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ABSTRACT OF THE DISSERTATION

Survival Analysis and Causal Inference: from Marginal Structural Cox to Additive
Hazards Model and beyond

by

Denise Rava

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2021

Professor Jelena Bradic, Chair

Professor Ronghui Xu, Co-Chair

In Chapter 1 we study explained variation under the additive hazards regression model for

right-censored data. We consider different approaches for developing such a measure, and focus on

one that estimates the proportion of variation in the failure time explained by the covariates. We

study the properties of the measure both analytically, and through extensive simulations. We apply

xvi



the measure to a well-known survival dataset as well as the linked surveillance, epidemiology, and

end results-Medicare database for prediction of mortality in early stage prostate cancer patients

using high-dimensional claims codes.

In Chapter 2 we propose a new flexible method for survival prediction: DeepHazard, a neural

network for time-varying risks. Prognostic models in survival analysis are aimed at understanding

the relationship between patients covariates and the distribution of survival time. Traditionally,

semiparametric models, such as the Cox model, have been assumed. These often rely on strong

proportionality assumptions of the hazard that might be violated in practice. Moreover, they do

not often include covariates’ information updated over time. Our approach is tailored for a wide

range of continuous hazards forms, with the only restriction of being additive in time. A flexible

implementation, allowing different optimization methods, along with any norm penalty, is developed.

Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology

in terms of predictive capability evaluated through the C-index metric. The same is revealed on the

popular real datasets as METABRIC, GBSG, ACTG and PBC.

In Chapter 3 we consider the conditional treatment effect for competing risks data in

observational studies. While it is described as a constant difference between the hazard functions

given the covariates, we do not assume the additive hazards model in order to adjust for the

covariates. We derive the efficient score for the treatment effect using modern semiparametric

theory, as well as two doubly robust scores with respect to both the assumed propensity score

for treatment and the censoring model, and the outcome models for the competing risks. We

provide the asymptotic distributions of the estimators when the two sets of working models are

both correct, or when only one of them is correct. We study the inference based on these estimators

using simulations. The estimators are applied to the data from a cohort of Japanese men in Hawaii

followed since 1960s in order to study the effect of mid-life drinking behavior on late life cognitive
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outcomes.

In Chapter 4 we consider doubly robust estimation of the causal hazard ratio in observational

studies. The treatment effect of interest, described as the constant ratio between the hazard functions

of the two potential outcomes, is parametrized by the Marginal Structural Cox Model. Under the

assumption of no unmeasured confounders, causal methods, as Cox-IPW, have been developed

for estimation of the treatment effect of interest. However no doubly robust methods have been

proposed under the Marginal Structural Cox model. We develop an AIPW estimator for this popular

model that is both model and rate-doubly robust with respect to the treatment assignment model

and the conditional outcome model. The proposed estimator is applied to the data from a cohort

of Japanese men in Hawaii followed since 1960s in order to study the effect of mid-life alcohol

exposure on overall death.
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Chapter 1

Explained Variation under the Additive

Hazards Model

1.1 Introduction

The additive hazards model (Aalen, 1980, 1989) has received increasing attention lately for

the analysis of censored survival data. It is not just an alternative to the more widely used Cox model

when the proportional hazards assumption is violated; it has also been argued to be more suitable

for causal inferences in estimating treatment effects because the Cox model is not collapsible

(Martinussen and Vansteelandt, 2013). In contrast, the additive hazards model behaves mostly

like a linear model including collapsibility, in the sense that one can integrate out an independent

covariate from the model and still end up with an additive hazards model, with the same regression

coefficients for all the other covariates. For this reason it has been used in the development of

instrumental variable approaches for survival data including competing risks (Tchetgen Tchetgen

et al., 2015; Li et al., 2015; Zheng et al., 2017; Brueckner et al., 2019; Ying et al., 2019). The
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collapsibility as well as other behaviors similar to a linear model, has also enabled the additive

hazards model to be used in mediation analysis of survival data (Fosen et al., 2006; Martinussen,

2010; Martinussen et al., 2011; VanderWeele, 2013; Aalen et al., 2020). In addition, doubly robust

methods have been developed for estimating treatment effects and applied in practice under the

additive hazards model including for optimal treatment regimes (Wang et al., 2017; Kang et al.,

2018; Blomberg et al., 2019), while the noncollapsibility of the Cox model presents an obstacle in

the development of doubly robust method when confounders are present (Dukes et al., 2019a).

Estimation and inference procedures have been well developed and implemented under the

additive hazards model (eg. R package ‘timereg’), and diagnostic methods have also been proposed

(Yuen and Burke, 1997; Kim and Lee, 1998; Scheike and Martinussen, 2006). However, another

important aspect as the model becomes more widely used, is explained variation or measures of

predictability, often referred to as R2. O’Quigley and Xu (2012) provide detailed illustrations of

how such measures are used to evaluate the clinical importance of prognostic factors. Müller et al.

(2008) and Hielscher et al. (2010) explored the use of R2 measures in genetic studies to quantify

the impact of genetic variants or high dimensional gene expression on survival phenotypes, while

Preseley et al. (2011) applied them to surrogate evaluation. Very recently applications of measure

of dependence to ultrahigh dimensional variable screening were explored in Kong et al. (2019).

In the context where the estimation of treatment effect is of primary concern, following the fit of

the additive hazards models it is also natural to provide estimates of predicted survival given the

covariates (Ying et al., 2019). However, measures of explained variation have not been examined

under the additive hazards model to our best knowledge.

Explained variation has been well studied in the literature under the Cox regression model

for right-censored data. Kent and O’Quigley (1988) first defined a measure of dependence for

censored survival data, making use of the Kullback-Leibler information gain. It is based on the
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conditional distribution of the time to event random variable T given the covariates Z. A later work

by Xu and O’Quigley (1999b) considered instead the conditional distribution of Z given T , using

also the information gain. This latter measure can be readily extended to time-dependent covariates.

A simple approximation to this second measure was described in O’Quigley et al. (2005), which

can be easily computed using the partial likelihood ratio test statistic following the fit of the Cox

model. Preseley et al. (2011) advocated for these information gain based measures.

Another approach to defining explained variation makes use of the residuals. This originated

from the R2 under the linear regression model, which can be written as one minus the ratio of the

residual sum of squares over the total sum of squares. It is also well-known that these two sums of

squares estimate the residual variance and the total variance, respectively. O’Quigley and Flandre

(1994) proposed to use the Schoenfeld residuals under the Cox model, in a similar way to the R2

under linear regression. It has been shown that when the Cox model appears to be a reasonably fit

to the data, this measure and the one above based on information gain, tend to give comparable

quantifications of explained variation (O’Quigley and Xu, 2012).

Other approaches have also been considered in the literature for right-censored data.

Schemper and Kaider (1997) proposed to compute the correlation coefficients between the failure

rankings and the covariates, using multiple imputation to handle the censored data. We note that

inference under the Cox model is only based on the ranks of the failure times, hence nonparametric

correlation coefficients like Kendall’s tau or Spearman correlation might be considered. However,

as it is known and we also elaborate below, inference under the additive hazards model is not rank

based.

Finally and not restricted to the survival context, previous experiences in describing ex-

plained variation outside the classic linear model have also considered the direct decomposition of

the total variance in the outcome, and quantifying the proportion that is explained by the covariates.
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Depending on the model, this can sometimes be a straightforward approach, such as under the linear

mixed effects model (Xu, 2003; Honerkamp-Smith and Xu, 2016), or under the accelerated failure

time (AFT) models (Chan et al., 2018).

In this work we consider the semiparametric additive hazards model. We aim to quantify

the explained variation under this model. It turns out that the last approach described above, i.e. the

direct decomposition of the total variation into components of explained and unexplained (or

residual) variation, is easily computable as well as interpretable under the additive hazards model.

In the following we will first focus on its development, investigate its properties, and illustration

how it might be used in practice to quantify the predictive power of a set of prognostic variables,

and also for use in variable selection procedures. We will defer discussion to the end of the paper

why some of the other approaches described above do not work under the additive hazards model.

The rest of the paper is organized as follows. After a review of the semiparametric additive

hazards model and its inference in the next section, we describe explained variation and its estimator

in section 1.3. In section 1.4, we study the properties of the measure, both the population and the

sample-based versions. Section 1.5 further explores the behavior of the measures using simulation,

under different censoring scenarios, different covariate distributions, different baseline hazard

functions, and beyond. We apply the measure to real data sets in Section 1.6, and we conclude with

discussion in the last section.

1.2 Semiparametric Additive Hazards Model

Let T be the failure time random variable of interest, Z be a vector of covariates, and C be the

censoring time random variable. Let X = min(T,C) and δ = I(T ≤C) where I(·) is the indicator

function. We observe a random sample (Xi,Zi,δi), i = 1, . . . ,n. The semiparametric additive hazards
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model Lin and Ying (1994a) assumes that the conditional hazard function

λ(t|Z) = λ0(t)+β
>Z, (1.1)

where λ0(t) is the baseline hazard and β is a vector of regression effects. We will also use the

counting process notation: N(t) = I{X ≤ t,δ = 1} and Y (t) = I{X ≥ t} are the counting process of

events and the at-risk process, respectively.

Under model (1.1), an estimator for β was proposed by Lin and Ying (1994b):

β̂ =

[
n

∑
i=1

∫
∞

0
Yi(t){Zi− Z̄(t)}⊗2 dt

]−1[ n

∑
i=1

∫
∞

0
{Zi− Z̄(t)}dNi(t)

]
, (1.2)

where Z̄(t) = ∑
n
i=1Yi(t)Zi/∑

n
i=1Yi(t). We note that unlike under the Cox model, the above estimator

of β is not rank based in that it depends on the values of Xi’s beyond their ranks in the data set. It

can be shown that, if g(·) is a strictly increasing function, then g(T ) in general no longer follows a

semiparametric additive hazards model. In the special case where g is multiplication by a constant

c > 0, then T̃ = cT still follows a semiparametric additive hazards model, but the regression

coefficient is rescaled by c: β̃ = β/c.

The cumulative baseline hazard function Λ0(t) =
∫ t

0 λ0(u)du is estimated by

Λ̃0(t) =
∫ t

0

∑
n
i=1

(
dNi(u)−Yi(u)β̂(u)>Zidu

)
∑

n
j=1Yj(u)

. (1.3)

In the following we write out the integral in (1.3), which is not a step function. Denote the K ordered

distinct observed failure times t1 < ... < tK . We have for k = 1, ...,K:

Λ̃0(tk) =
k

∑
l=1

δldl

rl
−

k

∑
l=1

β̂
>Z̄ (tl)(tl− tl−1) , (1.4)
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where dl and rl are the number of events and number at risk at time tl , respectively. In addition, for

any tk ≤ t < tk+1,

Λ̃0(t) =
k

∑
l=1

δldl

rl
−

k

∑
l=1

β̂
>Z̄ (tl)(tl− tl−1)− β̂

>Z̄ (tk+1)(t− tk) . (1.5)

The resulting estimated survival function S̃(t|z) = exp(−Λ̃0(t)− β̂>zt) is not guaranteed to be

non-increasing; therefore we make use of the following adjusted version Lin and Ying (1994a):

Ŝ(t|z) = mins≤t
{

S̃(s|z)
}

. The adjusted version Ŝ is asymptotically equivalent to S̃, and the process
√

n(Ŝ(·|z)−S(·|z)) converges wealy to a zero-mean Gaussian process Lin and Ying (1994a). We

note that taking minimum over s ≤ t leads to no closed-form expression and the quantity needs

to be computed numerically. However, it is imperative that we work with a proper distribution or

equivalently, survival, function, in order to estimate the moments below.

1.3 Explained Variation

The explained variation, as described in the survival context by O’Quigley and Xu (2012),

can be defined as

Ω
2 = 1− E {Var(T | Z)}

Var(T )
=

Var{E(T | Z)}
Var(T )

. (1.6)

This is consistent with the regression setting of model (1.1) for the conditional distribution of T

given Z, as the proportion of variation of T explained by Z out of the total variation of T . As pointed

out in O’Quigley (2008) page 33, by virtue of the Chebyshev-Bienayme inequality, the variance

can be seen as a measure of predictability, and therefore the explained variation may also have an

interpretation as predictability.
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In practice for survival studies, there is often a finite upper bound of time τ due to adminis-

trative censoring, so that all the observable data are conditional upon T < τ. We then define

Ω
2
τ = 1− E {Var(T | Z,T < τ)}

Var(T | T < τ)
=

Var{E(T | Z,T < τ)}
Var(T | T < τ)

. (1.7)

Obviously when there is no censoring, Ω2 = Ω2
∞; and in the following for uniformity of notation,

we allow τ≤ ∞.

We can estimate directly the quantities in (1.7) under model (1.1). To estimate

E {Var(T | Z,T < τ)} or Var{E(T | Z,T < τ)}, we first integrate with respect to an estimated

distribution of T given Z and T < τ:

Ŝ(t | Z,T < τ) =
Ŝ(t | Z)− Ŝ(tK | Z)

1− Ŝ(tK | Z)
I {t ≤ tK} (1.8)

We then integrate with respect to Pn, the empirical distribution of Z. Denote the resulting estimates

En

{
V̂ar(T | Z,T < τ)

}
and Varn

{
Ê(T | Z,T < τ)

}
, respectively. For example,

En

{
V̂ar(T | Z,T < τ)

}
=

1
n

n

∑
i=1

[
Ê
(
T 2 | Zi,T < τ

)
−
{

Ê (T | Zi,T < τ)
}2
]
, (1.9)

where the expressions for the quantities in the right-hand side above are given later in the section.

To estimate Var(T | T ≤ τ), we can use

V̂ar(T | T < τ) = Ê
(
T 2 | T < τ

)
−
{

Ê (T | T < τ)
}2

. (1.10)

In order to estimate the marginal survival function, we may use the nonparametric Kaplan-Meier
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(KM) estimator. Alternatively, we may use:

Ŝ(t | T < τ) =
1
n

n

∑
i=1

Ŝ(t | Zi,T < τ). (1.11)

It can be shown that, if (1.11) is used in estimating the expectations in (1.10), then we have the

following decomposition:

V̂ar(T | T < τ) = En

{
V̂ar(T | Z,T < τ)

}
+Varn

{
Ê(T | Z,T < τ)

}
. (1.12)

Combining all of the above, we obtain R2
τ as a consistent estimator of Ω2

τ under model (1.1):

R2
τ = 1−

En

{
V̂ar(T | Z,T < τ)

}
V̂ar(T | T < τ)

=
Varn

{
Ê (T | Z,T < τ)

}
V̂ar(T | T < τ)

. (1.13)

We also denote R2 = R2
∞ when τ = ∞.

Finally, to compute the quantities in (1.13), we have:

Ê (T | z,T < τ) =
∫

τ

0
Ŝ (t | z,T < τ)dt

=
1

1− Ŝ (tK | z)

∫ tK

0
Ŝ (t | z)dt− 1

1− Ŝ (tK | z)
Ŝ (tK | z) tK, (1.14)

and

Ê
(
T 2 | z,T < τ

)
= 2

∫
τ

0
t · Ŝ(t | z,T < τ)dt

=
2

1− Ŝ (tK | z)

∫ tK

0
tŜ (t | z)dt− 1

1− Ŝ (tK | z)
Ŝ (tK | z) t2

K. (1.15)

Since there is no closed-form expression for Ŝ(t | Z), the integrals in the above are computed using
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the trapezoidal rule. We partition the interval [0,τ] first using t1, . . . , tK ; additional points are added

to create a grid no wider than 0.01 between two adjacent points. We then use an iterative halving

process, i.e. adding the midpoints between any two adjacent points to the grid, until the change in

the resulting R2
τ is less than 0.01 in absolute value.

The quantities in V̂ar(T | T < τ) can be computed in a similar fashion using (1.11).

1.4 Properties of Ω2 and R2

The desirable properties of a measure of explained variation are best understood under a

linear regression model, including: 1) it lies between zero and one; 2) it takes the value zero when

there is no regression effect; 3) it increases with the strength of the regression effect; 4) it tends

to one as the regression effect tends to infinity; 5) it is invariant under certain transformations

of the dependent and independent variables, depending on the model. For the last property, the

transformation is linear under the linear regression model, and is rank-preserving for the failure

time under the semiparametric Cox regression model O’Quigley and Xu (2012).

In the following we investigate if the above properties hold for the measures defined in the

last section.

• The facts that 0 ≤ Ω2
τ ≤ 1 and 0 ≤ R2

τ ≤ 1 follow immediately from their definitions (1.7)

and (1.13), assuming that the latter is estimated using (1.11).

• When β = 0, Ω2
τ = 0 because independence between T and Z implies that Var{E(T | T <

τ,Z)}= Var{E(T | T < τ)}. Also R2
τ = 0 if it happens that the estimated coefficient β̂ = 0.

Otherwise, the sample based measure R2
τ > 0, but is expected to be small since it is a consistent

estimate of Ω2
τ = 0.
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• It is analytically difficulty to prove that Ω2
τ increases with |β| in general. However, for simpler

settings such as a binary Z and τ = ∞, we can prove it analytically and this is given in the

Appendix. For more general settings, we illustrate this via simulation.

• It has been known that the quantity Ω2 defined in (1.6) can be bounded strictly less than one

O’Quigley and Xu (2012). For a binary Z, if we assume that T | Z = 0 has finite second

moment, then we can show by the dominated convergence theorem that:

lim
β→∞

Ω
2
∞ = 1−

1
2

[
2
∫

∞

0 t exp{−Λ0(t)}dt− [
∫

∞

0 exp{−Λ0(t)}dt]2
]

∫
∞

0 t exp{−Λ0(t)}dt− 1
4 [
∫

∞

0 exp{−Λ0(t)}dt]2
. (1.16)

For example, when λ0(t) = 1, limβ→∞ Ω2
∞ = 0.333; and this is the exponential case discussed

in O’Quigley and Xu (2012). When λ0(t) = t, limβ→∞ Ω2
∞ = 0.647; and when λ0(t) =

1/(2
√

t), limβ→∞ Ω2
∞ = 0.091. Similar calculation can be done for covariates with continuous

distribution:

lim
β→∞

Ω
2
∞ = 1− lim

β→∞

∫
Z

[∫
∞

0 2te−Λ0(t)−β>Ztdt−
[∫

∞

0 e−Λ0(t)−β>Ztdt
]2
]

g(z)dz

∫
Z
∫

∞

0 2te−Λ0(t)−β>Ztdtg(z)dz−
[∫

Z
∫

∞

0 e−Λ0(t)−β>Ztdtg(z)dz
]2 , (1.17)

where g(Z) is the density of the covariates and Z is their sample space. This limit may not be

equal to one and it depends on the form of λ0(t) and the distribution of Z; for example, when

Z ∼U
[
0,
√

3
]

and λ0(t) = 1, limβ→∞ Ω2
∞ = 0.500.

• By their definitions and simple algebra, it can be shown that Ω2
τ and R2

τ are invariant under

linear transformations of Z and when T is rescaled by a positive constant.

In summary, we have the following properties:

1) 0≤Ω2
τ ≤ 1, and 0≤ R2

τ ≤ 1;
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2) Ω2
τ = 0 when β = 0, and R2

τ = 0 if β̂ = 0;

3) Ω2
τ increases with |β|;

4) Ω2
τ and R2

τ are invariant under any linear transformation of Z and rescaling of T .

1.5 Simulations

In the following we further study the properties of the measures through simulations. In

addition to the properties mentioned above, we also investigate: 1) the effect of baseline hazard on

explained variation; 2) explained variation under nested models. As we have more experience with

explained variation under the Cox proportional hazards regression model, we also investigate 3)

how the measure compares with a similar one under the Cox model, when both models are valid;

and 4) explained variation of Z give T , which has been advocated for use under the Cox model.

All simulations below were carried out with sample size 1000, and 100 simulation runs each.

All the results are reported as mean with standard deviation (SD) over the simulation runs in (·). As

the simulation has been extensive, we have chosen to display the representative scenarios that carry

meaningful messages, as opposed to every combination of all possible parameters and settings.

1.5.1 Basic properties

As |β| increases

We first simulated with λ0(t) = 1 and different values β =1, 3, 15 and 50, Z from Uniform

[0,
√

3] as well as binary 0,1 with equal probabilities. Note that these two covariate distributions

have the same variance 0.25, rendering the measures comparable for a given β value. The censoring
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distribution was uniform [0,τ]. We computed the Ω2
τ values as follows. When there was no censoring

we computed it analytically by definition using the fact that T ∼ Exponential (1+βZ). When there

was censoring, we took a single large sample size of 100,000, and used the R2
τ value computed with

the true β and the true λ0 to approximate Ω2
τ .

From Figure 1.1 and Table 1.1 we see that R2
τ and Ω2

τ values are close in all cases, both

increasing with |β| as expected. The effect of τ reflects different follow-up periods, which also leads

to different amounts of censoring. It is seen that the patterns of change with τ is different depending

on the distribution of Z. It is more pronounced with binary Z especially for that larger β values,

likely because the censor percentages are much higher in that case.

Effect of λ0(·)

We consider here a binary Z taking values 0,1 with equal probabilities. We consider

λ0(t) = 1, t and 1/(2
√

t). In Figure 1.2 we plot the density of T for each group, to show how the

two groups differ in each scenario. The mean of R2
∞ over the 100 simulations are printed on each

configuration. From Figure 1.2 we see that the R2
∞ values tend to be larger when the two groups

indexed by Z = 0, 1 have different concentrations of failure times, i.e. different shapes of the density

functions, such as in the case of λ0(t) = t. On the contrary, with λ0(t) = 1/(2
√

t) the two density

functions have very similar shapes, resulting much smaller R2
∞ values. As noted earlier, the upper

bound of Ω2 for the three cases are 0.091, 0.333 and 0.647, respectively.

Nested models

Next we consider a limited set of simulations with data generated under λ(t|Z) = λ0(t)+

Z1 +3Z2 +Z3, where the covariates Z1,Z2 and Z3 were independently drawn from Uniform [0,
√

3]

and the baseline hazard was in turn equal to 1, t and 1/(2
√

t). We also consider an additional pure
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noise covariate Z4 ∼ Uniform [0,
√

3], not used in the data generating mechanism. We consider the

following models listed in Table 1.2: three univariate models with each of Z1,Z2 and Z3, respectively;

a model with only Z1 and Z3; a model with all the three Z1,Z2,Z3; and a model with the three

covariates plus the pure noise Z4. We see from Table 1.2 that R2
∞ increases with the complexity of

the models: R2
∞ with both Z1 and Z3 is larger than with Z1 or Z3 alone; meanwhile, since Z2 has a

strong effect as reflected in its regression coefficient, R2
∞ with Z2 alone is larger than with both Z1

and Z3. The measure is substantially larger with all three covariates Z1,Z2 and Z3 than under any

of the previous models. With the noise variable Z4 added to the model, R2
∞ increases very slightly

from 0.122 to 0.124, for example. This also informs us how to use the R2 type measures for model

selection: if the addition of a variable only increases the R2 very slightly, it is perhaps not worth the

cost of an extra degree of freedom. This is consistent with the concept of adjusted R2, which explicit

adjusts for the number of degrees of freedom. We further discuss this in the applications later.

1.5.2 Comparison with the measure under the Cox Model

As discussed earlier the semiparametric additive hazards model behaves somewhat differ-

ently from the semiparametric Cox model. Here we compare R2
τ as defined in (1.13) under the two

models when both models are valid. We consider a binary Z and constant baseline hazard; this is a

case where both the semiparametric additive hazards model (1.1) and the classic Cox model hold.

Under the Cox model S(t | Z) = {S0(t)}exp(βZ), where the regression parameter is typically

estimated using the partial likelihood, and the baseline survival function via the Breslow’s estimate

of the cumulative baseline hazard. We can then similarly estimate the explained variation as defined

in (1.6) or (1.7), using a similar approach as described in Section 3. We denote this as R2
cox. Both

R2
cox and R2

τ thus defined should be consistent for the same Ω2
τ . In Table 1.3 we again simulated

with λ(t|Z) = 1+βZ for a binary Z, β = 1,3,15 and 50, with no censoring or 30% censoring . As
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expected, the values of R2
cox and R2

τ are indeed very close to each other.

1.5.3 Explained variation of Z given T

O’Quigley and Xu (2012) advocated for considering the explained variation of Z given T

under the Cox regression model. One main advantage of this approach is that the resulting measure

tend not to be bounded strictly less than one. In addition, considering Z given T is also consistent

with the sequential conditioning and counting process notation often used in survival analysis.

Following O’Quigley and Flandre (1994) and O’Quigley and Xu (2012), we consider in particular

the covariate residual (also called Schoenfeld residual under the Cox model) based approach.

In order to obtain the residuals of Z, we need to estimate the conditional distribution of Z

given T . A theorem from Xu and O’Quigley (1999b,a) can be readily adapted to provide a consistent

estimate of this conditional distribution under model (1.1):

Theorem 1. Under model (1.1) and independent censoring, assuming that λ0(t) is known (or

otherwise consistently estimated), the conditional distribution of Z given T is consistently estimated

by

P̂(Z ≤ z | T = t) =
∑Z j≤zY j(t)

(
λ0(t)+ β̂T Z j

)
∑

n
l=1Yl(t)

(
λ0(t)+ β̂T Zl

) . (1.18)

The proof of the above theorem is similar to that of Theorem 1 in Xu and O’Quigley

(1999b,a) but applied to model (1.1).

In practice λ0(t) is unknown, and also not readily estimated by the typical software that fit

the additive hazards model. Our investigation here is of exploratory nature, aimed to understand the

behaviors of the explained variation of T give Z versus Z given T . In simulations below we use the
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true λ0(t). Denote

Êβ (Z | t) =
∑

n
j=1 Z jYj(t)

(
λ0(t)+βZ j

)
∑

n
l=1Yl(t)(λ0(t)+βZl)

. (1.19)

The residuals under the fitted model and under the ‘null’ model where β = 0 are, respectively:

ri(β̂) = Zi− Ê
β̂
(Z | Xi) , ri(0) = Zi− Ê0 (Z | Xi) , (1.20)

where E0 (Z | Xi) is simply the empirical average of Z in the risk set at time Xi. Therefore for a

scalar Z we may define

R2
Z|T = 1− ∑

n
i=1 r2

i (β̂)

∑
n
i=1 r2

i (0)
.

The extension to multivariate Z was described in O’Quigley and Xu (2012) and can be easily

adopted here.

We simulated under λ(t) = 1+βZ, with a binary Z and equal probabilities of 0, 1. In Table

1.4 we see that unlike R2
τ , the values of R2

Z|T approach one with increasing |β|. We further discuss

the unknown λ0(t) in the last section.

1.6 Applications

1.6.1 Leukimia: FREIREICH DATA

We first apply the measure of explained variation to the Freireich et al. (1963) data, which

consist of the remission times of 42 Leukimia patients in a randomized clinical trial treated with the

drug 6-mercaptopurine (6-MP) versus placebo. The data set has been well-known in the survival

analysis literature, and was in the first table of Cox and Oakes (1984). As a diagnostic plot in Figure
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1.3 we show the difference of the cumulative hazard functions between the two treatment groups;

under the semiparametric additive hazards model (1.1) this difference should be linear in time. From

the figure we see that except for random noise due to limited sample size the difference shows a

very nice linear trend, indicating that the semiparametric model (1.1) fits the data reasonably well.

We note that in the R package ‘timereg’ that we used to fit the semiparametric additive hazards

model, no diagnostic tools appear to be provided for checking this model.

We calculated R2 = 0.201, indicating, as is known, good separation between the two groups’

survival times. Typically if a single predictor, in particular a binary one, turns out to have an R2 of

around 20% say, it is considered to be a strong predictor. Previously the explained variation of Z

given T under the Cox regression model had been calculated to be around 0.40 (ranging from 0.38

to 0.42 depending on the measure used) O’Quigley and Xu (2012). The Freireich data appears to be

a data set that fits both the proportional hazards model and the additive hazards model reasonably

well. Based on the simulation results, when the data fits both models, the explained variation of T

given Z would be very close under the two models. The discrepancy between the R2 values seen

above are most likely attributable to the difference between the explained variation of Z given T and

that of T given Z, as also illustrated in the simulations. In this case they otherwise reflect somewhat

comparable strengths of association in our opinion.

1.6.2 Prostate cancer: SEER-MEDICARE DATA

We study the time to death of 29,657 prostate cancer patients with localized non-metastatic

disease identified from the linked Surveillance, Epidemiology, and End Results (SEER) - Medicare

database, diagnosed between 2004 and 2009. Following Hou et al. (2018) we consider the clinical

and the demographical variables, plus the binary insurance claims codes from Medicare. The latter

captures medical diagnoses and procedures through Healthcare Common Procedure Coding System
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(HCPCS) codes, international classification of diseases (ICD)-9 diagnosis and procedure codes, etc.

Each insurance claims code variable takes value one if that claim appeared within one year before

diagnosis, and zero otherwise. Out of the 29,657 patients 3,543 died by the end of the follow-up

which was December 2013 when the data were exported from the linked database.

The high dimensional data analysis of Hou et al. (2018) selected 143 variables to predict non-

cancer mortality, and 9 variables to predict cancer mortality, in the context of these two competing

risks. The same sets of variables were used in Riviere et al. (2019) and a complete list can be

found in Table 1 and 2 of their supplemental material. For our analysis of explained variation, we

combined these two sets of predictor for overall survival, which resulted in 146 variables: PSA,

Gleason Score, age, race (black versus other), marital status (married versus other) and registry

(California versus other), plus the claims codes. A table with the distributions of these variables can

be found in the Supplemental Materials.

In Figure 1.5 we plot the difference of the cumulative hazard functions between groups as

we did for the Freireich data above, to check the additive hazards model assumption. These are

illustrated for six binary variables, the three demographical variables plus three claims codes that

are not too sparse to plot. The plots indicate that the model seems to fit the data reasonably well.

We consider three models here. We first fit the data to the semiparametric additive hazards

model with only the cancer-related clinical variables PSA and Gleason Score. We then add the four

demographical variables. Finally we added the set of claim codes. The model fits are provided in the

tables of the Supplement Materials. Table 1.5 summarizes the R2 values obtained under these three

models. In the first column of the table we see that the cancer-related clinical variables alone do not

explain much (under 1%) variation in overall survival. This can at least be partially understood since

only 734 out of the 3,543 total deaths in this data set were due to cancer. Demographical variables,

on the other hand, do explain a substantial amount of variation in overall survival. This amount of
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explained variation is further increased, by a non-trivial amount, after adding in the claims codes

previously identified from the high-dimensional SEER-Medicare database.

When high dimensional claims codes are used in the data analysis, there is often the concern

of model over-fitting. In our case, with 3,543 death events and 146 total regressors, this may not be

an issue. Nonetheless, we proceed to divide the data set randomly into two parts, a training set with

14,828 observations containing 1,803 deaths, and a test set with 14,829 observations containing

1740 deaths. We fit the additive hazards model to the training data set and obtain the estimates β̂

and Λ̂0(t). We use them to compute Ŝ(t|Z) on the test data set, and obtain an out-of-sample R2
out .

Such out-of-sample R2 measures are often used in machine learning applications (eg. deep learning)

in order to reduce the risk of overfitting. We report the R2
out in Table 1.5. It is seen that, for this

data, the R2
out values are in fact slightly higher than the R2 computed on the full data set, or the

R2
train computed on the training data set. Were there over-fitting, the R2

out values would have been

substantially lower. The discrepancy among the three quantities currently seen is mostly due to

variability in the estimation of the conditional survival function and consequently of the total and

explained variances. For comparison purposes, we also provide in the Supplemental Materials the

three model fits to the training data set. We can compare the estimated coefficients with those using

the full data set, and observe that the estimates for the statistically signficant ones are stable across

the training versus the full data set.

At the suggestion of a reviewer, we compute the adjusted R2, R2
ad j = 1− (1−R2)(n−

1)/(n− p−1), for the three models. Here n is the sample size, and p is the number of the covariates

included in the model. The R2
ad j is computed on the full data set. By definition R2

ad j < R2, although

no difference can be seen at three digits after the decimal point between the two measures for the

first two models since p is so small compared to n. For the third model that includes 146 variables,

the difference of 0.3% between the two does not appear to signify any over-fitting.
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Finally we note that the explained variation of Z given T under the Cox model, denoted ρ2,

was calculated in Riviere et al. (2019) for this data. They computed ρ2 = 0.71 for cancer mortality

and ρ2 = 0.60 for non-cancer mortality under competing risks setting. As discussed before, the

numerical values of explained variation of T given Z are not directly comparable to those of Z

given T . Considering that the former has an upper bound less than one, it is perhaps also within

reasons to conclude that our analysis under the additive hazards model agrees with that of Riviere

et al. (2019) about the contribution of the claims codes in explaining overall mortality for this

prostate cancer patient population. This conclusion echoes the initial goal of the funded project that

lead to the previous publications Hou et al. (2018); Riviere et al. (2019) to demonstrate that the

high-dimensional insurance claims codes contain useful information about mortality in this patient

population.

1.7 Discussion

In this paper we have studied explained variation under the semiparametric additive hazards

model for right-censored survival data. The explained variation is shown to lie between zero and

one, and to increase with the magnitude of the regression effect. It has been known, and is shown

again here, that the explained variation of survival time given covariates can have an upper bound

strictly less than one. Nonetheless, Ash and Shwartz (1999) argues convincingly that low R2 values

can be useful as a measure of model performance and prediction, and we have illustrated the same

in our data analyses. Indeed in many of today’s genome-wide association studies, polygenic risks

scores are commonly assessed using R2 measures, even though their values are typically very low

(single digit of percentage points) for most diseases studied.

The semiparametric additive hazards model is different in several aspects from the histor-
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ically more widely used semiparametric proportional hazards model. The model and hence its

inference is not rank invariant, which makes it less familiar to most users in the seimparametric

survival analysis field. This phenomenon also carries over to the explained variation under the

model, leading to its dependence on the baseline hazard function. Of course, the choice of a model

should depend on how close it is to the true data generating mechanism. On the other hand, as

mentioned earlier the semiparametric additive hazards model is known to be collapsible, and this

makes it more sensible to compare nested models which, as we have illustrated, is a common usage

of R2 type measures.

As reviewed in the Introduction, other approaches exist in the literature in order to develop

R2 type measures. In the Simulation section, we have considered a residual based approach, that

relates to the explained variation of the covariates given the survival time. This was an approach

advocated under the Cox proportional hazards model O’Quigley and Xu (2012), as it does not

encounter the problem of being bounded strictly less than one. Unfortunately, for the additive

hazards model, it requires the knowledge or consistent estimation of the baseline hazard function

λ0(t), which is not provided in the commonly used software such as the R package ‘timereg’.

Smoothing methods such as kernels may be applied to Λ

∧

0(t), and can be potentially used here, but

this is beyond the scope of this work. A third approach is based on information gain, but as it turns

out, it also requires an estimate of λ0(t) under the additive hazards model.

The R package ‘timereg’ also allows β to vary with time, i.e. β(t) in place of β in model

(1.1). It estimates the cumulative B(t) =
∫ t

0 β(u)du, together with Λ0(t) =
∫ t

0 λ0(u)du. It is possible

to define an R2 measure similar to what we have done in this paper; the computation is in fact

simpler because the estimated conditional survival function S(t|z) is a step function. To our best

knowledge little experience exists in the literature to inform us when to use this more general

nonparametric model versus the semiparametric model we have considered here. We have noticed
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that the nonparametric model does not appear suitable for the two data sets in this paper. The

Freireich data set appears to have too small a sample size to the fit the nonparametric model, in

that the resulting estimates are extremely bumpy and have large variation. The SEER-Medicare

data set, on the other hand, is so sparse in the design matrix (i.e. many zero values for the claims

codes), together with high percentage of censoring, that the resulting estimated B(t) is practically

constant zero. This is not difficult to see from the formula B̂(t) = (Z>Z)−1Z>
∫ t

0 dN(u), where

Z = [Z1, . . . ,Zn]
> and N(u) = [N1(u), . . . ,Nn(u)]>.

The R2 measure of explained variation should not be confused with goodness-of-fit measures,

although there are connections between these two concepts. Chauvel and O’Quigley (2017) show

that the population version of the explained variation under the proportional hazards model will

increase with improvements of fit, and that the best model from a large class of models maximizes

the explained variation. They consider this in a similar setting as β(t) in the above; see also Flander

and O’Quigley (2019). However, due to issues in fitting β(t) under the additive hazards model, we

have not been able to observe a similar phenomenon. This would be worth future investigation once

we are able to have a good estimate of β(t), perhaps with smoothing techniques.

The R2 measure developed in this work has been implemented in the R package ‘R2Addhaz’

and is publicly available on CRAN.
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Table 1.1: Simulation results for different values of β and τ under the model λ(t) = 1+βZ; in
() are standard errors from simulation runs.

β Z τ Censor β

∧

R2
τ Ω2

τ

∞ 0% 1.000 (0.117) 0.072 (0.017) 0.074
U
(
0,
√

3
)

4.3 14% 0.992 (0.128) 0.067 (0.017) 0.071
1.3 39% 0.994 (0.151) 0.027 (0.013) 0.026

1
∞ 0% 1.000 (0.103) 0.090 (0.014) 0.090

Binary 4.3 17% 1.001 (0.115) 0.087 (0.017) 0.090
1.3 45% 1.006 (0.140) 0.029 (0.014) 0.029

∞ 0% 2.996 (0.227) 0.190 (0.027) 0.191
U
(
0,
√

3
)

4.3 8% 2.984 (0.238) 0.186 (0.029) 0.192
1.3 25% 2.997 (0.259) 0.128 (0.027) 0.129

3
∞ 0% 3.020 (0.184) 0.211 (0.018) 0.209

Binary 4.3 14% 3.037 (0.231) 0.234 (0.020) 0.229
1.3 38% 2.962 (0.210) 0.158 (0.033) 0.166

∞ 0% 15.077 (0.765) 0.368 (0.044) 0.360
U
(
0,
√

3
)

4.3 3% 15.175 (0.916) 0.377 (0.047) 0.367
1.3 10% 15.041 (0.925) 0.356 (0.050) 0.363

15
∞ 0% 15.053 (0.765) 0.308 (0.020) 0.304

Binary 4.3 12% 14.943 (0.669) 0.353 (0.021) 0.341
1.3 30% 15.083 (0.781) 0.431 (0.024) 0.431

∞ 0% 49.438 (3.272) 0.438 (0.070) 0.430
U
(
0,
√

3
)

4.3 1% 49.878 (2.446) 0.452 (0.069) 0.440
1.3 4% 49.741 (2.695) 0.456 (0.069) 0.467

50
∞ 0% 50.3373 (2.465) 0.321 (0.020) 0.324

Binary 4.3 12% 49.761 (2.577) 0.374 (0.018) 0.364
1.3 29% 50.056 (2.479) 0.486 (0.022) 0.484
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Table 1.2: R2 values for nested models; in () are standard errors from simulation runs.

Model λ0(t) = 1 λ0(t) = t λ0(t) = 1/(2
√

t)

Z1 0.012 (0.005) 0.016 (0.008) 0.008 (0.005)
Z2 0.084 (0.019) 0.122 (0.020) 0.060 (0.015)
Z3 0.013 (0.007) 0.015 (0.006) 0.008 (0.005)
Z4 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
Z1 +Z3 0.025 (0.010) 0.031 (0.011) 0.017 (0.010)
Z1 +Z2 +Z3 0.122 (0.028) 0.174 (0.031) 0.087 (0.023)
Z1 +Z2 +Z3 +Z4 0.124 (0.029) 0.176 (0.031) 0.089 (0.024)

Table 1.3: Comparison of explained variation under the semiparametric additive hazards model
and the semiparametric Cox model, when both models are correct; in () are standard errors from
simulation runs.

β Censor R2
τ R2

cox

0% 0.094 (0.015) 0.094 (0.015)
1

30% 0.063 (0.018) 0.063 (0.016)

0% 0.208 (0.015) 0.208 (0.015)
3

30% 0.207 (0.027) 0.208 (0.026)

0% 0.306 (0.022) 0.306 (0.022)
15

30% 0.433 (0.025) 0.434 (0.025)

0% 0.329 (0.022) 0.330 (0.022)
50

30% 0.491 (0.023) 0.493 (0.023)

Table 1.4: Explained variation of Z|T versus T |Z; in () are standard errors from simulation runs.

β 1 3 15 50 100 1000

R2
Z|T 0.099 (0.020) 0.291 (0.024) 0.668 (0.026) 0.851 (0.020) 0.911 (0.017) 0.988 (0.006)

R2
∞ 0.090 (0.016) 0.208 (0.017) 0.308 (0.022) 0.328 (0.021) 0.332 (0.021) 0.333 (0.020)
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Figure 1.4: Difference between the cumulative hazard functions of groups defined by some
dichotomous variables for the SEER-MEDICARE data.
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Table 1.5: R2 values for the SEER-Medicare data set. R2 is computed on the full data set; R2
ad j

is the adjusted R2 also computed on the full data set; R2
out is the out-of-sample R2 computed on

the test data set, with all parameters estimated from the training data set; and R2
train is computed

only on the training data set.

Model R2 R2
ad j R2

out R2
train

Clinical 0.048 0.048 0.053 0.051
Clinical + Demo. 0.270 0.270 0.271 0.261
Clinical + Demo. + Claims 0.373 0.370 0.388 0.379

1.8 Appendix

1.8.1 Ω2 increases with |β|: proof of a specific case

Here we prove that Ω2 increases with |β| when Z is Bernoulii with p = 0.5 and under the

semiparametric hazards model (1.1). We have:

E {Var(T | Z)} = E
{

E
(
T 2 | Z

)}
−
[
E
{

E
(
T 2 | Z

)}]2
(1.21)

=
1
2

[
2
∫

∞

0
t exp{−Λ0(t)}dt−

[∫
∞

0
exp{−Λ0(t)}dt

]2
]

+
1
2

[
2
∫

∞

0
t exp{−Λ0(t)−βt}dt−

[∫
∞

0
exp{−Λ0(t)−βt}dt

]2
]
,
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and

Var(T ) = E {Var(T | Z)}+Var{E (T | Z)} (1.22)

= E
{

E
(
T 2 | Z

)}
− [E {E (T | Z)}]2

=
1
2

[
2
∫

∞

0
t exp{−Λ0(t)}dt +2

∫
∞

0
t exp{−Λ0(t)−βt}dt

]
−
[

1
2

∫
∞

0
exp{−Λ0(t)}dt +

1
2

∫
∞

0
exp{−Λ0(t)−βt}dt

]2

.

If we take the derivative with respect to |β| of these quantities we get:

∂E {Var(T | Z)}
∂ |β|

= −sign(β)
∫

∞

0
t2 exp{−Λ0(t)−βt}dt (1.23)

+sign(β)
∫

∞

0
exp{−Λ0(t)−βt}dt

∫
∞

0
t exp{−Λ0(t)−βt}dt

= −sign(β)
1
3

E
(
T 3 | Z = 1

)
+ sign(β)

1
2

E (T | Z = 1)E
(
T 2 | Z = 1

)
,

and

∂Var(T )
∂ |β|

= −sign(β)
∫

∞

0
t2 exp{−Λ0(t)−βt}dt (1.24)

+sign(β)
[

1
2

∫
∞

0
exp{−Λ0(t)}dt +

1
2

∫
∞

0
exp{−Λ0(t)−βt}dt

]
×
∫

∞

0
t exp{−Λ0(t)−βt}dt

= −sign(β)
1
3

E
(
T 3 | Z = 1

)
+ sign(β)

1
2

[
1
2

E (T | Z = 1)+
1
2

E (T | Z = 0)
]

×E
(
T 2 | Z = 1

)
.
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By equation (1.23) and (1.24), and after some algebra:

∂Ω2
∞

∂ |β|
(1.25)

= −sign(β)(Var(T ))−2

×
[

E {Var(T | Z)}
{

1
4

E (T | Z = 1)E
(
T 2 | Z = 1

)
− 1

4
E (T | Z = 0)E

(
T 2 | Z = 1

)}]
−sign(β)

Var{E (T | Z)}
{
−1

3E
(
T 3 | Z = 1

)
+ 1

2E (T | Z = 1)E
(
T 2 | Z = 1

)}
{Var(T )}2 . (1.26)

If now we consider the special case of λ0(t) = 1, for which λ(t)> 0 if and only if β >−1,

we have:

∂Ω2
∞

∂ |β|
(1.27)

=
sign(β)

{Var(T )}2

[
1
4

E {Var(T | Z)}E
(
T 2 | Z = 1

)( β

1+β

)
+Var{E (T | Z)}

(
1

(1+β)3

)]
=

|β|(2+β)

{4Var(T )}2 (1+β)4 > 0, (1.28)

proving that the measure increases with |β|.
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1.8.2 SEER-MEDICARE Data

Table 1.6: Patient characteristics and claims codes from the SEER-Medicare dataset. Presented
are mean (standard deviation) for the continuous variables, and frequency (%) for the binary
variables.

Overall (n = 29657)
PSA 11.34 (14.91)
GleasonScore 6.72 (0.94)
age 73.63 (5.61)
isBlack 3470 (11.7%)
isMarried 20501 (69.1%)
isRegCalifornia 13352 (45.0%)
var1001 162 (0.5%)
var7882 2026 (6.8%)
var5498 511 (1.7%)
var1806 2 (0.0%)
var17742 382 (1.3%)
var4270 24 (0.1%)
var4115 1 (0.0%)
var18195 12 (0.0%)
var4418 63 (0.2%)
var13233 29 (0.1%)
var4274 102 (0.3%)
var20250 53 (0.2%)
var4091 54 (0.2%)
var4074 25 (0.1%)
var4286 32 (0.1%)
var4137 2078 (7.0%)
var10944 226 (0.8%)
var4117 2902 (9.8%)
var3975 1169 (3.9%)
var4145 170 (0.6%)

var3890 322 (1.1%)
var4078 953 (3.2%)
var4229 816 (2.8%)
var4165 1364 (4.6%)
var4003 800 (2.7%)
var7750 1678 (5.7%)
var17042 3662 (12.3%)
var1517 18 (0.1%)
var1718 117 (0.4%)
var1456 837 (2.8%)
var1500 210 (0.7%)
var5681 2 (0.0%)
var14203 16 (0.1%)
var14388 31 (0.1%)
var5462 171 (0.6%)
var7887 431 (1.5%)
var5450 61 (0.2%)
var5525 1920 (6.5%)
var8019 24773 (83.5%)
var1921 76 (0.3%)
var13593 30 (0.1%)
var16169 99 (0.3%)
var1870 297 (1.0%)
var1844 3942 (13.3%)
var1361 45 (0.2%)
var15637 2 (0.0%)

var2485 6 (0.0%)
var17297 6 (0.0%)
var2431 43 (0.1%)
var2433 23 (0.1%)
var2426 357 (1.2%)
var7718 426 (1.4%)
var7673 356 (1.2%)
var3770 1 (0.0%)
var15060 1480 (5.0%)
var7684 2311 (7.8%)
var16918 1 (0.0%)
var3503 8 (0.0%)
var2833 496 (1.7%)
var17473 3 (0.0%)
var11745 6 (0.0%)
var6136 5 (0.0%)
var18556 4 (0.0%)
var16384 15 (0.1%)
var6164 2 (0.0%)
var4827 5 (0.0%)
var14591 12 (0.0%)
var21353 22 (0.1%)
var12800 4 (0.0%)
var18487 21 (0.1%)
var17644 21 (0.1%)
var10776 115 (0.4%)
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Overall (n = 29657)
var6937 28 (0.1%)
var15867 14 (0.0%)
var18793 17 (0.1%)
var19387 10 (0.0%)
var15736 65 (0.2%)
var11825 25 (0.1%)
var7025 37 (0.1%)
var18457 124 (0.4%)
var17613 91 (0.3%)
var7723 372 (1.3%)
var16068 601 (2.0%)
var19322 88 (0.3%)
var6170 276 (0.9%)
var17623 78 (0.3%)
var17574 1140 (3.8%)
var17743 548 (1.8%)
var11902 1648 (5.6%)
var17739 1985 (6.7%)
var15454 23500 (79.2%)
var17591 1022 (3.4%)
var16063 6742 (22.7%)
var17577 2680 (9.0%)
var19323 153 (0.5%)
var19342 97 (0.3%)
var21322 51 (0.2%)
var18854 2417 (8.1%)
var17734 10 (0.0%)
var1937 10 (0.0%)
var1927 6 (0.0%)
var1938 14 (0.0%)
var2082 5 (0.0%)
var1979 376 (1.3%)
var2100 223 (0.8%)

var4775 66 (0.2%)
var4706 3027 (10.2%)
var4663 696 (2.3%)
var4671 654 (2.2%)
var4769 386 (1.3%)
var17257 1101 (3.7%)
var4785 226 (0.8%)
var4758 419 (1.4%)
var9553 4 (0.0%)
var9945 5 (0.0%)
var10180 25 (0.1%)
var9082 7 (0.0%)
var10199 155 (0.5%)
var10902 1976 (6.7%)
var21288 16 (0.1%)
var5454 665 (2.2%)
var3873 2 (0.0%)
var4158 123 (0.4%)
var4339 1630 (5.5%)
var4282 702 (2.4%)
var1724 36 (0.1%)
var1455 6985 (23.6%)
var5456 391 (1.3%)
var5466 587 (2.0%)
var14419 24699 (83.3%)
var1810 3 (0.0%)
var840 5 (0.0%)
var2444 329 (1.1%)
var13506 3 (0.0%)
var21338 1 (0.0%)
var7810 36 (0.1%)
var16062 20290 (68.4%)
var15698 20071 (67.7%)
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Table 1.7: Fit of the additive hazards model on the full data set with clinical variables as
covariates

Estimate Std. Error Z value Pr(> |z|)
PSA 9.40e-04 5.83e-05 16.130 <0.001
GleasonScore 1.21e-02 7.13e-04 16.939 <0.001

Table 1.8: Fit of the additive hazards model on the full data set with clinical and demographical
variables as covariates

Estimate Std. Error Z value Pr(> |z|)
PSA 7.13e-04 5.81e-05 12.266 <0.001
GleasonScore 8.94e-03 7.07e-04 12.657 <0.001
age 3.87e-03 1.34e-04 28.906 <0.001
isBlack 1.07e-02 1.83e-03 5.834 <0.001
isMarried -1.21e-02 1.23e-03 -9.771 <0.001
isRegCalifornia -4.05e-03 1.02e-03 -3.976 <0.001
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Table 1.9: Fit of the additive hazards model on the full data set with clinical, demographical
variables and claim codes as covariates.

