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OPINION Microbiome modulation as a novel therapeutic
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Purpose of review

Gut dysbiosis has been implicated in the pathogenesis of chronic kidney disease (CKD).
Interventions aimed at restoring gut microbiota have emerged as a potential therapeutic option in
CKD. This review summarizes the current evidence on gut microbiota-targeted strategies in patients
with CKD.

Recent findings

A growing number of studies have shown that plant-based diets, low-protein diets, prebiotic, probiotic, and
synbiotic supplementation, and constipation treatment may lead to favorable alterations in the gut
microbiota. Current evidence suggests that the implementation of both plant-based and low-protein diets
has potential benefits for the primary prevention of CKD, and for slowing CKD progression, with minimal
risk of hyperkalemia and/or cachexia. The use of prebiotics, probiotics, and synbiotics and laxatives may
have beneficial effects on uremic toxin generation, but their evidence is limited for the prevention and
treatment of CKD. Recent advances in diagnostic technologies (e.g., high-throughput sequencing and
nanotechnology) could enhance rapid diagnosis, monitoring, and design of effective therapeutic strategies
for mitigating gut dysbiosis in CKD.

Summary

Plant-based and low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation
treatment represent novel gut microbiota-targeted strategies in the conservative management of CKD, which
could improve clinical outcomes in CKD.
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INTRODUCTION

The recent explosion of scientific interest in the
gut microbiota has dramatically advanced our
understanding of its complex pathophysiologic
interactions with multiple organs in health and
disease. Emerging evidence has revealed that the
gut microbiota is significantly altered in patients
with chronic kidney disease (CKD) [1], contribut-
ing to the pathogenesis of progression of CKD and
its complications [e.g., cardiovascular disease
(CVD)], often referred to as the ‘gut–kidney’ or
‘gut–kidney–heart’ axes [2,3]. Uncovering these
multidirectional interactions have in turn led
to a growing interest in the clinical utility of
gut microbiota-targeted interventions for the pre-
vention and treatment of CKD [4]. Herein, we
provide a narrative review of potential therapeu-
tic strategies targeting gut microbiota modula-
tion in CKD.
t © 2020 Wolters Kluwe
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SYMBIOTIC INTERACTIONS BETWEEN
HOST AND GUT MICROBIOTA

For millions of years, the gut microbiota has
coevolved with the human host and their symbiotic
interactions provide the host with various benefits
[1]. The human gastrointestinal tract harbors more
than 100 trillion individual microbes including
r Health, Inc. All rights reserved.

rved. www.co-nephrolhypertens.com

mailto:k.kalantar-zadeh@unsw.edu.au


KEY POINTS

� Plant-based diets, low-protein diets, prebiotic, probiotic,
and synbiotic supplementation, and constipation
treatment can shift the gut microbiota profile towards
reduced production of uremic toxins.

� Both plant-based and low-protein diets have potential
benefits for primary prevention of CKD, as well as for
slowing CKD progression, with minimal risk of
hyperkalemia and/or cachexia.

� Currently, limited evidence supports the use of
prebiotics, probiotics, and synbiotics and laxatives in
the prevention and treatment of CKD.

� New technologies could contribute to rapid diagnosis,
monitoring, and design of effective therapeutic
strategies targeting gut microbiota in CKD.

Novel therapeutic approaches in nephrology and hypertension
2000–4000 species [5–7]. The commensal or symbi-
otic gut microbiota contains three major domains of
microorganisms including bacteria, archaea, and
eukarya [7], encoding at least 150-fold more genes
than the human genome [8]. In healthy individuals,
the gut microbiota is generally dominated by two
anaerobic bacterial phyla, Firmicutes and Bacteroi-
detes, out of over 50 bacterial phyla that also include
Actinobacteria, Proteobacteria, Cyanobacteria, and
Fusobacteria [9,10].

