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Abstract

A Fast, Parallel, and Multi-Language Hardware Compilation Framework

by

Sheng-Hong Wang

A set of new Hardware Description Languages (HDLs) with a higher level of expres-

siveness has emerged to ease the difficulty of depicting complex hardware design. How-

ever, the increased compilation time also becomes a new bottleneck on the designer’s

productivity and adds more burden to the already lengthy hardware EDA flow. Mean-

while, these new HDLs tend to be developed with a stand-alone compiler, making an

HDL compilation innovation hard to share with the compiler community.

I design and implement LiveHD, a new multi-threaded, fast, and generic com-

pilation framework across many HDLs (FIRRTL, Verilog, and Pyrope). Internally, a

high-level generic AST-like IR, LNAST, is used to interface the front-end source lan-

guages. Then LiveHD translate the LNAST-IR into a low-level LGraph IR, which sup-

ports most of the compilation passes and optimizations. I propose new fully and bottom-

up parallel passes to handle HDLs. The resulting compiler is able to parallelize all of

the compiler steps.

LiveHD can achieve 5.5x speedup scalability when elaborating a multicore

RISC-V designed in the FIRRTL HDL. It also gets from 7.7x to 8.4x speedup scalability

for a benchmark designed in all three HDLs. This is achieved with a fast single-threaded

LiveHD baseline where it has 6x speedup compared to compilers such as Scala-FIRRTL

ix



and 8.6x against Yosys on Verilog. The highly parallelized and generic LiveHD com-

pilation framework will open many exciting opportunities in the HDLs compiler and

EDA research domain.
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Chapter 1

Introduction

A resurgence in hardware accelerators is thriving with the continued power

and performance scaling and the emergence of new specialized domains, such as Ma-

chine Learning. This trend is shown in the latest systems like Apple M1/M2, Qual-

comm Snapdragon, and AMD/Xilinx FPGA. These systems are usually equipped with

a dedicated Neural Engine to process AI applications. The enormous potential market

for AI processors also encourages hundreds of new hardware startups to design novel

AI chips, such as Groq, Tenstorrent, Esperanto, and many others. However, the current

hardware development flow contrast with agile methods that became popular in mod-

ern software development. In industry, there is a notorious problem that hardware

designers have to wait days or even weeks for the time-consuming EDA compilation

flow to be finished.

The lengthy EDA compilation consists of source code elaboration, logic syn-

thesis, placement & routing (P&R), and timing analysis and modifications. Each phase

1



may need to perform circuit simulation to guarantee the behavior works correctly. Usu-

ally, designers have to go through several iterations of the entire EDA flow to optimize

the circuit and meet timing closure.

The elaboration step translates the source code into the EDA tool’s internal

intermediate representation (IR). When the input HDL is Verilog, the source code elab-

oration usually takes a small portion of the time. However, when it comes to modern

high-level HDLs, the ‘elaboration’ step refers to HDL compilation. Due to the more

significant level of expressiveness, new HDLs like Chisel3/FIRRTL [15,45], PyRTL [24],

and Pyrope [76] have garnered much interest since they make it easier to describe hard-

ware. Each new HDL has a unique compiler that produces Verilog output from the

high-level code. Thus, Verilog is frequently referred to as the assembly code output

in software language compilers. This also means that the traditional elaboration step

now consists of nearly the whole compilation stack as in software languages. The high-

level semantic HDL code has to go through a complex compilation stack, which adds

non-trivial time to the original EDA flows and makes the EDA flow even lengthier.

To address the long-standing problem of slow EDA compilation time, our

group has built several ‘live’ hardware synthesis techniques, such as LiveSynth [70],

SMatch [71], and LiveSim [78] to target logic synthesis, P&R, and simulation, respec-

tively. When a baseline result has firstly been produced, and the designer decides to

modify a small portion of front-end source code, these ‘live’ techniques could help to

perform an incremental compilation and get a new design output within a few seconds.

Nevertheless, the designer still has to wait for a slow initial baseline compila-
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tion before taking advantage of the ‘live’ techniques. This prerequisite hinders the de-

signer’s productivity harshly and is the core research topic that this dissertation wants

to address.

Compilation infrastructures carefully tuned for speed is a crucial step for build-

ing a fast and incremental EDA compilation flow. Some facts affect the compilation

time. The first is the parallel compilation scheme and scalability to address the sea of

modules in a SoC. The second is the IR iteration time which directly affects the algo-

rithm performance of a compiler pass. The third is to avoid unnecessary re-parsing

between compilation steps. Besides focusing on the speed metric, some other features

are also essential for an excellent hardware IR. For example, the IR iterator should

be able to traverse through the whole design hierarchy without flattening the entire

design. The IR data model should prevent code duplication among passes. The IR

should be generic enough and provide friendly APIs for integrating other third-party

tools. In this dissertation, I propose LiveHD, a new hardware development framework,

to be the compilation infrastructure. LiveHD provides fast HDL and EDA compilation

speed and serves as a common database to integrate with novel hardware compilation

passes, such as the ‘live’ techniques and the other open source tools [43, 44, 80].

LiveHD is built on top of a graph structure called LGraph (Live Graph) [69,

84]. LGraph is a sparse graph representation that serves as a design database and is

carefully crafted for incremental live hardware development. LGraph is an LLVM-like

infrastructure of hardware design tools, representing large-scale designs in different

VLSI phases. It aims to provide incremental elaboration, synthesis, and simulation.
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LGraph is carefully crafted with a minimal number of IR node type; the limited node

types could reduce the compiler passes design and time complexity.

Though LGraph provides many excellent features as a hardware compiler in-

frastructure, it is essentially a low-level graph IR, making it hard to interface directly

with modern HDLs. Modern HDLs usually define high-level semantics such as ag-

gregate types and circuit attributes. In order to enable multiple HDLs to leverage the

fast compilation that LiveHD provides, I introduce a new high-level IR called LNAST

(for Language Neutral AST). The LNAST IR is the standard interface that allows easy

translation of new languages to LiveHD. By targeting LNAST instead of LGraph, the

language designer does not need to worry about SSA, control-flow conversion, variable

scopes, and many other constructs shared by most languages. In a way, LNAST is more

accessible to translate to because it has a control flow with several operations.

The IR design is a critical component in compiler development [53, 54]. It is

common practice for a compiler tool stack to have multiple layers of IR, ranging from

high-level to low-level representations. An excellent high-level IR has simple semantics

to express the high-level source language and hides details about the language syntax

to the back-end compiler stack. It must be independent of the front-end programming

language and leverage shared code optimization. In the new LiveHD model, we can

view LNAST as a tree-like high-level IR and LGraph as a graph-like low-level IR.

Nowadays, hardware designers need to integrate thousands of modules into

a deep design hierarchy that constitutes a modern SoC. Even more challenging, many

hardware tools lack scalable or parallel compilation steps that software compilers have.

4



On the other hand, the enormous module instances in a SoC provide an opportunity

for boosting the compilation throughput from a parallelized compiler. In this thesis, I

further proposed a new multi-threaded and high scalability compilation scheme in the

LiveHD framework. Furthermore, the parallelized mechanism is suitable for multiple

HDLs.

In summary, the main contributions in this dissertation are:

• a low-level LGraph IR for fast HDL compilation, synthesis, simulation, and inter-

facing other tools

• a high-level LNAST IR to bridge different HDLs into LiveHD.

• implementing many hardware-specific compiler passes based on LNAST and LGraph

IR, and precious lessons learned about hardware compiler design exploration

among passes and IRs.

• a generic and parallelized compilation scheme capable of compiling multiple HDLs

front-end.

Multiple communities will benefit from LiveHD. Developers of new HDLs

can map to LNAST and leverage the existing compiler infrastructure. Physical design

groups can integrate into LGraph to provide support for different front-end languages

and to evaluate integration with other steps, moving beyond simple benchmarks reg-

ularly used for specific steps in physical design. RTL circuit designers can use the

integrated open-source flow, which provides a shallow entry-level barrier, instead of

5



spending time integrating tools from different domains. We see LiveHD as the LLVM-

like system in hardware design since it provides a convergence point for both language

developers and back-end engineers. Users can access the open-sourced LiveHD project

code base at [41].

The remainder of this dissertation is organized as follows to discuss how the

proposed LNAST-IR, LGraph-IR, and parallelized LiveHD framework boost compila-

tion throughput for multi-HDLs:

Chapter 2 takes a quick overview of the internal steps of the LiveHD frame-

work and discusses the language abstractions and IR choices.

Chapter 3 takes a quick overview of the ‘live’ synthesis and simulation tech-

niques that have been published that will be an excellent complement for our proposed

fast multi-threaded HDL compilation framework. I then introduce important related

works, including hardware and software IR designs, and other hardware compilation

framework that shares the same goal of LiveHD goal to be a generic development frame-

work for hardware language compilation and tool development.

Chapter 4 discusses work done for the low-level LGraph IR. Critical features

of LGraph include a unified data model and API, a fast memory mapped library de-

sign, integration with third-party tools, and hierarchical design traversal for third-party

tools. I further explain some of the compilation pass implementations based on LGraph.

Some more depth IR design considerations for hardware are also discussed in this chap-

ter.

Then, Chapter 5 presents our high-level LNAST IR. LNAST offers one main

6



benefit to the LiveHD framework. It acts as a bridge for the LiveHD flow to interface

with different HDLs at the front end. By targeting LNAST instead of LGraph, the lan-

guage designer does not need to worry about SSA, control flows conversion, variable

scopes, and many other constructs shared by most languages. This chapter will also

discuss the passes implemented on LNAST.

In Chapter 6, I propose a new design to parallelized LiveHD framework. I

demonstrate how LiveHD can extract a dependency tree during the IR lowering pro-

cess. Then I illustrate how to turn each pass into either a fully-parallelized or bottom-up

parallelized mechanism based on the dependency tree relations. I then explain the spe-

cial care that needs to be taken for different front-end HDLs.

Finally, I provide my final thoughts on Chapter 7 and talk about potential fu-

ture open research projects that this work could inspire. In my Ph.D. journey, I also

have collaboratively work on other projects that are not discussed in the thesis. I co-

designed the semantics and syntax of the new Pyrope HDL, along with the LiveHD

framework. I also participated in several exciting research prototypes with LiveHD,

including leveraging LiveHD’s multi-languages code generation ability [40] to increase

the compiler testing coverage.
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Chapter 2

LiveHD Overview

This chapter gives a concise summary of the steps that occur internally within

the LiveHD framework. It also discusses the language abstraction and IR options avail-

able.

2.1 HDL Support Choice

Verilog is the language that is considered to be the industry standard, and

Chisel3 is the most widely used modern alternative to Verilog. Therefore, it was ap-

parent in the early design process that LiveHD would need to support both languages.

LiveHD also supports Pyrope, an HDL still in development that already has features

like the global inference that affect the compile design options. Because we want LiveHD

to support the full Verilog 2001 language and some SystemVerilog features, the com-

piler needs to pay attention to many details. LiveHD can directly interface Verilog and

Chisel3 generated code at compile time. This allows for optimizations to be performed

8



across modules.

LiveHD uses Slang [8] to parse Verilog. Even non-synthesizable constructs

like classes are no problem for Slang, which can handle most of SystemVerilog. The

synthesizable subset is the only one LiveHD will accept. When it comes to Chisel3 [15],

LiveHD accepts CHIRRTL, which is comparable to the FIRRTL [45] but is directly pro-

duced by Chisel3. The original Scala-FIRRTL [45] compiler will accept the same CHIRRTL

before each of the various lowering steps that are performed within FIRRTL. A special-

ized parser is implemented in LiveHD to handle Pyrope.

2.2 Hardware IR Choice

LiveHD has two internal IRs, LNAST [85] and LGraph [84]. The LNAST and

the LGraph internal IRs have their own associated data structures in LiveHD. LNAST is

a control flow language-neutral intermediate representation that maintains the control

flow. LNAST can be derived from any of the three different HDLs. Compared to IRs

produced by non-hardware compilers, LNAST is somewhere between the HIR and MIR

produced by Rust [11], or it is closer to the AST than the IR used in LLVM [54]. LGraph

is a form of graph representation more analogous to a hardware netlist. There is a

lowering or translation step from LNAST to LGraph.

Internally, LNAST is equipped with a Static Single Assignment (SSA) [27] pass

that is able to enable its very own compiler optimization steps. However, for the pur-

poses of this particular piece of research, the most crucial function of LNAST is to han-
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dle all control flow structures properly before it generates an LGraph.

HDL-specific passes, such as bitwidth inference and code optimization, are in-

cluded in LGraph. Even though it is possible to complete some of the steps in LNAST,

the design process can be made much simpler using LGraph’s various traversal algo-

rithms, such as topological sort.

2.3 LiveHD Overview

Verilog Parser v- AST RTLIL

Chisel3 Scala- JVM Chir.fir High.fir Mid.fir Low.fir Verilog

Pyrope Parser prp- AST
LiveHD

Parser ( Slang) v- AST
LNAST LGraph

Scala-FIRRTL or CIRCT-FIRRTL 

Verilog

Chir.pb

Yosys

Chisel Front-end

 passes ssa

 passes

Figure 2.1: Overview of LiveHD compilation flow and comparisons between Yosys
and Chisel3/FIRRTL compilers.

The high-level structure of the LiveHD compiler is illustrated in Figure 2.1.

Currently, the front end of LiveHD is capable of compiling three different HDLs. These

HDLs are FIRRTL, Pyrope, and Verilog. As an example, prp-AST was generated by
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our very own Pyrope parser, sv AST was generated using Slang [8], and Chir.pb was

generated using Protocol 10 Buffers [4].