Estimate Std. Error Z value Pr(> |z|)
PSA 5.65e-04 5.81e-05 9.725 <0.001
GleasonScore 8.34e-03 7.08e-04 11.775 <0.001
age 3.05e-03 1.34e-04 22.842 <0.001
isBlack 2.46e-03 1.85e-03 1.331 0.183
isMarried -7.85e-03 1.23e-03 -6.353 <0.001
isRegCalifornia -3.31e-03 1.05e-03 -3.145 0.002
var1001 3.47e-02 1.26e-02 2.749 0.006
var7882 7.67e-03 2.98e-03 2.570 0.010
var5498 7.69e-03 6.15e-03 1.250 0.211
var1806 -8.68e-03 9.52e-02 -0.091 0.927
var17742 3.01e-02 1.28e-02 2.346 0.019
var4270 -1.29e-02 3.34e-02 -0.385 0.700
var4115 3.47e-01 4.18e-01 0.829 0.407
var18195 1.38e-01 9.16e-02 1.508 0.132
var4418 1.06e-02 2.16e-02 0.492 0.623
var13233 6.05e-02 4.76e-02 1.270 0.204
var4274 2.50e-02 1.77e-02 1.409 0.159
var20250 6.05e-02 4.54e-02 1.332 0.183
var4091 1.16e-02 1.78e-02 0.653 0.514
var4074 1.52e-02 3.31e-02 0.459 0.646
var4286 2.09e-02 4.73e-02 0.442 0.658
var4137 2.98e-02 3.88e-03 7.671 <0.001
var10944 1.88e-02 1.23e-02 1.531 0.126
var4117 1.60e-02 2.58e-03 6.191 <0.001
var3975 5.70e-03 3.94e-03 1.446 0.148
var4145 3.59e-02 1.56e-02 2.294 0.022
var3890 3.27e-02 1.24e-02 2.637 0.008
var4078 8.66e-03 5.10e-03 1.697 0.090
var4229 1.27e-02 5.36e-03 2.370 0.018
var4165 3.94e-03 3.84e-03 1.027 0.305
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Estimate Std. Error Z value Pr(> |z|)
var4003 7.87e-03 4.91e-03 1.602 0.109
var7750 3.60e-05 3.34e-03 0.011 0.991
var17042 -1.18e-02 1.51e-03 -7.783 <0.001
var1517 2.34e-02 3.54e-02 0.661 0.509
var1718 1.29e-02 2.23e-02 0.579 0.563
var1456 3.56e-03 4.53e-03 0.786 0.432
var1500 1.71e-03 1.18e-02 0.145 0.885
var5681 5.03e-02 1.03e-01 0.489 0.625
var14203 3.63e-02 4.17e-02 0.873 0.383
var14388 8.30e-02 4.08e-02 2.033 0.042
var5462 7.46e-03 1.61e-02 0.462 0.644
var7887 1.64e-02 7.53e-03 2.171 0.030
var5450 5.73e-02 3.38e-02 1.697 0.090
var5525 4.34e-03 3.28e-03 1.322 0.186
var8019 -4.36e-03 2.17e-03 -2.014 0.044
var1921 1.98e-02 1.69e-02 1.171 0.242
var13593 2.95e-02 3.36e-02 0.879 0.379
var16169 3.38e-02 1.77e-02 1.909 0.056
var1870 3.91e-03 8.24e-03 0.474 0.635
var1844 2.41e-03 1.98e-03 1.215 0.225
var1361 1.76e-02 2.28e-02 0.770 0.441
var15637 7.47e-01 6.39e-01 1.169 0.242
var2485 1.47e-01 9.78e-02 1.498 0.134
var17297 1.42e-01 1.02e-01 1.387 0.165
var2431 3.63e-02 2.62e-02 1.388 0.165
var2433 4.75e-02 4.95e-02 0.960 0.337
var2426 4.15e-02 1.16e-02 3.586 <0.001
var7718 -3.88e-03 6.76e-03 -0.573 0.567
var7673 2.45e-02 1.09e-02 2.259 0.024
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Estimate Std. Error Z value Pr(> |z|)
var3770 -4.61e-02 3.85e-03 -11.990 <0.001
var15060 1.55e-03 4.23e-03 0.368 0.713
var7684 -8.48e-03 2.37e-03 -3.579 <0.001
var16918 3.02e-01 3.31e-01 0.915 0.360
var3503 7.69e-03 3.73e-02 0.206 0.837
var2833 6.05e-03 5.27e-03 1.148 0.251
var17473 1.21e-02 6.63e-02 0.183 0.855
var11745 9.91e-02 1.00e-01 0.989 0.322
var6136 2.68e-01 1.47e-01 1.826 0.068
var18556 3.24e-01 3.18e-01 1.020 0.308
var16384 2.71e-02 3.19e-02 0.848 0.396
var6164 7.30e-02 1.16e-01 0.628 0.530
var4827 6.75e-02 7.98e-02 0.846 0.397
var14591 2.58e-03 3.33e-02 0.078 0.938
var21353 2.53e-02 5.98e-02 0.424 0.672
var12800 1.77e-01 2.34e-01 0.756 0.450
var18487 5.82e-03 3.19e-02 0.183 0.855
var17644 9.72e-02 6.25e-02 1.555 0.120
var10776 2.19e-02 1.54e-02 1.426 0.154
var6937 1.72e-02 2.59e-02 0.663 0.507
var15867 2.48e-02 3.58e-02 0.694 0.488
var18793 1.93e-01 9.11e-02 2.119 0.034
var19387 2.64e-01 1.48e-01 1.778 0.075
var15736 3.85e-02 2.12e-02 1.813 0.070
var11825 1.04e-01 5.80e-02 1.801 0.072
var7025 2.03e-02 3.83e-02 0.529 0.597
var18457 2.76e-02 2.09e-02 1.320 0.187
var17613 1.20e-02 2.36e-02 0.510 0.610
var7723 7.24e-03 8.27e-03 0.875 0.381
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Estimate Std. Error Z value Pr(> |z|)
var16068 -5.10e-03 5.03e-03 -1.013 0.311
var19322 -1.87e-02 2.68e-02 -0.700 0.484
var6170 8.18e-03 9.07e-03 0.902 0.367
var17623 -3.19e-02 2.67e-02 -1.192 0.233
var17574 -7.50e-04 4.94e-03 -0.152 0.879
var17743 2.03e-02 8.84e-03 2.293 0.022
var11902 6.65e-03 3.63e-03 1.833 0.067
var17739 2.61e-04 4.45e-03 0.059 0.953
var15454 -5.19e-03 2.90e-03 -1.788 0.074
var17591 -1.23e-03 5.75e-03 -0.214 0.831
var16063 -1.90e-03 1.16e-03 -1.638 0.101
var17577 -2.83e-03 3.46e-03 -0.818 0.413
var19323 3.51e-02 1.99e-02 1.761 0.078
var19342 4.84e-02 3.17e-02 1.528 0.126
var21322 -1.01e-02 3.55e-02 -0.284 0.777
var18854 -6.69e-03 1.73e-03 -3.855 <0.001
var17734 3.85e-02 5.37e-02 0.718 0.473
var1937 2.58e-01 1.91e-01 1.349 0.177
var1927 2.48e-01 1.74e-01 1.422 0.155
var1938 1.41e-01 1.08e-01 1.312 0.189
var2082 -7.31e-02 4.14e-02 -1.765 0.078
var1979 4.88e-02 1.26e-02 3.873 <0.001
var2100 1.02e-02 1.33e-02 0.768 0.442
var4775 6.64e-02 2.77e-02 2.399 0.016
var4706 1.32e-02 2.60e-03 5.087 <0.001
var4663 1.87e-02 6.19e-03 3.023 0.003
var4671 7.59e-03 5.85e-03 1.298 0.194
var4769 1.07e-02 7.42e-03 1.447 0.148
var17257 8.46e-03 3.78e-03 2.240 0.025
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Estimate Std. Error Z value Pr(> |z|)
var4785 2.53e-02 1.23e-02 2.065 0.039
var4758 2.51e-02 9.74e-03 2.581 0.010
var9553 1.42e-01 9.64e-02 1.469 0.142
var9945 -1.35e-02 9.99e-02 -0.135 0.893
var10180 2.74e-02 2.58e-02 1.061 0.288
var9082 -1.09e-02 1.10e-01 -0.099 0.921
var10199 2.04e-02 1.27e-02 1.608 0.108
var10902 4.29e-03 2.68e-03 1.600 0.110
var21288 2.54e-02 5.33e-02 0.476 0.634
var5454 -1.60e-03 8.14e-03 -0.196 0.845
var3873 2.60e-01 2.25e-01 1.156 0.248
var4158 6.33e-03 1.64e-02 0.385 0.700
var4339 4.61e-03 3.45e-03 1.336 0.182
var4282 1.11e-02 6.04e-03 1.834 0.067
var1724 -3.30e-02 2.17e-02 -1.520 0.129
var1455 2.27e-03 1.41e-03 1.613 0.107
var5456 1.41e-02 7.90e-03 1.787 0.074
var5466 1.77e-02 7.63e-03 2.324 0.020
var14419 -2.02e-03 3.55e-03 -0.569 0.570
var1810 1.86e-01 2.19e-01 0.849 0.396
var840 2.83e-02 7.38e-02 0.384 0.701
var2444 3.65e-02 9.14e-03 3.990 <0.001
var13506 4.94e-01 3.49e-01 1.415 0.157
var21338 3.08e-01 3.73e-01 0.828 0.408
var7810 6.23e-02 4.80e-02 1.299 0.194
var16062 -1.77e-03 1.36e-03 -1.302 0.193
var15698 -8.28e-03 1.36e-03 -6.084 <0.001
var17681 -3.43e-03 1.68e-03 -2.042 0.041
var7826 1.13e-04 2.36e-03 0.048 0.962

Table 1.10: Fit of the additive hazards model on the training data set with clinical variables as
covariates

Estimate Std. Error Z value Pr(> |z|)
PSA 8.97e-04 8.02e-05 11.173 <0.001
GleasonScore 1.38e-02 1.04e-03 13.191 <0.001
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Table 1.11: Fit of the additive hazards model on the training data set with clinical and demo-
graphical variables as covariates

Estimate Std. Error Z value Pr(> |z|)
PSA 6.93e-04 8.01e-05 8.650 <0.001
GleasonScore 1.04e-02 1.03e-03 10.060 <0.001
age 3.87e-03 1.90e-04 20.356 <0.001
isBlack 9.14e-03 2.60e-03 3.511 <0.001
isMarried -1.17e-02 1.75e-03 -6.698 <0.001
isRegCalifornia -3.41e-03 1.47e-03 -2.329 0.020
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Table 1.12: Fit of the additive hazards model on the training data set with clinical, demographical
variables and claim codes as covariates

Estimate Std. Error Z value Pr(> |z|)
PSA 5.43e-04 7.99e-05 6.795 <0.001
GleasonScore 9.92e-03 1.03e-03 9.594 <0.001
age 3.04e-03 1.91e-04 15.936 <0.001
isBlack 1.65e-03 2.63e-03 0.627 0.530
isMarried -7.85e-03 1.75e-03 -4.487 <0.001
isRegCalifornia -3.29e-03 1.52e-03 -2.166 0.030
var1001 3.33e-02 1.80e-02 1.848 0.065
var7882 6.30e-03 4.22e-03 1.492 0.136
var5498 1.41e-02 9.21e-03 1.527 0.127
var1806 1.18e-01 2.24e-01 0.529 0.597
var17742 3.91e-02 1.84e-02 2.128 0.033
var4270 -4.00e-02 3.61e-02 -1.109 0.267
var4115 3.37e-01 4.18e-01 0.806 0.420
var18195 1.95e-02 9.91e-02 0.197 0.844
var4418 1.09e-02 2.53e-02 0.429 0.668
var13233 9.14e-02 6.35e-02 1.439 0.150
var4274 2.41e-02 2.22e-02 1.089 0.276
var20250 2.58e-02 5.94e-02 0.434 0.664
var4091 4.92e-02 3.54e-02 1.387 0.165
var4074 -8.89e-03 3.98e-02 -0.223 0.823
var4286 3.52e-02 7.59e-02 0.463 0.643
var4137 3.28e-02 5.60e-03 5.849 <0.001
var10944 7.20e-03 1.68e-02 0.427 0.669
var4117 2.17e-02 3.76e-03 5.767 <0.001
var3975 9.11e-03 5.66e-03 1.609 0.108
var4145 5.65e-02 2.52e-02 2.245 0.025
var3890 3.03e-02 1.79e-02 1.695 0.090
var4078 1.17e-02 7.85e-03 1.492 0.136
var4229 1.11e-02 7.41e-03 1.495 0.135
var4165 3.78e-04 5.54e-03 0.068 0.946
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Estimate Std. Error Z value Pr(> |z|)
var4003 5.79e-03 6.80e-03 0.852 0.394
var7750 -8.45e-04 4.72e-03 -0.179 0.858
var17042 -1.18e-02 2.21e-03 -5.337 <0.001
var1517 3.72e-02 4.82e-02 0.771 0.441
var1718 1.97e-02 3.23e-02 0.609 0.543
var1456 -4.07e-03 6.01e-03 -0.677 0.499
var1500 -1.18e-03 1.75e-02 -0.068 0.946
var5681 4.29e-02 1.03e-01 0.419 0.675
var14203 1.12e-01 9.42e-02 1.193 0.233
var14388 2.05e-01 9.74e-02 2.101 0.036
var5462 1.85e-02 2.30e-02 0.807 0.420
var7887 2.25e-02 1.07e-02 2.099 0.036
var5450 8.41e-02 5.89e-02 1.427 0.154
var5525 1.00e-03 4.54e-03 0.221 0.825
var8019 -4.03e-03 3.15e-03 -1.281 0.200
var1921 3.55e-02 2.30e-02 1.545 0.122
var13593 2.98e-02 4.32e-02 0.691 0.490
var16169 7.19e-02 3.19e-02 2.254 0.024
var1870 1.06e-02 1.27e-02 0.834 0.404
var1844 1.59e-03 2.82e-03 0.566 0.572
var1361 -1.94e-02 2.78e-02 -0.699 0.485
var15637 7.79e-01 6.41e-01 1.215 0.224
var2485 2.76e-01 1.86e-01 1.488 0.137
var17297 2.27e-01 1.56e-01 1.458 0.145
var2431 1.95e-02 3.17e-02 0.616 0.538
var2433 -1.50e-03 5.20e-02 -0.029 0.977
var2426 4.27e-02 1.53e-02 2.786 0.005
var7718 -2.70e-03 9.41e-03 -0.287 0.774
var7673 4.05e-02 1.64e-02 2.471 0.013
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Estimate Std. Error Z value Pr(> |z|)
var3770 -4.34e-02 5.46e-03 -7.956 <0.001
var15060 -7.18e-04 5.77e-03 -0.124 0.901
var7684 -7.28e-03 3.36e-03 -2.165 0.030
var16918 3.03e-01 3.31e-01 0.916 0.360
var3503 -3.27e-02 7.41e-03 -4.412 <0.001
var2833 7.53e-03 7.32e-03 1.028 0.304
var17473 -1.78e-02 5.24e-03 -3.394 0.001
var11745 4.99e-02 9.56e-02 0.521 0.602
var6136 4.32e-01 2.30e-01 1.878 0.060
var18556 5.42e-02 2.54e-01 0.213 0.831
var16384 1.70e-02 4.81e-02 0.354 0.724
var6164 2.49e-01 3.33e-01 0.749 0.454
var4827 6.43e-02 8.00e-02 0.803 0.422
var14591 -6.18e-03 4.02e-02 -0.154 0.878
var21353 -4.77e-03 8.93e-02 -0.053 0.957
var12800 2.28e-01 2.90e-01 0.786 0.432
var18487 2.37e-03 3.88e-02 0.061 0.951
var17644 1.45e-01 9.12e-02 1.591 0.112
var10776 1.00e-02 1.91e-02 0.525 0.600
var6937 4.35e-02 5.22e-02 0.833 0.405
var15867 2.34e-02 6.42e-02 0.365 0.715
var18793 1.96e-01 2.06e-01 0.951 0.342
var19387 7.10e-01 5.05e-01 1.404 0.160
var15736 3.28e-02 2.70e-02 1.215 0.224
var11825 6.01e-02 6.59e-02 0.913 0.361
var7025 4.87e-02 6.63e-02 0.735 0.463
var18457 5.25e-02 3.01e-02 1.745 0.081
var17613 -7.14e-03 3.28e-02 -0.218 0.828
var7723 5.64e-03 1.18e-02 0.478 0.633
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Estimate Std. Error Z value Pr(> |z|)
var16068 -8.28e-03 6.90e-03 -1.199 0.231
var19322 -9.97e-03 4.07e-02 -0.245 0.807
var6170 -4.33e-04 1.20e-02 -0.036 0.971
var17623 -3.80e-02 3.73e-02 -1.018 0.309
var17574 -6.01e-03 6.94e-03 -0.866 0.387
var17743 2.11e-02 1.25e-02 1.686 0.092
var11902 3.46e-03 4.88e-03 0.709 0.478
var17739 -7.28e-03 6.14e-03 -1.186 0.236
var15454 -6.04e-03 4.29e-03 -1.408 0.159
var17591 -6.97e-03 8.33e-03 -0.838 0.402
var16063 -1.44e-03 1.68e-03 -0.859 0.391
var17577 -3.16e-04 5.01e-03 -0.063 0.950
var19323 1.48e-02 2.56e-02 0.577 0.564
var19342 5.97e-02 4.68e-02 1.278 0.201
var21322 3.09e-02 4.81e-02 0.642 0.521
var18854 -6.63e-03 2.45e-03 -2.705 0.007
var17734 4.81e-03 6.35e-02 0.076 0.940
var1937 2.34e+00 1.86e+00 1.256 0.209
var1927 2.27e-01 1.79e-01 1.263 0.206
var1938 1.16e-01 1.33e-01 0.868 0.385
var2082 -1.04e-01 6.37e-02 -1.631 0.103
var1979 3.62e-02 1.67e-02 2.162 0.031
var2100 9.01e-03 1.82e-02 0.494 0.621
var4775 6.17e-02 3.48e-02 1.775 0.076
var4706 1.27e-02 3.75e-03 3.395 0.001
var4663 2.12e-02 9.02e-03 2.355 0.019
var4671 -3.26e-03 8.08e-03 -0.403 0.687
var4769 2.84e-02 1.19e-02 2.382 0.017
var17257 7.48e-03 5.30e-03 1.412 0.158
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Estimate Std. Error Z value Pr(> |z|)
var4785 1.69e-02 1.69e-02 1.001 0.317
var4758 4.04e-02 1.54e-02 2.617 0.009
var9553 -9.24e-03 8.65e-03 -1.068 0.285
var9945 -9.69e-02 8.91e-02 -1.088 0.277
var10180 3.36e-04 2.48e-02 0.014 0.989
var9082 1.41e-01 3.19e-01 0.443 0.658
var10199 2.77e-02 1.79e-02 1.550 0.121
var10902 -4.23e-04 3.75e-03 -0.113 0.910
var21288 -4.98e-02 6.76e-02 -0.737 0.461
var5454 1.30e-02 1.20e-02 1.085 0.278
var3873 2.62e-01 2.25e-01 1.166 0.244
var4158 4.49e-02 2.70e-02 1.663 0.096
var4339 3.74e-03 4.79e-03 0.780 0.435
var4282 1.57e-02 8.60e-03 1.824 0.068
var1724 -1.32e-02 3.27e-02 -0.402 0.687
var1455 4.35e-03 2.05e-03 2.120 0.034
var5456 9.20e-03 1.07e-02 0.862 0.389
var5466 1.63e-02 1.02e-02 1.595 0.111
var14419 -2.49e-03 5.30e-03 -0.470 0.639
var1810 7.76e-01 6.64e-01 1.168 0.243
var840 -4.77e-02 8.45e-03 -5.643 <0.001
var2444 4.58e-02 1.38e-02 3.311 0.001
var13506 5.10e-01 5.36e-01 0.952 0.341
var21338 3.12e-01 3.73e-01 0.838 0.402
var7810 5.60e-02 1.01e-01 0.552 0.581
var16062 -2.19e-04 1.90e-03 -0.115 0.908
var15698 -1.08e-02 1.96e-03 -5.523 <0.001
var17681 -2.68e-03 2.54e-03 -1.056 0.291
var7826 -4.38e-04 3.34e-03 -0.131 0.896

1.9 Acknowledgements

Chapter 1, in full, is a reprint of the material as it appears in Statistics in Medicine. Rava,

Denise; Xu, Ronghui. Explained variation under the additive hazards model, 40.1:85-100,2021.

The dissertation author was the primary investigator and author of this paper.

44



Chapter 2

DeepHazard: neural network for

time-varying risks

2.1 Introduction

Understanding the relationship between covariates and the distribution of survival time is

fundamental in many fields spanning medicine, biology, healthcare, economics, and engineering.

Survival data are often incomplete due to censoring, making the traditional predictive methods

unsuitable. Traditionally, several semiparametric survival models, such as the popular Cox Model

(Cox, 1972), the Additive Hazards Model (Aalen, 1980) or the Accelerated Failure Time model

(Wei, 1992), have been proposed and extensively used. Developed to deal with censoring; however,

they model the hazards as a particular function of a linear combination of the data, limiting their

applicability in many real-world applications.

To overcome this difficulty, the interest in using deep learning methods, such as neural

networks, for survival prediction has been increasing. Several nonparametric extensions of the Cox
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Model have appeared in the literature; see, for example, (Faraggi and Simon, 1995; Ching et al.,

2018; Liao and Ahn, 2016; Zhu et al., 2016; Katzman et al., 2018; Kvamme et al., 2019). They

make use, to train the neural network, of the classical Cox partial likelihood and base their analysis

on the proportional hazard assumption. The latter is often unrealistic and represents a relevant

limitation. Non-proportional hazards are widely occurrent: when the effect of a treatment vanishes

over time, and henceforth the ratio of the hazards tends to one, or when a drug is beneficial for one

subgroup but harmful for the other, resulting in crossing survival curves. Non-proportional hazards

are difficult to model. They usually indeed don’t allow the use of a flexible and nonparametric

baseline hazard.

Another line of work pertains the usage of discrete-time hazards for survival prediction; see

for example, Liestbl et al. (1994); Brown et al. (1997); Biganzoli et al. (1998); Zhu et al. (2016);

Luck et al. (2017); Fotso (2018); Lee et al. (2018); Gensheimer and Narasimhan (2019); Grisan et al.

(2019); Ren et al. (2019); Zhao and Feng (2019); Lee et al. (2019). They don’t make assumptions on

the form of the hazard; however, they treat survival time as a discrete random variable taking only

finitely many pre-determined values, loosing, therefore, the continuous nature of the problem itself.

Moreover, they often cast the survival problem as a classification one, considering every observation

as a sequence of zeros and ones to indicate their status. Naturally, with discrete approaches, the

hazard is no longer a rate but a conditional probability. A different approach is the one proposed by

Zhao and Feng (2019). The authors reduce the survival problem to a standard regression problem

by considering inputting the missing outcomes with Kaplan Meier survival estimates. However,

regression on such pseudo-responses is deemed biased whenever data is not missing at random. We

construct, instead, a new survival neural network.

To overcome these limitations, we propose DeepHazard, a new neural network that doesn’t

rely on the assumption of proportional hazards while not neglecting the continuous nature of the
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data. Our approach is indeed tailored for a wide range of hazards, with the only restriction of being

continuous and additive in time. Illustrative examples include a case where the effect of treatment or

the treatment status changes with time; some patients are treated only after their disease progresses.

Building on the promising alternative of the Cox model, the non-parametric additive hazards

model, we propose a new non-parametric alternative of the additive hazards loss. The latter doesn’t

constrain the risk of being of a particular form or being constant in time. Moreover, it naturally

incorporates time-dependent covariates making our approach suitable for a large class of real data

applications. In particular, our approach is designed to treat an aligned type of data arising whenever

for each observation, and each covariate, a sequence of measurement at different time points is

available, for example, in a series of follow-up visits.

The sequential nature of the data is incorporated by dividing the data in multiple time-frames

and building a neural network in each time-frame to estimate the time-varying risk. Each neural

network is trained on the observations, still at risk. Moreover, the interdependency between different

time-frames is directly assimilated by adding to the input of every time interval-specific neural

network, the output of the network built in the previous time-period. Figure 2.1 presents one possible

architecture. The output node (blue in Figure 2.1) of each of the time-frames, denotes the predicted

value of the risk score at that period. The input nodes (red in Figure 2.1) in each of the time-frames

denote at-risk observations at that time-frame. Note that they change both in numbers and type

from time-frame to time-frame. For the proposed neural network, the steps of feature extraction and

survival analysis are not separated or done through two separate optimization procedures. They are

gathered in one unique neural network, and the optimization of all the parameters happens together

using the proposed survival loss. In this way, observations still at-risk are kept together.

DeepHazard outputs, for each combination of covariates, a rich estimate of the risk function

and, for external covariates, survival function, including the baseline survival, as well as survival
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in desired time-intervals, therefore allowing a deep understanding of the time to event distribution

and comparison between different groups and observations. The performance of our approach is

evaluated through extensive simulations. We show that our method outperforms existing methods in

terms of predictive capability, evaluated through the time-dependent C-index metric (Antolini et al.,

2005). We also apply DeepHazard to the popular real datasets: METABRIC, GBSG, and ACTG to

study time to death of breast-cancer and HIV-infected patients.

2.1.1 Related literature

Different methods that make use of machine learning techniques have been employed to

analyze continuous survival data. Random survival forest of Ishwaran et al. (2008) extends the

random forest methodology to survival analysis. Recently broadened to accommodate time-varying

covariates, (Wongvibulsin et al., 2020), random survival forest consists of an ensemble of survival

trees that are grown following a particular splitting rule that aims to maximize the difference

between estimated survival curves in children nodes. Although a model is not explicitly assumed,

the random survival forest’s predictive performance depends on the splitting rule chosen. The most

popular uses log-rank split statistics, which is known to lack power when the proportional hazards

assumption is violated.

Machine learning techniques for discrete-time survival data include DeepHit and Dynamic-

DeepHit, (Lee et al., 2018, 2019), a neural network that directly estimates the probability mass

function of experiencing a particular event at a specific time. Fotso (2018) recasts the output of

observation as a sequence of zeros (up to the event time) followed by a sequence of ones (after

the event time) and applies the framework of neural networks to the multi-task logistic regression.

Kvamme and Borgan (2019) rewrites the output as a vector of zeros with a single one corresponding

to the observed event and makes use of the negative log-likelihood for Bernoulli data to train the
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neural network. The authors then propose an extension to continuous-time survival data using

discretization and interpolation strategies. Zhong and Tibshirani (2019) introduce the stacking idea

that recasts the data into a large data frame where the output column is a series of zeros and ones.

The problem is then treated as a classification problem onto which various existing techniques can

be directly applied.

When the time is not discretized and is treated as continuous, semi-parametric approaches

based on the popular Cox model have been proposed. Katzman et al. (2018) parametrizes a Cox

regression model with a neural network building on the work of Faraggi and Simon (1995). Kvamme

et al. (2019) proposes an extension of it introducing an approximation of the partial log-likelihood

to batches of data and allowing the relative risk function to depend on time. In both cases, the

model is a relative risk model that does not allow the introduction of time-dependent covariates. A

fully parametric approach has recently been proposed by Nagpal et al. (2020), where the survival

function conditional on the fixed (not time-dependent) covariates is assumed to be a mixture of

individual parametric survival distributions.

In this work, we build on the literature of semiparametric models for continuous-time

survival data, proposing a different loss function, entirely unrelated to the partial likelihood typical

of the proportional hazards model. Moreover, we propose a framework that allows the extension of

our and potentially many other neural network methodologies to time-dependent covariates.

2.1.2 Organization of the paper

Section 2.2 contains the details of the proposed DeepHazard algorithm which includes a

new time-additive hazards model, Section 2.2.1, a decomposition of the loss function, Section 2.2.3,

as well as the details of the estimation and prediction, Section 2.2.4 and 2.2.5, respectively. Section

2.3 includes detailed finite sample experiments on time-dependent covariates and outcomes where
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we illustrate the impact of censoring, sample size, time, and feature space. Section 2.4 focuses on

real data examples where we compare with the Random Survival Forest and DeepSurv algorithms

and demonstrate superior performance.

2.2 DeepHazard learning

We introduce a new survival model, additive in time only, that explains the survival of a

subject given, possibly time-varying, covariates.

Observations of survival times are often censored. This is the case when a patient drops out

of a hospital or drug-treatment study. The time of death is, in this case, never observed; however, we

know that the patient was still alive when he left the study. This is modeled with a random variable

C. If T denotes the survival time, then the censored observations regarding the outcome of interest

are denoted with X = min{T,C}. Together with X we typically assume that an event indicator, δ is

observed; here, δ = 1{T ≤C}.

Medical studies are typically monitored in regular time intervals where a set of personal,

medical information is collected, such as blood pressure, drugs taken, temperature reading, oxy-

genation of the blood. Some of those can naturally be treated as baseline variables, i.e., variables not

changing with time; examples include gene expressions of particular tumor tissue, demographics,

age. However, the majority are time-varying. For simplicity in notation, we denote all of the

covariates as time-varying variables Z(t) ∈ Rp.
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Figure 2.1: Example of DeepHazard architecture: The output node (blue) of each time-frame,
denotes the predicted value of the hazard at that time period. The input nodes (red) in each of
the time-frames denote at-risk observations at that time-frame.
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2.2.1 Time additive hazards model

We propose a new model, additive in time, that assumes that the hazard function,

λ(t | Z(t)) = lim
h→0

P
(
T ∈ (t, t +h]

∣∣T ≥ t,Z(t)
)

h
,

is the sum of two components, a baseline hazard λ0(t) that depends only on time and a risk score,

h(Z(t), t) that encloses the effect of the individual’s covariates Z(t), possibly time-varying, onto the

hazard. The hazard is interpreted in the standard way, as the probability of an event in the interval

[t, t +dt) given covariate Z(t) and assuming that no previous event has happened.

We assume that the covariates are measured at a sequence of M time points (follow up

visits),

t0, t1, . . . , tM.

Let’s notice that we don’t require t0, t1, . . . , tM to be the same as event times. Therefore, we naturally

divide the time into a sequence of intervals [t0, t1), . . . , [tM,∞). For example, let us assume that every

patient is subjected to a visit every two months, and at every such visit, a series of physical values, as

blood pressure, is measured and recorded. In this case, we would have as intervals [0,2), [2,4), . . .,

and the series of the measured values will be encoded as Z(0),Z(2), . . . . We assume that at any

intervals [t j, t j+1) the risk score of a subject is described by a constant in time risk score h j.

h(Z(t), t) = h j(Z(t)), t ∈ [t j, t j+1), j = 0,1, . . . ,M,

To acknowledge the continuous nature of the time and the natural possible dependence onto the past

values, we allow the risk score h j to depend on previous-in-time risk scores h0, . . . ,h j−1. In other
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words h(Z(t), t) satisfies

h j(Z(t)) = f j(Z(t j),h0(Z(t)),h1(Z(t)), · · · ,h j−1(Z(t))), t ∈ [t j, t j+1), j = 0,1, . . . ,M, (2.1)

where f j is an unknown function. This describes a recursive relationship

h0(Z(t)) = f0(Z(t0)), h1(Z(t)) = f1
(
Z(t1), f0(Z(t0))

)
,

h2(Z(t)) = f2

(
Z(t2), f0(Z(t0)), f1

(
Z(t1), f0(Z(t0))

))
, · · · .

With a small abuse in notation we drop the notation f j and use h j to denote the unknown functional

relationship at time interval j.

Therefore, primarily we consider the following representation of the hazard

λ(t|Z(t)) = λ0(t)+h(Z(t), t) (2.2)

where

h(Z(t), t) =
M

∑
j=0

h j

(
Z(t j),h0(Z(t)), . . . ,h j−1(Z(t))

)
1
(
t j ≤ t < t j+1

)
, (2.3)

where tM+1 = ∞ and h0(Z(t)), . . . ,hM(Z(t)) are functions of the covariates.

The form of model (3.1) is reminiscent of the traditional additive hazards model (Aalen,

1980), which takes the following form, λ(t | Z) = λ0(t)+β(t)Z(t) with the risk being limited to be

of a linear form. The proposed model extends it to comprise a broader range of risk score forms and

to incorporate the sequential nature of time-varying covariates.
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Example 1: Sum of all previous in time hazards:

h0(Z(t)) = f0(Z(t0)), h1(Z(t)) = h0(Z(t))+ f1(Z(t1)),

h j(Z(t)) = h0(Z(t))+ · · ·+h j−1(Z(t))+ f j(Z(t j))

This can be named nonparametric additive hazards model; structure of the hazard mimics that of

generalized additive models (Hastie and Tibshirani, 1990). Similarly, one can consider sum of the

last few in time hazards only.

Example 2: Product of the last k hazards:

h0(Z(t)) = f0(Z(t0)), h1(Z(t)) = f0(Z(t0)) f1(Z(t1)),

h j(Z(t)) = h j−k(Z(t)) · · ·h j−1(Z(t)) f j(Z(t j)).

Here the logarithm of the hazard has nonparametric and additive structure. However the logarithmic

transformation as well as functions f0, . . . , fM are unknown a-priori.

Example 3: Heterogeneous hazard:

h j(Z(t)) = σ jZ(t j) σ
2
j = ω j +α j f 2

j−1(Z(t j−1))+β jσ
2
j−1,

where ω > 0, α,β ≥ 0. The aforementioned constants as well as functions f j are all unknown

parameters of the hazard. In particular,

h0(Z(t)) = σ0Z(t0),σ2
0 = ω0 > 0,

h1(Z(t)) = σ1Z(t1),σ2
1 = ω1 +α1( f0(Z(t0))−θ1ω0)

2 +βω
2
0, · · ·
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More in general, it is easy to see how any survival model can be written as equation (3.1).

Our modeling Assumption, (2.3), on the form of h(Z(t), t) can be seen as an approximation for

estimation purposes. Indeed, we only assume the risk to be constant into intervals. Moreover, we

allow the dependency of the risk score, of a specific interval, onto the risk scores of the previous

intervals, making the assumption of piecewise constant risk less strict and allowing the continuous

nature of the time to play an explicit role. Therefore, our model can be applied to a wide variety of

risk score forms. As long as the intervals are dense enough, and the smoothness of the risk score is

adequate, our approximation will work well.

2.2.2 Quadratic loss function

In this section we want to motivate our score function or loss function through a population

perspective first. In the following we use Y (t) = 1(X ≥ t) to denote the at-risk indicator, i.e. subset

of observations which are at time t still at risk of experiencing an “event,” i.e., death. In addition,

we indicate with N(t) = 1(X ≤ t,δ = 1) the counting process of whether and when an “event” has

occurred.

The estimation strategy borrows techniques from the additive hazards model and its least

squares loss therefore landing itself particularly useful for neural-network approaches. If indeed,

we consider the generic representation of the model (3.1),

dN(t) = λ(t | Z(t))Y (t)dt +dM(t) (2.4)

where M(t) is the associated martingale process, the following least squares loss, also called in the

literature least-squares contrast, (Reynaud-Bouret et al., 2006), for a generic function f (Z(t), t), can
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be easily derived:

γ( f ) =−1
n

n

∑
i=1

∫
τ

0
f (Zi(t), t)dNi(t)+

1
2n

n

∑
i=1

∫
τ

0
f (Zi(t), t)2Yi(t)dt.

In the above, τ is an upper bound of time due to administrative censoring. Taking the expected value

on both sides of (2.4) and considering the martingale decomposition, we get:

E{γ( f )}=−E
{∫

τ

0
f (Zi(t), t)λ(t | Zi(t))Yi(t)dt

}
+

1
2

E
{∫

τ

0
f (Zi(t), t)2Yi(t)dt

}
.

Defining with ‖·‖µ, the following norm: ‖g‖µ = E
{∫

τ

0 f 2(Z(t), t)Y (t)dt
}
, we are left with

2E{γ( f )}= E
[∫

τ

0
{ f (Z(t), t)−λ(t | Z(t))}2

λ(t | Z(t))Yi(t)dt
]
−E

{∫
τ

0
λ(t | Z(t))2Yi(t)dt

}
= ‖ f (Z(t), t)−λ(t | Z(t))‖µ−‖λ(t | Z(t))‖µ .

The latter justifies the minimization of the least squares contrast as estimation strategy for the hazard

function λ(t | Z(t)), as explained in Comte et al. (2011). If we consider our additive form of the

hazard (3.1), f (Z(t), t) = λ0(t)+h(Z(t), t), the loss can be decomposed as follows:

γ( f ) = γ1(λ0)+ γ2(h)+ γ3(λ0,h),

where

γ1(λ0) =
1

2n

n

∑
i=1

∫
τ

0

{
λ0(t)+ h̄(t)

}2Yi(t)dt− 1
n

n

∑
i=1

∫
τ

0

{
λ0(t)+ h̄(t)

}
dNi(t),

γ2(h) =
1

2n

n

∑
i=1

∫
τ

0

{
h(Zi(t), t)− h̄(t)

}2Yi(t)dt− 1
n

n

∑
i=1

∫
τ

0

{
h(Zi(t), t)− h̄(t)

}
dNi(t),

γ3(λ0,h) =
1
n

n

∑
i=1

∫
τ

0

{
h(Zi(t), t)− h̄(t)

}{
λ0(t)+ h̄(t)

}
Yi(t)dt,
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where

h̄(t) =
∑

n
i=1 h(Zi(t), t)Yi(t)

∑
n
i=1Yi(t)

.

By easy computation it can be proven that γ3(λ0,h) = 0. It is therefore suitable, for estimation of

the risk h(Z(t), t), to consider the minimization of γ2(h) solely. Details of the above decompositions

can be found in Gaiffas et al. (2012). In our approach, we make use of a regularized version of

γ2(h),

min
h
{γ2(h)+P(h)} ,

where P is an appropriate penalty function of practitioners choice. We show the details in the next

section.

2.2.3 Loss function decomposition

Noticing that time-dependent covariates are observed in a natural, sequential ordering,

t0 ≤ t1 ≤ ·· · ≤ tM, and because of the assumed form of the hazard (2.3), to estimate the risk

h(Z(t), t), we need to estimate the various time-intervals specific risk h j for j = 0, . . . ,M. Intuitively,

it makes sense to involve in the estimation of each h j, only the observations at risk on the jth

interval, discarding everyone that is censored or have experienced the events before the start of that

particular interval. In the following, we explain the mathematical arguments in detail.

In our approach, every h j will be estimated by a neural network j, whose parameters,

biases and weights, will be indexed by θ j. In the following we use the generic θ to indicate the

collection of (θ0, . . . ,θM) and we use hθ to denote the dependency, explained in details later, of the

final estimate of h(Z(t), t) onto the parameters of the networks. Henceforth, we make use of the
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following regularized version of γ2(h):

γ2(hθ)+λ

M

∑
j=0

∥∥θ j
∥∥

p , (2.5)

where we implemented two norms: p = 1,2 to allow for both the Lasso and the Ridge penalty.

We observe that the integrals in (2.5) can be broken down as sums of M+1 integrals, one

for each time intervals introduced above, as in the following:

M

∑
j=0

L j(θ j)+λ
∥∥θ j
∥∥

p , (2.6)

where

L j(θ j) = (2n)−1
n

∑
i=1

∫ t j+1

t j

(
Y j

i (t)
[
hθ j(Zi(t), t)− h̄θ j(t)

]2 dt−2
[
hθ j(Zi(t), t)− h̄θ j(t)

]
dN j

i (t),
)
,

(2.7)

where

N j
i (t) = 1(Xi ≤ t,δi = 1, t j ≤ t < t j+1),

Y j
i (t) = 1(Xi ≥ t, t j ≤ t < t j+1)

and we consider t0 = 0 and tM+1 = τ. If we look more closely, we can see how the counting process

N j
i (t), specific to the intervals [t j, t j+1), is constant outside [t j, t j+1). Hence, its increment, dN j

i (t),

is null for every subjects i that experiences an event outside that specific interval of time. Moreover,

Y j
i (t) = 1(Xi ≥ t, t j ≤ Xi < t j+1, t j ≤ t < t j+1)+1(Xi ≥ t j+1, t j ≤ t < t j+1).

Therefore, Y j
i (t) is a function consistently equal to one that becomes null when the subject expe-
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riences the event or is censored. Hence, any observation with Xi < t j doesn’t play any role in the

j-integral, since Y j
i (t) = 0 and dN j

i (t) = 0. However, if Xi ≥ t j+1, since dN j
i (t) = 0 and Y j

i (t) = 1,

every such observation still appears in the risk set. Indeed, observations that experience the event or

are censored after t j+1 are still alive in the interval [t j, t j+1) and, therefore, still at risk.

In conclusion, while considering [t j, t j+1)interval, we can censor at t j+1 anyone that dies

after t j+1 and we can eliminate anyone that dies or is censored before t j. More technically, we

create therefore for each interval, [t0, t1), . . . , [tM−1, tM), [tM,∞), M+1 working “datasets",

D j = (X j
i ,δ

j
i , Z̃

j
i )

n j
i=1,

for j = 0, . . . ,M, according to the following principles:

X j
i =


Xi t j ≤ Xi < t j+1

t j+1 Xi ≥ t j+1

,

δ
j
i =


δi t j ≤ Xi < t j+1

0 Xi ≥ t j+1

. (2.8)

Z̃0
i = Zi(t0)

Z̃ j
i =

(
Zi(t j)

>, ĥ0(Z̃0
i ), . . . , ĥ j−1(Z̃

j−1
i )

)>
. (2.9)

Here, n j = |D j|, denotes the cardinality of the at-risk observations, i.e., the set D j. Note that the

at-risk datasets, are rarely of the same size and that typically, n0 ≥ n1 ≥ ·· · ≥ nM.

The idea described above is inspired by the time-dependent coefficient survival models,
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utilized widely since the early work on histogram sieves (Murphy and Sen, 1991) or more generally

time-varying coefficient models (Hastie and Tibshirani, 1993). The justification can be understood

from breaking down the integrated score into a product of time intervals specific score.

2.2.4 Estimation

Each dataset D j is now used to estimate the part of the risk h(Z(t), t) that is specific to the

interval j, that is h j(Z(t)). To this goal, M + 1 neural networks, one for each time interval, are

constructed. To accommodate the sequential nature of the time, observations within D j together

with outcomes of the trained neural networks from previous time intervals, ĥk(Z̃k) for k < j, are fed

into the neural network j. The neural network j uses, as loss function, the j-th loss L j(θ j), (2.7),

relative to that specific interval. Due to the assumed structure (2.1), that loss simplifies to:

1
2n

n j

∑
i=1

∫ t j+1

t j

Y j
i (t)

[
h j,θ j(Z̃

j
i )− h̄ j,θ j(t)

]2
dt

− 1
n

n j

∑
i=1

∫ t j+1

t j

[
h j,θ j(Z̃

j
i )− h̄ j,θ j(t)

]
dN j

i (t)+λ
∥∥θ j
∥∥

p , (2.10)

where

h̄ j,θ j(t) =
∑

n j
i=1 h j,θ j(Z̃

j
i )Y

j
i (t)

∑
n j
i=1Y j

i (t)
. (2.11)

The above function h̄ j,θ j(t) represents the mean of h j,θ j restricted to the risk set at time t which

comprises all the subjects still alive. Now, noticing that the function h̄ j,θ j(t) is a stepwise function
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that is constant on any interval [X j
r−1,X

j
r ], as shown in the appendix, the above simplifies to:

1
2n

n j

∑
i=1

i

∑
r=1

[
h j,θ j(Z̃

j
i )− h̄ j,θ j(X

j
r )
]2(

X j
r −X j

r−1

)
− 1

n

n j

∑
i=1

[
h j,θ j(Z̃

j
i )− h̄ j,θ j(X

j
i )
]

δ
j
i +λ

∥∥θ j
∥∥

p ,

where X j
0 = t j. See Appendix 2.6.2 for more details.

Here, we notice how the loss cannot be written as a sum of independent individual i-specific

losses. Indeed, the term h̄ j,θ j(X
j

i ), as explained before, uses all the individuals still at risk at time

X j
i . Thus, the optimization method that relies on breaking down the sample in batches cannot be

performed here. This is a common characteristic of every loss related to any continuous survival

model. It is the same, for example, in Katzman et al. (2018), where the loss used is the partial

likelihood that characterizes the Cox proportional model. The application of batch optimization

for survival data requires the use in the loss of an approximate risk set, instead of the true one, as

explained in Kvamme et al. (2019) where the idea is applied to the Cox model.
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6), . . . , ĥ j−1(Z̃
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Neural-Network Architecture Unit

ĥ j

Output layer

Input layer

Figure 2.2: Deep Hazard: An example of j-th NN with Input Layer consisting of six still at
risk observations and forward passes of previously learned j−1 networks, with arbitrary NN
Architecture Unit.

In our experiments, every hidden fully-connected layer is followed by a nonlinear activation

function and a dropout layer; however, the method can take any architecture of the layers of interest.

As is common in neural networks, the output is a plain weighted combination of the last hidden

layer’s output. No activation function is used for the computation of the output. An example of

the input structure of each j-th NN network is depicted in Figure 2.2. We observe how each set of

still-at-risk observations is enriched with additional features coming out of feed-forward passes run

on previously fitted j−1 networks.

A possible time-convolution, as proposed earlier, can be visualized in Figure 2.3. There, we

illustrate how the time-dependent outputs of each j-th NN are passed onto all of the future NNs.

Moreover, we indicate that each dataset, D j, comprising inputs of j-th NN, depends on the previous

dataset D j−1.
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Input Output
a(w1h1 + b1) a(w2h2 + b2) a(w3h3 + b3)

h0

a(w2h1 + b2)

h1

a(w3h1 + b3)

h2

a(w3h2 + b3)

h3

D0 D1 D2 D3

Figure 2.3: Deep Hazard: unpacked time-convolutions. Each time-specific neural network (NN)
disregards hidden layers. The blue nodes denote outputs of time-specific NNs whereas, arrows
denote feed-forward interactions over time. At each arrow, we show the activation function a and
weights wi and biases bi, i = 1,2,3.. Dotted lines denote dependence of still-at-risk individuals
comprising inputs of each time-specific NN.

After running M+1 sequential (or time-convoluted) neural networks on the M+1 working

datasets, we obtain the optimized weights and biases, denoted here with θ0, . . . ,θM. To form

prediction of the new, test individual we proceed as follows. With a little abuse in notation, let

Z(t) = {Z(t0), . . . ,Z(tM)} ,

be observations pertaining to a sequence of follow up visits, at times t0, . . . , tM, of a new patient.

For each θ0, · · · ,θM, with standard forward pass (evaluating the estimated hazard for a specific new

observation), one for each network, we get the following estimates:

ĥ0(Z̃0) := hθ0(Z̃
0), . . . , ĥM(Z̃M) := hθM(Z̃

M).

Here, each Z̃ is constructed following equation (2.9), in other words, each prediction of the risk at a

future time t j uses the formed predictions of previous time points t0, · · · , t j−1. Combining these into
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a single risk estimator is then simple. Following (3.1) we obtain for an out-of-sample individual

ĥ(Z(t), t) = ĥ0(Z̃0)1(t ≤ t1)+ ĥ1(Z̃1)1(t1 < t ≤ t2)+ · · ·+ ĥM(Z̃M)1(t > tM). (2.12)

For more details on the training process see Algorithm 1.

Algorithm 1 DeepHazard:Training

Require: Training set (Xi,δi,Zi(t0), . . . ,Zi(tM))n
i=1, hyper parameters and hidden layers of M+1

neural networks
θ← initialize weights and biases
Set Z̃0

i ← Zi(t0)
Create D0 dataset according to (2.8)
θ0← neural network initialized at θ and with input Z̃0

1 , . . . , Z̃
0
n

for j in 0 : M do
θ← initialization of weights and biases accordingly to initialization method
Set Z̃ j

i ←
(

Zi(t j), ĥ0(Z̃0
i ), . . . , ĥ j−1(Z̃

j−1
i )

)
Create D j dataset according to (2.8)
Set n j = card(D j)

θ j ← neural network initialized at θ and with input Z̃ j
1, . . . , Z̃

j
n j

for i in 1 : n do
ĥ j(Z̃

j
i )← hθ j(Z̃

j
i ) . forward pass of the j-th NN on the training data

ri← ∑
n
l=1Yl(Xi) . number of people at risk at that time

h̄ j(Xi)← ∑
n
l=i r−1

i ĥ j(Z̃
j
l )

for i in 1 : n do
Ji←

{
j : t j ≤ Xi < t j+1

}
. which interval contains the censored time

ri← ∑
n
l=1Yl(Xi)

Λ̂0(Xi)←
i

∑
l=1

δl

rl
−

Ji

∑
j=0

∑
s:t j≤Xs<t j+1

[Xs+1−Xs]h̄ j(Xs)

return
A matrix ĥ = [ĥ j(Z̃

j
i )]i=1,...,n; j=1,...,M.

The vectors θ0, . . . ,θM . weights and biases for each neural network
A vector

(
Λ̂0(X1), . . . , Λ̂0(Xn)

)
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2.2.5 Prediction of the survival for external covariates

Practitioners are often concerned with predicting the survival rate of a new patient for a

given period of time in the future: survival at one, five, twenty years after diagnosis, for example.

Time-dependent covariates may be classified as external and internal. The former are covariates that

are fixed or whose total path is determined in advance for each individual under study, while the

latter are covariates whose values are generated by the individual. While survival prediction may be

performed for the former, since internal covariates carry information about the failure time, it is

never carried out for the latter (Kalbfleisch and Prentice, 2011). In the following we explain how to

use our method to predict the survival function for time-dependent external covariates.

With estimated risks of the previous section, we only need to design baseline estimates of

the hazard. When considering an additive hazards model λ(t|D,Z) = λ0(t)+βZ(t) as explained in

Lin and Ying (1994a), a semiparametric estimate of the cumulative baseline can be proposed. Here,

we directly extend their semi-parametric approach.

Observe that under the model (3.1),

dNi(t) = dMi(t)+
∫ t

0
Yi(u)dΛ0(u)+

∫ t

0
Yi(u)h(Zi(u),u)du,

it is natural to consider the following estimator

Λ̂0(t) =
∫ t

0

∑
n
i=1
{

dNi(u)−Yi(u)ĥ(Zi(u),u)du
}

∑
n
i=1Yi(u)

, (2.13)

with ĥ as defined in (2.12). Our time-convolutions provide a way to also estimate cumulative

baseline hazards for each time-interval. Therefore our method allows data exploration in each time

interval as well as overall. We show the equivalence of the two approaches in the Appendix 2.6.3.
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Lastly, we compute the predicted survival curve by combining the results of the M neural

network predictions in the following way

Ŝ(t | Z(t)) =



exp(−Λ̂0(t)− ĥ0(Z̃0)t) t < t1

exp(−Λ̂0(t)− ĥ1(Z̃1)(t− t1)− ĥ0(Z̃0)t1) t1 ≤ t < t2

exp(−Λ̂0(t)− ĥ2(Z̃2)(t− t2)− ĥ1(Z̃1)(t2− t1)− ĥ0(Z̃0)t1) t1 ≤ t < t2

. . .

. (2.14)

Here, we take as value for Z(t) = Z(tJt ) where Jt = { j : t j ≤ t < t j+1}.

Finally we construct the following adjusted version of the predicted survival

Ŝ(t | Z(t)) = min
s≤t

Ŝ(s | Z(s)),

guaranteeing the estimator of the survival to be decreasing, consequently avoiding the well known

problem of possibly negative risk and therefore hazard. For more details see Algorithm 2.
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Algorithm 2 DeepHazard:Prediction

Require: Test data Z(t0), . . . ,Z(tM), event times from the Test data, {X1, . . . ,Xn} and outcomes of
DeepHazard:Training, i.e., θ0, . . . ,θM and Λ̂0(X1), . . . , Λ̂0(Xn)
Set Z̃0← Z(t0)
for j in 0 : M−1 do

ĥ j(Z̃ j)← hθ j(Z̃ j) . forward pass of the DeepHazard on the test data
Z̃ j+1←

(
Z(t j+1), ĥ0(Z̃0), . . . , ĥ j(Z̃ j)

)
ĥM(Z̃M)← hθM(Z̃M)
for i in 1 : n do

Set Ji←
{

j : t j ≤ Xi < t j+1
}

. Here Z(Xi)≈ Z(tJi)
Set

Ŝ(Xi | Z(Xi))← exp

(
−Λ̂0(Xi)− ĥJi(Z̃

Ji)(Xi− tJi)−
Ji−1

∑
l=0

ĥl(Z̃l)(tl+1− tl)

)

Set Ŝ(Xi | Z(Xi))←minl≤i Ŝ(Xl | Z(Xl)) . monotonicity guarantee
return Ŝ(X1 | Z(X1)), . . . , Ŝ(Xn | Z(Xn))

Until now, we have implicitly assumed that, any new observation will have Z(t) measured at

the same time points used to train the network - t0, . . . , tM. If this is not the case we approximate Z(t j)

with the nearest Z(t) available. More in details, if the measurements Z(t̃0), . . . ,Z(t̃M̃) are available,

we make use of the following approximation: Z(ti) = Z(t̃Ji) where Ji = argmin j=1,...,M̃ |ti− t̃ j|.

We study in simulation the effect of the number and the placement of the time points that

define the M+1 intervals. We show that the performance of our procedure remains stable when

the time points at which the covariates are measured shift or more time points are added. The only

restriction that needs to be kept in mind is that we need to have enough observations to train the last

neural network, that, we remind, uses as input only the observation still at risk after tM. The last

time point therefore cannot be too large in comparison to the magnitude of the censored event time

of our sample.
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2.3 Finite sample experiments

In this section, we evaluate the performance of Deep Hazard in finite samples. We compare

DeepHazard with the Additive Hazards Model, (Aalen, 1980), that presuposes

λ(t | Z(t)) = λ0(t)+β(t)Z(t),

and with the Time dependent Cox Model, (Fisher and Lin, 1999), that assumes

λ(t | Z(t)) = λ0(t)exp(βZ(t)).

We use the R packages Timereg and Survival, respectively to fit the Additive Hazards Model and the

Time dependent Cox model. As a measure of performance, we use the time dependent C-index as

proposed by Antolini et al. (2005),

Cindex =
n

∑
i=1

n

∑
j=1; j 6=i

1

(
Ŝ(ti | Zi(t))< Ŝ(t j | Z j(t))

)
pi, j,

where

pi, j =
1
{

ti < t j, δi = 1
}
+1

{
ti = t j, δi = 1, δ j = 0

}
∑

n
i=1 ∑

n
j=1; j 6=i

[
1
{

ti < t j, δi = 1
}
+1

{
ti = t j, δi = 1, δ j = 0

}] .
We also introduce a new measure, the integrated mean square prediction error (IMSPE),

defined as follows:

IMSPE =
1
τ

∫
τ

0

1
n

n

∑
i=1

{
Ŝ(t | Z(t))−S(t | Z(t))

}2
,

to capture the quality of the prediction error through time.
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We implement our neural network in PyTorch,

https://github.com/deniserava/DeepHazard . The implementation is flexible in that the user

can choose the structure of the Neural Network: the number of hidden layers, number of hidden

nodes, activation function, and a dropout rate. Moreover, the following Hyperparameters related

to the optimization procedure of the neural networks, as initialization method, optimizer used,

learning Rate (lr), number of Epochs (E), and early stopping can be chosen. The user can also

select the regularization parameters λ and p of the loss (2.10). It is worth noting that Epochs are

updating the network weights and biases (parameters) through a suitable optimization method, but

stay un-permuted to preserve the order of the survival outcomes. A list of the popular activation

functions, that we implemented, can be found in Appendix 2.6.1; see Table 2.15.

Our numerical experiments are evaluated on simulated data. We focus on the settings with

time-varying covariates. There is a need to describe data-generating processes for the hazard models

in the presence of time-varying covariates. The latter are generated using the procedure described in

Algorithm 3.

2.3.1 Impact of the sample size

We assume the data is generated according to the following four different hazards models.

Below ’∗’ denotes multiplication. Model 1 follows additive structure but the covariates are highly

correlated and non-linear. Model 2 considers further interactions with time whereas Model 3 works

with highly non-linear interactions. Model 4 is perhaps the most challenging one.

Model 1:

λ(t | Z) = 4t3 +Z1(t)∗Z2(t)+Z1(t)∗Z3(t)+Z1(t)∗Z3(t)∗Z2(t).
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Algorithm 3 Time-dependent Simulation

Require: Covariate function z such that Z(t) = z(Z, t) and Z follows distribution Z, hazard function
h(·, ·), baseline hazard λ0(·), censoring level `, follow up times t1, . . . , tM, sample size n
for i = 1, . . . ,n do

Simulate ω from Uniform distribution U(0,1)
Let Z be a realization of a random draw from Z.
Let Ti = t where t solves

f (t) = ω

where Z(u) := z(Z,u)

f (t) := exp
[
−
∫ t

0
{λ0(u)+h(u,Z(u))}du

]
. f (t) stands to denote the function S(t|Z(t))

for j = 1, · · · ,M do
Let Zi(t j) = z(Z, t j)

Simulate n independent censoring time Ci from Uniform distribution U(0,c)
. c is such that censoring level is below some level `

Set X = min{T,C}
. Observed censored event times

Let δ = 1{T ≤C} . Observed censoring indicator
return Data {Xi,δi,Zi(t) := (Zi(t1), . . . ,Zi(tM))}n

i=1

Model 2:

λ(t | Z) = 4t3 + cos(t)[Z1(t)∗Z2(t)]+ | log(t +1)|Z1(t)∗Z2(t)+ t3Z3(t)2.

Model 3:

λ(t | Z) = 4t3 + cos(t)[Z1(t)∗Z2(t)]+ | log(t +1) | Z1(t)Z2(t)+ t3Z3(t)2

+ cos[Z1(t)∗Z3(t)]+Z1(t)∗Z3(t)+
1+ t2

t +1
Z1(t)∗Z2(t)+Z1(t)3 ∗Z2(t)4
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Model 4:

λ(t | Z) = 4t3 +
1

t +1
Z1(t)∗Z2(t)+

1
Z1(t)∗Z2(t)∗Z3(t)2 +1

.

The covariates are generated according to the following structure

Zi(t) =


√

t Z0i t ≤ 0.6

√
0.6 Z0i otherwise

(2.15)

where i = 1,2,3 and Z0i ∼U(0,20) for i = 1,2,3 except for Model 1, where Z01 ∼U(0,10),Z02 ∼

U(0,20),Z0i ∼U(0,30).

We assume to measure the covariates at the following times 0.001,0.2,0.4,0.6. We generate

1000 observations for the training set and for the test set. We fit to the training set the Additive

Hazards Model, the Time-dependent Cox Model and DeepHazard. 1000 epochs are used with early

stopping rate 1e−5 and initialization method he Normal is employed. The C-index of each Model is

presented in Table 2.1. The Hyperparameters chosen for our neural network are reported in Table

2.2.

We report also the Oracle C-index that uses the true S(t | Z(t)) for comparison purposes.

We then repeat the simulations with a sample size of 200 for both train and test set. We observe

superior performance of DeepHazard both across samples as well as Models. Moreover, C-index is

often extremely close to the oracle C-index indicating certain optimality.
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Table 2.1: Result of Simulation for additive Hazards Model, Time-dependent Cox and our
method (DeepHazard) for Model 1, 2 , 3 and 4.

Model 1 Model 2 Model 3 Model 4
C-index

n = 1000
Oracle 0.765 0.749 0.716 0.742
Deep Hazard 0.752 0.735 0.716 0.733
Additive Hazards 0.665 0.590 0.674 0.636
Time-dependent Cox 0.726 0.718 0.703 0.717

n = 200
Oracle 0.743 0.734 0.681 0.739
Deep Hazard 0.726 0.717 0.666 0.727
Additive Hazards 0.635 0.174 0.651 0.598
Time-dependent Cox 0.713 0.700 0.676 0.699

Table 2.2: DeepHazard experimental Hyperparameters of Table 2.1.

Hyperparameter
n = 1000 Model 1 Model 2 Model 3 Model 4
Optimizer Adam Adam Adam Adam
Activaction Elu(0.1) Relu Elu(0.1)/Selu Selu
N. Dense Layer 5 2 2 2
N. Nodes Layer 10/15/20/15/10 10 20 10
Learning rate 0.01 2e−2 2e−1 2e−1
λ 1e−5 1e−3 1e−5 1e−5
Penalty Ridge Ridge Ridge Ridge
Dropout 0.2 0.2 0.2 0.2

n = 200
Optimizer Adam Adam Adam Adam
Activaction Selu Relu Selu Relu
N. Dense Layer 2 2 3 2
N. Nodes Layer 10 10 10/15/10 10
Learning rate 2e−1 2e−2 1e−3 2e−1
λ 1e−2 0.41 0.61 1e−4
Penalty Ridge Ridge Ridge Ridge
Dropout 0.2 0.2 0.1 0.2

For Model 3, both for small and large sample, we plot in Figure 2.4, the true and the

estimated survival functions by the three different methods. We divide observations into high,
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median-high, median-low and low risk according to the risk value ∑
4
j=1 h j(Z(t))/4, i.e., the mean

of the all interval specific risk scores h j(Z(t)). We observe a strong bias of the Additive Hazards

Model despite a low C-index value. It is often very far from the true survival function. Figure 2.4

part (c) illustrates that ŜAddHaz(0.19 | Z(0.19)) ≈ 0.875 while the true survival function satisfies

S(0.19 | Z(0.19))≈ 0.187. On the other hand ŜDeepHaz(t | Z(t)) is a good smooth approximation of

the true function. We also observe that larger samples lead to a better Deep Hazard approximation.
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Figure 2.4: Survival curves for Model 3 for different groups of subject for n = 200 (a)-(d)
and n = 1000 (e)-(h). Red color denotes the proposed DeepHazard, Blue denotes the time-
varying Additive Hazards Method, Green denotes the true Survival curve and Purple denotes the
Time-dependent Cox.
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Further studies on Model 3 were done to showcase the impact of the architecture on the

learning. We see that our procedure preforms better both in terms of C-index as well as IMSPE

measure of prediction quality. We see that DeepHazards is showcasing IMSPE improvement from

50% to 200%.

Table 2.3: Model 3 where each Layer is dense and learning rate is 2e− 1 unless specified
differently. Activation function is Relu and λ = 1e− 5 with Ridge penalty. ’lr’ stands for
learning rate, ’Deep Haz’ stands for Deep Hazard, ’Add Haz’ stands for Additive Hazard, ’TV
Cox’ stands for Time-varying Cox

Architecture
# of Layers One Two Three Four Ten
Node x layer [50] [50] [10] [10] [50] [50] [10] [10] [10] [10] [10]

lr 2e−2 2e−2 2e−2 2e−2 2e−2 2e−2

IMSPE ∗100
Deep Haz 0.311 0.282 0.365 0.287 0.369 0.423 0.409 0.316 0.315 0.326 0.529
Add Haz 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373
TV Cox 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967

C-index
Deep Haz 0.717 0.708 0.710 0.714 0.723 0.744 0.705 0.796 0.696 0.710 0.695
Add Haz 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674
TV Cox 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683
Oracle 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716

Lastly, we investigated the impact of the activation functions. Setting is that of Model 3

with Two Layers each comprised of ten (dense) nodes. Learning rate was fixed at 2e−1.
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Table 2.4: Results within Model 3 across different activation functions

Relu Selu Atan Tanh LogLog LeakyRelu
IMSPE ∗100

Deep Hazard 0.269 0.238 0.308 0.353 0.298 0.399
Additive Hazards 7.373 7.373 7.373 7.373 7.373 7.373
Time-varying Cox 0.967 0.967 0.967 0.967 0.967 0.967

C-index
Deep Hazard 0.709 0.705 0.709 0.688 0.692 0.705
Additive Hazards 0.674 0.674 0.674 0.674 0.674 0.674
Time-varying Cox 0.683 0.683 0.683 0.683 0.683 0.683
Oracle 0.716 0.716 0.716 0.716 0.716 0.716

2.3.2 Impact of a large number of time-varying covariates

We assume the data is generated according to the following different models:

• Model 5:

λ(t | Z) = 4t3 + cos(t)[Z1(t)∗Z2(t)]+ | log(t +1)|Z1(t)∗Z2(t)

+ t3Z3(t)2 +
1

1+Z20(t)∗Z1(t)+
√

t
.

