
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Designing Efficient and Resilient Lossy Compressors for Large-Scale Scientific Computing

Permalink
https://escholarship.org/uc/item/8h24z01x

Author
Li, Sihuan

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8h24z01x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Designing Efficient and Resilient Lossy Compressors for Large-Scale Scientific
Computing

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Sihuan Li

December 2020

Dissertation Committee:

Dr. Zizhong Chen, Chairperson
Dr. Laxmi Bhuyan
Dr. Daniel Wong
Dr. Zhijia Zhao

Copyright by
Sihuan Li

2020

The Dissertation of Sihuan Li is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am very grateful to my advisor, Dr. Zizhong Chen for his advising, encouragement and

all support during my more than five years of PhD studies and life. Without him, I would

never imagine that I could choose and finish my PhD program in computer science. His

insightful ideas on our research projects have contributed a lot to the novelty of my work.

Dr. Chen is always accessible when I need some help from him. I really appreciate all

the moments when Dr. Chen and me sat down to discuss a tough research problem and

after the discussion with him, I always felt like Dr. Chen had thrown lights on my project.

Besides being professional, Dr. Chen is also patient and encouraging whenever I encounter

some obstacles during my PhD studies. I still remember the warm words from Dr. Chen

after I got upset about my paper rejects. His encouragement has been playing an important

role when I was having a tough time trying to publish my first piece of my research work.

I learnt a lot from him being professional, responsible, accessible, patient, passionate and

dedicated which will absolutely benefit me in my future work and life. All in all, I appreciate

all the great help from Dr. Chen.

I would like to thank Dr. Laxmi Bhuyan, Dr. Daniel Wong and Dr. Zhijia Zhao

for being my dissertation committee members. Their insightful and constructive comments

and suggestions have helped me present my dissertation thesis in a much more smooth and

structured way.

I feel honored to be mentored by Dr. Franck Cappello and Dr. Sheng Di during my

almost two years of internship at Argonne National Laboratory where I conducted a couple

of collaboration research projects under their guidance. Dr. Cappello is knowledgeable

iv

and can give very reasonable improvement suggestions on my work. He is also a rigorous

researcher from whom I really learnt a lot. Dr. Di is always accessible and easy to work with.

Frequent meetings with him have been making my progress move forward smoothly. Dr.

Di also helped me greatly with polishing my research writing which undoubtedly improved

the overall quality of my work. Therefore, no words can express my appreciation to Dr.

Cappello and Dr. Di.

I want to say thanks to all the wonderful lab members in the research group led

by Dr. Chen at University of California, Riverside. Thanks to Dr. Li Tan, Dr. Panruo Wu,

Dr. Dingwen Tao, Dr. Hongbo Li, Dr. Jieyang Chen, Dr. Xin Liang, Kaiming Ouyang,

Yuanlai Liu, Kai Zhao, Yujia Zhai, Quan Fan, Elisabeth Giem and Jinyang Liu. Special

thanks to Hongbo Li, Xin Liang and Elisabeth Giem who helped me improve my research

paper in a significant amount of detail.

Funding Acknowledgment I appreciate the funding support from National Sci-

ence Foundation under grant number 1619253, 1513201, from the Exascale Computing

Project 17-SC-20-SC (a collaborative effort of two Department of Energy organizations

– the Office of Science and the National Nuclear Security Administration) and from the

Department of Energy, Office of Science, under contract DE-AC02-06CH11357.

Publication Acknowledgment I acknowledge that part of the thesis has been

published or released on line previously.

• Chapter 2 [44] was published in the proceedings of the 2018 IEEE International Con-

ference on Big Data (Big Data), Seattle, Washington, USA, December 10 - 13, 2018.

v

• Part of chapter 3 [45] was released online in the arXiv library in October, 2020. The

other part was published in the proceedings of the ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, Denver,

Colorado, USA, November 17 - 22, 2019

• Chapter 4 [46] was published in the proceedings of the 2020 IEEE International Con-

ference on Cluster Computing (CLUSTER), Kobe, Japan, September 14 - 17, 2020.

vi

To my wife, Yiwen Su, and my parents for all the encouragement and support.

vii

ABSTRACT OF THE DISSERTATION

Designing Efficient and Resilient Lossy Compressors for Large-Scale Scientific Computing

by

Sihuan Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2020

Dr. Zizhong Chen, Chairperson

Extremely large scale scientific simulation applications have been very important in many

scientific domains including cosmology, climate, fluid dynamics, chemistry and so on. It has

been shown that running the simulations at a larger scale can bring more discoveries. On

one hand, with the increasing scale of those applications, the saturated I/O bandwidth can

slow down the execution of the simulation significantly because of the huge amount of data

needed to be dumped to the storage system. On the other hand, soft errors striking the

simulations are not negligible considering the great number of components in the supercom-

puter and a single scientific execution spending days to finish. Therefore, it is meaningful

to reduce the I/O time and harden the resilience of those large scale simulations. Though

hardware solutions like designing new storage systems or error resilient computing devices

have great generality, it usually takes longer development time and much more effort than

software solutions. This thesis seeks software solutions by designing efficient and resilient

lossy compressors for large scale scientific simulations.

viii

To improve the overall simulation performance, we propose a better lossy compres-

sor which has a much higher compression ratio to reduce the I/O time significantly. More

specifically, we focus on particle based scientific simulations. As we know, greater compres-

sion ratios imply less data to be written to the storage system which in turn, reduces I/O

time. The state-of-art lossy compressor takes the advantage of spatial smoothness to achieve

high compression ratios. However, particle based simulations have very limited smoothness

in space which leads to inadequate compression ratios. In contrast, we propose to exploit

smoothness in time for lossy compression and design an optimized compression model based

on the existing lossy compressor. Results show our optimized compression model achieves

much better compression ratios and significantly reduces I/O time at large scale.

To improve the resilience of the simulation applications equipped with lossy com-

pression, we design soft error resilient schemes for lossy compressors. First, we provide

an algorithm-scope protection for one widely used lossy compressor named SZ. Then, we

provide an application-scope protection that can be applied to all error-bounded lossy com-

pressors. The algorithm-scope protection can only cover soft errors happening during the

execution of the lossy compression itself while the application-scope protection can cover

soft errors during simulation, lossy compression and even data writing. Both the algorithm-

scope and the application-scope protections can provide significantly better resilience but

keep the performance overhead low.

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Optimizing Lossy Compression with Adjacent Snapshots for N-body Sim-
ulation Data 5
2.1 Introduction . 5
2.2 Research Background . 9
2.3 Problem Formulation . 11
2.4 Understanding the N-Body Simulation Data 13

2.4.1 Characteristics of Particles in Consecutive Snapshots 13
2.4.2 HACC variable visualization . 14

2.5 Optimized Error-Bounded Compression Model for N-Body Simulation Frame-
work . 16

2.6 An Efficient Particle Alignment Mechanism 18
2.7 Optimization of Data Compression . 21

2.7.1 Optimizing Data Prediction Accuracy 21
2.7.2 Optimizing Frequencies of Space-Based Compression vs. Time-Based

Compression . 22
2.8 Performance Evaluation . 26

2.8.1 Experimental Setting . 26
2.8.2 Evaluation Results . 28

2.9 Related Work . 33
2.10 Summary . 35

3 SDC Resilient Error-bounded Lossy Compressor 37
3.1 Introduction . 37
3.2 Background and Problem Formulation . 41

3.2.1 SZ Lossy Compression Framework 41
3.2.2 Algorithm based fault tolerance (ABFT) 42

x

3.2.3 Error model and assumptions . 43
3.2.4 Formulation of SDC Detection Evaluation in SZ 43

3.3 Resilience Analysis of SZ 2.1 . 44
3.3.1 SDC Resiliency – Computation error 45
3.3.2 SDC Resilience – Memory error . 49

3.4 Error Tolerance Methodology . 51
3.4.1 Blockwise independent design . 51
3.4.2 Fault tolerant compression . 52
3.4.3 Fault tolerant decompression . 54
3.4.4 Avoiding round off errors in checksums 54
3.4.5 Impact to compression ratio without protecting regression and sampling 57

3.5 Discussion for SZ Time Based Compression 57
3.5.1 Introsort . 58
3.5.2 Comparison Errors . 61
3.5.3 Efficient Error Resilience for Introsort 62

3.6 Experimental Evaluation . 62
3.6.1 Experimental Setup . 62
3.6.2 Evaluation of Independent-block Compression 65
3.6.3 Error free experimental results . 67
3.6.4 Error injected experimental results 69
3.6.5 Parallel experimental results . 73

3.7 Related Work . 73
3.8 Summary . 75

4 Towards End-to-end SDC Detection for HPC Applications Equipped with
Lossy Compression 76
4.1 Introduction . 76
4.2 Problem formulation . 81
4.3 Preliminary Concept and Background . 83

4.3.1 Adaptive Impact Driven SDC Detector (AID) 83
4.3.2 Error-bounded Lossy Compression 84

4.4 Data-analytic based End-to-end SDC Detection 85
4.4.1 Design Overview . 87
4.4.2 Impact Factor vs. Compression Error Bound 89
4.4.3 Solution A: Synchronous End-to-End SDC Detection with Separate

Comparisons (SESD(S)) . 92
4.4.4 Solution B: Synchronous End-to-End SDC Detection with Coupled

Comparisons (SESD(C)) . 95
4.4.5 Solution C: Asynchronous End-to-End SDC Detection 96
4.4.6 Inaccuracy that impacts SDC detection 97
4.4.7 Overhead Analysis . 98

4.5 Evaluation and Discussion . 100
4.5.1 Experimental Setup . 100
4.5.2 Investigation of False Positives in Error-free Cases 100
4.5.3 Investigation of Detection Performance in Erroneous Cases 105

xi

4.5.4 Performance overheads in parallel environment 106
4.6 Related Work . 107
4.7 Summary . 109

5 Conclusions 110

Bibliography 112

xii

List of Figures

2.1 Particle-overlapping percentage of HACC data 14
2.2 Visualization of HACC variable in space dimension 15
2.3 Visualization of HACC variable in time dimension 15
2.4 Principle of our optimized error-bounded compressor 17
2.5 Optimized in situ compression by combining space-based prediction and

prestep-based prediction . 18
2.6 Main idea of Algorithm 1 . 20
2.7 Optimal intervals with different particle-overlapping percentages 25
2.8 Rate distortion of HACC and EXAALT data on variable x 28
2.9 Compression and decompression rate with different error bounds 31
2.10 Parallel compression/decompression and I/O performance. Slashed is SZ single;

dotted is SZ prestep; solid is SZ vlct. The stacked bar represents compress-
ing, writing decompressed data, reading decompressed data, and decompress-
ing time from bottom to top. 32

3.1 Analysis of fault tolerance ability for SZ with computation error 45
3.2 Example introsort execution; phase 1 comprises quicksort and heapsort; phase

2 executes insertion sort. 61
3.3 Visualization of Original Data vs. Decompressed Data (Pluto photo taken

by New Horizons [6]; SZ compression using Value-range based error bound:
1E-3) . 63

3.4 Rate distortion with different block sizes . 66
3.5 Efficiency of random access decompression 67
3.6 Compression time and decompression time overheads. Dash lines are random

access SZ; solid lines are fault tolerant random access SZ. 69
3.7 Experimental results using evaluation mode B 71
3.8 Compression ratio decrease with cmput. errors 72
3.9 Performance of data dumping/loading (sz vs. ftrsz) 73

4.1 Analysis of time cost in the parallel simulation - FLASH (Sedov) 79
4.2 Parallel simulation with synchronous I/O 82
4.3 Parallel simulation with asynchronous I/O 82

xiii

4.4 Design workflow of end-to-end SDC detectors at iteration i 88
4.5 Visual Quality of Reconstructed Data with Different Compression Error

Bounds (Climate Simulation CESM: FLDSC) 91
4.6 Distribution of Compression Errors . 92
4.7 False positive rate of CESM . 102
4.8 False positive rate on Exaalt . 102
4.9 False positives on Flash . 103
4.10 Overheads and false positives on Nek5000 103
4.11 Execution time in parallel . 106

xiv

List of Tables

2.1 dataset information . 27
2.2 Compression ratio of HACC velocity fields with different pointwise relative

error bounds . 29

3.1 Basic dataset information . 63
3.2 Compression ratio degradation of random-access SZ (rsz) and fault-tolerant

random-access SZ (ftrsz) . 67
3.3 Percentage of runs whose maximum absolute error is within error bounds in

sz and ftrsz . 68

4.1 Table of Key Notations . 86
4.2 SZ Compression Quality/Ratios of CESM FLDSC 92
4.3 Basic info about scientific applications used in experiments 100
4.4 Acceptable Error Bounds and Compression Ratios (SZ) 104
4.5 Acceptable Error Bounds and Compression Ratios (ZFP) 104
4.6 Confidence Radius of Solution B and C on CESM with SZ at Time Step 40 105

xv

Chapter 1

Introduction

The topics of performance and error resilience are becoming more and more im-

portant for large scale scientific simulation applications. Studies have shown that running

even larger scale applications is still very critical to more achievements an discoveries [34].

To support the large scale applications, powerful supercomputers have been used to accom-

modate the demanding computing power and storage requirement. Even with the support

of supercomputers, the large scale application still runs in the measurement of days or

weeks [39]. With such a long time execution at such a large scale, the supercomputers will

spend a significant amount of time in the I/O part because of the generated data to be

stored into the disk and they will experience faults. For example, a single cosmological sim-

ulation can produce up to 22 PB data which takes more than 10 hours of I/O time even with

modern storage systems [34,51]. For another example, the supercomputer Jaguar has been

experiencing double-bit-flip once a day in its memory system [33]. The large portion of I/O

time will slow down the execution of the scientific simulations significantly. The faults will

1

eventually either crash the running process or break the correctness of the running results

silently which makes the analysis on this data not trustworthy. The crashes can be resolved

by the well studied checkpoint restart techniques [19, 64]. Thus, this thesis mainly focuses

on the latter one which is soft error or silent data corruption (SDC). Thus, it is urgent to

improve the I/O performance and error resiliency for these large scale scientific simulation

applications. Though performance and resilience seems two different topics, resilience is

essentially a performance issue. If we do not care about performance, resilience can always

be done using redundant operations. For example, the same calculation can be executed

twice to see if they are identical or not. Obviously, this method provides resilience with

very high performance overhead. So the goal is to provide resilience with low overhead.

To improve the I/O performance, we focus on improving the compression ratio of

lossy compressors especially for a specific kind of scientific simulations, the N-body simula-

tions. To improve the error resilience, we first design a soft error resilient lossy compressor

based on efficient ABFT (algorithm-based fault tolerance) methods which can protect the

algorithm from soft errors. Since lossy compression is being adopted by more and more

scientific simulations [34, 39, 60], we believe providing error resilient lossy compression will

be meaningful to improve the fault tolerance of the overall scientific simulation applications

at large scale. We then extend the protection scope from lossy compression to the scientific

simulations that use lossy compression.

The main innovations of the thesis fill several gaps the current literature has. For

the compression ratio improvement of lossy compressor on N-body simulation data, the

existing work only takes advantage of the characteristics of the data in space dimension

2

which limits the compression ratio on N-body simulation data since this kind of simulation

is based on moving particle instead of a fixed simulation field. However, this thesis proposes

new methods to combine the characteristics in both time and space dimension. For the soft

error resilient lossy compressor, there was no previous work like us focusing on practical

fault tolerance methods which have low run time overheads. Existing redundancy based

resilient solutions [9,43] will bring more than 100% overheads in general. For the application-

scope resilient solutions for scientific simulations using lossy compression, existing work only

considers protecting the simulation part. While our work also considers the compression

part and I/O part which basically provides an end-to-end coverage.

We highlight and list the main contributions of the thesis as following.

• We significantly improve the compression ratio of SZ compressor for N-body simula-

tions. The new compression model involves both time and space smoothness. The

improved compression ratio greatly reduces the I/O time at large scale with up to 2k

cores.

• We are the first to design a soft error resilient version of the lossy compressor, SZ.

It can significantly reduce the SDC rate with low overheads in compression ratio,

compression speed and decompression speed. Experiments show the overheads can be

even smaller at large scale up to 2k cores.

• We are the first to investigate the end-to-end soft error detection for scientific simula-

tions using lossy compression. Our experiments show that existing detectors can still

be applied to lossy data with small detection accuracy loss. Also the overheads are

tested within 10% at the scale of more than 1k cores.

3

To summarize, in this chapter, we briefly motivate the topics we work on and the

interplay between the topics. Then we present the high level ideas about how our solutions

handle each specific problem. After that, we briefly discuss the lack of existing work and

novelties of our work. Finally, we highlight the main contributions we make in the thesis.

Each of the listed contributions will be presented in more detail later as a single chapter.

4

Chapter 2

Optimizing Lossy Compression

with Adjacent Snapshots for

N-body Simulation Data

This chapter improves the overall performance of the N-body simulations by im-

proving the compression ratios of one of the state-of-art lossy compressors, SZ. See how our

improved design can reduce the parallel I/O time by up to 20% at large scale of around 2k

cores.

2.1 Introduction

N-body simulation represents a significant research category related to moving

particles over time, which may produce a vast volume of data for post-analysis. The Hard-

ware/Hybrid Accelerated Cosmology Code (HACC) [34], for example, can simulate trillions

5

of particles, requiring tens of petabytes of storage space, as indicated by HACC users. In

comparison, the storage capacity of the parallel file system (PFS) in Argonne’s MIRA Blue

Gene/Q system (one of the fastest supercomputers in the world) provides only 20 PB for

users to store their data—which cannot meet the storage requirement for even one HACC

simulation case, since the PFS storage space is shared with many other users. Significantly

reducing the data to store during the simulation is critical to the success of N-body research

projects.

Although many state-of-the-art data compressors exist, they cannot significantly

reduce the N-body simulation data size. N-body simulation data that need to be dumped are

mainly floating-point values, which cannot be compressed effectively by lossless compressors

such as Gzip [5], BlosC [3], and FPC [20]. The reason is that most lossless compressors

rely on exactly repeated patterns appearing in the stream of bytes, while the stream of

floating-point data has few repeated patterns because of random ending mantissa bits on

each data point. On the other hand, existing error-bounded lossy data compressors (such

as SZ [29,30,73], ZFP [53], FPZIP [55], and ISABELA [42]) cannot work effectively on the

N-body simulation data because they significantly rely on the consecutiveness of the data

in space, while the adjacent data points in one snapshot are often not correlated with each

other in space, as will be demonstrated later.

A straightforward idea to significantly improve the data compression quality for

the N-body simulation framework is leveraging the possible smoothness of the data in the

time dimension. This idea, however, faces some serious issues. First, multiple-snapshot-

based trajectory data compression is not suitable because collecting many snapshots on line

6

before doing the compression is impossible for extremely large-scale simulations, considering

the vast data to produce versus limited memory capacity. Second, a large-scale parallel

simulation such as HACC involves hundreds of thousands of ranks, each handling a specific

region in space. Particles are always moving during the simulation, such that the same rank

across adjacent time steps may have different orders of particles. The consecutive temporal

snapshots of the same rank may even have varied numbers of particles, such that aligning

the particles across the consecutive snapshots is nontrivial. Third, we have to adopt space-

based compression (or snapshot-based compression) from time to time during the entire

simulation; otherwise, reconstructing/decompressing any snapshots (even near the end of

the simulation) would have to decompress all its previous snapshots, causing undesired

decompression overhead. How to optimize the overall compression quality by combining

the space-based compression and time-based compression needs to be studied carefully.

In this work, we propose a novel, error-bounded lossy compressor for the N-body

simulation framework. Our compressor can substantially reduce the size of the storage

data during the simulation and can also improve the I/O performance significantly. Our

contributions are as follows.

• We propose an efficient error-bounded lossy compression model for N-body simulation

data by adopting both a space-based strategy and time-based strategy alternately,

with the required information limited to only the current snapshot and the previous

snapshot. The compression model can be extended to other scientific simulations if

the simulation data exhibit a certain consecutiveness in the time dimension. We also

prove the most appropriate frequency for the space-based vs. time-based compression.

7

• We propose a lightweight particle alignment mechanism, which is a fundamental step

to the following time-based compression step for the N-body simulation. The particle

alignment approach involves two critical steps, radix-sorting particles and classifying

missing particles, which are designed and implemented carefully considering both

performance and memory cost.

• We thoroughly evaluate the compression quality of our proposed solution using a

cosmological simulation code (HACC) and a molecular dynamics simulation code

(EXAALT), which are both widely used in the N-body research community. Ex-

periments show that our solution can significantly improve the compression quality

compared with that of all other existing state-of-the-art lossy compressors, including

SZ [29, 30, 73], ZFP [53], FPZIP [55], NUMARCK [24], and decimation approaches,

with comparable compression/decompression rate. The compression ratio is improved

by up to 43% on the velocity field and up to 300% on the position field of HACC data;

on EXAALT data, it is improved by up to 260% compared with that of the second-

best compressor with the same data distortion level. The parallel I/O performance is

improved by up to 20%.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce

the research background. In Section 2.3 we formulate the research problem by discussing

the target and conditions of the lossy compression work based on our communication with

N-body simulation code developers and users. In Section 2.5 we describe our proposed error-

bounded lossy compression model. In Section 2.6 we propose an efficient particle alignment

mechanism and discuss how to improve the data prediction accuracy in the context of N-

8

body simulation. In Section 2.8 we present an in-depth analysis and compare our evaluation

results with other related work. In Section 2.9 we discuss the related work and in Section

2.10 we summarize our conclusions.