Every language has a unique pass responsible for translating its internal AST

to the LNAST-IR. After entering LNAST, the internal data for all three languages be-

comes identical. Because LNAST is the target structure, the language designer does

not have to be concerned with SSA, the conversion of control flows, variable scopes,

or any of the other numerous constructs common to most languages. The fact that the

input is not required to be in SSA form by LNAST is because LNAST itself is internally

equipped with an SSA transformation. Thus, targeting LNAST relieves language de-

signers’ efforts.

LNAST does not have language-specific nodes. On the contrary, it makes it

possible to create function calls to black-boxed modules whenever required. This is

taken advantage of by the FIRRTL pass, which transforms a FIRRTL operation into a

function call to an LNAST node of blackbox. It is a different approach to MLIR [55]

that involves the creation of dialect for custom nodes. The LNAST approach allows

custom passes for each language while enabling each compiler pass to handle semantics

appropriately.

The front-end design will be represented as LGraph when translated from

LNAST. An LNAST node can require multiple LGraph nodes. LGraph makes use of

the majority of the LiveHD compilation passes in order to generate optimized Verilog

output. These compilation passes include copy-propagation, constant folding, peep-

hole optimization, and bitwidth inference.
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A hierarchical graph is the key characteristic of LGraph. We refer to a graph

as hierarchical when it can point to other graphs. There are many different constructs,

such as hierarchical iterators that can be used to manage graphs.

2.4 Clarification

LiveHD is a large project that many students have collaborated and contributed

to together. The specific contributions made in this thesis are summarized in Table 2.1.

Table 2.1 Detailed contributions from the author
item comments
Parallelized LiveHD main designer
End-to-end Pyrope compilation flow main designer except the parser 1

End-to-end FIRRTL compilation flow main designer
End-to-end Verilog compilation flow collaboration 2

LNAST IR infrastructure main designer with high collaboration 3

LGraph IR infrastructure collaboration 4

FIRRTL to LNAST main designer with high collaboration 5

LNAST SSA transformation main designer
LNAST to LGraph pass main designer
Cprop pass main designer with high collaboration 6

FIRRTL bit analysis pass main designer
FIRRTL map pass main designer
Bitwidth inference pass main designer with high collaboration 7

LGraph Mockturtle integration collaboration 8

1 Pyrope parser is designed by Kenneth Mayer, a MS student alumni
2 Verilog parser is maintained by Prof. Renau
3 co-develop the LNAST interfaces and the tree library with Prof. Renau
4 co-develop the LGraph interfaces and the graph library with Prof. Renau
5 the intitial prototype that interfaces hi-FIRRTL is designed by Hunter Coffman, a MS student
alumni; I continue his work but re-design most part of the codebase to handle CHIRRTL, the highest
format of FIRRTL
6 co-develop with Prof. Renau to handle tuple structure
7 the initial prototype is also designed by Hunter Coffman; I and Prof. Renau keep improve the
codebase
8 the initial prototype is designed by Qian Chen; I continue the design and perform the benchmarking
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Chapter 3

Related Work

First, this section will discuss the live programming techniques that intrigue

our interest in starting the LiveHD research concept. After that, I discuss the IR designs

and frameworks relevant to software and hardware communities.

3.1 Live Techniques in LiveHD

Unlike hardware development, software development is much more agile than

Hardware design. For example, a trivial change in a large software project like the

Linux kernel requires less than one minute to recompile incrementally. More recently,

Live programming has received much attention in the software community. In Live

programming, developers can see the output from their code change immediately as

if the program is always running. Faster feedback leads to a more productive and less

frustrating development experience [28]. A couple of seconds is the recommended [28]

value to have a responsive user interaction.
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As a complementary perspective of this thesis, the ultimate goal for LiveHD

is building an interactive hardware design experience, much like live programming, by

providing feedback within a few seconds. This is possible by applying three principles

for incremental hardware design: (1) divide the job into partition regions or check-

points; (2) incrementally transform these partition regions where the code change hap-

pens; and (3) hot-reload the partition regions into a running program without restart-

ing.

Three main live programming techniques in LiveHD have been proposed, in-

cluding LiveSynth [70], SMatch [71], and LiveSim [78]. These tasks are designed under

the three incremental principles. They only handle the sub-jobs related to the code

change, then merge results into the background program without re-running from the

beginning. LiveSynth focuses on logic synthesis, and SMatch performs P&R for FPGA.

LiveSim is our live simulator.

These research prototypes still have two substantial problems. Before moving

on to the incremental phase, the baseline synthesis or simulation must be completed

for any of these live techniques to even be considered. However, waiting for these

protracted baseline compilations eliminates the incremental phase’s benefits. In ad-

dition, all the prototypes can only accept the low-level Verilog as inputs, despite high-

level HDLs becoming increasingly widespread. Even if the high-level HDLs are used,

their elaboration/compilation times are no longer negligible. Throughout this thesis,

LiveHD will devise a parallelized compilation strategy in addition to two new fast IRs

to address these concerns. After that, the brand-new LiveHD framework will be able to
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compile new high-level HDLs rapidly and further enable fast-baseline circuit synthesis

and simulation for future research.

3.2 Hardware Description Language Compilers and IRs

HDL compilation, hardware IR design, and tools have recently been a research

hotspot in the open-source community [2, 3, 10, 12, 16, 24, 29, 45, 47, 50, 58–60, 63, 64, 67,

73, 75, 76, 79, 83, 89]. Nonetheless, most proposed works are tightly knit to their source

language, and compilation speed is not the priority. On the other hand, several software

languages compiler have evolved toward parallelism or multi-language support.

Yosys

Yosys [89] is a framework for register-transfer-level (RTL) synthesis. It takes Verilog-

2005 as the input and converts it to its internal RTLIL [89] IR through a Verilog Abstract

Syntax Tree (v-AST in Figure 2.1). RTLIL cannot represent high-level HDL constructs

like tuple or vector. Several front-end passes are needed in Yosys to translate the initial

Verilog AST to RTLIL and further down to a more netlist-like construct through the

proc and opt steps. Yosys compilation is sequential, and these front-end passes are not

trivial and could easily take Yosys minutes when compiling large designs.

Scala-FIRRTL

FIRRTL is the IR in Chisel3 [15]. The first FIRRTL compiler is implemented in Scala [65](Scala-

FIRRTL). A front-end Chisel3 compiler produces CHIRRTL as the input for the Scala-
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FIRRTL compiler (Figure 2.1). The Scala-FIRRTL compiler is not designed for compiling

languages other than Chisel3/FIRRTL. Moreover, due to the AST-centric and non-SSA

representation of FIRRTL, it is not easy to find use-def chains for a variable. Multiple

tree iterations must be performed to build the data structures for AST transformations.

The long tree traversal time, together with sequential compilation in Scala-FIRRTL, is a

problem for large digital designs.

CIRCT-FIRRTL

CIRCT [10,32] is a new experimental hardware IR extended from MLIR [55] and LLVM [54]

communities. CIRCT framework shares the same ideas as LiveHD, i.e., to be the uni-

fied hardware development center. Theoretically, it is possible to compile multiple lan-

guages through interfacing various front-end MLIR dialects designed in CIRCT. Right

now, the CIRCT-FIRRTL flow (Figure 2.1) is concurrently developed with LiveHD, with

a focus on FIRRTL input.

Other HDL IRs and compilers

LLHD [73] and CoreIR [60] are IRs aiming to be the generic hardware representation for

the RTL abstraction level. LLHD is a statically-typed hardware IR designed to capture

SystemVerilog. In LLHD, the bitwidth of variables must be explicitly defined. Thus it

cannot be easily interfaced with modern HDLs, which only set bitwidth on the modules’

I/O. In CoreIR, input HDLs like Halide [72] and Verilog are now supported, and the

compilation speed is not the main concern. Furthermore, before mapping to these two

IRs, extra bitwidth analysis passes are required to map HDLs’ bits-centric operators.
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Several works [9, 20, 52, 59, 62, 63, 75] have been proposed to handle the HLS

abstraction. Generally, the higher abstraction offers more freedom for expressive syn-

taxes. However, it usually puts more burden on the compiler to reason about the re-

lationship between high-level code and the generated circuit. Also, in terms of multi-

language compilation ability, these HLS projects cannot compile Verilog source. Thus,

they lose the opportunity to reuse and optimize Verilog designs.

Some IRs are designed specifically for back-end EDA tool development. In

the commercial world, OpenAccess (OA) is an “open” format meant to provide inter-

operability among IC design tools. Ironically, OA requires signing NDAs that limit its

usage. The other commercial option is MilkyWay from SynopsysTM. However, since

this is a proprietary format from Synopsys, not much can be said about it. The com-

mercial nature of both options makes them hard to adopt for academic research. The

OpenRoad [50] project tries to build a machine-learning-driven automatic RTL-to-GDS

flow in the open-source community without human interference. Several open-source

projects aim to leverage Python as the host to build new HDL and the corresponding

compilers. Representative works are PyMTL and Mamba [47,58], Magma [3], and My-

HDL [29]. Rsyn [34] and Ophidian [35] are two open-source frameworks for physical

design. They provide an extensible infrastructure that allows users to leverage existing

code and focus on new algorithms and tasks.
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3.3 Software Programming Language Compilers

Several software frameworks have similar design concept as LiveHD in terms

of parallelism and multi-language support.

Parallel compilation

The two widely used C/C++ compilation frameworks, GCC [81] and LLVM [54] mostly

rely on the build system such as Makefile to achieve file-level compilation parallelism.

Few of the LLVM internal passes like the linker can also be parallelized.

Several research works have been recently proposed improving the compi-

lation parallelism. The challenges of increasing scalability for Git and GCC applica-

tions are discussed in the research work by Bernardino et al. [18]. The parallel GCC

project [17] also aims to conduct a multi-threaded compilation on the intra-procedure

optimizations in GCC. Researchers in [38,48] have been working on getting higher par-

allelism in the link time optimization (LTO) stage. In Lighting Bolt [66], the authors

discuss how they design the parallel mechanism to improve the performance of the

binary optimization pass.

Elixir [33] is a functional language that also focuses on constructing highly

scalable applications. The internal framework launches multiple compilers to han-

dle separate files simultaneously. When a function dependency bottleneck occurs, the

framework sends waiting signals to the dependent caller-compiler and pauses until the

dependency is resolved.
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Multi-language support

GraalVM [31, 87] is a Java virtual machine framework that bridges multiple languages

by using Truffle [39] as the front-end IR. They are analogous to the LiveHD compiler and

its front-end IR, LNAST [85]. The AST of several languages is mapped to the common

Truffle AST in this framework. A series of back-end GraalVM optimizations like tree

rewriting and just-in-time(JIT) compiling are applied to the common Truffle AST. Click

and Paleczny [23] present a graph-based SSA intermediate representation to express

optimization elegantly. The Common Intermediate Language (CIL) [61] is used in the

.NET system, and it is also an IR designed for multiple languages such as C# and Basic.
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Chapter 4

LGraph: A Unified Low-level Graph-IR for

Productive Hardware Design

In the first part of this chapter, the discussion focuses on the essential as-

pects of LGraph IR that were created with the development of hardware compilation

tools in mind. This chapter also reviews the considerations regarding the IR design

of LGraph’s hardware. Additionally, some integration prototypes for third-party tools

are presented. In the final part of this chapter, a lesson learned from the LiveHD de-

velopment is reported, a fast but deprecated memory-mapped library. The memory-

mapped library and the LGraph-Mockturtle are assessed to know how well the inte-

gration works together.
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4.1 Introduction

Specialized hardware accelerators provide extra performance, power, and area

in multiple areas in the post-Moore’s law era. A new momentum of hardware design

innovation would come from open-source EDA tools and highly productive hardware

design flows. Hardware designers want a fast design flow to iterate between synthesis

and its analysis. EDA tool developers, in particular from the open-source community,

want to work with a common model and API to focus on the tool’s algorithm develop-

ment.

Ideally, a productive hardware design flow should have a very short design

iteration period. This helps designers quickly implement the new design idea based on

the feedback from an interactive environment. Whereas, in a traditional design flow, it

is common for designers to wait for hours or even days to obtain the design result.

Open-source EDA tools also play a vital role in hardware innovation as fel-

low researchers and hardware developers could contribute their novelty without fac-

ing licensing constraints. In recent years, research work such as DATC [49], qflow [5],

VTR [74] and OpenROAD [50] focus on integrating tools of different design stages into a

single RTL-to-GDSII flow. Some of the single-stage tools are ABC [19], Mockturtle [80],

and Yosys [89] for logic synthesis, OpenTimer [43, 44], OpenSTA [46] for static timing

analysis, RePlAce [22] and NTUPlace3 [21] for placement and NCTU-GR [57] and Tri-

tonRoute [51] for routing; Verilator [79], LiveSim [78], and Essent [16,67] for simulation.

These works on integrating open-source tools have shown the potential to
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build a tapeout-ready flow. Despite the correctness of these design flows, they are

still far from ideal. One crucial source of issues is the lack of a common data model

and APIs. Individual tools are developed using different data structures, which raises

the integration difficulty. Moreover, tools not developed using a common data model

end up replicating code and efforts. For example, almost every tool implements its

own netlist parser. This code replication further causes a non-negligible portion of the

flow execution time. To make matters worse, not all tools implement standards equally,

causing compatibility issues.