• Model 6:

λ(t | Z) = 4t3 + cos(t)[Z1(t)∗Z2(t)]+ | log(t +1)|Z3(t)∗Z4(t)+ t3Z5(t)2

+ cos[Z6(t)∗Z7(t)]+Z8(t)∗Z9(t)+
1+ t2

t +1
Z10(t)∗Z11(t)

+Z12(t)3 ∗Z13(t)4 +
1

1+Z20(t)∗Z14(t)+
√

t
.

where Zi(t) follows (2.15).

For Model 5 all Z0i are drawn from U(0,20) except for Z01 that is drawn from U(5,20)
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and Z020,Z019 from U(3,4) and Z16,Z17,Z18 from U(0,1). For Model 6 all Z0i drawn from U(0,20)

except for Z01 from U(5,20) and Z020,Z019,Z04 from U(3,4) and Z16,Z17,Z18 from U(0,1).

We considered the following measurement times 0.001,0.2,0.4,0.6 for Model 5 and at

0.001,0.1,0.2,0.3 for Model 6. We generate 1000 observation for the training set and for the test

set. The Hyperparameters chosen for our neural network are reported in Table 2.6. 1000 epochs are

used with early stopping rate 1e−5 and initialization method he Normal is employed. The C-index of

each model is presented in Table 2.5. In these cases we observe strong failure of the additive hazards

model with C-index being extremely low, especially for non-linear time interactions. Time-varying

Cox approach had difficulties due to the periodic covariate effects.

Table 2.5: Results of Simulation for Additive Hazards Model, Time-dependent Cox and our
method (DeepHazard) for Model 5 and 6.

C-index

n = 1000 Model 5 Model 6

Deep Hazard 0.691 0.635
Additive Hazards 0.135 0.423
Time-varying Cox 0.677 0.598

Table 2.6: DeepHazard experimental Hyperparameters for Model 5 and 6.

Hyperparameter Model 5 Model 6
Optimizer Sgd Adam
Activaction Elu(0.1) Selu
N. Dense Layer 1 1
N. Nodes Layer 20 20
Learning rate 2e−1 2e−1
λ 0.56 0.1
Penalty Ridge Ridge
Dropout 0.2 0.2
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2.3.3 Impact of the censoring rate

We assume the data is again generated according to the Model 4, with Zi(t) following (2.15).

and Z0i ∼U(0,20) for i = 1,2,3. We assume to measure the covariates at the following times

0.001,0.2,0.4,0.6. We generate our data under different censoring scenario: 10%,20%. We also

consider the setting of Model 5 and Model 6 with covariates measured at 0.001,0.1,0.2,0.3 and

0.001,0.1,0.15,0.2, respectively, each with censoring of 0%,15%, and 30%.

We generate 1000 observations for the training set and for the test set. The Hyperparameters

chosen for our neural network are reported in Table 2.8. 1000 epochs are used with early stopping

rate 1e−5 and he-Normal initialization. The C-index of each model is presented in Table 2.7. The

result shows strong stability with respect to censoring.

Table 2.7: C-index for additive Hazards Model, Time-dependent Cox and our method (Deep-
Hazard) under different censoring scenarios.

C-index

Model 4 Model 5 Model 6
Censoring 10% 20% 0% 15% 30% 0% 15% 30%

DeepHazard 0.724 0.719 0.682 0.678 0.681 0.641 0.632 0.623
Additive Hazards 0.532 0.625 0.504 0.501 0.413 0.506 0.498 0.417
Time-dependent Cox 0.713 0.699 0.676 0.671 0.674 0.604 0.592 0.598

Table 2.8: DeepHazard experimental Hyperparameters

Hyperparameter Model 4 Model 5 Model 6
Censoring (10%,20%) (0%,15%,30%) (0%,15%,30%)
Optimizer Adam Sgd Sgd
Activation Selu Elu(0.7) Elu(0.5)
N. Dense Layer 2,1 2,2,3 2
N. Nodes Layer 10, 20 20 20
Learning rate 2e−1,3e−3 1e−2,1e−2,1e−1 1e−2
λ 1e−5,1e−4 0.061,0.061,0.05 0.061
Penalty Ridge Lasso Lasso
Dropout 0.2 0.1/0.15,0.1/0.15,0.1/0.15/0.15 0.1/0.15
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Further studies on the impact of the censoring and architecture structure were performed

under Model 2. We worked with 1000 samples in the training and testing phase and report the

findings in Table 2.9.

Table 2.9: C-index and IMSPE for Deep Hazard, Additive Hazards and Time-dependent Cox
model for Model 2. For the Deep Hazard, the dropout rate is 0.2 and λ = 1e−3 with Ridge
penalty and Adam optimizer is used. Architecture, activation function and learning rate is
specified in the table.

Architecture 10/10, Relu, 2e−2 20/20, Leaky Relu, 2e−3
Censoring 0% 10% 0% 10%

IMSPE∗10
Deep Hazard 0.045 0.051 0.036 0.048
Additive Hazards 0.641 0.785 0.641 0.785
Time-dependent Cox 0.249 0.340 0.249 0.340

C-index
Deep Hazard 0.735 0.746 0.732 0.743
Additive Hazards 0.592 0.102 0.592 0.102
Time-dependent Cox 0.718 0.707 0.718 0.707

2.3.4 Effect of shifting the time points at which the covariates are measured

We assume the data is again generated according to the Model 6. The covariates are assumed

to be measured at the following different sets of time points:

(A) 0.001,0.1,0.15,0.2; (B) 0.001,0.05,0.08,0.12; (C) 0.001,0.15,0.2,0.25;

(D) 0.001,0.05,0.08,0.12,0.15,0.2.

We generate 1000 observation for the training set and for the test set. The Hyperparameters

chosen for our neural network are reported in Table 2.11. 1000 epochs are used with early stopping

rate 1e−5 and initialization method he Normal. The C-index of each Model is presented in Table

2.10. Our methods outperforms the other traditional ones for every sets of time points. Moreover,

it is interesting to notice how, while the C-index of Ls and Cox depends on where the covariates
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are measured, our method presents greater stability with respect to the shift. Our C-index is indeed

roughly always 0.63 no matter at which and how many time points the measurements are taken.

Table 2.10: Results of Model 6 for additive Hazards Model, Time-dependent Cox and our
method (DeepHazard) for different censoring scenario.

C-index
(A) (B) (C) (D)

DeepHazard 0.633 0.630 0.633 0.632
Additive Hazards 0.506 0.572 0.485 0.605
Time-dependent Cox 0.604 0.620 0.601 0.619

Table 2.11: DeepHazard experimental Hyperparameters

Time points A B C D
Hyperparameters
Optimizer Adam Adam Adam Adam
Activaction Elu(0.5) Elu(0.5) Elu(0.5) Elu(1.5)
N. Dense Layer 2 2 2 2
N. Nodes Layer 20 20 20 20
Learning rate 1e−2 1e−2 1e−2 1e−2
λ 0.061 0.0007 0.08 0.0001
Penalty Lasso Lasso Lasso Lasso
Dropout 0.1/0.15 0.1/0.15 0.1/0.15 0.1/0.15

2.4 Real data experiments

In this section we use our method on three benchmark real datasets.

We compare our method with semiparametric additive hazards Model that assumes:

λ(t | Z) = λ0(t)+βZ,

survival random forest, (Ishwaran et al., 2008), as well as Deepsurv of Katzman et al. (2018).

Deepsurv is a Cox proportional hazards deep neural network that assumes proportionality of the
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hazard but it doesn’t assume linearity of the risk as the standard Cox model:

λ(t | Z) = λ0(t)exp{h(Z)}.

We use the R package Timereg and the Python package PySurvival, respectively to fit the Additive

Hazards Model and DeepSurv.

Notice that both DeepSurv and the traditional Cox Model rely on the proportional hazard

assumption, under which the ratio of the cumulative hazards between groups is assumed to be

constant with time. As a diagnostic, for each of the dataset analyzed, we plot this ratio between

groups defined by binary covariates. Not constant line in this type of plot indicates departure from

the proportional hazard assumption; see Figure 2.5.

With slight abuse in notation, as a measure of predictive capability of the models, we report

the traditional concordance index, defined as

Cindex =
∑i,i′ 1(Xi > Xi′)1(h(Zi)< h(Zi′))δi′

∑i,i′ 1Xi>Xi′δi′
.

2.4.1 Molecular Taxonomy of Breast Cancer International Consortium

dataset (METABRIC)

The dataset consists of gene expression and clinical features for 1980 breast cancer pa-

tients,(Curtis et al., 2012). The time variable is time to death and 57.72% of observations experi-

enced the event. For ease of comparison we use, as training and test set, the same dataset used in

Katzman et al. (2018) where 20% of the data are saved as test set. As covariates 4 gene indicators are

used plus hormone treatment indicator, radiotherapy indicator, chemotherapy indicator, ER-positive

indicator and age at diagnosis.
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We report in Table 2.12 the C-index for us, DeepSurv, Semiparametric Additive Hazards

Model (LS) and Survival Random Forest. For our Neural Netwok we use one layer with 40 nodes,

Elu activaction function with α = 0.1, Adam optimizer, learning rate of 0.001, λ = 1e−4 for Ridge

penalty and 0.1 for Dropout. For DeepSurv we use the hyperparameters reported in their paper. One

layer with 41 nodes, Selu activaction function, Adam optimizer, learning rate of 0.010, λ = 10.891

for Ridge penalty and 0.160 as Dropout rate.

In Table 2.12, in parenthesis, we write the result reported by Katzman et al. (2018) for both

DeepSurv and RSF. We plot in Figure 2.5a the ratio of the cumulative hazards between four groups

defined by the four patient’s clinical features (hormone treatment indicator, radiotherapy indicator,

chemotherapy indicator, ER-positive indicator).

It is clear from the plot how these ratios are not constant with time and therefore how the

proportional hazards assumption, on which Deepsurv is based, is violated. From the results, our

method indeed outperforms Deepsurv. Moreover it outperforms random survival forest which we

fine-tuned. RSF C-index, as per tuning, was very comparable with Deep Surv.

Table 2.12: Results for Metabric dataset Results in parenthesis are the reported numbers of
Katzman et al. (2018) of the corresponding methods.

C-index
Deep Hazard 0.664
Additive Hazards 0.645
Deep Surv 0.650 (0.654)
RSF 0.647 (0.619)

2.4.2 Rotterdam and German Breast Cancer Study Group dataset (GBSG)

The dataset consists of 1546 patients with node-positive breast cancer (Schumacher et al.,

1994). The time variable is time to death and 90% experienced the event. Again, as training and test
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set, we use the same dataset used in Katzman et al. (2018) where 20% of the data are saved as test

set. The testing data consists of 686 patients in a randomized clinical trial that studies the effect of

chemotherapy and hormone treatment on survival rate. We report in Table 2.13 the C-index for us,

DeepSurv, Semiparametric Additive Hazards Model (LS) and Survival Random Forest.

For our Neural Netwok we use one layer with 40 nodes, Elu activaction function with

α = 0.1, Adam optimizer, learning rate of 0.01, λ = 0.09 for Ridge penalty and 0.1 as Dropout

rate. For DeepSurv we use the hyperparameters reported in their paper. 1 layer with 8 nodes, Selu

activaction function, Adam optimizer, learning rate of 0.154, λ = 6.551 for Ridge penalty and 0.661

as Dropout rate. Moreover, in parenthesis we report the results reported by Katzman et al. (2018)

for both DeepSurv and RSF. We plot in Figure 2.6b the ratio of the cumulative hazards between 3

groups defined by the 4 binary variables. It is clear from the plot how these ratios are not constant

with time and therefore how the proportional hazards assumption, on which Deepsurv is based, is

violated. From the results, our method indeed outperforms Deepsurv which is not showing better

results than RSF. Moreover it outperforms RSF as well.

Table 2.13: Results for GBSG dataset

C-index
Deep Hazard 0.685
Additive Hazards 0.666
Deep Surv 0.670 (0.676)
RSF 0.680 (0.648)

2.4.3 AIDS Clinical Trials Group (ACTG 320)

The dataset consists of 1151 HIV-infected patients (Hosmer et al., 2001). The data come

from a double-blind, placebo-controlled trial that compared the three-drugs regime of indinavir,

open label zidovudine (ZDV) or stavudine (d4T), and lamivudine (3TC) with the two-drugs regime
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of zidovudine or stavudine and lamivudine. Patients were eligible for the trial if they had no more

than 200 CD4 cells per cubic millimeter and at least three months of prior zidovudine therapy.

Randomization was stratified by CD4 cell count at the time of screening. The primary outcome

measured was time to death and 2.26% of observations has observed death time. 500 observations

are saved as test set.

We report in Table 2.14 the C-index for DeepHazard, DeepSurv, Semiparametric Additive

Hazards Model (LS) and Survival Random Forest. For DeepHazard and DeepSurv we use 2 layers

with 50 nodes, Selu activaction function, Adam optimizer, learning rate of 0.1, λ = 2 with Lasso

penalty and 0.2 as Dropout rate. We plot in Figure 2.6c the ratio of the cumulative hazards between

3 groups defined by 3 binary variables ivdrug, start2 and txgrp, clearly indicating violation of

proportionality of the hazards. We observe that our method outperforms DeepSurv and RSF.

Table 2.14: Results for AIDS:ACTG dataset

C-index
Deep Hazard 0.825
Additive Hazards 0.824
Deep Surv 0.773
RSF 0.803
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Figure 2.5: Proportional hazards diagnostic

2.4.4 Primary Biliary Cirrhosis: PBC dataset

We study the overall survival of patients with primary biliary cirrhosis, a fatal chronic liver

disease.The popular PBC dataset comprise of 312 patients, referred to the Mayo Clinic between
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January 1974 and May 1984, who participated in a randomized, double-blinded, placebo-controlled,

clinical trial of the drug D-penicillamine. For each of the patients, clinical, biochemical, serologic

and histologic parameters were collected. Since patients have been followed regularly since the

trials ended, follow-up was extended to April 1988. By the end of the study, 140 of the 312 had died.

The original clinical protocol for these patients specified visits at 6 months, 1 year, and annually

thereafter. Fleming and Harrington (1991) studied the survival time of these patients using only the

baseline value of the covariates. They showed that DPCA has a negligible effect on the survival, and

they propose a model based on age, total serum bilirubin value, serum albumin value, prothrombin

time and presence or absence of edema. This model, called the Mayo PBC model has been widely

used and studied (Dickson et al., 1989; Jeffrey et al., 1990; Klion et al., 1992; Markus et al., 1989;

Grambsch et al., 1989; Bonsel et al., 1990). Here, we propose to use Deephazard to analyse this

dataset exploiting the available values of the covariates at each follow-up visits. To this aim, since

we only have 3 deaths that happen after 11 years of being enrolled in the program, we consider

the following set of time points [0,0.5,1,2, . . . ,10,∞]. Moreover we assume that the value of the

covariates is constant between one visit to the other, therefore, if a patient misses visit 3, we use as

values of his/her covariates the ones collected at visit 2. Following the previous studies, we consider

as covariates, the same one of the Mayo PBC model plus the presence of absence of ascites and the

treatment. We include the presence of absence of ascites since Christensen et al. (1986) showed

that it has a significant interaction with prednisone treatment and we use the treatment as covariate

because we are interest in study the treatment effect on overall survival. We fit Deephazard with

three layers with 10,15,10 nodes respectively. We use Elu(0.1) activation function, 0.2 of dropout,

learning rate of 0.1, λ = 10−4 with Ridge penalty, 1000 epochs and adam optimizer. Since in this

case the majority of the covariates considered are internal, we don’t predict the survival function

but we predict for different hypothetical new patients the score ĥ(Z(t), t). We predict the score ĥ for

two new patients with covariates at each time points fixed at their mean value and both treatment
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equal to placebo and DPCA . We plot the estimated score in figure 2.6. Moreover, we then predict

the score ĥ for someone with no edema or ascites both under treatment or placebo and for someone

with both edema and ascites under treatment or placebo.We leave the other covariates fixed to their

mean. Results are plotted in Figure 2.6.
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Figure 2.6: PBC data: Predicted score for a new patient.
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2.5 Discussion and possible applications

Although not extensively exploited in the past due to its complicated interpretation or the

lack of methods available, understanding the relationship between survival and time-dependent

covariates could be very useful in practice.

2.5.1 Individualized treatments

It could indeed be a helpful tool for making decisions in the context of dynamic treatment.

Let’s assume, for example, that, besides some baseline fixed covariates measured at the first visit, L0,

at each visit j, the doctor has to decide whether to put a patient under treatment, A j ∈ {0,1}, which

dose of certain medications to administer, D j ∈ [0,1], or whether continue with the same treatment

or switch to some alternative, M j ∈ {1,2,3}. The doctor could predict the survival of a new patient

under different strategies and pick the one that maximizes patient survival. For example, at visit 2,

considering the history of the covariate of a patient, Z01 = (L0,A0.D0,M0,A1,D1,M1), given two

possible different strategies for visit 2, z2 = (a2,d2,m2) and z′2 = (a′2,d
′
2,m

′
2), the analysis of the

predicted

Ŝ(t | {Z01,z2}), and Ŝ(t | {Z01,z′2}),

could help the doctor decides whether to treat the patient with strategy z2 or z′2. More in general,

the same reasoning applies to other varying clinical variables as blood pressure. It could indeed be

useful to observe the change in predicted survival under the different hypothetical paths of such

covariates. If, for example, the increase of blood pressure appears dangerous for the patient, the

doctor could think to introduce medications to keep it stable.
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2.5.2 Estimation of treatment effects

Estimated conditional survival could also be needed as a necessary step towards obtaining

a flexible estimator of some other parameter of interest. For example, it is common in the double

robust treatment effect estimation literature to employ the use of method that require, as step one, the

estimation of baseline quantity or conditional survival distribution. This is in particularly true when

AIPW scores are constructed. The augmentation part of the latter indeed usually requires estimation

of the conditional distribution of both the censoring and the time to event variable, (Zhang and

Schaubel, 2012b; Zhao et al., 2015; Kang et al., 2018).

2.5.3 Variable predictive strength

On the other hand, the estimated conditional survival could be used to estimate other

quantities of interest as the expected value of the survival time or R2 measure of explained variation

to study the predictive ability of different covariates. The latter is indeed function of the conditional

variance of time T and it can be estimated, if an estimator Ŝ(t | Z(t)) is available, using the following

formula:

V̂ar{T | Z(t)}=
∫

τ

0
2tŜ(t | Z(t))dt−

{∫
τ

0
Ŝ(t | Z(t))dt

}2

.

Measure of explained variation can be used, for example, to evaluate the clinical importance of

prognostic factors, the impact of genetic variants on gene expression on survival phenotypes or they

can be applied in variable screening process, (Müller et al., 2008; Hielscher et al., 2010; Kong et al.,

2019).
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2.6 Appendix

2.6.1 Activation functions

Table 2.15: Activation functions

Atan a(x) = atan(x)

Elu(α) a(x) =

{
x x > 0
α(ex−1) x≤ 0

LeakyRelu a(x) =

{
x x > 0
0.01x x≤ 0

LogLog a(x) = 1− exp(−exp(x))

Relu a(x) =

{
x x > 0
0 x≤ 0

Selu a(x) = 1.0507

{
x x > 0
1.67326(ex−1) x≤ 0

Tanh a(x) = tanh(x)

2.6.2 Technical details about h̄(t)

We explain here why, for each j, h̄ j,θ j(t) is a step function with jump at censored event time

X j
i . We know that

h̄ j,θ j(t) =
∑

n j
i=1 h j,θ j(Z̃

j
i )Y

j
i (t)

∑
n j
i=1Y j

i (t)
, (2.16)
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and that, by definition,

Y j
i (t) =


1 t ≤ X j

i

0 t > X j
i

(2.17)

Therefore, h̄ j,θ j(t) represents the mean of h j,θ j(Z̃
j) into the risk set at time t. Since the risk set

changes only when an individual is censored or dies, h̄ j,θ j(t) changes only at censored event time

X j
i

2.6.3 Details on the estimation of cumulative hazard

If we break down everything we will have:

λ(t) =
M+1

∑
j=1

λ0(t)1(t j−1 < t ≤ t j)+
M+1

∑
j=1
1(t j−1 < t ≤ t j)h(Zi(u),u)

=
M+1

∑
j=1

λ0(t)1(t j−1 < t ≤ t j)+
M+1

∑
j=1
1(t j−1 < t ≤ t j)h j(Z̃

j
i ),

so if λ
j
0(t) = λ0(t)1(t j−1 < t ≤ t j), we have:

λ(t) =
M+1

∑
j=1

[
λ

j
0(t)+h j(Z̃

j
i )
]
1(t j−1 < t ≤ t j).

Therefore, if we consider:

dN j
i (t) = dM j

i (t)+
∫ t

t j

Y j
i (u)dΛ(u|Zi(u)), t ∈ [t j, t j+1)

dN j
i (t) = dM j

i (t)+
∫ t

t j

Y j
i (u)dΛ

j(u|Z̃ j
i ), t ∈ [t j, t j+1),
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we have:

Λ̂
j
0(t) =


0 t ≤ t j∫ t

t j

[
∑

n
i=1Y j

i (u)
]−1

∑
n
i=1

(
dN j

i (u)−Y j
i (u)ĥ j(Z̃

j
i )
)

du t j < t ≤ t j+1∫ t j+1
t j

[
∑

n
i=1Y j

i (u)
]−1

∑
n
i=1

(
dN j

i (u)−Y j
i (u)ĥ j(Z̃

j
i )
)

du t > t j+1

and so:

Λ0(t) =
J−1:tJ−1<t<tJ

∑
j=1

∫ t j

t j−1

λ0(t)+
∫ t

tJ−1

λ0(t) =
J:tJ−1<t<tJ

∑
j=1

∫ t j

t j−1

λ
j
0(t)+

∫ t

tJ−1

λ
J
0(t),

and so:

Λ̂0(t) =
M+1

∑
j=1

Λ̂
j
0(t),

and therefore:

Λ̂0(t) =
M+1

∑
j=1

[
∫ t j

t j−1

[
n

∑
i=1

Y j
i (u)

]−1 n

∑
i=1

(
dN j

i (u)−Y j
i (u)ĥ j(Z̃

j
i )
)

du1{t > t j}

+
∫ t

t j

[
n

∑
i=1

Y j
i (u)

]−1 n

∑
i=1

(
dN j

i (u)−Y j
i (u)ĥ j(Z̃

j
i )
)

du1{t j < t < t j+1}]

=
M+1

∑
j=1

[
∫ t j

t j−1

[
n

∑
i=1

Yi(u)

]−1 n

∑
i=1

(
dNi(u)−Yi(u)ĥ(Z(u),u)

)
du1{t > t j}

+
∫ t

t j

[
n

∑
i=1

Yi(u)

]−1 n

∑
i=1

(
dNi(u)−Yi(u)ĥ(Z(u),u)

)
du1{t j < t < t j+1}]

=
∫ t

0

∑
n
i=1
{

dNi(u)−Yi(u)ĥ(Zi(u),u)du
}

∑
n
i=1Yi(u)

.
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Chapter 3

Doubly Robust Estimation of the Hazard

Difference for Competing Risks Data

3.1 Introduction

Competing risks analysis concerns event times due to multiple causes. This work is mo-

tivated by a study on the effect of mid-life exposures on late-life cognitive outcomes related to

Alzheimer’s disease. We use data from the Honolulu Heart Program (HHP) and the Honolulu-Asia

Aging Study (HAAS) on a cohort of Japanese men in Hawaii followed from 1965 to 2012 to

investigate the effect of mid-life alcohol exposure on late-life cognitive impairment. As it is often

the case in clinical trials, death is a competing risk for the event of interest; indeed, by the end of

the study, only about 500 of the original 8006 men were still alive.

As for analysis of time-to-event data in general, it is often of interest to study the conditional

treatment effect given the covariates in the presence of competing risks. Conditional treatment

effects are typically expressed using regression models, and the commonly used ones include the
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proportional hazards model (Cox, 1972, 1975) and the additive hazards model (Aalen, 1980, 1989).

The additive hazards model has received increasing attention lately because of its collapsibility, and

therefore more suitable for causal inference (Tchetgen Tchetgen et al., 2015; Li et al., 2015; Zhao

et al., 2015; Wang et al., 2017; Zheng et al., 2017; Ying et al., 2019). For a binary treatment, this

conditional treatment effect is the hazard difference given the covariates under the additive hazards

model. On the other hand, misspecification of the functional form of the covariates in the hazard

regression model can lead to bias in the estimation of the treatment effect of interest.

To overcome such dependence on the correct specification of the covariate terms which are

‘nuisance’ themselves, flexible modeling such as nonparametric approaches might be considered.

However, they are often inefficient and lead to slower rates of convergence of the estimated

treatment effect; this is the ‘curse of dimensionality’ problem discussed in Robins and Ritov (1997).

Alternatively, there has been a growing literature on doubly robust estimators that protect against

misspecification of the ‘nuisance’ parts of the model (Robins and Rotnitzky, 1995, 2001; Bang and

Robins, 2005; Tchetgen Tchetgen et al., 2010; Zhang and Schaubel, 2012a; Farrell, 2015; Jiang

et al., 2017; Wang et al., 2017).

In the absence of competing risks, doubly robust estimators for the hazard difference have

been proposed by Dukes et al. (2019b) and Hou et al. (2021). In the following we first derive the

semiparametrically efficient score for the cause-specific hazard difference under competing risks.

We then propose two doubly robust estimators with respect to two sets of models. The first set

contains the treatment assignment model, also called the propensity score, and the model for the

censoring distribution. The second set includes the cause-specific hazard models for the competing

risks. As the proposed estimators incorporate the censoring distribution into the scores, they also

weaken the assumption on censoring as needed in Hou et al. (2021) and Dukes et al. (2019b).

The rest of the paper is organized as follows: after formally defining the parameter of interest,
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in Section 3.3 we derive the two doubly robust scores. In Section 3.4 we describe their asymptotic

properties and we derive their asymptotic distribution when the two sets of working models are

both correct, or when only one of them is correct. We study the finite sample performance of

the proposed estimators through extensive simulations in Section 3.5 and we then apply them on

the HHP-HAAS dataset to estimate the effect of alcohol exposure on development of cognitive

impairment in Section 3.6. We conclude with discussion in the last section.

3.1.1 Related work

In the context of time-to-event data, different doubly robust estimators have been proposed

in the literature. The already mentioned works of Dukes et al. (2019b) and Hou et al. (2021) are

most closely related to ours. They focus on doubly robust estimation of the constant difference

between the hazard functions given the covariates in the absence of competing risks in low and high

dimension, respectively.

Zhang and Schaubel (2012a); Bai et al. (2017); Sjölander and Vansteelandt (2017) derive

doubly robust estimators for the treatment effect defined as the comparison between functions of

the potential failure times T(1), T(0); i.e. the failure time that would be observed if a subject were

treated or untreated, respectively. Zhang and Schaubel (2012a) and Bai et al. (2017) propose AIPW

estimators for E[ f{T (a)}] for a = 0,1 and for different functions f . Sjölander and Vansteelandt

(2017) develop a doubly robust estimator for the attributable fraction 1− 1−ST (0)(t)
1−S(t) . Yang et al.

(2020) develop instead a doubly robust estimator for structural failure time models.

Another line of work discretizes the time,recasts the failure time as a 0-1 vector and uses

techniques tailored for binary outcomes. For estimation of the parameters of marginal structural

models, Petersen et al. (2014) and Zheng et al. (2016) derive targeted maximum likelihood estimators

that are doubly robust while Yu and Van Der Laan (2006) propose a doubly robust estimator
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following Van Der Laan et al. (2003) theory.

3.1.2 Model and Notation

Assume there are J competing risks and denote T1, . . . ,TJ the (latent) time to each type of

failure. Let T = min(T1, . . . ,TJ), C be the censoring random variable, and X = min(T,C) be the

observed (and possibly censored) failure time. Denote δ = 1{T ≤C} the event indicator, and let

ε = 1, . . . ,J indicate the type of failure. Let A = 0, 1 be a binary treatment, and Z be a vector of

baseline covariates.

A commonly used approach for competing risks data is to model the cause-specific hazard

function for each type of failure (Holt, 1978; Benichou and Gail, 1990; Kalbfleisch and Prentice,

2011). The cause-specific hazard functions are the quantities ‘just identified’ by such data, in the

sense that any other quantity that can be identified from competing risks data, can be expressed

as a function of the cause-specific hazard (Kalbfleisch and Prentice, 2011). We assume that the

conditional cause-specific hazard function, h j(t|A,Z) = lim∆t→0
1
∆t

P(t ≤ T < t +∆t ,ε = j|T ≥

t,A,Z), for j = 1, . . . ,J, satisfies:

h j(t|A,Z) = β jA+λ j(t,Z), (3.1)

where λ j(t,Z), representing the effect of the covariates on the hazard, is left unspecified. This

is a key difference from the more traditional cause-specific additive hazards model that assumes

linear effects of both A and Z; see for example, Shen and Cheng (1999). From model (3.1) then,

β j = h j(t|A = 1,Z)−h j(t|A = 0,Z) is the difference between the conditional cause-specific hazard

functions of the two treatment groups.

In the following we assume that C ⊥ T |(A,Z), where ‘⊥’ indicates statistical independence.
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This is a standard assumption in the analysis of time-to-event data, and it relaxes the stricter

assumption C ⊥ (A,T )|Z imposed by both Hou et al. (2021) and Dukes et al. (2019b). We will

also use the counting process and the at-risk process notation: N j(t) = 1{X ≤ t, δ = 1, ε = j} and

Y (t) = 1{X ≥ t}. Under model (3.1), M j(t) = N j(t)−H j(t|A,Z)Y (t) is a local square-integrable

martingale with respect to the filtration Ft = σ
{

N j(s),Y (s+),A,Z : j = 1, . . . ,J, 0 < s < t
}

, where

H j(t|A,Z) =
∫ t

0 h j(u|A,Z)du.

3.2 Semiparametrically efficient score for β

In the following we derive the orthogonal complement of the nuisance tangent space and the

efficient score for β = [β1, . . . ,βJ]
>. The derivation follows the modern semiparametric theory as

described in Tsiatis (2007), and we provide the details in Section 3.8.1 of the Supplement.

Under model 3.1, the data follows a semiparametric distribution identified by the parameter

of interest β = [β1, . . . ,βJ]
> and the nuisance parameter η = [λ1(t,z), . . . ,λJ(t,z),λc(t|a,z)

, p(a|z), f (z)]>, where λc(t|a,z) is the conditional hazard function for C, P(a|z) is the conditional

distribution of A and f (z) is the density of the covariates. The likelihood for a single copy of the

data takes indeed the following form:

L =
J

∏
j=1

{
β jA+λ j(X ,Z)

}1{δ=1,ε= j} exp
{
−β jAt−Λ j(X ,Z)

}
×{λc(X |A,Z)}1−δ exp{−Λc(X |A,Z)} p(A|Z) f (Z),

where Λ j(t,z) =
∫ t

0 λ j(u,z)du for j = 1, . . . ,J and Λc(t|a,z) =
∫ t

0 λc(u|a,z)du. From the likelihood,

one can derive the score for the parameter of interest, Sβ = ∂ logL
∂β

and, if η has finite dimension,

the score for the nuisance parameter, Sη = ∂ logL
∂η

. In this case, the nuisance tangent space is the
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space spanned by the nuisance score. When η has infinite dimension, as in our case, the notion of

nuisance tangent space can be extended through the definition of parametric submodels. We leave

the technicality of this definition to Chapter 4 of Tsiatis (2007).

An estimator β̂ is asymptotically linear if there exists a function of the data ϕ, such that
√

n(β̂− β0) =
1√
n ∑

n
i=1 ϕi + op(1). The function ϕ, named influence function, has mean zero

and finite variance and guarantees the asymptotic normality of the estimator. Such estimators are

therefore desirable and they are uniquely defined by their influence function. Theorem 4.2. of Tsiatis

(2007) proves that every influence function belongs to the orthogonal complement of the nuisance

tangent space. This space, denoted by Λ⊥, is therefore the starting point to define semiparametric

estimators for β that are consistent and asymptotically normal.

The space Λ⊥ is also important since it allows one to find orthogonal scores in the classical

sense of the definition. A score ψ(β,η) is orthogonal if

∂

∂r
E{ψ(β0;η0 + r(η−η0))}

∣∣∣∣
r=0

= 0,

where we use the subscript 0 to indicate the true parameters. Orthogonal scores are invariant to

small perturbations of the nuisance parameter around the true and so the estimation of the nuisance

parameter doesn’t greatly affect the estimation of the treatment effect (Bickel et al., 1993; Newey,

1990, 1994). Lemma 11 in the Supplement shows that an estimating function belongs to Λ⊥ if and

only if it is orthogonal.

The following lemma, proven in the Supplement, defines the form of the orthogonal comple-

ment of the nuisance tangent space.

Lemma 1. Under model (3.1), the orthogonal complement of the nuisance tangent space takes the
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following form:

Λ
⊥ =

 J

∑
j=1

∫
τ

0

g j(t,A,Z)−
E
{

g j(t,A,Z)h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}


×
dM j(t)

h j(t|A,Z)
: for all g j(t,A,Z) ∈RJ

}
. (3.2)

Among all the semiparametric asymptotically linear estimators of β it is often of interest to

derive the efficient one. Tsiatis (2007) defines the efficient score as Sβ−Π{Sβ|Λ}. Since, under

model (3.1), Sβ =
{∫

τ

0 A dM j(t)
h j(t|A,Z)

}J

j=1
, we have the following lemma.

Lemma 2. Under model (3.1) the efficient score has the following form:

Se f f =


∫

τ

0

A−
E
{

Ah−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
 dM j(t)

h j(t|A,Z)


J

j=1

. (3.3)

The above score is locally efficient in the sense that its asymptotic variance attains the

semiparametric efficency bound when P(a|z),Sc(t|a,z) and λ j(t,z) are known or correctly estimated

(Theorem 4.1. of Tsiatis (2007)). Unfortunately, since h j(t|A,Z) in (3.3) is unknown and estimators

for it are not readily available, the efficient score may not be directly used in practice. We will

however exploit both (3.2) and (3.3) to derive two doubly robust scores for estimation of β.

Remark: if we make the stronger assumption of C ⊥ (A,T )|Z as in Dukes et al. (2019b) and

Hou et al. (2021), Sc(t|A,Z) = Sc(t|Z), and so the efficient score simplifies to:

Se f f =


∫

τ

0

A−
E
{

Ah−1
j (t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)e−∑

J
l=1 βlAt |Z

}
 dM j(t)

h j(t|A,Z)


J

j=1

.

In this case, Sc is therefore no longer needed for the estimation of β.
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3.3 Doubly robust scores

Doubly robust score 1: Inspired by Hou et al. (2021), we choose

g j(t,A,Z) = {A−π(Z)}h j(t|A,Z)S−1
c (t|A,Z)e∑

J
l=1 βlAt in (3.2). We obtain the following estimating

function:

S1(β;A,Z,Sc,π,Λ) =

{∫
τ

0
e∑

J
l=1 βlAtS−1

c (t|A,Z){A−π(Z)}dM j(t;β,Λ)

}J

j=1
. (3.4)

Here we have used the propensity score notation π(Z) = P(A = 1|Z) and M j(t;β,Λ) = N j(t)−

Y (t)β jAt −Y (t)Λ j(t,Z). We use h j(t|A,Z) in the definition of g j to cancel the hazard weights

h−1
j (t|A,Z) from (3.2). To understand the rest of g j is important to notice that, under model (3.1),

E{Y (t)|A,Z}= e−∑
J
j=1 β j0AtSc0(t|A,Z)e−∑

J
j=1 Λ j0(t,Z), where again the subscript 0 is used to indicate

the true quantities. The expectation of the jth−component of S1 with the true parameter of interest

plugged in is:

E
(∫

τ

0 E
[
e∑

J
l=1 βl0AtS−1

c (t|A,Z){A−π(Z)}E{Y (t)|A,Z}|Z
]

d
{

Λ j(t,Z)−Λ j0(t,Z)
})

= E
(∫

τ

0 E
[
S−1

c (t|A,Z)S−1
c0 (t|A,Z){A−π(Z)}|Z

]
e−∑

J
l=1 Λl0(t,Z)d

{
Λ j(t,Z)−Λ j0(t,Z)

})
.

Therefore, the form of g j is chosen such that, as it is common for doubly robust scores, the above

integrand is the product of two residuals, one for the outcome models for the competing risks and

one for the censoring and the treatment model.

The main difference between our score and Hou et al. (2021) score is that, beside our score

being suitable for estimation in a competing risks setting, our score, incorporating the censoring

distribution Sc, does not need the stronger assumption C ⊥ (T,A)|Z to hold.

Given quantities Sc(·|·, ·), π(·) and Λ(·, ·) = [Λ1(·, ·), . . . ,ΛJ(·, ·)]> we propose the following
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score for estimation of β:

S1,n(β;Sc,π,Λ) :=
1
n

n

∑
i=1

S1(β;Ai,Zi,Sc,π,Λ) = 0. (3.5)

Doubly robust score 2: Traditionally, for hazard models of the additive form, the hazard

weights have been removed from the efficient score to derive scores that can be used in practice

(Lin and Ying, 1994b). If we simplify the efficient score (3.3), removing the hazard weights, we are

left with the following:

S2(β;A,Z,Sc,π,Λ) =
{∫

τ

0 {A−EA(t;β,Sc,π,Z)}dM j(t;β,Λ)
}J

j=1 , (3.6)

where:

EA(t;β,Sc,π,Z) =
E
[
Ae−∑

J
j=1 β jAtSc(t|A,Z)|Z

]
E
[
e−∑

J
j=1 β jAtSc(t|A,Z)|Z

]
=

e−∑
J
j=1 β jtSc(t|A = 1,Z)π(Z)

e−∑
J
j=1 β jtSc(t|A = 1,Z)π(Z)+Sc(t|A = 0,Z){1−π(Z)}

.

Given quantities Sc(·|·, ·), π(·) and Λ(·, ·) = [Λ1(·, ·), . . . ,ΛJ(·, ·)]> we propose the following score

for estimation of β:

S2,n(β;Sc,π,Λ) :=
1
n

n

∑
i=1

S2(β;Ai,Zi,Sc,π,Λ) = 0. (3.7)

Since the two proposed scores belong to Λ⊥, they are orthogonal. Moreover they are doubly

robust with respect to the estimation of both Sc (·|·, ·) and π(·) and of Λ(·, ·).

Theorem 2. E{S1(β0;A,Z,Sc,π,Λ)}= 0 and E{S2(β0;A,Z,Sc,π,Λ)}= 0 if either
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{Sc(·|·, ·) = Sc0(·|·, ·) and π(·) = π0(·)} or Λ(·, ·) = Λ0(·, ·), where we use subscript 0 to indicate

the true quantities.

Score 2, (3.6), is completely new, no similar score has never been proposed in the literature,

even in the absence of competing risks.

Both scores incorporate the censoring distribution, relaxing the censoring assumption of

both Hou et al. (2021) and Dukes et al. (2019b). However, if we are willing to make the stronger

assumption C ⊥ (T,A)|Z, the two scores simplify to:

S̃1(β;A,Z,π,Λ) =

{∫
τ

0
e∑

J
j=1 β jAt {A−π(Z)}dM j(t;β,Λ)

}J

j=1
, (3.8)

S̃2(β;A,Z,π,Λ) =

{∫
τ

0

{
A− e−∑

J
j=1 β jtπ(Z)

e−∑
J
j=1 β jtπ(Z)+{1−π(Z)}

}
dM j(t;β,Λ)

}J

j=1

. (3.9)

Traditionally, estimation of parameters in competing risks setting has been carried over

estimating one parameter at a time and considering the other competing risks as censoring. This is

true for example for the cause-specific Cox proportional hazards model and the traditional cause-

specific additive hazards model. A novelty of both our approaches is that every component of our

parameter of interest β is here estimated together using a multidimensional score.

3.4 Estimation and inference

Both proposed scores depend on the quantities Sc(·|·, ·),π(·),Λ(·, ·). These, unknown in ob-

servational studies, can be estimated via working models. Once estimators Ŝc(·|·, ·), π̂(·), Λ̂(·, ·) are

available, we define β̂(1) to be the root of S1,n(β; Ŝc, π̂, Λ̂) and β̂(2) to be the root of S2,n(β; Ŝc, π̂, Λ̂).

The user is free to choose any working model as long as mild traditional assumptions, listed later, are
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satisfied. For estimation of the propensity score π(·) and the censoring model Sc(·|·, ·) we don’t offer

any specific suggestion. Estimation of Λ(·, ·) is more delicate; we propose to use the following set

of linear working models:
{

Λ j(t,Z;G j,γ j) = G j(t)+ γ>j Zt
}J

j=1
. The parameters γ = [γ1, . . . ,γJ]

>

and G = [G1, . . . ,GJ]
> can be estimated applying the cause-specific additive hazards model routine

(Shen and Cheng, 1999). This applies the estimating procedures proposed by Lin and Ying (1994b)

separately to each competing risk:

γ̂ j =

[
n

∑
i=1

∫
τ

0
Yi(t){Zi− Z̄(t)}⊗2dt

]−1[ n

∑
i=1

∫
τ

0
Yi(t){Zi− Z̄(t)}dN ji(t)

]
, (3.10)

where Z̄(t) = {∑n
i=1Yi(t)}−1

∑
n
i=1Yi(t)Zi, Z⊗2 = Z>Z and

Ĝ j(t;β j,γ j) =
∫ t

0

∑
n
i=1

{
dN ji(u)−Yi(u)β jAidu−Yi(u)γ>j Zidu

}
∑

n
i=1Yi(u)

. (3.11)

For estimation of G j we moreover propose the following weighted version of the Breslow

estimator:

Ĝ j(t;β j,γ j,Sc,π) =
∫ t

0

∑
n
i=1 wi(Sc,π)

{
dN ji(u)−Yi(u)β jAidu−Yi(u)γ>j Zidu

}
∑

n
i=1 wi(Sc,π)Yi(u)

, (3.12)

where wi(Sc,π) = S−1
c (u|Ai,Zi)Ai {1−π(Zi)} . The above weights are chosen such that plugging

(3.12) as estimator of G j(t) into (3.5) gives the following closed form score:

S1,n(β; Ŝc, π̂, Λ̂) (3.13)

=

{
−β j

1
n

n

∑
i=1

∫
τ

0
Ŝ−1

c (t|Ai,Zi)(1−Ai)π̂(Zi)Yi(t)dt− 1
n

n

∑
i=1

∫
τ

0
Ŝ−1

c (t|Ai,Zi)(1−Ai)π̂(Zi)

·
(

dN ji(t)−Yi(t)
[
γ̂
>
j
{

Zi− Z̄(t; Ŝc, π̂)
}

dt +dN̄ j(t; Ŝc, π̂)
])}J

j=1
,
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where:

Z̄(t; Ŝc, π̂) =
∑

n
i=1Yi(t)Ziwi(Ŝc, π̂)

∑
n
i=1Yi(t)wi(Ŝc, π̂)

, dN̄ j(t; Ŝc, π̂) =
∑

n
i=1 dN ji(t)wi(Ŝc, π̂)

∑
n
i=1Yi(t)wi(Ŝc, π̂)

.

One could argue that using only the treated subjects for estimation of G could lead to a loss in the

efficiency of the estimator of the parameter of interest. However, we show in the next section that,

when all the nuisance parameters are consistently estimated, the asymptotic distribution of β̂(1) does

not depend on the specific estimator of Λ(·) .

No weighted version of the Breslow estimator can lead to a closed-form expression for β̂(2).

Plugging (3.11) in (3.6), after some tedious algebra, we get the following score:

S2,n(β; Ŝc, π̂, Λ̂) =

{
1
n

n

∑
i=1

∫
τ

0

{
Ai−EAi(t;β, Ŝc, π̂,Zi)− Ā(t)+ Ē(t)

}
(3.14)

·
{

dN ji(t)−Yi(t)
(

β jAi + γ̂
>
j Zi

)
dt
}}J

j=1
,

where

Ā(t) =
∑

n
i=1Yi(t)Ai

∑
n
i=1Yi(t)

, Ē(t) =
∑

n
i=1Yi(t)EAi(t;β, Ŝc, π̂,Zi)

∑
n
i=1Yi(t)

.

Since however we leave to the user the freedom to choose any working models, from

now on, we use Ŝc(·|·, ·), π̂(·), Λ̂(·, ·) to denote generic estimators for the nuisance parameters

Sc(·|·, ·),π(·),Λ(·, ·). It is possible that the estimator used for Λ(·, ·) depends on β, as the proposed

(3.11) and (3.12); we will therefore use as generic notation Λ̂(t,z;β) when we leave the estimator

Λ̂(·, ·) to depend on the unknown parameter.

We will now study the asymptotic properties of score 1 and score 2. For ease of notation we

report the results assuming J = 2; however, everything can be extended to the case of more than 2
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competing risks.

3.4.1 Asymptotic properties of score 1.

To prove consistency and asymptotic normality of β̂(1) we need a series of assumptions.

Assumption 1. There exist S∗c(·|·, ·),π∗(·),Λ∗(·, ·) such that:

sup
t∈[0,τ],z∈Z,a=0,1

∣∣Ŝc(t|a,z)−S∗c(t|a,z)
∣∣ = Op(an),

sup
z∈Z
|π̂(z)−π

∗(z)| = Op(bn),

sup
t∈[0,τ],z∈Z

∣∣Λ̂ j(t,z;β j0)−Λ
∗
j(t,z)

∣∣ = Op(cn),

for some an = o(1), bn = o(1), cn = o(1) and for j = 1,2.

Assumption 1, common for the literature on doubly robust estimators (Zhang and Schaubel,

2012a; Yang et al., 2020), assumes that the generic estimators Ŝc(·|·, ·), π̂(·), Λ̂(·, ·) converge to some

S∗c(·|·, ·),π∗(·),Λ∗(·, ·), possibly different from the true quantities. We don’t require specific rates of

convergence for the estimators of the nuisance parameters; assumptions on an,bn,cn will indeed

depend on which model is correctly specified. We moreover need a series of common regularity

assumptions that we report in Section 3.8.3 of the Supplement.

The following results prove consistency of our estimator as long as one of the sets of models

is correctly specified. Moreover they prove our estimator to be both rate-doubly robust and model-

doubly robust in the sense that it is asymptotically normal if either both sets of models are correctly

specified and the product of their convergence rates is o(n−1/2) or if only one of the two sets of

models is correctly specified with a convergence rate of
√

n.
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Theorem 3. Let Assumption 1 and Assumptions S1-S8 in the Supplement hold. If either S∗c(·|·, ·) =

Sc0(·|·, ·) and π∗(·) = π0(·) or Λ∗(·, ·) = Λ0(·, ·), it holds β̂(1)−β0 = op(1).

Theorem 4. Let Assumption 1 and Assumptions S1-S8 in the Supplement hold.

a) (Model-double robustness): Let S∗c(t|a,z) = Sc(t|a,z;η0,Λc0) = Sc0(t|a,z), π∗(z) =

π(z;α0) = π0(z) and Λ∗(·, ·) 6= Λ0(·, ·), for some known functions Sc and π. Let an = bn = n−1/2;

specifically let Assumptions A1-A2 in the Supplement hold. Then
√

n
(

β̂(1)−β0

)
is asymptotically

linear with influence function
{

K(a)
}−1

ψ(a) and therefore,

√
n
(

β̂
(1)−β0

)
D→N (0,Σ(a) =

{
E(K(a))−1

}>
Var(ψ(a))E(K(a))−1).

b) (Model-double robustness): Let Λ∗(t,z) = L(t,z;G0,γ0) = Λ0(t,z), S∗c(·|·, ·) 6= Sc0(·|·, ·)

and π∗(·) 6= π0(·), for some known function L. Let cn = n−1/2; specifically let Assumptions B1-B2

in the Supplement hold. Then
√

n
(

β̂(1)−β0

)
is asymptotically linear with influence function{

K(b)
}−1

ψ(b) and therefore,

√
n
(

β̂
(1)−β0

)
D→N (0,Σ(b) =

{
E(K(b))−1

}>
Var(ψ(b))E(K(b))−1).

c) (Rate-double robustness): If S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·)

with ancn = o(n−1/2) and bncn = o(n−1/2) under Assumptions C1, C2 in the the Supplement

√
n(β̂(1)−β0)

D→N (0,Σ(c) =
{
(W (c))−1

}>
V (c)(W (c))−1),

where V (c) and W (c) are diagonal matrices with components
∫

τ

0
{

p(u)β j0 +q j(u)
}

du and

E
(∫

τ

0 e(β10+β20)AtA{Sc0(t|A,Z)}−1 {A−π0(Z)}Y (t)dt
)

, respectively.
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Quantities ψ(a),ψ(b) and K(a),K(b) are given in Section 3.8.4 of the Supplement. Quantities

p and q are defined in Assumption C1 in the Supplement.

Remark 1. Both the assumed working models for Sc(·|·, ·) and Λ(·, ·) are semiparametric. They

indeed have a parametric component encoded by η and γ and a nonparametric component encoded

by Λc(t) and G(t), respectively. Either one of them can be chosen null by the user.

The consistency result requires either sets of estimators of the nuisance parameters to

converge to the true without requiring any specific rate of convergence or knowledge of which

model is correct. The asymptotic normality of the score requires more specific assumptions. Case

a) and b) of Theorem 4 assume that only one of the two sets of models is correctly specified and

that the rate of convergence of the corresponding estimators is
√

n. This is easily achieved using

classical semiparametric models as logistic regression for the propensity score and the Cox model

for the censoring distribution. Both our proposals for estimation of Λ(t,Z) achieve the required

rate of convergence. Case a) and b) of of Theorem 4 provide the asymptotic distribution of β̂(1)

when one of the two sets of models is possibly misspecified. This is an improvement with respect to

the result of Hou et al. (2021), where the asymptotic distribution of the estimator is derived only

when both models are correct. Case c) of Theorem 4 assumes that both sets of models are correctly

specified. If this is the case no specific rate is required for the convergence of the estimators of the

nuisance parameters, as long as their product rate is o(n−1/2). A set of estimators can therefore

be arbitrary slow as long as the other set is fast enough. The property just described is known as

rate double robustness and allows the user to choose from a variety of estimators for the nuisance

parameters. This is a relaxation with respect to Wang and Chen (2001); Tchetgen Tchetgen et al.

(2010); Zhang and Schaubel (2012a); Bai et al. (2017); Dukes et al. (2019b); Tan (2019). The

following result derives a consistent estimator for the asymptotic variance of β̂(1) when both models

are correctly specified.
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Theorem 5. Let Assumption 1 and Assumptions S1-S8 in the Supplement hold. If S∗c(·|·, ·) =

Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·) with ancn = o(n−1/2) and bncn = o(n−1/2) under

Assumptions C1, C2 in the the Supplement, the asymptotic variance of β̂(1) can be consistently

estimated by:

{
Ŵ (c)

}−1
V̂ (c)(τ)

{
Ŵ (c)

}−1
, (3.15)

where

Ŵ (c)
j j =

1
n

n

∑
i=1

Ai {Ai− π̂(Zi)}
∫ Xi

0

{
Ŝc(t|Ai,Zi)

}−1
e(β̂

(1)
1 +β̂

(1)
2 )tdt,

and

V̂ (c)
j j (τ) =

1
n

n

∑
i=1
1{δi = 1,εi = j}e2(β̂(1)

1 +β̂
(1)
2 )AiXi Ŝ−2

c (Xi|Ai,Zi){Ai− π̂(Zi)}2 ,

for j = 1,2.

The asymptotic variance when one of the two sets of models is misspecified, (case a) and

b) of Theorem 4), depends on the form of the nuisance parameters correctly specified and their

estimators. In the following corollary of case a) and b) of Theorem 4 we derive the explicit form of

the asymptotic variance for common specific working models.

Corollary 1. Under the same Assumptions of Theorem 4, it holds:

a) If S∗c(t|a,z) = Sc0(t|a,z) = exp
(
−Λc0(t)eη>0 d

)
where D = [A,Z]′, π∗(z) = π0(z) ={

1+ exp(−α>z)
}−1

and Λ∗(·, ·) 6= Λ0(·, ·), and if additional regularity Assumptions A*1-4 in the
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Supplement hold, then

√
n
(

β̂
(1)−β1

)
D→N (0,Σ(a′) =

{
E(K(a))−1

}>
Var(ψ(a′))E(K(a))−1).

b) Let’ s assume that Λ∗(t,z) = Λ0(t,z) = G0(t)+ γ>0 zt , S∗c(·|·, ·) 6= Sc0(·|·, ·) and π∗(·) 6=

πo(·).

If G j(t) is estimated using (3.11) then, under additional regularity Assumptions B*1 ,2, 4 in

the Supplement,

√
n
(

β̂
(1)−β0

)
D→N (0,Σ(b′) =

{
E(K(b′))−1

}>
Var(ψ(b′))E(K(b′))−1).

If G j(t) is estimated using (3.12) then,under additional regularity Assumptions B*1 ,3, 4 in

the Supplement, then

√
n
(

β̂
(1)−β0

)
D→N (0,Σ(b′′) =

{
E(K(b′′))−1

}>
Var(ψ(b′′))E(K(b′′))−1).

Quantities K(a),K(b′),K(b′′),ψ(a′),ψ(b′),ψ(b′′) are given in Section 3.8.4 of the Supplement.

The above Corollary offers an explicit form for the asymptotic variance of β̂(1) when one

of the two sets of models is misspecified. However, because of its complex form and because in

practice one does not know which model is correct, we do not derive a consistent estimator for it.

We show in simulations that the variance estimator (3.15), derived under the assumption of both sets

of models being correct, is somehow robust to model misspecification. Alternatively we suggest the

use of bootstrap. The use of bootstrap is typical of the doubly robust literature (Zhang and Schaubel,

2012a; Bai et al., 2017; Yang et al., 2020) and the validity of such procedure is due to the fact that β̂
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is asymptotically linear. We will use a standard nonparametric bootstrap, where one draws bootstrap

samples from (Xi,δi,Ai,Zi), i = 1, . . . ,n with replacement.

Detailed proofs of the Theorems are contained in Section 3.8.5 of the Supplement.

3.4.2 Asymptotic properties of Score 2.

Similarly to the previous section, we prove consistency and asymptotic normality of β̂(2).

The majority of the assumptions needed for studying the asymptotic behavior of β̂(2) are the same

needed for β̂(1). Again, we need the estimators Ŝc(·|·, ·), π̂(·) and Λ̂(·, ·) to convergen to some

S∗c(·|·, ·),π∗(·),Λ∗(·, ·), possibly different from the true quantities, as specified in Assumption 1.

The following results prove that β̂(2) shares the same properties of β̂(1); being both rate-doubly

robust and model-doubly robust.

Theorem 6. Let Assumption 1 and Assumptions S1-S7 and S9 in the Supplement hold. If either

S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·) or Λ∗(·, ·) = Λ0(·, ·) we have
√

n(β̂(2)−β0) = op(1).

Theorem 7. Let Assumption 1 and Assumptions S1-S7 and S9 in the Supplement hold.

a) (Model-double robustness): Let S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) 6= Λ0(·, ·).

Let an = n−1/2 and bn = n−1/2; specifically let Assumption A’1 in the Supplement hold. Then
√

n
(

β̂(2)−β0

)
is asymptotically linear with influence function

{
J(a)
}−1

φ(a) and therefore,

√
n
(

β̂
(1)−β0

)
D→N (0,Γ(a) =

{
E(J(a))−1

}>
Var(φ(a))E(J(a))−1).

b) (Model-double robustness): Let Λ∗(·, ·) = Λ0(·, ·), S∗c(·|·, ·) 6= Sc0(·|·, ·) and π∗(·) 6= πo(·).