Under physiologic conditions, the gut micro-
biota participates in a variety of metabolic activities
and thus can be considered as a metabolically active
endogenous organ in itself [4]. These complementary
metabolic activities include production of short-
chain fatty acids (SCFAs) such as acetate, propionate,
and butyrate [11], synthesis of certain vitamins (e.g.,
vitamin K6 and vitamin B group) [12], degradation of
undigestible plant polysaccharides and oxalates [13],
and biotransformation of conjugated bile acids [14].
In addition, the gut microbiota protects against
pathogens by inhibiting their colonization via the
production of antibiotics and bacteriocins [15,16],
and is also involved in the development, maturation,
and maintenance of gastrointestinal motility and in
shaping the mucosal immune system and intestinal
barrier [16,17]. Changes in the composition and
function of the gut microbiota, have been associated
with a variety of medical problems and illnesses
including obesity [18], hypertension [19], cancers
[20], CVD [21], and CKD [2].
GUT DYSBIOSIS IN CHRONIC KIDNEY
DISEASE

Emerging evidence has revealed that patients with
CKD show significant alterations of the gut
 Copyright © 2020 Wolters Kluwer H
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microbiota (a.k.a. gut dysbiosis) in specific microbial
taxa of both aerobic and anaerobic bacteria [22]. In a
study comparing the composition of the gut micro-
biota between CKD and control rats, Vaziri et al. [1]
demonstrated a significant difference in the abun-
dance of 175 bacterial operational taxonomic units
(OTUs), which are microbial genomic sequences
clustered by sequence similarity, with a notable
decrease in Lactobacillaceae and Prevotellaceae fam-
ilies in the CKD animals. Further, they showed a
significant difference in the abundance of 190 bac-
terial OTUs between patients with end-stage renal
disease (ESRD) and healthy individuals [1]. Other
groups have reported that the number of Entero-
bacteriaceae (especially Enterobacter, Klebsiella, and
Escherichia), Enterococci and Clostridium perfrin-
gens were significantly higher in patients with ESRD
than in healthy controls [23,24].

One of the contributing factors to the gut dys-
biosis in CKD is changes in the biochemical environ-
ment due to accumulation of retained metabolic
waste products (such as urea) which diffuse into
the gut. Bacterial urease of the gut microbiota hydro-
lyzes urea and produces large quantities of ammonia
and ammonium hydroxide, which raises luminal pH
and alters gut microbial subpopulations [15,25].
Restricted intake of high-fiber products to avoid
hyperkalemia [26] also impacts the gut microbiota.
The CKD milieu combined with low-fiber diet shifts
the microbiome from a saccharolytic (carbohydrate-
fermenting) to a more proteolytic phenotype which
generates gut-derived uremic toxins from amino acid
catabolism [e.g., indoxyl sulfate, p-cresyl sulfate and
trimethylamine-N-oxide (TMAO)] [27]. Other path-
ways that contribute to gut dysbiosis in CKD include
medication use (e.g., phosphate binders, iron, and
antibiotics) [28–30], metabolic acidosis [31], and
slow intestinal transit time [32]. It is important to
note that all of these factors have been suggested to
account for the intestinal barrier dysfunction in
patients with CKD [33–35], allowing translocation
of gut-derived products, such as gut-derived uremic
toxins (e.g., indoxyl sulfate, TMAO, etc.), bacterial
endotoxins (i.e., lipopolysaccharide) and DNA frag-
ments, and intact bacteria, into the systemic circula-
tion. The translocation of these gut-derived products
cancontribute to the activation ofhost inflammatory
responses, which have been associated with excess
morbidity and mortality in patients with CKD
[17,36–38] (Figs. 1 and 2).
STRATEGIES TARGETING GUT DYSBIOSIS
IN CHRONIC KIDNEY DISEASE

Improved understanding of the pathologic roles of
gut dysbiosis has triggered enormous interest and
ealth, Inc. All rights reserved.
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FIGURE 1. Interaction between environment, agent, and host in chronic kidney disease.

FIGURE 2. Potential pathways linking gut dysbiosis to protein-energy wasting, cardiovascular disease, and chronic kidney
disease.
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Table 1. Potential clinical benefits from gut microbiota-

targeted strategies in chronic kidney disease

Therapeutic strategies Potential benefits

Plant-based diet Reductions in
inflammatory markers
blood urea nitrogen
uremic toxins
proteinuria

Improved controls of
metabolic acidosis
lipid metabolism
mineral bone disorders
body weight
blood pressure
bowel habits

Slowing CKD progression

Low-protein diet Reductions in
inflammatory markers
blood urea nitrogen
uremic toxins
proteinuria

Improved controls of
metabolic acidosis
mineral bone disorders
blood pressure

Slowing CKD progression
Improvement of physical function

Probiotic, prebiotic,
and synbiotic
supplements

Reductions in
inflammatory markers
blood urea nitrogen
uremic toxins

Normalization of bowel habits

Constipation treatment Reduction in uremic toxin X
Improvement of gut motility
Lowering incidence of hyperkalemia
Slowing CKD progression

CKD, chronic kidney disease.