Several sources for the slow hardware compilation flow include design elab-

oration, logic synthesis, timing analysis, placement, and routing. State-of-art incre-

mental technique like LiveSynth [70] and SMatch [71] have been applied to provide an

interactive experience but are limited to synthesis. However, EDA tools are IO-heavy

applications. Re-parsing netlists or libraries to the tools’ internal data structure adds

much to the flow’s run time. As mentioned in [69], it would take Yosys [89] tens of

seconds to parse a reasonably large RTL file, which leads to a less productive design

experience. The situation worsens when the project goes into debug or optimization

phase. Although changes applied in multiple flow iterations are small, designers must

repeatedly wait for the same re-parsing time.

Performing design synthesis and static timing analysis in a hierarchical man-

ner is essential for productivity in the hardware design flow. However, as mentioned

in [36], most open-source logic synthesis and STA tools such as OpenTimer, Mockturtle,

and ABC lack hierarchical design support as compared to industrial tools.
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In order to optimize the whole design, the designer must flatten the hierar-

chical design and then feed it to these tools. However, physically flattening every sub-

module during the logic synthesis phase would increase the complexity of the back-end

physical synthesis. Furthermore even if each tool implements the hierarchical feature,

the insidious code replication among these tools still violates the DRY (do not repeat

yourself) principle in software development.

In this chapter, I present Live Graph(LGraph), our attempt to build an infras-

tructure for productive hardware design flow. The following are the highlighted key

features of the LGraph-IR:

Unified data model/API

LGraph has a unified data model and API in C++17 for digital circuits. LGraph is meant

to represent netlists in different phases of the design flow from RTL to layout, including

simulation and code generation. The easy-to-use APIs vastly reduce the design effort

of tool developers. More importantly, the nature of the unified data model prevent

possible code duplication and avoids parsing and generating the netlist between the

internal stages of the RTL-to-GDSII flow.

Hierarchical design traversal

The hierarchical cross-module traversal ability of LGraph empowers the integrated

third-party tools to run the core algorithm in a virtually flattened form. Therefore,

LGraph could implicitly achieve global optimization without affecting the physical de-

sign phase.
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Third-party tool integration

LGraph is currently being integrated with some open-source tools such as Mocktur-

tle, OpenTimer, and Yosys. Open-source EDA tool developers could leverage LGraph’s

succinct API and generic data structures to implement their algorithms. Alternatively,

they can leverage other integrated third-party tools to complete the design flow to-

gether.

4.2 LGraph-IR Construction and Traversal

4.2.1 Node, Pin, and Edge Construction

A single LGraph represents a single netlist module. LGraph comprises nodes,

node_pins, edges, and tables of attributes. An LGraph node is affiliated with a node_type,

and each type defines different amounts of input and output node_pins. For example,

a node can have three input pins and two output pins. Each of the IO pins can have

many edges to other graph nodes. Every node_pin has an affiliated node_pid. A pair

of a driver_pin and a sink_pin constitute an edge. In the API example in List 4.1, an

edge is connected from a driver_pin (pid1) to a sink_pin (pid3). The bitwidth of the

driver_pin determines the edge bitwidth.
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1 auto node = lg->create_node(Node_Type_Op);
2 auto dpin = node.setup_driver_pin(1);
3 dpin.set_bits(8);
4 auto spin = node2.setup_sink_pin(3);
5 dpin.connect(spin);

Listing 4.1: Selected API examples for LGraph construction

4.2.2 LGraph Traversal

LGraph is a bidirectional graph representation supporting topological sort

traversal in an input-forward and output-backward manner. If the order in which

nodes are visited does not matter for the algorithm, developers can choose the fast it-

erator, which will visit the next node in the cache line. Besides nodes iteration, LGraph

also provides an API for visiting each input and output edges of a node.

1 // unordered but very fast traversal
2 for (const auto &node:lg->fast()) {...}
3
4 // propagates forward from each input/constant
5 for (const auto &node:lg->forward()) {...}
6
7 // propagates backward from each output
8 for (const auto &node:lg->backward()) {...}

Listing 4.2: API examples for LGraph traversal
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1 for (const auto &inp_edge : node.inp_edges()) {...}
2
3 for (const auto &out_edge : node.out_edges()) {...}

Listing 4.3: API examples for edge iteration of a node in LGraph

1 for (auto &out : node.out_edges()) {
2 auto dpin = out.driver;
3 auto dpin_pid = dpin.get_pid();
4 auto dnode_name = dpin.get_node().debug_name();
5 auto snode_name = out.sink.get_node().debug_name();
6 auto spin_pid = out.sink.get_pid();
7 auto dpin_name = dpin.has_name() ? dpin.get_name() : "";
8 auto dbits = dpin.get_bits();
9

10 fmt::print(" {}->{}[label=\"{}b :{} :{} :{}\"];\n"
11 , dnode_name , snode_name , dbits , dpin_pid , spin_pid ,

dpin_name);
12 }

Listing 4.4: iterate output edges and get node/pin information from it
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Figure 4.1: A hierarchical LGraph.
A sub-graph node is a sub-module
instantiation. The hierarchical
traversal will walk into the sub-
graph structure.
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Figure 4.2: The tree hierarchical
view for Figure 4.1. Each instanti-
ation has a unique hid and hierar-
chical attribute table.
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LGraph supports hierarchical traversal. Each sub-module of a hierarchical de-

sign will be transformed into a new LGraph and represented as a sub-graph node in the

parent module, as shown in Figure 4.1. Suppose a hierarchical traversal is used when

the iterator encounters a sub-graph node, it will load the persistent tables of the sub-

graph to the memory and traverse the sub-graph recursively, ignoring the sub-graph

input/outputs. This cross-module traversal treats the hierarchical netlist just like a flat-

tened design. In this way, all integrated third-party tools can automatically achieve

global design optimization or analysis by leveraging the LGraph hierarchical traversal

feature.

1 for (const auto &node:lg->forward_hier()) {...}

Listing 4.5: API example for LGraph hierarchical traversal

4.3 LGraph-IR Characteristics

Several important characteristics when designing LGraph-IR are discussed in

this section. I also provide a comparison summary between LGraph/LiveHD and other

related tools in Table 4.2.

4.3.1 SSA Graph

LGraph has an SSA representation, but others such as Yosys’ internals do not.

The term ”SSA-graph” refers to a wire or network that has a driver from a single source.
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The SSA representation has been demonstrated to be very useful in conventional com-

pilers for the purpose of simplifying passes. Pointers do not exist in hardware, and

loops are used very infrequently, making the SSA an even more interesting concept.

4.3.2 Reduced Logic Instruction Set (RLIS) Cells

Logic cell need different graph nodes to represent functionality. Most EDA

tools have many logic cells or gate options. While some cells are commonly used, such

as add, subtract, concatenate wires, pick bits, one_hot_encoding, many cells are only created

for a specific function. Yosys has over 100 types, XLS has 60, and FIRRTL 37. LGraph

logic cells have been designed to reduce the number of gates. In a way, it tries to be a

Reduced Instruction Set Logic (RLIS). It is similar to that RISC is a reduced instruction

set vs. CISC. The goal has been to have the smallest amount of cells covering all the

options without the overhead. The reason for choosing the RLIS philosophy is to reduce

the design complexity of passes and optimizations on the IR. Table 4.1 summarizes the

carefully crafted RLIS LGraph operators.

4.3.3 N-ary Gates

LGraph logic cells are n-ary (see Table 4.1). N-ary means that cells like or or

add can have an unlimited number of inputs. This allows for simpler graphs and easier

optimizations because there is no need to have a chain of operators representing the

same functionality.
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Table 4.1 The reduced number of operator types in LGraph are designed to simplify
the compilation complexity

Operator Functionality
Const constant number or strings
Sum summation of n-inputs
Mult multiplication of n-inputs
Div division of 2-inputs
And and-gate with n-inputs
Or or-gate with n-inputs
Xor xor-gate with n-inputs
Ror reduced-or-gate with n-inputs
Not bitwise not operation
Get_mask get signed value from a given bit position
Set_mask turn a node from unsigned to signed
Sext signed extend from a given bit position
LT1 less than operation
GT2 greater than operation
EQ3 equal to operation
SHL logical shift left
SRA arithmetic shift right
LUT look-up table in FPGA
Mux n-to-1 multiplexer
IO Graph input or output
Memory models variant memory types4

Flop models variant flop types5

Latch models Latch gate
Fflop models fluid-pipeline flop [68]
Sub models submodule and function-call
TupAdd add a field to high-level tuple struct
TupGet get a field from high-level tuple struct
AttrSet set a attribute to a variable
AttrGet get a attribute from variable
CompileErr indicate a compile error during a pass

note: 1 greater-or-equals-to operation could be represented as !LT, 2

less-or-equals-to operation could be represented as !GT, 3 not-equals-
to operation could be represented as !EQ 4 provides an interface to
model memory like combinational/sequential read, also accepts and
generates high-level memory data struct 5 provides an interface to
model flops like asynchronous/synchronous reset, positve/negative
edge reset, and reset initialization value.
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4.3.4 Signed Wires

Most EDA flows have to deal with signed and unsigned wires. In a flow like

Yosys, logic cells behave differently with signed and unsigned inputs/outputs. This

separation adds even more complexity to the logic cells. In FIRRTL, most of the 37

existing cells also have different behavior regarding cell inputs’ signedness. However,

signed representation is indeed a superset of unsigned. If the flow supports signed,

there is no reason to support unsigned. Choosing a unified signed representation leads

to less design overhead (positive values in an unsigned result have the upper bit zero).

For example, the bitwidth inference pass no longer needs to differentiate a cell’s differ-

ent input signedness.

Compilations in the proposed signed representation require one extra bit in

the LGraph IR. A design module can be broadly categorized into (1) internal logic and

(2) IO. LiveHD implements a bitwidth pass that calculates each variable’s max/min

value (gate). Suppose the min value of a variable is always larger or equivalent to zero,

and this variable is semantically unsigned. In this case, the verilog_gen pass will gener-

ate an unsigned Verilog syntax when the variable is an internal logic (case-I). For a de-

sign module, if all the internal logic has a positive minimum value, then all the internal

logic will generate unsigned Verilog statements. In this scenario, there is no overhead

from LiveHD’s universal signed representation for the module’s internal logic. On the

other hand, if a module’s internal logic has a negative minimum value from the bitwidth

pass, there will be an extra signed bit overhead on the generated Verilog, and we have
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to rely on the synthesis tools to find pruning opportunities.

The interesting part is the IO. Theoretically, we can also generate unsigned

IOs when the min value is positive, which will be the most common case in other CAD

tools. Currently, our verilog_gen pass will always generate signed IOs. This is because

we plan to interface with other LiveHD passes in the future, and those future passes will

also be universally signed. This design choice will save us a lot of development effort

in the future. These extra signed 1-bits on the IOs produce extra overhead, but they

could be potentially optimized away from synthesis tools. In fact, the future LiveHD

will integrate synthesis tools, and global analysis and synthesis steps will take care of

this overhead from the LiveHD front-end compilation.

4.3.5 Wire Width Semantics

LGraph wires are designed to be always signed, but maybe equally interesting,

the cell semantics are independent of the wire widths. This means that a gate-like con-

catenate is not allowed because it is wire width dependent. We make this design choice

because even if the designer specifies a ‘maximum’ number of bits to a wire, the tool

should be allowed to optimize the wire’s bitwidth. This already happens in synthesis

tools that can simplify away wires. LiveHD brings the same concept/ideas to LGraph.

4.3.6 Bitwidth Inference

Verilog specifies the bitwidths for each wire. Other modern HDLs like Chisel [15]

or Pyrope [76] have a different bitwidth semantic depending on the operators. For these
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Table 4.2 Capability comparison between relevant tools

Yosys [89]

FIRRTL
[45]

XLS [9]

coreIR
[60]

LLH
D

[73]
Verilator [79]

CIRCT
[10]

LGraph/LiveH
D

HDLs Verilog FIRRTL0 C++
DSLX1

Verilog
Halide SV2,3 SV FIRRTL

Verilog
SV4

FIRRTL0

Pyrope5

Cell Types >100 ~37 ~60 ~40 ~60 >1006 >100a 31
Aggr. Type7 no yes yes yes yes yes yes yes
Signedness S/U8 S/U S/U S/U S/U S/U S/U S
N-ary Gate no no yes no no no yes yes
Global Inf9 no no no no no no yes yes
Formal yes yes yes yes no no no no
Simulation yes yes yes no yes yes yes yes
Synthesis yes no no no todo no no yes
FPGA yes no no no no no yes yes

0 highest format, CHIRRTL
1 Google’s high-level synthesis language
2 SystemVerilog
3 At the time of writing, SystemVerilog is implemented
4 we integrate Slang [8] to bridge SystemVerilog
5 Pyrope 6 includes many simulation-only constructs
7 High-level aggregate types like tuple, vector 8 Signed/Unsigned
9 Global type inference
a summation of all dialect CIRCT included

languages, the flow can not know all the bitwidths at the elaboration phase; a bitwidth

analysis must be performed to gain knowledge of each gate’s bit size before code gen-

eration. LiveHD has been designed to allow the generic bitwidth inference for every

HDLs.
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4.3.7 Global Inference

Another flexibility that LiveHD provides is global inference. Some program-

ming languages have global type inference, others have local type inference, and others

like Verilog and FIRRTL have no inference. To support a wider superset of languages,

LiveHD is designed to perform both global and local inference. The types, bits, and

other attribute fields are propagated through the graph hierarchy. Other tools, except

ML-based like Clash [86] and Lava [77], seem to have local type inference or none.