Let cn = n−1/2; specifically let Assumption B’1 in the Supplement hold. Then
√

n
(

β̂(2)−β0

)
is
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asymptotically linear with influence function
{

J(b)
}−1

φ(b) and therefore

√
n
(

β̂
(2)−β0

)
D→N (0,Γ(b) =

{
E(J(b))−1

}>
Var(φ(b))E(J(b))−1).

c) (Rate-double robustness): Let S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·)

with ancn = o(n−1/2) and bncn = o(n−1/2) and let Assumptions C’1, 2 in the Supplement hold. We

have

√
n(β̂−β0)

D→N (0,Γ(c) = (W (c′))−1V (c′)(τ)(W (c′))−1),

where W (c′) is a 2x2 diagonal matrix with diagonal element E
[
A
∫ X

0 {A−EA(t;β0,Sc0,π0,Z)}dt
]

and V (c′)(τ) is a diagonal matrix with diagonal elements
∫

τ

0

{
p′(u)β j0 +q′j(u)

}
du.

Quantities J(a),J(b),φ(a),φ(b) are given in Section 3.8.4 of the Supplement. Quantities p′

and q′ are defined in Assumption C’1 in the Supplement.

Theorem 8. Let Assumption 1 and Assumptions S1-S7 and S9 in the Supplement hold. If S∗c(·|·, ·) =

Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·) with ancn = o(n−1/2) and bncn = o(n−1/2) and

Assumptions C’1, 2 in the Supplement hold, the asymptotic variance of β̂(2) can be consistently

estimated by

(Ŵ (c′))−1V̂ (c′)(τ)(Ŵ (c′))−1, (3.16)

where:

Ŵ (c′)
j j =

1
n

n

∑
i=1

Ai

∫ Xi

0

{
Ai−EA(t; β̂, Ŝc, π̂,Zi)

}
dt,
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and

V̂ (c′)
j j (τ) =

1
n

n

∑
i=1
1{δi = 1,εi = j}

{
Ai−EA(Xi; β̂, Ŝc, π̂,Zi)

}2
.

The techniques used for the proof of these results are similar to the one needed for the proofs

of the asymptotic results concerning β̂(1). We therefore report only a sketch of the proof in Section

3.8.5 of the Supplement.

3.5 Simulation experiments

In this section we investigate the performance of our proposed estimators on a series of

simulated dataset. We call β̂1 and β̂2 the results of the score (3.13) and (3.14), respectively. The

first score offers a closed form solution, while for the second one, we use Newton Raphson to

approximate its roots with 0 as starting point. We consider the covariates Z to be 2-dimensional.

For ease of exposition we define the set M = {h j(t|a,z) = β ja+λ j(t,z) : f or all β j ∈ R,λ j(·, ·) :

[0,τ]×R2→ R, j = 1, . . . ,J} that describes model (3.1).

3.5.1 Independent censoring

We consider four different simulation scenarios defined in Table 3.1. The censoring

variable C is simulated independently of T,A,Z = [Z1,Z2]
>; estimation of the censoring dis-

tribution is not required and we therefore use the simplified scores (3.8) and (3.9). We con-

sider, for estimation of the propensity score and Λ j, the following working models: Alog ={
π(z;α) = expit(α>z) : f or all α ∈ R2}, A∗log = {π(z;α) = expit(α>z+α∗z1z2) :

f or all [α,α∗]> ∈ R3} and B = {Λ j(t,z;G j,γ j) = G j(t)+ γ>j z : f or all γ j ∈ R2,
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G j(·) : [0,τ]→ R+, j = 1, . . . ,J}. Moreover, we investigate the performance of gradient boosted

logistic regression (twang (Cefalu et al., 2021)) for estimation of the propensity score and we call

Atw the corresponding working model.

Both β̂(1) and β̂(2) are consistent and asymptotically normal under model M ∩ (A ∪B),

where A is the model chosen for the propensity score, Alog or A∗log or Atw. For comparison, we

also estimate β separately fitting the traditional semiparametric additive hazards model to each

competing risk. We call this method traditional and we remind the reader that it is consistent under

model M ∩B .

In Scenario 1 both Alog and B are correctly specified while in Scenario 2 Alog is misspecified

since it excludes the interaction term. In Scenario 3 and 4, B is misspecified but A∗log is correct. The

correctness of the nonparametric model Atw is hard to asses.

For each scenario, we simulate 500 datasets of 1000 observations. The percentage of treated

subjects is 40%−50% and the percentage of censored subjects is 10%−30%. For both estimators,

model-based standard errors, (3.15) and (3.16), are used to construct 95% confidence intervals.

Additionally, in Scenario 4, for the first 100 simulations, we also report the bootstrap-based standard

error. To this aim we sample 100 bootstrap samples without replacement.

Results of simulations are reported in Table 3.2. Our proposed estimators exhibit consistency

when either one of the two models is correctly specified. On the other hand, when model B is

misspecified, the traditional estimator appears to be biased. The model-based standard errors are

proven consistent only when both models are correct. However, in Scenario 2 and 3, they still

perform well, exhibiting some level of robustness to mild departure from A ∩B . In Scenario 4, the

model-based standard errors show some bias. However, bootstrap-based confidence intervals show

correct coverage. The use of logistic regression and boosted logistic regression for estimation of the

propensity score exhibits similar performance. We conjecture that this is due to the model-double
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robustness of our proposed estimators.

Table 3.1: Data-generating mechanisms of Scenarios 1-4. We define Z = [Z1,Z2]
>. Here

C ⊥ (T,A,Z).

Scenario Data-generating mechanism Fitted models

1

Z1,Z2 ∼U(0,0.5)
logit{π(Z)}= Z1−Z2 Alog: CORRECT and Atw

λ j(t) = 0.1A+1+Z1 +Z2 B: CORRECT
C ∼U(0,3)

2

Z1,Z2 ∼U(0,0.5)
logit{π(Z)}= 0.25(Z1−Z2)−0.5Z1Z2 Alog: WRONG and Atw

λ j(t) = 0.1A+0.3+Z1 +Z2 B: CORRECT
C ∼U(0,3)

3

Z1 ∼N (0,1)
Z2 ∼N (Z1,1)

logit{π(Z)}= 0.25(Z1−Z2)+0.5Z1Z2−1 A∗log: CORRECT and Atw

λ j(t) = 0.1A+0.3+ |Z1|+ log(1+ |Z2|) B: WRONG
C ∼U(0,3)

4

Z1 ∼N (0,1)
Z2 ∼N (Z1,1)

logit{π(Z)}= 0.25(Z1−Z2)+0.5Z1Z2−1 A∗log: CORRECT and Atw

λ j(t) = 0.1A+ exp(Z1 +Z2) B: WRONG
C ∼U(0,3)
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Table 3.2: Results of simulations from Scenarios 1-4. Here C ⊥ (T,A,Z). Column PS indicates
the working model used to estimate the propensity score. For Scenario 4, the first SE and CP are
model based, while the second one uses bootstrap. SD, standard deviation; SE, standard error;
CP, coverage of the 95% confidence interval.

Method Score 1 Score 2 Traditional
Bias SD SE CP Bias SD SE CP Bias SD SE CP

Scenario PS β β

1
Logistic β1 −0.012 0.156 0.146 0.93 −0.006 0.157 0.146 0.93

β1 -0.006 0.157 0.147 0.93
β2 0.0006 0.144 0.147 0.95 0.006 0.146 0.146 0.95

Twang β1 −0.012 0.159 0.150 0.93 −0.006 0.161 0.149 0.93
β2 0.006 0.146 0.147 0.95

β2 −0.0003 0.147 0.150 0.96 0.005 0.148 0.149 0.95

2
Logistic β1 −0.010 0.108 0.120 0.97 −0.007 0.108 0.120 0.97

β1 -0.007 0.108 0.121 0.97
β2 0.001 0.127 0.121 0.95 0.005 0.129 0.121 0.95

Twang β1 −0.011 0.110 0.124 0.97 −0.008 0.110 0.124 0.97
β2 0.005 0.128 0.121 0.95

β2 0.001 0.131 0.124 0.95 0.004 0.133 0.124 0.94

3
Logistic β1 −0.009 0.160 0.163 0.96 0.001 0.162 0.163 0.95

β1 0.336 0.170 0.163 0.48
β2 0.000 0.157 0.163 0.97 0.011 0.158 0.163 0.96

Twang β1 −0.006 0.158 0.162 0.97 0.006 0.161 0.162 0.96
β2 0.350 0.163 0.163 0.42

β2 0.006 0.153 0.162 0.97 0.018 0.155 0.163 0.96

4
Logistic β1 0.004 0.091 0.099

0.077
0.98
0.90 0.006 0.091 0.099

0.080
0.98
0.91

β1 0.570 0.127 0.095 0

β2 0.002 0.094 0.099
0.077

0.96
0.89 0.003 0.095 0.099

0.080
0.96
0.90

Twang β1 0.044 0.089 0.095
0.075

0.93
0.84 0.047 0.092 0.100

0.079
0.95
0.86

β2 0.566 0.128 0.095 0

β2 0.041 0.092 0.095
0.075

0.90
0.89 0.044 0.095 0.101

0.079
0.93
0.86

3.5.2 Dependent censoring

To investigate the robustness of our proposed estimators with respect to the censoring

distribution, we consider the same settings as Scenario 1,2,3 but with censoring dependent on the

covariates A,Z. Specifically we consider 4 different scenarios defined in Table 3.3.

We report the results of using both the simplified scores, (3.8) and (3.9), under the assumption

of independent censoring (β̂(1), β̂(2)) and score (3.13) with an estimator for Sc plugged in (β̂(1c)).

For estimation of the censoring distribution, we consider the following working model:

C =
{

Sc(t|a,z;η,Λc) = exp
{
−Λc(t)eη>d

}
: f or all η ∈ R3,Λc(·) : [0,τ]→ R+

}
where

D = [A,Z]>.
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β̂(1c) is consistent and asymptotically normal under model M ∩{(A ∩C )∪B}.

In Scenario 5 both Alog ∩ C and B are correctly specified while in Scenario 6, Alog is

misspecified since it excludes the interaction term. In Scenario 7 both Alog and C are misspecified

while in Scenario 8, B is misspecified but A∗log∩C is correct.

For each scenario, we simulate 500 datasets of 1000 observations. The percentage of treated

subjects is 40%−50% and the percentage of censored subjects is 10%−30%. For both estimators,

the model-based standard errors, (3.15) and (3.16), are used to construct 95% confidence intervals.

Results of simulations are reported in Table 3.4. In every scenario, the proposed estimators

are unbiased. This seems to suggest that both our proposed scores are not really sensitive to the

censoring distribution. However, Scenario 7 shows that the model-based standard error is somehow

sensitive to departure from the censoring model. The user needs to carefully construct the censoring

model if s/he intends to use the model-based approach.
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Table 3.3: Data-generating mechanisms of Scenarios 5-8. We define Z = [Z1,Z2]
>. Here

C ⊥ T |A,Z.

Scenario Data-generating mechanism Fitted models

5

Z1,Z2 ∼U(0,0.5)

logit{π(Z)}= Z1−Z2 Alog: CORRECT and Atw

C ∼ Exp(exp(−1+A+Z1 +Z2)) C : CORRECT

λ j(t) = 0.1A+1+Z1 +Z2 B: CORRECT

6

Z1,Z2 ∼U(0,0.5)

logit{π(Z)}= 0.25(Z1−Z2)−0.5Z1Z2 Alog: WRONG and Atw

C ∼ Exp(exp(−1+A+Z1 +Z2)) C : CORRECT

λ j(t) = 0.1A+0.3+Z1 +Z2 B: CORRECT

7

Z1,Z2 ∼U(0,0.5)

logit{π(Z)}= 0.25(Z1−Z2)−0.5Z1Z2 Alog: WRONG and Atw

λc(t|A,Z) = 2t +A−Z1−Z2 C : WRONG

λ j(t) = 0.1∗A+0.3+Z1 +Z2 B: CORRECT

8

Z1 ∼N (0,1)
Z2 ∼N (Z1,1)

logit{π(Z)}= 0.25(Z1−Z2)+0.5Z1Z2−1 A∗log: CORRECT and Atw

C ∼ Exp(exp(−A+Z1−Z2)) C : CORRECT

λ j(t) = 0.1A+0.3+ |Z1|+ log(1+ |Z2|) B: WRONG

Table 3.4: Results of simulations from Scenarios 5-8. Column PS indicates the working model
used to estimate the propensity score. Here C ⊥ T |A,Z. SD, standard deviation; SE, standard
error; CP, coverage of the 95% confidence interval.

Method Score 1 Score 1-Cens Score 2
Bias SD SE CP Bias SD SE CP Bias SD SE CP

Scenario PS β

5
Logistic β1 −0.021 0.157 0.181 0.97 −0.032 0.163 0.180 0.97 −0.006 0.154 0.180 0.98

β2 −0.018 0.160 0.182 0.97 −0.026 0.168 0.181 0.96 −0.003 0.158 0.180 0.97

Twang β1 −0.021 0.159 0.186 0.97 −0.030 0.166 0.184 0.97 −0.007 0.157 0.184 0.97
β2 −0.018 0.163 0.186 0.97 −0.026 0.171 0.185 0.95 −0.003 0.162 0.184 0.97

6
Logistic β1 −0.009 0.115 0.113 0.95 −0.012 0.115 0.119 0.96 −0.006 0.115 0.113 0.95

β2 −0.011 0.127 0.113 0.92 −0.013 0.124 0.119 0.94 −0.008 0.127 0.113 0.93

Twang β1 −0.009 0.120 0.117 0.95 −0.013 0.118 0.123 0.96 −0.005 0.119 0.117 0.95
β2 −0.013 0.131 0.116 0.91 −0.014 0.128 0.123 0.93 −0.009 0.131 0.116 0.91

7
Logistic β1 −0.007 0.126 0.136 0.96 −0.012 0.128 0.336 0.83 0.000 0.127 0.135 0.95

β2 −0.008 0.128 0.136 0.97 −0.014 0.131 0.368 0.82 −0.002 0.129 0.135 0.97

Twang β1 −0.007 0.128 0.140 0.96 −0.012 0.129 0.339 0.83 0.001 0.129 0.139 0.97
β2 −0.009 0.135 0.140 0.96 −0.014 0.138 0.362 0.81 −0.003 0.135 0.139 0.96

8
Logistic β1 0.001 0.170 0.160 0.93 −0.030 0.184 0.197 0.96 0.012 0.168 0.161 0.94

β2 0.002 0.164 0.160 0.95 −0.034 0.177 0.197 0.97 0.013 0.163 0.161 0.94

Twang β1 0.011 0.168 0.159 0.94 −0.024 0.185 0.197 0.96 0.020 0.166 0.160 0.95
β2 0.014 0.160 0.159 0.95 −0.026 0.176 0.198 0.97 0.022 0.160 0.159 0.94
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3.6 Application

We study the effect of mid-life alcohol consumption on the development of late-life dementia

related to Alzheimer disease. To this aim we use data from the linked epidemiologic projects

Honolulu Hearth Program (HHP) and Honolulu-Asia Aging Study (HAAS). HHP was established

in 1965 as epidemiologic study of rates and risk factors for heart disease and stroke in men of

Japanese ancestry living in Oahu and born between 1900 and 1919. 8006 men participated in

the initial examination and interview (1965, then aged 45-65 years). HHP comprises of 2 further

exams, (exam 2, n=7498, 1968-1971), (exam 3, n=6860, 1971-74) and a subsequent follow-up

interview (mailout, n=4655, 1986-89). HAAS was established in 1991 (HHP exam 4, n=3734) as

a continuation of the HHP with a shift focus on brain aging, AS, vascular dementia, other causes

of cognitive and motor impairment, stroke, and the common chronic conditions of late-life. Eight

further exams were done at 2-3 years intervals until 2012. During all the 9 HAAS examinations

neuropsychological screenings were performed.

Here we study the effect of mid-life alcohol exposure on late-life development of moderate

cognitive impairment. Cognitive impairment is assessed through the score of Cognitive Assessment

and Screening Instrument (CASI), collected on the participants starting from exam 4. A score below

74 is considered moderate impairment. The mid-life alcohol exposure was assessed by self report

and translated into units of drinks per month at exam 1 and exam 3.

At the end of the study, only about 500 of the 8006 men were still alive and so death without

development of cognitive impairment is a competing risk for the event of interest. Since our focus

is on the cognitive impairment, we consider exam 4 as time 0 and we restrict the analysis to the set

of participants who had normal cognitive functions at exam 4. After deleting 30 observations with

missing entries, we are left with 1881 observations.
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We divide the observations into people with a light exposure to alcohol both at exam 1 and 3

and people that, at least in one of the two exams, had an heavy alcohol exposure; 1390 observations

are categorized as light drinkers, while 491 as heavy drinkers. Of the 1390 in the first group, 557

developed cognitive impairment by the end of the study while 474 died, of the 491 in the second

group, 216 developed cognitive impairment and 163 died. The cumulative incidence function curves

for the two groups are presented in Figure 3.1.

The baseline covariates used to adjust for confounding are systolic blood pressure, age,

maximum years of education, ApoE genotype and heart rate. A table with the distribution of the

baseline covariates across the two groups can be found in Table 3.5.

In order to utilize our proposed scores we estimate the propensity score both using logistic

and boosted logistic regression. The distribution of the estimated propensity scores for both groups

is plotted in Figure 3.4.

We utilize both proposed scores to estimate the effect of mid-life alcohol exposure on the

development of moderate cognitive impairment and on the competing risk death without cognitive

impairment. The value of CASI at exam 4 represents a mediator for the effect under study. Following

the literature on mediation analysis, the total effect of the exposure on the outcome of interest can

be decomposed into direct and indirect effect (Lange and Hansen, 2011; VanderWeele, 2011). The

former is the effect of alcohol exposure on development of cognitive impairment not mediated by

the value of CASI at exam 4. The latter is instead the effect that can be attributed to the value

of CASI at exam 4. On the other hand we conjecture that the value of CASI at exam 4 does not

mediate the effect of alcohol exposure on the competing risk death. Here, we exploit our proposed

scores to compute both the total and the direct effect not including and including, respectively the

mediator as covariate.

In Figure 3.5 we plot Kaplan-Meier censoring survival curves for different groups, defined
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by the exposure and the covariates. The plots seem to suggest that the stronger assumption of

C ⊥ (T,A)|Z does not hold here. We report the estimates β̂(1), β̂(2), β̂(1c) as in subsection 3.5.2. We

estimate the censoring distribution according to the Cox model.

Results of the analysis are reported in Table 3.6.

The results seem to indicate that mid-life alcohol exposure has a significant effect on both

the development of cognitive impairment and death without cognitive impairment. This seems to

be in line with Figure 3.1. The estimated total and direct effect of the exposure on the outcome of

interest are around 0.013 and 0.009, respectively. There is no a big difference between the estimates

of the total and the direct effect of the exposure on the competing risk death without cognitive

impairment. Both estimated effects are indeed around 0.012. This corroborates our conjecture: the

value of CASI at exam 4 does not seem to mediate the effect of alcohol exposure on death without

cognitive impairment.

Table 3.5: Participants’ characteristic of the HHP-HAAS dataset. Presented are mean (standard
deviation) for the continuous variables, and frequency (%) for the categorical variables.

(n = 491)
HeavyDrinkers

(n = 1390)
LightDrinkers

SystolicBP 151.40 (21.95) 148.76 (21.26)
Age 77.12 (3.75) 77.05 (3.80)
Education (in years) 10.42 (2.97) 11.22 (3.12)
ApoE genotype (yes) 105 (21.4%) 254 (18.3%)
HeartRate (in 30 secs) 31.88 (4.83) 31.22 (4.62)
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Figure 3.1: Cumulative incidence function curves for competing risks for the HHP-HAAS
dataset. ’CognImpair’ stands for ’Cognitive Impairment’.
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Figure 3.2: Propensity score for estimation of the total effect.
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Figure 3.3: Propensity score for estimation of the direct effect.

Figure 3.4: Distribution of the estimated propensity score for the HHP-HAAS dataset.
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Figure 3.5: Censoring distribution for different groups of the HHP-HAAS dataset.
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Table 3.6: Estimated treatment effect for the HHP-HAAS dataset. Column PS indicates the
working model used to estimate the propensity score. The first CI is model-based, while the
second one uses bootstrap with B=50. Time is measured in years. CI, confidence interval

Method Score 1 Score 1-Cens Score 2
β̂ CI β̂ CI β̂ CI

Treatment Effect PS β

Total Effect

Logistic β1 0.013 [0.003,0.023]
[0.004,0.022] 0.015 [0.004,0.022]

[0.005,0.025] 0.012 [0.003,0.022]
[0.004,0.021]

β2 0.012 [0.005,0.020]
[0.005,0.020] 0.013 [0.005,0.021]

[0.004,0.022] 0.012 [0.006,0.018]
[0.005,0.019]

Twang β1 0.012 [0.001,0.022]
[0.003,0.020] 0.013 [0.002,0.025]

[0.004,0.023] 0.011 [0.002,0.021]
[0.003,0.020]

β2 0.012 [0.002,0.021]
[0.004,0.020] 0.012 [0.001,0.024]

[0.003,0.022] 0.011 [0.003,0.020]
[0.004,0.019]

Direct Effect

Logistic β1 0.010 [0.002,0.019]
[0.001,0.019] 0.009 [0.000,0.019]

[0.000,0.019] 0.009 [0.002,0.019]
[0.001,0.018]

β2 0.012 [0.005,0.022]
[0.005,0.020] 0.013 [0.004,0.023]

[0.004,0.022] 0.012 [0.004,0.021]
[0.005,0.019]

Twang β1 0.008 [0.005,0.011]
[0.000,0.017] 0.008 [-0.001,0.006]

[-0.002,0.017] 0.008 [0.001,0.016]
[0.000,0.016]

β2 0.010 [0.007,0.014]
[0.003,0.018] 0.011 [0.000,0.007]

[0.002,0.020] 0.010 [0.003,0.018]
[0.003,0.018]

3.7 Discussion

The proposed estimators are model-doubly robust; they are consistent and asymptotically

normal if either one of the two sets of models is correctly specified. The estimators are also

rate-doubly robust, i.e. when both sets of models are correct, they only need the product of their

rates of convergence to be o(
√

n). This characteristic allows the user to choose, for estimation of

the nuisance parameters, from a big variety of methodologies, both parametric and nonparametric.

To the best of our knowledge we provide the first doubly robust estimators for the hazard difference

in the presence of competing risks.

In this article we have proposed two doubly robust estimators for the conditional cause-

specific hazard difference under competing risks. We proposed two estimators that are model-doubly

robust: they are consistent and asymptotically normal if either both the propensity score and the
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censoring distribution or the outcome models for competing risks are modeled correctly. Moreover,

they are rate-doubly robust: they are consistent and asymptotically normal if both sets of models are

correctly specified and the product of their convergence rates is o(
√

n). The last property, that has its

roots in the orthogonality of the scores, gives the user the possibility to estimate the propensity score

or/and the censoring distribution or/and the outcome model using modern nonparametric methods,

known to have rates of convergence slower than
√

n. In simulations we showed the performance

of our estimators when boosted logistic regression is used for estimation of the propensity score.

Different nonparametric methods are also available for estimation of survival curves, such as survival

random forest (Ishwaran et al., 2008), spline (Gray, 1992; Kooperberg et al., 1995a) and Kernel

(Beran, 1981; Dabrowska, 1989). The user can employ them for estimation of Λ j(t,Z) and then

use one of our proposed scores. In the absence of competing risks, Hou et al. (2021) proposed in

section 6.1 to estimate nonparametrically the cumulative hazard function separately for the treated

and the untreated, Λ̂(1), Λ̂(0) and then use Λ̂(t,Z) = w(t)
{

Λ̂(1)(t|Z)−βt
}
+ {1−w(t)} Λ̂(0)(t|Z)

for some weight w(t). In our case this method needs to be adapted to the setting of competing

risks. To this aim the user needs to carefully make use of nonparametric methods that work under

such setting to estimate Λ̂
(1)
j , Λ̂

(0)
j . For example Ishwaran et al. (2014) proposed survival random

forest for competing risks for estimation of both cumulative cause-specific hazard functions and

cumulative incidence functions.

Here we propose estimators for the total treatment effect on both the event of interest and

the competing event. Since in our example mid-life alcohol consumption has an harmful effect

on both the development of cognitive impairment and survival, the total effect has not a difficult

interpretation. However, when the total effects on two competing risks have opposite directions,

it might be difficult to understand which part of the effect is due to the competing event. If for

example we had discovered a beneficial effect of heavy alcohol consumption on survival, we would
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have not known if the harmful effect of drinking on the development of cognitive impairment were

simply a consequence of aging. To shed light on this, recently separable direct and indirect effects

have been introduced (Stensrud et al., 2020). While they offer better overall interpretation, they

need to be justified by subject-matter knowledge and their identification is based on untestable

assumptions. The decomposition into separable effects of our total effect is beyond the scope of this

paper and we leave this for future work.

In simulations we have investigated the use of both logistic regression and boosted logistic

regression for estimation of the propensity score. The latter has been recently acquired popularity

among practitioners. The idea that nonparametric methods are always consistent is a common

misconception. While it is true that these methods relax the modeling assumptions typical of

parametric methodologies, their consistency is not granted and it is often hard to asses. Moreover,

nonparametric methods have often convergence rate slower than the classical
√

n and their tuning

process can be non trivial. Because of all the above reasons it is useful to use them in combination

with estimators that are both model and rate-doubly robust as our proposals.

To use our scores, the censoring distribution needs to be modeled. However this is not

true if one is willing to assume that the censoring is independent of the treatment and the failure

time given the covariates. In simulations we have shown that our estimators seem to be pretty

robust with respect to this assumption. However, we advise the user to asses the validity of the

assumption as we have done in the data analysis. Moreover, when the censoring distribution is

estimated and the model-based confidence interval is considered, the censoring model needs to be

carefully constructed. To this aim, the user should choose the model that seems to best fit the data.

Alternatively, if computational time is not a concern, one can use bootstrap.
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3.8 Appendix

3.8.1 Derivation of the semiparametrically efficient score.

We have, for an individual, the following likelihood:

L =
J

∏
j=1

{
h j(X |A,Z)

}1{δ=1,ε= j} exp
{
−H j(X |A,Z)

}
{λc(X |A,Z)}1−δ

× exp{−Λc(X |A,Z)}P(A|Z) f (Z)

=
J

∏
j=1

{
λ j(X ,Z)+β jA

}1{δ=1,ε= j} exp
{
−Λ j(X ,Z)−β jAX

}
{λc(X |A,Z)}1−δ

× exp{−Λc(X |A,Z)}P(A|Z) f (Z), (3.17)

where λc(t|a,z) is the conditional hazard function for C, P(a|z) is the conditional distribution of

A and f (z) is the density of the covariates. Moreover Λ j(t,z) =
∫ t

0 λ j(u,z)du for j = 1, . . . ,J and

Λc(t|a,z) =
∫ t

0 λc(u|a,z)du.

3.8.2 Score for β

We first derive the score for the parameter of interest β. We first prove a generic result.

Lemma 3. For a generic cause-specific hazards model h j(t|W ;θ), j = 1, . . . ,J where θ = (β,η)

and the parameter of interest β = [β1, . . . ,βJ]
> is finite-dimensional and W are covariates, we have:

Sβ =

{∫
τ

0
∂β jh j(t|W ;θ)

∣∣∣
β=β0

dM j(t)
h j(t|W ;θ)

}J

j=1
. (3.18)

Proof of Lemma 3. Under a generic cause-specific hazards model the log likelihood for an individ-
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ual is

logL(θ) =
J

∑
j=1

[
1{δ = 1,ε = j} log

{
h j(X |W ;θ)

}
−H j(X |W ;θ)

]
+(1−δ) log{λc(X |A,Z)}−Λc(X |A,Z)+ logP(A|Z)+ log f (Z),

and the associated martingales are:

M j(t) = N j(t)−H j(t|W ;θ0)Y (t). (3.19)

Therefore, for j = 1, . . . ,J:

{
Sβ

}
j =

∂ logL(θ)
β j

∣∣∣∣
θ=θ0

=
J

∑
j=1
1{δ = 1,ε = j}

 ∂β jh j(X |W ;θ)

h j(X |W ;θ)

∣∣∣∣∣
θ=θ0

− ∂β jH j(X |W ;θ)
∣∣∣
θ=θ0


=

∫
τ

0

∂β jh j(t|W ;θ)

h j(t|W ;θ)

∣∣∣∣∣
θ=θ0

dN j(t)−
∫

τ

0
∂β jh j(t|W ;θ)

∣∣∣
θ=θ0

Y (t)dt

=
∫

τ

0
∂β jh j(t|W ;θ)

∣∣∣
θ=θ0

dM j(t)
h j(t|W ;θ)

.

Application of the above Lemma to model (3.1) leads to:

Sβ =

{∫
τ

0
A

dM j(t)
h j(t|A,Z)

}J

j=1
. (3.20)

129



Nuisance tangent space

Under model (3.1) we have J+2 nuisance parameters: λ1(t,z), . . . ,λJ(t,z),λc(t|a,z),

P(a|z) f (z). We call their tangent spaces Λ1
1s, . . . ,Λ

J
1s,Λ2s,Λ3s, respectively.

Lemma 5.1 of Tsiatis (2007) proves that:

Λ2s =

{∫
τ

0
g(t,A,Z)dMc(t) : f or all g(t,A,Z)

}
, (3.21)

where Mc(t) is the martingale associated with the censoring distribution. Pag. 117 of Tsiatis (2007)

proves that:

Λ3s = {g(A,Z) : E{g(A,Z)}= 0} . (3.22)

We now derive Λ
j
1s for j = 1, . . . ,J.

Lemma 4. For j = 1, . . . ,J:

Λ
j
1s =

{∫
τ

0
g(t,Z)

dM j(t)
h j(t|A,Z)

: f or all g(t,Z)
}
. (3.23)

Moreover Λl
1s ⊥ Λ

j
1s for each l 6= j.

Proof of Lemma 4. The nuisance tangent space, when the nuisance parameter has finite dimension,

is defined as the space spanned by the nuisance score. The nuisance tangent space for a semipara-

metric model is the mean-square closure of all parametric submodel nuisance tangent spaces. We

therefore starts considering parametric submodels. Let’s assume that j is fixed and let’s consider a
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generic parametric submodel:

h j(t|A,Z;η) = λ j(t,Z;η)+β jA,

where η0 indicates the true parameter. For this parametric submodel, by Lemma 3, we have

Sη =
∫

τ

0
∂ηλ j(t,Z;η)|η=η0

dM j(t)
h j(t|A,Z)

.

We hence conjecture that, for our semiparametric model:

Λ
j
1s =

{∫
τ

0
g(t,Z)

dM j(t)
h j(t|A,Z)

: f or all g(t,Z)
}
. (3.24)

By above calculations, we know that, the nuisance tangent space of any parametric submodel

belongs to Λ
j
1s. To complete our proof we need to prove that for any element of the conjectured

(10), indexed by g(t,Z), there exists a parametric submodel such that, such element belongs to its

nuisance tangent space. Given g(t,Z), straightforward algebra proves that the score of the following

parametric submodel:

h j(t|A,Z;η) = λ j(t,Z;η0)+ηg(t,Z)+β jA,

corresponds to the element of Λ
j
1s indexed by the chosen g(t,Z). Our conjecture is therefore proven

right.

We now focus on proving the orthogonality of these spaces. For each gl(t,Z),g j(t,Z) with
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l 6= j, we have:

E
{∫

τ

0
gl(t,Z)

dMl(t)
hl(t | A,Z)

×
∫

τ

0
g j(t,Z)

dM j(t)
h j(t | A,Z)

}
= E

{∫
τ

0
gl(t,Z)g j(t,Z)

1
hl(t | A,Z)h j(t | A,Z)

< dMl(t),dM j(t)>
}
= 0,

where the last equality comes from the fact that we assume that competing risks don’t happen at the

same time. Therefore Λl
1s ⊥ Λ

j
1s for l 6= j.

The nuisance tangent space is therefore:

Λ = Λ
1
1s⊕ . . .⊕Λ

J
1s⊕Λ2s⊕Λ3s. (3.25)

Orthogonal complement of the nuisance tangent space: proof of Lemma 1

We are now ready to derive the orthogonal complement of the nuisance tangent space. We

start with some useful lemma:

Lemma 5. For any g j(t,A,Z):

∏

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

∣∣∣∣Λ j
1s

}
=

∫
τ

0
g∗j(t,Z)

dM j(t)
h j(t|A,Z)

,

where

g∗j(t,Z) =
E
[

g j(t,A,Z)h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt

∣∣∣Z]
E
[

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt

∣∣∣Z] .
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Proof of Lemma 20. By definition of projection, we need, for any g(t,Z), that:

0 = E
[∫

τ

0

{
g j(t,A,Z)−g∗j(t,Z)

} dM j(t)
h j(t|A,Z)

×
∫

τ

0
g(t,Z)

dM j(t)
h j(t|A,Z)

]
= E

[∫
τ

0

{
g j(t,A,Z)−g∗j(t,Z)

}
g(t,Z)h−2

j (t|A,Z)< dM j(t)>
]

= E
[∫

τ

0

{
g j(t,A,Z)−g∗j(t,Z)

}
g(t,Z)h−1

j (t|A,Z)Y (t)dt
]

=
∫

τ

0
E
(

E
[{

g j(t,A,Z)−g∗j(t,Z)
}

h−1
j (t|A,Z)Y (t)|Z

]
g(t,Z)

)
dt,

implying that, almost surely,

E
[{

g j(t,A,Z)−g∗j(t,Z)
}

h−1
j (t|A,Z)Y (t)|Z

]
= 0.

By contradiction, let’s assume that the above expectation is not zero on an interval with positive

measure. If we take

g(t,Z) = E
[{

g j(t,A,Z)−g∗j(t,Z)
}

h−1
j (t|A,Z)Y (t)|Z

]
,

then

∫
τ

0
E
(

E
[{

g j(t,A,Z)−g∗j(t,Z)
}

h−1
j (t|A,Z)Y (t)|Z

]
g(t,Z)

)
dt 6= 0.

and so the contradiction.
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Therefore:

g∗j(t,Z) =
E
{

g j(t,A,Z)h−1
j (t|A,Z)Y (t)|Z

}
E
{

h−1
j (t|A,Z)Y (t)|Z

}
=

E
[
g j(t,A,Z)h−1

j (t|A,Z)E {Y (t)|A,Z}|Z
]

E
[
h−1

j (t|A,Z)E {Y (t)|A,Z}|Z
]

=
E
{

g j(t,A,Z)h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

} .

Lemma 6. We have:

Λ
⊥ =

{
J

∑
j=1

∫
τ

0

{
g j(t,A,Z)−g∗j(t,Z)

} dM j(t)
h j(t|A,Z)

: f or all g j(t,A,Z) (3.26)

and g∗j(t,Z) s.t. ∏

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

∣∣∣Λ j
1s

}
=

∫
τ

0
g∗j(t,Z)

dM j(t)
h j(t|A,Z)

}
.

Proof of Lemma 6. The tangent space for a parametric model identified by the parameter θ = (β,η)

is defined as the space spanned by the score Sθ. The tangent space for a semiparametric model is

the mean-square closure of all parametric submodel tangent spaces. If we don’t put any restrictions

on the density that generates the data, then it follows from Theorem 4.4 of Tsiatis (2007) that the

corresponding tangent space is the entire Hilbert space H = {g(X ,δ,A,Z) : E{g}= 0, E{g>g}<

∞}. Model (3.1) imposes restrictions on the cause-specific hazards h j(t|A,Z) for j = 1, . . . ,J and it

leaves λc(t|A,Z), P(A|Z) and f (Z) unspecified. Suppose that now we don’t put any restriction and

we consider a nonparametric model in which also h j(t|A,Z) are left unspecified. The tangent space
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for this nonparametric model, i.e. H , is:

H = Λ
1∗
1s ⊕ . . . ,⊕Λ

J∗
1s ⊕Λ2s⊕Λ3s, (3.27)

where Λ
j∗
1s are the spaces associated with h j(t|A,Z); now left arbitrary. Similarly to what we have

done in the proof of Lemma 4, it is easy to show that:

Λ
j∗
1s =

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

: f or all g j(t,A,Z)
}
, (3.28)

and that, for any l 6= j:

Λ
l∗
1s ⊥ Λ

j∗
1s , Λ

l∗
1s ⊥ Λ

j
1s, Λ

l
1s ⊥ Λ

j∗
1s . (3.29)

By definition, the orthogonal complement of the nuisance tangent space is

Λ
⊥ = {g−Π(g|Λ) : f or each g ∈H }. (3.30)

We remind the reader that

Λ = Λ
1
1s⊕ . . .⊕Λ

J
1s⊕Λ2s⊕Λ3s. (3.31)

By (3.27), (3.30) and (3.31), to find Λ⊥ it is sufficient to find the residual of the projection

of an arbitrary element of Λ1∗
1s ⊕ . . . ,⊕ΛJ∗

1s onto Λ1
1s⊕ . . . ,⊕ΛJ

1s.
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By (3.28) and (3.29) we have, for any g1(t,A,Z), . . . ,gJ(t,A,Z):

J

∑
j=1

∏

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

∣∣∣∣Λ1
1s⊕ . . . ,⊕,ΛJ

1s

}

=
J

∑
l=1

J

∑
j=1

∏

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

∣∣∣∣Λl
1s

}

=
J

∑
j=1

∏

{∫
τ

0
g j(t,A,Z)

dM j(t)
h j(t|A,Z)

∣∣∣∣Λ j
1s

}
.

Expression (3.26) is therefore proven.

By lemma 20 and 6, we can therefore conclude that:

Λ
⊥ =

 J

∑
j=1

∫
τ

0

g j(t,A,Z)−
E
{

g j(t,A,Z)h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}


×
dM j(t)

h j(t|A,Z)
: f or each g j(t,A,Z)

}
. (3.32)

Efficient score: proof of Lemma 2

The efficient score is given by the projection of Sβ onto Λ⊥. By the form of Sβ, its projection

on Λ⊥ would be the element of Λ⊥ that corresponds to g1(t,A,Z) = Ae1, . . . ,gJ(t,A,Z) = AeJ ,

where e j is a 0 vector with 1 at the jth position. Therefore:

Se f f =


∫

τ

0

A−
E
{

Ah−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
E
{

h−1
j (t|A,Z)Sc(t|A,Z)e−∑

J
l=1 βlAt |Z

}
 dM j(t)

h j(t|A,Z)


J

j=1

. (3.33)
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3.8.3 Technical Assumptions

General Assumptions for Theorems 3-8

Assumption S 1. β0 is contained in the interior of a compact set.

Assumption S 2. We have a finite upper bound of time τ and, for j = 1, . . . ,J, there exist finite

L j < ∞ such that supz∈Z Λ j(τ,z)≤ L j.

Assumption S 3. There are no ties, both across observations and both across events.

Assumption S 4. There exists C1, such that P
(
supi=1,....n ‖Z‖∞

≤C1
)
= 1.

Assumption S 5. There exist a positive C2 such that

inf
z∈Z,a=0,1

Sc0(τ|a,z)>C2 > 0,

and C3, C4 such that:

0 <C3 < inf
z∈Z

π0(z)< sup
z∈Z

π0(z)<C4 < 1.

There exists a strictly positive constant ε > 0 such that

Var(A|Z)> ε,

E{N(τ)|A = 0,Z}< 1− ε,

E{Y (τ)|A = 0,Z}> ε,
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E{Y (τ)|A,Z}> ε.

Assumption S 6. If the estimator Λ̂ depends on the unknown β for j = 1,2 in a neighborhood of

β0,

τ∨
t=0

sup
z∈Z

{
Λ̂ j(t,z;β j)− Λ̂ j(t,z;β j0)

}
= Op(

∣∣β j−β j0
∣∣),

where
∨

τ
t=0 g(t) = sup0<t0<...<tN=τ,N∈N∑

N
j=1

∣∣g(t j−1)−g(t j)
∣∣ .

Assumption S 7. There exist a positive C5 such that

inf
z∈Z,a=0,1

S∗c(τ|a,z)>C5 > 0,

and C6, C7 such that:

0 <C6 < inf
z∈Z

π
∗(z)< sup

z∈Z
π
∗(z)<C7.

Assumption S 8. There exists ε > 0 such that:

E
∣∣∣∣∫ τ

0
[1+ td {Λ∗1(t,Z)−Λ10(t,Z)}+ td {Λ∗2(t,Z)−Λ20(t,Z)}]dt

∣∣∣∣> ε.

Moreover, If the estimator Λ̂ depends on the unknown β,

E
[
{A−π

∗(Z)}
{

A−E(q j(t))
}
|Z
]
> ε,
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where we call q ji(t) a function, such that:

Λ̂ j(t,Z;β)− Λ̂ j(t,Z;β0) = (β j−β j0)×
1
n

n

∑
i=1

∫
τ

0
q ji(t).

Assumption S 9. There exists ε > 0 such that

∫
τ

0
E
[
A− te−∑

J
j=1 β j0AtSc(t|A,Z)d {Λ∗1(t,Z)−Λ10(t,Z)+Λ

∗
2(t,Z)−Λ20(t,Z)}|Z

]
> ε,

∫
τ

0
E
[{

A+d∂β jΛ
∗
j(t,Z)

}
{A−EA(t;β,Sc,π,Z)}|Z

]
> ε.

Assumptions for Theorem 4

In Theorem 4 we consider three different cases, depending on which model is correctly

specified: Each case needs specific assumptions.

Assumption A 1. Let, for j = 1,2

P(a)
1 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait {Ai−π(Zi;α0)}∂ηS−1
c (t|A,Z;η0,Λc0)dM ji(t;β j0,Λ

∗
j),

P(a)
2 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait {Ai−π(Zi;α0)}∂ΛcS
−1
c (t|A,Z;η0,Λc0)dM ji(t;β j0,Λ

∗
j),

and

P(a)
3 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait∂απ(Zi;α0)S−1
c (t|A,Z;η0,Λc0)dM ji(t;β j0,Λ

∗
j).

139



For l = 1,2,3, there exist some bounded p(a)l j (t) and a neighborhood B of

{β0,Sc0(·|·, ·),π0(·),Λ∗j(·, ·)}, such that:

sup
t∈[0,τ],

{
β,Sc,π,Λ j

}
∈B

∣∣∣P(a)
l j (t)− p(a)l j (t)

∣∣∣ p→ 0.

Assumption A 2. There exist influence functions σ1,σ2(·),σ3 such that, for any t ∈ [0,τ]:

η̂−η0 =
1
n

n

∑
i=1

σ1i,

Λ̂c(t)−Λc0(t) =
1
n

n

∑
i=1

σ2i(t),

α̂−α0 =
1
n

n

∑
i=1

σ3i.

Assumption B 1. Let,

P(b)
1 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}Yi(t)∂γ jdL j(t,Z;G j0,γ j0),

P(b)
2 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}Yi(t)∂G jL j(t,Z;G j0,γ j0).

We assume that, there exist p(b)l j (t), for l = 1,2 and a neighborhood B of
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{β0,Λ j0(·, ·),S∗c(·|·, ·),π∗(·, ·)} such that :

sup
t∈[0,τ],

{
β,Λ j,Sc,π

}
∈B

∣∣∣P(b)
l j (t)− p(b)l j (t)

∣∣∣ p→ 0.

Assumption B 2. There exists influence functions σ4,σ5(·) such that, for any t ∈ [0,τ], j = 1, . . . ,J:

γ̂ j− γ j0 =
1
n

n

∑
i=1

σ4i,

Ĝ j(t)−G j0(t) =
1
n

n

∑
i=1

σ5i(t).

Assumption C 1. Let

h(t;A,Z) = e(β10+β20)Ait {Sc0(t|A,Z)}−1 {A−π0(Z)} ,

P(t) =
1
n

n

∑
i=1

h2(t;Ai,Zi)AiYi(t),

and

Q j(t) =
1
n

n

∑
i=1

h2(t;Ai,Zi)Λ j0(t,Zi)Yi(t).

We assume that, there exists p(t),q j(t) and a neighborhood B of the true

{β0,Sc0(·|·, ·),π0(·),Λ0(·, ·)} such that:

sup
t∈[0,τ],{β,Sc,π,Λ}∈B

|P(t)− p(t)| p→ 0.
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and

sup
t∈[0,τ],{β,Sc,π,Λ}∈B

∣∣Q j(t)−q j(t)
∣∣ p→ 0.

Assumption C 2. Let p(t),q j(t) as in Assumption C1, then for j = 1,2, we assume that:

∫
τ

0

{
p(u)β j +q j(u)

}
du > 0.

Assumptions for Corollary 1

Assumption A* 1. Let, for j = 1,2

P(a′)
1 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait
{

Ai− expit(α>0 Zi)
}

exp
(

Λc0(t)eη>0 Di
)

Λc0(t)eη>0 DiDidM ji(t;β j0,Λ
∗
j),

P(a′)
2 j (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait
{

Ai− expit(α>0 Zi)
}

exp
(

Λc0(t)eη>0 Di
)

eη>0 DidM ji(t;β j0,Λ
∗
j),

and

P(a′)
3 j (t) :=−1

n

n

∑
i=1

e(β10+β20)Ait exp
(

Λc0(t)eη>0 Di
)

expit(α>0 Zi)eα>0 ZiZidM ji(t;β j0,Λ
∗
j),

where D = [A,Z]>. There exist, for l = 1,2,3, some bounded p(a)l j (t) and a neighborhood B of

{β0,Sc0(·|·, ·),π0(·),Λ∗(·, ·)} such that:

sup
t∈[0,τ],

{
β,Sc,π,Λ j

}
∈B

∣∣∣P(a)
l j (t)− p(a)l j (t)

∣∣∣ p→ 0.
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Assumption A* 2.

sup
Z∈Z
|Λ∗j(τ,Z)|< ∞.

Assumption A* 3. Let, for l = 0,1,2

S(l)d (t) =
1
n

n

∑
i=1

Yi(t)Dl
ie

η>0 Di.

There exist, for l = 01,2, some bounded s(l)d (t) such that:

sup
t∈[0,τ]

∣∣∣S(l)d (t)− s(l)d (t)
∣∣∣ p→ 0.

Assumption A* 4.

∫
τ

0

s(2)d (t)

s(0)d (t)
−

(
s(1)d (t)

s(0)d (t)

)2
E

{
Y (t)eη>0 D

}
dΛc0(t),

and

E
[
Z>Zπ0(Zi){1−π0(Zi)}

]
,

are positive definite.

Assumption B* 1. Let, for l = 0,1

P(b′)
1 (t) :=

1
n

n

∑
i=1

e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}Yi(t)Zl

i .

We assume that, for l = 0,1, there exist p(b
′)

l (t) and a neighborhood B of
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{β0,Λ0(·, ·),S∗c(·|·, ·),π∗(·)} such that :

sup
t∈[0,τ],{β,Λ,Sc,π}∈B

∣∣∣P(b′)
l (t)− p(b

′)
l (t)

∣∣∣ p→ 0.

Assumption B* 2. Let for l = 0,1

S(1)d (t) =
1
n

n

∑
i=1

Yi(t)Di,

S(1)z (t) =
1
n

n

∑
i=1

Yi(t)Zi,

and

S(0)(t) =
1
n

n

∑
i=1

Yi(t),

where D = [A,Z]>.

We assume that, there exist s(1)d (t),s(1)z (t),s(0)(t) such that:

sup
t∈[0,τ]

∣∣∣S(1)d (t)− s(1)d (t)
∣∣∣ p→ 0,

sup
t∈[0,τ]

∣∣∣S(1)z (t)− s(1)z (t)
∣∣∣ p→ 0,
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and

sup
t∈[0,τ]

∣∣∣S(0)(t)− s(0)(t)
∣∣∣ p→ 0.

Assumption B* 3. Let for l = 0,1

S(l)wd(t;S∗,π∗) =
1
n

n

∑
i=1

wi(S∗,π∗)Yi(t)Dl
i,

S(l)wz(t;S∗,π∗) =
1
n

n

∑
i=1

wi(S∗,π∗)Yi(t)Zl
i .

We assume that, there exist s(l)wd(t;S∗,π∗),s(l)wz(t;S∗,π∗) such that:

sup
t∈[0,τ]

∣∣∣S(l)wd(t;S∗,π∗)− s(l)wd(t;S∗,π∗)
∣∣∣ p→ 0,

sup
t∈[0,τ]

∣∣∣S(l)wz(t;S∗,π∗)− s(l)wz(t;S∗,π∗)
∣∣∣ p→ 0.

Assumption B* 4.
∫

τ

0 E

[{
D− s(1)d (t)

s(0)d (t)

}⊗2

Y (t)

]
dt is positive definite.

Assumptions for Theorem 7

Assumption A’ 1. There exist σ6 such that:

S2,n(β0, Ŝc, π̂,Λ
∗)−S2,n(β0,Sc0,π0,Λ

∗) =
1
n

n

∑
i=1

σ6i.
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Assumption B’ 1. There exist σ7 such that:

S2,n(β0,S∗c ,π
∗, Λ̂)−S2,n(β0,S∗c ,π

∗,Λ0) =
1
n

n

∑
i=1

σ7i.

Assumption C’ 1. Let

h(t;A,Z) = {A−EA(t;β0,Sc0,π0,Z)} ,

P′(t) =
1
n

n

∑
i=1

h2(t;Ai,Zi)AiYi(t),

and

Q′j(t) =
1
n

n

∑
i=1

h2(t;Ai,Zi)Λ j0(t,Zi)Yi(t).

We assume that, there exist p′(t),q′j(t) and a neighborhood B of the true {β0,Sc0(·|·, ·),π0(·),Λ0(·, ·)}

such that:

sup
t∈[0,τ],{β,Sc,π,Λ}∈B

∣∣P′(t)− p′(t)
∣∣ p→ 0,

and

sup
t∈[0,τ],{β,Sc,π,Λ}∈B

∣∣Q′j(t)−q′j(t)
∣∣ p→ 0.

Assumption C’ 2. Let p′(t),q′j(t) as in assumption C’1, then for j = 1,2, we assume that:

∫
τ

0

{
p′(u)β j +q′j(u)

}
du > 0.
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Remark 2. Similarly to score 1, Assumption A’ 1 can be proved assuming some regularity assump-

tions and assuming that there exist influence functions for Ŝc(·|·, ·)−Sc0(·|·, ·) and π̂(·)−π0(·). In

the same way Assumption B’ 1 can be proved assuming some regularity assumptions and assuming

that there exist an influence function for Λ̂(·, ·)−Λ0(·, ·).

3.8.4 Technical Quantities

We introduce here the technical quantities used in the paper.

Technical quantities of Theorem 3

We note that, by algebra:

{S1,n} j (β, Ŝc, π̂, Λ̂)−{S1,n} j (β0, Ŝc, π̂, Λ̂)

=
1
n

n

∑
i=1

∫
τ

0

{
e(β1+β2)Ait− e(β10+β20)Ait + e(β10+β20)Ait

}
Ŝ−1

c (t | Ai,Zi){Ai− π̂(Zi)}

×
{

dN ji(t)−Yi(t)β jAidt−Yi(t)dΛ̂ j(t,Zi;β)
}

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait Ŝ−1

c (t | Ai,Zi){Ai− π̂(Zi)}

×
{

dN ji(t)−Yi(t)β j0Aidt−Yi(t)dΛ̂ j(t,Zi;β0)
}
.
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By Lemma 12:

= (β1 +β2−β10−β20)
1
n

n

∑
i=1

∫
τ

0
e(β
∗
1+β∗2)AitAitŜ−1

c (t | Ai,Zi){Ai− π̂(Zi)}dM ji(t;β j, Λ̂)

−(β j−β j0)
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait Ŝ−1

c (t | Ai,Zi){Ai− π̂(Zi)}Yi(t)Aidt

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait Ŝ−1

c (t | Ai,Zi){Ai− π̂(Zi)}Yi(t)d
{

Λ̂ j(t,Zi;β)−Λ j(t,Zi;β0)
}
,

where β∗j is between β j and β0.

Therefore, for ease of reading we introduce the following additional notation, for j = 1,2:

K(1)(β,Sc,π) :=
1
n

n

∑
i=1

∫
τ

0
e(β1+β2)AitS−1

c (t | Ai,Zi){Ai−π(Zi)}Yi(t)Aidt, (3.34)

K(2)
j (β,Sc,π) :=

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitS−1

c (t | Ai,Zi){Ai−π(Zi)}Yi(t) (3.35)

×d
{

Λ̂ j(t,Zi;β)− Λ̂ j(t,Zi;β0)
}
,

K(3)
ji (t,β,Sc,π) := S−1

c (t | Ai,Zi){Ai−π(Zi)}dM ji(t;β j, Λ̂), (3.36)

K(4)
j (β,Sc,π,Λ) =

1
n

n

∑
i=1

∫
τ

0
e(β1+β2)AitAit {Sc(t | Ai,Zi)}−1 {Ai−π(Zi)}Yi(t)

×d
{

Λ j(t,Zi)−Λ j0(t,Zi)
}
. (3.37)

The introduction of K(3)
ji and K(4)

j will be clear to the reader in the proof of Lemma 7.

We now define all the technical quantities used in the Theorems.
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Technical quantities of Theorem 4

ψ
(a)
i =

{∫
τ

0
e(β10+β20)Ait {Sc0(t|Ai,Zi)}−1 {Ai−π0(Zi)}dM ji(t;β j0,Λ

∗
j)

+
∫

τ

0

[
{p(a)1 j (t)}

>
σ1dt +

∫
τ

0
p(a)2 j (t)σ2(t)dt−

∫
τ

0
{p(a)3 j (t)}

>
σ3dt

]}
j=1,2

.

K(a) is a 2X2 matrix with the following components:

K(a)
j j = −K(1)(β0,Sc0,π0)−K(4)

j (β0,Sc0,π0,Λ
∗),

K(a)
12 =−K(4)

1 (β0,Sc0,π0,Λ
∗), K(a)

21 =−K(4)
2 (β0,Sc0,π0,Λ

∗).

ψ
(b)
i =

[∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}dM ji(t)

+
∫

τ

0

{
σ4i p

(b)
1 j (t)dt + p(b)2 j (t)dσ5i(t)+d p(b)2 j (t)σ5i(t)

}]
j=1,2

.

K(b) is a 2X2 diagonal matrix with:

K(b)
j j = −K(1)(β0,S∗,π∗)−K(2)

j (β,S∗c ,π
∗)/(β j−β j0).
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Technical quantities of Corollary 1

ψ
(a′)
i =

[∫
τ

0
e(β10+β20)Ait {Sc0(t|Ai,Zi)}−1 {Ai−π0(Zi)}dM ji(t;β j0,Λ

∗
j)

+

∫
τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)

×

[∫
τ

0
{p(a

′)
1 j }

>(t)dt−
∫

τ

0
p(a
′)

2 j (t)
∫ t

0
dΛc0(u;η0)

s(1)d (u)

s(0)d (u)
dudt

]

+
∫

τ

0
p(a
′)

2 j (t)
∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)dt

−
∫

τ

0
{p(a

′)
3 j }

>(t)
(

E
[
Z>Zπ0(Z){1−π0(Z)}

])−1
Zi {Ai−π0(Zi)}dt

]
j=1,2

.

ψ
(b′)
i =

[∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}dM ji(t)

+
∫

τ

0


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)


>

×

{
p(b
′)

1 (t)dt− p(b
′)

0 (t)
s(1)z (t)

s(0)z (t)
dt

}
+

∫
τ

0
p(b
′)

0 (t)
{

s(0)z (t)
}−1

dM ji(t)

]
j=1,2

.

K(b′) is a 2X2 diagonal matrix with:

K(b′)
j j = E

[∫
τ

0
e(β10+β20)At {S∗c(t|A,Z)}

−1 {A−π
∗(Z)}Y (t)

[
A− s(1)a (t)

s(0)(t)

]
dt

]
.
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ψ
(b′′)
i =

[∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}dM ji(t)

+
∫

τ

0


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)


>

·

{
p(b
′)

1 (t)dt− p(b
′)

0 (t)
s(1)wz (t;S∗c ,π

∗)

s(0)wz (t;S∗c ,π∗)
dt

}
+

∫
τ

0
p(b
′)

0 (t)
{

s(0)wz (t;S∗c ,π
∗)
}−1

dM ji(t)

]
j=1,2

.

K(b′′) is a 2X2 diagonal matrix with:

K(b′′)
j j = E

(∫
τ

0
e(β10+β20)At {S∗c(t|A,Z)}

−1 {A−π
∗(Z)}Y (t)

[
A− s(1)aw (t;S∗,π∗)

s(0)aw (t;S∗,π∗)

]
dt

)
.

Technical quantities of Theorem 7

We introduce the following notation:

J(1)j j =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}AiYi(t)dt,

J(2)j j =
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d

{
Λ
∗
j(t,Zi;β j0)−Λ j0(t,Zi)

}
,

J(3)j j =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}Yi(t)∂β jdΛ

∗
j(t,Zi),

J(1)12 =
1
n

n

∑
i=1

∫
τ

0
∂β2EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d {Λ∗1(t,Zi;β10)−Λ10(t,Zi)} ,
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J(1)21 =
1
n

n

∑
i=1

∫
τ

0
∂β1EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d {Λ∗2(t,Zi;β10)−Λ20(t,Zi)} .

