Variance

Prospect 1.5e-2 1.6e-4
`-prospect 1.5e-2 1.6e-4

Entropic Map 5.4e-2 1.4e-2

(b) Learning with an Incorrect Model

Table 12.1: (a) In this experiment, the learning is done with the same type of value function as
that of the agent from which the data was collected. We report the mean and variance across
all states in the grid of the TV distance between the true policy and the policy under the
learned value function. We note that these are the results of the best of five randomly sampled
initial sets of parameters. (b) In this experiment, 10,000 trajectories were sampled from the
policy of an agent with the prospect value function with {k−, k+, ζ−, ζ+} = {2.0, 1.0, 0.9, 0.7}.
We then used this data to learn prospect, `-prospect, and entropic map value functions. We
report the mean and variance across all states in the grid of the TV distance between the
true policy and the policy under the learned value function. Again, we note that we present
the best of five randomly sampled initial sets of parameters.

Setup

Our instantiation of Grid World is shown in Fig. 12.1a. An agent operating in this MDP
starts in the blue box and aims to maximize their value function over an infinite time horizon.
Every square in the grid represents a state, and the action space allows movement in to any of
the eight neighboring states A = {N,NE,E, SE, S, SW,W,NW}. Each action corresponds
to a movement in the specified direction (where we have used the usual abbreviations for
directions). The black and green states are absorbing, meaning that once an agent enters
that state they can never leave no matter their action. In all the other states, the agent
moves in their desired direction with probability 0.93 and they move in any of the other
seven directions with probability 0.01. To make the grid finite, any action taking the agent
out of the grid has probability zero, and the other actions are re-weighted accordingly. The
reward structure of our instantiation of the Grid World is shown in Fig. 12.1a as well. The
agent gets a reward of −1 and +1 for being in the black and green states respectively. In
the darker gray states, the agent gets a reward of −0.1. In all other states the agent is given
a reward of +0.1.
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Learning with the correct model of the value function

This experiment is intended to validate our approach on a simple example. We trained agents
with various parameter combinations of the four value functions described in Section 11. The
resulting policies of these agents are classified into five behavior profiles via their maximum
likelihood path through the MDP. These behaviors are outlined in Fig. 12.1b. Each behavior
corresponds to the maximum likelihood path resulting from a different risk profile: Behavior
1 corresponds to a profile that is risk-seeking on gains, Behavior 2 corresponds to a profile
that is risk neutral on gains and losses (this is also the behavior corresponding to the non-
risk-sensitive reinforcement learning approach), and Behaviors 3-5 correspond to behaviors
that are increasingly risk averse on losses and increasingly weigh losses more than gains.

We sampled 1,000 trajectories from the policies of these agents and used the data to
learn the value function of the agent using our gradient-based approach. In this experiment,
the learned value function is of the same type as that of the agent. For example, the data
sampled from the policy of an agent having a prospect value function and exhibiting Behavior
1 is used to learn the parameters of a prospect value function. We note that due to the
non-convexity of the problem, we use five randomly generated initial parameter choices.

The results we report are associated with the value function that achieves the minimum
value of the objective. In Table 12.1a, we report the mean TV distance between the two
policies across all states, as well as the variance in the TV distance across states. In all the
cases considered in Table 12.1a, the learned value functions produce policies that correctly
match the maximum likelihood path of the true agent.

We remark that the performance for learning a prospect value function was consistently
worse than learning an `-prospect function. This is most likely due to the fact that the
prospect value function is not Lipschitz around the reference point. Thus, we have no
guarantees of differentiability of Q∗ with respect to θ for the prospect value function. This
translates to numerical issues in calculating the gradient which, in turn, results in worse
performance.

The entropic value function performs best of the four value functions, primarily due to
the fact that there is only one parameter to learn, and the rewards and losses are all relatively
small. In fact, in all the cases the learned entropic map value function coincided with the
true value function of the agent, thereby indicating that the objective function was relatively
convex around the parameter values we tried.

Learning with an incorrect model of the value function

The second experiment consists of learning different types of value functions from the same
dataset. This is a more realistic experiment since the value function of human subjects will
very likely be different than any model we could choose. The motivation for this experiment
is to ensure that the results and risk-profiles learned were consistent across our choice of
model.
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The experiment uses 10,000 samples from an agent with a prospect value function and
learned prospect, `-prospect, and entropic map value functions. The mean TV distance
between the policy of the true agent and the policies under the learned value functions are
shown in Table 12.1b. The true agent’s value function has parameters {k−, k+, ζ−, ζ+} =
{2.0, 1.0, 0.9, 0.7}—that is, it is risk-seeking in losses, risk-averse in gains, and loss averse.