4.3.8 Prototype Inference

Currently, LiveHD does not have a working object model, but the object meth-

ods and attributes are built following prototype inheritance. This means that an objec-

t/struct can be extended and changed. It does not require specifying a fixed type.

4.4 LGraph Attribute Design

The design attribute stands for the characteristic given to an LGraph node or

node_pin. For instance, the characteristic of a node name and node physical placement.

Even though a single LGraph represents a particular module, it can be instantiated

multiple times, for example, the sub2 node in Figure 4.1. In this case, the same module

could have different attributes in the different hierarchies of the netlist. A good design

of attribute structure should be able to represent both non-hierarchical and hierarchical

characteristics.
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4.4.1 Non-Hierarchical Attribute

Non-hierarchical LGraph attributes include pin_name, node_name, and line

of source code. Such properties should be the same across different LGraph instantia-

tions. Two instantiations of the same LGraph module will have the same user-defined

node name on every node. For example, in Figure 4.1, instantiations of a subgraph 2 in

both top and sub-graph 1 would maintain the same non-hierarchical attribute table.

1 node.set_name(std::string_view name);

Listing 4.6: API example for LGraph attribute setting

4.4.2 Hierarchical Attribute

I introduced a new hierarchical LGraph attribute design after an inspirational

discussion with the author of FIRRTL. LGraph’s hierarchical attribute is achieved us-

ing a tree data structure to record the design hierarchy. In LGraph, every graph has

a unique id (lg_id). Every instantiation of a graph forms some nodes in the tree, and

every tree node is indexed by a unique hierarchical id (hid). As shown in Figure 4.2,

we can identify a unique instantiation of a graph and generate its hierarchical attribute

table. An example of a hierarchical attribute is wire delay.
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1 node_pin.set_delay(float delay);

Listing 4.7: API example for LGraph hierarchical attribute setting

4.5 3rd Party Tools Integration

The integration of third-party tools into LGraph is intuitive. Most tools have

APIs to construct netlists in their internal data structure. Thus, we can first create an

object of the tool in the LGraph program, traverse the LGraph netlist and use the tool’s

API to build an equivalent circuit on the fly inside the object. Then we make the object

perform its primary functions, for instance, synthesis. Finally, we map the tool’s data

structure back into LGraph. Currently, Mockturtle and OpenTimer are being integrated

into LGraph as initial prototypes.

4.5.1 Mockturtle

LGraph uses Mockturtle’s library for LUT-based synthesis [80]. We first par-

tition combinational groups and map these groups from LGraph to Majority-Inverter

Graph (MIG) [14] for synthesis. The synthesized MIG networks are then technology

mapped to k-bit Lookup table (KLUT) networks and stitched back to LGraph.
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4.5.2 OpenTimer

The synthesized LGraph then uses the integrated OpenTimer to perform tim-

ing analysis. Again we traverse the LGraph netlist and build the corresponding Open-

Timer structure, compute timing inside the OpenTimer object and return the critical-

path information.

4.6 Lesson Learned: The Deprecated but Fast Memory-Mapped

Library

There are several important lessons we learned along with the LGraph-IR evo-

lution. The lesson on using the memory-mapped library is the most important one.

LGraph is built with a live interactive design flow in mind. We originally de-

signed a memory-mapped C++17 library for fast netlist load/unload. Modern SoC

design usually constitutes hundreds of millions, even billions of logic gates. To quickly

load/store such a large netlist, LGraph uses the memory mapping technique for fast

persistence. The memory mapping technique maps a disk file directly to the virtual

memory space and thus reduce the buffer copy operations. It has a speed advan-

tage for large file processing [56]. We implemented a fast memory-mapped library

called mmap_lib with basic data structures such as vector, hash map, bi-directional hash

map, set, and tree. These fundamental containers form the skeleton of the code base in

the first generation of LGraph. They were used extensively for constructing graph net-

works and attributes. As the program completes, LGraph’s database is automatically
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synchronized to the disk by the OS.

The memory-mapped LGraph works perfectly in the single-threaded LiveHD

compilation and leads to a very fast code base as the evaluation 4.6.2 shows. However,

the constant lock checks frequently that happen in the multi-threaded scenario slow

down the overall compilation performance. In the end, we deprecated the memory-

mapped LGraph library and use Google’s abseil library [1,88] instead, which works fine

in multi-threaded compilation though it is slower than the LGraph memory-mapped

library using single thread.

4.6.1 Evaluation Setup

I compare the LGraph’s memory-mapped library mmap_lib is compared with

the C++17 standard library, Abseil C++ library [88], robin-map [6], and flat-hash map [7].

I randomly generated 100k numbers from a uniform random number generator to in-

sert pairs of uint32_t key and value to a hash map; then, I erased the 100k elements

randomly and measured the runtime. The vector and hash map flow are performed

100 times and I average the execution times.

The scalability of the alpha LGraph-Mockturtle LUT synthesis flow is also

evaluated and is compared with the Yosys-ABC synthesis flow ¹ targeting Xilinx 7-series

FPGAs. I use simple combinational chains of gates ranging from 1 to 50K serialized

concatenations.

All experiments are run on an Intel Core i7-6700K CPU @ 4.20 GHz with 16
1Commands include (1) read_verilog (2) proc (3) techmap (4) abc-lut 4, only the time of (3) and (4) are

measured
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GB of memory, running Manjaro v5.2.8-1. Tools are compiled with gcc v9.1.0.

4.6.2 Memory Mapped Library Results

LGraph Memory Mapping Library

I evaluate the access speeds on various sizes of vectors and hash maps. LGraph’s mmap_lib::vector

is 39.1% faster than std::vector in our simple test, and LGraph’s runtime scales better.

Figure 4.3 shows the average run time for writing and reading the entire vector on both

LGraph mmap_lib::vector and C++’s standard vector. The comparison result between

C++ hash map implementations and mmap_lib::map is shown in Figure 4.4.
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Figure 4.3: LGraph’s mmap_lib::vector has faster run-time compared to the std::vector

The mmap_lib::map design shows a competitive speed among all competitors

when the hash table size is under 10 million and starts to outperform others when the

table size is in the order of 10 million, which is typically the size of a modern-day par-
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Figure 4.4: LGraph’s mmap_lib::map is in par with best-in-class maps for entry sizes
less than 10 million but faster for entry sizes in the order of 10 million

titioned VLSI netlist. It has a fast container access time, and LGraph’s mmap_lib library

also provides an extra advantage of data persistence. This would be the key feature

when developing a live incremental VLSI flow as we do not have to re-parse the whole

data repeatedly.

LGraph-Mockturtle LUT Synthesis Flow

The evaluation also examines the LUT synthesis scalability for flows of LGraph Mock-

turtle, Mockturtle only, and Yosys-ABC. The prototype of LGraph-Mockturtle LUT
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mapping flow starts by converting LGraphs to MIG networks, synthesizing and map-

ping them to KLUTs, and converting the KLUT networks back into LGraphs. The Mockturtle-

only flow is almost the same, but it excludes the conversion steps from and to LGraphs.

For Yosys-ABC flow, only the execution time is measured from RTLIL to technology

mapping and ABC LUT synthesis.
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Figure 4.5: The LGraph-Mockturtle flow is faster than Yosys-ABC flow under all tested
scenarios

Figure 4.5 compares the scalability of LUT synthesis among various flows

such as LGraph-Mockturtle, Mockturtle only, and Yosys-ABC. Though the LGraph-

Mockturtle flow is still in its early development stages; the runtime is undoubtedly bet-

ter than the Yosys ABC flow. For a 50k combinational chain, it takes the Yosys ABC flow

134 seconds to finish, while it only takes our LGraph Mockturtle flow 25.7 seconds, an

80.8% speedup. When compared to the flow of Mockturtle only, there is an integration
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overhead in our flow; the main reason lies with the prototype implementation: there

are some network copy operations in the integration between LGraph and Mockturtle,

which takes quite a bit of time.

4.7 Conclusions

In this chapter, I present the low-level LGraph-IR as a unified infrastructure

for open-source EDA developers and an integrated design flow for hardware design-

ers. The proposed features include a fast memory mapped library to avoid netlist re-

parsing, the hierarchical traversal function to enable the integrated tools to handle hi-

erarchical design support automatically, and prototypes of 3rd party tools to express

LGraph’s generic integration power. Several LGraph-IR characteristics like the RLIS

cells and all signed wires are also presented to address the unique challenges of hard-

ware compilation.

Though being deprecated in the final proposed parallel compilation flow in

Chapter 6, our results show that in the single-threaded compilation, LGraph’s memory-

mapped vector is 39.1% faster than C++ standard library designs. LGraph’s memory-

mapped hash map design is comparable to the best C++ open-source implementations.

A working technology mapping flow with the integration of LGraph and Mockturtle

for FPGA LUT synthesis is also shown, which is 80.8% faster than the Yosys-ABC flow

and still has room to speed up further.
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Chapter 5

LNAST: A High-Level Language Neutral

AST-IR for Hardware Description

Languages

In this chapter, I first discuss the research question that arises from modern

HDLs and the original LGraph design in LiveHD. I then explain the LNAST model and

its internal structure and node type design to interact with HDLs. I also describe the

LNAST passes to/from the LiveHD framework. Finally, I evaluate the parsing perfor-

mance of our new Pyrope-LNAST-LiveHD flow.

5.1 Introduction

In the past decades, hardware design complexity increased, and many design-

ers and researchers have sought new hardware description languages to depict the de-
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RTLIL LGraph Verilog

Passes/Synth/ STA/ ...

Yosys-RTLILRTLILVerilog/SystemVerilog

Figure 5.1: The original LiveHD only has LGraph-Yosys interface that handles
SystemVerilog/Verilog.

sign structures better. Some representative high-level HDLs are Chisel3/FIRRTL [15,

45], PyRTL [24], MyHDL [83], and our in-house Pyrope HDL. These HDLs come with

their unique compilation stack and lead to an isolated HDL compilation codebase. It is

difficult to share the innovations and codebase among these HDLs compilers. Clearly,

a generic compilation framework for HDLs is needed to build a healthier HDL compi-

lation community.

In the beginning, the original LiveHD framework tried using LGraph directly

as the common interface to compile high-level HDLs. Nevertheless, I found three bot-

tlenecks that could potentially hinder our goal of LiveHD, i.e., a fast and generic com-

pilation for HDLs and eventually achieving live compilation feedback.

First, LGraph could use Yosy to interface Verilog/SystemVerilog and generate

its internal graph-like representation called RTLIL [89]. A translation layer converts the

RTLIL to LGraph. Besides Verilog/SystemVerilog, the translation pass must convert

other modern HDLs into LGraph to extend the usability of LiveHD. The reality is that

the translations have many similarities across HDLs, and care must be taken to avoid

code replication.
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Second, the old LGraph-Yosys interface takes several minutes to elaborate a

large design with millions of gates. This long translation time impedes our goal of

fast HDL compilation. The multi-layer translation in the LGraph-Yosys interface con-

tributes to this delay. To begin with, the Verilog/SystemVerilog AST translates to Yosys

RTLIL, followed by the Yosys RTLIL proc command ¹, and the translation ends with

generation of LGraph. A translation interface with minimal overhead is needed to ac-

celerate the front end.

Third, besides HDL compilation (elaboration), the future LiveHD aims to sup-

port both synthesis and simulation. To do so, it has to convert the high-level HDL code

to support synthesis and generate fast C++ for simulation(similar to what Verilator [79]

does). The LGraph model is a low-level graph representation for hardware design.

The semantic gap between the high-level HDLs and the low-level LGraph IR must be

bridged to ease the generation of human-readable C++ and other HDLs.

I introduce LNAST, a high-level IR, to bridge the gap between LGraph and

multiple high-level HDLs. The combination of LNAST and LGraph in the LiveHD

framework addresses the concerns raised earlier in this section.

LNAST plus LGraph is similar to Truffle and GraalVM [39], which also main-

tains a language-neutral AST for dynamically typed languages such as Python and

JavaScript. GraalVM also has a low-level IR based on the LLVM IR.

Figure 5.2 depicts the current simplified LiveHD framework. LNAST replaces

the original LGraph-Yosys interface, eliminating multi-translations from the previous
1Yosys proc is the command to translate high-level RTLIL to flops, muxes…
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Passes/Synth/STA/ ...

Parse TreesHDLs LNAST

SSA

Verilog

C++
low-level HDLs

high-level LNAST

low-level LNAST

Figure 5.2: The new LiveHD flow with LNAST. The passes with physical lines indicates
the contribution of this thesis. The dash-lines indicate the other students’ projects that
are still under-developed

model. The language-agnostic nature of LNAST IR helps LiveHD target traditional

Verilog/SystemVerilog and modern HDLs. The simple but expressive node-type def-

inition in LNAST provides a clear representation of modern HDL semantics. LNAST

has a Static Single Assignment(SSA) [27] transformation to enable efficient conversion

to LGraph. Though not the main contribution of this thesis, LNAST also facilitates the

code generation back from LGraph to the high-level source programs.