2.2 Research Background

We describe the background of N-body research (including both cosmology and

molecular dynamics) in this section. In the absence of analytical methods for cosmological

research, numerical simulations are the only methods available for the study of extremely

large structures such as galaxies and clusters of galaxies. In the past two decades, many

relative N-body simulation techniques have been developed and executed on powerful su-

percomputers, and the simulation results have provided valuable insights for the study of

structure formation. As indicated in the survey [13], cosmological simulations are generally

based on an initial condition setup using a power spectrum, and then the particles’ positions

and velocities are calculated iteratively in each time step until a completion condition is

met. Molecular dynamics (MD) simulation plays an important role in discovery of inter-

esting behaviors of atoms [63]. The EXAALT project, for example, aims to develop MD

simulation at exascale to address the key fusion and fission energy materials challenges [4].

EXAALT can simulate behavior of atoms in a nano-crystalline sample of copper under the

influence of a strong electric field. It will generate a large amount of long trajectory of

atoms that requires recording the positions of atoms in each time step.

For an N-body simulation, the positions and velocities of the simulated particles

generally compose the critical information to be stored into the PFS for post-analysis. In

9

HACC simulations [34], for example, each snapshot stored in the PFS contains six fields, x,

y, z, vx, vy, and vz, each being a 1D array with exactly the same number of elements (i.e.,

the number of particles). The first three fields (x, y, z) indicate the particles’ positions, and

the other three fields (vx, vy, vz) refer to the particles’ velocities. Since in one simulation

run, there could be hundreds of snapshots each containing trillions of particles, the total

data size could easily reach 10 PB or more. The users often adopt decimation in time

(storing only one snapshot every several time steps) for the post-analysis.

For a parallel simulation code, there are many ranks to be executed on hundreds

of thousands of processors in parallel, and each rank is handling a particular region in the

space. Every rank needs to communicate with a few other ranks because the particles

may move from one region to another during the simulation. Hence, the same rank across

consecutive time steps (or snapshots) may have different orders or even different numbers of

particles. In order to trace the particles across snapshots, each particle has an ID number,

which is stored in an extra integer array at runtime. The HACC code, for instance, adopts

a 64-bit ID array to identify the particles. According to HACC users, post-analysis does

not require knowing the ID array, so this information does not need to be stored. Moreover,

since the users focus mainly on the characteristics of the spatial structures of the particles’

clusters, they do not care about overall orders of the particles, as long as the elements in

the six fields (x, y, z, vx, vy, vz) are kept consistent.

10

2.3 Problem Formulation

In this section, we formulate the research problem by clarifying the conditions and

target in our compression work, based on our close communication with N-body researchers.

During an N-body simulation such as a cosmological simulation, we need to com-

press the particles’ information (i.e., each particle’s position and velocity) in order to reduce

the storage burden as much as possible. Specifically, given simulation with T time steps (or

snapshots), we need to design and implement an in situ compressor that can get as high a

compression ratio as possible in the compression of all six 1D arrays (x, y, z, vx, vy, and

vz) based on the user’s error-controlling demands. The compression ratio (denoted by r) is

defined as the ratio of the original data size to the compressed data size, as presented in

Formula (2.1),

r =
(
∑T

i=1 6Ni) · data type size∑T
i=1

∑6
field=x,y,z,vx,vy ,vz

Ci(field)
, (2.1)

where data type size refers to the number of bytes used to represent one data point in the

original dataset (4 for single precision and 8 for double precision), Ni means the number of

particles at time step i, and Ci(field) means the compressed size (in bytes) at time step i

for a particular field (selected in {x, y, z, vx, vy, vz}).

This objective is subject to the following conditions.

• The compression algorithm should have a low time complexity, such that the compres-

sion/decompression time would be comparable to that of the existing fast compressors

(e.g., SZ [73] and ZFP [53]).

11

• The compression method should have relatively low memory cost, considering the huge

memory footprint consumed. Specifically, only one previous consecutive snapshot is

allowed to be used for the compression of the current snapshot in the simulation.

• According to N-body researchers, the position fields (i.e., x, y, z) need to use an

absolute error bound, which is a constant number specified by the user to bound the

maximum difference between the original data values and decompressed data values.

Specifically, given a constant error bound denoted by eb (e.g., eb=1E-4 of the global

value range), for each original data point di and its corresponding decompressed data

point d′i, the compression errors ei should follow the following inequality: ei=|di−d′i|

≤ eb·(dmax−dmin), where dmax, dmin is the maximum and minimum of original data.

The eb is also called value-range-based error bound.

• The velocity fields (vx, vy, and vz) should use a pointwise relative error bound, which

means that the ratio of the value difference to the original value should be no greater

than a user-specified constant number (such as 1%), in that the faster a particle moves,

the higher the compression errors it can tolerate intuitively. In this sense, the uniform

absolute error bound is not suitable for the compression of velocity fields because (1) a

large uniform absolute error bound will lead low-speed particles to be largely skewed

from their real states and (2) a relatively small uniform absolute error bound will

cause an over-reservation of the precision for the particles with fast speeds, leading to

the low compression ratios.

12

2.4 Understanding the N-Body Simulation Data

In this section, we investigate the characteristics of the N-body simulation data,

which are fundamental to the design principle of our compression model.

2.4.1 Characteristics of Particles in Consecutive Snapshots

To understand whether the time-based compression strategy is promising for N-

body simulation data compression, we need to investigate the percentage of particles over-

lapped across two consecutive snapshots, in that a greater portions of overlapped particles

will contribute to more significant improvement of compression ratio. Figure 2.1 presents

the particle-overlapping percentage based on HACC data using 100 snapshots. Without loss

of generality, we assume that the space-based compression is executed every 10 time steps:

that is, in a period with 10 consecutive time steps, the first snapshot adopts space-based

compression and all others adopt time-based compression with overlapped particles.

In Figure 2.1, the green solid curve refers to the percentage of the overlapped

particles between two adjacent snapshots. The red dashed curve shows the percentage of

the overlapped particles between the current snapshot and the initial snapshot in that 10-

consecutive-time-step period. We summarize two critical insights based on our analysis of

our lossy compression design and optimization strategies.

1. The particle-overlapping percentage is high (≥95% every few time steps). This ob-

servation indicates that it is feasible to extract overlapped particles across adjacent

snapshots and improve the compression ratio by leveraging the data smoothness in

the time dimension.

13

0 20 40 60 80 100
Snapshot number

0.90

0.92

0.94

0.96

0.98

1.00

O
v
e
rl

a
p
 p

e
rc

e
n
ta

g
e

To its space based snapshot

To its previous snapshot

Figure 2.1: Particle-overlapping percentage of HACC data

2. In each period, the particle-overlapping percentage between two adjacent snapshots

can be treated as a constant, because of the horizontal green curves observed in the

figure. We derive an optimal frequency for space-based compression versus time-based

compression, to be described in Section 2.7.2 in detail.

2.4.2 HACC variable visualization

Figure 2.2 presents the HACC simulation data in a snapshot (i.e., in the space

dimension). We can clearly see that the spatial consecutiveness of the data is hardly ob-

served especially for velocity fields, which means that the single-snapshot-based compression

method would definitely suffer from very limited compression ratios. As shown in Tao et

al.’s paper [72], the best compression ratios for the position field and velocity field are only

14

(a) variable: y (b) variable: vy

Figure 2.2: Visualization of HACC variable in space dimension

0 20 40 60 80 100
Snapshot number

160

165

170

175

180

185

190

195

y

(a) variable: y

0 20 40 60 80 100
Snapshot number

−1000

−500

0

500

1000

1500

2000

2500

3000

v
y

(b) variable: vy

Figure 2.3: Visualization of HACC variable in time dimension

about 7 : 1 and 4 : 1, respectively, under the value-range-based error bound of 0.0001 [72]

which is not adequate for real world usage.

Figure 2.3 presents the smoothness of the position and velocity values of the same

particles simulated over multiple time steps. We randomly chose 100 particles and recorded

their position and velocity in time dimension. We observe that the data values are fairly

smooth across adjacent time steps, especially for the position field. As for the velocity field,

the data exhibits much higher smoothness in time dimension than in space.

15

2.5 Optimized Error-Bounded Compression Model for N-

Body Simulation Framework

In this section, we propose an optimized error-bounded compression model that is

particularly effective for N-body simulation data. The design principle is based on the SZ

compression model [73], which includes four critical steps: data prediction, linear-scaling

quantization, variable-length encoding, and lossless compression. The key difference be-

tween our model and the SZ model is twofold: (1) unlike SZ, we design an efficient particle

alignment algorithm because we need to leverage the smoothness of the data in the time

dimension across consecutive time steps (to be detailed in Section 2.6); and (2): we also im-

prove the prediction accuracy significantly by leveraging more advanced approaches rather

than using only space-based prediction methods (to be detailed in Section 2.7.1). We present

the whole compression procedure in Figure 2.4. The first two steps are the critical steps

in the whole compression, directly determining the final compression quality. In general,

the higher the prediction accuracy, the higher the compression quality because of more

duplicated quantization codes to be introduced in the linear-scaling quantization step.

16

Time step n-1 Time step n ……

x field

vx field

P
a

rt
ic

le
 I
D

s

P
a

rt
ic

le
 I

D
s

dataset:

x field

Step 1: Particle Alignment

Step 2: More advanced

prediction approach

Step 3: Linear-scaling

quantization

0

-1

-2

-3

1

Quantization

code: -3

Predicted

value

True value

Step 4: Variable-length

Encoding (Huffman)

Step 5: Lossless

Compression (Gzip)

Figure 2.4: Principle of our optimized error-bounded compressor

In Figure 2.5, we illustrate how we combine different types of prediction approaches

(or compression techniques). At the beginning, we have to adopt the space-based compres-

sion at the first time step because it has no previous time steps. For any following time

steps, we can adopt either space-based compression or prestep-based compression because

the information at previous time steps would be available to use in the prediction. In

fact, we still have to perform one space-based compression every few time steps, such that

the data decompression at any following time step would not reply on too many previous

time steps. However, how to optimize the frequency of the space-based compression and

time-based compression is nontrivial. It may involve multiple factors, including particle-

overlapping percentage across consecutive time steps, space-based compression ratio, and

time-based compression ratio (to be detailed in Section 2.7.2).

17

……

Time step

Space-based

compression

Space-based

compression
Space-based

compression

Prestep-based

compression

Prestep-based

compression

Prestep-based

compression

Space-based

compression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time step 7 Time step 8 Time step 9

Spatial

prediction

Prestep-based

prediction

x field

vx field

Velocity-based

prediction

Figure 2.5: Optimized in situ compression by combining space-based prediction and prestep-
based prediction

2.6 An Efficient Particle Alignment Mechanism

In this section, we present an on-line algorithm (Algorithm 1) that can align parti-

cles across adjacent time steps efficiently, so that we can use prestep-based compression for

aligned particles and space-based compression for unaligned ones. On-line particle align-

ment is nontrivial because (1) for the sake of limited memory cost, at most one previous

snapshot is available to use every time the particles of a snapshot need to be aligned; and

(2) the algorithm has to be of linear time complexity, since the state-of-the-art compres-

sion algorithms generally have linear time complexity. The key idea is using a lightweight,

bit-mask array (also called alignment bit-array in the following text) to trace/map the

overlapped particles between two consecutive snapshots.

In Algorithm 1, we use a vector perm[] to record the original locations of particles in

the dataset. After performing the radix sorting (line 4), we reorganize the data to make the

particles’ locations consistent with the sorted IDs (line 5∼12). Such a design can effectively

18

Algorithm 1 On-line particle alignment

Input: particle ID array of the last snapshot (denoted id0[]), the number (denoted l0) of
aligned particles in id0[], particle ID array of the current snapshot (denoted id1[]), and data
of current time step denoted by var1[][] (var1[j] represent jth field).
Output: updated ID array (id1[]), data of the fields (var1[][]), the number of aligned
particles in current snapshot (l1), alignment bit-array (align[]).

1: for i = 0 → id1[].length−1 do
2: perm[i]← i. /*Initialize the permutation for sorting*/
3: end for
4: in place radixsort(id1[], perm[]). /*perm[] records original locations*/
5: for i = 0 → id1[].length−1 do
6: while i 6= perm[i] do
7: swap(perm[i], perm[perm[i]]).
8: for var1[m] do
9: swap(var1[m][i], var1[m][perm[i]]).

10: end for
11: end while
12: end for
13: i, j, k, align[]← 0. /*for align[], 0 indicates matched particle*/
14: while i < l0 & j < id1[].length do
15: if id0[i] == id1[j] then
16: swap(id1[k], id1[j]).
17: for var1[m] do
18: swap(var1[m][k], var1[m][j]).
19: end for
20: i++, j++, k++. /*counter increment*/
21: end if
22: if id0[i] < id1[j] then
23: align[i] = 1, /*1 indicates missing/unmatched particle*/
24: i++.
25: end if
26: if id0[i] > id1[j] then
27: j++. /*keep searching for matched particles*/
28: end if
29: end while
30: l1 ← k. /*output the number of aligned particles*/

19

avoid too many memory accesses and swap operations for var1[][] during the sorting. Then

(line 14∼29) we scan the two sorted IDs (id0 and id1) to align particles (note that id0 have

been sorted in the last time step) between the two snapshots. Figure 2.6 uses an example

to illustrate how Algorithm 1 works.

3 4 3 6 75 8Sort Snapshot 0

1 2 3 5 63 9Sort Snapshot 1

1 2 3 4 53 7Sort Snapshot 2

3 5 3 2 16 9
Find overlap

and swap

0 1 3 0 10 1Alignment:

3 5 3 4 21 7
Find overlap

and swap

0 0 3 n/an/a1 n/aAlignment:

Figure 2.6: Main idea of Algorithm 1

Suppose snapshot 0 is already processed in the last time step and snapshot 1 has

been sorted in the current algorithm (line 4). Scanning the two snapshots with two separate

pointers, we can move all the unmatched/missing particles (2,1,9) to the end of snapshot

1 and use an alignment bit-array {0,1,0,0,1,1} to record the matched particles’ locations

in snapshot 0. Note that we use ”0” to indicate a matched particle. Similarly, for the

sorted snapshot 2 {1,2,3,4,5,7}, we compare them with the aligned particles in snapshot 1

(i.e., 3,5,6) and mark the matched particles 3,5 in snapshot 1 using the alignment bit-array

{0,0,1,n/a,n/a,n/a}.

Complexity: Denote the number of fields by Nf , number of particles by n. Con-

sider the complexity for each snapshot. In-place-radix-sort will take 2 b
lr
n (line 4), where

b is the bit length of an original data point; lr is the radix bit length, and 2 is because

the permutation array perm[] is being reordered when id1[] is being sorted. Reordering the

20

variables by the permutation of radix sorting takes Nfn (line 5 to 12). Finding the over-

lapped index of id0, id1 and swapping them to former part of id1 takes at most (2 +Nf)n

(line 12 to 24). In total, that is 2(b/lr +Nf + 1)n

For memory, we consider only the extra memory usage, not including the memory

that the original simulation will take. To do time-based compression, one previous snapshot

data is needed, which first doubles the memory usage (Nf + 1)n, where 1 is because of the

ID array. In addition, the permutation array (perm[]) takes n units of extra memory. The

alignment bit-array (align[]) takes at most n. Since we can free the permutation array after

we reorder the variable before the alignment bit-array is initialized, the extra memory usage

is just n. So in total, that is (Nf + 1)n+ n = (Nf + 2)n units of extra memory.

2.7 Optimization of Data Compression

In this section, we describe how to optimize the compression quality for the N-body

simulation data by leveraging its data properties.

2.7.1 Optimizing Data Prediction Accuracy

The HACC application needs to store both velocity and position information dur-

ing the simulation. We now detail how we improve the prediction accuracy by incorporating

them together. Our key idea is to leverage Newton’s law: ~x1 = ~x0 + ~v∆t, where ~x0 is the

position of all particles in last snapshot; ~v is the average velocity; ~x1 is the position in

the current snapshot; and ∆t is just the time difference between current snapshot and last

one. The unknown parameters are ~v and ∆t. We estimate ~v by ~v0+ ~v1
2 , where ~v0 and ~v1

21

refer to the velocity values of the last and current snapshot, respectively. We estimate the

average velocity by assuming a linear motion with constant acceleration. The ∆t is calcu-

lated based on the minimization of the prediction MSE (mean square error) in the domain

∆t ∈ (−∞,+∞). The optimization problem is formulated as follows.

min
∆t

mse(∆t) ,
1

n
(~x1 − ~x0 − ~v∆t)2 (2.2a)

subject to ∆t ∈ (−∞,+∞) (2.2b)

∆t ∈ (2.2c)

Equation (2.2) can be rewritten as follows: mse(∆t) = 1
n [~v2∆t2−2~v(~x1− ~x0)∆t+

(~x1 − ~x0)2] where n is the number of common particles between these two adjacent snap-

shots. The single variable quadratic function can be minimized when ∆t = ~v(~x1− ~x0)
~v2

=

(~v0+ ~v1)(~x1− ~x0)
2~v2

, which implies that the complexity of calculating ∆t is O(n).

2.7.2 Optimizing Frequencies of Space-Based Compression vs. Time-

Based Compression

Since fewer and fewer overlapped particles occur with the increasing snapshot

number, using time-based compression is not always better. We need to do a space-based

compression every few time steps. We assume that the particle-overlapping percentage with

prestep snapshot is α (0<α<1), without loss of generality (see Figure 2.1). Suppose there

are totally T snapshots and every space-based compressed snapshot is followed by k−1

time-based compressed snapshots, then we can derive the following theorem.

22

Theorem 1 In order to minimize the overall compressed file size across T snapshots,

the optimal interval k of the space-based compression is either dk0e or bk0c such that

αk0−1(k0 lnα− 1) + 1 = 0.

Proof. We assume the space-based compression ratio and time-based compres-

sion ratio are two constants for simplicity, and their reciprocals are denoted as rs and rt,

respectively (0 < rs, rt < 1).

For this optimization problem, we need to calculate the objective function, with

snapshots labeled from 0 to T − 1. We denote the original data size of each snapshot as 1

without loss of generality, then we can calculate the compressed file sizes for the snapshot

0 through k − 1 as follows. Snapshot 0 will be compressed to 1 ∗ rs since it is compressed

only by space-based compression. The snapshot i (i ∈ [1, k − 1]) will be compressed to

1 · αi · rt + 1 · (1 − αi) · rs since the overlapped part 1 ∗ αi will be compressed by time-

based compression and the remaining part by space-based compression. Note that the

analysis is the same for snapshots k through 2k−1; 2k through 3k−1, and so on. Without

loss of generality, we assume T is divisible by k, so the overall compressed file size is

T
k [rs+

∑k−1
i=1 α

irt + (1− αi)rs]. The inner part is just a k−1 term geometric sequence, thus

we can simplify the function as follows.

f(k) , T [rs +
α

1− α(rt − rs)
1− αk−1

k
] (2.3)

23

min
k

f(k) (2.4a)

subject to k ∈ [1,+∞) (2.4b)

k ∈ . (2.4c)

The optimization problem can be formalized using equation 2.4. Now, we just need

to prove that the objective function f(k) in the domain k ∈ [1,∞) has one and only one

minimum. Taking the first-order derivative leads to f ′(k) = Tα(rs−rt)
1−α ∗ 1

k2
∗ [αk−1(k lnα −

1)+1]. The first factor Tα(rs−rt)
1−α is always positive in the case where time-based compression

has a better compression ratio than does space-based compression (rs > rt). Similarly, the

second factor is also positive. Thus, whether f(k) will increase or decrease with increasing k

depends on the sign of the third factor g(k) , αk−1(k lnα−1)+1. What we can ensure first is

that g(1) = lnα < 0 and limk→∞ g(k) = 1 + limk→∞ α
k−1(k lnα− 1) = 1 > 0. Since g(k) is

continuous in domain k ∈ [1,∞), g(k) has at least one root. Then we prove g(k) has only one

root. Taking the first-order derivative leads to g′(k) = ln2 α ∗ kαk−1 > 0 ∀k ∈ [1,∞). That

is, g(k) is monotonically increasing in [1,∞). Recalling that g(1) < 0 and limk→∞ g(k) > 0,

we conclude that in [1,∞), g(k) has one and only one root denoted by k0 such that g(k0) = 0.

So f(k0) will be a global minimum in [1,∞).

This above analysis assumes k is a real number, while it is actually an integer. So

the optimal k should be either dk0e or bk0c, where g(k0)=αk0−1(k0 lnα− 1)+1 = 0.