Again, the learned value functions all have policies that replicated the maximum likeli-
hood behavior of the true agent. We note that the `-prospect and prospect functions perform
as well as each other on this data, but the `-prospect function showed none of the numerical
issues that we encountered with the prospect function (see Section 12.2 for further detail on
numerical considerations). Further, learning with the `-prospect function is markedly faster
than with the prospect function. Again, this is most likely due to the fact that the prospect
function is not locally Lipschitz continuous around the reference point. Thus, the values of α
required to make the various contraction maps converge to their fixed points are vanishingly
small. This results in slow convergence.

The fact that the entropic value functions does not perform as well is most likely due to
the fact that it cannot accurately match the shape of the prospect function at these values;
e.g., the entropic map is always either convex or concave.

Qualitative results on sample complexity

One of the challenges in modeling human decision-making is the lack of access to large
datasets, particularly when it comes to sequential decisions that are made over longer periods
of time. This is counter to the usual learning scenarios addressed in the much of the learning
literature. For instance, if the focus is learning to control a robot, then it may be possible to
generate a large number of demonstrations very quickly. This motivates our third experiment
with the Grid World MDP—i.e. an experiment that allows us to better understand how the
performance of our approach varies with the size of the dataset.

In this experiment, we first train an agent with an entropic map value function and then
create sets of sample trajectories from the agent’s policy varying between zero and 10,000
in size. Next, using each of these sample sets, we learn the value function via our approach
and plot the mean TV distance across all states between the true policy of the agent and
the policy under the learned value function. This is shown in Fig. 12.2.

First, we note that more data does translate to consistently better results. This matches
our intuition that the better our data matches the policy of the true agent, the better we
can learn a value function that would be associated with that policy. Of particular interest,
though, is the rate at which the average TV across all the states decreases with the number
of trajectories sampled. The rate, which is on the order of x−0.54, is very close to the
asymptotic rate, derived in Section 7, of O(x−1/2). This suggests that the dominating factor
in the performance of our algorithm is how well our data matches the underlying policy, and
not the non-convexity of the objective function. In fact, this provides empirical evidence
that the second term in (12.20)—i.e. δ(π̂n(·|x), πθ(·|x))—must also be O(x−1/2).
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Figure 12.2: The mean TV distance across all states between the policy of the agent and
the policy under the learned value function, as a function of the number of trajectories in the
dataset. To construct each data point, we sample five different datasets of the same number
of trajectories from the agent’s policy. We then try five random initial parameter values
per dataset and take the value function that achieves the minimum value of the objective.
Finally, we calculate the mean TV distance between the policy of the agent and the policy
under the learned value function for each dataset and then average these values. The bars
show the 95% confidence interval around the mean of the five datasets of the given size.
Finally, we note that the trendline y = 0.04x−0.54 is the best fit of the form y = axb to the
data points, for constant terms a, b.

A Passenger’s View of Ride-Sharing

In addition to the Grid World example, we explore a ride-sharing example for which the
MDP is created from real-world data and we simulate agents with different risk preference
and loss aversion profiles2.

Reference dependence models are increasingly being used to model travel choices and
activity scheduling [100]. More broadly, behavioral modeling has been used quite extensively

2We adopt the surge pricing model here due to the availability of data even though ride-sharing services
such as Uber are moving towards personalized pricing schemes that combine data on exogenous factors such
as demand and driver supply with data on riders’ individual choices to deterime a price that reflects what
the rider is willing to pay. This kind of pricing model motivates even more strongly the need for techniques
that are considerate of how humans actually make decisions.
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Figure 12.3: Plots showing the probabilities of taking a ride in each state under the true
and learned optimal policies for true and learned agents with prospect value functions. The
true agent has prospect gain parameters of k+ = 0.5 and k− = 1.0 for all three plots. The
value function used for the right most graphic (Fig. 12.3c) is most representative of human
decision-making since humans tend to be risk-averse in gains, risk-seeking in losses, are loss
averse. In these plots, the trend we see is that the more risk-averse, the less likely they policy
suggests taking the ride.

in transportation to model travel choices (see, e.g., [13, 31, 85, 200]).
Ride-sharing is a disruptive technology that offers commuters an alternative mode of

transport. Many ride-sharing companies set prices based on both supply of drivers and
demand of passengers. As a result, the price can fluctuate over time and space and passengers
react differently to price changes depending on their risk preferences.