The rest of this chapter is organized as follows: Section 2 describes the LNAST

model and its internals. Section 3 reports the results. Section 4 reviews the lessons

learned from the LNAST development. Section 4 concludes the chapter.
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5.2 LNAST Model

5.2.1 Tree Structure

I use the Pyrope code in Listing 5.1 and its LNAST IR in Listing 5.2 to demon-

strate LNAST structure. Listing 5.1 generates the most essential LNAST syntax. The

code contains a bit width declaration of output %z in the top module (line 1), an xor

operation of two top-scope inputs $a and $b (line 3), an adder function definition with

sub module IO $c, $d, and %s (line 5 to 7), a register variable #y with initialization of

constant 1 (line 9), an if-else control flow (line 10 to 14), and a function call on adder (line

16) with input assignment: variable x to submodule input $c, register #y to submodule

input $d, and the function call return value is assigned to the top module output, %z.

1 %z.__ubits = 2 //bitwidth declaration
2 //output %z
3 x = $a ^ $b //input $a, $b
4
5 adder = ||{ //function definition
6 %s = $c + $d //input $c, $d and output %s
7 }
8
9 #y = 1 //register #y

10 if ($a > $b) { //conditional flow
11 #y = $a & $b
12 } else {
13 #y = $a | $b
14 }
15
16 %z = adder(c=x, d=#y) //function call

Listing 5.1: A sample circuit described in Pyrope
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1 top :
2 stmts :
3 tuple_add:
4 ref : %z
5 const : __ubits
6 const : 2
7 xor :
8 ref : x
9 ref : $a

10 ref : $b
11 fdef :
12 ref : adder
13 stmts :
14 plus :
15 ref : ___t2
16 ref : $c
17 ref : $d
18 assign :
19 ref : %s
20 ref : ___t2
21 assign :
22 ref : #y
23 const : 1
24 gt :
25 ref : ___t3
26 ref : $a
27 ref : $b
28 if :
29 ref : ___t3
30 stmts :
31 and :
32 ref : ___t4
33 ref : $a
34 ref : $b
35 assign :
36 ref : #y
37 ref : ___t4
38 stmts :
39 or :
40 ref : ___t5
41 ref : $a
42 ref : $b
43 assign :
44 ref : #y
45 ref : ___t5
46 tuple_add:
47 ref : ___t6
48 assign :
49 ref : c
50 ref : x
51 assign :
52 ref : d
53 ref : #y
54 fcall :
55 ref : %z
56 ref : adder
57 ref : ___t6

Listing 5.2: An LNAST-IR structure example of the circuit in
Listing 5.1
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Listing 5.2 illustrates the tree-like structure of LNAST. Multiple modules can

be represented in different LNAST files or in a single LNAST tree with function defini-

tions representing submodules. Here I use the representation of the single tree.

The top and the statements(denoted as stmts in line 2) node make up the root

scope of the tree. The children of statements are generated by following the source code

order. A primitive operation generates a sub-tree with the operator as the parent, the

first child as the lhs, and the other operands as rhs leaf. The xor operation (line 7) is

such a primitive operation example. Another case of sub-tree generation comes from

the scope hierarchy. For instance, a function definition or an if-else code block generates

a new hierarchical sub-tree and defines its own statements node (line 13 and line 30).

Every statements node creates a new program scope in the tree.

5.2.2 Attribute in LNAST Nodes

Each LNAST node has four attributes: NAME, TYPE, LOC, and SUBS. NAME

points to the variable name in the source code, TYPE is the node type in LNAST defi-

nition, and LOC denotes the line of code. SUBS is the subscript of a NAME, and it aids

in SSA transformations.

5.2.3 Neutral Node Types for HDLs

LNAST node types are intentionally designed to capture properties shared

across different HDLs and aim to maximize expressibility. Node types are categorized

into four groups: structural, variable, primitive_op, and tuple.
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The structural group forms the skeleton of LNAST and presents the program

control flow. They define major node types like top, function_definition, if, uif,for, and

while. These nodes compose statements to declare a new program scope. Two assign-

ment node types: assign and dp_assign are used to specify values for the lhs variable.

The dp_assign is quite useful when the lhs is a register where the rhs value has to be

constrained to the lhs bitwidth. If the original rhs had larger bits than the lhs defined,

the lhs would simply keep its original bitwidth.

The primitive_op group includes operations common across different HDLs.

For instance, many HDLs have similar logical, arithmetic, and comparison operations.

A specific example is the addition operation.

The variables in the source code are classified as constants or references by

the variable group. Notice that there are no specific type definitions for circuit input,

output, and register. Special characters prefix these circuit components. For example,

$x denotes that x is a module input, %y is a module output, and #z is a register.

The tuple group helps LNAST to construct tuple variables. In LiveHD, the

attribute assignment is achieved by a tuple struct. For example, in the first line of the

source code in List 5.1, the variable’s bit width attribute is expressed as an tuple_add

with an attribute string of __ubits to identify the unsigned bitwidth. This attribute

could be retrieved by the attr_get operator when needed.

When considering the design choice, such as global type inference and scope

in LiveHD, it is almost impossible that create the most generic IRs of semantics and

syntax for all HDLs. To overcome this problem, LiveHD allows extensions with at-
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tributes in the IRs passes. For example, if a new language wanted to have dependent

types [25], LNAST could annotate the types with attributes, and a new compiler pass

at the LGraph level could enforce the refining types.

Table 5.1 Four groups of operators in the LNAST IR

group operator functionality

structural

top identify the LNAST top node
stmts declare a new scope
if control flow
uif evaluate condition in any order
for for loop structure
while while loop structure
func_def define a new function as a submodule
func_call instantiate a submodule instance
assign variable assignment
dp_assign variable assignment but respect the lhs width
phi phi nodes created from SSA algorithm

primitive

bit_and/or/not/xor bitwise logic operation
reduce_or or all bit position values together
logical_and/or/not logical operations
plus n-ary addition
minus n-ary subtraction
mult n-ary multiplication
div n-ary division
mod modular operation
shl logical shift left
sha logical shift right
set_mask turn a node from unsigned to signed
get_mask get signed value from a given bit position
is/ne/eq/lt/le/gt/ge comparison operators

variable ref referece to a declared variable
const reference to a constant number or string

tuple

tuple_concat concatenate 2 tuple struct
tuple_add add a field to high-level tuple struct
tuple_get get a field to high-level tuple struct
attr_get set an attribute to a variable
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5.2.4 Function Call in LNAST

In addition to representing the submodule instantiation, the function call LNAST

node also plays an important role for LNAST in interfacing different HDLs semantics.

It is impossilbe for the LNAST node types presented in 5.2.3 can capture all the HDLs

semantics. For example, the tail_op in FIRRTL HDL extracts LSB n-bits from its in-

put edge. However, without a FIRRTL-specific bitwidth analysis pass, LNAST cannot

know the input size of tail_op, and therefore cannot map the tail_op into an appropriate

LNAST primitive op. LNAST circumvents this issue by mapping this kind of operator

into black-boxed function calls. Later LiveHD will initiate a mid-end LGraph pass that

collects the FIRRTL bitwidth information. Then, all the black boxed functions will be

resolved to proper LGraph nodes.

The memory model is another example. There are several different memory

models and parameters from different HDLs. It is inefficient to make all these mem-

ory types have a one-to-one LNAST memory type. Again, I map all kinds of memory

models to the black-boxed function call in LNAST, and then resolve the appropriate

memory peripheral parameters at the LGraph phase.

5.2.5 Scope Flexibility

Different HDLs have different scope designs. In general, I try to be sufficiently

generic to efficiently cover different HDLs like Verilog, Pyrope, and FIRRTL. For exam-

ple, Verilog and Pyrope can have local and module/function scopes. The design of

LNAST variable scopes resembles Verilog and Pyrope. Statements from the root node
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are in the top scope. By creating a new sub-LNAST tree, LNAST could have an addi-

tional scope hierarchy inside a module (or a function). In a way, the scope representa-

tion in LNAST is a superset of the FIRRTL language. This is because, in FIRRTL, the

scope is per module, which needs the variables to be instantiated at the module level.

Therefore, LNAST could also handle the FIRRTL module scope naively.

5.3 LNAST Transformations in LiveHD

5.3.1 From HDLs to LNAST

In compiler design, a parser is used to scan the source code tokens and gen-

erate the parse tree. In LiveHD, different HDLs’ source code is parsed into a language-

specific parse tree and translated into LNAST IR, as illustrated in Figure 5.2. The dif-

ference between the LNAST and a parse tree is that LNAST focuses more on repre-

senting useful abstract information from the components of the source code, such as

conditional loop blocks, whereas a parse tree captures low-level details of syntax, for

instance, brackets and parentheses.

There are different front-end parsers for each corresponding HDL in LiveHD.

To avoid code replications, these parsers and LNAST share a common tree library in

LiveHD for building the tree data structures.

A Pyrope parser in JavaScript was implemented and generates the control flow

graph (CFG) text in the three addresses format [26]. This is designed by another Ph.D.

alumni in Micro-Architecture Lab, Akash Sridhar. Continued from this CFG text, the
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current working prototype flow implements a CFG parser using the common tree li-

brary to generate the corresponding LNAST.

As speed is the priority for the LiveHD back end, we decide to implement

a new C++ Pyrope parser for faster parsing time. The new parser follows the same

grammar rules as the JavaScript version. This new parser also uses the tree library in

LiveHD for building the parse tree. The transformation from the parse tree to LNAST

IR also leverages the same tree library. This is an MS thesis project led by Kenneth

Mayer, an MS student alumni in our lab. 

I also design the interface between Chisel/FIRRTL and LNAST/LiveHD. This

is feasible by taking advantage of Protocol Buffers [4] from Google. Protocol Buffer is

a flow to compile a well-defined data format into target language classes with setter

and getter methods. The FIRRTL IR design team leverages the Protocol Buffer to make

parsing, serialization, and interfacing FIRRTL much more accessible for developers. I

transform the FIRRTL IR into LNAST IR by interfacing both the APIs of the protocol

buffer FIRRTL APIs and the LNAST APIs.  

Currently, we build SystemVerilog parse tree with slang [8], and then trans-

form the parse tree to LiveHD flow through LNAST API. The goal is to make LNAST

represent fully synthesizable Verilog code, not just the netlist syntax.

5.3.2 From High-Level LNAST to HDLs

A key motivation for conceiving the idea of LNAST is to support multi HDL

code generation. This pass is still under development. In Figure 5.2, notice that high-
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level LNAST can generate HDLs, but it does not have to go through the LGraph IR to

achieve this. As shown by the dotted arrow, there could be a closed-loop transformation

from the HDL to a language-specific parse tree, and then to LNAST, and back to the

HDL directly without entering the LGraph stage. This shortcut transformation loop is

useful for verifying the correctness between LNAST and HDLs quickly.

5.3.3 From LNAST to LGraph

The graph-based representation of LGraph IR is virtually the same as SSA.

SSA is a widely used compiler optimization technique. It assures that every variable in

the IR is assigned precisely once and describes the use-def chains explicitly, which in

turn helps the LGraph optimization passes. To bridge LNAST to LGraph easily, I per-

form the SSA transformation on LNAST after building the primitive LNAST. Different

SSA definitions from the same variable are represented in the SUBS (subscript) field in

different LNAST nodes.

5.3.4 From LGraph to Low-Level LNAST

There is an ongoing project on translating LGraph IR back to LNAST IR. It

will be the stepping stone for performing HDL code generation from the synthesized

LGraph. However, structural information could be lost when the lower-level LGraph

IR expands from higher-level LNAST IR. Take the conditional loop as an example. The

loop node in LNAST is flattened in the LGraph Data Flow Graph (DFG) analysis. There-

fore, the potential challenges should be identifying the corresponding LGraph region

54



and tagging the associated LGraph nodes, which would be helpful when folding the

loop region back to an LNAST node.

5.4 Lesson Learned

5.4.1 The Deprecated CFG and Yosys to LGraph passes

Before the invention of LNAST-IR, we used to have a JavaScript parser that

converted Pyrope HDLs into a control flow graph (CFG) encoded with three-address

code [13]. The new scope is defined not only by the submodule, but also by the CFG,

which contains hierarchical scopes from if-else or loop statements. Hierarchical LGraph-

IR, on the other hand, is only appropriate for representing the submodule scope by cre-

ating a hierarchical sub-graph. To capture the statements in the if-else scope, LGraph

must first parse the entire CFG to understand the scope hierarchy, record all the def-use

chains from the CFG, then perform the SSA for all statements and generate SSA phi-

nodes on the fly, which is time-consuming in a low-level IR like LGraph. Furthermore,

the JavaScript parser can only handle the Pyrope front-end, so we had to interface Ver-

ilog/SystemVerilog with other tools like Yosys. Also, we had no way of dealing with

CHIRRTL at the time. After a year of experimenting with various implementations, we

realized that a high-level tree IR like LNAST is required to help us easily capture the

scope and produce SSA. The old Pyrope JavaScript parser and Verilog Yosys parsing

paths are completely deprecated in the new LiveHD.
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5.4.2 The Deprecated Persistence

In the first version of LNAST’s design, we placed a heavy emphasis on the

speed of LNAST’s data persistence. LNAST used memory-mapping like LGraph IR

to speed up reads and writes. In LNAST, the source code was memory-mapped onto

virtual memory. Lexing was done to tokenize the source code, and these tokens were

stored in a memory-mapped vector. To record the token of the name field in LNAST

nodes, we stored the index in the memory-mapped vector instead of the plain string. It

ensured that the strings were not manipulated directly and avoided additional memory

operations.

This memory-mapped string vector will not work in the multi-threaded LiveHD

design. For the same reason discussed in the previous chapter, the lock contention

in the memory mapped version slowed the parsing and LNAST construction speed.

Therefore, we deprecate the memory-mapped design and use google’s tcmalloc [37]

library to help allocate memory for the token strings faster in the multi-threaded com-

pilation.