24

To give some idea of how large the optimal interval is with different overlapping

percentage, we plotted Figure 2.7 using different overlapping percentages in [0.01, 0.99] with

increasing step 0.01.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Overlap percentage

0

2

4

6

8

10

12

14

16
O

p
ti

m
a
l
in

te
rv

a
l

Figure 2.7: Optimal intervals with different particle-overlapping percentages

Algorithm 2 details how to calculate the optimal interval. Notice that the over-

lapping percentage should be calculated before calling Algorithm 2. At runtime, we just

estimate it using the number of aligned particles in the next snapshot following a pure

space-based compressed snapshot divided by the number of particles in that space-based

compressed snapshot. Notice that a greater optimal interval means more time to get a

specific decompressed snapshot for the users. We allow a user defined maximum interval

imax to be a parameter. We first test whether g(k) at 1 and imax have the same sign. If so,

there is no root of g(k) in [1, imax], implying imax is the optimal interval. Otherwise, one

and only one root is guaranteed in [1, imax]. We solve it using binary search. Then check

two closest integers and select the one with lower f(k) (Formula (2.3)) as the final solution.

25

Complexity: The dominant part of Algorithm 2’s complexity is the binary search.

Since we need to identify the closest integer solution, we can terminate the search as the

current search interval is less than 1. Thus, our binary search part costs log imax times of

function evaluations.

Algorithm 2 Optimal interval selection

Input: an on-line computed overlapping percentage α, a user-defined interval threshold
imax (imax = 10 by default)
Output: optimal interval k

1: g(k)← αk−1(k lnα− 1) + 1
2: if g(1) ∗ g(imax) > 0 then
3: k = imax /*no root in [1, imax]*/
4: else
5: k = binary search root of g(k) in [1, imax]

6: h(k)← 1−αk−1

k
7: if h(bkc) > h(dke) then
8: k ← bkc /*compare which integer solution is better*/
9: else

10: k ← bkc+ 1
11: end if
12: end if

2.8 Performance Evaluation

2.8.1 Experimental Setting

We conduct our experimental evaluations on a supercomputer [1] using up to

2,048 cores (i.e., 128 nodes, each with two Intel Xeon E5-2695 v4 processors and 128 GB

of memory, and each processor with 16 cores). The I/O and storage systems are typical

high-end supercomputer facilities. We use the file-per-process mode with POSIX I/O [81]

on each process for reading/writing data in parallel.

26

We test our proposed compression framework with optimized techniques using

two particle simulation datasets. One is the cosmological simulation dataset HACC, and

the other is the molecular dynamics simulation dataset EXAALT. The basic information

about these two datasets is listed in Table 2.1. Note that these datasets are from real

simulations and their structures and properties are similar to those of much larger datasets

from extreme-scale simulations (trillions particles cosmology simulation).

We mainly focus on two metrics to assess the compression quality. The first metric

is compression ratio based on the same pointwise relative error bound, which is mainly used

to evaluate velocity fields. The other important evaluation metric is peak signal-to-noise

ratio (PSNR), as defined in Formula (2.5). PSNR is commonly used to assess the overall

distortion between the original data and reconstructed data especially in visualization. Log-

ically, the higher the PSNR is, the lower the overall compression error, indicating a better

compression quality.

psnr = 20 · log10(
dmax − dmin

rmse
) (2.5)

where rmse =
√

1
N

∑N
i=1(di − d′i)2, and dmax and dmin refer to the max and min value

respectively. We will present the rate-distortion figure, which shows the bit-rate (the number

of bits used as per data point after the compression) versus the PSNR value.

Table 2.1: dataset information

Snapshots Variables Particles (million) Total Size

HACC 100 x, y, z, vx, vy, vz 15-20 36GB

EXAALT 83 x, y, z 1 1GB

27

2.8.2 Evaluation Results

Alignment bit-array overhead

We first demonstrate that the alignment bit-array in our Algorithm 1 has negligible

storage overhead. The alignment bit-array does not change with various error bounds. The

overall compressed alignment bit-array occupies only 15.70 MB, which is far less than the

original HACC data size (36 GB). Such an overhead is negligible unless the compression

ratio is up to 1000X or so, which is not the case for HACC.

Rate distortion

0 5 10 15 20
bit rate

20

40

60

80

100

120

140

p
sn

r ZFP

SZ_vlct

SZ_prestep

SZ_single

Numarck

Decimation

(a) HACC

0 5 10 15 20 25
bit rate

20

40

60

80

100

120

140

p
sn

r

SZ_prestep

SZ_single

ZFP

Decimation

(b) EXAALT

Figure 2.8: Rate distortion of HACC and EXAALT data on variable x

For the HACC data, we evaluate our proposed methods (SZ vlct, SZ prestep)

by comparing to other existing compressors shown in Figure 2.8. SZ vlct adopts all the

optimization strategies we proposed above (including Section 2.6 and Section 2.7). Unlike

SZ vlct, SZ prestep adopts only prestep data values to predict the data value in the current

time step, without leveraging Newton’s law. The results are obtained by setting the value-

28

range-based error bound to 1E-3 ∼ 1E-6 for SZ-based methods. In the SZ vlct solution,

we always use the pointwise relative error bound 0.1 for the velocity to predict positions.

The decimation method uses linear interpolation. As we can see, for the HACC position

data, our proposed methods (SZ vlct, SZ prestep) outperform the second-best method, the

single-snapshot-based SZ (SZ single), by 14% and 46% in bit-rate given the fixed PSNR

at around 124. The 46% improvement in bit-rate reflects around 85% improvement in the

compression ratio. The improvement is more significant if users accept lower PSNR. For

example, SZ vlct has 4X compression ratio of SZ single with the same PSNR of about 64.

For the EXAALT data, we omit Numarck because of its low compression ratio. We cannot

adopt SZ vlct for EXAALT data because it has only position fields. Also, we cannot use

FPZIP because it does not support value-range-based error bound. Evaluation results show

that our proposed method (SZ prestep) outperforms the second-best (SZ single) method

by 40% in bit rate given the fixed PSNR at around 125. Again, the improvement is more

significant if users accept lower PSNR. For example, SZ prestep has 3.6X compression ratio

of SZ single at PSNR 64.

Evaluation for pointwise relative error bound

Table 2.2: Compression ratio of HACC velocity fields with different pointwise relative error
bounds

1E-1 1E-2 1E-3
vx vy vz vx vy vz vx vy vz

SZ vlct 13.90 12.96 11.60 7.59 7.22 6.69 4.64 4.45 4.19

Numarck 11.28 10.78 10.08 5.69 5.49 5.21 2.97 2.92 2.91

SZ single 9.33 8.66 7.42 4.91 4.69 4.24 3.24 3.14 2.93

FPZIP 5.67 5.33 4.98 3.71 3.56 3.40 2.75 2.66 2.58

29

This section evaluation part involves only HACC data since EXAALT data has no

velocity field. Since decimation and ZFP do not support pointwise relative error bounds,

we exclude them in this evaluation. The results are shown in Table 2.2. It is observed

that the SZ vlct has 15+% compression ratio improvement compared with the second-best

method. The improvement is up to 43% when the error bound is about 0.001, because of

its much higher prediction accuracy. Although our method has similar compression ratios

with Numarck when the error bound is set to 0.1, Numarck actually is a worse solution

because it cannot respect the pointwise relative error bounds. Specifically, when setting

the pointwise relative error to 1E-3, Numarck’s actual maximum compression error would

reach up to 1504 in our experiment.

Compression and decompression rate

In Figure 2.9, We present the compression and decompression rate of our proposed

SZ vlct and SZ prestep on the HACC and EXAALT data. We can see that for HACC, our

compressor’s compression rate is about 1
3 as high as that of SZ single and 50% as high as

that of ZFP+FPZIP, because of the particle alignment cost. For the decompression rate,

our proposed compressor runs much faster than both SZ single and ZFP+FPZIP, in that

the time-based method has no particle alignment cost.Note that SZ vlct is even faster than

SZ prestep in decompression. The reason is that SZ vlct has higher prediction accuracy,

leading to less unpredictable data and thus less access to the unpredictable-data arrays. For

the EXAALT data, SZ prestep runs faster than other solutions because EXAALT data are

already aligned and its prediction approach works more effective than SZ single and ZFP.

30

1e-1 1e-2 1e-3
point-wise relative error bound

0

50

100

150

200

co
m
p
re
ss

io
n
 r
a
te
 (
M
B
/s
)

SZ_vlct

SZ_prestep

SZ_single

ZFP+FPZIP

(a) HACC compression rate with fixed value-
range-based error bound 1E-4

1e-3 1e-4 1e-5 1e-6
value range based relative error bound

0

50

100

150

200

co
m
p
re
ss
io
n
 r
a
te
 (
M
B
/s
)

SZ_vlct

SZ_prestep

SZ_single

ZFP+FPZIP

(b) HACC compression rate with fixed pointwise
relative error bound 1E-2

1e-1 1e-2 1e-3
point-wise relative error bound

0

50

100

150

200

d
e
co

m
p
re
ss

io
n
 r
a
te
 (
M
B
/s
)

SZ_vlct

SZ_prestep

SZ_single

ZFP+FPZIP

(c) HACC decompression rate with fixed value-
range-based error bound 1E-4

1e-3 1e-4 1e-5 1e-6
value range based relative error bound

0

50

100

150

200

d
e
co
m
p
re
ss
io
n
 r
a
te
 (
M
B
/s
)

SZ_vlct

SZ_prestep

SZ_single

ZFP+FPZIP

(d) HACC decompression rate with fixed point-
wise relative error bound 1E-2

1e-3 1e-4 1e-5 1e-6
value range based relative error bound

0

20

40

60

80

100

120

140

co
m

p
re

ss
io

n
 r
a
te

 (
M

B
/s

)

SZ_prestep

SZ_single

ZFP

(e) EXAALT compression rate

1e-3 1e-4 1e-5 1e-6
value range based relative error bound

0

50

100

150

200

250

300

d
e
co

m
p
re
ss

io
n
 r
a
te
 (
M
B
/s
)

SZ_prestep

SZ_single

ZFP

(f) EXAALT decompression rate

Figure 2.9: Compression and decompression rate with different error bounds

31

Parallel file system performance

In this part, we show that our compression can benefit the overall I/O performance

in the parallel environment. Without loss of generality, We took 10 consecutive snapshots

out of the 100 HACC snapshots because of the too long original execution time. We per-

formed experiments using 512 cores through 2,048 cores, with up to 36/10 ∗ 2048 GB =

7.2 TB data loading totally. We compare our compressor to only SZ single, because other

compressors suffer from lower compression ratios. For example, the ZFP+FPZIP takes

56+420+630+64 = 1170 seconds when running on 512 cores, which is far slower than what

we show in Figure 2.10. We adopt the pointwise relative error bound of 0.01 for velocity and

the value-range-based error bound of 1E-4 for position, because such settings are satisfying

as indicated by the users.

512 1024 2048
number of cores

0

500

1000

1500

2000

2500

ti
m

e
 c

o
st

 (
se

co
n
d
s)

Figure 2.10: Parallel compression/decompression and I/O performance. Slashed is
SZ single; dotted is SZ prestep; solid is SZ vlct. The stacked bar represents compress-
ing, writing decompressed data, reading decompressed data, and decompressing time from
bottom to top.

32

As Figure 2.10 shows, although our proposed compressor runs slower than SZ single,

the overall performance gain increases as execution scales. The overall performance with

2,048 cores is improved by 20.39% compared with SZ single. We also observe that SZ single

outperforms SZ prestep when running on 512 cores, while they have comparable perfor-

mance when running on 1,024 cores and SZ prestep even outperforms SZ single on 2,048

cores. This means that compression ratio dominates the performance gains than does com-

pression/decompression rate in large-scale I/O-intensive executions. So, the performance

gain would increase at larger execution scales.

2.9 Related Work

Many compressors have been developed to save the storage space and I/O cost for

today’s research based on simulation or instrumental data. The compressors generally can

be categorized into two groups: lossless compression and lossy compression. Since scientific

data are generated mainly in the form of floating-point values each with random ending

mantissa bits, generic lossless binary-stream compressors such as Gzip [5] and BlosC [3]

cannot work effectively. Although some existing lossless compressors [20, 77, 92] have been

designed for floating-point datasets, they still suffer from limited compression ratios. Hence,

the error-controlled lossy compressors [24, 29, 30, 42, 53, 55] have been studied for years, to

significantly reduce the data size [90].

Most of the existing lossy compressors [29,30,42,53,55,61], however, are designed

based on single snapshots, relying on the smoothness of the data in space. SZ [29,30,49,72],

for example, predicts the value for each data point based on its neighboring values (in

33

1D, 2D, or 3D space) and performs a linear-scaling quantization method followed by a

customized Huffman encoding algorithm. ZFP [53] splits the whole dataset into many

equal-sized small blocks and performs an orthogonal data transform in each block, followed

by an embedded coding. Although Isabela [42] does not rely on the smoothness of the

data in space because it sorts the data before performing the spline interpolation method,

it suffers from a very low compression/decompression rate (generally one or two orders of

magnitude slower than other compressors) because of its expensive sorting operation.

The N-body simulation data have very low smoothness in space, as shown in Sec-

tion 2.4.2 and Section 2.4, leading to low compression quality for the single-snapshot based

compressors, as confirmed in our experiments. Although some compressors [24,41,86] were

designed based on the data smoothness in the time dimension, they are hard to apply in

N-body simulations. Numarck [24], for instance, computes the value difference of the data

points across two consecutive time steps and explores multiple quantization approaches

(such as equal-sized bins, k-means bins, and top-k bins) to maximize the compression ratios.

It focuses on the mesh data, which have no alignment issue, unlike N-body simulation data

that have different orders and numbers of particles across snapshots. Another compression

method [41] designed for MD simulation datasets applies principal component analysis and

discrete cosine transform on a relatively large number of consecutive snapshots (e.g., 8∼512

snapshots in their experiments), which is not suitable for cosmological data because of the

huge memory cost. In addition, trajectory-based compressors have been developed [57] for

MD simulations; however, these compressors are reduced to single-snapshot-based compres-

sion when the number of particles varies across snapshots. Moreover, such compressors

34

require the original data size to be relatively small in order to fit the memory capacity

because multiple snapshots have to be collected before the compression [68].

Compared with the existing time-based compressors [24, 41, 87], our compression

model is a lightweight, efficient error-bounded compression model for N-body simulation

datasets, with limited memory overhead because it relies at most one previous snapshot

for the compression of current snapshot. We also design an efficient particle alignment

algorithm and improve the data prediction accuracy by leveraging the correlation between

the position field and velocity field. Moreover, we optimize the frequency of the space-based

compression vs. time-based compression in order to reach a high overall compression ratio,

which is a significant step compared with traditional time-based compression approaches

such as Numarck [24,87].

2.10 Summary

In this chapter, we propose a new compression model combining space-based com-

pression and time-based compression as well as a set of optimization techniques. We perform

comprehensive evaluations based on two well-known N-body simulation codes (HACC and

EXAALT) by comparing our solution with the existing state-of-the-art related work. We

summarize the critical evaluation results as follows.

• Our proposed compression method achieves up to 3 times compression ratio improve-

ment on the position field and up to 43% improvement on the velocity field compared

with the second-best compressor.

35

• The overall parallel I/O performance using our compressor outperforms the second-

best compressor by up to 20%, by dumping/loading cosmological data on the Argonne

Bebop cluster.

36

Chapter 3

SDC Resilient Error-bounded

Lossy Compressor

The previous chapter has shown how incorporating and improving lossy compressor

for scientific simulations can speedup the execution. However, the added lossy compressor

may experience soft errors which can corrupt the simulation data written to the storage

system. Thus, this chapter proposes a soft error resilient version of the lossy compressor,

SZ, using ABFT with low performance overhead.

3.1 Introduction

Error-bounded lossy compressors [29, 50, 53, 55, 73] have been effective in signif-

icantly reducing large volumes of data produced by scientific simulations [15, 34, 67] or

instruments/devices [32, 58], while controlling the data distortion based on user’s require-

ment. Accordingly, error-bounded lossy compression has been thought of as one of the best

37

ways to resolve today’s big science data issue. Silent data corruptions (SDC), however, are

nonnegligible when running lossy compressors, as discussed below.

• If one lossy compressor is employed by a high performance computing (HPC) applica-

tion, it will likely need to deal with a vast volume of data produced by extreme-scale

simulations. Various possible failures/errors have to be taken into account. Many ex-

isting solutions such as multi-level checkpointing/restart (CR) mechanism focus only

on fail-stop issues that are perceived by hardware or operating systems. By contrast,

the soft errors, a.k.a. silent data corruption (SDC), may change the data in memory,

cache or even register silently, because of inevitably unexpected malfunctions in the

system components. Such errors are more dangerous than fail-stop issues, because

they may cause biased results in the end of simulation silently.

• Remote sensor technology continues to increase in fidelity for space systems, so large

amounts of data are being collected by orbiting satellites or space vehicles and trans-

mitted to other stations (e.g., ground stations, other satellites). However, the devices

(such as interplanetary space probe) deployed in space would be more error-prone

than the regular devices on the earth. To address this issue, some fault tolerance

techniques [37,52] have been proposed for specific algorithms such as matrix multipli-

cation and FFT. However, when lossy compressors are used by the space systems to

compress image data, the whole compression procedure has to be protected against

soft errors. Otherwise, the corrupted data may let scientists miss important findings

or draw a misleading conclusion.

38

There are no lossy compressors designed particularly in the consideration of the

possible SDCs. Mat Noor and Vladimirova [59] made a parallel fault-tolerant Integer KLT

implementation for lossless hyperspectral image compression on board satellites. Unlike the

lossless compression, designing SDC detection/correction method for lossy compression is

more challenging since decompressed data will deviate from original data even though there

is no SDC.

In our work, we propose the SDC resilient lossy compression based on SZ [50] -

one of the best generic error-bounded lossy compressors for large-scale scientific datasets

verified by many studies [50, 56]. Not only can our solution detect the SDCs during the

compression/decompression but it can also automatically correct the SDCs in some cases.

In general, the SDC errors can be classified into two categories, memory error and

computation error, and our solution can protect SZ against both of the two errors. The

memory error is introduced by soft errors that corrupt a data value in memory from a to

a′. The computation error is introduced by soft errors in logic unit which yields wrong

computation results such as 1 + 1 = 3.

The main idea is analyzing each subroutine in the SZ framework elaborately and

designing a series of fault tolerance strategies carefully, such that the lossy compressor can

be protected against SDCs effectively with little overhead. We summarize the detailed

contributions as follows.

• We comprehensively analyze each subroutine of SZ with respect to possible memory/-

computation errors. The analysis unveils that some parts of SZ are naturally error

resilient, while other parts are fragile to SDCs. The SDC errors striking these parts

39

may cause wrong decompressed data. Thus, it is critical to protect those parts by

specific fault tolerance strategies.

• We propose an efficient SDC resilient lossy compression solution based on the SZ

compression framework. e reorganize the SZ compression model by dividing each

dataset into small blocks and making the compression work totally independent across

blocks. Such a design is able to control the impact of SDCs on the decompressed

data. On the other hand, we design a series of SDC resilient strategies based on SZ’s

principle, which can not only detect SDCs in most of cases but also correct SDCs in

some cases.

• We implement our SDC resilient compressor based on our elaborate design. We evalu-

ate its fault tolerance ability in the presence of SDCs and the corresponding overhead

in the fault-free situation, as well as the possible impact to the compression quality.

We perform the experiments with real-world simulation data across multiple science

domains and image data which were taken by New Horizons space probe [6] in the

space. Experiments show that our designed independent-block based compression

model has very limited execution overheads (≤10% in most cases). On the other

hand, the experiments also confirm that our fault tolerance solution yields little over-

head (≤7.3% at 2048 cores) and correct decompression results in the presence of soft

errors. When injecting one and two errors, respectively, during the compression at

runtime, our solution can significantly improve the resilience for SZ (92% running

cases with correct decompressed data compare to only 71.2% and 47% of the original

SZ).

40

We organize this chapter as follows. In Section 3.2, we formulate the research

problem in terms of the SZ compression framework. In Section 3.3, we provide an in-depth

analysis of the fault tolerance ability of SZ. In Section 3.4, we present our fault tolerance

methodology. Then we evaluate our methods in Section 3.6 and in Section 3.7, we discuss

related work. Lastly we conclude the chapter.

3.2 Background and Problem Formulation

3.2.1 SZ Lossy Compression Framework

SZ [50] is an error-bounded lossy compressor designed for scientific data. According

to the recent studies [50, 56, 73], it can effectively reduce the data size for many scientific

simulations, such as climate simulation, cosmological simulation, quantum simulation, and

chemical simulation.