Novel therapeutic approaches in nephrology and hypertension
vigorous efforts to the development of several ther-
apeutic strategies aimed at re-establishing symbiotic
status of the gut microbiota [4]. These include die-
tary modifications [e.g., plant-based diet and low-
protein diet (LPD)] [39

&&

,40,41], dietary supplemen-
tation of prebiotics (i.e., nondigestible food ingre-
dients that induce specific modifications in the
composition and/or activity of the gut microbiota)
[42], probiotics (i.e., live microorganisms which
confer health beneficial effects when administered
in adequate amounts to the host) [43], and syn-
biotics (i.e., both probiotics and prebiotics) [44],
and constipation treatment [45

&

] (Table 1).
Plant-based diet

Plant-based diets have been used with growing pop-
ularity for the treatment of a wide range of lifestyle-
related diseases, including diabetes, hypertension,
obesity, and CKD [46

&

]. This dietary pattern focuses
 Copyright © 2020 Wolters Kluwer H
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primarily on plant products, such as whole grains,
seeds, nuts, legumes, fruits, vegetables, tubers and
starchy vegetables, while minimizing animal prod-
ucts including meat, fish, eggs and dairy [41] (Fig. 3).

Dietary fibers are one of the important sources
for intestinal bacterial fermentation [47], and hence
have been extensively studied with the aim of mod-
ulating gut microbiota [48,49]. Dietary fibers of
edible plants comprise of insoluble and soluble car-
bohydrates (e.g., cellulose, lignin, and nonstarch
polysaccharides) and nondigestible oligosacchar-
ides and resistant starch [50]. The nondigestible
fiber components pass intact into the large intes-
tine, increase viscosity and bulking of the fecal
matter [51], and more importantly undergo fermen-
tation by the resident anaerobic microbiota (mainly
by Bacteroidetes and Firmicutes) into intestinal
gases and SCFAs that play a vital role in regulating
the homeostasis of human body and progression of
diseases [11,52,53

&

]. Specifically, SCFAs serve as
important energy resources for colonic epithelial
cells and maintain the integrity of the epithelial
barrier function by regulating tight junction pro-
teins such as occluding, claudin-1, and Zonula
Occludens-1 [54,55]. In addition, SCFAs enhance
the modulation of host immune responses and
thereby protect the intestinal epithelium [56–58].
In fact, consumption of diet enriched with amylose
resistant starch, a fermentable and indigestible com-
plex carbohydrates, have been shown to improve
gut microbial dysbiosis, attenuate inflammation
and oxidative stress, ameliorate metabolic disorders,
and retard progression of kidney disease in CKD rats
[59,60].

Other than dietary fibers, fractions of unab-
sorbed dietary fat reach the large intestine and thus
can potentially be substrates that differentially
influence the microbial system [61,62]. While West-
ern diets rich in saturated fats and low in antiox-
idants, phytosterols, and other phytochemicals
have been shown to change gut microbiota favoring
a proinflammatory state [63], linoleic acid, mainly
coming from plant sources, are utilized by different
gut microbial species to produce conjugated linoleic
acid that has shown anti-inflammatory, antiadipo-
genic, antidiabetogenic, and anticarcinogenic prop-
erties [64]. Another common benefit of plant-based
diets is that they could lead to less production of
uremic toxins and reduced glomerular hyperfiltra-
tion associated with excess protein intake [46

&

].
From an epidemiological perspective, the bene-

ficial effects of a plant-based diet in CKD have been
reported in several observational studies and clinical
trials [65–70]. In an observational study of 15 veg-
etarians and 11 individuals consuming an unre-
stricted diet, the production rates of p-cresol
ealth, Inc. All rights reserved.
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FIGURE 3. The effects of animal-based and plant-dominant low-protein diets on the gut microbiota and uremic milieu in
chronic kidney disease.