5.5 LNAST Evaluation

5.5.1 Setup

The target circuits are simple adder chains ranging from 20,000 to 200,000

gates. I generated the equivalent Verilog and Pyrope adder chain circuit. Each add

operation takes one line of code. LiveHD is implemented with C++17 and compiled
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with GCC 11.0.3. I ran our experiments on a server with 32-Core AMD EPYC 7542

Processor at 3.4GHz, 504G memory, and Kali Linux 5.14.0-kali2-amd64 installed.

0

2

4

6

8

10

12

14

16

18

20

20 40 60 80 100 120 140 160 180 200

ru
n 

tim
e 

(s
ec

on
ds

)

adder chain length (thousands)

Pyrope -> LNAST -> LGraph (3)

Verilog -> Slang -> LNAST -> LGraph (2)

Verilog -> Yosys(RTLIL) -> LGraph (1)

Figure 5.3: LiveHD flow with new LNAST design is significantly faster than the old
one for tested circuits.

5.5.2 Results

I compare the old LiveHD flow in Verilog and the new LiveHD flow in Verilog

and Pyrope. The old flow uses Yosys to elaborate a Verilog file into RTLIL and then

converts the RTLIL to LGraph. The new flow uses slang as the parser to build a parse

tree, then converts the parse tree into LNAST-IR, and then translates into LGraph IR.

Another new flow uses a Pyrope parser implemented in C++ to create the parse tree,

converts the parse tree text to LNAST, and transforms the LNAST to LGraph.

Figure 5.3 presents the runtime comparison among (1) the old Verilog-Yosys-
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LGraph flow; (2) the new Verilog-Slang parser-LNAST-LGraph flow, and (3) the new

C++ Pyrope-Pyrope parser-LNAST-LGraph flow. For a 200k adder chain circuit, the

path with Yosys takes 18.85s in total; the new Slang path completes in 7s, which is

2.7x speedup. Finally, the Pyrope path takes 1.54s to handle an equivalent Pyrope cir-

cuit and translate it to LGraph, leading to a 12.4x speedup on parsing and IR-lowering.

On further observation, we notice that both new Pyrope and slang interfacing paths

demonstrate better scalability with increasing size of the target design.

5.6 Conclusion

This chapter proposes the high-level language neutral AST IR, LNAST, as the

new generic interface to bridge Verilog, CHIRRTL, and Pyrope HDLs. Together with

other high-level generic operators, black-boxed function definitions, and function calls

enable LNAST to capture any new operation semantics from new HDLs. I demonstrate

how to use this black-boxed feature to translate the FIRRTL HDL into the LiveHD frame-

work. The tree-like structure eases the effort to represent the hierarchical scopes in the

control flow graph. Two precious lessons learned related to the design of LNAST are

also discussed. The new LNAST with a proper front-end parser shows as high as 2.7x-

12.4x speed up on parsing and LNAST to LGraph IR-lowering time.

Though not the main focus of this thesis, the code generation ability from

LNAST can also be leveraged and further open the research gate of HDL compilation

test coverage.
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Chapter 6

A Fast Parallel Compilation Framework for

HDLs

6.1 Introduction

Hardware design uses custom Hardware Description Languages (HDL) and

compiler tools. Although Verilog is still the most popular HDL, it shows its age ¹ and

alternatives like Chisel3/FIRRTL [15,45], PyRTL [24], and Pyrope [76] have gained pop-

ularity. Typically, each HDL is bundled with a compiler that converts its high-level code

into Verilog output. Verilog is frequently viewed as the assembly code in software com-

piler stack.

Compilation time is a crucial parameter in any programming language, and

HDLs are no different. HDLs are primarily used in ASIC/FPGA fabrication and sim-

ulation. Fabrication flows require synthesis, place&route which are inherently slow.
1The original Verilog was designed in 1983, and current compiler are semantically compatible with it.
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This chapter aims to accelerate HDLs compilation, the elaboration step in fabrication

before synthesis, as well as the first step in the simulation.

The ideal way to speed up the HDL elaboration step is to create a fast/par-

allel compiler flow that can manage multiple HDLs. The compilation flow should

be extensible and allow new languages to leverage to construct a fast/parallel com-

piler automatically. In the open source community, only the concurrently designed

CIRCT [10, 32] compiler has some parallelism. The popular open-source HDL compil-

ers (FIRRTL, Yosys [89]) parallelized.

This thesis proposes a new HDL compilation framework to address the issues

raised from elaboration and new HDLs. The key contributions of this chapter are as

follows:

1. I design a fast parallel multi-HDLs compiler where all the compilation steps can

be done in parallel.

2. I implement a proof-of-concept compiler (LiveHD) that supports Verilog, Pyrope,

and CHIRRTL (the highest-form of FIRRTL). The compiler is faster than the ex-

isting open source alternatives in all cases.

LiveHD is a multi-threaded, multi-HDL fast compiler. Compared with tradi-

tional non-HDL compilers, a parallel HDL compiler must address the issue of lacking

import language feature. The problem is that a file processing order exists in some lan-

guages, such as Verilog. A file can be accessed without any declaration modules defined

in other files as long as there are no circular dependencies.
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This is comparable to C++20 modules though not exactly the same. Prior to

C++20, the preprocessor would add the contents of included header files to the source

code before compiling it. As a result, the compiler would know all function caller-callee

relation and compile files in parallel. C++20 necessitates a pre-scan phase before the

main compilation to comprehend the dependencies and interfaces. Since HDLs lack an

import directive, the pre-scan must handle every file and make inferences across them.

In the proposed LiveHD compiler, there is no additional required pre-compilation

scan step. The design relations are dynamically resolved by constructing a dependency

tree during the internal IR generation phase.

The dependency tree directs the compiler on how to apply parallelism. Some

passes are not embarrassingly parallel [42]. For these passes, LiveHD references the

dependency tree to select independent modules and compile with a parallel bottom-up

pass.² The selection starts from the dependency tree leaves. A parent module can start

to be a candidate once all of its children have been processed. This strategy is what

we refer to as bottom-up parallelism. The input/output connections of a sub-module

instantiation is an example that requires correct compilation order from callee to caller.

Conversely, for the passes where the caller and callee are independent, LiveHD can

compile them parallelly in any order; which I define as full parallelism in this thesis.

LiveHD seeks to enable multiple languages to benefit from the parallel compi-

lation. Each HDL has a bitwidth specification in addition to language semantics. It is a

challenge that generic multi-HDLs compilers like LiveHD, CoreIR [60], and LLHD [73]
2A parallel top-down is also possible, but is is not needed for how the HDLs implemented.
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need to address. For instance, Verilog sets bits on every variable, while higher-level

HDLs like FIRRTL and Pyrope may only define bitwidth on the I/O, and the com-

piler must propagate the bit inference globally throughout modules. The front-end IR

of LiveHD does not need a bitwidth set on variables. Therefore, LiveHD can directly

bridge these languages to its front-end IR before conducting a bitwidth inference pro-

cess. On the contrary, LLHD and CoreIR require that every variable have its bitwidth

explicitly set. To handle high-level languages like FIRRTL and Pyrope, each language

needs a custom compiler pass to infer bitwidth because it is part of the language seman-

tics. It is somewhat similar to global type inference in compilers, except it only performs

bitwidth inference. Once more, LiveHD makes this pass parallel with a bottom-up

mechanism.

Our results show that when compiling the highest level of FIRRTL language,

CHIRRTL, LiveHD is 3x to 6x faster than the original FIRRTL compiler in the single-

threaded compilation and 16.5x to 46.6x faster in the 16-threaded mode. Compared to

Yosys [89] for Verilog parsing and regeneration, LiveHD gains 8.6x and 71.3x speedup,

respectively, with 1 and 16 threads. LiveHD achieves high scalability because all the

compilation steps are parallel for languages like Pyrope.

6.2 Parallel Compilation

This section discusses the parallel compilation pipeline and how each pass

ensures parallel scalability.
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The unit of parallelism of LiveHD is a module. A finer grain granularity will

require many locks shared within module resources, potentially complicating/slowing

down single thread performance. Modern large system-on-chip HDL programs have
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millions of lines of code spread over hundreds or even thousands of modules. Utilizing

parallel compilation is a fruitful opportunity to gain compilation speed.

A compiler pass is fully-parallelizable when all the modules are functional in-

dependent. The pass can operate on all modules in parallel in any order, and higher

parallel scalability can be attained as long as the compiler allocates more threads. Nev-

ertheless, not all passes can achieve this optimal parallelism. Functionally dependent

caller-callee modules in a pass must adhere to a dependency order and cannot be com-

piled in parallel. To further extract more parallelization from this type of pass, the

compiler must examine the dependency relations and select independent modules in

order to process in parallel.

6.2.1 Dependency Tree

In HDLs, the hierarchy of all module instantiations can always be represented

as a dependency tree structure (Figure 6.1-a, 6.1-b). In LGraph, a sub-module instance

is represented as a node with a sub-graph type. The sub-graph could point to the

other graph. LiveHD uses depth-first search (DFS) to recursively traverse into the sub-

graph nodes and construct the dependency tree from the specified top module. These

sub-graph nodes have been recorded separately during LGraph construction. The DFS

traversal only visits these sub-graph nodes without traversing all nodes in the LGraph.

In the dependency tree, the leaf module instances must be functionally inde-

pendent because they have no direct I/O connections. Thus, for a non-fully-parallelizable

pass, LiveHD exploits the bottom-up parallelization mechanism. It starts by compil-
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ing the tree leaves in parallel and then immediately allocates a new thread task for the

parent module once all its children have been processed.

A pass could benefit from a top-down approach instead of the bottom-up one.

In the passes implemented, we only need fully parallel or bottom-up. A top-down ap-

proach can be added if a problem is easier to solve.

In an HDL program, a module may be instantiated more than once. In LiveHD,

the instantiations of the same module are represented as the same LGraph, but they are

viewed as different nodes in the dependency tree. In order to prevent redundant com-

pilation on module instances, LiveHD implements tracks already optimized Lgraphs

and avoids redundantly compiling the same module multiple times.

If accessing some global objects is mandatory in a pass, functionally indepen-

dent modules also necessitate a mutex lock to acquire ownership of global objects, thus

guaranteeing access safety. Nonetheless, in parallel programming, passing the mutex

lock between threads to protect global data is an expensive action. This is because each

thread’s critical parts will slow the execution flow in turn. Still, this is a minor issue in

the LiveHD compiler because using LGraph IR minimizes such overhead. LGraph IR

maintains a graph library to manage basic information like the graph name, graph IOs,

and the dependency tree for all the LGraphs. This library is a global object that needs

mutually exclusion.
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6.2.2 Parallelism in Compilation Passes

This section presents LiveHD’s compilation stack in Table 6.1 and discusses

why and how each pass exploits either full or bottom-up parallelism for the circuit mod-

ules. One important technique in the LiveHD compiler is to defer the bottleneck from

functional dependency as late as possible so that more front-end passes can be fully

parallelized.

Since there are several passes with different degrees of parallelism, LiveHD

implements a thread pool where tasks are executed independently of each other. To

avoid waiting for all the tasks to be completed, LiveHD tracks the call dependency tree.

For bottom-up parallelism, when a child node finishes, it checks if all the siblings are

done; if so, it calls the parent code. This is achieved with a simple atomic counter per

node.

Fully parallelized LNAST construction

Based on the front-end HDL, LiveHD first decides the functionality of source_tolnast

(see Table 6.1) and converts an HDL program into LNASTs. An HDL program may

have many source files, and each file may contain several hardware modules. If more

than one module is defined in a single source file, LiveHD will create new source_tolnast

threads to handle each module separately. Since source_tolnast function merely maps

the parse tree of a module into the corresponding LNAST, there is no dependency be-

tween the executions of the threads. Thus source_tolnast is a full parallelizable pass.
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Table 6.1 The LiveHD passes in the compilation order.

Name Functionality Parallelization Type

Full Bottom-up

source_tolnast1
Verilog to parse tree to LNAST2 ✓
Pyrope to parse tree to LNAST ✓
CHIRRTL protobuf to LNAST3 ✓

lnast_ssa SSA transformation for LNAST ✓
lnast_tolg LNAST to LGraph translation ✓

cprop

Copy propagation4 (✓) ✓
Dead code elimination4 (✓) ✓
Constant propagation4 (✓) ✓
Peephole optimization4 (✓) ✓
Attribute resolving ✓
Tuple struct resolving ✓
I/O construction ✓

firbits5 FIRRTL operator bitwidth analysis ✓
firmap5 FIRRTL and LGraph operator mapping ✓
bitwidth Bitwidth inference and optimization ✓
verilog_gen Back-end Verilog code generation ✓

1 choose one of three functions based on the front-end HDL 2 Verilog has a serial liveparse pass to split
files 3 CHIRRTL has a serial protobuf deserialize step 4 could be full-parallelized, but here are merged in cprop
with a bottom-up 5 FIRRTL-only passes

Fully parallelized LNAST-SSA

After the LNASTs are constructed, LiveHD will spawn lnast_ssa thread tasks to trans-

late every LNAST into SSA form. Although there might be sub-module instantiation

statements in the LNASTs, since SSA transformation only focuses on the return value

and inputs arguments of the sub-module, the internal content of the sub-module does

not affect the parent module’s SSA. Therefore, modules in the tree hierarchy are inde-
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pendent regarding lnast_ssa and can be handled full-parallelly.