Basically, SZ includes four critical stages during the compression: (1) data predic-

tion, (2) linear-scaling quantization, (3) variable-length encoding, and (4) lossless compres-

sion such as Zstd [10]. In the data prediction step, SZ [29, 50, 73] splits the whole dataset

into multiple blocks in the size of 6x6x6 and then perform the compression in each block

based on two alternative prediction methods - an improved Lorenzo predictor [36] or linear

regression. The second step - linear-scaling quantization converts each raw data value (such

as floating-point value) to an integer index (or quantization bin) based on the user-set error

bound and the difference of the predicted value and original value. The remaining two steps

are used to reduce the data size by performing Huffman encoding on the quantization bin

index array and adopting lossless compression. This may significantly reduce the data size

41

because the distribution of quantization bin indices are likely fairly non-uniform especially

when the data are relatively smooth in space.

3.2.2 Algorithm based fault tolerance (ABFT)

ABFT achieves SDC detection and correction by leveraging the characteristics

of the algorithms. In high level explanations, ABFT detects SDCs by checking if some

relationship is respected and correct the errors by another introduced set of computation.

Each ABFT technique has to be developed for a particular approach composed by one or

more algorithms. We give an example to illustrate how ABFT detects/corrects soft errors

in general. Given an array a[] at timestamp t0, then at a later timestamp t1, one attempts

to detect if there was a memory error that corrupted a value in a[] during the period [t0, t1].

In order to detect the error, we can leverage a checksum (i.e., Equation (3.1)). Specifically,

we can calculate the sum of a[] at t0 and t1, respectively. Suppose the two calculated sums

are denoted by sumt0 and sumt1, respectively. If sumt0 6=sumt1, we can conclude there

must be an SDC error happening to a[] during the period [t0, t1].

sum =
∑

a[i] (3.1)

isum =
∑

i ∗ a[i] (3.2)

In order to locate where the SDC error is in the array a[], we can leverage an extra computa-

tion - Equation (3.2). Specifically, assuming the value at index j is corrupted during the time

period [t0, t1], according to sumt1−sumt0 = a[j]′−a[j] and isumt1−isumt0 = j∗(a[j]′−a[j]),

one can derive the SDC location index j = (isumt1 − isumt0)/(sumt1 − sumt0). This ex-

42

ample illustrates that it is viable to detect and even correct the single-data-point error just

by introducing a few more light-weight computations.

3.2.3 Error model and assumptions

We identify the error model in this subsection. In our study, we focus on both

memory error and computation error. As for the memory error model, the errors could

randomly happen anywhere in the whole memory at any time during the life time of a

process in the form of bit-flips. As for the computation errors, their impact could appear

in the form of bit-flips on the computation results. Similar to other ABFT research, the

flow control error (FCE) is beyond the scope of our work because the general solutions are

designed on the compiler/instruction/hardware level [66]. Moreover, it is too difficult to

comprehensively detect the FCEs even for professional FCE detection tools according to

recent studies [66]. Without loss of generality, we assume that the occurrence probability

of multiple computation errors or memory errors is extremely low for one block of data

during one compression, since one block is generally very small (such as 10×10×10 in size).

Similar to other ABFTs [23, 48, 82], we assume the checksum itself is error free because of

its tiny computation time compared with the compression time.

3.2.4 Formulation of SDC Detection Evaluation in SZ

As mentioned previously, SZ has four stages in the whole course of compression,

and we mainly focus on the single-data-point SDC error (either computation error or mem-

ory error) happening at each stage, without loss of generality. In addition, we mainly focus

on the dominant data structures (i.e., all the data structures taking linear space of the

43

number of data points N) that take the majority of memory footprint in SZ because they

are the major objects affected by SDCs if any. The rest parts (called negligible space in the

following text) could be considered error free. Which parts taking negligible space will be

discussed later in this chapter.

The objective of our work is to detect and correct both computational errors

and memory errors in each stage of SZ compression as much as possible. There are three

important metrics to evaluate our designed SDC resilient lossy compressor, as listed below.

• SDC detection/correction ability. What kinds of SDCs could be detected or corrected?

What is the accuracy and coverage rate of SDC error detection?

• Computational Overhead. It is defined as the ratio of the extra computation time to

the total original execution time in an error-free situation.

• Impact to Compression Result. Whether the SDC resilient lossy compressor can still

respect the user-specified error bound for the decompressed data? What is the com-

pression overhead: i.e, how much the compression ratio would be degraded under the

SDC resilient compressor compared with the original compressor?

All the three evaluation metrics can be used to all lossy compressors, which is the

first resilience formulation in the context of lossy compression, to the best of our knowledge.

3.3 Resilience Analysis of SZ 2.1

In this section, we analyze the resilience (SDC detection/correction ability and

impact) of SZ 2.1 based on its principle.

44

1.

2.

3.

4.

5.

6.

7.

8.

9.

/* Double-checking the

decompressed data to

guarantee error-controls */

/* compression by analysis of

IEEE 754 binary format */

/* Computing the quantization bin

based on the predicted value and

user-required error bound*/

b
in

_
m

ax

P
re

d
ic

ta
b

le
 i

n
te

rv
al

s

Already processed data points

Current data point

Data index

D
at

a
v

al
u

e

A

B
Neighbor points

C

A

B

A

Original Raw data pionts

Predicted data value

Safe zone (A)

Unsafe zone (B)Q
u

an
t.

 b
in

(a) Key code segment of SZ compression (b) Safe zone vs. unsafe zone for computation error

b
in

_
m

ax

Unsafe zone (C)

for (each data point in a block) {

10.

11. }

Perform unpredictable data compression;

Perform unpredictable data compression;

Figure 3.1: Analysis of fault tolerance ability for SZ with computation error

3.3.1 SDC Resiliency – Computation error

We analyze SZ’s natural resilience based on when/where the computation error

could happen, including calculation of regression coefficients, selecting bestfit predictor

by sampling method, and data prediction and calculation of decompressed data, huffman

encoding and lossless compression. We call the first two stages ‘prediction preparation’.

SDC resilience in the prediction preparation

A computation error in prediction preparation stage may only lower compression

ratio to a certain extent but it would not affect the correctness of decompressed data

(i.e., still strictly respecting error bound). That is, the decompressed data is still the

golden result in spite of the computation error in prediction preparation. In fact, although

the computation error may lead to inaccurate regression coefficients or incorrect bestfit

predictor selection, exactly the same coefficients/selection will be used for both compression

and decompression. The compression ratio could be affected because the data prediction

may be less accurate due to the inaccurate coefficients or incorrect predictor selection.

45

SDC Resilience in the data prediction and calculation of decompressed data

Data prediction is the most critical step in SZ. In order to guarantee the error

bound, the neighboring data values used to predict each data point during the compression

have to be exactly the same values to be used during the decompression. That is, SZ

needs to obtain the decompressed data values during compression. We demonstrate the key

compression procedure in Figure 3.1 (a), which is conducted in a loop of scanning all data

blocks. It involves 5 key steps.

1. Calculate predicted value (line 2).

2. Compute the difference between the real value and the predicted value (line 3).

3. Calculate error quantization bins (line 4).

4. Calculate the decompressed data (line 6) which will be used to predict the following

data points in compression.

5. Double-check the correctness of the compression based on the given error bound

against possible machine epsilon error (line 7-8): specifically, the decompressed value

would be reconstructed based on the quantization bin and compared with the true

value.

In the following, we analyze the fault tolerance ability of the key procedure of

compression upon a computation error occurring in the code segment presented in Figure

3.1 (a), based on five possible cases. We note that the necessary condition to obtain correct

decompressed output is that a correct decompressed value must be calculated (type-1) or

46

an unpredictable data handling is called (type-2) during compression; and the same data

should be reconstructed during decompression (type-3), which will be used later.

Case 1 - a computation error happens to line 2. In this case, we need to take into

account two possible situations in terms of the deviation of the predicted value affected by

the error.

• Situation 1: the predicted value is changed by the error significantly such that the

quantization bin calculated later on falls outside the maximum quantization range

(i.e., bin < bin max does not hold). In this situation (zone A in Figure 3.1 (b)), the

decompressed data will still respect the error bound because of the type-2 behavior.

• Situation 2: the impact of the SDC error on the predicted value is relatively small

such that the quantization bin is within the maximum quantization range (i.e., bin

< bin max still holds). This may cause a significant error to the decompressed data

(zone B, C in Figure 3.1 (b)) because of violation of type-3 behavior. The reason

is described as follows. On the one hand, the double-checking step (line 7) cannot

detect such an error because it would decompress the data point based on the “wrong”

predicted value such that the reconstructed value will still respect the error bound. On

the other hand, it is unlikely that such an SDC error would happen again during the

decompression, so that SZ would get a different predicted value for the current data

point in the course of decompression and thus a wrong decompressed value on this data

point (violation of type-3 behavior). What is even worse is that this decompressed

value would also be used to predict other data points in the decompression, such that

the errors would be propagated throughout the whole dataset.

47

Case 2 - A computation error happens to line 3 or 4. These two lines are naturally

resilient due to the type-2 behavior. The unpredicatable data compression is always called

(line 10 for zone A and line 8 for zone B), no matter how much the calculated quantization

bin deviates (zone B or zone A),

Case 3 - A computation error happens to line 6. This may affect correctness of

the decompression data, which will be analyzed based on two possible situations.

• Situation 1: the decompressed data value is deviated significantly because of the SDC

such that the following double-checking (i.e., line 7-8) suggests to use unpredictable

compression here. So it is resilient because of type-2 behavior.

• Situation 2: the decompressed data value is changed slightly such that it skips the

double-checking step. In this situation, the skewed (wrong) decompressed data value

would be used in the prediction of the succeeding data points, and this would lead to

the inconsistent prediction results between the compression and decompression. Thus

it is not resilient in this situation because of violation of type-3 behavior.

Case 4 - A computation error happens to line 7. Line 7 has very good resilience

but not perfect. Obviously, if line 7 makes a false result to be true, it is resilient because of

the unpredictable data solution (type-2 behavior). If line 7 makes a true result to be false,

it is not resilient because of the impact of machine epsilon. However, in our fault tolerant

design, we do not protect this part because the likelihood of this situation is extremely

small. This situation happens only when the original real value is located right on the edge

of a quantization bin. To be more specific, a test shows only 24 out of 5123 data points

(NYX dataset, relative error bound 1E-3) will make line 7 true.

48

SDC resilience in lossless compression

We will show our solutions are able to detect SDCs that occur in lossless compres-

sion in Section 3.4.3.

All in all, in terms of the SZ lossy compression framework, the only concern regard-

ing fault tolerance during the compression procedure is on the correctness of the predicted

value (i.e., line 2 in Figure 3.1 (a)) and the correctness of data decompression during the

compression (i.e., line 6). To address this issue, we developed an efficient selective instruc-

tion duplication method, to be described in Section 3.4 in detail.

3.3.2 SDC Resilience – Memory error

Now, we analyze the resilience against the memory errors occurring in different

places, such as input data, regression coefficients and quantization bin index array, respec-

tively.

SDC resilience against memory error in inputs

Since the input data (i.e., original data) occupies the significant portion of the

memory footprint, we have to protect it against potential SDC errors. The input data is

used in the following steps: 1. computing the regression coefficients; 2. sampling and esti-

mating the compression error of both regression and Lorenzo predictor; 3. data prediction

and calculation of the difference between predicted data and original data and handling

unpredictable data. We find that: for the first two steps, similar to the analysis in Sec-

tion 3.3.1, the memory error in input data will only impact the compression ratio and keep

the correctness of decompressed data. However, step 3 must use genuine uncorrected input

49

data since that is where the compression happens. With a corrupted input in step 3, the

decompressed data will be calculated based on that corrupted value which is obviously SDC

prone.

We will leverage the above finding to reduce the overhead of checksum calcula-

tions since it discloses the fact that the corrupted values may not affect the correctness of

decompressed data in the first 2 steps (i.e., error detection/correction for those parts are

not necessary).

SDC resilience against the memory error in regression coefficients

The memory usage of regression coefficients are found to be very small compared

to the overall memory usage such that this part does not need particular protection. Each

data block will maintain at most 4 coefficients (for 3D dataset). Thus, the coefficients only

take 4
blocksize of the overall memory. For a 3D example, usually the block size is 8X8X8

which means the coefficients take only 1
128 of overall memory.

SDC resilience against the memory error in quantization bin index array

In SZ, the quantization bin index array (to be called bin array for simplicity) is

an array used to record how much the predicted value deviates from the original value for

each data point. The element in the array is a positive integer if the data is predictable;

otherwise, the element is 0, indicating that the data needs to be compressed/decompressed

by unpredictable compression method. Obviously, if the bin array is corrupted by some

memory error, the decompressed data will not be correct. So, the array is not resilient to

memory error. Also, since the prediction is a critical stage that contributes the portion of

50

the overall execution time, the likelihood of error happening during this stage is higher than

other stages, thus we have to protect the bin array in this stage. Specifically, we carry out

two different checksums on each block right after all the data inside the block are processed,

such that we are able to detect and correct the possible corrupted data by double-checking

the checksum values later on (e.g., during the Huffman encoding stage).

3.4 Error Tolerance Methodology

Our SDC resilient SZ design is done in three aspects. First, we eliminate the data

dependency between adjacent blocks; second, we use selective instruction duplication to

ensure correct computation; third, we use checksums to detect and correct corrupted values

caused by memory errors.

3.4.1 Blockwise independent design

In the following, we discuss how to eliminate the dependency between blocks, such

that any SDC error can be confined within a small block, improving the robustness.

The key difference between the original SZ and our independent-block based com-

pression is that we now treat each block of data as separately with each other. Specifically,

we apply the prediction and quantization inside each block individually and make sure

the compressed data of one block is totally independent with others’. This requires many

changes to the original SZ development. For instance, we need to record the compressed

size of each block after we finish the compression for that block. Both recording the bin

array and Huffman encoding need to be done individually per block.

51

Another significant advantage in the independent-block based compression design

is that one can perform random-access decompression efficiently by specifying a specific

region in space. To this end, we implement random-access support in our implementation,

such that the decompression speed can be improved significantly if the user just wants to

decompress a small region in the whole dataset. The corresponding experimental results will

be presented in Section 3.6. Moreover, the independent-block based compression also makes

the parallelism of SZ much easier to port on many-core architectures, such as GPU [76].

3.4.2 Fault tolerant compression

We present our SDC resilient compression method in Algorithm 3. We highlight

the lines related to our fault tolerance design in blue font. Line 3 and 4 are calculating

checksums for input data, in order to detect possible SDC errors striking the input data

later on. As we discussed in Section 3.3.2, we do not need to detect memory error in the

input data during computations for regression coefficients and compression error estimation.

We only detect whether the input data encounters memory errors before the data prediction

gets started (line 11). If a data corruption is detected (by sumin), it can be located and

recovered by the pair of checksums (i.e., sumin and isumin) applied on input data. Then, we

protect the quantization bin array against memory errors (line 24 and 35). Line 29 and 40

are designed for detecting possible SDC errors occurring in the decompression stage, to be

detailed later. For the computation errors, instruction duplication can be used. According

to our analysis in Section 3.3.1, only data prediction (line 18) and calculating decompressed

data (line 25) need to be protected by instruction duplication.

52

Algorithm 3 Soft Error Resilient SZ Compression

Input: original input data (denote by ori[]), user defined error bound (denoted by e).
Output: compressed data in byte and compressed sum of blocked decompressed data

1: for each block (block i) of the input data do
2: Compute the regression coefficients
3: Get sumin[i] on input by Equation (3.1) /*for SDC in input data*/
4: Get isumin[i] on input by Equation (3.2) /*for SDC in input data*/
5: end for
6: for each block (block i) of input data do
7: Sample and estimate Ereg and Elor
8: indicator[i]← the one with smaller error /*regression or lorenzo*/
9: end for

10: for each block (block i) of input data do
11: Do memory error detection and correction using sumin and isumin

12: if indicator[i] == regression then
13: f()← regression predictor
14: else
15: f()← lorenzo predictor
16: end if
17: for each data point, ori, in the data block do
18: pred′ ← fdup() /*fdup(): instruction duplicated f()*/
19: diff ← ori− pred′
20: q bin ← quant(diff,e) /*get quantiz. bin based on diff,e*/
21: if q bin is not in the acceptable bin range then
22: Compress ori as unpredictable
23: else
24: Calculate sumq, isumq for q bin[]
25: dcmp ← decdup(q bin, pred

′) /*decdup() is instruction duplication based ver-
sion of dec()*/

26: if |ori− dcmp| > e then
27: Compress ori as unpredictable
28: end if
29: sumdc[i]+=dcmp /*cksum for decompressed data of block i */
30: end if
31: end for
32: end for
33: Construct Huffman tree
34: for each block of q bin[] do
35: Do memory error detection and correction using sumq and isumq

36: Encode q bin[] by Huffman tree
37: end for
38: Compress encoded q bin by lossless method (Zstd)
39: Write compressed q bin and unpredictable data to byte file
40: Compress sumdc[] by lossless method (Zstd) and write to file

53

3.4.3 Fault tolerant decompression

The SDC resilient SZ decompression is presented in Algorithm 4. Line 1-9 refers

to the regular block-wise data decompression of SZ. Our resilience design starts from line

10. We constructed the checksums for each block and compressed the checksum array

(i.e., sumdc[]) by lossless compression (Zstd) during the data compression. Accordingly, we

need to decompress sumdc (line 10) before the error detection. Our idea is leveraging such

checksums of decompressed data (i.e., sumdc[]) constructed during the compression to detect

possible errors that happen during the decompression. Specifically, after performing the

data decompression for each block (line 1-9), our algorithm will calculate the corresponding

checksums for each block of decompressed data and compare the checksums to sumdc[] (line

12-13). If they are not consistent, some errors must happen during the decompression.

So, the algorithm will decompress this block by random-access decompression (line 14),

meaning the compressed bytes are reloaded. If the checksum is consistent, we know some

memory or computation error is detected (line 17). If inconsistent the second time, we can

conclude that the SDC error likely happens during the lossless compression, which will be

reported to users (line 19).

3.4.4 Avoiding round off errors in checksums

Since the input data and the decompressed data are both floating point numbers,

round off errors in the checksums may introduce inaccurate memory error corrections. To

avoid the impact of round off error, we treat the floating point numbers as unsigned 32-bit

integers and then calculate checksums based on these integers. We first describe how the

54

Algorithm 4 Soft Error Resilient SZ Decompression

Input: The SZ compressed file in byte (cmp data) and compressed sum for blocked
decompressed data (sumdc[]).
Output: Decompressed data with bounded error compared to original data.

1: Decompress cmp data by lossless compressor (Zstd)
2: for each block do
3: q bin[]← decode using Huffman tree
4: if it was compressed by Lorenzo then
5: dec data[]← Lorenzo decompression
6: else
7: dec data[]← regression decompression
8: end if
9: end for

10: Decompress sumdc[] by lossless compressor (Zstd)
11: for each block of decompressed data (block index = i) do
12: Calculate checksum (denoted sumi) for this block of dec data[]
13: if sumi 6= sumdc[i] then
14: Reexecute line 4-9 for this block /*random-access decompression*/
15: Calculate checksum (denoted sumi) for this block of dec data[]
16: if sumi = sumdc[i] then
17: Report: memory/computation error detected but corrected
18: else
19: Report: SDC in compression; Return
20: end if
21: end if
22: end for

55

checksum is performed on the 32-bit single-precision floating point data as an example and

then discuss how to extend it to 64-bit double-precision floating point values.

Given a data block of 32-bit floating point values, for each element, we put all its 32

bits in a temporary variable and treat the bits in that variable as a 64-bit unsigned integer

with the first 32 bits being flushed to 0. We then add that integer to the checksum which is

also a 64-bit unsigned integer. Finally, we get the checksum represented by a 64-bit unsigned

integer for this data block. Notice that the “checksum” here is not equal or approximate

to the real sum of the data block because it is calculated based on integer interpretation of

the bits instead of floating point. Thus, it is immune to NaN/Inf issues that happens only

to floating point numbers. Using the 64-bit unsigned integer representation, we can have

the checksum hold up to (232 + 1) 32-bit unsigned integers without overflow because the

maximum 64-bit unsigned integer (264 − 1) divided by maximum 32-bit unsigned integer

(232− 1) is equal to (232 + 1). That is fairly enough to totally avoid the overflow since each

data block in SZ has only 1000 data points (such as 10×10×10 block) in general. With

all these techniques, we can provide bit-level error detection and correction. The main

difference from Demmel’s work [26] is that we are actually doing integer-based summation

instead of the sum based on floating point numbers.

To extend to 64-bit double precision numbers, we just need to treat each double

value as two 32-bit unsigned integers. So it is reduced to the above case.