From the passenger’s view point, we model the ride-sharing MDP as follows. The action
space is A = {0, 1} where 0 corresponds to ‘wait’ and 1 corresponds to ‘ride.’ The state
space X = X ×T ∪ {xf} where X is a finite set of surge price multipliers, T = {0, . . . , Tf} is
the part of the state corresponding to the time index, and xf is a terminal state representing
the completed ride that occurs when a ride is taken. At time t, the state is notationally
given by (xt, t). The reward rt is modeled as a random variable that depends on the current
price as well as a random variable Z(t) for travel time. In particular, for any time t < Tf the
reward is given by

R(xt, at) =

{
r̄, at = 0 (’wait’)
r̃t, at = 1 (’ride’)

(12.21)

with r̄ < 0 a constant and r̃t = St − xt(pbase + pmileD + pminZ(t)) where D is the distance
in miles, St is a time dependent satisfaction (we selected it to linearly decrease in time from
some initial satisfaction level), and pbase, pmile, and pmin are the base, per mile, and per min
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Figure 12.4: Plots showing the probabilities of taking a ride in each state under the true and
learned optimal policies for true and learned agents with prospect value functions. The true
agent has prospect parameters of ζ− = ζ+ = 1.0 for all three plots, while we vary (k+, k−) to
capture different degrees of loss-aversion. In these plots, the trend we see is that the more
loss-averse the agent (under both the learned and true value functions), the more likely they
are to take the ride.

prices, respectively.
At the final time Tfinal, the agent is forced to take the ride if they have not selected to

take a ride at a prior time. This reflects the fact that the agent presumably needs to get
from their origin to their destination and the reward structure reflects the dissatisfaction the
agent feels as a result of having to ultimately take the ride despite the potential desire to
wait.

Using the Uber Movement3 platform for travel time statistics, base pricing data4 and
surge pricing data5 for Washington D.C., we examined several locations and hours which
have different characteristics in terms of travel time and price statistics. We generate the
distribution for Z(t) from these data sets as well as the surge price intervals and transition
probability matrix. Since the core risk-sensitive behaviors we observe are similar across the
different locations, we report only on one.

Specifically, we report on a ride-sharing MDP generated for origin GPS= (−77.027046, 38.926749)
and destination GPS= (−76.935773, 38.885964) 6 in Washington D.C. at 5AM.

3Uber Movement: https://movement.uber.com/cities
4The base, per min, and per mile prices can be found here: http://uberestimate.com/prices/

Washington-DC/
5The surge pricing data we used was originally collected by and has been made publicly available here:

https://github.com/comp-journalism/2016-03-wapo-uber. The data we use was collected over three
minute intervals in period between November 14 to November 28, 2016.

6Note that these correspond to Uber Movement id’s 197 and 113, respectively.

https://movement.uber.com/cities
http://uberestimate.com/prices/Washington-DC/
http://uberestimate.com/prices/Washington-DC/
https://github.com/comp-journalism/2016-03-wapo-uber
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Figure 12.5: Expected rewards for each time step in the ride-sharing example. Notice that
the rewards can either be gains (positive values) or losses (negative values) given that we
take the reference point to be r0 = 0.

Value Function Prospect Entropic `-prospect
Preferences Mean Variance Mean Variance Mean Variance

Risk-Averse Gains
1.3e-2 3.5e-4 0.9e-3 1.0e-6 1.0e-2 1.4e-4

/Risk-Seeking Losses7

Risk-Neutral 0.6e-2 4.9e-5 1.4e-3 2.0e-6 6.6e-3 1.0e-4
Risk-Seeking Gains

1.1e-2 1.7e-4 1.1e-3 1.5e-6 1.1e-2 1.1e-4
/Risk-Averse Losses8

Table 12.2: Averaged TV error and variance over 10 different initializations of the algorithm
for different risk-preference profiles. The last column shows the error when using an `-
prospect agent with ε = 1e-2 to learn a prospect agent.

The transition probability kernel P : X × A × X → [0, 1] is estimated from the ride-
sharing data. The travel-time data is available on an hourly basis and the price change
data is available on a three minute basis. Hence, we use the three minute price change data
for each hour to derive a static transition matrix by empirically estimating the transition
probabilities where we bin prices in the following way. For prices in [1.0, 1.2), x = 1.0; for
prices in [1.2, 1.6), x = 1.4; for prices in [1.6, 2.0), x = 1.8; otherwise x = 2.2. Hence,
X = {1.0, 1.4, 1.8, 2.2}. In the time periods we examine, the max price multiplier was 2.2.
We set the reference point y0 and acceptance level v0 to be zero.