Novel uIO Techniques for Fully Parallel IR Lowering

In the lnast_tolg pass, the functional dependency issue arises when there is a sub-module

instantiation in the HDL program. Figure 6.3 shows that in LGraph, a sub-module is

shown as a sub-node with inputs and outputs connected to the parent module graph.

From the parent point of view, connecting an edge to the corresponding sub-node in-

put requires the knowledge of all sub-module I/O in the graph library. However, when

the lnast_tolg is multi-threaded, all LNASTs will execute the lnast_tolg pass in a random

order. In this case, the graph library cannot guarantee that the submodule’s I/O infor-

mation will be ready when the parent needs it.
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b) and outputs (c1, c2). LiveHD aggregates these I/O as tuple uInp/uOut to isolate
functional dependency while connecting the top and sub at the lnast_tolg pass.

LiveHD solves this issue by proposing a novel technique that uses unified in-

put (uInp) and unified output (uOut). An uInp or an uOut is an LGraph tuple structure

68



used to aggregate inputs or outputs, as shown in Figure 6.3. The uInp and uOut are the

only input and output for each module during the lnast_tolg step.

As the lnast_tolg iterates through the parent LNAST, if there is a sub-module

instantiation statement, the LiveHD graph library will check and try to create a sub-

graph skeleton with the uIO atomically. After that, regarding the input edges of the

sub-module node, the parent first creates tuple-add (TA) operators to collect all the

edge driver pins as the tuple fields and connect this tuple to the sub-module uInp.

On the other hand, if the parent module tries to connect edges from the sub-module

outputs, the parent graph creates tuple-get (TG) operators and fetches fields from the

submodule uOut tuple. LiveHD creates these uIO tuple structures around the sub-

module to isolate the dependency between parent and child graphs. The uIO resolving

process is deferred until the cprop pass, where all of the program tuples are handled

together in a single graph traversal. So, the lnast_tolg pass becomes fully parallelizable.

Merged passes with bottom-up parallelism

LiveHD implements four classical software compiler optimizations currently: copy

propagation, dead code elimination, constant propagation, and peephole optimiza-

tion (CDCP). The algorithm starts with the module inputs to traverse the graph locally

for each optimization. Theoretically, the four passes in CDCP could run with the full

parallelism.

However, graph traversal is a time-consuming action. If LiveHD performs the

passes of CDCP fully parallelized, four individual graph traversals will be required.
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I seek the opportunities to merge multiple passes in a single graph iteration to save

the iteration time. Therefore, in LiveHD implementation, the four passes of CDCP are

merged with other bottom-up parallelized passes to minimize the graph traversal to

just one iteration. LiveHD currently merges seven functions into a single cprop pass as

listed in Table 6.1.

In the merged cprop pass, attribute resolving, tuple resolving, and I/O con-

struction are three hardware-specific functions required by all HDLs. These functions

are all tuple-related and have to be parallelized in a bottom-up manner. This constraint

exists because the connection around the sub-module instantiation node needs to be

resolved by flattening the uIO tuple. Then the parent module can continue the rest of

the algorithm propagation.

Other bottom-up parallelized passes

firbits, firmap and bitwidth are the other three bottom-up parallelized passes. The reason

is that their algorithms require the sub-module outputs attribute to be ready when the

parent graph traversal visits them.

After firbits, an important optimization is that a single bottom-up task per-

forms the firmap and bitwidth passes for each module. This increases cache locality and

scalability because it guarantees the same lgraph to be mapped to the same CPU.

Verilog code generation

verilog_gen is the final stage of the LiveHD compilation pipeline. Since the functional

dependencies between hierarchical modules have been fully resolved from the previous
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LiveHD passes, LiveHD can run verilog_gen with full parallelization.

6.3 Multi-HDLs Compilation

Currently, LiveHD can compile HDLs of Verilog, CHIRRTL, and Pyrope. All

these languages can benefit from LiveHD’s fast and parallel compilation. This section

discusses the essential characteristic of each HDL and how they are integrated with

LiveHD.

6.3.1 Parallel I/O Pass

Ideally, we want to perform each compilation pass with full parallelism for

every HDL. However, as discussed in section 1, the type of parallelism that can be

achieved is determined by (1) the modules’ I/O definition and (2) how a module is

instantiated by a caller. This subsection discusses each HDL’s instantiation scenario.

Verilog

Listing 6.1 provides an example of Verilog sub-module instantiation. It is important

to note that, while the statement (line 6) expresses the instance connections, it does

not show the direction of each sub-module I/O. This I/O connection syntax requires

Verilog to be compiled in the bottom-up manner to collect sub-module I/O information,

which the top-module can then utilize to resolve instance connections.

1 module Sub(input inp, output out);
2 assign out = inp | inp;
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3 endmodule
4
5 module Top(input inp_t , output out_t);
6 Sub sub(.inp(inp_t), .out(out_t));
7 endmodule

Listing 6.1: A Verilog module instantiation example

CHIRRTL

In CHIRRTL, no I/O information is provided at the instantiation statement (line 7 of

listing 6.2), so compilers have to figure it out from the left/right-hand sides of subse-

quent statements (line 8 and 9 of listing 6.2) that exploit the instantiation.

1 module Sub:
2 output io: {flip inp: UInt <1>, out: UInt <1>}
3 node _T = or(io.inp, io.inp)
4 io.out <= _T
5 module Top:
6 output io: {flip inp_t: UInt <1>, out_t: UInt <1>}
7 inst sub of Sub
8 sub.io.inp <= io.inp_t
9 out_t <= sub.io.out

Listing 6.2: A CHIRRTL module instantiation example

Interestingly, the Chisel front-end compiler has resolved all of the hierarchi-

cal I/O connections from Chisel3 code and it could output a dependency tree before

generating the FIRRTL file. Because all hierarchical I/O connections are resolved, Scala-

FIRRTL could theoretically use the dependency tree to compile the FIRRTL IR in full

parallel.
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Pyrope

In Pyrope, the function arguments are the submodule input, and the return value is

the sub-module output, as shown in line 7 of listing 6.3. However, the instantiation

connections cannot be made as the top module cannot know whether a tuple or a scalar

data type is returned when the sub-module is not handled yet. Thus, a bottom-up

parallelization is needed to resolve the submodule instance connection.

1 //top.prp
2 sub = ||{ //the sub-module syntax in Pyrope
3 %out1.baz = $inp.foo + $inp2 //$ means input
4 %out2 = $inp.bar + $inp2 //% means output
5 }
6 //instantiation
7 ret = sub(inp = (foo = 3, bar = 2), inp2 = 4)
8 %out = ret.out1.baz + ret.out2

Listing 6.3: A Pyrope module instantiation example

6.3.2 Bitwidth Pass

The specification of bitwidth representations varies between HDLs. This sub-

section explains how LiveHD handles these specification variations in Verilog, CHIRRTL,

and Pyrope.

Generic Bitwidth Inference Pass

In Verilog, bitwidths are defined for every variable, but this is not necessarily true in

CHIRRTL or Pyrope, as the bitwidth may only be defined on module I/O. LiveHD

generically handles these HDLs by leveraging the benefits of LNAST and LGraph IR.
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Both IRs do not require a HDL variable to have bitwidth defined. Instead, if a module

I/O’s bitwidth is properly defined, LiveHD will refer to a bitwidth optimization algo-

rithm [82] (bitwidth pass in Table 6.1) to initiate a propagation from the module I/O and

calculate the optimized bitwidths for each visited wire.

Customization for implicit HDL specification

Language operators may implicitly present part of the bitwidth specification in an HDL.

Table 6.2 shows such examples in the FIRRTL language.

Table 6.2 FIRRTL bitwidth management operators

FIRRTL Operator Functionality

bits_op extract a value with a specified bit range from the input edge
head_op extract a value of MSB n-bits from the input edge
tail_op extract a value of LSB n-bits from the input edge
cat_op concatenate two input edges

The bitwidth of edges in these FIRRTL operators must be known to be mapped

into LGraph cells. For example, a CHIRRTL head_op can be mapped to the shift_right_op

in LGraph, but the exact shift amount depends on the driver operands of head_op. This

prerequisite raises an interfacing difficulty for hardware IRs because the entire FIRRTL

design bitwidth information must be collected somewhere.

Because LiveHD is a pass-modularized framework, these challenges can be

addressed easily by plugging-in HDL-specific passes. The CHIRRTL front-end is han-

dled by two CHIRRTL-specific passes, firbits and firmap (see Table 6.1), to handle the
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mapping to LGraph shift_right_op.

CHIRRTL front-end. LiveHD first individually translates FIRRTL operators to special

LGraph sub-nodes. This graph can be viewed as the LGraph equivalent of the CHIRRTL

design. Then firbits emulates the bitwidth pass to propagate and analyze bitwidths

for the whole design from the module I/O. After that, the firmap pass then exploits

the bitwidths information collected in firbits to translate from CHIRRTL operators to

LGraph cells. Figure 6.4 demonstrates a high-level view of this flow.

6.4 Setup

LiveHD is implemented with C++17 and compiled with GCC 11.0.3. CIRCT

still does not have releases, so the top of the tree on Aug 12th, 2022, is used; Yosys uses

the latest release (v0.20+22), and the same for Scala-FIRRTL (v1.5.0-RC2) is chosen for

evaluations. For CIRCT, we follow the LLVM benchmarking guidelines to use release
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and avoid assertions. All compilers are compared without the dedup option because

LiveHD has not fully implemented it (see Table 6.3). The experiments are run on a

server with AMD EPYC 7542 32-Core Processor at 3.4GHz, 504GB memory, and Kali

Linux 5.14.0-kali2-amd64 installed. A frequency scaling effect is measured by turning

the turbo option on and off the processor. All experiment data are collected using perf

profiler and Perfetto [30].

Table 6.3 Compiler flags or commands for fair evaluations

compiler flags/commands
Scala-FIRRTL –no-dedup -X verilog

CIRCT-FIRRTL

-inject-dut-hierarchy=false -wire-dft=false
-prefix-modules=false -inline=false

-emit-metadata=false -emit-omir=false
-verify-each=false

Yosys read_verilog; proc; write_verilog

6.5 Evaluation

The evaluation consists of two main parts: multi-threaded speedup scalability

and single-threaded performance. Only open-source tools are compared here because

the commercial EDA tools license forbids tool benchmarking.

I use a RISC-V Manycore design in CHIRRTL to compare against CIRCT. This

RISC-V Manycore design consisting of 128 RISC-V 32bits integer(rv32i) cores. I only

compared the scalability with CIRCT-FIRRTL because there is no other parallel Verilog

or Pyrope compiler.

To fairly compare across the three different languages, I design a Balanced
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Computational Tree (BCT) benchmark. BCT is a large circuit generated with a ran-

domized script. It consists of 1.3 million gates spread over 3309 modules; The design

dependency tree has a depth of 7, and each parent module has an average of 4 children.

Each module contains an average of 391 mixed xor and summation operators that are

chained together.

6.5.1 Multi-Threaded Scalability
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Figure 6.5: LiveHD compiler shows high speedup scalability for a balanced computa-
tion tree circuit in Pyrope, Verilog, and CHIRRTL HDLs. LiveHD also scales better for
a RISC-V Manycore RISCV processor compared to the Circt-FIRRTL compiler

Figure 6.5 demonstrates the high speedup scalability that LiveHD provides.

With 8-thread, LiveHD has 4.55x scalability speedup for the RISC-V Manycore design

and 5.34x for the BCT CHIRRTL design. Meanwhile, the CIRCT-FIRRTL compiler only

scales 1.7x and 2.9x for the two designs, respectively. When adding more hardware
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resources up to 16-threads LiveHD’s increasing tendency of scalability slows down but

still hits as high as 5.5x speedup for the RISC-V Manycore; The 16-threaded LiveHD

also compiles the BCT design and achieves excellent scalabilities of 8.4x in Pyrope, 8.2x

in Verilog, and 7.7x in CHIRRTL.

6.5.1.1 Case Analysis: RISC-V Manycore in FIRRTL

#1
#2

#3#4 #5

Figure 6.6: LiveHD’s parallel schemes establish remarkable thread utilization for an
8-threaded compilation.

Threads Utilization LiveHD gets an overall thread utilization of 76.57% when com-

piling RISC-V Manycore. This means that under 25% of the CPUs are idle without

work. Figure 6.6 presents a visualization of how LiveHD orchestrates the threads. A

vertical line means a pass is processing a module. The higher density of colored vertical

lines means higher thread utilization. The 8-rows in the figure represent the 8-threads

run.

The passes of lnast_ssa, lnast2lg, and verilog_gen deploy full-parallelism, and
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thus each module could be compiled in any order. To exploit the max potential of the

full-parallelism mechanism, the LNAST and LGraph objects are sorted by their size

before piping into these passes. Thus, as arrows #1, #2, and #3 pointed, the most critical

path at the beginning of these passes can be hidden.

However, this Perfetto visualization also reveals two facts that detriment the

overall scalability. The first facet is the protobuf initialization period as pointed by the

arrow#4. LiveHD exploits the Google’s protocol buffer package to parse CHIRRTL. At

the very beginning of source_tolnast pass, LiveHD needs to call a constructor to deserial-

ize and generate the firrtl_protobuf object. This constructor will take 9.2% of the entire

execution period.

The second bottleneck is to resolve the top module sub-instances I/O con-

nection issue as pointed by arrow#5. In a FIRRTL design, module I/O usually consists

of a deep aggregate data type (listing 6.4), and LiveHD resolves it at the cprop pass.