56

3.4.5 Impact to compression ratio without protecting regression and sam-

pling

As mentioned previously, we do not protect the computation in regression and

sampling in that the errors during this period would not affect the correctness of decom-

pressed data and just have tiny impact to the compression ratios. In what follows, we derive

theoretically the upper bound of the compression ratio decrease affected by the computa-

tion errors happening during the regression or sampling. We denote the compression ratio

of SZ in error free run by R0; the number of data blocks by n. For simplicity, we assume

that the compression ratio for each block is identical with each other. In the worst case,

the error in regression or sampling will at most reduce the compression ratio to be 1, which

means that it does not reduce the size of that block of data. Consequently, we can derive

the maximum compression ratio decrease as CR decrease = (R0−1
R0+n−1)×100%. Based on the

above equation, the upper bound of compression ratio decrease depends on the error free

compression ratio and the block size. For example, if the block size is set to 6X6X6 and

the compression ratio is 10, and if the input data is around 864 MB, then there will be 106

data blocks. The compression ratio decrease would be bounded within 10−1
10−1+106

< 0.1%,

which is negligible to the overall compression ratios.

3.5 Discussion for SZ Time Based Compression

The above resilience analysis only applies to space based compression of SZ. To

build an error resilient time based compression of SZ, we need to protect the particle align-

ment operations which we introduced in Section 2.6 since particle alignment is one of the

57

dominant part in time based compression. Noticing sorting is the most time consuming op-

erations of particle alignment algorithm, we reduce the resilience problem to be providing

an error resilient sorting algorithm. Though the radix sort we used in Algorithm 1 has no

efficient soft error resilience, we can use introsort since it has much better error resilience

and uses much less memory space. We present how to achieve efficient fault tolerance for

introsort as follows.

3.5.1 Introsort

Introsort is a hybrid sorting algorithm built upon quicksort and heapsort; introsort

achieves the best average performance of quicksort (O(n log n)) but avoids the poor per-

formance of quicksort in the worst case (O(n2)) by switching to heapsort (a guaranteed

O(n log n)). We review these two building blocks before presenting the introsort algorithm.

Quicksort. We use the basic quicksort algorithm presented by Lomuto [17] in

our discussion for simplicity. It should be noted that our analysis is valid for quicksort

variations [11, 18] as well; improvements to aspects such as pivot selection do not impact

our analysis. Quicksort is a divide and conquer algorithm that sorts a given n-element

array, a[]. Quicksort chooses the first element of the given array as the pivot, around which

the array is partitioned.

Quicksort chooses a[0] as the pivot to partition the original array into two sub-

arrays, [a[1], a[2], a[3], ..., a[j]], with each element strictly less than a[0], and [a[j +

1], a[j + 2], a[j + 3], ..., a[n − 1]], with each element no less than a[0]. The pivot a[0] is

then swapped to a medial position between the two sub-arrays. These two steps are then

recursively applied to the two sub-arrays, until each sub-array contains at most one element.

58

After each partitioning, the pivot rests in what will be its final position in the sorted array,

and thus it remains untouched in later recursive sorting.

Heapsort. Heapsort is built on the idea of a max-heap: a complete binary tree

where the value of each non-leaf node is greater than or equal to the value of any first-

generation child. Heapsort represents a max-heap as an array, with the root as the first

element of the array; the first element is therefore maximal.

Heapsort consists of two stages: max-heap creation and sorting using the max-

heap. In the first stage, the given n-element array a[] is adjusted to form a max-heap.

The second stage is an iterative process of excluding the largest element and adjusting

the max-heap for the remaining elements. In the first iteration, the largest value, a[0], is

excluded by swapping it with a[n− 1], and then adjusting the first n− 1 elements to form

a new max-heap; the largest element is then found at the end of the array. The second

iteration repeats the process on the (n-1)-element max-heap formed from the remaining

(n-1) elements of the array, swapping out the second largest value a[0] with a[n − 2] and

adjusting a new (n-2)-element max-heap, and so on for the remaining iterations. The array

is sorted in ascending order at the end of this process.

Introsort. The GNU Standard C++ Library is internationally recognized, and

introsort is the GNU C++ default sorting routine. We base our discussion and implemen-

tation of introsort on the version found in this library. Our fault tolerant introsort is thus

readily available to a large user base.

GNU C++ users can invoke introsort by calling std::sort. Algorithm 5 shows

the code skeleton of std::sort and the first major phase, introsort loop(). While in

59

Algorithm 5 std::sort(a[], n)

1: if n ≤ 1 then return
2: end if
3: introsort loop(a[], 2 log n)
4: insertion sort(a[], n)
5: return

Function: introsort loop(a[], depth limit):
while a[].current partition.size > 16 do

if depth limit = 0 then
heap sort(a[].current partition)
return

end if
depth limit ← depth limit - 1
P ← pivot(a[].current partition)
[L[], R[]] ← partition(a[].current partition, P)
introsort loop(R[], depth limit)
a[].current partition ← L[]

end while

introsort loop(), quicksort is used to recursively partition the given array either until all

partitions are 16 elements or less, or until the recursion depth is deeper than the pre-defined

depth limit of 2 log n, where n is the size of the array. When the recursive partitioning stops

due to hitting the depth limit, introsort loop() uses heapsort to sort the remaining par-

titions with more than 16 elements, avoiding the O(n2) worst-case complexity of quicksort.

Once the first phase completes, all partitions with 16 elements or less remain un-

sorted. These small, unsorted partitions are called leaf partitions. After introsort loop()

completes, the second major phase, insertion sort(), uses an insertion sort on the entire

array; the leaf partitions are of an optimal size for insertion sort to perform well, and a

completely-sorted array is returned at the end.

Figure 3.2 illustrates both phases of the introsort sorting process with a recursion

depth limit of 4.

60

: : :

recursion 0
recursion 1
recursion 2
recursion 3
recursion 4

recursion depth limit = 4

heapsort
> 16

phase 1

phase 2

legends: leaf partition (size ≤ 16) sorted pivot

Figure 3.2: Example introsort execution; phase 1 comprises quicksort and heapsort; phase
2 executes insertion sort.

3.5.2 Comparison Errors

Paired comparison is the operation of comparing two values, resulting in a true or

false bool value output; it is the most common basic computation operation of introsort.

A comparison error occurs when soft errors corrupt the result of a comparison instruction

either by altering the instruction operation code (opcode) or the register operands [8]. For

example, a comparison instruction a < b may return an incorrect result if the operation is

changed to another operation, such as a + b; it may also return an incorrect result if the

register file storing the real result of a < b is corrupted.

Most algorithm-based fault tolerance (ABFT) studies target computation errors

only related to the key data structures of the algorithm under consideration [82,83], ignoring

the computation errors involving control-flow data. For example, the ABFT strategy for

matrix multiplication algorithms focuses on the computations errors in the matrix multipli-

cation only, without considering computation errors in the calculation of iteration counts.

For our work, we likewise focus on computation errors (comparison errors in the context of

sorting) arising from the comparisons of elements in the given array.

61

3.5.3 Efficient Error Resilience for Introsort

E-sorted-merge. We name the following procedure as e-sorted-merge.

1. Scan the output and record inversion pair locations;

2. If no such location is found, return; else go to step 3;

3. Merge the sorted segments partitioned by the above locations recursively until a single

sorted array is generated.

The efficient error resilient introsort is outlined as follows:

• Apply TMR-protected e-sorted-merge to the output of heapsort in phase 1.

• Apply TMR (Triple Modular Redundancy) to insertion sort in phase 2.

All errors occurring within quicksort in phase 1 are left unattended and are corrected in

phase 2 by a TMR-protected insertion sort. This strategy avoids the unnecessary overhead

of TMR-protection for quicksort and heapsort. This algorithm is proved to have very low

overhead in both theoretical analysis and empirical analysis. The detail can be found in the

paper [47].

3.6 Experimental Evaluation

3.6.1 Experimental Setup

In this subsection, we describe how we set the experiments in our evaluation,

including applications, error injections, and experimental environment.

62

Table 3.1: Basic dataset information

Dataset # Fields Dimensions Science

NYX 6 512X512X512 Cosmology

Hurricane 13 100X500X500 Climate

SCALE-LETKF (SL) 6 98X1200X1200 Weather

NASA: Pluto 1 1028X1024 Aerospace

Applications

We evaluate our SDC resilient error-bounded SZ compressor on three real scientific

datasets: NYX, Hurricane, and SCALE-LETKF (SL for short). We also evaluate our fault

tolerant compressor using 20 Pluto images provided by Plantary Data System (PDS) [7].

Those images were taken by New Horizons space probe [6] in aerospace which is an error-

prone environment because of potential impact of cosmic rays. The description to these

datasets is presented in Table 3.1. For the Pluto image data, we perform the error-bounded

lossy compression such that the visual quality can be maintained very well, as illustrated

in Figure 3.3.

(a) Original image (b) SZ decompressed image

Figure 3.3: Visualization of Original Data vs. Decompressed Data (Pluto photo taken by
New Horizons [6]; SZ compression using Value-range based error bound: 1E-3)

63

Error injections with two modes

Evaluation mode A - source-code level error injection. Like most ABFT work

[23, 48], we inject errors at the source code level and only inject errors to the main data

structures. Specifically, as for the memory errors in input data and quantization bin array,

we randomly choose an index from the array and randomly flip a bit of the selected data

value during the compression. Thus, we simulate memory error randomness both in time

and location. We inject them after the checksums are calculated on input data. To simulate

the computation errors when calculating regression coefficients, sampling and estimating

compression error of Lorenzo and regression, we randomly select a data point in a random

block and change its value by injecting a random bitflip error. We exclude the evaluation

of computation errors in prediction as it is already protected by instruction redundancy.

Evaluation mode B - system level error injection. Besides the evaluation mode

A (memory errors happens only to the data we protected), we also follow a Checkpoint-

based Fault Injection (CFI) [12] model to inject random error(s) to the whole memory

consumed during the compression. We adopt a system-level checkpointing toolkit - Berkeley

Lab Checkpoint/Restart (BLCR) [2], which can dump the whole memory of a running

process to disk as a checkpoint and then restart its execution from that checkpoint. In our

experiment, we select a random time stamp during the whole compression period. Then,

we set a checkpoint by saving the whole memory at that time stamp using BLCR and kill

the process. We then inject a random bitflip error in the checkpoint file and restart the

process by the bit-flipped checkpoint. We inject 1, 2 or 3 errors and perform 500 runs per

test for both fault tolerant SZ and original unprotected SZ.

64

Experimental Environment

We run experiments on a supercomputer [1]. Inside each computing node are

two Intel Xeon E5-2695 v4 processors totalling 36 cores. The POSIX I/O [81] with mode,

file-per-process, is used for parallel data reading and writing. We implement our solution

in SZ’s source code and call it ftrsz (or FT-SZ) in the following text. We alter the order

of value additions in the duplicated computation of data prediction, which can effectively

prevent the compiler from overlooking this operation, and the execution time overhead can

thus be measured correctly.

3.6.2 Evaluation of Independent-block Compression

We first evaluate our designed independent-block based SZ compression (a.k.a.,

random-access based compression).

Exploration of The Best Block Size

It is important to determine an appropriate block size in our independent-block

based compression framework. We determine the best block size by a comprehensive analysis

in terms of rate-distortion with masses of experiments using different block sizes, as the

optimal block size is hard to find for different datasets by theory.

We evaluate the compression results using the block size of 4x4x4 through 20x20x20.

We exemplify the rate-distortion with cosmological NYX simulation data (velocity x field)

and climate hurricane simulation data (TCf48 field) with five different block sizes in Fig-

ure 3.4. As shown in the figure, small block sizes (such as 4x4x4 and 6x6x6) may lead to

high PSNR in the cases with low bit-rates (such as ≤2); large block sizes (such as 8x8x8 ∼

65

12x12x12) would be clearly better than the small block sizes on high bit-rates. The reason

is explained as follows. For the over-small block sizes such as 4x4x4, the overhead of stor-

ing the regression-coefficients appears relatively high compared to the overall compressed

size. For the over-large block sizes such as 20x20x20, the linear-regression based predictor

cannot get a good fitting for the data. Based on our experiments with multiple simulation

data, we set the block size to 10x10x10 in our implementation because it has much better

compression ratios (i.e., low bit-rate) in the hard-to-compress cases than other block sizes,

while it exhibits comparative compression ratios with other block sizes in the cases with

relatively low bit-rates.

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7

P
S

N
R

Bit Rate

blocksize_4
blocksize_6
blocksize_8

blocksize_10
blocksize_12

(a) NYX velocity x

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9

P
S

N
R

Bit Rate

blocksize_4
blocksize_6
blocksize_8

blocksize_10
blocksize_12

(b) Hurricane TCf48

Figure 3.4: Rate distortion with different block sizes

Evaluating independent-block decompression

The biggest advantage of the independent-block based implementation is very fast

decompression speed if the users just want to extract a small sub-block of data. Moreover, as

we discussed in Section 3.4.3, this design can also help correct the errors very quickly upon a

detection of problematic blocks by checksums. In Figure 3.5, we present the decompression

66

Figure 3.5: Efficiency of random access decompression

Table 3.2: Compression ratio degradation of random-access SZ (rsz) and fault-tolerant
random-access SZ (ftrsz)

error bound: 1E-3 1E-4 1E-5 1E-6 1E-3 1E-4 1E-5 1E-6

NYX Hurricane

sz: 17.0 7.7 4.6 3.1 8.4 5.1 3.1 2.4

rsz decrease: 8.7% 3.7% 3.1% 3.2% 8.5% 4.7% 1.2% 1.5%

ftrsz decrease: 10.7% 4.7% 3.7% 3.6% 9.3% 5.2% 1.6% 1.7%

SCALE-LETKF (SL) Pluto

sz: 19.1 8.7 5.2 3.7 7.1 4.0 3.4 3.2

rsz decrease: 23.6% 21.3% 13.5% 9.1% 4.2% 0.3% 0.1% 0%

ftrsz decrease: 24.9% 21.9% 13.9% 9.4% 5.6% 0.8% 0.1% 0%

times with different data sizes compared to the whole dataset. The x-axis indicates the

ratio of the decompressed data size to the whole data size. In the figure, we observe that

the decompression time decreases approximately linearly with decreasing data size in the

decompression, which confirms the high efficiency of random-access decompression.

3.6.3 Error free experimental results

One key indicator is how much overhead (including compression ratio overhead and

execution time overhead) would be introduced by the SDC detection in the compressor.

67

Table 3.3: Percentage of runs whose maximum absolute error is within error bounds in sz
and ftrsz

injecting errors in input data

Successful runs with
correct decompressed data

error bounds: 1E-3 1E-4 1E-5 1E-6

sz 60% 57% 49% 48%

ftrsz 100% 100% 100% 100%

injecting errors in quantization bin array

Successful runs with
correct decompressed data

Normal runs without
segmentation faults

error bounds: 1E-3 1E-4 1E-5 1E-6 1E-3 1E-4 1E-5 1E-6

sz 3% 1% 1% 0% 34% 34% 49% 54%

ftrsz 100% 100% 100% 100% 100% 100% 100% 100%

Compression ratio overhead

Since we store the checksum sumdc[] during the compression in order to verify the

correctness of the decompressed data, the compression ratio could be degraded more or less.

Table 3.2 presents the compression ratios of the original SZ (denoted as sz) and the relative

decreases of compression ratios under the independent-block based SZ (or random-based SZ,

abbreviated as rsz) and fault-tolerant random-access SZ (denoted as ftrsz), respectively. It is

observed that our proposed solution incurs only 0∼10.7% degradation on compression ratio

for NYX, Hurricane and Pluto data, and the degradation level decreases with decreasing

error bounds. The SL dataset exhibits 9.4∼24.9% compression ratio degradation, which

mainly comes from the overhead introduced by the random-access design.

Execution time overhead

We evaluate the time overheads introduced by our fault tolerance codes added to

SZ when there are no errors. We show the results in both compression and decompression

68

1E-3 1E-4 1E-5 1E-6
Error bounds

0

10

20

30

40

50

C
o
m

p
re

ss
io

n
 t

im
e
 o

v
e
rh

e
a
d
s

(%
)

NYX

Hurricane

SL

Pluto

(a) Compression

1E-3 1E-4 1E-5 1E-6
Error bounds

0

10

20

30

40

50

D
e
o
m

p
re

ss
io

n
 t

im
e
 o

v
e
rh

e
a
d
s

(%
)

NYX

Hurricane

SL

Pluto

(b) Decompression

Figure 3.6: Compression time and decompression time overheads. Dash lines are random
access SZ; solid lines are fault tolerant random access SZ.

in Figure 3.6. We can see from Figure 3.6 that in most cases, the rsz and ftrsz incur about

5∼20% overheads in compression time and 2∼30% overheads in decompression time. Such

time overhead, actually, are negligible compared to the total I/O time on a PFS because of

potential I/O bottleneck, which will be demonstrated in the end of this section.

3.6.4 Error injected experimental results

Resilience against memory errors in input and quantization bin array (evalua-

tion mode A)

We first inject memory errors into the input array and bin array to verify that our

proposed solution can ensure the decompressed data within the user defined error bounds.

In this experiment, we observe that various fields exhibit similar results. As such,

we present the results based on the field of dark matter density in NYX dataset as an

example. For every error bound, we repeat running sz and ftrsz for 100 times, each with

randomly injected memory errors in input and quantization bin array.

69

As shown in Table 3.3, our proposed fault tolerance solution can always yield cor-

rect decompressed results when the memory errors are injected in input data or quantization

bin array. The 100% correctness of the decompressed data under ftrsz also means that our

solution is immune to the round-off errors. In comparison, for the original SZ without our

techniques, we can see that only 48∼60% runs can yield error bounded decompressed data

when the input data experiences memory errors. As the memory error corrupts a value

in the bin array, the situation gets worse because some of the memory errors may cause

core-dump segmentation fault, which happens in the case that the corrupted values turn

out to be a fresh value such that it is beyond the range of the constructed Huffman tree. As

shown in the lower part of Table 3.3, under the original SZ compression, only 34∼54% runs

can complete without segmentation faults; and only 0-3% runs can complete with correct

decompressed data.

As for the extra time overheads introduced by the detection/correction of errors

in our fault tolerance method, we conduct error injected experiments for all three datasets.

The extra overheads compared to ftrsz in an error-free case are all less than 1% for any

error bound. This is because the case with injected errors only incurs one more block of

checksum calculation, which is negligible to the overall execution time.

Resilience against memory errors happening anywhere (evaluation mode B)

Figure 3.7 presents the experimental results of our solution (ftrsz) against the

original SZ in the evaluation mode B (i.e., by injecting the errors into the whole memory

during the compression). It is observed that our solution can improve the percentage of

successful non-crash runs by 10%∼20%, and improve the percentage of the runs with correct

70

decompression results by 30%∼170%. Our solution can substantially reduce the crash runs

because we protect the bin arrays, which may run into core-dump segmentation faults when

being injected errors, as shown in Table 3.3. In addition, as shown in Figure 3.7 (b), when

injecting one and two memory errors respectively, about 92% of running cases lead to correct

decompressed data (with guaranteed error bound) under our solution, while the original SZ

suffers very low percentage (71.2% and 47%, respectively). For our solution, the 8% failed

cases with incorrect decompression data are likely due to the error injection before the

checksum execution at the beginning period, which means the checksum is calculated based

on corrupted input data. Thus, it will not be able to detect future memory errors.

0%

20%

40%

60%

80%

100%

1 error 2 errors 3 errorsP
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
 r

u
n

s
 w

it
h

o
u

t
c
ra

s
h

e
s

errors injected during compression

Original SZ
Our Solution (ftrsz)

(a) Runs without crashes

0%

20%

40%

60%

80%

100%

1 error 2 errors 3 errors

P
e

rc
e

n
ta

g
e

 o
f

ru
n

s
 w

it
h

c
o

rr
e

c
t

d
e

c
o

m
p

re
s
s
e

d
 d

a
ta

errors injected during compression

Original SZ
Our Solution (ftrsz)

(b) Runs without SDC

Figure 3.7: Experimental results using evaluation mode B

Resilience against computation errors during compression

As discussed in Section 3.3.1, the computations of regression coefficients, sampling

and estimating compression error are error resilient though computation errors will impact

the compression ratio. Figure 3.8 shows our experimental results about the impact to com-

pression ratios. Computation errors are randomly injected and each experiment is repeated

71

-2.5%

-2%

-1.5%

-1%

-0.5%

0%

 0 2 4 6 8 10

C
o

m
p

re
s
s
io

n
 R

a
ti
o

D
e

c
re

a
s
e

Number of Errors

Error Bound = 1E-3
Error Bound = 1E-6

Figure 3.8: Compression ratio decrease with cmput. errors

50 times. The compression ratio decrease is calculated by taking the lowest compression

ratio among 50 trials. As can been seen, the compression ratio decrease is within 2% for up

to 10 computation errors injected under the error bound of 1E-6 or 1E-3. The compression

ratios in an error-free case are 4.8023 and 1.8112 for these two error bounds, respectively.

Resilience against errors injected during decompression

For each run of decompression, we injected one computation error to a random

block and noted all the errors can be 100% detected by checksum and corrected by re-

executing decompression for that block. Again, the extra overheads compared to fault

tolerant random access SZ in error-free cases are all less than 1% for all datasets in all error

bounds.