φ
(a)
i =

[∫
τ

0
{Ai−EAi(t;β,Sc,π,Zi)}dM ji(t;β j0,Λ

∗
j)+{σ6i} j

]
j=1,2

.

J(a) is a 2X2 matrix with the following components J(a)j j = J(1)j j + J(2)j j and J(a)12 = J(3)12 , J(a)21 = J(3)21 .

φ
(b)
i =

[∫
τ

0
{Ai−EAi(t;β,Sc,π,Zi)}dM ji(t;β j0,Λ

∗
j)+{σ7i} j

]
j=1,2

.

J(b) is a 2X2 diagonal matrix with J(b)j j = J(1)j j + J(3)j j .

3.8.5 Proofs of the main result

Proof of Theorem 2

Proof of Theorem 2. For j = 1, . . . ,J, we have:

E
[
{S1} j(β0;A,Z,Sc,π,Λ)

]
=

∫
τ

0
E
[
e∑

J
j=1 β j0AtS−1

c (t|A,Z){A−π(Z)}
{

dN j(t)−Y (t)dΛ j(t,Z)−Y (t)β j0Adt
}]

=
∫

τ

0
E[e∑

J
j=1 β j0AtS−1

c (t|A,Z){A−π(Z)}dM j(t)]

+
∫

τ

0
E[e∑

J
j=1 β jAtS−1

c (t|A,Z){A−π(Z)}Y (t)d
{

Λ j0(t,Z)−Λ j(t,Z)
}
].
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Therefore:

E
[
{S1} j(β0;A,Z,Sc,π,Λ)

]
=

∫
τ

0
E(E[e∑

J
j=1 β j0AtS−1

c (t|A,Z){A−π(Z)}E{Y (t)|A,Z}|Z]d
{

Λ j0(t,Z)−Λ j(t,Z)
}
)

=
∫

τ

0
E(E[S−1

c (t|A,Z)Sc0(t|A,Z){A−π(Z)}|Z]e−∑
J
l=1 Λl0(t,Z)d

{
Λ j0(t,Z)−Λ j(t,Z)

}
)

=
∫

τ

0
E
([

S−1
c (t|1,Z)Sc0(t|1,Z){1−π(Z)}π0(Z)−S−1

c (t|0,Z)Sc0(t|0,Z)π(Z){1−π0(Z)}
]

× e−∑
J
l=1 Λl0(t,Z)d

{
Λ j0(t,Z)−Λ j(t,Z)

})
,

and the above is zero if either {Sc (·|·, ·) = Sc0(·|·, ·) and π(·) = π0(·)} or Λ j(·, ·) = Λ j0(·, ·).

We have, for j = 1, . . . ,J:

E
[
{S2} j(β0;A,Z,Sc,π,Λ)

]
∫

τ

0
E
[
{A−EA(t;β0,Sc,π,Z)}

{
dN j(t)−Y (t)dΛ j0(t,Z)−Y (t)β j0Adt

}]
=

∫
τ

0
E
[
{A−EA(t;β0,Sc,π,Z)}dM j(t)

]
+

∫
τ

0
E
[
{A−EA(t;β0,Sc,π,Z)}Y (t)d

{
Λ j0(t,Z)−Λ j(t,Z)

}]
=

∫
τ

0
E
(
E [{A−EA(t;β0,Sc,π,Z)}E{Y (t)|A,Z}|Z]d

{
Λ j0(t,Z)−Λ j(t,Z)

})
.
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Therefore

E
[
{S2} j(β0;A,Z,Sc,π,Λ)

]
=

∫
τ

0
E
(

E
[
{A−EA(t;β0,Sc,π,Z)}e−∑

J
l=1 βl0AtSc0(t|A,Z)|Z

]
×e−∑

J
l=1 Λl0(t,Z)d

{
Λ j0(t,Z)−Λ j(t,Z)

})
=

∫
τ

0
E
{(

e−∑
J
l=1 βl0AtSc0(t|A = 1,Z)π0(Z)

−EA(t;β0,Sc,π,Z)
[
e−∑

J
l=1 βl0AtSc0(t|A = 1,Z)π0(Z)+Sc0(t|A = 0,Z){1−π0(Z)}

])
× e−∑

J
l=1 Λl0(t,Z)d

{
Λ j0(t,Z)−Λ j(t,Z)

}}
,

and the above is zero if either {Sc (·|·, ·) = Sc0(·|·, ·) and π(·) = π0(·)} or Λ j(·, ·) = Λ j0(·, ·).

Proof of Theorems 3 and 4

Here we prove Theorems 3 and 4 that claim consistency and asymptotic normality of β̂(1).

We remind the reader that:

S1,n(β;Sc,π,Λ) =

{
1
n

n

∑
i=1

∫
τ

0
e(β1+β2)AitS−1

c (t | Ai,Zi){Ai−π(Zi)}dM ji(t;β j,Λ j)

}
j=1,2

.

By algebra we have the following decomposition of the score:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β, Ŝc, π̂, Λ̂)−S1,n(β0, Ŝc, π̂, Λ̂)

+S1,n(β0, Ŝc, π̂, Λ̂)−S1,n(β0, Ŝc, π̂,Λ
∗)

+S1,n(β0, Ŝc, π̂,Λ
∗)−S1,n(β0,S∗c ,π

∗,Λ∗)

+S1,n(β0,S∗c ,π
∗,Λ∗).
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S1,n(β0,S∗c ,π
∗,Λ∗), by Theorem 2, is sum of i.i.d mean zero terms. S1,n(β, Ŝc, π̂, Λ̂)−

S1,n(β0, Ŝc, π̂, Λ̂) can be written as (β− β0) times a positive definite matrix. S1,n(β0, Ŝc, π̂, Λ̂)−

S1,n(β0, Ŝc, π̂,Λ
∗) is negligible when the censoring model and the propensity score model are

correctly specified, otherwise it is a sum of i.i.d mean zero terms plus a negligible term, as long as

Λ∗(·, ·) = Λ0(·, ·) and the rate of convergence of Λ̂(·, ·) is
√

n.

S1,n(β0, Ŝc, π̂,Λ
∗)−S1,n(β0,S∗c ,π

∗,Λ∗) is negligible when Λ(·, ·) is correctly specified, otherwise it

is a sum of i.i.d mean zero terms plus a negligible term, as long as S∗c(·|·, ·) = Sc0(·|·, ·),π∗(·) = π0(·)

and the rate of convergence of Ŝc(·|·, ·), π̂(·) is
√

n.

Therefore, in each scenario of Theorem 4, β̂(1)−β0 can be written as a sum of i.i.d mean

zero terms and hence the consistency and the asymptotic normality of β̂1.

The details of the above decomposition are contained in the following lemma:

Lemma 7. For β in a compact neighborhood of β0, under Assumptions S1-8 we have:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)+Q(21)+Q(3)+K(β−β0)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
,

where

Q(21)
j =

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t) (3.38)

×d
{

Λ̂ j(t,Zi;β0)−Λ
∗
j(t,Zi)

}
= op(1),

Q(3)
j = {S1,n} j (β0, Ŝc, π̂,Λ

∗)−{S1,n} j (β0,S∗c ,π
∗,Λ∗) = op(1), (3.39)
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and K is a 2x2 matrix with the following components:

K j j = −K(1)(β0,S∗c ,π
∗)−K(2)

j (β,S∗c ,π
∗)/(β j−β j0)−K(4)

j (β0,S∗c ,π
∗,Λ∗),

and

K12 =−K(4)
1 (β0,S∗c ,π

∗,Λ∗), K21 =−K(4)
2 (β0,S∗c ,π

∗,Λ∗).

Moreover:

a) If S∗c(t|a,z) = Sc(t|a,z;η0,Λc0) = Sc0(t|a,z), π∗(z) = π(z;α0) = π0(Z) and Λ∗(·, ·) 6=

Λ0(·, ·), for some known functions Sc and π with an = n−1/2,bn = n−1/2; specifically, under As-

sumptions A1-2: Q(21) = op(n−1/2) and Q(3) = Op(n−1/2).

b) If Λ∗(t,z) = L(t,z;G0,γ0) = Λ0(t,z), S∗c(·|·, ·) 6= Sc0(·|·, ·) and π∗(·) 6= π0(·), for some

known function L with cn = n−1/2, specifically under Assumptions B1-2: Q(3) = op(n−1/2) and

Q(21) = Op(n−1/2).

c) If S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·) with ancn = o(n−1/2) and

bncn = o(n−1/2): Q(21) = op(n−1/2) and Q(3) = op(n−1/2).

The proof of the Lemma is reported in Section 3.8.6.

We report in the following a detailed proof of Theorem 3 and 4.

Proof of Theorem 3. In Lemma 7 we prove that for β in a neighboorhood of β0:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)+K(β−β0)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
+op(1),
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where K is a 2x2 matrix with the following components:

K j j =−K(1)(β0,S∗c ,π
∗)−K(2)

j (β0,S∗c ,π
∗)/(β j−β j0)−K(4)

j (β0,S∗c ,π
∗,Λ∗),

and

K12 =−K(1)
4 (β0,S∗c ,π

∗,Λ∗), K21 =−K(2)
4 (β0,S∗c ,π

∗,Λ∗).

By double robustness of the score (Theorem 2), we have:

E [S1,n(β0,S∗c ,π
∗,Λ∗)] = 0.

Therefore by Lemma 13, by Assumptions S1, S2 and S7 we have S2,n(β0,S∗c ,π
∗,Λ∗) = Op(n−1/2).

Hence

S1,n(β, Ŝc, π̂, Λ̂) = (β−β0)K +op(1) (3.40)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2 +n−1/2

)
.

By the above, we prove that, for |δ|< 1/2:

S1,n(β0±n−δ, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)+n−δK +Op(n−1/2).

If K is invertible we can conclude that either:

S1,n(β0−n−δ, Ŝc, π̂, Λ̂)< 0 < S1,n(β0 +n−δ, Ŝc, π̂, Λ̂),
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or

S1,n(β0 +n−δ, Ŝc, π̂, Λ̂)< 0 < S1,n(β0−n−δ, Ŝc, π̂, Λ̂).

Therefore by definition of β̂(1), we can conclude that β̂(1)−β0 = Op(n−δ) = op(1).

We are now left to prove that K is invertible. The latter simplifies according to which model

is correctly specified. We therefore divide the proof into two cases.

• Case a): S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·) or Λ̂(·, ·) does not depend on β or it depends

on an initial estimator of it.

By Lemma 14, we have:

sup
t∈[0,τ]

∣∣∣∣∣1n n

∑
i=1
{Ai−π0(Zi)}{Sc0(t | Ai,Zi)}−1Yi(t)e(β10+β20)Ait

∣∣∣∣∣= Op

(
n−1/2

)
.

By this and by Assumption S6, we have:

K(2)
j (β,Sc0,π0) = Op(n−1/2|β j−β j0|) = op(1).

Therefore K simplifies and it has the following determinant:

|K| =
{

K(1)(β0,Sc0,π0)
}2

+K(1)(β0,Sc0,π0)K
(4)
2 (β0,Sc0,π0,Λ

∗)

+K(4)
1 (β0,Sc0,π0,Λ

∗)K(4)
2 (β0,Sc0,π0,Λ

∗)+K(1)(β0,Sc0,π0)K
(4)
1 (β0,Sc0,π0,Λ

∗)

−K(4)
1 (β0,Sc0,π0,Λ

∗)K(4)
2 (β0,Sc0,π0,Λ

∗)

= K(1)(β0,Sc0,π0)
{

K(1)(β0,Sc0,π0)+K(4)
2 (β0,Sc0,π0,Λ

∗)+K(4)
1 (β0,Sc0,π0,Λ

∗)
}
.
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We prove now that both K(1)(β0,Sc0,π0) and{
K(1)(β0,π0,Sc0)+K(4)

2 (β0,π0,Sc0,Λ
∗)+K(4)

1 (β0,π0,Sc0,Λ
∗)
}

are different from zero proving

the invertibility of K.

We first focus on K(1)(β0,Sc0,π0).

By Assumptions S1 and S7, we have for some finite constant C:

∣∣∣∣Ai {Ai−π0(Zi)}
∫

τ

0
{Sc0(t | Ai,Zi)}−1 e(β10+β20)tYi(t)dt

∣∣∣∣≤C−1e(β10+β20)ττ < ∞. (3.41)

Under model (3.1), E{Y (t)|A,Z}= Sc0(t | A,Z)e−(β10+β20)Ate−Λ10(t,Z)−Λ20(t,Z), we have:

E
[

A{A−π0(Z)}
∫

τ

0
{Sc0(t | A,Z)}−1 e(β10+β20)tY (t)dt

]
= E

(
E
[

A{A−π0(Z)}
∫

τ

0
{Sc0(t | A,Z)}−1 e(β10+β20)AtE{Y (t)|A,Z}dt

∣∣∣∣Z])
= E

(
E
[

A{A−π0(Z)}
∫

τ

0
P{T ≥ t|A = 0,Z}dt

∣∣∣∣Z])
≥ E

(
E [A{A−π0(Z)}|Z]

∫
τ

0
P{T ≥ t|A = 0,Z}dt

)
≥ E [Var(A|Z)τ(1−E{N(τ)|A = 0,Z})] .

Therefore, by Assumption S7 and S5, we have, for some positive ε:

E
[

A{A−π0(Z)}
∫

τ

0
{Sc0(t | A,Z)}−1 e(β10+β20)tY (t)dt

]
> ε > 0. (3.42)

Hence, by Assumptions S1, S2, S7, by Hoeffding’s inequality:

K(1)(β0,Sc0,π0) = E
{

K(1)(β0,Sc0,π0)
}
+Op(n−1/2)> ε > 0.
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We now focus on K(1)(β0,π0,Sc0)+K(2)
4 (β0,Sc0,π0,Λ

∗)+K(1)
4 (β0,Sc0,π0,Λ

∗). Similarly,

by Assumptions S5 and S8 we have:

∣∣∣K(1)(β0,Sc0,π0)+K(2)
4 (β0,Sc0,π0,Λ

∗)+K(1)
4 (β0,Sc0,π0,Λ

∗)
∣∣∣

=

∣∣∣∣∣1n n

∑
i=1

Ai {Ai−π0(Zi)}
∫

τ

0
{Sc0(t | Ai,Zi)}−1Yi(t)e(β10+β20)Ait

× [1+ td {Λ∗1(t,Zi)−Λ10(t,Zi)}+ td {Λ∗2(t,Zi)−Λ20(t,Zi)}]|

≥
∣∣∣∣E({A−π0(Z)}

∫
τ

0
exp{−Λ10(t,Z)−Λ20(t,Z)}

× [A+Atd {Λ∗1(t,Z)−Λ10(t,Z)}+Atd {Λ∗2(t,Z)−Λ20(t,Z)}])|+Op(n−1/2)

≥
∣∣∣∣E(E [A{A−π0(Z)}|Z]

∫
τ

0
[1+ td {Λ∗1(t,Z)−Λ10(t,Z)}+ td {Λ∗2(t,Z)−Λ20(t,Z)}]

)∣∣∣∣
·(1−E{N(τ)|A = 0,Z})+Op(n−1/2)

= E
(

Var(A|Z)
∫

τ

0
|1+ td {Λ∗1(t,Z)−Λ10(t,Z)}+ td {Λ∗2(t,Z)−Λ20(t,Z)}|

×(1−E{N(τ)|A = 0,Z}))+Op(n−1/2)> ε.

We can therefore conclude that K is invertible.

• Case b): Λ̂(·, ·) depends on the unknown β and Λ∗(·, ·) =Λ0(·, ·),S∗(·|·, ·) 6= Sc0(·|·, ·),π∗(·) 6=

π0(·).

By definition K(4)
j (β0,S∗c ,π

∗,Λ0) = 0.

Again, we want to prove that K is invertible proving that the determinant is different from

zero. Since K(4)
j (β0,S∗c ,π

∗,Λ0) = 0, K is a diagonal matrix so we just need to verify that the

diagonal elements are not null.
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We have:

∣∣K j j
∣∣ =

∣∣∣K(1)(β0,S∗c ,π
∗)+K(2)

j (β,S∗c ,π
∗)/(β j−β j0)

∣∣∣
=

∣∣∣∣∣1n n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

{
Ai +

1
n

n

∑
l=1

q jl(t)

}
dt

∣∣∣∣∣ ,
where we call q ji(t) a function, such that:

Λ̂ j(t,Z;β)− Λ̂ j(t,Z;β0) = (β j−β j0)∗
1
n

n

∑
i=1

∫
τ

0
q ji(t).

Similarly to before, by Assumptions S1, S7, and Hoeffding’s inequality, we have:

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

[
Ai−

1
n

n

∑
l=1

q jl(t)

]
dt

= E
(∫

τ

0
{S∗c(t | A,Z)}

−1 Sc0(t | A,Z)e−∑
2
l=1 Λl0(t,Z) {A−π

∗(Z)}
[
A−E(q j(t))

]
dt
)

+Op(n−1/2)

≥ CE
(∫

τ

0
e−∑

2
l=1 Λl0(t,Z)E

[
{A−π

∗(Z)}
{

A−E(q j(t))
}
|Z
]

dt
)
+Op(n−1/2).

Therefore, by Assumptions S7 and S8, we have
∣∣K j j

∣∣ > ε+Op(n−1/2) and hence K is

invertible.

Proof of Theorem 4. In Lemma 7 we prove that for β in a neighboorhood of β0:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)+Q(21)+Q(3)+K(β−β0)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
,
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where

Q(21)
j =

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

×d
{

Λ̂ j(t,Zi;β0)−Λ
∗
j(t,Zi)

}
= op(1),

Q(3)
j = {S1,n} j (β0, Ŝc, π̂,Λ

∗)−{S1,n} j (β0,S∗c ,π
∗,Λ∗) = op(1).

In the proof of Theorem 3, we proved that β̂−β0 = Op(n−δ) for any |δ|< 1/2 and that K

is invertible. Therefore we have:

√
n(β̂(1)−β0) = K−1

{√
nS1,n(β0,S∗c ,π

∗,Λ∗)+
√

nQ(21)+
√

nQ(3)
}
+op(1). (3.43)

We remind the reader that if the censoring model and the propensity score model are

correctly specified, Q(21) = op(n−1/2). If Λ(·) is correctly specified, Q(3) = op(n−1/2). Hence, if

every model is correctly specified, (3.43) simplifies and the asymptotic normality of β̂(1) is obtained

by the normality of
√

nS1,n(β0,S∗c ,π
∗,Λ∗), that is a sum of i.i.d multivariate martingale integral.

If only the censoring model and the propensity score model are correctly specified, under

Assumption A2, Q(3) is asymptotically linear. Asymptotic normality of β̂(1) is therefore obtained by

the normality of
√

nS2,n(β0,S∗c ,π
∗,Λ∗)+

√
nQ(3) that is a sum of i.i.d mean zero random variables.

If only the baseline hazard model is correctly specified, under Assumptions B2, Q(21) is

asymptotically linear. Asymptotic normality of β̂(1) is therefore obtained by the normality of
√

nS1,n(β0,S∗c ,π
∗,Λ∗)+

√
nQ(21)that is a sum of i.i.d mean zero random variables.

In the following we prove the above statements in details.
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• Case a):

We remind the reader that, if S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·), Q(21) = op(n−1/2) and

K(2)
j (β,S∗c ,π

∗) = op(1). In the proof of Theorem 3 we have proved that K simplifies to a 2x2 ma-

trix with K j j = −K(1)(β0,S∗c ,π
∗)−K(4)

j (β0,S∗c ,π
∗,Λ∗), and K12 = −K(4)

1 (β0,S∗c ,π
∗,Λ∗), K21 =

−K(4)
2 (β0,S∗c ,π

∗,Λ∗).

Therefore, in (3.43) we are left with

√
n(β̂−β0) = K−1√n

{
S2,n(β0,S∗c ,π

∗,Λ∗)+Q(3)
}
+op(1). (3.44)

Since
√

nS1,n(β0,S∗c ,π
∗,Λ∗) is already a sum of i.i.d mean zero terms, with the help of

Assumption A 2, we now prove that also term Q(3) can be written as the sum of i.i.d mean zero

terms. We can then apply the multivariate central limit theorem to
√

nS1,n(β0,S∗c ,π
∗,Λ∗)+

√
nQ(3)

and reach our conclusion.

We now look at the details. Using the fact that π̂(z) = π(z; α̂), Ŝc(t|a,z) = Sc(t|a,z; η̂, Λ̂c)

we have, by Taylor expansion:

Q(3)
j =

√
n
[
{S1,n} j (β0, Ŝc, π̂,Λ

∗)−{S1,n} j (β0,Sc0,π0,Λ
∗)
]

=
√

n
[
{S1,n} j (β0, η̂, Λ̂c, α̂,Λ

∗)−{S1,n} j (β0,η0,Λc0,α0,Λ
∗)
]

=
√

n
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait

{
Dn

i j(t,η0,Λc0,α0,Λ
∗)
}>

∆dM ji(t;β j0,Λ
∗
j)+op(n−1/2),

where

Dn
i j(η,Λc,α) := [∂η f (Ai,Zi;η,Λc,α),∂Λc f (Ai,Zi;η,Λc,α),∂α f (Ai,Zi;η,Λc,α)]

>,
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f (Ai,Zi;η,Λc,α) := {Ai−π(Z; α̂)}S−1
c (t|A,Z; η̂, Λ̂c),

and

∆ := [η̂−η0, Λ̂c(t)−Λc0(t), α̂−α0]
>.

Standard algebra gives us:

Dn
i j(η,Λc,α) = [{Ai−π(Zi;α)}∂ηS−1

c (t|A,Z;η,Λc),{Ai−π(Zi;α)}∂ΛcS
−1
c (t|A,Z;η,Λc)

,−∂απ(Zi;α)S−1
c (t|A,Z;η,Λc)]

>.

Moreover, by Assumption A2, we have:

α̂−α0 = Op(n−1/2), η̂−η0 = Op(n−1/2), sup
t∈[0,τ]

{
Λ̂c(t)−Λc0(t)

}
= Op(n−1/2).

Therefore, by the above and by Assumptions A1 and A2 we have:

Q(3)
j =

∫
τ

0

[{
P(a)

1 j (t)
}>

(η̂−η0)+P(a)
2 j (t)

{
Λ̂c(t; η̂)−Λc0(t)

}
−
{

P(a)
3 j (t)

}>
(α̂−α0)

]
dt

=
∫

τ

0

[{
p(a)1 j (t)

}>
(η̂−η0)+ p(a)2 j (t)

{
Λ̂c(t; η̂)−Λc0(t)

}
−
{

p(a)3 j (t)
}>

(α̂−α0)

]
dt

+op(n−1/2)

=
1
n

n

∑
i=1

∫
τ

0

[{
p(a)1 j (t)

}>
σ1i +

∫
τ

0
p(a)2 j (t)σ2i(t)−

∫
τ

0

{
p(a)3 j (t)

}>
σ3i

]
dt +op(n−1/2).
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Therefore we have:

√
nS1,n(β0,Sc0,π0,Λ

∗)+
√

nQ(3) =
1√
n

n

∑
i=1

ψ
(a)
i (t)+op(1), (3.45)

where

ψ
(a)
i, j =

∫
τ

0
e(β10+β20)Ait {Sc0(t | Ai,Zi)}−1 {Ai−π0(Zi)}dM ji(t;β j0,Λ

∗
j)

+
∫

τ

0

[{
p(a)1 j (t)

}>
σ1 + p(a)2 j (t)σ2(t)−

∫
τ

0

{
p(a)3 j (t)

}>
σ3

]
dt.

By Theorem (2) and by construction of Q(3) the right hand side of (3.44) is a sum of i.i.d

mean zero and the multivariate central limit theorem can be applied. Therefore, case a) of the

Theorem is proven.

• Case b):

We remind the reader that, if Λ∗(·, ·) = Λ0(·, ·), Q(3) = op(n−1/2). In the proof of Theorem 3 we

have proved that K simplifies to a 2x2 diagonal matrix with:

K j j = −K(1)(β0,S∗c ,π
∗)−K(2)

j (β,S∗c ,π
∗)/(β j−β j0).

Therefore, in (3.43) we are left with

√
n(β̂−β0) = K−1√n

{
S1,n(β0,S∗c ,π

∗,Λ∗)+Q(21)
}
+op(1). (3.46)

Since
√

nS1,n(β0,S∗c ,π
∗,Λ∗) is already a sum of i.i.d mean zero terms, with the help of

Assumption B2, we now prove that also term Q(21) can be written as a sum of i.i.d mean zero terms.
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We can then apply the multivariate central limit theorem to
√

nS1,n(β0,S∗c ,π
∗,Λ∗)+

√
nQ(21) and

reach our conclusion.

We now look at the details.

By Assumption B2, we know that

γ̂ j− γ j0 = Op(n−1/2), Ĝ j(t)−G j0(t) = Op(n−1/2).

Therefore by Taylor expansion we have:

√
nQ(21)

j = − 1√
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

×d
{

L(t,Z; Ĝ j, γ̂ j)−L(t,Z;G j0,γ j0)
}
+op(n−1/2)

= − 1√
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

×
[
(γ̂ j− γ j0)

>
∂γ jdL(t,Z;G j0,γ j0)+d

{
Ĝ j(t)−G j0(t)

}
∂γ jL(t,Z;G j0,γ j0)

+
{

Ĝ j(t)−G j0(t)
}

∂γ jdL(t,Z;G j0,γ j0)
]
+op(n−1/2).

Hence, by the above and by Assumption B1 and B2, we have:

Q(21)
j =

∫
τ

0

[
(γ̂ j− γ j0)

>P(b)
1 j (t)dt +P(b)

2 j (t)d
{

Ĝ j(t)−G j0(t)
}

(3.47)

+dP(b)
2 j (t)

{
Ĝ j(t)−G j0(t)

}]
=

∫
τ

0

[
(γ̂ j− γ j0)

>p(b)1 j (t)dt + p(b)2 j (t)d
{

Ĝ j(t)−G j0(t)
}

+d p(b)2 j (t)
{

Ĝ j(t)−G j0(t)
}]

+op(n−1/2)

=
1√
n

n

∑
i=1

∫
τ

0

[
σ4i p

(b)
1 j (t)dt + p(b)2 j (t)dσ5i(t)+d p(b)2 j (t)σ5i(t)

]
+op(n−1/2).
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Therefore we have:

√
nS1,n(β0,Sc0,π0,Λ

∗)+
√

nQ(21) =
1√
n

n

∑
i=1

ψ
(b)
i (t)+op(1) (3.48)

where

ψ
(b)
i, j =

∫
τ

0
e(β10+β20)Ait {S∗c(t | Ai,Zi)}−1 {Ai−π

∗(Zi)}dM ji(t;β j0,Λ
∗
j)

+
∫

τ

0

[
σ4i p

(b)
1 j (t)dt + p(b)2 j (t)dσ5i(t)dt + p(b)2 j (t)σ5i(t)

]
.

By Theorem 2 and by construction of Q(21) the right hand side of (3.46) is a sum of i.i.d

mean zero random variable and the multivariate central limit theorem can be applied. Therefore, by

the above together with (3.46), we can prove part b) of the Theorem.

• Case c):

We remind the reader that, if S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·), we have

Q(21) = op(n−1/2), Q(3) = op(n−1/2) and therefore the influence function in this case simplifies.

In the proof of Theorem 3 we have proved that K simplifies to a 2x2 diagonal matrix with:

K j j =−K(1)(β0,Sc0,π0,Λ0).

Indeed by this, by consistency of β̂(1) proved in Lemma 3 and by (3.43), we have:

√
n(β−β0) = K−1√nS1,n(β0,Sc0,π0,Λ0)+op(1).

We prove that
√

nS1,n(β0,Sc0,π0,Λ0) is normal by martingale central limit theorem. Since

here we assume that we plug in the true parameters, for ease of notation, in the following we

will suppress the dependency of the martingale on β,Λ0. We consider the following multivariate
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martingale: Mi(t) = [M1i(t),M2i(t)]> with respect to the filtration

Ft = σ
{

N j(s),Y (s+),A,Z : j = 1,2, 0 < s < t
}

. We consider the following two-dimensional vec-

tor: Mn(t) = 1√
n ∑

n
i=1

∫ t
0 h(u;Ai,Zi)dMi(u), where

h(t;A,Z) = e(β10+β20)Ait {Sc0(t | A,Z)}−1 {A−π0(Z)} .

Since h(t;A,Z) is predictable with respect to the filtration, then Mn(t) is a multivariate martingale

too. By Assumption S3, we have

< M1i(t),M2i(t)>=< M1i(t),M1 j(t)>=< M2i(t),M2 j(t)>=< M1i(t),M2 j(t)>= 0,

for each i 6= j therefore:

< Mn
1(t),M

n
2(t)> = <

1√
n

n

∑
i=1

∫ t

0
h(u;Ai,Zi)dM1i(u),

1√
n

n

∑
i=1

∫ t

0
h(u;Ai,Zi)dM2i(u)>

=
1
n

n

∑
i, j=1

∫ t

0
h2(u;Ai,Zi)d < M1i(u),M2 j(u)>= 0,

and so the two components of the multidimensional martingale Mn(t) are orthogonal to each other.

Therefore, we can apply the multidimensional version of the martingale central limit theorem of

Rebolledo (Theorem 5 of Rebolledo (1978)).

First we verify Assumption 2 about the convergence of the variance. We have, by Assumption
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S1, for j = 1,2:

< Mn
j (t),M

n
j (t)> =

1
n

n

∑
i=1

∫ t

0
h2(u;Ai,Zi)dΛ j(u | Ai,Zi)Yi(u)

=
1
n

n

∑
i=1

∫ t

0
h2(u;Ai,Zi)

{
dΛ j0(u,Zi)+β j0Adu

}
Yi(u)

=
1
n

n

∑
i=1

∫ t

0
e2(β10+β20)Aiu {Sc0(u | Ai,Zi)}−2 {Ai−π0(Zi)}2

×
{

dΛ j0(u,Zi)+β j0Aidu
}

Yi(u)

=
∫ t

0

{
P(u)β j +Q j(u)

}
du

p→
∫ t

0

{
p(u)β j +q j(u)

}
du =Vj(t),

and so Assumption 2 of the MCLT is verified.

We now look at Assumption 1 about the jumps of each component of the martingale.

Rebolledo (1978) at pag. 39 claims that if the Lindeberg condition is verified, then Assumption 1 of

its Theorem holds. We therefore needs to prove that, for any ε and any j:

∫
τ

0

1
n

n

∑
i=1

h2(u;Ai,Zi)1
{
|h(u;Ai,Zi)|>

√
nε
}

Yi(t)
{

dΛ j0(t,Zi)+β j0Aidt
} p→ 0,

by Assumption S1 and S7, we know that:

|h(t;A,Z)| ≤C−1
c e(β10+β20)τ < ∞,

so, we have:

∫
τ

0

1
n

n

∑
i=1

h2(u;A,Z)1
{
|h(u;A,Z)|>

√
nε
}

Yi(t)
{

dΛ j0(t,Zi)+β j0Aidt
}

≤
∫

τ

0

1
n

n

∑
i=1

h2(u;A,Z)1
{

C−1
c exp(β10τ+β20τ)>

√
nε
}

Yi(t)

×
{

dΛ j0(t,Zi)+β j0Aidt
}
.
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Moreover, by Assumption S2, we also know that:

∣∣∣∣∣
∫

τ

0

1
n

n

∑
i=1

h2(u;A,Z)1
{

C−1
c e(β10+β20)τ >

√
nε

}
Yi(t)

{
dΛ j0(t,Zi)+β j0Aidt

}∣∣∣∣∣
≤ C−2

c e2(β10+β20)τ1

{
C−1

c e(β10+β20)τ >
√

nε

}
τ
∣∣L j +β j0

∣∣ p→ 0,

and so Assumption 1 of the martingale central limit theorem holds.

Therefore, we can conclude that

√
nS2,n(β0,Sc0,π0,Λ0) = Mn(t) D→N (0,V (τ)).

Therefore part c) of the Theorem is proven.

Proof of Theorem 5

Proof of Theorem 5. We prove separately that Ŵ (c)
j j −W (c)

j j = op(1) and that V̂ (c)
j j (τ)−V (c)

j j (τ) =

op(1).
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We have:

Ŵ (c)
j j −W (c)

j j

=
1
n

n

∑
i=1

Ai {Ai− π̂(Zi)}
∫ Xi

0

{
Ŝc(t | Ai,Zi)

}−1
e(β̂1+β̂2)tdt

−E
[

A{A−π0(Z)}
∫ X

0
{Sc0(t | A,Z)}−1 e(β10+β20)tdt

]
=

1
n

n

∑
i=1

Ai {Ai−π0(Zi)}
∫ Xi

0
{Sc0(t | Ai,Zi)}−1 e(β10+β20)tdt

−E
[

A{A−π0(Z)}
∫ X

0
{Sc0(t | A,Z)}−1 e(β10+β20)tdt

]
+

1
n

n

∑
i=1

∫ Xi

0
Ai {Ai−π0(Zi)}{Sc0(t | Ai,Zi)}−1

{
e(β̂1+β̂2)t− e(β10+β20)t

}
dt

+
1
n

n

∑
i=1

∫ Xi

0
Ai

[
{Ai− π̂(Zi)}

{
Ŝc(t | Ai,Zi)

}−1−{Ai−π0(Zi)}{Sc0(t | Ai,Zi)}−1
]

×
{

e(β̂1+β̂2)t− e(β10+β20)t
}

dt

+
1
n

n

∑
i=1

∫ Xi

0
Ai

[
{Ai− π̂(Zi)}

{
Ŝc(t | Ai,Zi)

}−1−{Ai−π0(Zi)}{Sc0(t | Ai,Zi)}−1
]

×e(β10+β20)tdt

= Q1−Q2 +Q3 +Q4 +Q5.

As before, by Assumptions S1 and S7, by Hoeffding’s inequality we have: Q1−Q2 = Op(n−1/2).

by Assumptions S1 and S7 and by Lemma 12, we get:

|Q3| ≤ τC−1
c

{
e(β̂1+β̂2)τ− e(β10+β20)τ

}
= τC−1

c e(β
∗
1+β∗2)ττ

(
β̂1 + β̂2−β10−β20

)
.

where β∗j are points between β̂ j and β j0. Therefore, by consistency of the estimator β̂, we have

|Q3|= op(1).

By Assumption 1 and by consistency of β we have Q4 = op(1). By this and by Assumptions 1, S1,
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S7, we have:

|Q5| ≤ sup
t∈[0,τ],Z∈Z,A∈0,1

{∣∣∣Ŝ−1
c (t | A,Z)−{Sc0(t | A,Z)}−1

∣∣∣+ ∣∣Ŝ−1
c (t | A,Z)

∣∣ |π̂(Z)−π0(Z)|
}

×τe(β10+β20)τ

= op(1). (3.49)

We can therefore conclude that Ŵ −W = op(1).

We have:

V̂ (c)
j j (τ)−V (c)

j j (τ)

=
1
n

n

∑
i=1

∫
τ

0
e2(β̂1+β̂2)AiXi Ŝ−2

c (Xi | Ai,Zi){Ai− π̂(Zi)}2 dN ji(t)−
∫

τ

0

{
p(t)β j +q j(t)

}
dt

=
1
n

n

∑
i=1

∫
τ

0
e2(β10+β20)Ait {Sc0(Xi | Ai,Zi)}−2 {Ai−π0(Zi)}2 dM ji(t)

+
∫

τ

0

{
P(t)β j +Q j(t)− p(t)β j−q j(t)

}
dt

+
1
n

n

∑
i=1

∫
τ

0
{Sc0(Xi | Ai,Zi)}−2 {Ai−π0(Zi)}2

{
e2(β̂1+β̂2)t− e2(β10+β20)t

}
dN ji(t)

+
1
n

n

∑
i=1

∫
τ

0

[
Ŝ−2

c (Xi | Ai,Zi){Ai− π̂(Zi)}2−{Sc0(Xi | Ai,Zi)}−2 {Ai−π0(Zi)}2
]

×
{

e2(β̂1+β̂2)t− e2(β10+β20)t
}

dN ji(t)

+
1
n

n

∑
i=1

∫
τ

0

[
Ŝ−2

c (Xi | Ai,Zi){Ai− π̂(Zi)}2−{Sc0(t | Ai,Zi)}−2 {Ai−π0(Zi)}2
]

×e2(β10+β20)tdN ji(t)

= E1 +E2 +E3 +E4 +E5.
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For E1 we notice that, by Assumptions S1 and S7, we have:

e2(β10+β20)AiXi {Sc0(Xi | Ai,Zi)}−2 {Ai−π0(Zi)}2 ≤C−2
c e2(β10+β20)Aiτ < ∞,

and so, by Lemma 13, we have E1 = op(1).

By Assumption S1, we can prove that E2 = op(1).

Similarly to what we have done for Q3, Q4 and Q5, we can prove that E3 = op(1), E4 = op(1) and

E5 = op(1).

Therefore V̂j−Vj = op(1).

Proof of Corollary 1

The proof of Corollary 1 follows directly from finding the influence functions defined

in Assumption A 2 and Assumption B 2 for the specific working models Sc(t|a,z;η,Λc) =

exp
(
−Λceη>d

)
, where D = [A,Z]> and π(z;α) =

{
1+ exp(−α>z)

}−1 for case a) and

Λ j(t,z;G j,γ j) = G j(t)+ γ>j zt for case b) respectively. We indeed remind the reader that under case

a), we have:

√
n(β̂−β0) = K−1√n

{
S2,n(β0,S∗c ,π

∗,Λ∗)+Q(3)
}
+op(1),

where Q(3), defined in Lemma 7, directly depends on the form of the influence functions of

estimators α̂, Λ̂c, η̂. Under case b), we instead have:

√
n(β̂−β0) = K−1√n

{
S2,n(β0,S∗c ,π

∗,Λ∗)+Q(21)
}
+op(1),
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where Q(21), defined in Lemma 7, directly depends on the form of the influence functions of

estimators Ĝ, γ̂.

The next Lemma defines the specific form of Q(3) when the logistic model and the Cox

model are assumed on the propensity score and the censoring distribution, respectively.

Lemma 8. We assume, π(Z;α) =
{

1+ exp(−α>Z)
}−1

and Sc(t|A,Z;η,Λc) = exp
(
−Λceη>D

)
.

Under Assumptions S2, S4 and Assumption A*1- A*4 we have:

√
nQ(3)

j =

∫
τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)

×

[∫
τ

0

{
p(a
′)

1

}>
(t)dt−

∫
τ

0
p(a
′)

2 (t)
∫ t

0
dΛc0(u;η0)

s(1)d (u)

s(0)d (u)
dt

]

+
∫

τ

0
p(a
′)

2 (t)
1√
n

n

∑
i=1

∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)

−
∫

τ

0

{
p(a
′)

3

}>
(t)
(

E
[
Z>Zπ0(Zi){1−π0(Zi)}

])−1 1√
n

n

∑
i=1

Zi {Ai−π0(Zi)}dt

+op(1).

The next lemma defines the specific form of Q(21) when the traditional additive hazard

model is assumed on the cause-specific hazards.

Lemma 9. Let Λ j(t,Z;G j,γ j) = G j(t)+ γ>j Zt and let γ j be estimated by (3.10) in the main docu-

ment and G j(t) be estimated using (3.11) in the main document. Under Assumptions S2, S4 and
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Assumptions B*2 and B*4 it holds:

√
nQ(21)

j =
∫

τ

0


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)


>

×

{
p(b
′)

1 (t)dt− p(b
′)

0 (t)
s(1)z (t)

s(0)z (t)
dt

}

+
∫

τ

0
p(b
′)

0 (t)
{

s(0)z (t)
}−1 1√

n

n

∑
i=1

dM ji(t)+op(1).

Lemma 10. Let Λ j(t,Z;G j,γ j) = G j(t) + γ>j Zt and let γ j be estimated by (3.10) in the main

document and G j(t) be estimated using (3.12) in the main document. Under Assumptions S2, S4

and Assumptions B*3 and B*4 it holds:

√
nQ(21)

j =
∫

τ

0


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)


>

×

{
p(b
′)

1 (t)dt− p(b
′)

0 (t)
s(1)wz (t;S∗c ,π

∗)

s(0)wz (t;S∗c ,π∗)
dt

}

+
∫

τ

0
p(b
′)

0 (t)
{

s(0)wz (t;S∗c ,π
∗)
}−1 1√

n

n

∑
i=1

dM ji(t)+op(1).

Theorem 4 together with Lemma 8 proves part a) of the corollary. Theorem 4 together with

Lemma 9 proves part b1) of the corollary. Theorem 4 together with Lemma 10 proves part b2) of

the corollary.

Proof of Theorems 6, 7 and 8

Proofs of Theorems 6, 7 and 8 use similar ideas and techniques used in the proofs of

Theorems 3, 7 and 8. We therefore report here a sketch of their proofs.
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Proof of Theorem 6 (sketch). Under Assumptions S1, it follows that:

S2,n(β, Ŝc, π̂, Λ̂) = S2,n(β,S∗c ,π
∗,Λ∗)+op(1).

By Taylor expansion we have:

S2,n(β,S∗c ,π
∗,Λ∗) = S2,n(β0,S∗c ,π

∗,Λ∗)+∇βS2,n(β
∗,S∗c ,π

∗,Λ∗)(β−β0)
> ,

where β∗ lies between β and β0.

By double robustness of the score (Theorem 2), and by application of Hoeffding’s in-

equality under Assumptions S2 and S7, we have: S2,n(β0,S∗c ,π
∗,Λ∗) = E {S2,n(β0,S∗c ,π

∗,Λ∗)}+

Op(n−1/2) = Op(n−1/2). Therefore we have:

S2,n(β, Ŝc, π̂, Λ̂) = ∇βS2,n(β
∗,S∗c ,π

∗,Λ∗)(β−β0)
>+Op(n−1/2). (3.50)

We now focus on ∇ := ∇βS2,n(β
∗,S∗c ,π

∗,Λ∗). We have as diagonal element, for j = 1,2:

∇ j j = ∂β j {S2,n} j (β
∗,S∗c ,π

∗,Λ∗)

= −1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)dM ji(t;β

∗
j ,Λ
∗
j)

+
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}AiYi(t)

+
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}Yi(t)∂βdΛ

∗(t,Zi;β
∗)

= Q1 +Q2 +Q3.
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We have:

Q1 = −1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)dM ji(t)

+(β∗j −β j0)
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)AiYi(t)dt

+
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d

{
Λ
∗
j(t,Zi;β

∗
j)−Λ

∗
j(t,Zi;β j0)

}
+

1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d

{
Λ
∗
j(t,Zi;β j0)−Λ j0(t,Zi)

}
= Q11 +Q12 +Q13 +Q14.

Q11 is a martingale integral with bounded integrand by Assumption S7. Therefore, by concentration

inequality of martingale integral is op(1). Under Assumption S6, we have

Q13 = (β∗j −β j0)
1
n

n

∑
i=1

∫
τ

0
∂β jEA(t;β

∗,S∗c ,π
∗,Zi)Yi(t)E(q j(t))dt,

where we call q ji(t) a function, such that:

Λ̂ j(t,Z;β)− Λ̂ j(t,Z;β0) = (β j−β j0)∗
1
n

n

∑
i=1

∫
τ

0
q ji(t).

Term Q14 = 0 if Λ∗ = Λ0. What about Q3? If S∗c = Sc0 and π∗ = π0, because everything is bounded,
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by Assumption S7 we have something along the following line:

Q3 =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β,Sc0,π0,Zi)}Yi(t)∂βdΛ(t,Zi;β

∗)

=
∫

τ

0
E

A−
E
[
Ae−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]
E
[
e−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]
Y (t)∂βdΛ(t,Z;β

∗)

+op(1)

=
∫

τ

0
E

A−
E
[
Ae−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]
E
[
e−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]
E{Y (t)|A,Z}∂βdΛ(t,Z;β

∗)

+op(1)

=
∫

τ

0
E

A−
E
[
Ae−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]
E
[
e−∑

J
j=1 β jAtSc0(t|A,Z)|Z

]


×e−∑
J
j=1 β jAte−∑

J
j=1 Λ j(t,Z)Sc0(t|A,Z)∂βdΛ(t,Z;β

∗)
]
+op(1)

= op(1).

Therefore we have:

∇ j j = ∂β j {S2,n} j (β
∗,S∗c ,π

∗,Λ∗) = (β∗j −β j0)(J
(1′)
j j + J(2

′)
j j )+ J(1)j j + J(2)j j + J(3)j j ,

where

J(1
′)

j j =
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)AiYi(t)dt,

J(2
′)

j j =
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)E(q j(t))dt,
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J(1)j j =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}AiYi(t),

J(2)j j =
1
n

n

∑
i=1

∫
τ

0
∂β jEAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d

{
Λ
∗
j(t,Zi;β j0)−Λ j0(t,Zi)

}
,

J(3)j j =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}Yi(t)∂β jdΛ

∗
j(t,Zi,β

∗
j).

We notice that J(2)j j = 0 if Λ∗(·, ·) = Λ0(·, ·) and J(3)j j = op(1) if or S∗c(·|·, ·) = Sc0(·|·, ·) and

π∗(·) = π0(·) or Λ̂(·, ·) does not depend on the unknown β.

On the other hand, similarly, we have:

∇12 = ∂β2 {S2,n}1 (β
∗,S∗c ,π

∗,Λ∗)

= (β∗1−β10)
1
n

n

∑
i=1

∫
τ

0
∂β2EAi(t;β

∗,S∗c ,π
∗,Zi)AiYi(t)dt

+(β∗1−β10)
1
n

n

∑
i=1

∫
τ

0
∂β2EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)E(q j(t))dt

+
1
n

n

∑
i=1

∫
τ

0
∂β2EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d {Λ∗1(t,Zi;β10)−Λ10(t,Zi)}+op(1)

= (β∗1−β10)(J
(1′)
12 + J(2

′)
12 )+ J(1)12 ,
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and

∇21 = ∂β1 {S2,n}2 (β
∗,S∗c ,π

∗,Λ∗)

= (β∗2−β20)
1
n

n

∑
i=1

∫
τ

0
∂β1EAi(t;β

∗,S∗c ,π
∗,Zi)AiYi(t)dt

+(β∗2−β20)
1
n

n

∑
i=1

∫
τ

0
∂β1EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)E(q j(t))dt

+
1
n

n

∑
i=1

∫
τ

0
∂β1EAi(t;β

∗,S∗c ,π
∗,Zi)Yi(t)d {Λ∗2(t,Zi;β20)−Λ20(t,Zi)}

= (β∗2−β20)(J
(1′)
21 + J(2

′)
21 )+ J(1)21 ,

where the last terms J(1)12 = J(1)21 = 0 if Λ∗(·, ·) = Λ0(·, ·).

Therefore we have:

∇ = J+

β∗1−β10

β∗2−β20

J′

where the above multiplication is intended componentwise and

J =

J(1)11 + J(2)11 + J(3)11 J(1)12

J(1)21 J(1)22 + J(2)22 + J(3)22

 ,
and

J′ =

J(1
′)

11 + J(2
′)

11 J(1
′)

12 + J(2
′)

12

J(1
′)

21 + J(2
′)

21 J(1
′)

22 + J(2
′)

22

 .

We will prove that J is invertible. If this is the case, for any |δ| < 1/2, by (3.50) and the
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above we have:

S2,n(β0±n−δ, Ŝc, π̂, Λ̂) = n−δJ+n−2δJ′+Op(n−1/2).

We can therefore conclude that either:

S2,n(β0−n−δ, Ŝc, π̂, Λ̂)< 0 < S2,n(β0 +n−δ, Ŝc, π̂, Λ̂),

or

S2,n(β0 +n−δ, Ŝc, π̂, Λ̂)< 0 < S2,n(β0−n−δ, Ŝc, π̂, Λ̂).

Therefore by definition of β̂, we can conclude that β̂−β0 = Op(n−δ).

We now prove that J is invertible proving that its determinant is different from zero. J

simplifies accordingly to which model is correct. We therefore divide the proof of its invertibility in

two cases.

• Case a): J is invertible if S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·).

Noticing that ∂β1EA(t;β∗,S∗c ,π
∗,Z) = ∂β2EA(t;β∗,S∗c ,π

∗,Z) and J(1)11 = J(1)22 , after some algebra we

have:

|J| = (J(1)11 + J(2)11 )(J(1)22 + J(2)22 )− J(1)12 J(1)21 +op(1)

= J(1)11 (J(1)11 + J(2)11 + J(2)22 )+op(1).

We now prove that both J(1)11 6= 0 and J(1)11 + J(2)11 + J(2)22 6= 0. Those would prove that |J| 6= 0

and so that J is invertible.
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Under model (3.1), E{Y (t)|A,Z} = Sc0c(t|A,Z)e−(β10+β20)Ate−Λ10(t,Z)−Λ20(t,Z), therefore

we have:

E

A−
E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
AY (t)dt


=

∫
τ

0
E

A−
E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E{Y (t)|A,Z}Adt

 ,
and so

=
∫

τ

0
E

A−
E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
e−∑

2
j=1 β j0Ate−∑

2
j=1 Λ j0(t,Z)Sc0(t|A,Z)Adt


=

∫
τ

0
E

E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]1−
E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]


×e−∑
2
j=1 Λ j0(t,Z)dt

]
.

The above is strictly different from zero under the positivity Assumption S5. Therefore applying

Hoeffding’s inequality, for some positive ε: J(1)j j > ε.

We now focus on J(1)11 + J(2)11 + J(2)22 . By algebra we have:

∂β jEA(t;β
∗,S∗c ,π

∗,Z) = −tEA(t;β
∗,S∗c ,π

∗,Z){1−EA(t;β
∗,S∗c ,π

∗,Z)} .
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We have:

J(1)11 + J(2)11 + J(2)22 = +
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}Yi(t)Ai

−1
n

n

∑
i=1

∫
τ

0
tEAi(t;β

∗,S∗c ,π
∗,Zi){1−EAi(t;β

∗,S∗c ,π
∗,Zi)}

×d
{

Λ
∗
1(t,Zi;β j0)−Λ10(t,Zi)+Λ

∗
2(t,Zi;β j0)−Λ20(t,Zi)

}
Yi(t).

Similarly to before, if we look at the expected value, we have:

E
[
J(1)11 + J(2)11 + J(2)22

]
=

∫
τ

0
E

A−
E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
AE{Y (t)|A,Z}


−

∫
τ

0
E

E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
1−

E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]


× td
{

Λ
∗
1(t,Z;β j0)−Λ10(t,Z)+Λ

∗
2(t,Z;β j0)−Λ20(t,Z)

}
E {Y (t)|A,Z}

]
.

Therefore

E
[
J(1)11 + J(2)11 + J(2)22

]
=

∫
τ

0
E

E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
1−

E
[
Ae−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]
E
[
e−∑

2
j=1 β j0AtSc0(t|A,Z)|Z

]


× e−∑
2
j=1 Λ j0(t,Z)

[
A− te−∑

2
j=1 β j0AtSc(t|A,Z)

2

∑
j=1

d
{

Λ
∗
j(t,Z;β j0)−Λ j0(t,Z)

}])
.

Again, by Assumption S5 and S9, we can conclude that E
[
J(1)11 + J(2)11 + J(2)22

]
> ε and therefore, by

Hoeffding’s inequality that J(1)11 + J(2)11 + J(2)22 > ε+op(1).
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• Case b): J is invertible if Λ∗(·, ·) = Λ0(·, ·).

We have:

|J(1)| = (J(1)11 + J(3)11 )(J(1)22 + J(3)22 ),

We are now left to prove that J(1)j j + J(3)j j 6= 0 when Λ∗(·) = Λ0(·). We have:

J(1)j j + J(3)j j =
1
n

n

∑
i=1

∫
τ

0
{Ai−EAi(t;β

∗,S∗c ,π
∗,Zi)}Yi(t)

{
Ai +∂β jdΛ

∗
j(t,Zi)

}
,

and similarly to before, by Assumption S9 we can prove that J(1)j j + J(3)j j > ε.

Proof of Theorem 7 (sketc). By Taylor expansion we have:

S2,n(β, Ŝc, π̂, Λ̂) = S2,n(β0, Ŝc, π̂, Λ̂)+∇βS2,n(β
∗, Ŝc, π̂, Λ̂)(β−β0)

> , (3.51)

where β∗ lies between β and β0.

Under Assumptions S1-6, it can be proved that:

∇βS2,n(β
∗, Ŝc, π̂, Λ̂) = ∇βS2,n(β

∗,S∗c ,π
∗,Λ∗)+op(1). (3.52)

In the proof of Theorem 6 we moreover proved that:

∇βS2,n(β
∗,S∗c ,π

∗,Λ∗) = J+

β∗1−β10

β∗2−β20

J′,
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where the above multiplication is intended componentwise and

J =

J(1)11 + J(2)11 + J(3)11 J(1)12

J(1)21 J(1)22 + J(2)22 + J(3)22

 ,
and

J′ =

J(1
′)

11 + J(2
′)

11 J(1
′)

12 + J(2
′)

12

J(1
′)

21 + J(2
′)

21 J(1
′)

22 + J(2
′)

22

 .

We now focus on term S2,n(β0, Ŝc, π̂, Λ̂). We have the following decomposition:

S2,n(β0, Ŝc, π̂, Λ̂) = +S2,n(β0, Ŝc, π̂, Λ̂)−S2,n(β0,S∗c ,π
∗, Λ̂)

+S2,n(β0,S∗c ,π
∗, Λ̂)−S2,n(β0,S∗c ,π

∗,Λ∗)

+S2,n(β0,S∗c ,π
∗,Λ∗)

= Q1 +Q2 +Q3.

We remind the reader that in the previous part of the proof we proved that β̂(2)− β0 =

Op(n−δ) for |δ|< 1/2.

Putting all the above together, by definition of β̂ we have:

√
n(β̂(2)−β0) = J−1√n{S2,n(β0,S∗c ,π

∗,Λ∗)+Q1 +Q2}+op(1). (3.53)

S2,n(β0,S∗c ,π
∗,Λ∗) is by double robustness of the score, (Theorem 2), a sum of i.i.d. mean

zero terms. Similarly to the proof of Theorem 4, we can prove that Q2 = op(n−1/2) if Λ∗(·, ·) =

Λ0(·, ·) and Q1 = op(n−1/2) if S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·). We therefore now divide the
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proof in three different cases according to which model is correctly specified.

• Case a): S∗c(·|·, ·) = Sc0(·|·, ·), π∗(·) = π0(·) and Λ∗(·, ·) 6= Λ0(·, ·) with an = n−1/2, bn =

n−1/2.

As said before, we can prove that Q1 = op(n−1/2), therefore, by (3.53) and by Assumption A’1, we

have:

√
n(β̂−β0) = J−1√n

{
S2,n(β0,S∗c ,π

∗,Λ∗)+
1
n

n

∑
i=1

σ6i

}
+op(1).

√
n(β̂− β0) can be therefore written as sum of i.i.d mean zero terms, and therefore, by

multivariate central limit theorem, it is asymptotically normal.

Part a) of the Theorem follows directly.

• Case b): Λ∗(·, ·) = Λ0(·, ·), S∗c(·|·, ·) 6= Sc0(·|·, ·) and π∗(·) 6= π0(·) with cn = n−1/2.

As said before, we can prove that Q2 = op(n−1/2), therefore, by (3.53) and by Assumption B’ 1,

we have:

√
n(β̂−β0) = J−1√n

{
S2,n(β0,S∗c ,π

∗,Λ∗)+
1
n

n

∑
i=1

σ7i

}
+op(1).

√
n(β̂− β0) can be therefore written as sum of i.i.d mean zero terms, and therefore, by

multivariate central limit theorem, it is asymptotically normal.

Part b) of the Theorem follows directly.

• Case c): S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·) and Λ∗(·, ·) = Λ0(·, ·) with ancn = o(n−1/2)

and bncn = o(n−1/2).
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In this case we have both Q1 = op(n−1/2) and Q2 = op(n−1/2). Therefore:

√
n(β̂−β0) = J−1√nS2,n(β0,S∗c ,π

∗,Λ∗)+op(1). (3.54)

Moreover, when both models are correct, J simplifies to a diagonal matrix with diagonal

element equals to J(1)j j = 1
n ∑

n
i=1

∫
τ

0 {Ai−EAi(t;β∗,S∗c ,π
∗,Zi)}AiYi(t).