With this model, the transition matrix for the price multipliers is given by

P =

0.876 0.099 0.017 0.008
0.347 0.412 0.167 0.074
0.106 0.353 0.259 0.282
0.086 0.219 0.143 0.552

 (12.22)

for each time. The travel time distribution is a standard normal distribution truncated to
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the upper and lower bounds specified by the Uber Movement data. Measured in seconds,
we use location parameter 2371, scale parameter 100, and 1554 and 3619 as the upper and
lower bound, respectively.

The graphics in Fig. 12.3 and Fig. 12.4 show the state space as a grid with the probability
of taking a ride under the true and learned optimal policies overlaid on each state. For the
examples depicted in these figures, we consider the true and learned agents to have prospect
value functions.

In Fig. 12.3, we fix the true agent’s parameters to show a range of behaviors from risk-
seeking in losses/risk-averse in gains to risk-averse in losses/risk-seeking in gains. There is
empirical evidence supporting the fact that human’s are more like the former. Moreover, in
these examples we use (k+, k−) = (0.5, 1) to capture that humans tend to be loss-averse—that
is, for losses and gains of equal value, the loss is perceived as more significant.

On the other hand, in Fig. 12.4 we fix the true agent’s parameters to show a range of
behaviors depending on the degree of loss-aversion. In particular, we fix ζ− = ζ+ = 1 and
vary the ratio of k− to k+, where a higher ratio corresponds to more loss averse preferences.

In each of the graphics in Fig. 12.3 and Fig. 12.4, we see that the learned policy is very
close to the true policy. In addition, in Fig. 12.3, we observe that the more risk-averse the
agent is (in gains or losses), the more likely they are to take the ride. This trend can be seen
by noting the sign of the expected rewards—in Fig. 12.5, we see that the reward is positive
for xt ∈ {1.0, 1.4} and is negative for xt ∈ {1.8, 2.2}—and examining the corresponding rows
in Fig. 12.3 for negative and positive rewards. In Fig. 12.4, observe that the more loss averse
the agent, the more likely they are to take the ride uniformly. This is reasonable as the
satisfaction level is linear decreasing in time.

In Table 12.2, we show the mean and variance of the total variation error for the ride-
sharing example where we varied the risk preference profiles, holding (k−, k+) = (1, 1),
using agents with prospect and entropic value functions. In addition, we show the error for
different risk profiles when we learn a true prospect agent with an `-prospect agent. Recall
that the prospect value function does not meet the requirements of our theorem where as
the `-prospect value function does as it is Lipschitz.

Numerical Considerations

We end the experimental results section with some observations on the convergence speed
and the implementation of Algorithm 1.

First, we note that the two contraction mappings (11.23) and (12.6) are sensitive to the
learning rate α. A very small choice of α results in convergence of the sequence of Q-functions
to the fixed point being too slow to be practically useful. On the other hand, a large choice
of α makes the sequence diverge. Thus, choosing α has a large effect on the runtime of the
overall algorithm as the computation of Q∗ and DθQ

∗ both depend on the choice of α.
We further remark that numerical observations suggest that the condition α ∈ (0,min{L−1, 1}]

is fairly restrictive and that larger values of α give faster convergence. Hence, our imple-
mentation of Algorithm 1 includes an adaptive scheme to find the largest possible α. In
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particular, if two consecutive iteration elements in the sequence are observed to diverge in
the L∞ norm, we decrease α by a fixed constant. As long successive elements in the sequence
converge, we periodically increase α by another constant. This allows us to noticeably speed
up the implementation of our algorithm. Adaptively choosing the step-size α also allows us
to train the prospect function agents more accurately, since these were particularly suscep-
tible to changes in the value of α due to the fact that the value function is non-Lipschitz
around the reference point.

To speed up the gradient-descent algorithm, we also implement a back-tracking line
search. We do this to address the computationally intensive gradient calculation. Specifically,
the line-search allows us to exploit each gradient calculation fully. The backtracking line
search also leads to a noticeable speed up in the implementation of our algorithm, which
allows us to tackle larger MDPs.

12.3 Chapter Summary

We present a new gradient based technique for learning risk-sensitive decision-making models
of agents operating in uncertain environments. We find that while there are a number
of technical issues related to learning prospect theory based agents—namely, their value
functions are not Lipschitz for parameter combinations that best capture human decision-
making (i.e. when 0 < ζ−, ζ+ < 1)—we are still able to numerically learn the policies of these
agents. Moreover, we introduce a Lipschitz variation of the prospect value function, which
retains the convex-concave structure of the prospect theory value function while satisfying
the assumptions of our theorems on a bounded domain and possessing better numerical
properties. We demonstrate the algorithm’s performance for agents based on several types
of behavioral models and do so on two examples: the canonical Grid World problem and
a passenger’s view ride-sharing where the parameters of the ride-sharing MDP are learned
from real-world data.