72

 0
 100
 200
 300
 400
 500
 600
 700
 800

SZ FT-SZ
SZ FT-SZ

SZ FT-SZ
SZ FT-SZ

E
la

ps
ed

 T
im

e(
s)

Number of Cores

compression time
data writing time

20481024512256

7.3%

(a) Data Dumping

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

SZ FT-SZ
SZ FT-SZ

SZ FT-SZ
SZ FT-SZ

E
la

ps
ed

 T
im

e(
s)

Number of Cores

decompression time
data reading time

20481024512256

6.2%

(b) Data Loading

Figure 3.9: Performance of data dumping/loading (sz vs. ftrsz)

3.6.5 Parallel experimental results

We evaluate the I/O performance with breakdown of the execution times (compres-

sion/decompression time + data writing/reading time) by processing NYX dataset under

the error bound of 1E-4 in parallel on the PFS of the cluster. The experiment follows a

weak-scaling style: i.e., we run the tests with different execution scales (256∼2,048 cores), in

which each rank kept the same data size (3GB) to process. Results are shown in Figure 3.9.

As for the total data dumping time, it is observed that our error-resilient SZ incurs only

7.3% overhead at the scale of 2,048 cores. Our error-resilient SZ has only 6.2% overhead

on the data dumping performance when using 2,048 cores to read and decompress data.

The key reason for the very limited overall overhead is that the total I/O performance is

dominated by compression ratio because of the I/O bottleneck of the PFS.

3.7 Related Work

We discuss the related work in two facets: the fault tolerance ability of existing

lossy compressors and the existing solutions to protect other applications against SDCs.

73

So far, there have been many lossy compressors [24,29,42,50,53,55,67,73–75] devel-

oped to significantly reduce the large volume of data or checkpoint file produced by scientific

simulations. All the lossy compressors, basically, could be classified into two categories -

transform-based compression [53,67] and prediction-based compression [29,50,55,73]. None

of the transform-based compressors are immune to the SDCs. In fact, if the data in the

transformed domain are corrupted because of memory or computation error, multiple data

values in the original data domain could be affected. As for the prediction-based model, the

SDC issue could be also fatal to the reconstruction of data. In SZ, for example, if the data

prediction on some data point is corrupted silently during the compression, the predicted

value on that data point would be inconsistent during the compression and decompression,

leading to uncontrolled decompression errors.

Much work has been done to fight against the memory error and computation er-

ror, respectively. From the perspective of hardware, error correcting code (ECC) has been

implemented to detect and correct bit flips in memory. ECC can correct single-bit flipped

memory errors but cannot detect or correct any computation errors. Hardware redundancy

adopts redundant hardware to execute the same application with the same input and com-

pare the outputs from the different hardwares. Software redundancy means running the

same program on the single hardware multiple times and compare the outputs from dif-

ferent runs. Thus, double modular redundancy (DMR) is needed for error detection with

100% overhead and triple modular redundancy (TMR) is needed for error correction with

200% overhead.

74

Such high overhead of modular redundancy to handle SDCs has motivated algo-

rithm based fault tolerance (ABFT) [35], which aims to exploit the special characteristics

of an application or algorithm to detect and correct soft errors. Despite the fact that ABFT

requires a significant algorithm integration effort, the tiny overhead of ABFT makes it very

attractive. Most of the existing ABFT methods, however, focus on popular arithmetic al-

gorithms such as matrix operations [35]. To the best of our knowledge, no ABFT work

has been done for lossy compression algorithms, which is a significant gap in the context of

scientific data compression.

3.8 Summary

In this chapter, we propose a novel SDC resilient strategy for the SZ lossy com-

pressor. We develop an independent-block based compression model for SZ to improve the

robustness. We analyze each subroutine of the SZ framework elaborately and then design a

series of fault tolerance strategies for the fragile code segments. We perform the evaluation

by processing three well-known scientific datasets on a cluster with up to 2048 cores. Our

solution can control the time overhead to about 10%, with a degradation of compression

ratio limited within about 5%. When injecting one and two SDC errors respectively during

the compression, our solution can have about 92% running cases get correct decompressed

data (with guaranteed error bound), which is significantly higher than that of the original

SZ (71.2% & 47%, respectively).

75

Chapter 4

Towards End-to-end SDC

Detection for HPC Applications

Equipped with Lossy Compression

In this chapter, we present our application-scope soft error detection schemes

for scientific simulations equipped with lossy compression. Different from the previous

algorithm-scope scheme for lossy compression in chapter 3, application-scope scheme covers

all soft errors happening from the start of the scientific simulation to the end. Thus, it is

also called end-to-end detection.

4.1 Introduction

Science data compression techniques have been widely demanded and used by to-

day’s large-scale scientific HPC applications, as these applications are producing extremely

76

large volume of data. Lossless compressors are not suitable for compressing science data in

that the science data are mainly composed of floating-point values which involve disordered

ending mantissa bits in their binary representations. Error-bounded lossy compression has

been studied for years, since not only can it significantly reduce the data size but it can also

strictly control the data distortion based on user-specified error bound. Nowadays, error-

bounded lossy compressors have been broadly verified as very helpful to saving storage

space and improving I/O performance for many production-level applications across differ-

ent science domains, such as cosmology simulations [34, 60], MD simulations [4], climate

simulations [25,39], and quantum computing simulations [38].

Since the large-scale HPC applications equipped with the error-bounded lossy

compressors need to deal with vast amount of data through various devices (CPU, cache,

memory, NIC, I/O and storage), silent data corruptions (SDC) are unavoidable. According

to the cosmologists, HACC cosmology simulations [34] may produce dozens of petabytes of

data when simulating 1 trillion particles for hundreds of time steps (or snapshots). Quan-

tum computing simulation [85] may produce up to 32 exabytes of data which need to be

compressed and decompressed during the simulation because of inadequate memory space

(e.g., today’s fastest supercomputer - ORNL Summit [85] - has only 2.8 PB of memory

capacity in total). In fact, SDCs would happen more frequently if aggressive power saving

techniques are used [71,83,84].

Generic Data-analytic Based Fault Tolerance methods (DBFT) [16, 27, 28] have

been exploited for years to protect the large-scale HPC applications against SDCs. Com-

pared with DBFT, other SDC detection solutions suffer from many constraints, significantly

77

limiting their usability in practice. Algorithm-Based Fault Tolerance (ABFT) [35], for ex-

ample, have been extensively studied for adding fault tolerance in multiprocessor architec-

tures. However, each ABFT approach is relying on the inner mechanism of some numerical

algorithm such that it can only be used on some specific algorithm. Replica Based Fault

Tolerance (RBFT) is another SDC detection solution, which creates the replica processes

to detect/correct possible errors. RedMPI [31] is a typical example; it leverages “replica”

MPI tasks and performs online message verification intrinsic to existing MPI communica-

tion. However, RBFT suffers from significant redundancy of resources (2× for detection

and 3× for correction). Many recent studies [22, 28] have demonstrated that DBFT can

effectively detect the SDCs for HPC simulations with very limited time overhead and no

resource redundancy, making it a very appealing solution to users in practice.

None of the existing DBFTs support/consider the HPC applications equipped with

error-bounded lossy compressors, while the data processing time (including data compres-

sion and writing) is non-negligible compared with the simulation time. Figure 4.1 presents

the time breakdown per time step when running the FLASH-Sedov simulation [21] on Be-

bop [1] in terms of weak-scaling (problem size 64× 64× 64 per core) with the compression

ratio of about 7:1 under SZ. It is observed that the simulation time increases little with the

exponentially increasing problem sizes (from totally 64×64×64 to 512×512×512), meaning

a fairly good scalability. By comparison, the compression time also increases little, in that

each process is compressing the fixed amount of data (64×64×64). We can clearly observe

that the data writing time increases significantly with larger problem sizes (especially when

the execution scale is larger than 4096 cores) because of the limited number of I/O nodes

78

on Bebop. In this experiment, each case is conducted 10 times, and we observe that the

I/O time is fairly unstable, which is because all the jobs are sharing the I/O nodes for

data reading/writing. In fact, the compression speed could be fairly slow especially when

the error bound is relatively small (as low as only 10MB/s, as demonstrated in [65]). Our

prior work [51] also showed that the compression time could be about 5× slower than the

data writing time on the ANL Theta [70] - a supercomputer ranking as 34th in the recent

top500 list. All in all, protecting the data processing phase (including both compression

and writing) is critical to guaranteeing the correctness of the snapshot results outputted in

the course of simulation.

 0

 0.5

 1

 1.5

 2

 2.5

1 8 64 512

T
im

e
 c

o
s
t

p
e

r
it
e

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of cores

Simulation Time
Compression Time

Writing Time

(a) Overall Time Breakdown

 0

 0.5

 1

 1.5

 2

 2.5

1 8 32 64 512
1024

2048
4096

T
im

e
 c

o
s
t

p
e

r
it
e

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of cores

Compression Time
Writing Time

(b) Compression vs. IO

Figure 4.1: Analysis of time cost in the parallel simulation - FLASH (Sedov)

Developing a lossy-compression supported DBFT is a new yet non-trivial research

problem. First, many different DBFT approaches [16, 27, 28] have been proposed and each

has its own pros and cons, with respect to detection ability, execution overhead, memory

cost, etc. Second, HPC applications may store the big data in different ways, so that

the memory layout and storage performance could differ a lot with different applications.

For example, the applications may write the data either synchronously or asynchronously.

79

Under the synchronous writing mode, the original data would be kept unchanged in memory

during the whole data writing procedure, such that the regular DBFT can be applied on the

original data. However, under the asynchronous writing mode, the data could be refreshed

by the simulation immediately as the data writing gets started. In this case, DBFT can

only be applied on the lossy compressed data because of missing original simulation data.

Third, the science data could be compressed by different error-bounded lossy compressors

[29, 53, 73], which may have different characteristics on compression errors [15, 54]. This

brings a grand challenge to detect SDCs occurring during the compression procedure.

In this work, we exploit efficient SDC detection methods to protect the entire

duration related to simulation data (from data producing through data saving at each time

step) for HPC applications equipped with lossy compression. The contribution is below.

• We develop a series of DBFT-based end-to-end SDC detection methods for HPC

applications equipped with error-bounded lossy compressors. Our study is based on

the state-of-the-art generic SDC detector - Adaptive Impact-driven Detector (AID)

[28] because it exhibits an excellent detection ability and very limited time/resource

overhead in the literature [40,69,79].

• We analyze the pros and cons for our proposed DBFT-based end-to-end SDC de-

tectors. We also identify the most appropriate solution in different situations with

various I/O modes, different data dumping periods, and I/O costs.

• We thoroughly assess our proposed SDC detection methods using four well-known sci-

entific simulations using two state-of-the-art error-bounded lossy compressors running

on Argonne Bebop supercomputer [1] with up to 1,024 cores.

80

The remainder of the chapter is organized as follows. Section 4.2 formulates the

research problem. Section 4.3 discusses the preliminary concept and background. Section

4.4 describes the end-to-end SDC detection methods which combine different DBFT algo-

rithms and different error-bounded lossy compressors in different I/O modes (synchronous

vs. asynchronous). Section 4.5 assesses SDC detection methods (including performance

overhead, detection ability, etc.) using four production-level HPC simulations and datasets.

Section 4.6 discusses the related work. We conclude the chapter in Section 4.7.

4.2 Problem formulation

In this section, we formulate the research problem. Given a large scale scientific

simulation with multiple time steps (or iterations) equipped with error-bounded lossy com-

pressors, our target is to protect its execution against any possible SDCs happening in any

part throughout its whole lifetime, including simulation, data compression and data writing.

Basically, there are two execution modes based on either synchronous or asyn-

chronous I/O adopted by parallel applications, as illustrated in Figure 4.2 (a) and Figure

4.3 (a). The key difference between these two modes, with respect to the SDC detector,

is that the former generally keeps the variables’ data unchanged in memory throughout

each whole time step; while the latter would refresh the variables’ data immediately after

they are transferred to the extra rank(s) for asynchronous data writing. This would lead

to a significant change to the data-analytic based SDC detection method, especially when

considering the error-bounded lossy compressors.

81

...

0 1

...

N

...

0 1

...

N

...
...

...

(a) No compression

Time steps Time steps

Simulation work Writing data Compression

Rank 0

Rank 1

Rank 2

Rank P
...

Rank 0

Rank 1

Rank 2
...

Rank P

(b) With compression

End-to-end
SDC detection

Figure 4.2: Parallel simulation with synchronous I/O

...

0 1

...

N

0 1 N

...
...

...

Time steps

Rank 0

Rank 1

Rank 2

Rank P

Extra rank(s)

...

Rank 0

Rank P
...

0 1 N

...
Rank 0

Rank P
...

(a) No compression (c) With syn. compression

Extra rank(s)

Extra rank(s)

Simulation work Writing data

Compression

(b) With asyn. compression

End-to-end
SDC detection

2

2 ...

...

...

Figure 4.3: Parallel simulation with asynchronous I/O

As mentioned previously, the HPC applications may adopt either synchronous or

asynchronous I/O to perform data writing. Similarly, the data compression can also be per-

formed either synchronously or asynchronously, depending on user’s demand, compression

time, simulation time, and/or I/O bandwidth. Figure 4.2 (b), Figure 4.3 (b) and Figure

4.3 (c) illustrate the three different situations.

Our research goal is to explore the bestfit end-to-end SDC detection method for

the HPC applications equipped with lossy compressors, in terms of the outstanding SDC

detector - AID [28]. The end-to-end SDC detection means that the SDC detection method

should protect the execution throughout the whole time period including simulation, data

compression and data writing for each time step. We illustrate the end-to-end detection for

82

one running process/rank in three different cases (please see blue arrows in Figure 4.2 (b),

Figure 4.3 (b) and (c)).

4.3 Preliminary Concept and Background

In this section, we describe the preliminary concept and background which are fun-

damental to the design of end-to-end SDC detection methods. As mentioned in the problem

formulation, the end-to-end SDC detection would involve two key libraries, adaptive impact

driven SDC detector (AID) and error-bounded lossy compressors, to be discussed as follows.

4.3.1 Adaptive Impact Driven SDC Detector (AID)

Adaptive impact driven SDC detector (AID) [28] is a generic data-analytic based

SDC detector, whose high detection ability has been extensively verified in literature [22,79].

There are two critical concepts in the AID as listed below.

• Adaptive detection: AID is an adaptive detector. It adopts one-step ahead predic-

tion to predict the value for each data point of the key variables at each time step and

compare the observed values with confidence intervals located by the predicted values.

The critical design in AID is that it dynamically selects the bestfit feedback-control

prediction methods for different ranks based on their local runtime data. This can

significantly improve the detection ability while reducing the memory overhead to 2×

in general cases.

• Impact-driven detection: AID is an impact-driven detection method, because it

aims to detect only influential SDCs in terms of dynamic HPC data features. Specif-

83

ically, AID allows users to set an impact error bound ratio (denoted by θ) for each

application run. The influential SDC at time step i is defined as the change of the

data whose errors exceed the threshold θ·rangei, where rangei refers to the data value

range of time step i during the simulation. We carefully characterized the impact of

SDCs (i.e., impact error bound ratio) based on 18 real-world applications across from

different domains such as burn simulation, N-body simulation, hydrodynamics and

heat diffusion [28].

Note that although AID focuses only on the smoothness of the data stored in the

memory, it can cover both memory errors and computation errors in principle, because of

the impact-driven design. In fact, the major part of the memory is composed of the state

variable data (such as density, pressure, and temperature) used for advancing the simulation

in each iteration (or time step). Those state variable data also constitutes the major portion

of the checkpointing files used to restart the applications upon failures/interruptions [67].

No matter what kinds of computation errors happen during the simulation, the subsequent

simulation must be correct as long as the state variable memory is not affected according

to the impact error bound ratio. Otherwise, the application would be restarted from the

latest SDC-free checkpointing files to correct the suspicious SDCs.

4.3.2 Error-bounded Lossy Compression

Error-bounded lossy compression allows users to strictly control the data distortion

for the lossy compression based on a user-specified error bound. Given a dataset (denoted

by D = {d1, d2, · · · , dN}) with N floating-point data values, absolute error-bounded com-

84

pression requires the reconstructed data (denoted by D′ = {d′1, d′2, · · · , d′N}) must respect

a constant bound (denoted by e), as shown in Formula (4.1).

|di − d′i| ≤ e,∀di ∈ D, d′i ∈ D′ (4.1)

Error-bounded compression is widely used by domain researchers to compress big

volume of data based on the error bound generated by an offline analysis of the relationship

between the error bounds and target post-analysis metrics [14,15]. With the error bounded

compressor, the simulation data volume can be significantly reduced, while the data fidelity

can still be guaranteed. The typical state-of-the-art error-bounded compressors include

SZ [29,50,73,91] and ZFP [53].

4.4 Data-analytic based End-to-end SDC Detection

In this section, we present various design strategies for end-to-end SDC detection

in the scientific simulations equipped with lossy compression techniques. Before introducing

the end-to-end detection methods, we need to describe some key definitions and notations,

as follows.

Table 4.1 lists the key notations to be used in the following text. As mentioned

previously, the original AID algorithm needs to predict each data point for the current

time step i based on the corresponding values at last 3 time steps (i−1, i−2, and/or i−3).

We use Si to denote the current snapshot, and use Si−1, Si−2, and Si−3 to denote the

previous snapshots at time steps i−1, i−2, and i−3, respectively. Similarly, Di refers to the

decompressed data of time step i, and Di−1, Di−2, and Di−3 refer to the decompressed data

85

in the previous time steps. For simplicity of description, we use Pi (={pi1, pi2, · · · , piN})

to denote the predicted data at time step i, which will be used to determine whether the

simulation data have suspicious SDC errors. Obviously, the higher the prediction accuracy

for each data point, the higher detection ability or accuracy the SDC detector would have.

Table 4.1: Table of Key Notations

Notation Description

Si simulation snapshot to be protected at current time step i

Si−1 original simulation snapshot at time step i−1

Si−2 original simulation snapshot at time step i−2

Si−3 original simulation snapshot at time step i−2

Di decompressed data at current time step i

Di−1 decompressed data at time step i−1

Di−2 decompressed data at time step i−2

Di−3 decompressed data at time step i−3

Pi predicted data at time step i

e compression error bound

θ impact factor (or impact bound ratio) defined in [28]

The impact-driven SDC detection (AID) method [28] uses a critical threshold

called impact factor or impact error bound ratio (denoted as θ) to determine the nonneg-

ligible data corruptions that would affect the execution results or post-analysis during the

simulation. According to the AID detection [28], the impact of SDC (denoted by I(ti, tend))

is defined as the maximum ratio of the absolute data change to the overall value range

for the whole period the current time step i with SDC through the end of the execution

(suppose an SDC happens to the current time step i). Then, the impact factor θ can be

written as the the following formula according to [28], with an objective of limiting the

impact of SDC under a predefined threshold ϕ.

θ= max
I(ti,tend)≤ϕ

∆i

ri
(4.2)

86

where ∆i and ri refer to the maximum data value change and the value range at time step

i, respectively.

The impact factor θ is specified by users based on their applications in practice.

For instance, the authors of AID [28] provided an in-depth analysis about the impact

of SDC to the execution results, by comparing the fault-free execution results and SDC-

injected execution results with 18 scientific applications across from different domains. They

concluded that the impact factor could be set to 1E-3∼1E-4, under which the impact of

SDC (i.e., I(ti, tend)) could be bounded under 1% in most of cases.

4.4.1 Design Overview

For better understanding and easier explanation, Figure 4.4 illustrates three end-

to-end SDC detection solutions designed for different execution modes (synchronous mode

versus asynchronous execution) particularly. Basically, at each time step (i), AID reads

the previous snapshot data (original historical data in synchronous mode or decompressed

historical data in asynchronous mode) and performs the data prediction for each data point.

We describe the three solutions briefly as follows, and present the details by pseudo-codes

and discuss the pros and cons for each thereafter.

• Solution A is designed for the synchronous mode. It would compare the predicted

data and snapshot data at time step i for detecting possible SDCs occurring dur-

ing the simulation. Additionally, it compares the predicted data and decompressed

data to verify if the decompressed data satisfies the user defined compression error

bound, detecting potential errors happening during the compression. It is also called

87

Original

S S

Decompressed

D D

AID

S

Iteration

i

P D

S

Iteration

i+1

S

Iteration

i+2

1 2

3

(optional)

compress

original simulation data

decompressed data

predicted data from AID

Simulation over time

Storage device

S

D

P

Compressed data

AID
Adaptive Impact-driven

SDC detector

Solution A:

Solution B:

Solution C:

1 2
+ +

cksum + +
3

cksum+

+
3

i-2 i-1

historic data

historic data
i-2 i-1

i i

cksumcksum

(optional)

Figure 4.4: Design workflow of end-to-end SDC detectors at iteration i

synchronous end-to-end SDC detection with separate comparisons (SESD(S)) in the

following text.

• Solution B is also designed for the synchronous mode. Unlike solution A, solution B

combines the two comparison operations into one comparison between predicted data

and decompressed data, in order to reduce the detection overhead as much as possible.