MCLT can be applied to
√

nS2,n(β0,Sc0,π0,Λ0) to prove asymptotic normality. Specifically

we consider the following multivariate martingale Mi(t) = [M1i(t),M2i(t)]> with respect to the

filtration

Ft = σ
{

N ji(s),Yi(s+),Ai,Zi : j = 1,2, i = 1, . . . ,n, 0 < s < t
}

. We consider the following two-

dimensional vector:

Mn(t) =
1√
n

n

∑
i=1

∫ t

0
h(u;Ai,Zi)dMi(u),

where h(t;A,Z) = A−EA(t;β,Sc0,π0,Z). Since h(t;A,Z) is predictable with respect to the filtration,

then Mn(t) is a multivariate martingale too. By Assumption S3, we have < M1i(t),M2i(t) >=<

M1i(t),M1 j(t)>=< M2i(t),M2 j(t)>=< M1i(t),M2 j(t)>= 0 for each i 6= j therefore:

< Mn
1(t),M

n
2(t)> = <

1√
n

n

∑
i=1

∫ t

0
h(u;Ai,Zi)dM1i(u),

1√
n

n

∑
i=1

∫ t

0
h(u;Ai,Zi)dM2i(u)>

=
1
n

n

∑
i, j=1

∫ t

0
h2(u;Ai,Zi)d < M1i(t),M2 j(t)>= 0,

and so the two components of the multidimensional martingale Mn(t) are orthogonal to each other.

Therefore, we can apply the multidimensional version of the martingale central limit theorem of

Rebolledo (Theorem 5 of Rebolledo (1978)).
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First we verify Assumption 2 about the convergence of the variance. We have, by Assumption

C’1, for j = 1,2:

< Mn
j (t),M

n
j (t)> =

1
n

n

∑
i=1

∫ t

0
h2(u;Ai,Zi)dΛ j0(u|Ai,Zi)Yi(u)du

=
1
n

n

∑
i=1

∫ t

0
h2(u;Ai,Zi)

{
dΛ j0(u,Zi)+β j0Adu

}
Yi(u)

=
∫ t

0

{
P′(u)β j0 +Q′j(u)

}
du

p→
∫ t

0

{
p′(u)β j0 +q′j(u)

}
du =V ′j(t),

and so Assumption 2 of the MCLT is verified.

We now look at Assumption 1 about the jumps of each component of the martingale.

Rebolledo (1978) at pag. 39 claims that if the Lindeberg condition is verified, then Assumption 1 of

its Theorem holds. We therefore needs to prove that, for any ε and any j:

∫
τ

0

1
n

n

∑
i=1

h2(u;Ai,Zi)1
{
|h(u;Ai,Zi)|>

√
nε
}

Yi(t)
{

dΛ j0(t,Zi)+β j0Aidt
} p→ 0,

by Assumptions S1 and S5, we know that:

|h(t;A,Z)| ≤ 1+
max{1,e−(β10+β20)τ}C3

min{1,e−(β10+β20)τ}C1C2 +1−C3
< ∞,

so, we have:

∫
τ

0

1
n

n

∑
i=1

h2(u;A,Z)1
{
|h(u;A,Z)|>

√
nε
}

Yi(t)
{

dΛ j0(t,Zi)+β j0Aidt
}

≤
∫

τ

0

1
n

n

∑
i=1

h2(u;A,Z)1

{
1+

max{1,e−(β10+β20)τ}C3

min{1,e−(β10+β20)τ}C1C2 +1−C3
>
√

nε

}
Yi(t)

×
{

dΛ j0(t,Zi)+β j0Aidt
}
.

188



Moreover, by Assumption S2, we also know that:

∣∣∣∣∣
∫

τ

0

1
n

n

∑
i=1

h2(u;A,Z)1

{
1+

max{1,e−(β10+β20)τ}C3

min{1,e−(β10+β20)τ}C1C2 +1−C3
>
√

nε

}
·Yi(t)

{
dΛ j0(t,Zi)+β j0Aidt

}∣∣
≤

{
1+

max{1,e−(β10+β20)τ}C3

min{1,e−(β10+β20)τ}C1C2 +1−C3

}2

×1

{
1+

max{1,e−(β10+β20)τ}C3

min{1,e−(β10+β20)τ}C1C2 +1−C3
>
√

nε

}
τ
∣∣L j +β j0

∣∣ p→ 0,

and so Assumption 1 of the martingale central limit Theorem holds.

Therefore, we can conclude that

√
nS2,n(β0,Sc0,π0,Λ0) =M

n(t) D→N (0,V ′(τ)). (3.55)

By the above and (3.54) part c) of the Theorem follows.

Proof of Theorem 8 (sketch). This proof is similar to the proof of Theorem 5 and we leave it to the

reader.

3.8.6 Proofs of Lemmas

Proof of Lemma 7. We remind the reader that:

S1,n(β,Sc,π,Λ) =

{
1
n

n

∑
i=1

∫
τ

0
e(β1+β2)AitS−1

c (t|Ai,Zi){Ai−π(Zi)}dM ji(t;β j,Λ j)

}
j=1,2

.
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By algebra we have the following decomposition of the score:

S1,n(β, Ŝc, π̂, Λ̂)

= S2,n(β, Ŝc, π̂, Λ̂)−S2,n(β0, Ŝc, π̂, Λ̂)

+S2,n(β0, Ŝc, π̂, Λ̂)−S2,n(β0, Ŝc, π̂,Λ
∗)

+S2,n(β0, Ŝc, π̂,Λ
∗)−S2,n(β0,S∗c ,π

∗,Λ∗)

+S2,n(β0,S∗c ,π
∗,Λ∗)

= Q(1)+Q(2)+Q(3)+Q(4).

We first of all notice that by Assumption 1 and S7, we have:

[
Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}−{S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}

]
(3.56)

≤ sup
t∈[0,τ],Z∈Z,A∈0,1

∣∣∣Ŝ−1
c (t|A,Z)−{S∗c(t|A,Z)}

−1
∣∣∣ (3.57)

+ sup
t∈[0,τ],Z∈Z,A∈0,1

∣∣∣{S∗c(t|A,Z)}−1
∣∣∣ |π̂(Z)−π

∗(Z)|= op(1). (3.58)

Moreover, we notice that, by Assumption 1 and S7 K(1)(β0,π
∗,S∗c) = Op(1). By Assump-

tions S1, S7, S6, we have: K(2)
j (β,π∗,S∗c) = Op(|β j−β j0|).

We now work on each term separately.

• Term Q(1):
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Algebra and the application of Lemma 12 gives us:

Q(1)
j =

1
n

n

∑
i=1

∫
τ

0

{
e(β1+β2)Ait− e(β10+β20)Ait

}
Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}

×
{

dN ji(t)−Yi(t)β jAidt−Yi(t)dΛ̂ j(t,Zi;β)
}

+
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}

×
{

dN ji(t)−Yi(t)β jAidt−Yi(t)dΛ̂ j(t,Zi;β)
}

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}

×
{

dN ji(t)−Yi(t)β j0Aidt−Yi(t)dΛ̂ j(t,Zi;β0)
}
.

Therefore:

Q(1)
j = (β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β
∗
1+β∗2)AitAitK

(3)
ji (t,β, Ŝcπ̂)

−(β j−β j0)K(1)(β0, Ŝc, π̂)−K(2)
j (β, Ŝc, π̂),

for some β∗ between β0 and β.
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Moreover:

Q(1)
j = (β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β
∗
1+β∗2)AitAitK

(3)
ji (t,β,S∗c ,π

∗) (3.59)

+(β1 +β2−β10−β20)
2 1

n

n

∑
i=1

∫
τ

0
e(β
∗∗
1 +β∗∗2 )AitAit2

{
K(3)

ji (t,β, Ŝc, π̂)−K(3)
ji (t,β,S∗c ,π

∗)
}

+(β1 +β2−β10−β20)
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
K(3)

ji (t,β, Ŝc, π̂)−K(3)
ji (t,β,S∗c ,π

∗)
}

−(β j−β j0)K(1)(β0,S∗c ,π
∗)

−(β j−β j0)
{

K(1)(β, Ŝc, π̂)−K(1)(β0,S∗c ,π
∗)
}

−K(2)
j (β,S∗c ,π

∗)

+K(2)
j (β, Ŝc, π̂)−K(2)

j (β,S∗c ,π
∗),

where β∗∗j is a point between β∗ and β0. We remind the reader that the quantities

K(1),K(2)
j ,K(3)

j ,K(4)
j are defined in equations (3.34)-(3.37).

We work now on term 1
n ∑

n
i=1

∫
τ

0 e(β
∗
1+β∗2)AitAitK

(3)
ji (t,β,S∗c ,π

∗). By algebra and by Lemma

12:

1
n

n

∑
i=1

∫
τ

0
e(β
∗
1+β∗2)AitAitK

(3)
ji (t,β,S∗c ,π

∗)

=
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)
dM ji(t;β, Λ̂)

+(β1 +β2−β10−β20)
1
n

n

∑
i=1

∫
τ

0
e(β
∗∗
1 +β∗∗2 )AitAit2 Ai−π∗(Zi)

S∗c(t|Ai,Zi)
dM ji(t;β, Λ̂).
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Therefore:

=
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)
dM ji(t)

−K(4)
j (β0,π

∗,S∗c ,Λ
∗)− (β j−β j0)K(1)(β0,S∗c ,π

∗)

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)
d
{

Λ̂ j(t,Zi;β)− Λ̂ j(t,Zi;β0)
}

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)
d
{

Λ̂ j(t,Zi;β0)−Λ
∗
j(t,Zi)

}
+(β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β
∗∗
1 +β∗∗2 )AitAit2 Ai−π∗(Zi)

S∗c(t|Ai,Zi)
dM ji(t;β, Λ̂).

We work now on term 1
n ∑

n
i=1

∫
τ

0 e(β10+β20)AitAit
{

K(3)
ji (t,β, Ŝc, π̂)−K(3)

ji (t,β,S∗c ,π
∗)
}

. By algebra

and by Lemma 12:

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
K(3)

ji (t,β, Ŝc, π̂)−K(3)
ji (t,β,S∗c ,π

∗)
}

=
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

[
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

]
dM ji(t;β, Λ̂)
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Therefore

=
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

[
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

]
dM ji(t;β0,Λ

∗)

−(β j−β j0)
{

K(1)(β0, Ŝc, π̂)−K(1)(β0,S∗c ,π
∗)
}

−1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

}
Yi(t)

×d
{

Λ̂ j(t,Zi;β)−Λ
∗
j(t,Zi;β0)

}
−1

n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

[
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

]
Yi(t)

×d
{

Λ̂ j(t,Zi;β0)−Λ
∗
j(t,Zi)

}
.

(3.60)

Therefore putting together (3.59), (3.60) and (3.60), we get:

Q(1)
j

= Q(11)
j +Q(12)

j +Q(13)
j +Q(14)

j +Q(15)
j +Q(16)

j +Q(17)
j +Q(18)

j +Q(19)
j +Q(110)

j +Q(111)
j +Q(112)

j ,

where

Q(11)
j = (β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

}
dM ji(t),

Q(12)
j =−(β1 +β2−β10−β20)K

(4)
j (β0,S∗c ,π

∗,Λ∗)

− (β1 +β2−β10−β20)(β j−β j0)K(1)(β0,S∗c ,π
∗),
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Q(13)
j =−(β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)

×d
{

Λ̂ j(t,Zi;β j)−Λ
∗
j(t,Zi;β j0)

}
,

Q(14)
j =−(β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

Ai−π∗(Zi)

S∗c(t|Ai,Zi)

×d
{

Λ̂ j(t,Zi;β j0)−Λ
∗
j(t,Zi)

}
,

Q(15)
j = (β1 +β2−β10−β20)

2 1
n

n

∑
i=1

∫
τ

0
e(β
∗∗
1 +β∗∗2 )AitAit2 Ai−π∗(Zi)

S∗c(t|Ai,Zi)
dM ji(t;β, Λ̂),

Q(16)
j =+

1
n
(β1 +β2−β10−β20)

2
n

∑
i=1

∫
τ

0
e(β
∗∗
1 +β∗∗2 )AitAit2

×
{

K(3)
ji (t,β, Ŝc.π̂)−K(3)

ji (t,β,S∗c ,π
∗)
}
,

Q(17)
j =+(β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

}
×dM ji(t;β0,Λ

∗),

Q(18)
j =− (β j−β j0)(β1 +β2−β10−β20)

{
K(1)(β0, Ŝc, π̂)−K(1)(β0,S∗c ,π

∗)
}
,
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Q(19)
j =− (β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

}
×Yi(t)d

{
Λ̂ j(t,Zi;β)−Λ

∗
j(t,Zi;β0)

}
,

Q(110)
j =− (β1 +β2−β10−β20)

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)AitAit

{
Ai− π̂(Zi)

Ŝc(t|Ai,Zi)
− Ai−π∗(Zi)

S∗c(t|Ai,Zi)

}
×Yi(t)d

{
Λ̂ j(t,Zi;β0)−Λ

∗
j(t,Zi)

}
,

Q(111)
j =− (β j−β j0)K(1)(β0,S∗c ,π

∗)− (β j−β j0)
{

K(1)(β, Ŝc, π̂)−K(1)(β0,S∗c ,π
∗)
}
,

Q(112)
j =−K(2)

j (β,S∗c ,π
∗)+K(2)

j (β, Ŝc, π̂)−K(2)
j (β,S∗c ,π

∗).

Q(11)
j is a martingale integral, therefore, by Lemma 13, we have Q(11)

j = Op(n−1/2|β1 +

β2−β10−β20|).

By Assumptions S1 and S7, we have Q(12)
j = Op

(
|β1 +β2−β10−β20|

∣∣β j−β j0
∣∣) and

Q(16)
j = Op

(
|β1 +β2−β10−β20|2

)
.

By Assumptions S1, S7 and S6 we have Q(13)
j = Op

(
|β1 +β2−β10−β20|

∣∣β j−β j0
∣∣).

By Assumptions 1, S1, S7 and (3.56) we have Q(14)
j = op(|β1 +β2−β10−β20|), Q(17)

j =

op

(
|β1 +β2−β10−β20|2

)
and Q(18)

j = op
(
|β1 +β2−β10−β20|

∣∣β j−β j0
∣∣).

By Assumptions 1 and (3.56) we have Q(17)
j = op (|β1 +β2−β10−β20|). Moreover, we

notice that, if Λ∗(t,Z) = Λ0(t,Z), we would have Q(17)
j = op

(
n−1/2 |β1 +β2−β10−β20|

)
since

dM(t;β0,Λ
∗) would be a martingale.
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By Assumption 1 and S6, we have Q(19)
j = op

(
|β1 +β2−β10−β20|

∣∣β j−β j0
∣∣). Moreover

by Cauchy Schwartz inequality, together with Assumption S6 we get

Q(110)
j = op

(
n−1/2 |β1 +β2−β10−β20|

∣∣β j−β j0
∣∣).

By Assumption S1, we have Q(111)
j =−(β j−β j0)K(1)(β0,S∗c ,π

∗)+op
(∣∣β j−β j0

∣∣).
Moreover, by Assumptions S6 and S(3.56), we have

Q(112)
j = −K(2)

j (β,S∗c ,π
∗)+op

(∣∣β j−β j0
∣∣). We moreover notice that, if S∗c(·|·, ·) = S0c(·|·, ·) and

π∗(·) = π0(·), by Lemma 14, we have Q(112)
j =−K(2)

j (β,S∗c ,π
∗)+Op

(
n−1/2 |β−β0|

)
.

Therefore:

Q(1)
j = −(β1 +β2−β10−β20)K

(4)
j (β0,S∗c ,π

∗,Λ∗)

−(β j−β j0)K
(1)
j (β0,S∗c ,π

∗)−K(2)
j (β,S∗c ,π

∗)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
+op(|β1 +β2−β10−β20|+n−1/2 |β1 +β2−β10−β20|

∣∣β j−β j0
∣∣).

• Term Q(2):

Adding and subtracting we have:

Q(2)
j =

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)d
{

Λ̂ j(t,Zi;β0)−Λ
∗
j(t,Zi)

}
+

1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait

[
Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}−{S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}

]
×Yi(t)d

{
Λ̂ j(t,Zi;β0)−Λ

∗
j(t,Zi)

}
= Q(21)

j +Q(22)
j .
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By Assumption 1, S1, S7, we have:

∣∣∣Q(21)
j

∣∣∣ ≤ ∣∣∣∣∣
∫

τ

0

[
1
n

n

∑
i=1

e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π
∗(Zi)}Yi(t)

]

sup
Z∈Z

d
{

Λ̂ j(t,Z;β0)−Λ
∗
j(t,Z)

}∣∣∣∣
= op(1).

We moreover notice that, if S∗c(·|·, ·) = Sc0(·|·, ·) and π∗(·) = π0(·), by Lemma 14, we have

Q(21)
j = op(n−1/2). Otherwise, by Lemma 10, we have Q(21)

j = Op(n−1/2) under Assumptions B1

and B2.

Moreover by Cauchy-Schwartz inequality we have:

∣∣∣Q(22)
j

∣∣∣
≤ 1

n
e(β10+β20)τ

√
n

∑
i=1

sup
t∈[0,τ]

[
Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}−{S∗c(t|Ai,Zi)}−1 {Ai−π∗(Zi)}
]2

·

√
n

∑
i=1

[∫
τ

0
d
{

Λ̂ j(t,Zi;β0)−Λ∗j(t,Zi)
}]2

.

Therefore:

∣∣∣Q(22)
j

∣∣∣
≤ e(β10+β20)τ

√
1
n

n

∑
i=1

sup
t∈[0,τ]

[
Ŝ−1

c (t|Ai,Zi){Ai− π̂(Zi)}−{S∗c(t|Ai,Zi)}−1 {Ai−π∗(Zi)}
]2

·

{
sup

t∈[0,τ],Z∈Z

∣∣Λ̂ j(τ,Z;β0)−Λ
∗
j(τ,Z)

∣∣} .
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Therefore, by Assumption 1 and by the fact that ancn = op(n−1/2) and bncn = op(n−1/2) we have

Q(22)
j = op(n−1/2). Therefore Q(2)

j = op(1)+op(n−1/2).

• Term Q(3):

By Assumption 1 we have Q(3) = op(1). Moreover, we notice that, if Λ∗(·, ·) = Λ0(·, ·), we

have Q(3) = op(n−1/2) since it would be a martingale integral with integrand converging to zero.

Otherwise, Q(3) = Op(n−1/2) under Assumptions A1, A2.

Putting all of these steps together we have:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)

−(β1 +β2−β10−β20)K(4)(β0,S∗c ,π
∗,Λ∗)

−(β j−β j0)K(1)(β0,S∗c ,π
∗)−K(2)(β,S∗c ,π

∗)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
+Q(21)+Q(3),

where Q(21)= op(n−1/2),Q(3)= op(n−1/2) under case c) of the Theorem, Q(21)= op(n−1/2),Q(3)=

Op(n−1/2) under case a) of the Theorem, and under case c), Q(21) = Op(n−1/2),Q(3) = op(n−1/2).

If Λ̂(·, ·) depends on the unknown β, by Assumption S6, we have:

K(2)
j (β,S∗c ,π

∗) = (β j−β j0)
1
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

×1
n

n

∑
l=1

q jl(t)dt,

where we call q ji(t) a function, such that:

Λ̂ j(t,Z;β)− Λ̂ j(t,Z;β0) = (β j−β j0)∗
1
n

n

∑
i=1

∫
τ

0
q ji(t). (3.61)
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Therefore, we can conclude that:

S1,n(β, Ŝc, π̂, Λ̂) = S1,n(β0,S∗c ,π
∗,Λ∗)+Q(21)+Q(3)+K(β−β0)

+Op

(
n−1/2 |β1 +β2−β10−β20|+ |β1 +β2−β10−β20|2

)
,

where K is a 2X2 matrix with the following components:

K j j = −K(1)(β0,S∗c ,π
∗)−K(2)

j (β0,S∗c ,π
∗)/(β j−β j0)−K(4)

j (β0,S∗c ,π
∗,Λ∗),

and

K12 =−K(1)
4 (β0,S∗c ,π

∗,Λ∗), K21 =−K(4)
j (β0,S∗c ,π

∗,Λ∗).

Remark 3. If the estimator Λ̂(·, ·) does not depend on β or it depends on some initial estimator of it

the decomposition simplifies. Specifically, terms K(2)
j (β,S∗c ,π

∗),Q(12),Q(18),Q(112),Q(113) cancels.

Proof of Lemma 8. We remind the reader that

Q(3)
j =

√
n
[
Sn

j(β0, Ŝc, π̂,Λ
∗)−
√

nSn
j(β0,Sc0,π0,Λ

∗)
]
. Using the fact that π̂(z) = expit(α̂>z),

Ŝc(t|a,z) = exp
(
−Λ̂c(t)eη̂>d

)
we have, by Taylor expansion:

Q(3)
j =

√
n
[
Sn

j(β0, η̂, Λ̂c, α̂,Λ
∗)−
√

nSn
j(β0,η0,Λc0,α0,Λ

∗)
]

=
1√
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait

{
Dn

i j(t,η0,Λc0,α0
}>

∆dM ji(t;β j0,Λ
∗
j)+op(1),
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where

Dn
i j(t,η,Λc,α) := [∂η f (t,Ai,Zi;η,Λc,α),∂Λc f (t,Ai,Zi;η,Λc,α),∂α f (t,Ai,Zi;η,Λc,α)]

>,

f (t,Ai,Zi;η,Λc,α) :=
{

Ai− expit(α>Z)
}

exp
(

Λc(t)eη>D
)
,

and ∆ := [η̂−η0, Λ̂c(t)−Λc0(t), α̂−α0]
>.

Standard algebra gives us:

Dn
i j(t,η,Λc,α) = [

{
Ai− expit(α>Zi)

}
)exp

(
Λc(t)eη>Di

)
Λc(t)eη>DiDi,{

Ai− expit(α>Zi)
}
)exp

(
Λc(t)eη>Di

)
eη>Di,

,−exp
(

Λc(t)eη>Di
)

expit(α>Zi)eα>ZiZi]
>.

Moreover, we know by traditional theory that

α̂−α0 = Op(n−1/2), η̂−η0 = Op(n−1/2), sup
t∈[0,τ]

{
Λ̂c(t)−Λc0(t)

}
= Op(n−1/2).

Therefore, by the above and by Assumption A*1 we have:

Q(3)
j =

√
n
∫

τ

0

[{
P(a′)

1

}>
(t)(η̂−η0)+P(a′)

2 (t)(Λ̂c(t; η̂)−Λc0(t))−
{

P(a′)
3

}>
(t)(α̂−α0)

]
dt

=
√

n
∫

τ

0

[{
p(a
′)

1

}>
(t)(η̂−η0)+ p(a

′)
2 (t)(Λ̂c(t; η̂)−Λc0(t))−

{
p(a
′)

3

}>
(t)(α̂−α0)

]
dt

+op(1). (3.62)

Lemma 15 and 16 provide the influence functions of α̂, η̂, Λ̂c. Therefore, plugging them in
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(3.62) we can conclude that:

√
nQ(3)

j =

∫
τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)

×

[∫
τ

0
(p(a

′)
1 )>(t)− [

∫
τ

0
p(a
′)

2 (t)
∫ t

0
dΛc0(u;η0)

s(1)d (u)

s(0)d (u)
dt

]

+
∫

τ

0
p(a
′)

2 (t)
1√
n

n

∑
i=1

∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)

−
∫

τ

0
(p(a

′)
3 )>(t)

(
E
[
Z>Zπ0(Zi){1−π0(Zi)}

])−1 1√
n

n

∑
i=1

Zi {Ai−π0(Zi)}dt +op(1).

Proof of Lemma 9. We have:

√
nQ(21)

j = − 1√
n

n

∑
i=1

∫
τ

0
e(β10+β20)Ait {S∗c(t|Ai,Zi)}−1 {Ai−π

∗(Zi)}Yi(t)

×
[
(γ̂ j− γ j0)

>Zidt +d
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}]

.

We notice that, by Lin and Ying (1994b), under regularity Assumptions, we have, for each

t,z:

{
Λ̂ j(t,z;β j0, γ̂ j)−Λ j0(t,z)

}
= Op(n−1/2), (3.63)

and

{
γ̂ j− γ j0

}
= Op(n−1/2). (3.64)
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Therefore, by the above and by Assumption B*1, we have:

Q(21)
j =

√
n
∫

τ

0

[
(γ̂ j− γ j0)

>p(b
′)

1 (t)dt + p(b
′)

0 (t)d
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}]

+op(1). (3.65)

Lemma 17 and 18 provide influence functions for γ̂ j and Ĝ j(t;β j0, γ̂ j).

Therefore, plugging them into (3.65) we have;

Q(21)
j =

∫
τ

0


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)


>

·

{
p(b
′)

1 (t)dt− p(b
′)

0 (t)
s(1)z (t)

s(0)z (t)
dt

}

+
∫

τ

0
p(b
′)

0 (t)
{

s(0)z (t)
}−1 1√

n

n

∑
i=1

dM ji(t)+op(1).

Proof of Lemma 10. The proof is similar to the proof of Lemma S9, using Lemma 19 instead of

S18 and we leave it to the reader.

3.8.7 Additional Lemmas and proofs

Lemma 11. Let’s consider a generic probability model p(x;β0,η0) for which β0 is the true param-

eter of interest and η0 is the nuisance parameter. Let φ(x,β,η) be such that Eβ,η {φ(x,β,η)}= 0

and let Λ⊥ be the space orthogonal to the nuisance tangent space. Then, φ ∈ Λ⊥ if and only if the

score is orthogonal, that is

∂

∂r
E{φ(x,β0,η

r)}|r=0 = 0, (3.66)
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where ηr = η0 + r∆η.

Proof of Lemma 11. We have:

∫
φ(x,β0,η

r)p(x;β0,η
r)dx = 0,

and so

0 =
∂

∂r

∫
φ(x,β0,η

r)p(x;β0,η
r)dx

∣∣∣∣
r=0

=
∫

∂rφ(x,β0,η
r)|r=0 p(x;β0,η

r)|r=0 dx+
∫

φ(x,β,ηr)|r=0 ∂r p(x;β0,η
r)|r=0 dx

=
∫

∂rφ(x,β0,η
r)|r=0 p(x;β0,η0)dx+

∫
φ(x,β0,η0)∂r log p(x;β0,η

r)|r=0 p(x;β0,η0)dx

=
∂

∂r
E {φ(x,β0,η

r)}|r=0 +E
{

φ(x,β0,η0)Sη

}
.

Therefore, if φ ∈ Λ⊥, and therefore E
{

φ(x,β0,η0)Sη

}
= 0, we obtain ∂

∂r E {φ(x,β0,η
r)}|r=0 = 0.

On the other hand, if ∂

∂r E {φ(x,β0,η
r)}|r=0 = 0, we have E

{
φ(x,β0,η0)Sη

}
= 0 and so φ∈Λ⊥.

Lemma 12. A simple application of the multidimensional mean value theorem gives us

e(β1+β2)t− e(β10+β20)t = e(β
∗
1+β∗2)tt (β1 +β2−β10−β20) ,

where β∗j is a point between β j and β j0 for j = 1,2.

Lemma 13. Let Hi(t) be a random variable such that P
(

supi=1,...,n;t∈[0,τ] |Hi(t)| ≤ K
)
= 1 for

some K < ∞. We have, for any bounded β j:

1
n

n

∑
i=1

∫
τ

0
Hi(t)dM ji(t;β j,Λ j) = E

[∫
τ

0
H(t)dM j(t;β j,Λ j)

]
+Op(n−1/2) (3.67)
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Proof of Lemma 13. By definition of dM ji, we have:

1
n

n

∑
i=1

∫
τ

0
Hi(t)dM ji(t;β j,Λ j) =

1
n

n

∑
i=1

∫
τ

0
Hi(t)

[
dN ji(t)−Yi(t)

{
β jAidt +dΛ j(t,Zi)

}]
=

1
n

n

∑
i=1

δiHi(Xi)−Xiβ jAi−
∫ Xi

0
Hi(t)dΛ j(t,Zi).

We have, by Assumptions S1 and S2

∣∣∣∣δiHi(Xi)−Xiβ jAi−
∫ Xi

0
Hi(t)dΛ j(t,Zi)

∣∣∣∣≤ K + τ|β j|+K|Λ j(τ,Zi)|< ∞

Therefore, by Hoeffding’s inequality we have (3.67).

Lemma 14. It holds:

sup
t∈[0,τ]

∣∣∣∣∣1n n

∑
i=1
{Ai−π0(Zi)}{Sc0(t|Ai,Zi)}−1Yi(t)e(β10+β20)Ait

∣∣∣∣∣= Op

(
n−1/2

)
.

Proof of Lemma 14. This is a slightly modified version of Lemma A13 of Hou et al. (2021), adapted

to include the survival of the censoring. We leave the proof to the reader.

Lemma 15. Let π(Z;α) = expit(α>Z) and let α̂ be the MLE estimator for α. We have:

√
n(α̂−α0) =

(
E
[
Z>Zπ0(Z){1−π0(Z)}

])−1 1√
n

n

∑
i=1

Zi {Ai−π0(Zi)}+op(1).

Proof of Lemma 15. Estimation of parameter α is done through classical MLE method. By classical
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MLE argument we have (proved in Zeng and Chen (2010)):

√
n(α̂−α0) =

−1
n

n

∑
i=1

e−(α0)
>Zi{

1+ e−(α0)>Zi

}2 Z>i Zi


−1

1√
n

n

∑
i=1

Aie−(α0)
>Zi−1+Ai

1+ e−(α0)>Zi
Zi

=
(

E
[
Z>Zπ0(Z){1−π0(Z)}

])−1 1√
n

n

∑
i=1

Zi {Ai−π0(Zi)}+op(1).

Lemma 16. Let Sc(t|A,Z) = g(t|A,Z;η,Λc) = exp
(
−Λceη>D

)
and let η̂ and Λ̂c(t) be the Cox

estimators. Under Assumptions S2, S4 and A*3 we have:

√
n{η̂−η0}

=

∫
τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)+op(1),

and

√
n
{

Λ̂c(t; η̂)−Λc0(t)
}

(3.68)

=


∫

τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)


>

·
∫ t

0
−dΛc0(u;η0)

s(1)d (u)

s(0)d (u)
du+

1√
n

n

∑
i=1

∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)+op(1).
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Proof of Lemma 16. Estimation of parameter η uses the following score:

U1(η) =
1
n

n

∑
i=1

∫
τ

0

{
Di−

∑
n
j=1Yj(t)D jeη>D j

∑
n
j=1Yj(t)eη>D j

}
dNc

i (t)

=
1
n

n

∑
i=1

∫
τ

0

{
Di−

∑
n
j=1Yj(t)D jeη>D j

∑
n
j=1Yj(t)eη>D j

}[
dMc

i (t)+Yi(t)dΛc0(t)e(η0)
>Didt

]
=

1
n

n

∑
i=1

∫
τ

0

{
Di−

∑
n
j=1Yj(t)D jeη>D j

∑
n
j=1Yj(t)eη>D j

}
dMc

i (t),

where Mc
i (t) = Nc

i (t)−Yi(t)Λc0(t)e(η0)
>Di , and Nc(t) := 1{X ≤ t,δ = 0}. By Taylor expansion we

have:

U1(η0) = U1(η0)−U1(η̂)

=
1
n

n

∑
i=1

∫
τ

0
{η̂−η0}>

S(2)d (t)

S(0)d (t)
−

{
S(1)d (t)

S(0)d (t)

}2
dMc

i (t)

=
1
n

n

∑
i=1

∫
τ

0
{η̂−η0}>

S(2)d (t)

S(0)d (t)
−

{
S(1)d (t)

S(0)d (t)

}2
dNc

i (t).
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Therefore, by Assumption A*2

√
n{η̂−η0} (3.69)

=

1
n

n

∑
i=1

∫
τ

0

S(2)d (t)

S(0)d (t)
−

{
S(1)d (t)

S(0)d (t)

}2
dNc

i (t)

−1

× 1√
n

n

∑
i=1

∫
τ

0

{
Di−

∑
n
j=1Yj(t)D jeη>D j

∑
n
j=1Yj(t)eη>D j

}
dMc

i (t)

=

1
n

n

∑
i=1

∫ t

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
dNc

i (t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)+op(1)

=

∫
τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)

+op(1)..

We now need to find the influence function of Λ̂c(t; η̂)−Λc0(t) = Λ̂c(t; η̂)− Λ̂c(t;η0)+

Λ̂c(t;η0)−Λc0(t). Since Λ̂c(t;η) =
∫ t

0
∑

n
i=1 dNc

i (u)

∑
n
i=1 Yi(u)eη>Di

, by Taylor expansion and by (3.69) and As-

sumption A* 3 we have:

√
n
{

Λ̂c(t; η̂)− Λ̂c(t;η0)
}

(3.70)

=−(η̂−η0)
>
∫ t

0
dΛ̂c(u;η0)

S(1)d (u)

S(0)d (u)
du

=


∫

τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)


>

×
∫ t

0
−dΛ̂c(u;η0)

s(1)d (u)

s(0)d (u)
du+op(1).
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Estimation of parameter Λc(t) uses the following score:

U2(Λc(t);η) =
1
n

n

∑
i=1

∫ t

0

{
dNc

i (u)−Yi(t)dΛc(u)eη>Di
}

=
1
n

n

∑
i=1

∫ t

0

[
dMc

i (u)−Yi(u)d
{

Λc(u)eη>Di−Λc0(u)e(η0)
>Di
}]

.

Therefore, by construction of Λ̂c(t;η0) we have

U2(Λc0(t);η0) =U2(Λc0(t);η0)−U2(Λ̂c0(t;η0);η0) =
∫ t

0
S(0)d (t)

{
dΛ̂c0(t;η0)−dΛc0(t)

}
,

and so we have:

Λ̂c(t;η0)−Λc0(t) =
1
n

n

∑
i=1

∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)+op(1),

Therefore, by putting together (3.70) and (3.71) we get:

√
n
{

Λ̂c(t; η̂)−Λc0(t)
}

(3.71)

=


∫

τ

0

s(2)d (t)

s(0)d (t)
−

{
s(1)d (t)

s(0)d (t)

}2
s(0)d (t)dΛc0(t)

−1
1√
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}
dMc

i (t)


>

×
∫ t

0
−dΛc0(u;η0)

s(1)d (u)

s(0)d (u)
du+

1
n

n

∑
i=1

∫ t

0

{
s(0)d (u)

}−1
dMc

i (u)+op(1).

Lemma 17. Let Λ j(t,Z) = G j(t)+ γ>j Zt and let γ j be estimated using (3.10) of the paper. Under
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Assumption B*2 it holds:

√
n(γ̂ j− γ j0)

>

=

1
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)+op(1).

Proof of Lemma 17. The parameter γ j is estimated through the following score:

U1

(
[βin

j ,γ j]
>
)

=
1
n

n

∑
i=1

∫
τ

0

{
Di−

S(1)d (t)

S(0)d (t)

}{
dN ji(t)−Yi(t)βin

j Aidt−Yi(t)γ>j Zidt
}

=
1
n

n

∑
i=1

∫
τ

0

{
Di−

S(1)d (t)

S(0)d (t)

}
×
{

dM ji(t)+Yi(t)dG j0(t)−Yi(t)(βin
j −β j0)Aidt−Yi(t)(γ j− γ j0)

>Zidt
}

=
1
n

n

∑
i=1

∫
τ

0

{
Di−

S(1)d (t)

S(0)d (t)

}{
dM ji(t)−Yi(t)(βin

j −β j0)Aidt−Yi(t)(γ j− γ j0)
>Zidt

}
.

Here βin
j is just some initial β j that we need for technical reason.

Therefore, by construction, we have:

U1

(
[β j0,γ j0]

>
)

= U1

(
[βin

j , γ̂ j]
>
)
−U1

(
[β j0,γ j0]

>
)

(3.72)

=
1
n

n

∑
i=1

∫
τ

0

{
Di−

S(1)d (t)

S(0)d (t)

}{
Yi(t)[βin

j −β j0, γ̂ j− γ j0]
>Didt

}
. (3.73)
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Therefore, by Assumption B*2, we have:

√
n(γ̂ j− γ j0)

> (3.74)

=

1
n

n

∑
i=1

∫
τ

0

{
Di−

S(1)d (t)

S(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

S(1)z (t)

S(0)z (t)

}
dM ji(t)

=

1
n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1
1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)+op(1).

(3.75)

Lemma 18. Let Λ j(t,Z) = G j(t)+γ>j Zt and let γ j be estimated using (3.10) of the paper and G j(t)

be estimated using (3.11). Under Assumptions B*2 it holds:

√
n
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}

=
∫ t

0

{
s(0)z (u)

}−1

 1√
n

n

∑
i=1

dM ji(u)−


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1

× 1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)

)>
s(1)z (u)du

 .
Proof of Lemma 18. The nuisance parameter G j(t) is estimated through the following score:

U2(G j(t);β j0, γ̂ j) =
1
n

n

∑
i=1

∫ t

0

{
dNi(t)−Yi(t)dG j(t)−Yi(t)β j0Aidt−Yi(t)γ̂ jZidt

}
=

1
n

n

∑
i=1

∫ t

0

[
dM ji(t)−Yi(t)d

{
G j(t)−G j0(t)

}
−Yi(t)(γ̂ j− γ j0)

>Zidt
]
.
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Therefore by construction we have:

U2(G j0(t);β j0, γ̂ j) = U2(G j0(t);β j0,γ j0)−U2(Ĝ j(t;β j0, γ̂ j);β j0, γ̂ j)

=
1
n

n

∑
i=1

∫ t

0
Yi(t)d

{
Ĝ j(t;β j0, γ̂ j)−G j0(t)

}
,

and therefore, by Assumption B*2 and Lemma 17:

√
n
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}

=
√

n
∫ t

0

{
S(0)z

}−1 1
n

n

∑
i=1

[
dM ji(t)−Yi(t)(γ̂ j− γ j0)

>Zidt
]

(3.76)

=
∫ t

0

{
s(0)z (t)

}−1
[

1√
n

n

∑
i=1

dM ji(t)−
√

n(γ̂ j− γ j0)
>s(1)z (t)dt

]
.

Hence, by (3.74), we have:

√
n
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}

(3.77)

=
√

n
∫ t

0

{
S(0)z (u)

}−1 1
n

n

∑
i=1

[
dM ji(u)−Yi(u)(γ̂ j− γ j0)

>Zidu
]

=
∫ t

0

{
s(0)z (u)

}−1
[

1√
n

n

∑
i=1

dM ji(u)

−


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1

(3.78)

× 1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)

)>
s(1)z (u)du

 .

Lemma 19. Let Λ j(t,Z) = G j(t)+γ>j Zt and let γ j be estimated using (3.10) of the paper and G j(t)
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be estimated using (3.12). Under Assumption B*3 it holds:

√
n
{

Ĝ j(t;β j0, γ̂ j)−G j0(t)
}

=
∫ t

0

{
s(0)wz (u;S∗c ,π

∗)
}−1

 1√
n

n

∑
i=1

dM ji(u)−


1

n

n

∑
i=1

∫
τ

0

{
Di−

s(1)d (t)

s(0)d (t)

}⊗2

Yi(t)dt

−1

1√
n

n

∑
i=1

∫
τ

0

{
Zi−

s(1)z (t)

s(0)z (t)

}
dM ji(t)

)>
s(1)wz (u;S∗c ,π

∗)du

 .
Proof of Lemma 19. The proof is similar to the proof of Lemma 18 and we leave it to the reader.
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Chapter 4

Doubly Robust Estimation under the

Marginal Structural Cox Model for a

Binary Treatment

4.1 Introduction

4.1.1 Background

In the analysis of time-to-event data it is often of interest to estimate the causal treatment

effect. For a binary treatment, this compares the failure time that would be observed if a patient

were treated with the failure time that would be observed if a patient were untreated or received

a different treatment. These hypothetical failure times are called potential outcomes. The causal

treatment effect is usually summarized by the causal hazard ratio, i.e. the ratio between the hazards

of the two potential outcomes. In clinical trials, the causal hazard ratio is used to compare the
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survival of a patient if s/he had been given a specific treatment with the survival of the same patient

if s/he had been given another treatment or a placebo. The causal hazard ratio can also be employed

in therapeutic trials to asses if a treatment can shorten the duration of the illness.

Here we aim at estimating the causal hazard ratio, assumed constant under the Marginal

Structural Cox model (Hernán et al., 2001), as a concise summary of the effect of a treatment on

a survival endpoint. The Marginal Structural Cox model has been widely used in observational

studies for the analysis of the effect of different therapies on the progress of various diseases, such

as AIDS, hemodialysis and HIV (Cole et al., 2003; Feldman et al., 2004; Sterne et al., 2005; Hernán

et al., 2006; Buchanan et al., 2014).

Marginal Structural models (MSMs), introduced by Robins et al. (2000), model the marginal

distribution of the potential outcome of interest. The term structural specifies that the model is

posed on the potential outcome of interest and the term marginal refers to the fact that MSMs do

not incorporate confounders. These characteristics warrant the causal interpretation of MSMs’

coefficients. This remains true even for noncollapsible models, i.e. models that change their forms

and their parameters when a covariate is integrated out. Martinussen and Vansteelandt (2013) study

the non-collapsibility of the Cox model, reason why the causal hazard ratio cannot be estimated

simply incorporating the confounders into the model. Algebra shows indeed that the causal hazard

ratio does not equal the expected value of the ratio between the hazards of the treated and the

untreated given the confounders.

In randomized trials, the absence of confounders of the relationship between treatment

and outcome guarantees consistent estimation of MSMs’ parameters using standard regression

methods. However, randomized trials can be infeasible in practice and often the assumption of

absence of confounders is not realistic. Under the assumption of no unmeasured confounders,

inverse probability weighting (IPW) has been widely used to perform estimation of the causal
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parameters characterizing this type of models (Robins et al., 2000; Hubbard et al., 2000; Hernán

et al., 2001; Chen and Tsiatis, 2001; Lunceford and Davidian, 2004; Wei, 2008; Zhang and Schaubel,

2011; Buchanan et al., 2014). IPW adjusts for the confounders weighting every observation via

the inverse of its propensity score, that is the probability of receiving the treatment conditional to

the confounders. Propensity scores are unknown in observational studies, therefore they need to be

estimated. A major drawback of this method is that, mistakes in the estimation of the propensity

score, induces bias in the estimation of the causal effect of interest. To overcome this drawback,

augmented inverse probability weighting (AIPW) has been introduced. AIPW estimators have the

interesting property of being doubly robust, that is of being consistent as long as one of two models

is correctly specified (Robins and Rotnitzky, 2001; Wang and Chen, 2001; Van Der Laan et al.,

2003; Bang and Robins, 2005; Tsiatis, 2006; Tchetgen Tchetgen et al., 2010; Zhang and Schaubel,

2012a; Jiang et al., 2017; Hou et al., 2021; Tan, 2019). Usually these estimators are doubly robust

with respect to the treatment assignment and the conditional outcome model.

In this paper, we derive the AIPW estimator for the Marginal Structural Cox Model that

is doubly robust with respect to the propensity score and the survival function conditional to the

treatment and the confounders. To this aim, we augment the Cox-IPW estimators of both structural

parameters, hazard ratio and baseline hazard, offering protection against possible misspecification

of the propensity score. To the best of our knowledge, this is the first time a doubly robust estimator

for this model is proposed.

Our estimator is model-doubly robust, that is, it needs only one of the two models to be

correctly specified to be consistent. Moreover it is asymptotically normal when only one of the two

models is correctly specified and estimated at the classical
√

n rate of convergence. The proposed

estimator is also rate-doubly robust, that is, when both models are correctly specified, it only needs

their product rates to be
√

n to be consistent and asymptotically normal. Therefore, our estimator,
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does not require the propensity score or the conditional outcome model to be estimated at a specific

rate and in theory, one of the two rates can be extremely slow as long as the other one makes

up for it. This characteristic allows the user to use, for the estimation of the propensity score

and/or the conditional outcome model, nonparametric methods as boosted logistic regression, SVM,

random survival forest and spline, that are known to converge with a rate slower than
√

n. This is

particularly interesting since these methods relax the modeling assumptions typical of parametric and

semiparametric methods giving one the possibility of overcoming the non-collapsibility challenge

posed by the Marginal Structural Cox Model.

In simulations we will show how our estimator outperforms the existing IPW-Cox esti-

mator both in terms of consistency and efficiency for different combinations of parametric and

nonparametric estimators for the propensity score and the conditional outcome model.

4.1.2 Related work

The literature on AIPW and doubly robust estimators for both structural and non structural

quantities of interest is rapidly growing. We name here few significative examples of both groups.

Robins (1998) derive a generic class of semiparametric estimators for the parameters of

MSMs with a focus on efficient estimators. For the marginal structural Cox model they propose an

augmented version of the Cox-IPW estimator of the hazard ratio. However, they don’t augment the

IPW estimators of both structural parameters, hazard ratio and baseline hazard. As a consequence,

their estimator is not robust against possible misspecification of the propensity score. Zhang and

Schaubel (2012b) and Bai et al. (2017) propose AIPW estimators separately for E[ f{T (1)}] and

E[ f{T (0)}] for different f . Yang et al. (2020) derive a doubly robust estimator for the structural

failure time model following the theory of Bickel et al. (1993). Sjölander and Vansteelandt (2017)
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develop a doubly robust estimator for the attributable fraction 1− 1−ST (0)(t)
1−S(t) . Even thought Zhang

and Schaubel (2012b), Bai et al. (2017) and Yang et al. (2020) estimators are model-doubly robust,

they are not rate-doubly robust; their asymptotic normality relies on the
√

n convergence of classical

semiparametric estimators of the nuisance parameters.

Cui et al. (2020) adapt causal forest to the survival framework of censored data for estimation

of heterogeneous treatment effect using AIPWC methodology. Their estimator is however not

doubly robust. Dukes et al. (2019b) and Hou et al. (2021) propose doubly robust estimators for

the hazard difference in low and high-dimension, respectively. Both of these works exploit the

good property of the hazard difference of being collapsible and they focus on the estimation of

the conditional hazard difference. Bickel and Kwon (2001); Tchetgen Tchetgen et al. (2010);

Tan (2019) claim that no DR estimating function exists for the conditional logistic regression

model on the observed data with respect to the outcome model and the propensity score. However,

Tchetgen Tchetgen et al. (2010); Tan (2019), exploiting a different parametrization, propose a

doubly robust estimator with respect to different models.

4.1.3 Organization of the paper

In Section 2 we define the notation, the model and the assumptions we work with. In Section

3 we derive the AIPW estimator while in Section 4 we explain its asymptotic properties. In Section

5 we study the finite sample properties of our estimator through extensive simulations. In Section

6 we apply our estimator to the data from a cohort of Japanese men in Hawaii followed since the

1960s in order to study the effect of mid-life alcohol exposure on overall death. We conclude with

the discussion in the last section. We report the proofs of all the results in Section 4.8.2 of the

Supplementary Material.
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4.2 Marginal Structural Cox Model

Let A be a binary non randomized treatment and let T (0),T (1) be the potential failure time

of a subject if s/he had been untreated or treated, respectively. As usual we indicate with λ(t) the

hazard function. We assume that T (a) follows a Marginal Structural Cox model, that is, for a = 0,1:

λT (a)(t) = λ0(t)exp(βa), (4.1)

where λ0(t) is an unknown function of t and β is the parameter of interest. We aim at estimating the

treatment effect described by the log ratio of the hazards function of the two potential outcomes

T (1) and T (0). We therefore focus on estimating the constant:

β = log
[
λT (1)(t)

{
λT (0(t)

}−1
]
. (4.2)

As is typical for time-to-event outcomes, the potential failure times T (1),T (0) are subject

to right censoring C(1),C(0). As usual, we use X(a) = min{T (a),C(a)} to indicate the potential

censored failure times, δ(a) = 1{T (a)≤C(a)} the potential event indicators and Z the observed

baseline covariates.

Ideally, we would be able to observe each subject under both treatment 1 and 0 and we

would then have as full data {X(1),X(0),δ(1),δ(0),Z} . In practice, the two potential outcomes

{X(0),δ(0)} and {X(1),δ(1)} are never observed simultaneously; indeed, if a subject is treated,

only {X(1),δ(1),A = 1,Z} is observed and if a subject is not treated, only {X(0),δ(0),A = 0,Z}

is observed. We use T,C,X ,δ to indicate the corresponding observed failure, censoring, censored

time and event indicator, respectively and we assume the following:

Assumption 2 (Consistency). T = T (a), C =C(a), X = X(a), δ = δ(a) if A = a.
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Assumption 3 (SUTVA). The potential outcomes on one unit are not affected by the treatment

assignment of the other units.

The consistency and the stable unit treatment value assumptions are typical of the causal

inference literature (Robins et al., 2000; Hernán et al., 2001).

Because full data are not available in practice, we cannot consistently estimate the parameter

of interest β using standard regression methods. Moreover, because the treatment is not randomized,

we cannot assume that the group of treated subjects is a random sample of the population and

therefore, λT (1)(t) cannot simply be estimated using only the available treated subjects; the same

can be said for λT (0)(t). However, estimation of the parameter of interest from the observed data is

possible under the following assumptions:

Assumption 4 (No unmeasured confounders). P(A = 1|X(1),X(0),δ(1),δ(0),Z) = P(A = 1|Z).

Assumption 5 (Positivity). There exists ε > 0, such that, for each z: ε < P(A = 1|Z = z)< 1− ε.

Assumption 4, also known as missing at random, assumes that the treatment assignment

mechanism only depends on the observed covariates Z (Robins et al., 2000; Hernán et al., 2001).

Assumption 5 assumes that every unit in the population has a chance of receiving each treatment

(Rosenbaum and Rubin, 1983).

We allow the censoring to depend on the treatment because in reality the treatment might

affect the censoring rate. For example, the side effects of a treatment might increase the percentage

of treated patients that drop out of the study. Viceversa, the beneficial effect of a treatment might

lower the percentage of treated subjects that are lost to follow-up. We assume the potential censoring

times to obey the following:

Assumption 6 (Independent Censoring). C(a)⊥ (T (a),Z) for a = 0,1.
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Above the symbol ⊥ indicates independence. Classical survival analysis models pose

assumptions on the hazard of the failure time conditional to some covariates. In these cases it is

typical to assume C(a) ⊥ T (a)|Z; i.e. independence between the censoring and the failure time

given the covariates incorporated in the model (Andersen and Gill, 1982; Bai et al., 2017). Since

our model is on the marginal distribution of T (a), we assume C(a)⊥ T (a). We moreover require

C(a)⊥ Z. In the literature of doubly robust estimators it is not uncommon to require assumptions

on the censoring that are slightly stronger than the one needed for classical estimators (Dukes et al.,

2019b; Hou et al., 2021). In practice, our assumption, that only requires the potential censoring to be

independent of the covariates, is not unrealistic. This could be relaxed by using inverse probability of

censoring weighting (Scharfstein and Robins, 2002), imposing a model on the censoring mechanism.

We further analyze this in the discussion.

4.3 Augmented IPW score

We derive the AIPW score for β following the theory of Van Der Laan et al. (2003) and

Tsiatis (2007). We start by constructing a full data estimating function, i.e. the estimating function

we would use if we were to have observed for each individual i, (X(1),X(0),δ(1),δ(0),A,Z). Model

(4.1) is the intersection of the following two models: λT (0)(t) = λ0(t) and λT (1)(t) = λ0(t)exp(β).

We define:

M0(t) = N0(t)−Y 0(t)Λ0(u), (4.3)

M1(t) = N1(t)−Y 1(t)Λ0(u)exp(β), (4.4)

where Na(t) = 1{X(a)≤ t,δ(a) = 1} and Y a(t) = 1{X(a)≥ t} for a = 0,1. The quantities M0(t)

and M1(t) are martingales with respect to the filtration F a
t = {Na(u),Y a

i (u
+) : i = 1, . . . ,n,
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0 < u < t}.

We can use as full data estimating function for β and Λ0(t),

U(h, t) = ∑a=0,1
∫

τ

0 h(a, t,u)dMa(u) for a two-dimensional function h. We choose h(a, t,u) =

[a,1{u≤ t}]> obtaining as full data estimating function UF = [UF
1 ,UF

2 (·)]>, where:

UF
1 = ∑

a=0,1

∫
τ

0
adMa(t) UF

2 (t) = ∑
a=0,1

∫ t

0
dMa(u). (4.5)

We now use UF as a starting point to define, as observed data estimating function, U IPW =

[U IPW
1 ,U IPW

2 (·)]> where:

U IPW
1 =

∫
τ

0
wAdM(t) U IPW

2 (t) =
∫ t

0
wdM(u), M(t) = AM1(t)+(1−A)M0(t), (4.6)

where w = A/P(A = 1|Z)+(1−A)/P(A = 0|Z) is the usual inverse probability weight. The above

technique, known as IPW, weights every treated and untreated observations by the inverse of the

conditional probability of being treated and untreated, respectively. The weighted observations

create a pseudopopulation where the treatment is randomized and in which λT (t|A = a) is the

same as λT (a)(t) of the true population. We notice that by consistency we have M(t) = N(t)−

Y (t)Λ0(t)exp(βA) where N(t) = 1{X ≤ t,δ = 1} and Y (t) = 1{X ≥ t}. We remark that while

M1(t) and M0(t) are martingales, M(t) is not a martingale since the assumed model (4.1) is on

the potential outcomes and not on the observed one. We notice that the above U IPW is the usual

Cox-IPW score.

The estimating function U IPW has been proved to be unbiased when the weights w are

correctly estimated and therefore when the propensity score P(A = 1|Z) is known or estimated

correctly (Hernán et al., 2001). However, when it is not correct, U IPW is biased.
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To protect against possible misspecification of the propensity score, we now augment U IPW

to obtain a doubly robust estimating function UAIPW . Following the theory of Van Der Laan et al.

(2003) we consider:

UAIPW =U IPW −Π
{

U IPW |T
}
. (4.7)

Here T is the propensity score tangent space, the space spanned by the score of the propensity score

and we indicate with Π{q(·)|T } the projection of a function q(·) onto the space T in the Hilbert

space with covariance inner product. In the following lemma we derive Π
{

U IPW |T
}

.

Lemma 20. Under Assumption 4, for each t ∈ [0,τ]:

Π
{

U IPW
1 |T

}
=

∫
τ

0
[wAdE{M(t)|A,Z}−dE{M(t)|A = 1,Z}] , (4.8)

Π
{

U IPW
2 (t)|T

}
=

∫ t

0
[wdE{M(u)|A,Z}−dE{M(u)|A = 1,Z}−dE{M(u)|A = 0,Z}] .

Applying the above lemma we derive the following AIPW estimating function UAIPW =

[UAIPW
1 ,UAIPW

2 (·)]> where:

UAIPW
1 =

∫
τ

0
wAdM(t)−wAdE{M(t)|A,Z}+dE{M(t)|A = 1,Z} , (4.9)

UAIPW
2 (t) =

∫ t

0
wdM(u)−wdE{M(u)|A,Z}+dE{M(u)|A = 1,Z}+dE{M(u)|A = 0,Z} .

(4.10)

We notice that we augment both components of the estimating function for estimation of

both β and Λ0(t). Even thought β is the parameter of interest, Λ0(t) is still a structural parameter

and so, to estimate Λ0(t) from the observed data, one needs to properly adjust for confounders. To
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protect against possible misspecification of the propensity score, it is therefore necessary to use an

augmented estimator also for Λ0(t).

We now focus on the quantity E{M(t)|A,Z}. Assumptions 2, 4 and 6 implies T ⊥C|A,Z.

Therefore we have E{Y (t)|A,Z}= S(t|A,Z)G(t|A) and E{N(t)|A,Z}=
∫ t

0 G(u|A)d {1−S(u|A,Z)}

where S(u|A,Z) and G(u|A) are the conditional survivorship functions of T and C, respectively.

Hence we get:

E{M(t)|A,Z} =
∫ t

0
G(u|A)d {1−S(u|A,Z)} (4.11)

−
∫ t

0
dΛ0(u)exp(βA)S(u|A,Z)G(u|A).

From now on we will use the propensity score notation π(Z) =P(A= 1|Z) and the shorthand

πi = π(Zi). Moreover we use the notation UAIPW =UAIPW (β,Λ0;π,S,G) to stress the dependency

of the score on the nuisance parameters π,S,G. We will use βo,πo,So,Go to indicate the true

quantities. Score UAIPW , for estimation of β and Λ0, is doubly robust with respect to S and π.

Theorem 9. Under Assumptions 2-6: E
[
UAIPW (βo,Λo

0;π,S,Go)
]
= 0 if either S = So or π = πo.

If we have n observations (Xi,δi,Ai,Zi), we solve

1
n

n

∑
i=1

{
UAIPW

}
i
= 0 (4.12)

to estimate β and Λ0. Here we use the notation
{

UAIPW}
i to indicate the two-dimensional score

UAIPW evaluated at Xi,δi,Ai,Zi for observation i. We define:

Si(t,a) = S(t|A = a , Zi), G(t,a) = G(t|A = a), (4.13)

Ri(t,S,G) = Yi(t)−Si(t,Ai)G(t,Ai),

224



and for l = 0,1,

S (l)(t;β,π,S,G) =
1
n

n

∑
i=1

[
wi exp(βAi)Al

iRi(t,S,G)+ ∑
a=0,1

al exp(βa)Si(t,a)G(t,a)

]
. (4.14)

Solving for Λ0(t) we obtain, for each t ∈ [0,τ]:

Λ̃0(t;β,π,S,G) =
∫ t

0

∑
n
i=1
[
wi {dNi(u)+G(u,Ai)dSi(u,Ai)}−∑a=0,1 G(u,a)dSi(u,a)

]
n · S (0)(u;β,π,S,G)

,

where we use the notation Λ̃0 when β,π,S,G are assumed known and fixed. The above estimator is

an augmented version of the IPW-Breslow estimator:
∫ t

0 ∑
n
i=1 widNi(u){∑n

i=1 wiYi(u)exp(βAi)}−1.