Microbiome in chronic kidney disease Sumida et al.
sulfate and indoxyl sulfate were markedly lower in
vegetarians than in individuals consuming an unre-
stricted diet [71]. Using a prospective cohort of
14 686 middle-aged adults in the Atherosclerosis
Risk in Communities study, Kim et al. [67] showed
that higher (vs. lower) adherence to a plant-based
diet was significantly associated with lower risk of
incident CKD and slower estimated glomerular fil-
tration rate decline. In the three seminal trials exam-
ining the effects of fruits and vegetables (vs. oral
bicarbonate) on metabolic acidosis and kidney out-
comes, Goraya et al. demonstrated a favorable effect
of these diets on the treatment of metabolic acidosis
in CKD, even in its advanced stages, with additional
benefits of reducing urine albumin-to-creatinine
ratio, weight, and SBP [72–74]. Moreover, plant-
based foods have a lower phosphorus content than
other food sources, and plant phosphorus which
binds to phytate has a lower bioavailability than
animal phosphorus [75,76]. In fact, plant-based (vs.
meat-based) diets have been associated with lower
levels of serum phosphorus and fibroblast growth
factor-23 in CKD patients [77]. It is important to
note that the concern of hyperkalemia related to a
 Copyright © 2020 Wolters Kluwe
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plant-based diet has not been supported by current
scientific evidence [46

&

], presumably due to the
enhancement of bowel motility and alkalization
induced by plant-based dietary sources [78–81].
Low-protein diet

Low-protein diet, defined as dietary protein intake
0.6–0.8 g/kg/day, has long been considered as an
option of conservative management for patients
with nondialysis-dependent CKD (NDD-CKD) who
wish to avoid or defer dialysis initiation and to
retard the progression of CKD [82,83]. While several
mechanisms have been suggested for the potential
renoprotective benefits of LPD, including lower
intraglomerular pressure, alleviation of metabolic
acidosis, and lower phosphorus burden [83], the
major benefits of LPD potentially attributable to
gut microbiota modulation may be through reduced
production of uremic toxins, such as p-cresyl sulfate,
indoxyl sulfate, and TMAO [27]. p-Cresyl sulfate, for
example, is a 188-Da protein-bound solute that
originates from sulfation of the intestinally gener-
ated p-cresol, which is a colonic fermentation
r Health, Inc. All rights reserved.
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product of the amino acid tyrosine and phenylala-
nine via deaminase enzymes produced by Bacter-
oides, Bifidobacterium, Lactobacillus, Enterobacter,
and Clostridium genera [84,85]. Indoxyl sulfate, on
the other hand, is a protein-bound uremic toxin
generated from bacterial tryptophanase, which is
expressed by Clostridiaceae, Enterobacteriaceae,
and Verrucomicrobiaceae [27,84]. TMAO is a circu-
lating organic compound derived from bacterial
metabolism of dietary L-carnitine and choline
[86,87]. Importantly, all of these gut-derived uremic
toxins have been associated with higher risk of CKD
progression, CVD, and mortality [88–91], suggest-
ing that the modulation of gut microbiota towards
reduced production of uremic toxins could be a
novel therapeutic option for adverse outcomes
in CKD.

There are a few studies that support utilizing
LPDs as possible gut microbiota-targeted interven-
tions. In an observational study of 30 NDD-CKD
patients undergoing LPD for 6 months, Black et al.
[92] demonstrated that those who adhere (vs. did
not adhere) to the LPD had significantly lower levels
of serum p-cresyl sulfate, along with the change in
the gut microbiome profile. Similarly, a recent pre-
post study of 16 CKD patients found that a 6-month
intervention with a LPD significantly modified gut
microbiota and modulated inflammatory and met-
abolic parameters [93

&

]. The study also showed a
significant improvement of physical function scores
after the LPD intervention [93

&

]. Other beneficial
effects, such as higher serum bicarbonate levels,
lower phosphorus levels, lower azotemia, and lower
risk of CKD progression associated with the inter-
vention with LPDs, have also been reported in sev-
eral clinical trials [82].

Since a plant (vs. animal) protein intake has
been associated with lower risk of incident CKD
[66], the source of protein, as well as its amount,
may need to be considered for the implementation
of a LPD in patients with CKD. In this context, a
plant-dominant LPD (a.k.a. PLADO, defined as a
type of LPD with dietary protein intake of 0.6–
0.8 g/kg/day with at least 50% plant-based sources)
recently proposed by Kalantar-Zadeh et al. [39

&&

]
may be of high biologic value (Fig. 3). In addition,
given that coronavirus disease 2019 (COVID-19)
susceptibility and severity may be related to gut
microbiome [94] and since COVID-19 can cause
acute kidney injury including through direct kidney
involvement [95] modulating microbiome includ-
ing by PLADO may have additional favorable impact
on both infection control and kidney health. Future
studies should examine the effects of PLADO regi-
mens on gut microbiota and on clinical outcomes
in CKD.
 Copyright © 2020 Wolters Kluwer H
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Supplementation of prebiotics, probiotics,
and synbiotics