This solution, however, needs to adopt checksum to protect the original simulation

data against the possible SDCs happening during the compression period. It is named

as synchronous end-to-end SDC detection with coupled comparisons (SESD(C)) in the

following text.

• Solution C is designed particularly for the asynchronous mode. In this solution, the

simulation would not be blocked by the SDC detection at all because of the totally

asynchronous execution model. In this situation, it is impossible to compare the

88

original simulation dataset Si and the predicted dataset Pi for detecting possible

SDC errors, since the original simulation data are likely to be refreshed right away

by the next simulation cycle (i+1) as the current simulation cycle ends. To address

this limitation, the detection method will be performed asynchronously by a separate

daemon (or one or more extra processes) and we can only compare the predicted

data with the decompressed data to detect possible SDCs. We call this solution

asynchronous end-to-end SDC detection (AESD) in the following text.

4.4.2 Impact Factor vs. Compression Error Bound

It is worth noting that the end-to-end detection involves two critical thresholds:

impact factor θ and compression error bound (e), and the detection ability of the end-to-end

SDC detection solutions is related to the mutual relationship between the two thresholds.

In the rest of this subsection, we mainly discuss the impact factors and compression error

bounds as well as their possible values.

Understanding Required Impact Factor

How to set an appropriate impact factor for a simulation depends on application

datasets and user’s target/objective. According to the previous solid experiments presented

in [28], the required impact factor θ may span a large value range. That is, it could

be very low or very high, depending on applications. Specifically, when the simulation

is very sensitive to a tiny SDC, the impact factor has to be set to a small value. For

instance, the impact (i.e., the maximum deviation of data values due to the SDC error

propagation over time steps) could go up to 50%∼90% of the raw value range for the

89

BlastBS simulation [88] and Eddy simulation [78], as shown in [28]. By contrast, some

applications are able to tolerate well relatively large SDCs on their own because of their

stencil simulation nature, such that the impact factor could also be relatively large. A

typical example is ConductionDelta [21], in which the impact is much less than 0.01% even

if data value is changed 10% by SDC (i.e., impact factor = 10%) , as shown in [28].

Understanding Required Compression Error Bounds

Similar to the impact factor, the required compression error bound could also be

either relatively large or very small, depending on the applications and user’s post-analysis.

In some cases, the lossy compression could be performed under a relatively high

compression error bound, still with an acceptable data distortion. According to climate

researchers, visual quality is one critical indicator in their post-analysis. Figure 4.5 presents

the visual quality of the FLDSC field (value range: [50,450]) in the CESM climate simulation

under the SZ compression with different error bounds. It is clearly observed that the error

bound of 1.0 can already lead to a very high visual quality even in a 1296× zoomed region,

and other larger error bounds cause slight degradation on visual quality. The reason the

visual quality is not degraded clearly with such a large error bound is that the compression

errors actually follow a Gaussian-like distribution, in which most of the errors are near zero

while the maximum value difference is close to the preset error bound, as shown in Figure

4.6.

As for some climate researchers’ specific analysis [14], using a structural similarity

index measure (SSIM) [80] (whose value is in the range of [0,1]) on the order of 0.99995

90

(a) Original Raw Data (b) SZ (Error Bound = 1)

(c) SZ (Error Bound = 10) (d) SZ (Error Bound = 50)

Figure 4.5: Visual Quality of Reconstructed Data with Different Compression Error Bounds
(Climate Simulation CESM: FLDSC)

would be required. Such a high SSIM number corresponds to a fairly low compression error

bound in general. Table 4.2, for example, presents the SSIM values of the reconstructed

data (CESM FLDSC) under the error bounds of 1, 10, and 50 (corresponding to Figure 4.5

(b), (c) and (d)). We note that according to the SSIM criterion, none of the reconstructed

data shown in Figure 4.5 are acceptable.

All in all, we can conclude that both impact factor and compression error bound

could span a large value range, which totally depends on applications or user’s requirement.

91

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-20 -15 -10 -5 0 5 10 15 20

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 F

u
n

c
 (

P
D

F
)

Compression Error

SZ (Error Bound = 1)
SZ (Error Bound = 10)
SZ (Error Bound = 50)

Figure 4.6: Distribution of Compression Errors

Table 4.2: SZ Compression Quality/Ratios of CESM FLDSC

Err Bound SSIM PSNR Max Err Compre. Ratio

1 0.99876 60.1 dB 1 97:1

10 0.99286 48.9 dB 9.99997 511:1

50 0.98754 43.8 dB 49.998 1545:1

So, we cannot assume that the compression error bound is generally smaller than the impact

factor or vice verse. Instead, we need to take into account both situations in our designs.

4.4.3 Solution A: Synchronous End-to-End SDC Detection with Separate

Comparisons (SESD(S))

Solution A is the most straight-forward solution, which adopts the traditional

analytic-based SDC detection method (step 1○ in Figure 4.4) and verifies the correctness

of the decompressed data (step 2○ in Figure 4.4), respectively. Algorithm 6 presents the

corresponding pseudo-code, which is executed at each rank of the MPI parallel simulation

(suppose the current time step is i).

92

Algorithm 6 Solution A: Synchronous End-to-End SDC Detection with Sepa-
rate Comparisons (SESD(S))

Input: compression error bound e, snapshot Si−1, Si−2, Si−3, impact factor θ
Output: SDC detected = true or false

1: for (each variable at time step i) do
2: Compute value range ri. /*to be used to compute ρ.*/
3: Select the bestfit prediction method [28].
4: for (each data point sj ∈ Si) do
5: Do prediction for sj (denote the predicted value by pj).
6: if (|pj−sj | > confidence radius ρi) then /*check SDC*/
7: SDC detected ← true.
8: break.
9: end if

10: end for
11: if (SDC detected == true) then
12: Load checkpoint i−1 to redo simulation for time step i.
13: Verify if this is a false positive. /*rerun by checkpoint*/
14: if (the SDC is a false positive) then
15: Increase the confidence radius ρ based on Formula (4.3).
16: end if
17: end if
18: end for
19: Perform the error-bounded compression for Si.
20: Write compressed snapshot data S′i.
21: Read and decompress S′i to get reconstructed dataset Di.
22: for (sj∈Si and dj∈Di) do /*Verify compression errors*/
23: if (|sj − dj | > e) then
24: SDC detected ← true.
25: end if
26: end for

As shown in Algorithm 6, the SESD(S) first performs the regular AID detection

algorithm [28] (line 1∼18). Specifically, it predicts each data point by its value in the three

preceding time steps, and compares the snapshot dataset Si versus the predicted data value

Pi to detect potential SDCs.

ρi = (1 + η) · (εi−1 + θri) (4.3)

93

AID adopts an adjustable confidence radius (denoted by ρi) at time step i based on Formula

(4.3), in order to minimize the false positives. In Formula 4.3, η refers to the number of false

positive iterations up to the current time step i and εi−1 is the maximum local prediction

error in the last time step i− 1. More details can be found in the paper [28].

When an outlier is detected by AID based on the smoothness of data (line 7), the

simulation could rerun the corresponding simulation step based on the latest checkpointing

file. If the same outlier is detected again, it would be marked as false positive and the con-

fidence radius ρ will be increased (line 15) to avoid the possible future false positives. Such

a design can adapt to the non-smooth data well during the simulation. Specifically, as the

data behaves very spiky along time dimension, the confidence radius will increase automat-

ically based on Formula (4.3), ensuring a low false positive despite a graceful degradation

of detection ability. As shown in our prior work [28], based on the 18 real-world simulation,

the detection sensitivity (i.e., the fraction of true alarms that are detected over all SDCs

injected) is about 60% in the worst case, while the false positive rate stays around 1% (i.e.,

only 1 false alarm every 100 time steps) in most of cases.

After performing the AID SDC detection over the original snapshot data Si, the

SESD(S) compresses the snapshot data Si (line 19) and writes the compressed data to the

parallel file system (PFS) (line 20). After that, in order to guarantee the correctness of

the written compressed data on PFS, we need to read and reconstruct the data for the

compression error verification (line 22∼26).

The pros and cons of this design will be discussed in detail later on, by comparing

to the other solutions.

94

4.4.4 Solution B: Synchronous End-to-End SDC Detection with Coupled

Comparisons (SESD(C))

In order to reduce the detection overhead, the solution B integrates the AID SDC

detection and verification of compression errors together. To this end, this solution com-

pares the predicted values with the decompressed data directly. This may suffer from lower

detection ability (such as lower precision) while also getting lower execution overhead be-

cause of reduced operations.

Algorithm 7 Solution B: Sync. End-to-End SDC Detection with Coupled Com-
parisons (SESD(C))

Input: compression error bound e, snapshot Si−1, Si−2, Si−3, impact factor θ
Output: SDC detected = true or false

1: Set checksum for Si.
2: ρ ← θri.
3: Perform the error bounded compression for Si.
4: Write compressed snapshot data S′i.
5: Read and decompress S′i to get reconstructed dataset Di.
6: Perform Algorithm 6’s line 1∼18 with dj replacing sj . /*compare Pi versus Di*/
7: Verify the correctness of Si using checksum.

We present the pseudo-code in Algorithm 7. At the beginning, the solution sets

the checksum for the original dataset (line 1) in case of the possible SDCs happening to

it during the data compression and data writing phase. Then, our solution performs the

error-bounded lossy compression on the simulation data. After performing the compression,

writing, reading and decompression, we need to perform the detection operations (line 6),

which is similar to line 1∼18 of Algorithm 1. At last, this solution needs to verify the

correctness of original data based on the previously set checksum to guarantee they are

SDC-free during the compression and data writing for next iteration in the simulation.

95

4.4.5 Solution C: Asynchronous End-to-End SDC Detection

The solution C is particularly designed for asynchronous I/O scenario. As shown in

Figure 4.4, this solution involves the fewest steps, which just predicts the data by leveraging

the decompressed data of preceding time steps (i−1, i−2, etc.) and compares it to the

decompressed data at the current step i. The whole process is performed by an individual

daemon (one or more additional processes) running in parallel with the simulation work.

We present the pseudo-code in Algorithm 3. As we mentioned before, the original

simulation data of the current iteration may not be available to use in SDC detection if the

data writing is not synchronized with the simulation execution. Moreover, the historical

simulation data may not be available either because of the limited memory such that the

original AID detector cannot use historical original data. As such, we can only use decom-

pressed data (shown as blue dash line in Figure 4.4) to do SDC detection (i.e., line 6 in

Algorithm 3).

Algorithm 8 Solution C: Async. End-to-End SDC Detection (AESD)

Input: compression error bound e, snapshot Di−1, Di−2, Di−3, impact factor θ
Output: SDC detected = true or false

1: ρ ← θri.
2: Perform the error bounded compression for Si.
3: Write compressed snapshot data S′i.
4: Load decompressed data at preceding time steps (Di−1, Di−2, etc.) on demand.
5: Read and decompress S′i to get reconstructed dataset Di.
6: Perform Algorithm 6’s line 1∼18 with dj replacing sj . /*compare Pi versus Di*/

The key advantage of this solution is that it would not block the application’s sim-

ulation work at all, because all the compression, data writing and SDC detection operations

are conducted by a separate daemon (one or more additional processes) concurrently.

96

4.4.6 Inaccuracy that impacts SDC detection

Intuitively, our proposed end-to-end SDC detection solutions would be affected by

the inaccuracy introduced when using the lossy compression. That is, lossy compression

techniques may reduce the detection ability of the AID detector, which still depends on

specific SDC detection methods. Specifically, solution A will not be impacted by compres-

sion error because AID uses original historical data and compares the predicted values with

original data. The solution B will be affected by the lossy compression techniques less than

solution C. The key reason is that the solution C predicts the data values based on the

historical decompressed data instead of the original data, such that its data prediction may

suffer from higher prediction errors. By contrast, the solution B still adopts the original

historical data to perform the data prediction, which can keep the same detection ability in

protecting the original simulation procedure with AID.

In the following, we analyze how much impact the compression error would have

on the detection ability in absolute terms. Denote the original data points we want to de-

tect by d, and denote the AID predicted value based on original history data by p. Given a

scientific application, suppose the compression error bound is set to e, and the SDC impact

factor is denoted as θ according to user’s experience or analysis. That is, AID detects SDC

by checking if |p− d| > θ. The impact factor r could differ with different snapshots during

the simulation, while the analysis stays the same. AID uses one of the three methods (see

the following three formulas in Equation 4.4) to perform prediction: (1) last state fitting

(LSF), (2) linear curve fitting (LCF), and (3) quadratic curve fitting (QCF) [28].

97

LSF : pi = si−1 (4.4a)

LCF : pi = 2si−1 − si−2 (4.4b)

QCF : pi = si−1 − 3si−2 + 3si−3 (4.4c)

Based on Equation (4.4), we can see that the maximum fluctuation for p will be at

most e+3e+3e = 7e when we are using QCF for prediction. For solution B, the inaccurate

detection will become |p − d′| > θ; for solution C, it will become |p′ − d′| > θ where

|p′−p| ≤ 7e and |d′−d| ≤ e. So, the value of |p−d| will deviate by at most e for solution B

and deviate by at most 8e for solution C. As a result, the impact of the compression error

on the detection ability of AID will depend on the difference between e and θ. Notice that

the error bound e depends on user’s demand on decompressed data quality and compression

ratio. The impact factor θ depends on the simulation applications. If e is extremely smaller

than θ, the impact of compression error on detection ability should be negligible. If e and

θ have comparable values, the detection ability will be greatly impacted.

4.4.7 Overhead Analysis

The comparison base is the original simulation with added AID detector and lossy

compressor. All the extra operations we added to make our solutions work in the context

where lossy compression is used will be the overheads.

98

All three solutions we proposed inevitably have the overhead introduced by using

lossy compression, reading compressed file and performing decompression. Since writing file

is also a procedure in the base case, it is not counted as the overhead. Moreover, note that

in Figure 4.4, any comparison between the AID predicted value should be considered as the

original AID operations. For example, the comparison between P and S, the comparison

between P and D in Figure 4.4. Thus, they are not considered as overheads either. With

the above clarification in mind, we can derive the overhead for each of the three solutions

as follows.

Without loss of generality, we assume the number of total data points in each

snapshot is fixed (denoted by N). For solution A, the only added operations are comparing

the decompressed data and original data to see if their differences are within the error bound.

So, the time overhead will be at the order of N . For Solution B, the added operations are

just two round of calculations for the checksums which are just 2n. For solution C, the

only change compared to the original design is that AID is applied on the decompressed

data instead of original data which does not change the number of operations though. So

the overhead for solution C will be zero. In terms of memory overhead, our design will

not introduce significant amount of extra memory. Specifically, solution A and C will not

introduce any extra memory usage. Solution B will have small constant of extra memory

to hold the results of the checksums which is negligible.

99

Table 4.3: Basic info about scientific applications used in experiments

Simulations # Snapshots Dimensions Science

Flash 500 64*64*64 Suite

Nek5000 300 104448 Suite

EXAALT 83 1077290 Chemistry

CESM 63 3600*1800 Climate

4.5 Evaluation and Discussion

4.5.1 Experimental Setup

To evaluate our proposed solutions, we perform the experiments on the Argonne

Bebop supercomputer [1] using four widely used scientific simulations. Each node of this

machine is driven by two Intel Xeon E5-2695 v4 processors with 128GB DRAM. The in-

formation about the applications is listed in Table 4.3. We choose the Sedov application

from Flash suite and Vortex application from Nek5000 suite. We implemented the end-

to-end SDC detection method by enabling the open-source AID package [28] to support

two state-of-the-art lossy compressors (SZ and ZFP) and running the new solutions with

the four scientific applications/datasets. For both of the compressors, all error bounds in

this chapter are absolute error bounds. We measure average running time by repeating

sequential program 10 times and parallel, 3 times. Compiler optimization -O3 is used for

all programs.

4.5.2 Investigation of False Positives in Error-free Cases

In this subsection, we characterize the execution time overheads and false positives

for the three end-to-end SDC detection solutions, by running them with four different

scientific simulations. Without loss of generality, we focus only on the situations with

100

relatively low false positives, which is the first high priority to applications. Otherwise, the

applications cannot even advance because of too frequent roll-back operations (or restarting

from checkpoints).

Detailed evaluation results are presented in Figure 4.7 through Figure 4.10. The

baseline is the simulation equipped with some lossy compressor (SZ or ZFP), which is using

AID to protect the original datasets but no protections for the duration of data compression

and compressed data writing. Based on these figures, we can clearly observe that the false

positive rate is determined by many factors, including specific application datasets, SDC

solutions, particular lossy compressors, and also compression error bounds. The execution

time overheads are observed always within 20% for all different settings.

We define the acceptable compression error bound as the compression error bound

under which all the end-to-end SDC detection methods can get relatively low false positive

rates 1. By comparing Figure 4.7 (b) versus Figure 4.7 (d), it is observed that SZ has

much smaller acceptable error bound than does ZFP. The key reason is that ZFP generally

over-preserves the compression errors as verified by prior work [29]. For instance, if the

error bound is set to 0.001 for both SZ and ZFP, the maximum compression errors after

the compression/decompression is often much smaller than 0.001 (such as 0.0002) for ZFP,

while it is very close to 0.001 for SZ in most of cases. This leads to much lower statistical

errors such as mean squared errors for ZFP, which explains why the users need to choose a

relatively small error bound for SZ in order to get relatively low false positives.

1false positive rate is defined as the fraction of the number of false positive time steps to the total number
of time steps for some application

101

0.005 0.01 0.05 0.1
Error bounds

0

10

20

30

40

50

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(a) False positive rate (SZ)

0.25 0.5 1 2
Error bounds

0

10

20

30

40

50

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(b) False positive rate (ZFP)

Figure 4.7: False positive rate of CESM

0.00025 0.0005 0.00075 0.001
Error bounds

0

20

40

60

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(a) False positive rate (SZ)

0.0005 0.00075 0.001 0.002
Error bounds

0

20

40

60
Fa

lse
 p

os
itv

e
ra

te
 (%

) Sol. A
Sol. B
Sol. C

(b) False positive rate (ZFP)

Figure 4.8: False positive rate on Exaalt

We summarize the acceptable error bounds and corresponding compression ratios

of SZ and ZFP, based on all the four different scientific simulations. Quite a few studies

[44, 51] have verified that the compression ratios can improve the simulation performance

because of greatly reduced I/O time. However, it is unclear that how much the compression

ratios could be applied on the applications, such that the end-to-end SDC detection could

have a relatively low false positive rate. We summarize the results regarding SZ and ZFP

in Table 4.4 and 4.5, respectively. As we mentioned previously, the false positive is related

102

0.0025 0.005 0.01 0.02
Error bounds

0

20

40

60

80

100

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(a) False positive rate (SZ)

0.025 0.05 0.075 0.1
Error bounds

0

10

20

30

40

50

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(b) False positive rate (ZFP)

Figure 4.9: False positives on Flash

2.5e-7 5e-7 1e-6 2e-6
Error bounds

0

20

40

60

80

100

Fa
lse

 p
os

itv
e

ra
te

 (%
) Sol. A

Sol. B
Sol. C

(a) False positive rate (SZ)

5e-7 1e-6 2e-6 4e-6
Error bounds

0

20

40

60

80

100
Fa

lse
 p

os
itv

e
ra

te
 (%

) Sol. A
Sol. B
Sol. C

(b) False positive rate (ZFP)

Figure 4.10: Overheads and false positives on Nek5000

to compression error bounds, so we set error bounds for each dataset individually to make

sure that the SDC detector still has acceptable false positives. Through the two tables, we

can see that with comparable false positives, SZ has better compression ratios than ZFP on

three datasets, Flash, Exaalt and CESM; while ZFP outperforms SZ on Nek5000 dataset.

This motivates us to investigate the end-to-end SDC detection ability under both of the

compressors in our analysis. The result suggests the following insights:

103

Table 4.4: Acceptable Error Bounds and Compression Ratios (SZ)

Flash Nek5000

ebs: 0.0025 0.005 0.01 0.02 2.5e-7 5e-7 1e-6 2e-6

ratios: 139.53 162.80 187.66 216.83 6.25 6.42 7.04 8.22

Exaalt CESM

ebs: 2.5E-4 5E-4 7.5E-4 0.001 0.005 0.01 0.05 0.1

ratios: 5.40 6.43 7.19 7.91 25.14 36.16 126.84 265.08

Table 4.5: Acceptable Error Bounds and Compression Ratios (ZFP)

Flash Nek5000

ebs: 0.025 0.05 0.075 0.1 5e-7 1e-6 2e-6 4e-6

ratios: 72.61 80.85 90.71 90.71 11.82 12.38 13.01 13.70

Exaalt CESM

ebs: 0.0005 0.00075 0.001 0.002 0.25 0.5 1 2

ratios: 2.57 2.57 2.78 3.03 26.08 29.33 32.99 37.80

• The false positive rate of Solution B and C increase with the selected error bounds.