The IPW-Breslow estimator is a consistent estimator for Λ0(t) when the propensity score is correctly

estimated. The proposed augmented version protects against possible misspecification of the

propensity score.

Finally, profiling out Λ0(t) we obtain the following AIPW score for estimation of β:

1
n

n

∑
i=1

∫
τ

0
wi
{

Ai− Ā(t;β,π,S,G)
}
{dNi(t)+G(t,Ai)dSi(t,Ai)} (4.15)

−
∫

τ

0
∑

a=0,1

{
a− Ā(t;β,π,S,G)

}
G(t,a)dSi(t,a) = 0,

where Ā = S (1)/S (0). We remind the reader that S (l) is defined in (4.14).

The proposed score depends on the propensity score π(Z), the conditional survival function

S(t|A,Z) and the censoring survival function G(t|A). To stress this dependency we use the notation

UAIPW
1,n (β;π,S,G) to indicate the score in (4.15).
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4.4 Estimation and Inference

4.4.1 Estimation

The proposed score depends on the quantities π,S,G. These quantities, unknown in observa-

tional studies, need to be estimated from the data.

We fit the nonparametric Kaplan-Meier estimator to both the treated and the untreated group

to obtain a consistent estimator Ĝ(t|A) such that for a= 0,1 it satisfies supt∈[0,τ]
∣∣Ĝ(t | a)−Go(t | a)

∣∣
= Op(n−1/2). We call ρ(t,a) the influence function such that: Ĝ(t | a)−Go(t | a) = 1

n ∑
n
i=1 ρi(t,a)+

op(n−1/2) for a = 0,1.

An estimator for the propensity score π̂(Z), can be obtained using different methods,

parametric or nonparametric, to be chosen by the user. We will use in simulations logistic regression,

random forest, support-vector machine and gradient boosted logistic regression.

Estimating S(t|A,Z) is more complicated. The reason being that the Cox model is not

collapsible, that is, if the marginal distribution of T |A follows a Cox model, it is not true that

the conditional distribution T |A,Z still follows a Cox model and viceversa. This makes the use

of classical semiparametric model for estimation of the conditional distribution T |A,Z unsuitable

since it would raise compatibility issue with the marginal structural Cox model (4.1) assumed. To

overcome this difficulty we propose the use of nonparametric methods such as spline (Gray, 1992;

Kooperberg et al., 1995a) and random survival forest (Ishwaran et al., 2008).

Once estimators π̂, Ŝ, Ĝ are available, we propose to estimate β by solving

UAIPW
1,n (β; π̂, Ĝ, Ŝ) = 0, (4.16)

and Λ0(t) with Λ̂0(t) = Λ̃0(t; β̂, π̂, Ŝ, Ĝ). As usual, we name our estimator β̂.
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4.4.2 Asymptotic properties

We study here the asymptotic properties of our estimators.

Assumption 7. There exist some functions π∗(z) and S∗(t | a,z) such that supz∈Z |π̂(z)−π∗(z)|=

Op(bn), supt∈[0,τ],z∈Z
∣∣Ŝ(t | a,z)−S∗(t | a,z)

∣∣= Op(cn) for some bn = o(1),cn = o(1) and a = 0,1.

Assumption 7 is standard in the doubly robust literature, it assumes that the generic esti-

mators Ŝ and π̂ converge to working models S∗ and π∗ that are not necessarily equal to the true

quantities (Zhang and Schaubel, 2012b; Yang et al., 2020).

Assumption 8. There exist two constants 0 < C0 < C1 < 1, such that 0 < C0 < infz∈Z π∗(z) <

supz∈Z π∗(z)<C1 < 1.

Assumption 8 is the usual positivity assumption required for IPW based methods (Zhang

and Schaubel, 2011, 2012b; Hou et al., 2021).

Assumption 9. For any 0 < π∗(z) < 1 and any survival function S∗, S (0)(t;βo,π∗,S∗,Go) is

strictly positive and there exist bounded 0 < s(l)(t;βo,π∗,S∗,Go) < ∞ such that, for l = 0,1:

supt∈[0,τ]

∣∣∣S (l)(t;βo,π∗,S∗,Go)− s(l)(t;βo,π∗,S∗,Go)
∣∣∣= op(1).

Assumption 9 is typical of the Cox model, it can indeed be considered an AIPW version of

Assumption B of Andersen and Gill (1982).

The next result proves that, under the assumptions stated above, our proposed estimator

β̂ is consistent if either the propensity score model or the conditional outcome model is correctly

specified.

Theorem 10. Let model (4.1) and Assumptions 2-9 hold. Assume bncn = o(n−1/2), if either S∗ = So

or π∗ = πo, we have β̂−βo = op(1).
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We now focus on proving asymptotic normality of β̂. When both models are correctly

specified, our estimator is doubly robust in the rate sense. Specifically asymptotic normality of β̂

does not require Ŝ or π̂ to converge to the true So or πo at a
√

n rate as long as the product of the

two rates is o(
√

n). Potentially, one of the two could converge to the true very slowly as long as

the other one is fast enough. This property is particularly attractive for our case since we propose

the use of machine learning methods like survival random forest for estimation of S(t|A,Z) that are

known to have rates of convergence slower than the classical
√

n.

On the other hand, our estimator is also model-doubly robust, that is, it is asymptotically

normal as long as one of the two models converge to the true at the classical rate
√

n.

For the next result we need an extra assumption.

Assumption 10. R = {R(t,So,Go) = Y (t)−So(t|A,Z)Go(t|A), : t ∈ [0,τ]} is a Glivenko-Cantelli

class.

We remind the reader that we indicate with So and Go the true quantities. Assumption 10 is

standard in the empirical process literature (Wellner et al., 2013). This assumption is reasonable

since R(t) is the difference between an indicator function and a monotone uniformly bounded

function.

Theorem 11. Let model (4.1) and Assumptions 2-10 hold. Assume a) or b) or c) below:

a) (Rate-double robustness): S∗ = So and π∗ = πo and bncn = o(n−1/2),

or

b) (Model-double robustness): π∗ = πo, S∗ 6= So and bn = n−1/2; specifically, there exists

an influence function φ(z) such that π̂(z)−π∗(z) = 1
n ∑

n
i=1 φi(z)+op(n−1/2),

or

228



c) (Model-double robustness): S∗ = So, π∗ 6= πo and cn = n−1/2; specifically, there exists an

influence function ψ(t,a,z) such that Ŝ(t | a,z)−S∗(t | a,z) = 1
n ∑

n
i=1 ψi(t,a,z)+op(n−1/2).

We have:

√
n(β̂−β

o) = σ
−1 1√

n

n

∑
i=1

ϕi +op(1), (4.17)

where explicit forms of σ and ϕi = ϕi(β
o,π∗,S∗,Go,φ,ψ,ρ) are given in Section 4.8.1 of the

Supplementary Material. Therefore,
√

n(β̂−βo)→N (0,σ−2Var(ϕ)).

When the propensity score is correctly specified (case a) and b) of the Theorem), theory

proves that also the Cox-IPW estimator is consistent and asymptotically normal. However, when

both models are correct, AIPW is more efficient than IPW (Robins et al., 1995; Van Der Laan et al.,

2003). When the conditional outcome model is not correctly specified, no theoretical results exist

that compare the efficiency of the AIPW and the IPW estimator. Still, in simulations (Table 4.2, 4.3,

4.5), our estimator shows comparable or better efficiency than Cox-IPW.

The consistency and the asymptotic normality of our estimator does not require specific

estimators for the propensity score and the conditional outcome model. The user can therefore

choose from a wide variety of estimation techniques as long as the assumptions are satisfied. To the

best of our knowledge, little is known on the rate of uniform convergence of nonparametric methods

for survival estimation as Survival Random Forest and Spline. Cui et al. (2017) proves that, for

fixed covariates, a rate of n−1/(2+d) is achievable by survival random forest, where d is the number

of covariates. Kooperberg et al. (1995b) derives instead the L2 rate of convergence for spline. They

show that, under some conditions, the rate can reach n−p/(2p+d), where p is a smoothness parameter;

i.e. the optimal global rate for nonparametric regression (Stone, 1982). However, no uniform rates

have been provided in the literature. Nevertheless, the rate double robustness of our estimator gives
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the users the possibility to choose nonparametric estimators for both the estimation of the propensity

score and the conditional outcome model. This is a relaxation with respect to Wang and Chen

(2001); Tchetgen Tchetgen et al. (2010); Zhang and Schaubel (2012b); Bai et al. (2017); Dukes

et al. (2019b); Tan (2019) where classical semiparametric estimators are considered and only the

model double robustness of their estimators is proven.

Our estimator is model-doubly robust in the sense that it is both consistent and asymptotically

normal even if only one of the two models is correctly specified. In the literature, the concept of

model double robustness has been sometimes used only to indicate consistency (Wang and Chen,

2001; Hou et al., 2021).

The complicated expression for ϕ simplifies if both models are correct and therefore we are

under case a) of the Theorem. In this case

ϕi = ϕ
a
i (β

o,πo,So,Go) =
∫

τ

0
wo

i {Ai− ā(t;β
o,πo,So,Go)}{dMi(t)−E[dMi(t)|Ai,Zi]} (4.18)

+ ∑
a=0,1

{a− ā(t;β
o,πo,So,Go)}E[dMi(t)|a,Zi],

where ā = s(1)
{

s(0)
}−1

.

Under this specific case we propose a consistent estimator for the asymptotic variance of β̂.

Theorem 12. Let model (4.1) and Assumptions 2-10 hold. If S∗ = So and π∗ = πo with bncn =

o(n−1/2), the asymptotic variance of β̂ can be consistently estimated by 1√
n σ̂−1

√
V̂ where V̂ =

1
n ∑

n
i=1

{
ϕ̂a

i (β̂, π̂, Ŝ, Ĝ)
}2

and

σ̂ =
1
n

n

∑
i=1

∫
τ

0

{
Ā2(t)− Ā(t)

}[
ŵidNi(t)+ ŵiĜ(t,Ai)dŜi(t,Ai)− ∑

a=0,1
Ĝ(t,a)dŜi(t,a)

]
,
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where for simplicity we use Ā(t) to indicate Ā(t; β̂, π̂, Ŝ, Ĝ). An explicit expression for ϕ̂a is given in

Section 4.8.1 of the Supplementary Material.

The above result can be used for construction of confidence intervals when both models are

correct. When one of the two models is not correct, because of the complexity of the asymptotic

variance and because in practice one does not know which model is correct, we suggest the use of

nonparametric bootstrap for estimation of the asymptotic variance of β̂. The use of bootstrap is

typical of the literature on double robustness (Zhang and Schaubel, 2012b; Bai et al., 2017; Yang

et al., 2020) and the validity of such procedure is due to the fact that β̂ is asymptotically linear.

We will explore both options in simulation. For the second, we will use a standard nonparametric

bootstrap, where one draws bootstrap samples from (Xi,δi,Ai,Zi), i = 1, . . . ,n with replacement.

4.5 Simulations

In this section we study the properties of our estimator on simulated dataset. We compare

our AIPW estimator, β̂AIPW , with the IPW estimator, β̂IPW , and the naive Cox model that does not

adjust for confounders. Moreover, as an oracle estimator we fit the Cox model to the full data.

Simulating data under a marginal structural model is not trivial. Since the covariates Z are

not included in the model, it is not straightforward to generate confounding. Following Havercroft

and Didelez (2012), we simulate an unobserved variable V that is both associated with the covariates

Z and the outcome T inducing confounding. Specific steps of the simulation technique are reported

in Section 4.8.6 of the Supplementary Material.

In our simulation we fix β = −1 and λ0(t) = 1 and we consider 4 different scenarios

explained in Table 4.1. We estimate the propensity score with 4 different methods: logistic

regression without interaction, random forest, SVM and boosted logistic regression. For the last
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three we make use of the following R packages: ranger, e1071 and twang. Unless otherwise

specified we use the default settings. Except for random forest, we train our propensity score models

in-sample. Since random forest is known to have better out-of-sample performance, we divide the

dataset in two dataset with equal size: dat1, dat2. We then fit RF on dat1 to predict the propensity

score on dat2 and viceversa. We make use of 3000 trees. We use in simulations stabilized weights,

i.e. w = A · pr(A = 1){π(Z)}−1 +(1−A) · pr(A = 0){1−π(Z)}−1 where the marginal P(A = 1)

is estimated by the empirical proportion.

For the observed outcome model we fit the semiparametric Cox model, survival random

forest (Ishwaran et al., 2008) and linear regression spline (Kooperberg et al., 1995a). To this aim we

make use of the following R packages: survival, randomForestSRC and polspline.

We simulate 500 dataset with a sample size of 1000. For all scenarios, 41%− 55% of

subjects are treated and 27%−33% of subjects are censored. The root of our score is estimated

using Newton Raphson routine with 0 as starting value. For IPW the reported standard error is

the sandwich estimate of the standard deviation. For AIPW we report as standard error both the

model-based estimate defined in Theorem 12, that assumes both models correct, and a bootstrap

estimate. For the latter, 50 bootstrap samples are used to save computational time.

Results of simulations 1-4 are reported in Table 4.2-4.5, respectively. In Scenarios 1 and

2, AIPW outperforms IPW in term of estimation of both the treatment effect β and the asymptotic

variance of the estimator. In Scenario 3, IPW estimates are biased. Our method instead shows

consistency exhibiting protection against the misspecified propensity scores. As expected, the AIPW

model-based standard error underestimates the empirical standard deviation, leading to confidence

intervals with coverage below the nominal 95%. However, bootstrap confidence intervals show

nominal coverage. In Scenario 4, when the treatment model is assumed to be of logistic form, β̂IPW

shows some bias, bias that is corrected by β̂AIPW . For the other propensity scores, β̂AIPW bias is
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always smaller or comparable to β̂IPW one. However, as in Scenarios 1 and 2, the model-based

standard error of β̂AIPW outperforms the IPW sandwich estimator.

By theory, the model-based variance estimator is inconsistent when only one of the two

models is correctly specified. This is reflected in Scenario 3, where the propensity score is

misspecified. In the other scenarios, however, the model-based variance estimator shows some

level of robustness. On the other hand, as expected, the bootstrap confidence intervals show good

coverage in all 4 scenarios. This is in line with Funk et al. (2011).

To our best knowledge little experience exists in the literature to inform us how to properly

tune in practice survival random forest. Moreover no valuable softwares exist to find the optimal

hyperparameters. In Scenarios 3 and 4 we tune SRF paying particular attention to the split rule, the

depth of the node (nodedepth), the size of the terminal nodes (nodesize), the number of trees (ntree)

and the number of variables randomly selected as candidates for splitting a node (mtry). In Scenario

3 we fit SRF with nodesize=15, ntree=2000, mtry=4, nsplit=5, split rule=bsgradient. In Scenario 4

we fit SRF with nodesize=8, ntree=2000, mtry=7, nsplit=2, nodedepth=10, split rule=bsgradient.

However, we do not try all the possible combinations choosing a set of hyperparameters that

might not be the optimal. In both scenarios, spline outperforms SRF in term of performance.

Our simulations seem to suggest that while the latter needs to be properly tuned, Spline has good

performance when the default hyperparameters are used.

233



Table 4.1: Data-generating mechanisms of Scenarios 1-4. β =−1 and Λ0(t) = t are fixed. In
Scenarios 1-3, Z = [Z1,Z2,Z3]

>. In Scenario 4, Z = [Z1,Z2,Z3,Z4,Z5,Z6]
>.

Scenario Data-generating mechanism
V ∼U(0,1)

1 Z1 = 0.5V +N (0,0.5),Z2 = 0.3V +N (0,1),Z3 =V 2 +N (0,0.3)
PS: Logistic logit{π(Z)}=−Z1 +Z2−Z3

C(a)∼ Exp(1/5+1/5a)
2 V ∼U(0,1)

PS: Logistic Z1 = 0.5V +U(−0.5,0.5),Z2 = 0.3V +B(0.5),Z3 =V 2 +U(−0.3,0.3)
with logit{π(Z)}=−Z1 +Z2 +Z3 +Z1Z2−Z2Z3 +Z1Z2Z3

Interaction C(a)∼ Exp(1/8+1/8a)
V ∼U(0,1)

3 Z1 = 0.5V +N (0,0.5),Z2 = 0.3V +N (0,1),Z3 = 0.1V +N (0,0.3)
PS: Soft ε = B(expit(−Z1 +Z2 +Z3 +Z1Z2−Z2Z3 +Z1Z2Z3))

Partition 1 π(Z) = 1{Z1 +Z2 +Z3 + ε < 0.5}
C(a)∼ Exp(1/10+1/10a)

V ∼ N(0,1)
4 Z1,Z2,Z3,Z4,Z5,Z6 = (V +N(0,1))/

√
2

PS: Soft π(Z) = 0.8∗1{∑6
i=1 Z2

i < χ0.5,6}+0.2∗1{∑6
i=1 Z2

i > χ0.5,6}
Partition 2 C(a)∼ Exp(1/8+1/8a)

Table 4.2: Results of simulations from Scenario 1. The true β = −1. Column PS and OC
indicates how the propensity score and the conditional outcome model are estimated, respectively.
The first SE and CP are model-based. The second SE and CP are based on bootstrap. Bootstrap
is performed only for the first 100 simulations. SD, standard deviation; SE, standard error; CP,
coverage of a 95% confidence interval; Boot, bootstrap.

IPW AIPW
PS Bias SD SE CP OC Bias SD SE CP

Model / Boot Model / Boot

Log −0.016 0.090 0.205 1
Cox −0.017 0.127 0.111 / 0.109 0.96 / 0.98
SRF −0.002 0.099 0.082 / 0.090 0.95 / 0.94

Spline −0.011 0.090 0.089 / 0.097 0.97 / 0.95

RF −0.016 0.111 0.305 1
Cox −0.020 0.117 0.133 / 0.118 0.98 / 0.97
SRF −0.014 0.109 0.179 / 0.105 0.96 / 0.95

Spline −0.011 0.111 0.115 / 0.113 0.97 / 0.97

SVM −0.100 0.088 0.122 0.95
Cox 0.004 0.078 0.079 / 0.084 0.95 / 0.96
SRF −0.004 0.077 0.074 / 0.078 0.94 / 0.97

Spline −0.002 0.077 0.078 / 0.085 0.95 / 0.96

Tw −0.099 0.083 0.119 0.93
Cox 0.018 0.077 0.072 / 0.073 0.92 / 0.94
SRF 0.0005 0.077 0.068 / 0.074 0.91 /0.94

Spline 0.001 0.077 0.072 / 0.081 0.93 / 0.94

Oracle Naive Cox
−0.003 0.028 0.028 0.94 −0.302 0.086 0.084 0.13
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Table 4.3: Results of simulations from Scenario 2. The true β = −1. Column PS and OC
indicates how the propensity score and the conditional outcome model are estimated, respectively.
The first SE and CP are model-based. The second SE and CP are based on bootstrap. Bootstrap
is performed only for the first 100 simulations. SD, standard deviation; SE, standard error; CP,
coverage of a 95% confidence interval; Boot, bootstrap.

IPW AIPW
PS Bias SD SE CP OC Bias SD SE CP

Model / Boot Model / Boot

Log −0.010 0.061 0.108 1
Cox 0.004 0.065 0.068 / 0.070 0.96 / 0.96
SRF −0.002 0.054 0.052 / 0.057 0.94 / 0.95

Spline 0.003 0.058 0.059 / 0.078 0.95 / 0.97

RF 0.056 0.091 0.187 1
Cox −0.041 0.097 0.121 / 0.103 0.99 / 0.95
SRF −0.002 0.084 0.077 / 0.082 0.95 / 0.94

Spline −0.015 0.097 0.098 / 0.079 0.94 / 0.91

SVM −0.142 0.077 0.098 0.73
Cox 0.049 0.062 0.061 / 0.063 0.86 / 0.85
SRF 0.0003 0.053 0.050 / 0.052 0.93 / 0.96

Spline 0.012 0.063 0.056 / 0.074 0.91 / 0.96

Tw −0.083 0.055 0.093 0.96
Cox 0.031 0.052 0.058 / 0.050 0.94 / 0.88
SRF −0.011 0.049 0.047 / 0.047 0.94 / 0.93

Spline 0.005 0.052 0.052 / 0.059 0.94 / 0.97

Oracle Naive Cox
−0.001 0.027 0.028 0.95 −0.322 0.080 0.085 0.02
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Table 4.4: Results of simulations from Scenario 3. The true β = −1. Column PS and OC
indicates how the propensity score and the conditional outcome model are estimated, respectively.
The first SE and CP are model-based. The second SE and CP are based on bootstrap. Bootstrap
is performed only for the first 100 simulations. SD, standard deviation; SE, standard error; CP,
coverage of a 95% confidence interval; Boot, bootstrap.

IPW AIPW
PS Bias SD SE CP OC Bias SD SE CP

Model / Boot Model / Boot

Log −0.993 0.133 0.261 0.04
Cox 0.065 0.150 0.023 / 0.102 0.58 / 0.86
SRF −0.040 0.140 0.052 / 0.121 0.55 / 0.97

Spline −0.003 0.135 0.057 / 0.150 0.56 / 0.95

RF −1.030 0.149 0.314 0.12
Cox 0.063 0.108 0.057 / 0.100 0.58 / 0.90
SRF −0.053 0.144 0.056 / 0.125 0.57 / 0.94

Spline −0.006 0.138 0.061 / 0.328 0.60 / 0.98

SVM −0.970 0.143 0.374 0.19
Cox 0.064 0.108 0.063 / 0.106 0.64 / 0.86
SRF −0.028 0.142 0.062 / 0.124 0.60 / 0.98

Spline −0.001 0.137 0.068 / 0.256 0.65 / 0.97

Tw −1.142 0.125 0.174 0
Cox 0.064 0.104 0.042 / 0.097 0.47 / 0.89
SRF −0.064 0.142 0.041 / 0.120 0.44 / 0.96

Spline −0.009 0.137 0.045 / 0.284 0.47 / 0.96

Oracle Naive Cox
−0.001 0.029 0.028 0.93 −1.577 0.112 0.129 0
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Table 4.5: Results of simulations for Scenario 4. The true β =−1. Column PS and OC indicates
how the propensity score and the conditional outcome model are estimated, respectively. The
first SE and CP are model-based. The second SE and CP are based on bootstrap. Bootstrap is
performed only for the first 100 simulations. SD, standard deviation; SE, standard error; CP,
coverage of a 95% confidence interval; Boot, bootstrap.

IPW AIPW
PS Bias SD SE CP OC Bias SD SE CP

Model / Boot Model / Boot

Log 0.159 0.054 0.080 0.50
Cox −0.106 0.139 0.062 / 0.170 0.81 / 0.91
SRF 0.029 0.056 0.044 / 0.097 0.89 / 0.91

Spline 0.004 0.049 0.054 / 0.057 0.97 / 0.97

RF −0.006 0.070 0.212 1
Cox 0.005 0.066 0.109 / 0.058 0.97 / 0.91
SRF 0.003 0.061 0.048 / 0.065 0.89 / 0.95

Spline 0.004 0.059 0.048 / 0.059 0.95 / 0.93

SVM 0.003 0.073 0.105 1
Cox −0.001 0.049 0.048 / 0.049 0.95 / 0.96
SRF 0.020 0.053 0.048 / 0.053 0.88 / 0.92

Spline 0.004 0.049 0.048 / 0.049 0.96 / 0.97

Tw 0.025 0.057 0.088 1
Cox −0.008 0.047 0.045 / 0.045 0.94 / 0.93
SRF 0.032 0.054 0.043 / 0.053 0.81 / 0.86

Spline 0.005 0.047 0.044 / 0.046 0.94 / 0.95

Oracle Naive Cox
−0.002 0.028 0.028 0.95 0.162 0.077 0.084 0.54

4.6 Real Data

We study the effect of mid-life alcohol consumption on overall death. To this aim we use

data from the Honolulu-Asia Aging Study (HAAS). The study, established in 1991 as a continuation

of the Honolulu Hearth Program project (HHP), collected data on a cohort of Japanese men with a

focus on causes of cognitive and motor impairment, stroke, and the common chronic conditions of

late-life.

The mid-life alcohol exposure was assessed at exam 1 and exam 3 of HHP (1965/ 1971-

1974) by self report. People with a light exposure to alcohol at both exams are considered light

drinkers, while people with a heavy exposure to alcohol in at least one of the two life periods are
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considered heavy drinkers. The death of the participants, when available, was collected from their

death certificates.

To study the effect of alcohol exposure on overall survival it is important to adjust for

confounding. To this aim we use as covariates age at baseline, maximum years of education, ApoE

genotype, systolic blood pressure, and heart rate. The summary statistics of these variables can be

found in Table 4.7 in Section 4.8.7 of the Supplementary Material.

Since HAAS starts at exam 4 (1991), we consider exam 4 as time 0 and we restrict the

analysis to the set of participants still available. After eliminating some observations (∼ 50) with

missing entries we are left with 2061 participants; 1509 light drinkers and 552 heavy drinkers.

Among light drinkers 1317 (87%) deaths were observed while among heavy drinkers 506

(92%) deaths were recorded. The Kaplan-Meier curves for the two groups are presented in Figure

4.2 in Section 4.8.7 of the Supplementary Material.

We use our proposed score to estimate the effect of mid-life alcohol exposure on overall sur-

vival. As in simulations we estimate the propensity score by logistic regression without interaction,

random forest, SVM with sigmoid kernel and boosted logistic regression (twang). In Figure 4.1 we

plot the distribution of the estimated propensity scores for both groups. We estimate the conditional

outcome model by Cox model, survival random forest and spline. For SRF we use 500 trees, we set

the terminal nodes’ size at 30, the number of variables randomly selected as candidates for splitting

a node at 5 and the splitting rule at bs.gradient. For spline we use a penalty of 0.5.

The results of the analysis are reported in Table 4.6. For comparison we also report the

results of the naive Cox model that doesn’t adjust for confounding and IPW.

In line with Figure 4.2 all the results seem to suggest that mid-life alcohol exposure has a

significant effect on overall survival with a positive hazard ratio between heavy and light drinkers.
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The magnitude of the effect changes according to the method used. AIPW with Cox estimate

ranges between 0.243 and 0.256. AIPW with SRF estimate ranges between 0.224 and 0.255. While

when spline is used the estimated effect ranges between 0.240 and 0.259. For IPW the estimated

effect ranges from 0.242 and 0.283, while the naive Cox model gives a point estimate of 0.282. As

expected, AIPW confidence intervals provide a better representation of the causal effect. Both the

naive Cox and the IPW with SVM estimates of the treatment effect are around 0.283 suggesting

that SVM model for propensity score might not properly adjust for confounding. However, AIPW

estimates are stable across the different propensity scores corroborating their robustness with respect

to the estimation of the propensity score.
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Figure 4.1: Distribution of the estimated propensity score for the HHP-HAAS dataset.
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Table 4.6: Estimated treatment effect for the HHP-HAAS dataset. Column PS and OC indicates
how the propensity score and the conditional outcome model are estimated, respectively. The
first CI and p-value are model-based while the second are based on bootstrap. The computed
P-value is two-sided. CI, confidence interval; Boot; bootstrap.

IPW AIPW

PS β̂ CI P-value OC β̂ CI P-value

Model / Boot Model / Boot

Log 0.251 [0.133,0.368] < 0.001

Cox 0.243 [0.142,0.345] / [0.144,0.343] < 0.001 / < 0.001

SRF 0.240 [0.143,0.338] / [0.146,0.335] < 0.001 / < 0.001

Spline 0.243 [0.141,0.345] / [0.139,0.348] < 0.001 / < 0.001

RF 0.242 [0.078,0.406] 0.004

Cox 0.245 [0.123,0.368] / [0.080,0.410] < 0.001 / 0.004

SRF 0.255 [0.134,0.376] / [0.109,0.402] < 0.001 / < 0.001

Spline 0.242 [0.120,0.364] / [0.075,0.409] < 0.001 / 0.005

SVM 0.283 [0.182,0.384] < 0.001

Cox 0.256 [0.161,0.352] / [0.160,0.353] < 0.001 / < 0.001

SRF 0.250 [0.158,0.342] / [0.157,0.342] < 0.001 / < 0.001

Spline 0.259 [0.164,0.354] / [0.149,0.369] < 0.001 / < 0.001

Tw 0.245 [0.144,0.345] < 0.001

Cox 0.243 [0.152,0.333] / [0.152,0.333] < 0.001 / < 0.001

SRF 0.224 [0.137,0.311] / [0.138,0.310] < 0.001 / < 0.001

Spline 0.240 [0.150,0.331] / [0.142,0.339] < 0.001 / < 0.001

Naive Cox

0.282 [0.177,0.388] < 0.00001

4.7 Discussion

We have derived a new score for the estimation of the causal hazard ratio. Our proposal

is doubly robust with respect to the propensity score and the conditional survival function of the

failure time. Our score augments the Cox-IPW score to protect against possible misspecification of

the propensity score.

The potential censoring times are assumed to be independent of both the potential failure

times and the confounders. This assumption could be relaxed following AIPWCC methodology

(Rotnitzky and Robins, 2005; Tsiatis, 2007; Bai et al., 2017; Zhang and Schaubel, 2012b). Under the
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weaker assumption of independence between the potential failure times and the potential censoring

times given the confounders, AIPWCC methodology treats both censoring and treatment indicator as

coarsening variables. The IPWCC score weights every observation by the inverse of the probability

of receiving the observed treatment and of being uncensored. The AIPWCC score augments the

IPWCC to protect against possible misspecification of both the propensity score and the censoring

mechanism. The AIPWCC score would then have an extra term with respect to our proposed

score. Moreover it would be doubly robust with respect to the models corresponding to the weights,

propensity score and censoring distribution, and the conditional survival function of the failure time.

The computation of the projection that defines the augmentation for the IPWCC score is non trivial;

such score is beyond the scope of this work and we leave it for future works.

We have proved that our score is both model and rate-doubly robust. As explained, the

latter characteristic allows the user to choose from a variety of methodologies, both parametric

and nonparametric, for estimation of the propensity score and the outcome model. In simulations

we have investigated the performance of different nonparametric methods such as random forest,

SVM, boosted logistic regression for the estimation of the propensity score and survival random

forest and spline for the estimation of the conditional survival function of the failure time. The idea

that nonparametric methods are always consistent, because in principle model-free is a common

misconception. While it is true that they relax the modeling assumptions typical of parametric

methodologies, their consistency is not granted and it is often hard to assess. Moreover, they have

often convergence rates slower than the classical
√

n. It is therefore convenient to pair them with

estimators that are both model and rate-doubly robust as our proposal. The tuning process of

nonparametric methods can be non trivial. In simulations we have discovered how in practice tuning

survival random forest can be quite complicated and how the default settings are not always optimal.

On the other hand Spline has shown good performance with the default parametrization.
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Because of the non-collapsibility of the hazard ratio, assuming that the conditional distri-

bution of the failure time follows a Cox model is incompatible with the marginal structural Cox

model. However, in simulations we have investigated the performance of our estimator when the

conditional outcome model is assumed to follow the Cox model. Even though using survival random

forest and spline always outperformed the use of the Cox model, the latter has still been proven

useful by our simulations to correct for mistakes in the estimation of the propensity score. This

perhaps comes with no surprise since experience has shown that Cox model is quite robust to model

misspecification for survival prediction. We however advise the user to use nonparametric methods

for estimation of the outcome model.

In simulations we have compared our score with the state-of-the-art Cox IPW. To estimate its

asymptotic variance we have used the proposed sandwich estimator. This estimator does not take into

account the weights’ estimation and it is therefore known to be slightly biased. Practitioners have

been recently used bootstrap instead. However we have shown in simulations that our model-based

variance estimator has better performance than the IPW sandwich estimator.

The ideas beyond the derivation of the AIPW score described in section 4.3 are not neces-

sarily exclusive to the marginal structural Cox model; this work opens up a new line of research.
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4.8 Appendix

4.8.1 Formal quantities

In Theorem 11 we claim that
√

n(β̂−βo) = σ−1 1√
n ∑

n
i=1 ϕi + op(1). We report here the

expressions for ϕ and σ.

ϕi(β
o,π∗,S∗,Go,φ,ψ,ρ)

=
∫

τ

0
w∗i {Ai− ā(t;β

o,π∗,S∗,Go)}

×
{

dMi(t)+dS∗i (t,Ai)Go(t,Ai)+ eβoAiS∗i (t,Ai)Go(t,Ai)dΛ
o
0(t)
}

−
∫

τ

0
∑

a=0,1
{a− ā(t;β

o,π∗,S∗,Go)}
{

dS∗i (t,a)G
o(t,a)+ eβoaS∗i (t,a)G

o(t,a)dΛ
o
0(t)
}

−
∫

τ

0

1
n

n

∑
j=1

φi(Z j)
{

π
∗
j
}−2

(
dN j(t)+Go(t,A j)dS∗j(t,Ai)−dΛ

o
0(t)e

βoA jR j(t,S∗,Go)
)

(4.19)

−
∫

τ

0

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

Bi(t,βo,π∗,S∗,Go) (4.20)

−
∫

τ

0

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

Di(t,βo,π∗,S∗,Go) (4.21)

+
∫

τ

0
dΛ

o
0(t)

1
n

n

∑
j=1

{
Go(t,1)ψi(t,1,Z j)+S∗j(t,1)ρi(t,1)

}{A j

π∗j
eβoA j − eβo

}

+
∫

τ

0

1
n

n

∑
j=1

{
Go(t,A j)dψi(t,1,Z j)+dS∗j(t,A j)ρi(t,1)

}{A j

π∗j
−1

}
, (4.22)
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where

Bi(t,βo,π∗,S∗,Go)

=

{
s(1)(t;β

o,π∗,S∗,Go)− 1
n2

n

∑
l,m=1

φl(Zm){π∗m}
−2 AmeβoAmRm(t,S∗,Go)

}

× 1
n

n

∑
j=1

φi(Z j)

 1−A j{
1−π∗j

}2 −
A j{
π∗j

}2


×
{

dN j(t)+Go(t,A j)dS∗j(t,A j)−dΛ
o
0(t)exp(βoA j)R j(t,S∗,Go)

}
,

and

Di(t,βo,π∗,S∗,Go) =

[
s(1)(t;β

o,π∗,S∗,Go)+
1
n

n

∑
l=1

Jl(t,1)
{

Al

π∗l
eβoAl − eβo

}]

× 1
n

n

∑
j=1

(
w∗j
{

Go(t,A j)dψi(t,A j,Z j)+dS∗j(t,A j)ρi(t,A j)
}

− ∑
a=0,1

{
Go(t,a)dψi(t,a,Z j)+dS∗j(t,a)ρi(t,a)

}
+dΛ

o
0(u)

{
w∗je

βoA j
{

Go(t,A j)ψi(t,A j,Z j)+S∗j(t,A j)ρi(t,A j)
}

− ∑
a=0,1

eβoa{Go(t,a)ψi(t,a,Z j)+S∗j(t,a)ρi(t,a)
})

.

Moreover

σ =
∫

τ

0

{
ā2(t;β

o,π∗,S∗,Go)− ā(t;β
o,π∗,S∗,Go)

}
dΛ

o
0(t)s

(0)(t;β
o,π∗,S∗,Go).

The complicated expression of ϕi simplifies according to which model is correctly specified.

Specifically, if both models are correct (case a) of Theorem 11), lines (4.19)-(4.22) are negligeable.

On the other hand, if only the propensity score model is correct (case b) of Theorem 11), lines
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(4.21)-(4.22) are negligeable and if only the conditional outcome model is correct (case c) of

Theorem 11), lines (4.19)-(4.20) are negligeable.

In Theorem 12, when both models are correct we derive the following consistent estimator

for ϕ:

ϕ̂
a
i (β̂, π̂, Ŝ, Ĝ) =

∫
τ

0
ŵi

{
Ai− Ā(t; β̂, π̂, Ŝ, Ĝ)

}
×
{

dMi(t; β̂, Λ̂0)+dŜi(t,Ai)Ĝ(t,Ai)+dΛ̂
o
0(t)Ŝi(t,Ai)Ĝ(t,Ai)

}
−

∫
τ

0
∑

a=0,1

{
a− Ā(t; β̂, π̂, Ŝ, Ĝ)

}{
dŜi(t,a)Ĝ(t,a)+dΛ̂0(t)Ŝi(t,a)Ĝ(t,a)

}
,

where

Mi(t; β̂, Λ̂0) = Ni(t)−Yi(t)eβ̂AiΛ̂0(t).

4.8.2 Proof of the main results

We remind the reader that we use the following notation:

UAIPW
1,n (β;π,S,G) =

∫
τ

0

1
n

n

∑
i=1

wi
{

Ai− Ā(t;β,π,S,G)
}
{dNi(t)+G(t,Ai)dSi(t,Ai)}

− ∑
a=0,1

{
a− Ā(t;β,π,S,G)

}
G(t,a)dSi(t,a),

where w = [Aπ(Z)+(1−A){1−π(Z)}]−1.
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Moreover we remind the reader that the above is equivalent to:

UAIPW
1,n (β,π,S,G) =

∫
τ

0

1
n

n

∑
i=1

[wiAi {dNi(t)+G(t,Ai)dSi(t,Ai)

−dΛ̃0 (t;β,π,S,G)eβAiRi(t,S,G)
}

−
{

G(t,1)dSi(t,1)+dΛ̃0 (t;β,π,S,G)eβG(t,1)Si(t,1)
}]

where Λ̃0 (t;β,π,S,G) is the solution to UAIPW
2,n (t,Λ;β,π,S,G) = 0 where:

UAIPW
2,n (t,Λ0;β,π,S,G)

=
1
n

n

∑
i=1

∫
τ

0

[
wi

{
dNi(u)+dSi(u,Ai)G(u,Ai)−dΛ0(u)eβAiRi(u,S,G)

}
− ∑

a=0,1
dSi(u,a)G(u,a)−dΛ0(u) ∑

a=0,1
eβaSi(u,a)G(u,a)

]
.

Proof of Lemma 20

For this proof we make use of some additional lemmas, Lemmas 24-26, reported in Section

4.8.5.

Proof of Lemma 20. We start proving that, for a generic function of the observed data q(X ,δ,A,Z):

∏{q(X ,δ,A,Z) | T }= E{q(X ,δ,A,Z) | A,Z}−E{q(X ,δ,A,Z) | Z} . (4.23)

Define T ′
= {φ(A,Z) f or all φ}. By Lemma 24, T ⊂ T ′

and hence by Lemma 25, we have:

∏{q(X ,δ,A,Z) | T }= ∏

[
∏

{
q(X ,δ,A,Z)|T

′
}∣∣∣T ]

= ∏ [E{q(X ,δ,A,Z)|A,Z}|T ] .
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Now, by Lemma 26, the above equals to:

= E{q(X ,δ,A,Z) | A,Z}−E [E{q(X ,δ,A,Z) | A,Z} | Z]

= E{q(X ,δ,A,Z) | A,Z}−E{q(X ,δ,A,Z) | Z} ,

where the last line comes from an application of the tower law of conditional expectation.

We now apply (4.23) to our specific U IPW . We have:

∏
{

U IPW
1 |T

}
= E

{
U IPW

1 | A,Z
}
−E

{
U IPW

1 | Z
}

(4.24)

=
∫

τ

0
[E{wAdM(t) | A,Z}−E{wAdM(t) | Z}] .

Now, calculating the second conditional expectation, the above equals:

=
∫

τ

0

[
E{wAdM(t) | A,Z}− ∑

a=0,1
wP(A = a|Z)E{AdM(t) | A = a,Z}

]

=
∫

τ

0
[wAdE{M(t) | A,Z}−E{dM(t) | A = 1,Z}] .

Similarly:

∏
{

U IPW
2 (t) | T

}
= E

{
U IPW

2 (t) | A,Z
}
−E

{
U IPW

2 (t) | Z
}

(4.25)

=
∫ t

0
[E{wdM(u) | A,Z}−E{wdM(u) | Z}]

=
∫ t

0
[wdE{M(u) | A,Z}−E{dM(u) | A = 1,Z}−E{dM(u) | A = 0,Z}] .

The result of the Lemma follows directly from (4.24) and (4.25).
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Proof of Theorem 9

Proof of Theorem 9. We prove separately that E
{

UAIPW
1 (βo,Λo

0;π,S,Go)
}
= 0 and

E
{

UAIPW
2 (t,βo,Λo

0;π,S,Go)
}
= 0 for each t ∈ [0,τ] if either π = πo and S = So.

If π = πo, we have:

E
{

UAIPW
1 (βo,Λo

0;π
o,S,Go)

}
=

∫
τ

0
E
[

E{AdM(t)|Z}
πo(Z)

]
+

∫
τ

0
E
(

1
πo(Z)

E
[
A
{

Go(t|A)dS(t|A,Z)+dΛ
o
0(t)e

βoAGo(t|A)S(t|A,Z)
}
|Z
])

−
∫

τ

0
E
[
Go(t|1)dS(t|1,Z)−dΛ

o
0(t)e

βo
Go(t|1)S(t|1,Z)

]
.

Calculating the conditional expectation in the above equation we have:

E
{

UAIPW
1 (βo,Λo

0;π
o,S,Go)

}
=

∫
τ

0
E
[
dM1(t)

]
+E

{
Go(t|1)dS(t|1,Z)+dΛ

o
0(t)e

βo
Go(t|1)S(t|1,Z)

}
−

∫
τ

0
E
{

Go(t|1)dS(t|1,Z)+dΛ
o
0(t)e

βo
Go(t|1)S(t|1,Z)

}
=

∫
τ

0
E
[
dM1(t)

]
= 0.

On the other hand, if S = So, since by (4.11)

∫
τ

0
E{dM(t)|A,Z}=−

∫
τ

0
Go(t|A)dSo(t|A,Z)−

∫
τ

0
dΛ

o
0(t)exp(βoA)Go(t|A)So(t|A,Z),
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we have:

E
{

UAIPW
1 (βo,Λo

0,π,S
o,Go)

}
=

∫
τ

0
E
[

AE{dM(t)|A,Z}
π(Z)

]
−

∫
τ

0
E
[

AE{dM(t)|A,Z}
π(Z)

]
+

∫
τ

0
E [E{dM(t)|A = 1,Z}]

=
∫

τ

0
E [E{dM(t)|A = 1,Z}] =

∫
τ

0
E
[
dM1(t)

]
= 0.

Therefore, if either π = πo or S = So, we have:

E
{

UAIPW
1 (βo,Λo

0;π,S,Go)
}
=

∫
τ

0
E
{

dM1(t)
}
= 0.

Similarly to before, we have for t ∈ [0,τ], if π = πo:

E
{

UAIPW
2 (t,βo,Λo

0;π
o,S,Go)

}
=

∫ t

0
E [woE{dM(u)|Z}]

− ∑
a=0,1

∫ t

0
E
{

Go(u|a)dS(u|a,Z)−dΛ
o
0(u)e

βoaGo(u|a)S(u|a,Z)
}

+
∫ t

0
E
(

E
[
wo
{

Go(u|A)dS(u|A,Z)+dΛ
o
0(u)e

βoAGo(u|A)S(u|A,Z)
}
|Z
])

,
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calculating the above conditional expectation considering that w = A
π(Z) +

1−A
1−π(Z) , we have:

E
{

UAIPW
2 (t,βo,Λo

0;π
o,S,Go)

}
=

∫ t

0
E
{

E{A|Z}
πo(Z)

dM1(u)
}
+

∫ t

0
E
{

E{1−A|Z}
1−πo(Z)

dMo(u)
}

+ ∑
a=0,1

∫ t

0
E
{

Go(u|a)dS(u|a,Z)+dΛ
o
0(u)e

βoaGo(u|a)S(u|a,Z)
}

− ∑
a=0,1

∫ t

0
E
{

Go(u|a)dS(u|a,Z)+dΛ
o
0(u)e

βoaGo(u|a)S(u|a,Z)
}

=
∫ t

0
E
{

dM1(u)
}
+

∫ t

0
E{dMo(u)}= 0.

On the other hand, if S = So:

E
{

UAIPW
2 (t,βo,Λo

0;π,So,Go)
}

=
∫ t

0
E

[
E{wdM(u)|A,Z}−

∫ t

0
E{wdM(u)|A,Z}+ ∑

a=0,1

∫ t

0
E{dM(u)|A = a,Z}

]

= ∑
a=0,1

∫ t

0
E{dMa(u)}= 0.

Proof of Theorem 10 and 11

By Taylor expansion of the score UAIPW
1,n

(
β; π̂, Ŝ, Ĝ

)
around βo we get:

UAIPW
1,n

(
β; π̂, Ŝ, Ĝ

)
=UAIPW

1,n (βo; π̂, Ŝ, Ĝ)+
∂

∂β
UAIPW

1,n (β; π̂, Ŝ, Ĝ)

∣∣∣∣
β=β̃

(β−β
o),
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where β̃ is a point between β and βo. Therefore, by construction of β̂, we have:

−
√

nUAIPW
1,n (βo; π̂, Ŝ, Ĝ) = +

∂

∂β
UAIPW

1,n (β; π̂, Ŝ, Ĝ)

∣∣∣∣
β=β̃

√
n(β̂−β

o). (4.26)

It can be proved that ∂

∂β
U(β; π̂, Ŝ, Ĝ) converges to σ(β), where:

σ(β) =
∫

τ

0


(

s(1)

s(0)

)2

− s(1)

s(0)

(t;β,π∗,S∗,Go)dΛ
o
0(t)s

(0)(t;β
o,π∗,S∗,Go).

The next lemma indeed holds.

Lemma 21. Let model (4.1) and Assumptions 2-9 hold, we have:

∂

∂β
U(β; π̂, Ŝ, Ĝ) = σ(β)+op(1). (4.27)

Term
√

nUAIPW
1,n (βo; π̂, Ŝ, Ĝ) requires a little bit more attention. Indeed, when both models

are correctly specified, it converges to
√

nUAIPW
1,n (βo;πo,So,Go). However, when only one of the

two models is correctly specified, the limit contains an extra term that depends on which model is

correctly specified. The following lemma proves the above in details.

Lemma 22. Let model (4.1) and Assumptions 2-10 hold. If bncn = o(n−1/2), it holds:

UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)

= UAIPW
1,n (βo;π

∗,S∗,Go)+op(1). (4.28)

Moreover:

a) If S∗(t | a,z) = So(t | a,z) and π∗(z) = πo(z) and bncn = o(n−1/2) it holds:

UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)

= UAIPW
1,n (βo;π

∗,S∗,Go)+op(n−1/2). (4.29)
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b) π∗(z) = πo(z), S∗(t | a,z) 6= So(t | a,z) with bn = n−1/2; specifically there exists an

influence function φ(z) such that π̂(z)−π∗(z) = 1
n ∑

n
i=1 φi(z), we have:

UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)

(4.30)

= UAIPW
1,n (βo;π

∗,S∗,G)+op(n−1/2)

−
∫

τ

0

1
n2

n

∑
i, j=1

φ j(Zi){π∗i }
−2 Ai

(
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)
)

−
∫

τ

0

{
s(0)(t;β

o, π̂,S∗,Go)
}−1{

s(1)(t;β
o,π∗,S∗,Go)

− 1
n2

n

∑
l,m=1

φl(Zm){π∗m}
−2 AmeβoAmRm(t,S∗,Go)

}
(4.31)

× 1
n2

n

∑
i, j=1

φ j(Zi)

[
1−Ai{

1−π∗i
}2 −

Ai{
π∗i
}2

]
×{dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)exp(βoAi)Ri(t,S∗,Go)} .

c) S∗(t|a,z) = So(t|a,z), π∗(z) 6= πo(z) and cn = n−1/2; specifically there exists an influence
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function ψ(t,a,z) such that Ŝ(t|a,z)−S∗(t|a,z) = 1
n ∑

n
i=1 ψi(t,a,z), we have:

UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)

(4.32)

= UAIPW
1,n (βo;π

∗,S∗,G)+op(n−1/2)

−
∫

τ

0

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

[
s(1)(t;β

o,π∗,S∗,Go)+
1
n

n

∑
l=1

Jl(t,1)
{

Al

π∗l
eβoAl − eβo

}]

× 1
n2

n

∑
i, j=1

(
w∗i
{

Go(t,Ai)dψ j(t,Ai,Zi)+dSo
i (t,Ai)ρ j(t,Ai)

}
− ∑

a=0,1

{
Go(t,a)dψ j(t,a,Zi)+dSo

i (t,a)ρ j(t,a)
}

+dΛ
o
0(u)

{
w∗i eβoAi

{
Go(t,Ai)ψ j(t,Ai,Zi)+So

i (t,Ai)ρ j(t,Ai)
}

− ∑
a=0,1

eβoa{Go(t,a)ψ j(t,a,Zi)+So
i (t,a)ρ j(t,a)

})

+
∫

τ

0
dΛ

o
0(t)

1
n2

n

∑
i, j=1

{
Go(t,1)ψ j(t,1,Zi)+So

i (t,1)ρ j(t,1)
}{Ai

π∗i
eβoAi− eβo

}
+
∫

τ

0

1
n2

n

∑
i, j=1

{
Go(t,Ai)dψ j(t,1,Zi)+dSo

i (t,Ai)ρ j(t,1)
}{Ai

π∗i
−1
}
.

Putting together (4.26) and the results of the previous lemma we will prove
√

n(β̂−βo) can

be written as a sum of i.i.d mean zero terms and so the consistency and the asymptotic normality of

β̂ follows. We now report the details of the proofs of Theorem 10 and 11. Proof of Lemma 21 and

22 are reported in Section 4.8.3.

Proof of Theorem 10. By Taylor expansion and by Lemma 21, 22, for β in a neighborhood of βo
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we have:

UAIPW
1,n

(
β; π̂, Ŝ, Ĝ

)
=UAIPW

1,n (βo; π̂, Ŝ, Ĝ)+
∂

∂β
UAIPW

1,n (β; π̂, Ŝ, Ĝ)

∣∣∣∣
β=β̃

(β−β
o) (4.33)

=UAIPW
1,n (βo; π̂, Ŝ, Ĝ)+σ(β̃)(β−β

o)+op(1), (4.34)

where β̃ is a point between β and βo.

We notice that, by considering a finite τ and by Assumptions 8 and 9, we have

∣∣∣σ(β̃)∣∣∣> 0. (4.35)

By double robustness of the score, (Theorem 9) and, by application of Hoeffding’s inequality,

we have:

UAIPW
1,n (βo;π

∗,S∗,Go) = Op(n−1/2). (4.36)

if either π∗(·) = πo(·) or S∗(·) = So(·). Therefore, putting together (4.33) and (4.36) we have for

any |δ|< 1
2 :

UAIPW
1,n

(
β

o±n−δ; π̂, Ŝ, Ĝ
)
=UAIPW

1,n (βo;π
∗,S∗,Go)±n−δ

σ(β̃)+op(1)

=±n−δ
σ(β̃)+Op(n−1/2).

Therefore, by the above and by (4.35), we have:

UAIPW
1,n

(
β

o−n−δ; π̂, Ŝ, Ĝ
)
< 0 <UAIPW

1,n

(
β

o +n−δ; π̂, Ŝ, Ĝ
)
,

254



or

UAIPW
1,n

(
β

o +n−δ; π̂, Ŝ, Ĝ
)
< 0 <UAIPW

1,n

(
β

o−n−δ; π̂, Ŝ, Ĝ
)
.

Hence, by construction of β̂, we can conclude that β̂−βo = Op(n−δ) = op(1).

Proof of Theorem 11. By Taylor expansion, Lemma 21 and consistency of β̂ we get:

−
√

nUAIPW
1,n (βo; π̂, Ŝ, Ĝ) =

√
n(β̂−β

o)σ(βo)+op(1).

We are now left with working on term UAIPW
1,n (βo; π̂, Ŝ, Ĝ). We will prove that it can be

written as a sum of i.i.d mean zero terms. We divide the proof in the three different scenarios of the

Theorem according to which model is correct.

• a) π∗ = πo and S∗ = So and bncn = o(n−1/2).

By Lemma 22 we have:

√
n(β̂−β

o) =

√
nUAIPW

1,n (βo;πo,So,Go)

σ(βo)
+op(1). (4.37)

We focus now on term UAIPW
1,n (βo;πo,So,Go). We remind the reader that−Go(t|A,Z)dSo(t|A,Z)−=

E[dN(t)|A,Z] and therefore we have:

UAIPW
1,n (βo;π

o,So,Go)

=
∫

τ

0

1
n

n

∑
i=1

[
wo

i
{

Ai− Ā(t;β
o,πo,So,Go)

}
{dNi(t)−E[dNi(t)|Ai,Zi]}

+ ∑
a=0,1

{
a− Ā(t;β

o,πo,So,Go)
}

E[dNi(t)|a,Zi]

]
.
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Moreover, noticing that, by definition of Ā and algebra, we get:

∫
τ

0

1
n

n

∑
i=1

[
wo

i eβoAi
{

Ai− Ā(t;β
o,πo,So,Go)

}
{Yi(t)−E[Yi(t)|Ai,Zi]}

+ ∑
a=0,1

eβoa{a− Ā(t;β
o,πo,So,Go)

}
E[Yi(t)|a,Zi]

]
= 0,

we can conclude that:

UAIPW
1,n (βo;π

o,So,Go)

=
∫

τ

0

1
n

n

∑
i=1

(
wo

i
{

Ai− Ā(t;β
o,πo,So,Go)

}
[dMi(t)−E{dMi(t)|Ai,Zi}]

+ ∑
a=0,1

{
a− Ā(t;β

o,πo,So,Go)
}

E{dMi(t)|A = a,Zi}

)

= Q1 +Q2,

where

Q1 =
∫

τ

0

1
n

n

∑
i=1

(wo
i {Ai− ā(t;β

o,πo,So,Go)} [dMi(t)−E{dMi(t)|Ai,Zi}]

+ ∑
a=0,1

{a− ā(t;β
o,πo,So,Go)}E{dMi(t)|a,Zi}

)
,

Q2 =
∫

τ

0

{
a(t;β

o,πo,So,Go)− Ā(t;β
o,πo,So,Go)

}
× 1

n

n

∑
i=1

[
wo

i dMi(t)−wo
i E{dMi(t)|Ai,Zi}+ ∑

a=0,1
E{dMi(t)|a,Zi}

]
.
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Q1 is the leading term since it is a sum of i.i.d mean zero terms. Q2 = op(n−1/2) by

Assumption 9 and by the fact that E
[
woM(t)−woE{M(t)|A,Z}+∑a=0,1 E{M(t)|A = a,Z}

]
= 0.

Therefore we have:

√
n(β̂−β

o) = σ
−1 1√

n

n

∑
i=1

ϕ
a
i +op(1), (4.38)

where

ϕ
a
i =

∫
τ

0
wo

i {Ai− ā(t;β
o,πo,So,Go)} [dMi(t)−E{dMi(t)|Ai,Zi}]

+ ∑
a=0,1

{a− ā(t;β
o,πo,So,Go)}E{dMi(t)|a,Zi} ,

and σ = σ(βo).

• b) π∗(z) = πo(z), S∗(t|a,z) 6= So(t|a,z) and bn = n−1/2; specifically there exists an influence

function φ(z) such that π̂(z)−π∗(z) = 1
n ∑

n
i=1 φi(z)+op(n−1/2).

Similarly to part a) we have:

UAIPW
1,n (βo;π

o,S∗,Go)

=
∫

τ

0

1
n

n

∑
i=1

[wo
i {Ai− ā(t;β

o,πo,S∗,Go)}

×
{

dMi(t)+dS∗i (t,Ai)Go(t,Ai)+ eβoAiS∗i (t,Ai)Go(t,Ai)dt
}

− ∑
a=0,1

{
a− ā(t;β

o,πo, Ŝ,Go)
}{

dS∗i (t,a)G
o(t,a)+ eβoaS∗i (t,a)G

o(t,a)dt
}]

+op(n−1/2).
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Therefore, by the above and by Lemma 22, we have:

√
n(β̂−β

o) = σ
−1 1√

n

n

∑
i=1

ϕ
b
i +op(1), (4.39)

where

ϕ
b
i =

∫
τ

0
wo

i {Ai− ā(t;β
o,πo,S∗,Go)}

{
dMi(t)+dS∗i (t,Ai)Go(t,Ai)+ eβoAiS∗i (t,Ai)Go(t,Ai)dt

}
− ∑

a=0,1
{a− ā(t;β

o,πo,S∗,Go)}
{

dS∗i (t,a)G
o(t,a)+ eβoaS∗i (t,a)G

o(t,a)dt
}

−
∫

τ

0

1
n

n

∑
j=1

φi(Z j)
{

π
∗
j
}−2 A j

(
dN j(t)+Go(t,A j)dS∗j(t,A j)−dΛ

o
0(t)e

βoA jR j(t,S∗,Go)
)

−
∫

τ

0

{
s(0)(t;β

o, π̂,S∗,Go)
}−1{

s(1)(t;β
o,π∗,S∗,Go)

− 1
n2

n

∑
l,m=1

φl(Zm){π∗m}
−2 AmeβoAmRm(t,S∗,Go)

}

× 1
n

n

∑
j=1

φi(Z j)

 1−A j{
1−π∗j

}2 −
A j{
π∗j

}2


×
{

dN j(t)+Go(t,A j)dS∗j(t,A j)−dΛ
o
0(t)exp(βoA j)R j(t,S∗,Go)

}
.