Prebiotics, probiotics, and synbiotics have become
familiar to the public as the components of dietary
supplements and bioyogurt, and the administration
of these supplements is increasingly recognized as a
potential gut microbiota-targeted intervention for
CKD patients. In a recent systematic review and
meta-analysis of 16 randomized controlled trials
investigating the effects of prebiotics, probiotics,
and/or synbiotic supplementation (>1 week) in
patients with CKD, McFarlane et al. [96] reported
that the synbiotic supplementation led to higher
abundances of Bifidobacterium and Lachnospira-
ceae and a decrease in Ruminococcaceae, and that
prebiotic supplementation led to a slight but signif-
icant reduction in serum urea concentration.
Although a few trials demonstrated a favorable
change in serum p-cresyl sulfate [97,98], there was
a low certainty of evidence to support the overall
treatment effect of prebiotic, probiotic, and synbi-
otic supplementation on uremic toxins, as well as on
serum creatinine, blood glucose, total cholesterol,
low-density cholesterol, high-density cholesterol,
triglyceride, and weight [96]. Currently, there is
insufficient evidence to conclude whether one type
of nutrition supplementation is superior to another.
Future well designed clinical trials are needed to
establish the appropriate microbiota-targeted sup-
plementation formulation and to confirm its effec-
tiveness on patient-centered clinical outcomes.
Constipation treatment

Constipation is one of the most common gastroin-
testinal disorders among patients with CKD, due in
part to low fiber and fluid intake, concomitant
medications, and multiple comorbidities. Although
constipation is usually perceived as a benign condi-
tion, recent epidemiological studies have revealed
its independent associations with adverse clinical
outcomes such as ESRD, CVD, and mortality
[99,100]. The adequate management of constipa-
tion may therefore be more important than previ-
ously considered, and gut microbiota-targeted
interventions would be a reasonable option for con-
stipation management in CKD [45

&

].
The alterations of gut microbiota in patients with

constipation has been characterized by a relative
decrease in obligate anaerobic bacteria (e.g., Bifido-
bacterium and Lactobacillus genus) and a parallel
increase in potentially pathogenic microorganisms
(e.g., Enterobacteriaceae family) [101–103]. A recent
study reported that the overall microbial composi-
tion of the colonic mucosa was associated with con-
stipation, and constipated patients (in comparison
ealth, Inc. All rights reserved.

Volume 30 � Number 1 � January 2021



Microbiome in chronic kidney disease Sumida et al.
with healthy controls) had a significantly higher
abundance of phylum Bacteroidetes in the colon
[104]. These alterations of microbiota have been
suggested to influence gastrointestinal motility
through several mechanisms, such as the release of
bacterial end-products, intestinal neuroendocrine
factors, and mediators in the gut immune response
[105]. For example, the decrease in relative abun-
dance of anaerobic bacteria could result in reduced
production of SCFAs that stimulate ileal and colonic
smooth muscle contractility and could thereby con-
tribute to constipation [101]. The increase in relative
abundance of methanogenic microbes such as arch-
aeae can also cause constipation through increased
methane production that reduces gut motility [106].

Nonpharmacological treatment is traditionally
considered the first step of a comprehensive man-
agement of constipation [107–110]. Although
patients with CKD are typically advised to restrict
the intake of fiber-rich foods to prevent hyperkale-
mia, given the lack of evidence supporting this
concern and the scientific premise of a plant-based
diet (vide supra), the potential health and gastroin-
testinal benefits of dietary fiber, along with its low
cost, may justify consideration of a plant-based,
fiber-rich diet as a first step in the management of
constipation in CKD. This is also supported by the
fact that the gut plays an increasing role in intestinal
potassium wasting in CKD and constipation is a
likely contributor to hyperkalemia in CKD [45