Looking forward, we remark that we assumed the reference point was known and fixed.
We are examining techniques that have formal performance guarantees (e.g., on convergence)
that allow us to simultaneously estimate reference points. We are also examining the use
of other risk-metrics beyond convex risk measures derived from acceptance sets that will
allow us to leverage the benefits of cumulative prospect theory which has been shown to be
more flexible in approximating human decision-making and has recently been adopted in the
reinforcement learning literature [90].
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Future Directions: Algorithms in
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Chapter 13

Future Directions

This dissertation represents is a small part of what is really an emerging research agenda on
developing algorithms for societal systems. Moving forward, there is a large scope for lever-
aging tools in dynamical systems, machine learning, stochastic analysis, and blending them
with ideas game theory and behavioral economics to develop a fundamental understanding
of the challenges posed by the deployment of learning algorithms in societal-scale systems.

An overarching goal at the heart of this research agenda is developing a unified design
methodology for learning algorithms that not only have provable guarantees of performance
for individual agents, but also achieve societal goals— i.e., system-wide objectives like fair-
ness. This entails moving beyond analyzing the interactions between algorithms and de-
veloping a fundamental understanding of the consequences of game theoretic interactions
between heterogeneous agents.

To achieve this goal, we see three broad themes which expand upon the foundations laid in
this dissertation: (i) understanding the impacts of algorithmic decision making in economic
settings, (ii) learning-based mechanism design, and (iii) high-confidence decision-making in
dynamic environments.

Understanding the impacts of algorithmic decision making in economic settings.
In this dissertation, we developed an understanding of the equilibria and dynamics of learning
algorithms in competitive settings. Moving forwards, it will be crucial to understand more
broadly the impacts of learning algorithms on societal objectives in societal-scale systems.
Of particular importance is developing a game theoretic understanding of the feedback loops
between learning algorithms and the data sources on which they rely. Indeed, there is a
growing recognition of the fact that people are not merely sources of static, i.i.d data, but
are in fact strategic data sources who can dynamically alter their data to achieve their goals.
Examples of this abound in real-world settings, like the gaming of surge pricing algorithms
by drivers1 and understanding these issues can have a large impact on the deployment of
algorithms in real-world settings [205].

1Uber drivers reportedly triggering higher fares through Surge Club, Digital Trends, 2019.
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Learning-based mechanism design. Algorithms are deployed in real-world settings un-
der the premise that they have beneficial impacts on societal systems, but there is growing
evidence that suggests that poorly designed algorithms can have disastrous impacts on so-
cietal welfare (e.g. using click through rates as proxies for user engagement has led to the
widespread proliferation of conspiracy theories on social networks). Core to this research
agenda on algorithms in societal-systems is the development of learning-based mechanism
design which entails designing algorithms for societal systems that can adapt to the game
theoretic structure of the problems to achieve societal goals. This includes designing ma-
chine learning algorithms that are robust to— or can adapt to— the gamification of the
data, and designing algorithms for online incentive design to drive systems towards better
outcomes[108, 202].

High-confidence decision-making in dynamic environments. In this dissertation
we focused on analyzing model-based learning in the simplest dynamic problem – multi-
armed bandits– and extended the ideas to an algorithm for robotics that had impressive
empirical successes. Despite this, understanding the fundamental limits of how to learn
models and adapt them to uncertainty online is still an open question in complex settings
like reinforcement learning and robotics, though there is no shortage of evidence that model-
based methods are vastly more efficient than model-free methods at most tasks. As such, an
interesting avenue of future work is to continue to develop a systematic understanding of how
to learn and use models in uncertain, dynamic environments— a line of work that belongs in
the emerging and exciting research area known as Assured Autonomy. The ultimate goal of
this line of work is to develop model-based algorithms that are flexible enough to overcome
issues of model mis-specification while having the safety and robustness guarantees required
to be used in real world settings.

13.1 Concluding Remarks

The massive scale at which autonomous systems are being deployed has opened the doors
for new opportunities for innovation in society. This new reality poses new challenges that
can only be addressed through an interdisciplinary research agenda at the intersection of
economics and engineering and computer science. This dissertation drew on tools from
dynamical systems theory, statistics, machine learning, and economics to begin to develop a
fundamental understanding of the challenges posed by the deployment of learning algorithms
in societal-scale systems. Moving forwards, this research agenda has a tremendous potential
to have a beneficial impact in application domains like matching markets, transport systems,
and online platforms.
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