• c) S∗(t | a,z) = So(t | a,z), π∗(z) 6= πo(z) and cn = n−1/2, specifically, there exists an influence

function ψ(t,a,z) such that Ŝ(t | a,z)−S∗(t | a,z) = 1
n ∑

n
i=1 ψi(t,a,z)+op(n−1/2).
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By Lemma 22, we have: Similarly to part a) we have:

UAIPW
1,n (βo;π

∗,So,Go)

=
∫

τ

0

1
n

n

∑
i=1

[w∗i {Ai− ā(t;β
o,π∗,So,Go)}

×
{

dMi(t)+dSo
i (t,Ai)Go(t,Ai)+ eβoAiSo

i (t,Ai)Go(t,Ai)dt
}

− ∑
a=0,1

{a− ā(t;β
o,π∗,So,Go)}

{
dS∗i (t,a)G

o(t,a)+ eβoaSo
i (t,a)G

o(t,a)dt
}]

+op(n−1/2).

Therefore, by the above and by Lemma 22, we have:

√
n(β̂−β

o) = σ
−1 1√

n

n

∑
i=1

ϕ
c
i +op(1), (4.40)
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where

ϕ
c
i =

∫
τ

0
w∗i {Ai− ā(t;β

o,π∗,So,Go)}

×
{

dMi(t)+dSo
i (t,Ai)Go(t,Ai)+ eβoAiSo

i (t,Ai)Go(t,Ai)dΛ
o
0(t)
}

−
∫

τ

0
∑

a=0,1
{a− ā(t;β

o,π∗,So,Go)}
{

dSo
i (t,a)G

o(t,a)+ eβoaSo
i (t,a)G

o(t,a)dΛ
o
0(t)
}

−
∫

τ

0

{
s(0)(t;β

o,π∗,So,Go)
}−1

×

[
s(1)(t;β

o,π∗,So,Go)+
1
n

n

∑
l=1

Jl(t,1)
{

Al

π∗l
eβoAl − eβo

}]

× 1
n

n

∑
j=1

(
w∗j
{

Go(t,A j)dψi(t,A j,Z j)+dSo
j(t,A j)ρi(t,A j)

}
− ∑

a=0,1

{
Go(t,a)dψi(t,a,Z j)+dSo

j(t,a)ρi(t,a)
}

+dΛ
o
0(u)

[
w∗je

βoA j
{

Go(t,A j)ψi(t,A j,Z j)+So
j(t,A j)ρi(t,A j)

}
− ∑

a=0,1
eβoa{Go(t,a)ψi(t,a,Z j)+So

j(t,a)ρi(t,a)
}])

+
∫

τ

0
dΛ

o
0(t)

1
n

n

∑
j=1

{
Go(t,1)ψi(t,1,Z j)+So

j(t,1)ρi(t,1)
}{Ai

π∗i
eβoAi− eβo

}

+
∫

τ

0

1
n

n

∑
j=1

{
Go(t,A j)dψi(t,1,Z j)+dSo

j(t,A j)ρi(t,1)
}{A j

π∗j
−1

}
.

Putting together both (4.38), (4.39) and (4.40) we have the more general (4.17). Therefore,
√

n(β̂−βo) is a sum of i.i.d. mean zero terms and we can apply Multivariate Central Limit Theorem

to prove its asymptotic normality.
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Proof of Theorem 12

Proof of Theorem 12. We will prove separately that V̂ and σ̂ are consistent estimators for Var(ϕ)

and σ respectively.

a) We remind the reader that when both models are correct ϕ = ϕa(βo,πo,So,Go).

We have:

∣∣V̂ −Var(ϕ)
∣∣= ∣∣∣V̂ −E {ϕa(βo,πo,So,Go)}2

∣∣∣≤ Q1 +Q2 +Q3,

where

Q1 =

∣∣∣∣∣1n n

∑
i=1

[{
ϕ̂

a
i (β̂, π̂, Ŝ, Ĝ)

}2
−{ϕ̂a

i (β
o,πo,So,Go)}2

]∣∣∣∣∣ ,

Q2 =

∣∣∣∣∣1n n

∑
i=1

[
{ϕ̂a

i (β
o,πo,So,Go)}2−{ϕa

i (β
o,πo,So,Go)}2

]∣∣∣∣∣ ,

Q3 =

∣∣∣∣∣1n n

∑
i=1
{ϕa

i (β
o,πo,So,Go)}2−E {ϕa(βo,πo,So,Go)}2

∣∣∣∣∣ .
By Assumptions 7 and 8 and continuos mapping Theorem, Q1 = op(1) follows.

By continuos mapping Theorem and Assumptions 8 and 9 Q2 = op(1).

By construction and by Assumption 8, by law of large numbers it is easy to see that Q3 = op(1).

Therefore V̂ =Var(ϕ)+op(1).
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b) We have:

|σ̂−σ| ≤ Q1 +Q2 +Q3,

where

Q1 =
1
n

n

∑
i=1

∣∣∣∣∫ τ

0

[{
Ā(t; β̂, π̂, Ŝ, Ĝ)

}2
− Ā(t; β̂, π̂, Ŝ, Ĝ)

]
×

[
ŵidNi(t)+ ŵiĜ(t,Ai)dŜi(t,Ai)− ∑

a=0,1
Ĝ(t,a)dŜi(t,a)

]

−
∫

τ

0

[{
Ā(t;β

o,πo,So,Go)
}2− Ā(t;β

o,πo,So,Go)
]

×

[
wo

i dNi(t)+wo
i Go(t,Ai)dSo

i (t,Ai)− ∑
a=0,1

Go(t,a)dSo
i (t,a)

]∣∣∣∣∣ ,
and

Q2 =
1
n

n

∑
i=1

∣∣∣∣∫ τ

0

[{
Ā(t;β

o,πo,So,Go)
}2−{ā(t;β

o,πo,So,Go)}2

−Ā(t;β
o,πo,So,Go)+ ā(t;β

o,πo,So,Go)
]

×

[
wo

i dNi(t)+wo
i Go(t,Ai)dSo

i (t,Ai)− ∑
a=0,1

Go(t,a)dSo
i (t,a)

]∣∣∣∣∣ ,
and

Q3 =

∣∣∣∣∣1n n

∑
i=1

∫
τ

0

[
{ā(t;β

o,πo,So,Go)}2− ā(t;β
o,πo,So,Go)

]
×

[
wo

i dNi(t)+wo
i Go(t,Ai)dSo

i (t,Ai)− ∑
a=0,1

Go(t,a)dSo
i (t,a)

−dΛ
o
0(t)s

(0)(t;β
o,πo,So,Go)

]∣∣∣ .
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Again by Assumptions 7 and 8 and continuos mapping Theorem, Q1 = op(1) follows.

By continuos mapping Theorem and Assumptions 8 and 9 Q2 = op(1).

For the last term we have:

wo
i dNi(t)+wo

i Go(t,Ai)dSo
i (t,Ai)− ∑

a=0,1
Go(t,a)dSo

i (t,a)−dΛ
o
0(t)s

(0)(t;β
o,πo,So,Go)

= wo
i dMi(t)−wo

i E{dM(t)|Ai,Zi}+ ∑
a=0,1

E{dM(t)|Ai,Zi} ,

and therefore the above has mean zero. By an application of Bernstein’s inequality to the bounded

random variable:

∫
τ

0

[
{ā(t;β

o,πo,So,Go)}2− ā(t;β
o,πo,So,Go)

]
×

[
wo

i dMi(t)−wo
i E{dM(t)|Ai,Zi}+ ∑

a=0,1
E{dM(t)|Ai,Zi}

]
,

we can therefore conclude that Q3 = op(1).

4.8.3 Proof of Lemmas

Proof of Lemma 21

Proof of Lemma 21. Simple algebra gives us:

∂

∂β
U (β;π,S,G) =

∫
τ

0

1
n

n

∑
i=1

[{
Ā(t;β,π,S,G)

}2− Ā(t;β,π,S,G)
]

×

[
wi {dNi(t)+G(t,Ai)dSi(t,Ai)}− ∑

a=0,1
G(t,a)dSi(t,a)

]
.
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First, we prove that ∂

∂β
U(β; π̂, Ŝ, Ĝ) = ∂

∂β
U(β;π∗,S∗,Go)+op(1).

We consider the following decomposition:

∂

∂β
U(β; π̂, Ŝ, Ĝ) =

∂

∂β
U(β;π

∗,S∗,Go)

+
∂

∂β
U
(
β; π̂, Ŝ, Ĝ

)
− ∂

∂β
U
(
β;π
∗, Ŝ, Ĝ

)
+

∂

∂β
U
(
β;π
∗, Ŝ, Ĝ

)
− ∂

∂β
U (β;π

∗,S∗,Go)

= Q1 +Q2 +Q3.

We now prove separately that Q2 = op(1) and Q3 = op(1). From now on, for ease of

notation, we use:

{
(Ā)2− Ā

}
(t;β,π,S,G) =

{
Ā(t;β,π,S,G)

}2− Ā(t;β,π,S,G).

• Term Q2:

By algebra, we get:

Q2 =
∫

τ

0

1
n

n

∑
i=1

[
ŵi
{
(Ā)2− Ā

}
(t;β, π̂, Ŝ, Ĝ)−w∗i

{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

]
×
{

dNi(t)+ Ĝ(t,Ai)dŜi(t,Ai)
}
.
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By adding and subtracting So and Go:

Q2 =
∫

τ

0

1
n

n

∑
i=1

[
ŵi
{
(Ā)2− Ā

}
(t;β, π̂, Ŝ, Ĝ)−w∗i

{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

]
×{dNi(t)+Go(t,Ai)dS∗i (t,Ai)}

+
∫

τ

0

1
n

n

∑
i=1

[
ŵi
{
(Ā)2− Ā

}
(t;β, π̂, Ŝ, Ĝ)−w∗i

{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

]
×
{

Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai)
}

= Q21 +Q22,

where

Q21 =
∫

τ

0

1
n

n

∑
i=1

(
ŵi
[{
(Ā)2− Ā

}
(t;β, π̂, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;π

∗, Ŝ, Ĝ)
]

+(ŵi−w∗i )
{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

]
{dNi(t)+Go(t,Ai)dS∗i (t,Ai)} ,

and

Q22 =+
∫

τ

0

1
n

n

∑
i=1

(
ŵi
[{
(Ā)2− Ā

}
(t;β, π̂, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;π

∗, Ŝ, Ĝ)
]

+(ŵi−w∗i )
{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

){
Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai)

}
.

We notice how, Ā(t;β,π∗, Ŝ, Ĝ) = S (1)(t;β)
S (0)(t;β)

and by the fact that τ < ∞ and by Assumption

8, everything is bounded. Therefore, by Assumption 7, it is easy to see that Ā(t;β, π̂, Ŝ, Ĝ)−

Ā(t;β,π∗, Ŝ, Ĝ) = op(1). By this and by Assumption 7, we have Q21 = op(1) and Q22 = op(1) and

so Q2 = op(1).

• Term Q3:
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We have:

Q3 =
∫

τ

0

1
n

n

∑
i=1

w∗i
[{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

{
dNi(t)+ Ĝ(t,Ai)dŜi(t,Ai)

}
{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go){dNi(t)+Go(t,Ai)dS∗i (t,Ai)}

]
− 1

n

n

∑
i=1

∑
a=0,1

∫
τ

0

[{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)Ĝ(t,a)dŜi(t,a)

−
{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)Go(t,a)dS∗i (t,a)

]
.

By algebra we have:

Q3 =
∫

τ

0

1
n

n

∑
i=1

[{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

]
×

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

]

+
∫

τ

0

1
n

n

∑
i=1

w∗i
{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

{
Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai)

}
− 1

n

n

∑
i=1

∑
a=0,1

∫
τ

0

{{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

}
×Go(t,a)dS∗i (t,a)

− 1
n

n

∑
i=1

∑
a=0,1

∫
τ

0

{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)

{
Ĝ(t,a)dŜi(t,a)−Go(t,a)dS∗i (t,a)

}
= Q31 +Q32 +Q33 +Q34,

266



where

Q31 =
∫

τ

0

[{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

]
× 1

n

n

∑
i=1

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

]
,

Q32 =
∫

τ

0

1
n

n

∑
i=1

w∗i
{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

{
Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai)

}
,

Q33 =
∫

τ

0

[{
(Ā)2− Ā

}
(t;β,π∗, Ŝ, Ĝ)−

{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

]
× 1

n

n

∑
i=1

[
w∗i
{

Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai)
}

− ∑
a=0,1

{
Ĝ(t,a)dŜi(t,a)−Go(t,a)dS∗i (t,a)

}]
,

Q34 =−
1
n

n

∑
i=1

∑
a=0,1

∫
τ

0

{
(Ā)2− Ā

}
(t;β,π∗,S∗,Go)

{
Ĝ(t,a)dŜi(t,a)−Go(t,a)dS∗i (t,a)

}
.

Similarly to before, by Assumptions 7 and 8, we have Ā(t;β,π∗, Ŝ, Ĝ)− Ā(t;β,π∗,S∗,G∗) =

op(1).

Therefore Q31 = op(1), Q32 = op(1), Q33 = op(1) and Q34 = op(1) and so Q3 = op(1).

We therefore have proved that

∂

∂β
UAIPW

1,n
(
β; π̂, Ŝ, Ĝ

)
=

∂

∂β
UAIPW

1,n (β;π
∗,S∗,Go)+op(1). (4.41)
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We are left to prove that ∂

∂β
UAIPW

1,n (β;π∗,S∗,Go) = σ(β)+op(1).

By Assumption 9, we have:

∂

∂β
UAIPW

1,n (β;π
∗,S∗,Go) =

∫
τ

0

1
n

n

∑
i=1

[
{ā(t;β,π∗,S∗,Go)}2− ā(t;β,π∗,S∗,Go)

]
×

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

]

+op(1).

Algebra gives us the following:

∂

∂β
UAIPW

1,n (β;π
∗,S∗,Go)

=
∫

τ

0

1
n

n

∑
i=1

[
{ā(t;β,π∗,S∗,Go)}2− ā(t;β,π∗,S∗,Go)

]
×
[
wo

i

{
dMi(t)+Go(t,Ai)dS∗i (t,Ai)+dΛ

o
0(t)e

(βoAi)Go(t,Ai)S∗i (t,Ai)
}

− ∑
a=0,1

{
Go(t,a)dS∗i (t,a)+dΛ

o
0(t)e

βoaGo(t,a)S∗i (t,a)
}
+dΛ

o
0(t)S

(0)(t;β
o,π∗,S∗,Go)

]

+op(1).

By double robustness, if either π∗ = πo or S∗ = So we have

E
[
w∗i
{

dMi(t)+Go(t,Ai)dS∗i (t,Ai)+dΛ
o
0(t)e

(βoAi)Go(t,Ai)S∗i (t,Ai)
}

− ∑
a=0,1

{
Go(t,a)dS∗i (t,a)+dΛ

o
0(t)e

βoaGo(t,a)S∗i (t,a)
}]

= 0,
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and therefore, by the above and by Assumption 9, we have

∂

∂β
UAIPW

1,n (β;π
∗,S∗,Go) = σ(β)+op(1). (4.42)

By (4.41) and (4.42), the lemma is proved.

Proof of Lemma 22

The proof of Lemma 22 requires the following additional lemma:

Lemma 23. Under Assumption 9 we have:

Λ̃0(t,βo,π∗,S∗,Go)−Λ
o
0(t) (4.43)

=
∫ t

0

1
n

n

∑
i=1

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

.

Λ̃0(t,βo, π̂,S∗,Go)− Λ̃0(t,βo,π∗,S∗,Go) (4.44)

=
∫ t

0

{
S (0)(u;β

o, π̂,S∗,Go)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

((ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)−dΛ
o
0(u)exp(βoAi)Ri(u,S∗,Go)}

−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

×1
n

n

∑
j=1

(ŵ j−w∗j)exp(βoA j)R j(u,S∗,Go)

)
.
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Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go) (4.45)

=
∫ t

0

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

(
w∗i Ki(u,Ai)− ∑

a=0,1
Ki(u,a)+dΛ

o
0(u)

{
w∗i eβoAiJi(u,Ai)− ∑

a=0,1
eβoaJi(u,a)

}

−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
j=1

{
−w∗je

βoA jJ j(u,A j)+ ∑
a=0,1

eβoaJ j(u,a)

})
.

where

Ki(u,Ai) = Ĝ(u,Ai)dŜi(u,Ai)−Go(u,Ai)dS∗i (u,Ai),

and

Ji(u,Ai) = Ĝ(u,Ai)Ŝi(u,Ai)−Go(u,Ai)S∗i (u,Ai).

The proof of Lemma 23 is reported in Section 4.8.4. Moreover, the technical Lemma 27-30

needed are reported in Section 4.8.5
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Proof of Lemma 22. By algebra we have:

UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)
=UAIPW

1,n (βo;π
∗,S∗,Go) (4.46)

+UAIPW
1,n

(
β

o; π̂, Ŝ, Ĝ
)
−UAIPW

1,n
(
β

o;π
∗, Ŝ, Ĝ

)
+UAIPW

1,n
(
β

o;π
∗, Ŝ, Ĝ

)
−UAIPW

1,n (βo;π
∗,S∗,Go)

=UAIPW
1,n (βo;π

∗,S∗,Go)+Q1 +Q2.

We now work on Q1, Q2 separately.

• Term Q1:

By Cauchy-Schwartz and by the fact that bncn = op(n−1/2) we have:

Q1 =UAIPW
1,n (βo; π̂,S∗,Go)−UAIPW

1,n (βo;π
∗,S∗,Go)+op(n−1/2).

Moreover, we have:

Q1 =
∫

τ

0

1
n

n

∑
i=1

[(
1
π̂i
− 1

π∗i

)
Ai {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}

−
{

1
π̂i

dΛ̃0 (t;β
o, π̂,S∗,Go)− 1

π∗i
dΛ̃0 (t;β

o,π∗,S∗,Go)

}
AieβoAiRi(t,S∗,Go)

−d
{

Λ̃0 (t;β
o, π̂,S∗,Go)− Λ̃0 (t;β

o,π∗,S∗,Go)
}

eβo
S∗i (t,1)G

o(t,1)
]
.
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By algebra we have:

Q1 =
∫

τ

0

1
n

n

∑
i=1

(
1
π̂i
− 1

π∗i

)
Ai {dNi(t)+Go(t,Ai)dS∗i (t,Ai)

−dΛ̃0 (t;β
o,π∗,S∗,Go)eβoAiRi(t,S∗,Go)

}
−

∫
τ

0
d
{

Λ̃0 (t;β
o, π̂,S∗,Go)− Λ̃0 (t;β

o,π∗,S∗,Go)
}

S (1)(t;β
o, π̂,S∗,Go)

= Q11 +Q12 +Q13,

where

Q11 =
∫

τ

0

1
n

n

∑
i=1

(
1
π̂i
− 1

π∗i

)
Ai

[
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)

−d
{

Λ̃0 (t;β
o,π∗,S∗,Go)−Λ

o
0(t)
}

eβoAiRi(t,S∗,Go)
]
,

Q12 =−
∫

τ

0
d
{

Λ̃0 (t;β
o, π̂,S∗,Go)− Λ̃0 (t;β

o,π∗,S∗,Go)
}

S (1)(t;β
o,π∗,S∗,Go),

and

Q13 =−
∫

τ

0
d
{

Λ̃0 (t;β
o, π̂,S∗,Go)− Λ̃0 (t;β

o,π∗,S∗,Go)
}

× 1
n

n

∑
i=1

(
1
π̂i
− 1

π∗i

)
AieβoAiRi(t,S∗,Go).
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By Lemma 23, we have:

Q11 =
∫

τ

0

1
n

n

∑
i=1

(
1
π̂i
− 1

π∗i

)
Ai

(
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)

−eβoAiRi(t,S∗,Go)
1
n

n

∑
j=1

[
w∗j
{

dN j(t)+Go(t,A j)dS∗j(t,A j)
}
− ∑

a=0,1
Go(t,a)dS∗j(t,a)

−dΛ
o
0(t)S

(0)(t;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

)
,

Q12 =−
∫

τ

0
S (1)(t;β

o,π∗,S∗,Go)

×
{

S (0)(t;β
o, π̂,S∗,Go)− S (0)(t;β

o,π∗,S∗,Go)+ S (0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

((ŵi−w∗i ){dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}

−

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

−dΛ
o
0(t)S

(0)(t;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

×1
n

n

∑
j=1

(ŵ j−w∗j)exp(βoA j)R j(t,S∗,Go)

)
,
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and

Q13 =−
∫

τ

0

1
n

n

∑
j=1

(
1
π̂ j
− 1

π∗j

)
A jeβoA jR j(t,S∗,Go)

×
{

S (0)(t;β
o, π̂,S∗,Go)− S (0)(t;β

o,π∗,S∗,Go)+ S (0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

((ŵi−w∗i ){dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}

−

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

−dΛ
o
0(t)S

(0)(t;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

×1
n

n

∑
j=1

(ŵ j−w∗j)exp(βoA j)R j(t,S∗,Go)

)
.

By Assumptions 7 and 8 we have:

sup
t∈[0,τ]

∣∣∣∣∣1n n

∑
j=1

(ŵ j−w∗j)exp(βoA j)R j(t,S∗,Go)

∣∣∣∣∣ ≤ 2exp(βo)

∣∣∣∣∣1n n

∑
j=1

(ŵ j−w∗j)

∣∣∣∣∣
= op(1),

and similarly

sup
t∈[0,τ]

∣∣∣∣∣1n n

∑
j=1

(ŵ j−w∗j)Aexp(βoA j)R j(t,S∗,Go)

∣∣∣∣∣ = op(1).

Therefore by Lemma 28 and Assumptions 7 and 9, we have:

Q11 =
∫

τ

0

1
n

n

∑
i=1

(
1
π̂i
− 1

π∗i

)
Ai

(
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)
)

+op(n−1/2),
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Q12 =−
∫

τ

0
s(1)(t;β

o,π∗,S∗,Go)
{

s(0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

(ŵi−w∗i ){dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}

+op(n−1/2),

and

Q13 =−
∫

τ

0

1
n

n

∑
j=1

(
1
π̂ j
− 1

π∗j

)
A jeβoA jR j(t,S∗,Go)

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

(ŵi−w∗i ){dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}

+op(n−1/2).

By the fact that supZ∈Z |π̂(Z)−π∗(Z)| → 0, it is now easy to see that Q1 = op(1).

We now divide the proof in two parts according to the three scenarios a,b,c of the Lemma.

• Case a) and c) of the Lemma: S∗ = So.

Since S∗ = So, by Lemma 27, we have Q11 = op(n−1/2), Q12 = op(n−1/2) and Q13 =

op(n−1/2). Therefore Q1 = op(n−1/2).

• Case b) of the Lemma: S∗ 6= So, π∗ = πo with bn = n−1/2.
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Plugging into Q11,Q12,Q13 the influence function of π̂−πo, we have:

Q11

=−
∫

τ

0

1
n2

n

∑
i, j=1

φ j(Zi){π∗(Zi)}−2 Ai

(
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)
)

+op(n−1/2),

Q12 =−
∫

τ

0
s(1)(t;β

o,π∗,S∗,Go)
{

s(0)(t;β
o, π̂,S∗,Go)

}−1

× 1
n2

n

∑
i, j=1

φ j(Zi)

[
1−Ai{

1−π∗i
}2 −

Ai{
π∗i
}2

]

×{dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}+op(n−1/2),

Q13 =
∫

τ

0

1
n2

n

∑
i, j=1

φi(Z j)
{

π
∗(Z j)

}−2 A jeβoA jR j(t,S∗,Go)
{

s(0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n2

n

∑
l,m=1

φl(Zm)

[
1−Al{
1−π∗l

}2 −
Al{
π∗l
}2

]

×{dNl(t)+Go(t,Al)dS∗l (t,Al)−dΛ
o
0(t)exp(βoAl)Rl(t,S∗,Go)}

+op(n−1/2).

276



We can therefore conclude the following:

Q1 =−
∫

τ

0

1
n2

n

∑
i, j=1

φ j(Zi){π∗i }
−2 Ai

(
dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ

o
0(t)e

βoAiRi(t,S∗,Go)
)

−
∫

τ

0
s(1)(t;β

o,π∗,S∗,Go)
{

s(0)(t;β
o, π̂,S∗,Go)

}−1 1
n2

n

∑
i, j=1

φ j(Zi)

[
1−Ai{

1−π∗i
}2 −

Ai{
π∗i
}2

]

×{dNi(t)+Go(t,Ai)dS∗i (t,Ai)−dΛ
o
0(t)exp(βoAi)Ri(t,S∗,Go)}

+
∫

τ

0

1
n2

n

∑
i, j=1

φi(Z j)
{

π
∗
j
}−2 A jeβoA jR j(t,S∗,Go)

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n2

n

∑
l,m=1

φl(Zm)

[
1−Al{
1−π∗l

}2 −
Al{
π∗l
}2

]

×{dNl(t)+Go(t,Al)dS∗l (t,Al)−dΛ
o
0(t)exp(βoAl)Rl(t,S∗,Go)}

+op(n−1/2).

• Term Q2:

For ease of exposition we define:

Ki(t,Ai) = Ĝ(t,Ai)dŜi(t,Ai)−Go(t,Ai)dS∗i (t,Ai),

and

Ji(t,Ai) = Ĝ(t,Ai)Ŝi(t,Ai)−Go(t,Ai)S∗i (t,Ai).
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By definition we have:

Q2 (4.47)

=
∫

τ

0

1
n

n

∑
i=1

(
Ai

π∗i

[
−d
{

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)
}

eβoAiYi(t)+Ki(t,Ai)

+eβoAi
{

dΛ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)

Ŝi(t,Ai)Ĝ(t,Ai)−dΛ̃0 (t;β
o,π∗,S∗,Go)S∗i (t,Ai)Go(t,Ai)

}]
−Ki(t,1)− eβo {

dΛ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)

Ŝi(t,1)Ĝ(t,1)−dΛ̃0 (t;β
o,π∗,S∗,Go)S∗i (t,1)G

o(t,1)
})

.

Algebra gives us:

Q2 =
∫

τ

0

1
n

n

∑
i=1

[
−d
{

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)
}

S (1)(t;β
o,π∗,S∗,Go)

+dΛ
o
0 (t)

{
Ai

π∗i
Ji(t,Ai)eβoAi− Ji(t,a)eβo

}
+d
{

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
−Λ

o
0(t)
}{

Ji(t,Ai)
Ai

π∗i
eβoAi− Ji(t,a)eβo

}
+

Ai

π∗i
Ki(u,Ai)−Ki(u,1)

]
= Q21 +Q22 +Q23 +Q24,

where

Q21 =−
∫

τ

0

1
n

n

∑
i=1

d
{

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)
}

S (1)(t;β
o,π∗,S∗,Go),

Q22 =
∫

τ

0
dΛ

o
0(t)

1
n

n

∑
i=1

[
Ji(t,1)

{
Ai

π∗i
eβoAi− eβo

}]
,
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Q23 =
∫

τ

0
d
{

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)+ Λ̃0 (t;β
o,π∗,S∗,Go)−Λ

o
0(t)
}

× 1
n

n

∑
i=1

[
Ji(t,1)

{
Ai

π∗i
eβoAi− eβo

}]
,

and

Q24 =
∫

τ

0

1
n

n

∑
i=1

Ki(t,1)
{

Ai

π∗i
−1
}
.

By Lemma 23 we have:

Q21 =−
∫

τ

0
S (1)(t;β

o,π∗,S∗,Go)

×
{

S (0)(t;β
o,π∗, Ŝ, Ĝ)− S (0)(t;β

o,π∗,S∗,Go)+ S (0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

(
w∗i Ki(t,Ai)− ∑

a=0,1
Ki(t,a)+dΛ

o
0(t)

{
w∗i eβoAiJi(u,Ai)− ∑

a=0,1
eβoaJi(t,a)

}

−

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

−dΛ
o
0(t)S

(0)(t;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
j=1

{
−w∗je

βoA jJ j(t,A j)+ ∑
a=0,1

eβoaJ j(t,a)

})
,

279



Q23 =
∫

τ

0

1
n

n

∑
j=1

[
J j(t,1)

{
A j

π∗j
eβoA j − eβo

}]

×
{

S (0)(t;β
o,π∗, Ŝ, Ĝ)− S (0)(t;β

o,π∗,S∗,Go)+ S (0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

(
w∗i Ki(t,Ai)− ∑

a=0,1
Ki(t,a)+dΛ

o
0(u)

{
w∗i eβoAiJi(t,Ai)− ∑

a=0,1
eβoaJi(t,a)

}

−

[
w∗i {dNi(t)+Go(t,Ai)dS∗i (t,Ai)}− ∑

a=0,1
Go(t,a)dS∗i (t,a)

−dΛ
o
0(u)S

(0)(t;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
l=1

{
−w∗l eβoAl Jl(t,Al)+ ∑

a=0,1
eβoaJl(t,a)

})

+
∫

τ

0

1
n

n

∑
i=1

[
Ji(t,1)

{
Ai

π∗i
eβoAi− eβo

}]
×

{
1
n

n

∑
j=1

[
w∗j
{

dN j(t)+Go(t,A j)dS∗j(t,A j)
}
− ∑

a=0,1
Go(t,a)dS∗j(t,a)

]

−dΛ
o
0(u)S

(0)(t;β
o,π∗,S∗,Go)

}{
S (0)(t;β

o,π∗,S∗,Go)
}−1

.

By Assumption 7 we have, for a = 0,1:

sup
t∈[0,τ],i=1,...,n

|Ji(t,a)|= op(1). (4.48)

Therefore, by Lemma 28 and by Assumption 9, we have:

Q21 =−
∫

τ

0
s(1)(t;β

o,π∗,S∗,Go)
{

s(0)(t;β
o,π∗,S∗,Go)

}−1

× 1
n

n

∑
i=1

(
w∗i Ki(t,Ai)− ∑

a=0,1
Ki(t,a)+dΛ

o
0(t)

{
w∗i eβoAiJi(u,Ai)− ∑

a=0,1
eβoaJi(t,a)

})

+op(n−1/2),
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Q23 =
∫

τ

0

1
n

n

∑
j=1

[
J j(t,1)

{
A j

π∗j
eβoA j − eβo

}]{
s(0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

(
w∗i Ki(t,Ai)− ∑

a=0,1
Ki(t,a)+dΛ

o
0(t)

{
w∗i eβoAiJi(t,Ai)− ∑

a=0,1
eβoaJi(t,a)

})

+op(n−1/2).

By Assumption 7, it is easy to see that Q2 = op(1).

We now divide the proof into two parts according to the three scenarios a,b,c of the Lemma.

• Case a) and b) of the Lemma: π∗ = πo.

By Assumption 7 we have, for a = 0,1:

sup
i=1,...,n

∫
τ

0
|Ki(t,a)|= op(1). (4.49)

Since π∗= π0, by Lemma 29 and by (4.49) we can conclude that Q22 = op(n−1/2), Q24 = op(n−1/2).

Moreover, by Lemma 30 and by (4.48) and (4.49), we can conclude that Q21 = op(n−1/2) and

Q23 = op(n−1/2).

• Case c) of the Lemma: π∗ 6= πo, S∗ = So with cn = o(n−1/2).

We notice that, we have:

Ki(t,Ai) =
1
n

n

∑
j=1

{
Go(t,Ai)dψ j(t,Ai,Zi)+dSo

i (t,Ai)ρ j(t,Ai)
}
+op(n−1/2), (4.50)

and

Ji(t,Ai) =
1
n

n

∑
j=1

{
Go(t,Ai)ψ j(t,Ai,Zi)+So

i (t,Ai)ρ j(t,Ai)
}
+op(n−1/2). (4.51)
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Plugging (4.50) and (4.51) into Q21,Q22,Q23,Q24 we have:

Q21 =−
∫

τ

0
s(1)(t;β

o,π∗,S∗,Go)
{

s(0)(u;β
o,π∗,S∗,Go)

}−1

× 1
n2

n

∑
i, j=1

(
w∗i
{

Go(t,Ai)dψ j(t,Ai,Zi)+dSo
i (t,Ai)ρ j(t,Ai)

}
− ∑

a=0,1

{
Go(t,a)dψ j(t,a,Zi)+dSo

i (t,a)ρ j(t,a)
}

+dΛ
o
0(t)

{
w∗i eβoAi

{
Go(t,Ai)ψ j(t,Ai,Zi)+So

i (t,Ai)ρ j(t,Ai)
}

− ∑
a=0,1

eβoa{Go(t,a)ψ j(t,a,Zi)+So
i (t,a)ρ j(t,a)

})

+op(n−1/2),

Q22 =
∫

τ

0
dΛ

o
0(t)

1
n2

n

∑
i, j=1

{
Go(t,1)ψ j(t,1,Zi)+So

i (t,1)ρ j(t,1)
}{Ai

π∗i
eβoAi− eβo

}
,

Q23 =
∫

τ

0

1
n

n

∑
l=1

[
Jl(t,1)

{
Al

π∗l
eβoAl − eβo

}]{
s(0)(t;β

o,π∗,S∗,Go)
}−1

× 1
n2

n

∑
i, j=1

(
w∗i
{

Go(t,Ai)dψ j(t,Ai,Zi)+dSo
i (t,Ai)ρ j(t,Ai)

}
− ∑

a=0,1

{
Go(t,a)dψ j(t,a,Zi)+dSo

i (t,a)ρ j(t,a)
}

+dΛ
o
0(t)

[
w∗i eβoAi

{
Go(t,Ai)ψ j(t,Ai,Zi)+So

i (t,Ai)ρ j(t,Ai)
}

− ∑
a=0,1

eβoa{Go(t,a)ψ j(t,a,Zi)+So
i (t,a)ρ j(t,a)

}])

+op(n−1/2),
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Q24 =
∫

τ

0

1
n2

n

∑
i, j=1

{
Go(t,Ai)dψ j(t,1,Zi)+dSo

i (t,Ai)ρ j(t,1)
}{Ai

π∗i
−1
}
+op(n−1/2).

Therefore, we can conclude that:

Q2 =−
∫

τ

0

{
s(0)(t;β

o,π∗,S∗,Go)
}−1

[
s(1)(t;β

o,π∗,S∗,Go)+
1
n

n

∑
l=1

Jl(t,1)
{

Al

π∗l
eβoAl − eβo

}]

× 1
n2

n

∑
i, j=1

(
w∗i
{

Go(t,Ai)dψ j(t,Ai,Zi)+dSo
i (t,Ai)ρ j(t,Ai)

}
− ∑

a=0,1

{
Go(t,a)dψ j(t,a,Zi)+dSo

i (t,a)ρ j(t,a)
}

+dΛ
o
0(u)

{
w∗i eβoAi

{
Go(t,Ai)ψ j(t,Ai,Zi)+So

i (t,Ai)ρ j(t,Ai)
}

− ∑
a=0,1

eβoa{Go(t,a)ψ j(t,a,Zi)+So
i (t,a)ρ j(t,a)

})

+
∫

τ

0
dΛ

o
0(t)

1
n2

n

∑
i, j=1

{
Go(t,1)ψ j(t,1,Zi)+So

i (t,1)ρ j(t,1)
}{Ai

π∗i
eβoAi− eβo

}
+

∫
τ

0

1
n2

n

∑
i, j=1

{
Go(t,Ai)dψ j(t,1,Zi)+dSo

i (t,Ai)ρ j(t,1)
}{Ai

π∗i
−1
}
.

Therefore, putting together all the results, the lemma is proved.
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4.8.4 Proofs of additional Lemmas

Proof of Lemma 23. We remind the reader that, for each t ∈ [0,τ], Λ̃0(t;βo,π,S,G) is the root of

UAIPW
2,n (t,Λ0;βo,π,S,G) = 0. The score UAIPW

2,n (t,Λ0;βo,π,S,G) can be written as:

UAIPW
2,n (t,Λ0;β

o,π,S,G) =
∫ t

0
V1(u;π,S,G)−

∫ t

0
dΛ0(u)S (0)(u;β

o,π,S,G) (4.52)

=
∫ t

0
V1(u;π,S,G)−

∫ t

0
dΛ

o
0(u)S

(0)(u;β
o,π,S,G)

−
∫ t

0
d {Λ0(u)−Λ

o
0(u)}S (0)(u;β

o,π,S,G),

where

V1(u;π,S,G) =
1
n

n

∑
i=1

[
wi {dNi(u)+G(u,Ai)dSi(u,Ai)}− ∑

a=0,1
G(u,a)dSi(u,a)

]
.

• Proof of (4.43):

By (4.52), we have, for each t ∈ [0,τ]:

Λ̃0(t;β
o,π∗,S∗,Go)−Λ

o
0(t)

=
∫ t

0

{
V1(u;π

∗,S∗,Go)−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

}{
S (0)(u;β

o,π∗,S∗,Go)
}−1

=
∫ t

0

1
n

n

∑
i=1

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

.

• Proof of (4.44):
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By (4.52) we have:

0 =UAIPW
2,n

{
Λ̃0 (t;β

o, π̂,S∗,Go) ;β
o, π̂,S∗,Go}−UAIPW

2,n
{

Λ̃0 (t;β
o,π∗,S∗,Go) ;β

o,π∗,S∗,Go}
=

∫ t

0
{V1(u; π̂,S∗,Go)−V1(u;π

∗,S∗,Go)}

−
∫ t

0
dΛ̃0 (u;β

o, π̂,S∗,Go)S (0)(u;β
o, π̂,S∗,Go)

+
∫ t

0
dΛ̃0 (u;β

o,π∗,S∗,Go)S (0)(u;β
o,π∗,S∗,Go)

=
∫ t

0

1
n

n

∑
i=1

(ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)}

−
∫ t

0
dΛ̃0 (u;β

o, π̂,S∗,Go)S (0)(u;β
o, π̂,S∗,Go)

+
∫ t

0
dΛ̃0 (u;β

o,π∗,S∗,Go)S (0)(u;β
o,π∗,S∗,Go).

We have:

0 =
1
n

n

∑
i=1

∫ t

0
(ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)}

−
∫ t

0
d
{

Λ̃0(u,βo, π̂,S∗,Go)− Λ̃0(u,βo,π∗,S∗,Go)
}

S (0)(u;β
o,π∗,S∗,G0)

−
∫ t

0
dΛ̃0(u,βo, π̂,S∗,Go)

{
S (0)(u;β

o, π̂,S∗,G0)− S (0)(u;β
o,π∗,S∗,G0)

}
.

285



Moreover:

0 =
1
n

n

∑
i=1

∫ t

0
(ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)}

−
∫ t

0
d
{

Λ̃0(u,βo, π̂,S∗,Go)− Λ̃0(u,βo,π∗,S∗,Go)
}

S (0)(u;β
o,π∗,S∗,G0)

−
∫ t

0
dΛ

o
0(u)

{
S (0)(u;β

o, π̂,S∗,G0)− S (0)(u;β
o,π∗,S∗,G0)

}
−

∫ t

0
d
{

Λ̃0(u,βo, π̂,S∗,Go)− Λ̃0(u,βo,π∗,S∗,Go)
}

×
{

S (0)(u;β
o, π̂,S∗,G0)− S (0)(u;β

o,π∗,S∗,G0)
}

−
∫ t

0
d
{

Λ̃0(u,βo,π∗,S∗,Go)−Λ
o
0(u)

}{
S (0)(u;β

o, π̂,S∗,G0)− S (0)(u;β
o,π∗,S∗,G0)

}
.

By (4.43), we therefore have:

0 =
1
n

n

∑
i=1

∫ t

0
(ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)}

−
∫ t

0
d
{

Λ̃0(u,βo, π̂,S∗,Go)− Λ̃0(u,βo,π∗,S∗,Go)
}

S (0)(u;β
o,π∗,S∗,G0)

−
∫ t

0
dΛ

o
0(u)

{
S (0)(u;β

o, π̂,S∗,G0)− S (0)(u;β
o,π∗,S∗,G0)

}
−

∫ t

0
d
{

Λ̃0(u,βo, π̂,S∗,Go)− Λ̃0(u,βo,π∗,S∗,Go)
}

×
{

S (0)(u;β
o, π̂,S∗,G0)− S (0)(u;β

o,π∗,S∗,G0)
}

−
∫ t

0

1
n

n

∑
i=1

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

×
{

S (0)(u;β
o, π̂,S∗,G0)− S (0)(u;β

o,π∗,S∗,G0)
}
.
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Therefore, solving for Λ̃0(t,βo, π̂,S∗,Go)− Λ̃0(t,βo,π∗,S∗,Go), we have:

Λ̃0(t,βo, π̂,S∗,Go)− Λ̃0(t,βo,π∗,S∗,Go)

=
∫ t

0

{
S (0)(u;β

o, π̂,S∗,Go)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

((ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)}

−dΛ
o
0(t)

{
S (0)(u;β

o, π̂,S∗,G0)− S (0)(u;β
o,π∗,S∗,G0)

}
−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

×
{

S (0)(u;β
o, π̂,S∗,G0)− S (0)(u;β

o,π∗,S∗,G0)
})

.

By definition of S (0), we then have:

Λ̃0(t,βo, π̂,S∗,Go)− Λ̃0(t,βo,π∗,S∗,Go)

=
∫ t

0

{
S (0)(u;β

o, π̂,S∗,Go)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

((ŵi−w∗i ){dNi(u)+Go(u,Ai)dS∗i (u,Ai)−dΛ
o
0(u)exp(βoAi)Ri(u,S∗,Go)}

−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(t;β

o,π∗,S∗,Go)
}−1

×1
n

n

∑
j=1

(ŵ j−w∗j)exp(βoA j)R j(u,S∗,Go)

)
.

• Proof of (4.45):
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By (4.52), we have:

0 =U2
(
Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)

;β
o,π∗, Ŝ, Ĝ

)
−U2

(
Λ̃0 (t;β

o,π∗,S∗,Go) ;β
o,π∗,S∗,Go)

=
∫ t

0

{
V1(u;π

∗, Ŝ, Ĝ)−V1(u;π
∗,S∗,Go)

}
−

∫ t

0
dΛ̃0

(
u;β

o,π∗, Ŝ, Ĝ
)

S (0)(u;β
o,π∗, Ŝ, Ĝ)

+
∫ t

0
dΛ̃0 (u;β

o,π∗,S∗,Go)S (0)(u;β
o,π∗,S∗,Go).

Tedious algebra gives us:

0 =U2
(
Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)

;β
o,π∗, Ŝ, Ĝ

)
−U2

(
Λ̃0 (t;β

o,π∗,S∗,Go) ;β
o,π∗,S∗,Go)

=
∫ t

0

1
n

n

∑
i=1

{
w∗i Ki(u,Ai)− ∑

a=0,1
Ki(u,a)

}

−
∫ t

0
dΛ

o
0 (u)

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)

}
−

∫ t

0
d
{

Λ̃0
(
u;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (u;β

o,π∗,S∗,Go)
}

S (0)(u;β
o,π∗,S∗,Go)

−
∫ t

0
d
{

Λ̃0
(
u;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (u;β

o,π∗,S∗,Go)
}

×
{

S (0)(u;β
o,π∗, Ŝ, Ĝ)− S (0)(u;β

o,π∗,S∗,Go)
}

−
∫ t

0
d
{

Λ̃0 (u;β
o,π∗,S∗,Go)−Λ

o
0(u)

}{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)

}
,

where

Ki(u,Ai) = Ĝ(u,Ai)dŜi(u,Ai)−Go(u,Ai)dS∗i (u,Ai).
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Therefore, by (4.43), we get:

0 =U2
(
Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)

;β
o,π∗, Ŝ, Ĝ

)
−U2

(
Λ̃0 (t;β

o,π∗,S∗,Go) ;β
o,π∗,S∗,Go)

=
1
n

n

∑
i=1

∫ t

0

{
w∗i Ki(u,Ai)− ∑

a=0,1
Ki(u,a)

}

−
∫ t

0
dΛ

o
0 (u)

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)

}
−

∫ t

0
d
{

Λ̃0
(
u;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (u;β

o,π∗,S∗,Go)
}

S (0)(u;β
o,π∗,S∗,Go)

−
∫ t

0
d
{

Λ̃0
(
u;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (u;β

o,π∗,S∗,Go)
}

×
{

S (0)(u;β
o,π∗, Ŝ, Ĝ)− S (0)(u;β

o,π∗,S∗,Go)
}

− 1
n

n

∑
i=1

∫ t

0

{
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

}{
S (0)(u;β

o,π∗,S∗,Go)
}−1

×
{

S (0)(u;β
o,π∗, Ŝ, Ĝ)− S (0)(u;β

o,π∗,S∗,Go)
}
.
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Therefore, solving for Λ̃0
(
t;βo,π∗, Ŝ, Ĝ

)
− Λ̃0 (t;βo,π∗,S∗,Go), we get:

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)

=
∫ t

0

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

(
w∗i Ki(u,Ai)− ∑

a=0,1
Ki(u,a)

−dΛ
o
0 (u)

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)

}
−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

×
{

S (0)(u;β
o,π∗, Ŝ, Ĝ)− S (0)(u;β

o,π∗,S∗,Go)
})

.

We define:

Ji(u,Ai) = Ĝ(u,Ai)Ŝi(u,Ai)−Go(u,Ai)S∗i (u,Ai).
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By definition of S (0), we have:

Λ̃0
(
t;β

o,π∗, Ŝ, Ĝ
)
− Λ̃0 (t;β

o,π∗,S∗,Go)

=
∫ t

0

{
S (0)(u;β

o,π∗, Ŝ, Ĝ)− S (0)(u;β
o,π∗,S∗,Go)+ S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
i=1

(
w∗i Ki(u,Ai)− ∑

a=0,1
Ki(u,a)+dΛ

o
0(u)

{
w∗i eβoAiJi(u,Ai)− ∑

a=0,1
eβoaJi(u,a)

}

−

[
w∗i {dNi(u)+Go(u,Ai)dS∗i (u,Ai)}− ∑

a=0,1
Go(u,a)dS∗i (u,a)

−dΛ
o
0(u)S

(0)(u;β
o,π∗,S∗,Go)

]{
S (0)(u;β

o,π∗,S∗,Go)
}−1

× 1
n

n

∑
j=1

{
−w∗je

βoA jJ j(u,A j)+ ∑
a=0,1

eβoaJ j(u,a)

})
.

4.8.5 Useful Lemmas and Results

Lemma 24 (Claim of Van Der Laan et al. (2003) (pag.87)). If

P(A = 1|X(1),X(0),δ(1),δ(0),Z) = P(A = 1|Z) holds, the tangent space to the propensity score

P(A = 1 | Z) has the following form: T = {φ(A,Z) : f or all φ(A,Z) s.t E{φ(A,Z) | Z}= 0} .

Lemma 25 (Lemma 1.4 of Van Der Laan et al. (2003)). Suppose that Z = ψ(X) where X is a

random variable and ψ is a given function. Then, for any function q: ∏ [q(X) | {φ(Z) : any φ}] =

E{q(X) | Z}.

Lemma 26 (Lemma 1.5 of Van Der Laan et al. (2003)). Let (A,Z) be a joint random vari-

able. Let T = {φ(A,Z) : f or all φ(A,Z) s.t E {φ(A,Z) | Z}= 0}. Then, for any function q:

∏ [q(A,Z) | T ] = q(A,Z)−E{q(A,Z) | Z}.
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Lemma 27. For any H(t,A,Z) such that sup[0,τ],Z∈Z |H(t,a,Z)| = op(1) for a = 0,1, under As-

sumptions 10-6 we have:

1
n

n

∑
i=1

∫
τ

0
H(t,Ai,Zi)

{
dNi(t)+Go(t,Ai)dSo

i (t,Ai)−dΛ
o
0(t)e

βoAiRi(t,So,Go)
}
= op(n−1/2).

Proof of Lemma 27. Let’s notice that, by (4.11) in the main document:

Q(t,A,Z) := dN(t)+Go(t|A,Z)dSo(t,A,Z)−dΛ
o
0(t)e

βoAR(t,So,Go)

= dM(t)−dE{M(t)|A,Z} .

Therefore:

E
{∫

τ

0
H(t,A,Z)Q(t,A,Z)

}
= E

[∫
τ

0
E{H(t,A,Z)dM(t)|A,Z}−

∫
τ

0
E{H(t,A,Z)dM(t)|A,Z}

]
= 0.

Moreover, for each i, there exists C < ∞ such that:

∣∣∣∣∫ τ

0
H(t,Ai,Zi)Q(t,Ai,Zi)

∣∣∣∣≤Cδi +So
i (τ,Ai)+2Λ

o
0(τ)e

βo
=C < ∞.

Therefore, by Bernstein’s inequality for independent bounded random variables we get, for each
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ε > 0:

P

(∣∣∣∣∣ 1√
n

n

∑
i=1

∫
τ

0
H(t,Ai,Zi)Q(t,Ai,Zi)

∣∣∣∣∣> ε

)

≤ exp
(
− ε2/2

Cε/
√

n+E(
∫

τ

0 H(t,A,Z)Q(t,A,Z))2

)
≤ exp

(
− ε2/2

Cε/
√

n+E(sup[0,τ],Z∈Z H2(t,A,Z)
∫

τ

0 Q2(t,A,Z))

)

= exp
(
− ε2/2

Cε/
√

n+op(1)

)
→ 0.

Lemma 28. For any H(t) such that sup[0,τ] |H(t)|= op(1), under Assumptions 10-6 we have:

1
n

n

∑
i=1

∫
τ

0
H(t){w∗i dNi(t)+w∗i Go(t,Ai)dS∗i (t,Ai)

− ∑
a=0,1

Go(t,a)dS∗i (t,a)−dΛ
o
0(t)S

(0)(u;β
o,π∗,S∗,Go)

}

= op(n−1/2),

if either π∗ = πo and S∗ = So.

Proof of Lemma 28. We define:

Q(t,Ai,Zi) = w∗i dMi(t)+w∗i Go(t,Ai)dS∗i (t,Ai)− ∑
a=0,1

Go(t,a)dS∗i (t,a)

+dΛ
o
0(t)w

∗
i Go(t,Ai)S∗i (t,Ai)−dΛ

o
0(t) ∑

a=0,1
Go(t,a)dS∗i (t,a).
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By definition of S (0), we want to prove that

1
n

n

∑
i=1

∫
τ

0
H(t)Q(t,Ai,Zi) = op(n−1/2).

If π∗ = πo:

E
{∫

τ

0
H(t)Q(t,A,Z)

}
= E

(∫
τ

0
E
{

A
πo(Z)

H(t)dM(t)|Z
}
+

∫
τ

0
E
{

1−A
1−πo(Z)

H(t)dM(t)|Z
}

+ E
{

A
πo(Z)

H(t)Go(t|A,Z)dS∗(t|A,Z)|Z
}
+E

{
1−A

1−πo(Z)
H(t)Go(t|A,Z)dS∗(t|A,Z)|Z

}
− ∑

a=0,1
H(t)Go(t|a,Z)dS∗(t|a,Z)

+dΛ
o
0(t)

[
E
{

A
πo(Z)

H(t)Go(t|A,Z)S∗(t|A,Z)|Z
}

+E
{

1−A
1−πo(Z)

H(t)Go(t|A,Z)S∗(t|A,Z)|Z
}
− ∑

a=0,1
H(t)Go(t|a,Z)S∗(t|a,Z)

])
.
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Therefore

E
{∫

τ

0
H(t)Q(t,A,Z)

}
= E

[∫
τ

0
E{H(t)dM(t)|A = 1,Z}+

∫
τ

0
E{H(t)dM(t)|A = 0,Z}

+ H(t)Go(t|1,Z)dS∗(t|1,Z)+H(t)Go(t|0,Z)dS∗(t|0,Z)

− ∑
a=0,1

H(t)Go(t|a,Z)dS∗(t|a,Z)

+dΛ
o
0(t){H(t)Go(t|A,Z)S∗(t|A,Z)

+H(t)Go(t|A,Z)S∗(t|A,Z)− ∑
a=0,1

H(t)Go(t|a,Z)S∗(t|a,Z)

}]

= E
[∫

τ

0
H(t)dM1(t)+

∫
τ

0
H(t)dM0(t)

]
= 0.

On the other hand, if S∗ = So, by (4.11) in the main document, we have:

E
{∫

τ

0
H(t)Q(t,A,Z)

}
= E

[∫
τ

0

A
π∗(Z)

H(t)E{dM(t)|A,Z}+
∫

τ

0

1−A
1−π∗(Z)

H(t)E{dM(t)|A,Z}∫
τ

0

A
π∗(Z)

H(t)E{dM(t)|A,Z}−
∫

τ

0

1−A
1−π∗(Z)

H(t)E{dM(t)|A,Z}

+ ∑
a=0,1

H(t)E{dM(t)|a,Z}

]

= ∑
a=0,1

E
[∫

τ

0
H(t)dM1(t)+

∫
τ

0
H(t)dM0(t)

]
= 0.

The rest of the proof follows as the proof of Lemma 27.
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Lemma 29. For any H(t,Z) such that supZ∈Z |H(Z)|= op(1), by Assumption 8 we have:

1
n

n

∑
i=1

H(Zi)

{
Ai

πo
i

eβoAi− eβo
}
= op(n−1/2),

and

1
n

n

∑
i=1

H(Zi)

{
Ai

πo
i
−1
}
= op(n−1/2).

Proof of Lemma 29. We notice that

E
[

H(Z)
{

A
πo

i
−1
}]

= E
[

H(Z)E
{

A
πo

i
−1|Z

}]
= 0,

and similarly

E
[

H(Z)
{

A
πo

i
eβoAi−1

}]
= E

[
H(Z)E

{
A
πo

i
eβoAi−1|Z

}]
= 0,

The rest of the proof follows similarly to the proof of Lemma 27.

Lemma 30. For any H(t,A,Z) such that sup[0,τ],Z∈Z |H(t,a,Z)|= op(1) for a= 0,1, by Assumption

8 we have:

1
n

n

∑
i=1

∫
τ

0

{
wo

i H(t,Ai,Zi)− ∑
a=0,1

H(t,a,Zi)

}
= op(n−1/2).
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Proof of Lemma 30. We notice that

E

[∫
τ

0

{
woH(t,A,Z)− ∑

a=0,1
H(t,aZ)

}]

= E

[∫
τ

0

{
A

πo(Z)
H(t,1,Z)+

1−A
1−πo(Z)

H(t,0,Z)− ∑
a=0,1

H(t,a,Z)

}]

= E

[∫
τ

0

{
E(A|Z)
πo(Z)

H(t,1,Z)+
E(1−A|Z)
1−πo(Z)

H(t,0,Z)− ∑
a=0,1

H(t,a,Z)

}]
= 0.

The rest of the proof follows similarly to the proof of Lemma 27.

4.8.6 Simulation technique

We report here the specific steps used to generate simulated dataset.

• Simulate unobserved V ∼ Fv for some distribution Fv.

• Simulate covariates Z ∼ Fz,v for some distribution Fz,v that depends on the unobserved v.

• Simulate treatment A∼ B(π(Z)) for some π(Z).

• Define u=Fv(V )∼U(0,1). For a= 0,1 simulate potential T (a) solving exp
{
−eβaΛ0(t)

}
=

u for t for some chosen β and Λ0(t).

• Simulate C(a)∼ Fc,a for some distribution Fc,a, for a = 0,1.

• Define X(a) = min{T (a),C(a)} and δ(a) = 1{T (a)≤C(a)} for a = 0,1.

• Define the observed X = X(a),δ = δ(a) for a = A.
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4.8.7 HHP-HAAS dataset

Table 4.7: Summary of the HHP-HAAS data. Presented are mean (standard deviation) for the
continuous variables, and frequency (%) for the cathegorical variables.

Light Drinkers Heavy Drinkers
(n = 1509) (n = 552)

SystolicBP 148.88 (21.50) 150.76 (22.09)
Age 77.36 (4.06) 77.49 (4.10)
Education (in years) 11.02 (3.19) 10.17 (3.01)
ApoE genotype (yes) 278 (18.4%) 121 (21.9%)
HeartRate (in 30 secs) 31.31 (4.64) 31.90 (4.85)

0.00
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5 10 15 20
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Figure 4.2: Kaplan-Meier curves for Light and Heavy drinkers for the HHP-HAAS data.
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