&

].
Pharmacological interventions may often be
required for secondary (e.g., drug-induced) consti-
pation, which is predominant in CKD patients and
is unlikely to respond well to nonpharmacological
treatment alone. In fact, the use of laxatives has
been shown to increase considerably as patients
progressed to ESRD [111]. Among a wide range of
pharmacological treatments currently available, a
few types of laxative agents, such as lactulose, a
chloride channel activator (lubiprostone), and a
guanylate cyclase C agonist (linaclotide), have been
shown to have unique pharmacological properties
for gut microbiota modulation, along with a reduc-
tion in circulating levels of uremic toxins [112–115].
Although the issues of high drug costs and long-
term safety profiles remain to be addressed, given
the close links of gut dysbiosis with both CKD and
constipation, the gut microbiota-targeted approach
using these drugs seems particularly relevant to the
constipation management in patients with CKD.
DEVELOPMENT OF MICROBIOME
DIAGNOSTICS

Analyzing the composition of the human gut micro-
biota has long been dependent on culturing
 Copyright © 2020 Wolters Kluwe
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methods, which access only a tiny subset of the
broad diversity of microorganisms [116]. With the
recent advances of innovative analytical technolo-
gies, culture-independent molecular identification
of species in the gut microbiota has become the
main diagnostics. Among various high-throughput
methods, next-generation sequencing technologies
have revolutionized our view of microbial commu-
nities [117]. The DNA sequencing methodology has
allowed us to characterize and analyze microbiomes
with greater accuracy and precision and with less
bias, compared with culture-based approaches
[117]. A common approach used to identify bacte-
rial populations is based on sequencing of the bac-
terial 16S ribosomal RNA (rRNA) subunit [117].
Hypervariable regions within this gene contain spe-
cies-specific sequences, which allow identification
of the bacteria of origin by comparing with reference
databases [118]. Based on the sequences of the inter-
nal transcribed spacer region lying between the
fungal 18S and 5.8S rRNA genes, fungal populations
can also be identified [119]. Increasing throughput
and decreasing costs associated with gene sequenc-
ing, along with the development of computational
tools for resultant sequence data analyses, have
made these approaches more feasible to identify
and characterize microbial communities in various
disease states including CKD [117].

Another emerging and future frontier to influ-
ence the gut microbiota manipulation and hence
CKD management is nanotechnology. Nanotech-
nology, or systems/device manufacture at the
molecular level, is a multidisciplinary scientific
field undergoing explosive development and sub-
stantially contributing to molecular diagnostics in
current medicine [120]. Recent progress in nano-
technology has been directed toward understanding
the microbiomes of humans, as well as animals,
plants, and even the ocean and the atmosphere
[121]. The great advantage of nanotechnology in
studying microbiomes is that the nanoscale is the
scale of function in biology, and the application of
this technology enables microbial community
manipulation, chemical analysis, and imaging
[122], potentially leading to rapid diagnosis, moni-
toring, and design of effective therapeutic actions
for conditions linked to gut dysbiosis, such as CKD.
For example, noninvasive breath tests, with arrays of
nanomaterials, can identify the presence of volatile
organic compounds with the signatures of modu-
lated microbiota (e.g., abundance of Prevotella) and
hence could lead to quick diagnosis and monitoring
of certain conditions in CKD [53

&

,122,123]. Ingest-
ible sensors could be designed for the detection of a
specific type of uremic toxins derived from gut
microbiota [124]. Nanotechnology could also
r Health, Inc. All rights reserved.
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efficiently be implemented in designing intelligent
drugs or functional foods, with the possibility of
localized delivery in the gut [125–127]. Although
still at an early stage, there are a few precision
antimicrobials that have shown efficacy in model
systems of human disease [128,129]. These precision
antimicrobials, as well as genetically engineered
bacteria, could help restore symbiotic bacterial pop-
ulations in the gut and reduce levels of gut-derived
uremic toxins in patients with CKD [122,130].
CONCLUSION

The gut microbiota is significantly altered in
patients with CKD, leading to structural and func-
tional disruption of the intestine and intestinal
epithelial barrier. The reduced gastrointestinal
motility and increased gut permeability allows
translocation of gut-derived uremic toxins and bac-
terial fragments into the systemic circulation and
contributes to adverse clinical outcomes in CKD
through activation of inflammatory responses.
Strategies aimed at restoring gut microbiota compo-
sition are a novel therapeutic option. Although
evidence from clinical trials is currently limited,
interventions such as plant-based diet, LPD, prebi-
otic, probiotic, and synbiotic supplementation, and
constipation treatment have shown some benefit in
terms of attenuating gut microbial alterations and
reducing circulating levels of uremic toxins. With
the use of emerging technologies, more in-depth
clinical trials should examine the impact of gut
microbiota-targeted interventions on clinical out-
comes in CKD.
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