Yet, cprop deploys bottom-up parallelism, so the top module has to be the last one to be

compiled. Moreover, the top module contains 128 instances of RV32i CPUs, and each

instance has 28 deep hierarchical I/O connections, which is similar to the example of

listing 6.4. The total 3584 deep I/O connections in total introduce a massive hierarchical

tuple chain structure in the LGraph IR. Thus, the top module introduces a considerable

overhead at the cprop pass.

The main reason that LiveHD solves the I/O connection at cprop comes from

the Pyrope language semantic constraint. Unlike the FIRRTL HDL, where every I/O

has been declared explicitly, a Pyrope submodule could infer the tuple I/O field from
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the parent module and that needs to be handled at cprop.
1 inst mem of DualPortedCombinMemory
2 inst imem of ICombinMemPort
3 mem.io.imem.request.bits.operation <=
4 imem.io.bus.request.bits.operation

Listing 6.4: CHIRRTL’s deep-hierarchical I/O connection adds non-trivial top-module
overhead

CHIRRTL’s deep-hierarchical I/O connection adds top-module overhead. Once

the deep I/Os are resolved by the cprop pass, the rest of the bottom-up parallelism

passes ( firbits and firmap + bitwidth) can benefit from the lowered data structure; Their

input workloads are more balanced among each module.

The protobuf initialization and top-module cprop (arrow#4 and #5) together

take up 18.8% of the time and prevent LiveHD from reaching ideal speed scalability due

to Amdahl’s law. If excluding these two regions, LiveHD attains high average thread

utilization of 97.21%.

Breakdown Analysis Table 6.4 represents the pass breakdown to better understand

the source of scalability increment. Besides the firrtl_tolnast and the cprop discussed in

the previous paragraphs, all other passes get excellent utilization of thread resources

from 80% to 99%.

Interestingly, these high utilization numbers do not perfectly leads to an ideal

speedup. Several reasons like decreased instruction per cycle (IPC) and processor fre-

quency can be observed from the Table 6.4. LiveHD’s IPC got affected by mixed rea-

sons like instruction TLB (iTLB) and cache miss rate. For example, at the firrtl_tolnast

pass, the main slowdown reason in IPC is that the iTLB miss rate of a single thread
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Table 6.4 IPC drop and frequency downscaling are two reasons why the high thread
utilization from 1 to 8 threaded compilation does not give the ideal speedup.

name of pass
8-threaded from 1 to 8-threaded

fraction utilization speedup #inst. ipc freq.

firrtl_tolnast 12.0% 34% 2.5x +3.3% -22.2% -19.0%
lnast_ssa&
lnast_tolg 23.8% 97% 4.3x +0.1% -21.0% -13.7%

cprop 30.7% 65% 5.0x +0.5% -7.9% -14.3%
firbits 4.6% 80% 6.8x +2.8% -5.2% -14.7%

firmap &
bitwidth 17.6% 95% 5.6x +0.1% -14.9% -13.9%

verilog_gen 11.3% 99% 5.4x +2.8% -27.4% -22.3%

LiveHD: all 100% 76% 4.6x +1.0% -15.8% -15.5%

CIRCT: all 100% n/a 1.7x +1.2% -17.9% - 1.8%

remains the same, but their effects are accumulated in 8-threads and become a burden.

At the same time, the cache miss rate increased dramatically in 8-threads, for instance,

the verilog_gen pass. This is because, in LiveHD, each thread handles different LGraph

modules and loses the cache locality from firmap and bitwidth passes.

LiveHD also has a 15.5% impact from frequency downscaling overall. This is

expected due to the turbo (frequency scaling) option enabled on modern CPUs. On the

other hand, the CIRCT-FIRRTL compiler only has the parallel speedup of 1.7, and thus

not so many threads are used simultaneously during the compilation. Less utilization

has less impact on the frequency.

The third reason comes from the implicit mutex contention that is not revealed
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to the way that Perfetto counts traces. LiveHD uses a graph_library to manage read-

/write module graphs; a mutex protects the overlapped graph writes. Meanwhile,

the RISC-V Manycore contains 2945 modules, leading to a high mutex lock activity

for the lnast_tolg pass because of the high amount of graph creations.

6.5.1.2 Case Analysis: Balanced Computational Tree

(a) 4-threaded LiveHD-FIRRTL  completes in 6s, and scales by 3x with 87% of thread utilization

(b) 4-threaded LiveHD-Verilog  completes in 5.7s, and scales by 3.2x with 94% of thread utilization

(c) 4-threaded LiveHD-Pyrope parallelizes all passes, completes in 3.9s, and scales by 3.8x 

      with 94% of thread utilization

Figure 6.7: LiveHD exhibits high thread utilization and speedup for all FIRRTL, Ver-
ilog, and Pyrope HDLs in the BCT compilation.

The visual traces for the 4-threaded compilation are presented in Figure 6.7.

The three sub-graph are displayed with different time scales. While LiveHD-Pyrope
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finishes in around 3.9 seconds, the equivalent circuit in LiveHD-FIRRTL requires 6 sec-

onds. Table 6.5 shows the overall speedup, which includes the scalability and single-

threaded performance but using the execution times, we can deduce that Verilog and

Pyrope have approximately the same scalability between 8.3-8.6x. FIRRTL has 7.7x for a

16-threaded execution. The reason is consistent with the verilog_gen overhead shown

in Table 6.4, which has over 20% drop in IPC, over 20% drop in frequency, a small 2.8%

instruction count increase, and under 1% lock contention.

Table 6.5 LiveHD provides outstanding compilation speedup in single-threaded and
multi-threaded scenarios.

design compiler #threads time(s) overall speedup

RISC-V Manycore-FIRRTL

Scala-FIRRTL 1 27.0 11.0x
CIRCT 1 3.8 7.1x
LiveHD 1 9.0 3.0x
CIRCT 16 2.1 12.8x
LiveHD 16 1.6 16.5x

BCT-FIRRTL

Scala-FIRRTL 1 122.0 11.0x
CIRCT 1 20.6 5.9x
LiveHD 1 20.2 6.0x
CIRCT 16 6.3 19.4x
LiveHD 16 2.6 46.6x

BCT-Verilog

Yosys 1 171.2 11.0x
LiveHD 1 19.9 8.6x
LiveHD 16 2.4 71.3x

BCT-Pyrope
LiveHD 1 13.7 1.0x
LiveHD 16 1.6 8.4x

note:1 the baselines
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Source HDLs Parsing Using BCT allows us to compare different languages’ scala-

bility and performance. A significant difference happens during parsing. LiveHD-

FIRRTL has the non-parallel protobuf serialization previously mentioned. LiveHD calls

the Verilog Slang parser in parallel for each file, but it still requires splitting the Verilog

file in multiple files. Pyrope parsing is fully parallel.

Balanced Workload of BCT Unlike RISC-V Manycore, BCT does not have a signifi-

cantly larger top module. The result is a higher balance in the bottom-up passes. There-

fore, as shown in Figure 6.7, it leads to better thread utilization because no parent needs

to wait for any giant child. Further, Verilog has no aggregate data types, so the flattened

BCT I/O is generated in all languages. That means no deep hierarchical I/O as in the

List 6.4, and it leads to a faster cprop result in all three HDLs.

6.5.2 Single-Threaded Performance

Different compilers’ performance are measured in the Table 6.5. The single-

threaded LiveHD-FIRRTL achieves good speedups of 3x for RISC-V Manycore and 6x

for BCT compared to the baseline Scala-FIRRTL compiler.

Since there is no parallel Verilog compiler in the open-source community,

Yosys is chosen as the comparator. For the BCT design, the LiveHD is 8.6x faster than

Yosys in single-thread, respectively. LiveHD is the only compiler for Pyrope, but the

performance is faster than Verilog and CHISEL for an equivalent circuit.

84



6.6 Conclusions

Compilation time is a key bottleneck on hardware productivity only exacer-

bated by new HDLs. These modern HDLs’ long compilation adds more burden to the

current lengthy hardware design flow.

The main contribution of this chapter is LiveHD, a new multi-HDL, paral-

lelized, and fast compilation framework. The chapter goes over the main challenges of

parallelizing all the compiler passes. We pick the FIRRTL, Verilog, and Pyrope HDLs

to demonstrate LiveHD’s ability of generic compilation.

The presented LiveHD compiler can achieve as high multi-threading scalabil-

ity as 5.5x for the RISC-V Manycore FIRRTL. We also create BCT as the benchmark that

resembles large designs to allow comparing across different HDLs compile times. BCT

has between 7.7x to 8.4x speedup scalability for a 16-threaded compilation.

The parallel scalability results are on top of a fast single-threaded LiveHD

compiler. Compared to the Scala-FIRRTL compiler, single-threaded LiveHD has over

6 times speedup. Compared to the popular Yosys, single-threaded LiveHD is 8.6 times

faster.
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Chapter 7

Conclusion and Future Opportunities

Compiling hardware description languages has been a hot topic in the aca-

demic and open-source community. Together with the new proposed HDLs, many

hardware-specific IR framworks are also created to support compiler development.

However, each HDL compiler’s isolated ecosystem results in many code duplicates and

prevents novelty sharing. A carefully designed generic compilation framework could

solve this issue by allowing different HDL developers to leverage it easily. Further-

more, the compilation speed has become the new important metric that requires much

more attention as the hardware EDA flow is already lengthy.

In this thesis, I have proposed a fast and parallel open-source framework to be

the unified hardware compilation infrastructure for HDLs development. The generic

power of the high-level LNAST-IR eases the difficulty of bridging a new HDL into the

LiveHD framework. The versatile APIs and traversal ability from the low-level LGraph-

IR empowers the developers to implement the algorithm easily. More importantly, the
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newly invented parallel LiveHD framework could boost hardware designers’ produc-

tivity because of the fast compilation throughput.

7.1 Future work

Through the development of the LiveHD, we discover that some design deci-

sions dramatically impact compilation speed. Here I discuss some of the issues and

suggest future research directions to improve the LiveHD framework further. Fur-

thermore, I present several exciting research opportunities opened by the new LiveHD

framework.

7.1.1 Resolving High-level Program Structural at LNAST

Currently, LiveHD solves the high-level tuple structure at the cprop pass in

LGraph-IR. However, as noted by Section 6.5.1.1, there is deep hierarchical IO syntax

from the CHIRRTL HDL. The low-level netlist properties of LGraph-IR is not the ideal

stage to resolve these tuple structures, because LiveHD take a considerable effort to

construct another internal data structure to flatten the tuple hierarchy fields at runtime.

We found this problem and launched another research project called lnast_opt

led by another Ph.D. student. The goal of lnast_opt is to resolve all the tuple structures

at the LNAST stage. LiveHD can benefit from lnast_opt in several aspect. First, the

number of tuple_add and tuple_get operations can be largely reduced in the final LNAST

and thus reduce the work of lnast_tolg to translate these tuple operations into LGraph
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nodes. Secondly, the tuple resolving step in the original cprop pass is no longer needed

and thus could largely reduce the compilation time.

7.1.2 A Finer-granularity of Parallelization

There are several synchronization barriers in LiveHD as demonstrated in 6.2.

Theoretically, if two consecutive passes are all full-parallel, a module could ignore the

synchronization barriers and directly execute the next pass once the first pass is fin-

ished. This can be achieved by properly re-designing the LiveHD shell, which arranges

all the pass executions. Furthermore, if we can successfully develop the lnast_opt pass

that resolves all of the IO tuples, we can turn the cprop pass into a full-parallel pass.

With the proposed solution, we anticipate LiveHD could achieve finer-granularity par-

allelism and get a much better compilation speed.

7.1.3 A Verifiable Pyrope Compilation

Verilog LiveHD Pyrope

Logic Equivalence Check

LiveHD VerilogPyrope LiveHD

Figure 7.1: A potential verification flow to check the compiler correctness of Pyrope
HDL

The ability of LiveHD to take in HDL source code and generate HDL brings out

an exciting path to verify the correctness of the Pyrope compiler stack, as shown in Fig-
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ure 7.1. The idea is that the Pyrope source code (P1) describes a hardware architecture

using high-level syntax, and the generated Verilog (V1) is the low-level representation

of the hardware. Though we cannot directly verify the equivalence between P1 and V1,

we could make the generated V1 go into LiveHD to get a new Pyrope code (P2), and go

one step more to feed P2 to LiveHD to get the final Verilog (V2). Now we can perform

a logic equivalent check on V1 and V2. If V1 equals V2, it means the compile process

from P1 to V1 also produces consistent result.

7.1.4 An Ene-to-End Parallel and Incremental Hardware Compilation

LiveHD is developed with live programming techniques in mind. Several

research papers regarding incremental hardware synthesis [70], placement and rout-

ing [71], and simulation [78] have also been proposed in our group. These techniques

are complementary to this thesis. In an ideal world, the parallel and multi-HDLs com-

pilation presented in this thesis could provide a fast baseline compilation. The live

techniques can further provide an incremental phase whenever the designer makes a

small design change. Together with the incremental compilation, the fast baseline com-

pilation that LiveHD provides will boost hardware designers’ productivity.

7.2 Concusion

The highly parallelized and generic LiveHD compilation framework opens

many exciting opportunities for HDLs and EDA research. A hardware designer could
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enjoy LiveHD’s high compilation speed to improve productivity. A developer for a

new HDL could interface with LiveHD’s generic LNAST IR. Similarly, an EDA research

project could exploit LiveHD’s ability to interface with the Verilog front-end, then use

the provided parallelization framework to develop a parallelized EDA tool. We plan to

release the LiveHD compiler as open-source to enhance the impact on the community.
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