• The false positive rate of solution B tends to increase faster than solution C with

error bounds. This trend is obvious on Exaalt data. This observation is kind of

contrast to the intuition, because the solution C involves higher compression errors in

its design than the solution B, while solution C exhibits lower false positives. This can

be explained as follows. According to Formula (4.2), the larger the prediction errors

(i.e, εi−1) in the last time step, the larger the confidence radius is. Compared with

the solution B, the solution C is supposed to have larger prediction errors because of

the consistent data loss level between the decompressed data in last time step and

the current time step, leading to larger confidence radius accordingly. So, solution

C is more tolerable to the false positives, corresponding to lower false positive rates.

Table 4.6 confirms our analysis: we clearly observe that solution B does have higher

confidence radius than solution C, especially at the error bound, 0.1.

104

Table 4.6: Confidence Radius of Solution B and C on CESM with SZ at Time Step 40

ebs 0.005 0.01 0.05 0.1

Solution B 0.658 0.658 0.658 0.658

Solution C 0.661 0.658 0.729 0.809

4.5.3 Investigation of Detection Performance in Erroneous Cases

Based on the acceptable error bounds, we run all the three end-to-end SDC detec-

tion solutions in the erroneous cases to check whether there are some SDCs that AID can

detect but our proposed solutions cannot because of the impact of compression errors. We

inject the errors in terms of real-world situation as thoroughly as possible. Specifically, we

check all snapshots (i.e., time steps) one by one. For each snapshot, we randomly select one

data point whose value will be modified by randomly flipping one bit such that its changed

value is greater than the impact factor. In this way, we simulate only influential SDC errors

that may affect the user’s simulation results according to the definition of impact factor.

For each dataset and each lossy compressor, we repeatedly injected random errors for 50

times. We observe that the false negatives are extremely rare for all the three detection

solutions on all datasets for both compressors. For example, CESM data with solution C

has only one false negative case in the largest error bound 0.1 when SZ is used. All other

configurations do not have any false negative cases, because the impact bound and error

bound are close to each other and the chance that flipping a bit will make the data fall

between those two bounds is tiny.

105

4.5.4 Performance overheads in parallel environment

We evaluate the time overheads of all the three proposed solutions in a parallel

environment with both SZ and ZFP lossy compressors based on the CESM data. We ran

the experiments using 256∼1024 cores from Argonne Bebop supercomputer, and the results

are presented in Figure 4.11. We use absolute error bound 0.05 for SZ and 1 for ZFP

which are both the third column settings according to Table 4.4 and 4.5. We observe

≤ 7.9% execution time overhead in the parallel environment for all the three solutions

compared with the baseline solution (AID + compression + data writing). Specifically, the

overheads with SZ in parallel are at most 1.9%, 5.4% and 7.1% on 256, 512 and 1,024 cores,

respectively. The overheads with ZFP in parallel are 7.9%, 2.8% and 4.4% using 256, 512

and 1,024 cores, respectively. The overall execution time increases with the execution scale

because each rank keeps unchanged data size in our experiments, such that the total data

size increases with the number of cores (weak scaling), leading to enhanced total time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

256 512 1024

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Scale (# cores)

Sol. A
Sol. B
Sol. C
Baseline

(a) Execution time with SZ

 0

 5

 10

 15

 20

 25

256 512 1024

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Scale (# cores)

Sol. A
Sol. B
Sol. C
Baseline

(b) Execution time with ZFP

Figure 4.11: Execution time in parallel

106

4.6 Related Work

To the best of our knowledge, none of the existing work studied how to protect

HPC applications equipped with lossy compressors particularly against silent data corrup-

tions (SDC). As such, we discuss the state-of-the-art SDC detection technologies generically

designed for HPC applications.

From the perspective of hardware, error correcting code (ECC) has been imple-

mented in memory to detect and correct bit flips in memory. In spite of its generality, the

ECC protected memory usually can correct single bit flipped memory errors and can only

detect 2 or more bit flipped errors with reasonable extra memory usage and the overhead

will be increasing dramatically if ECC is used to detect and correct multiple bit flipped

memory errors [62]. However, ECC cannot detect or correct computation error. A general

remedy is modular redundancy which can double or triple the hardware or software exe-

cution. Hardware redundancy adopts redundant hardware to execute the same application

with the same input and compare the outputs from the different hardwares. Software redun-

dancy means running the same program on the single hardware multiple times and compare

the outputs from different runs. Thus, double modular redundancy (DMR) is needed for

error detection with 100% overhead and triple modular redundancy (TMR) is needed for

error correction with 200% overhead.

Such high overhead of modular redundancy to handle SDCs has motivated al-

gorithm based fault tolerance (ABFT). The main idea of ABFT is to exploit the special

characteristics of an application or algorithm, such that they can be used to detect and

correct soft errors. Despite the relatively high effort to put because of different charac-

107

teristics across various applications, the tiny overhead of ABFT compared with modular

redundancy still makes it very promising. Most of the existing ABFT methods, however,

focus on popular arithmetic algorithms such as matrix operations [35], convolution [89]

and sorting [47]. To the best of our knowedge, no ABFT work has been done for lossy

compression algorithms with the presence of soft errors.

Unlike the ABFT which is always designed for a particular HPC numerical algo-

rithms, generic data-analytic based SDC fault tolerance (DBFT) method can be applied

on any HPC simulations with multiple time steps. Because of its generality, DBFT is also

very appealing to HPC scientific simulation community, though it may not obtain as high

detection ability as ABFT does. Di et al. [27] proposed an efficient SDC detection method

by leveraging a feedback control based prediction method and uniform sampling, which ex-

hibits a high SDC detection ability. Thereafter, the authors proposed another outstanding

DBFT based SDC detector, namely Adaptive Impact Driven (AID) SDC detector, which

adopts an adaptive prediction method on different ranks of the running applications. The

above two detection methods are both replying on the smoothness of the data in time di-

mension. Some other generic SDC detectors were also proposed by different researchers,

while AID still generally exhibits excellent detection abilities in class. For instance, Subasi

et al. [69] proposed a machine learning based detection method in terms of the AID detec-

tion model, which can lower the memory overhead to be nearly zero because it does not

rely on the smoothness of data along time dimension. Wang et al. [79] proposed a deep

learning based SDC detector, which can improve the detection ability to a certain extent,

while suffering heavy computation overhead.

108

In this work, we focus on SDC detection for the HPC applications equipped with

lossy compression techniques, as this is a significant gap to the modern applications nowa-

days.

4.7 Summary

In this chapter, we exploit a series of data-analytic based SDC detection tech-

niques to detect any possible errors occurring from the beginning of the simulation work

through the end of data writing at each time step, including all behaviors such as simu-

lation, compression/decompression and I/O. We provide an in-depth analysis of the SDC

detection ability of such end-to-end SDC detection techniques for both synchronous and

asynchronous I/O scenarios. We evaluate all our proposed end-to-end SDC detection meth-

ods using 4 well-known scientific simulations with two state-of-the-art error-bounded lossy

compressors, on both performance overhead and reliability of execution results.

109

Chapter 5

Conclusions

To conclude the thesis, we provide innovative algorithmic solutions to improve the

compression ratio and resilience of lossy compressors. The improved lossy compressors then

reduce I/O time and improve resilience for large scale scientific simulation applications.

First, we show how the improved compression ratio can speedup the simulation execution

at large scale. Then we improve the resilience of lossy compressors via algorithm-based fault

tolerance (ABFT). Though ABFT takes effort in algorithm analysis and it lacks generality,

our proposed fault tolerant lossy compression have shown their overwhelming advantage

in terms of very low performance overheads over the traditional redundancy based fault

tolerance. We also show how to efficiently provide resilient time based lossy compression by

using efficient ABFT for sorting. Finally, our proposed end-to-end SDC detection for sci-

entific simulations equipped with lossy compression has found promising insights for future

deployment of even larger scale scientific simulations with SDC resilience.

110

We hope the thesis can inspire readers to think about the following future work.

• Resilience is not all on hardware. Software based resilience can be considered in some

cases. Resilience can be done by hardware and software co-design. For example, can

dedicated artificial intelligence (AI) accelerators achieve great fault tolerance with

only software based resilience so that we can save some cost on hardware resilience

part (such as ECC) and in the meantime reduce memory bandwidth requirement?

• Algorithm-based fault tolerance not only applies to arithmetic operations. It can be

done efficiently for some discrete algorithms like sorting. So, are there any other

important operations that we want to provide fault tolerance?

• The use cases of lossy compressors should not be limited to just storage or I/O part

though this thesis focuses on this part. Brainstorm the use cases of lossy compression

including communication, memory, checkpointing, AI models and so on.

111

Bibliography

[1] Bebop. https://www.lcrc.anl.gov/systems/resources/bebop/. Online.

[2] Berkeley lab checkpoint/restart (blcr) for linux. https://crd.lbl.gov/departments/
computer-science/CLaSS/research/BLCR. Online.

[3] Blosc compressor. http://blosc.org. Online.

[4] Exaalt. https://www.exascaleproject.org/project/

exaalt-molecular-dynamics-at-the-exascale-materials-science/. Online.

[5] Gzip. http://www.gzip.org. Online.

[6] New horizons: The first mission to the pluto system and the kuiper belt. nasa.gov/

newhorizons. Online.

[7] Pds: The planetary data system. https://pds.jpl.nasa.gov. Online.

[8] Soft error. https://en.wikipedia.org/wiki/Soft_error. Online.

[9] Triple modular redundancy. https://en.wikipedia.org/wiki/Triple_modular_

redundancy. Online.

[10] Zstandard. https://github.com/facebook/zstd/releases. Online.

[11] Laurent Alonso, Philippe Chassaing, Florent Gillet, Svante Janson, Edward M Rein-
gold, and René Schott. Quicksort with unreliable comparisons: a probabilistic analysis.
Combinatorics, Probability and Computing, 13(4-5):419–449, 2004.

[12] Cyrille Artho, Kuniyasu Suzaki, Masami Hagiya, Watcharin Leungwattanakit, Richard
Potter, Eric Platon, Yoshinori Tanabe, Franz Weitl, and Mitsuharu Yamamoto. Using
checkpointing and virtualization for fault injection. International Journal of Network-
ing and Computing, 5(2):347–372, 2015.

[13] Jasjeet Singh Bagla. Cosmological n-body simulation: Techniques, scope and status.
Current science, pages 1088–1100, 2005.

112

https://www.lcrc.anl.gov/systems/resources/bebop/
https://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR
https://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR
http://blosc.org
https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science/
https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science/
http://www.gzip.org
nasa.gov/newhorizons
nasa.gov/newhorizons
https://pds.jpl.nasa.gov
https://en.wikipedia.org/wiki/Soft_error
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://github.com/facebook/zstd/releases

[14] Allison H Baker, Dorit M Hammerling, and Terece L Turton. Evaluating image quality
measures to assess the impact of lossy data compression applied to climate simulation
data. In Computer Graphics Forum, volume 38, pages 517–528. Wiley Online Library,
2019.

[15] Allison H Baker, Haiying Xu, John M Dennis, Michael N Levy, Doug Nychka, Sheri A
Mickelson, Jim Edwards, Mariana Vertenstein, and Al Wegener. A methodology for
evaluating the impact of data compression on climate simulation data. In Proceed-
ings of the 23rd international symposium on High-performance parallel and distributed
computing, pages 203–214, 2014.

[16] L. Bautista-Gomez and F. Cappello. Exploiting spatial smoothness in hpc applications
to detect silent data corruption. In 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Sympo-
sium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference
on Embedded Software and Systems, pages 128–133, Aug 2015.

[17] Jon Bentley. Programming pearls, page 110. Addison-Wesley Professional, 2016.

[18] Jon L Bentley and M Douglas McIlroy. Engineering a sort function. Software: Practice
and Experience, 23(11):1249–1265, 1993.

[19] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated
application-level checkpointing of mpi programs. In ACM Sigplan Notices, volume 38,
pages 84–94. ACM, 2003.

[20] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor for double-
precision floating-point data. IEEE Transactions on Computers, 58(1):18–31, Jan 2009.

[21] ASCF Center. Flash user’s guide (version 4.2). http://flash.uchicago.edu/site/

flashcode/usersupport/flash2usersguide/docs/FLASH2.5/flash2ug.pdf. On-
line.

[22] Chao Chen, Greg Eisenhauer, Matthew Wolf, and Santosh Pande. Ladr: low-cost
application-level detector for reducing silent output corruptions. In Proceedings of the
27th International Symposium on High-Performance Parallel and Distributed Comput-
ing, pages 156–167, 2018.

[23] Jieyang Chen, Xin Liang, and Zizhong Chen. Online algorithm-based fault tolerance
for cholesky decomposition on heterogeneous systems with gpus. In 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 993–1002.
IEEE, 2016.

[24] Zhengzhang Chen, Seung Woo Son, William Hendrix, Ankit Agrawal, Wei-keng Liao,
and Alok Choudhary. Numarck: machine learning algorithm for resiliency and check-
pointing. In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 733–744. IEEE, 2014.

113

http://flash.uchicago.edu/site/flashcode/user support/ flash2 users guide/docs/FLASH2.5/flash2 ug.pdf
http://flash.uchicago.edu/site/flashcode/user support/ flash2 users guide/docs/FLASH2.5/flash2 ug.pdf

[25] Hurricane ISABEL dataset. http://sciviscontest-staging.ieeevis.org/2004/

data.html. Online.

[26] James Demmel and Hong Diep Nguyen. Fast reproducible floating-point summation.
In 2013 IEEE 21st Symposium on Computer Arithmetic, pages 163–172. IEEE, 2013.

[27] S. Di, E. Berrocal, and F. Cappello. An efficient silent data corruption detection
method with error-feedback control and even sampling for hpc applications. In 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pages 271–280, May 2015.

[28] Sheng Di and Franck Cappello. Adaptive impact-driven detection of silent data cor-
ruption for hpc applications. IEEE Transactions on Parallel and Distributed Systems,
27(10):2809–2823, 2016.

[29] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with
SZ. In 2016 IEEE International Parallel and Distributed Processing Symposium, pages
730–739. IEEE, 2016.

[30] Sheng Di and Franck Cappello. Optimization of error-bounded lossy compression for
hard-to-compress hpc data. IEEE transactions on parallel and distributed systems,
29(1):129–143, 2017.

[31] David Jerome Fiala et al. Transparent resilience across the entire software stack for
high-performance computing applications. 2015.

[32] Thomas E Fornek. Advanced photon source upgrade project preliminary design re-
port. Technical report, Argonne National Laboratory (ANL)(United States). Funding
organisation . . . , 2017.

[33] Al Geist. Supercomputing’s monster in the closet. IEEE Spectrum, 53(3):30–35, 2016.

[34] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and Ka-
trin Heitmann. Hacc: extreme scaling and performance across diverse architectures. In
SC’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–10. IEEE, 2013.

[35] Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE transactions on computers, 100(6):518–528, 1984.

[36] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. Out-of-
core compression and decompression of large n-dimensional scalar fields. In Computer
Graphics Forum, volume 22, pages 343–348. Wiley Online Library, 2003.

[37] Adam M Jacobs. Reconfigurable fault tolerance for space systems. University of Florida,
2013.

[38] et al. Jeongnim Kim. QMCPACK: an open source ab initio quantum Monte Carlo
package for the electronic structure of atoms, molecules and solids. Journal of Physics:
Condensed Matter, 30(19):195901, 2018.

114

http://sciviscontest-staging.ieeevis.org/2004/data.html
http://sciviscontest-staging.ieeevis.org/2004/data.html

[39] JE Kay, C Deser, A Phillips, A Mai, C Hannay, G Strand, JM Arblaster, SC Bates,
G Danabasoglu, J Edwards, et al. The Community Earth System Model (CESM)
large ensemble project: A community resource for studying climate change in the
presence of internal climate variability. Bulletin of the American Meteorological Society,
96(8):1333–1349, 2015.

[40] Gokcen Kestor, Burcu Ozcelik Mutlu, Joseph Manzano, Omer Subasi, Osman Unsal,
and Sriram Krishnamoorthy. Comparative analysis of soft-error detection strategies:
A case study with iterative methods. In Proceedings of the 15th ACM International
Conference on Computing Frontiers, CF ’18, page 173–182, New York, NY, USA, 2018.
Association for Computing Machinery.

[41] Anand Kumar, Xingquan Zhu, Yi-Cheng Tu, and Sagar Pandit. Compression in molec-
ular simulation datasets. In International Conference on Intelligent Science and Big
Data Engineering, pages 22–29. Springer, 2013.

[42] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,
Rob Ross, and Nagiza F Samatova. Compressing the incompressible with isabela: In-
situ reduction of spatio-temporal data. In European Conference on Parallel Processing,
pages 366–379. Springer, 2011.

[43] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai. Modeling soft-error
propagation in programs. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 27–38, June 2018.

[44] Sihuan Li, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Optimizing
lossy compression with adjacent snapshots for n-body simulation data. In 2018 IEEE
International Conference on Big Data (Big Data), pages 428–437. IEEE, 2018.

[45] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. Sdc
resilient error-bounded lossy compressor. arXiv preprint arXiv:2010.03144, 2020.

[46] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. To-
wards end-to-end sdc detection for hpc applications equipped with lossy compression.
In 2020 IEEE International Conference on Cluster Computing (CLUSTER), pages
326–336. IEEE, 2020.

[47] Sihuan Li, Hongbo Li, Xin Liang, Jieyang Chen, Elisabeth Giem, Kaiming Ouyang, Kai
Zhao, Sheng Di, Franck Cappello, and Zizhong Chen. Ft-isort: efficient fault tolerance
for introsort. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–17, 2019.

[48] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li, Kaiming
Ouyang, Yuanlai Liu, Fengguang Song, and Zizhong Chen. Correcting soft errors
online in fast fourier transform. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–12, 2017.

115

[49] Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. An efficient
transformation scheme for lossy data compression with point-wise relative error bound.
In 2018 IEEE International Conference on Cluster Computing (CLUSTER), pages
179–189. IEEE, 2018.

[50] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. Error-controlled lossy compression optimized for high
compression ratios of scientific datasets. In 2018 IEEE International Conference on
Big Data (Big Data), pages 438–447. IEEE, 2018.

[51] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Bogdan Nicolae, Zizhong Chen, and
Franck Cappello. Improving performance of data dumping with lossy compression for
scientific simulation. In 2019 IEEE International Conference on Cluster Computing
(CLUSTER), pages 1–11. IEEE, 2019.

[52] S Lim. A fault tolerant parallel computing architecture for remote sensing satellites.
2009.

[53] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on
visualization and computer graphics, 20(12):2674–2683, 2014.

[54] Peter Lindstrom. Error distributions of lossy floating-point compressors. Technical
report, Lawrence Livermore National Lab, 2017.

[55] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE transactions on visualization and computer graphics, 12(5):1245–1250,
2006.

[56] Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert Pod-
horszki, Scott Klasky, Mathew Wolf, Tong Liu, et al. Understanding and modeling
lossy compression schemes on hpc scientific data. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 348–357. IEEE, 2018.

[57] Magnus Lundborg, Rossen Apostolov, Daniel Sp̊angberg, Anders Gärdenäs, David
van der Spoel, and Erik Lindahl. An efficient and extensible format, library, and
api for binary trajectory data from molecular simulations. Journal of computational
chemistry, 35(3):260–269, 2014.

[58] Gabriel Marcus, Zhirong Huang, Yuantao Ding, Tor Raubenheimer, Lanfa Wang,
Marco Venturini, Paul Emma, and Ji Qiang. High fidelity start-to-end numerical
particle simulations and performance studies for lcls-ii. 2015.

[59] Nor Rizuan Mat Noor and Tanya Vladimirova. Parallelised fault-tolerant integer klt
implementation for lossless hyperspectral image compression on board satellites. In
2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013), pages
115–122. IEEE, 2013.

[60] NYX simulation. https://amrex-astro.github.io/Nyx. Online.

116

https://amrex-astro.github.io/Nyx

[61] Andrey Omeltchenko, Timothy J Campbell, Rajiv K Kalia, Xinlian Liu, Aiichiro
Nakano, and Priya Vashishta. Scalable i/o of large-scale molecular dynamics sim-
ulations: A data-compression algorithm. Computer physics communications, 131(1-
2):78–85, 2000.

[62] Somnath Paul, Fang Cai, Xinmiao Zhang, and Swarup Bhunia. Reliability-driven ecc
allocation for multiple bit error resilience in processor cache. IEEE Transactions on
Computers, 60(1):20–34, 2010.

[63] Danny Perez, Luis Sandoval, Sophie Blondel, Brian D Wirth, Blas P Uberuaga, and
Arthur F Voter. The mobility of small vacancy/helium complexes in tungsten and its
impact on retention in fusion-relevant conditions. Scientific Reports, 7(1):1–9, 2017.

[64] James S Plank, Kai Li, and Michael A Puening. Diskless checkpointing. IEEE Trans-
actions on Parallel and Distributed Systems, 9(10):972–986, 1998.

[65] T. Reza, J. Calhoun, K. Keipert, S. Di, and F. Cappello. Analyzing the performance
and accuracy of lossy checkpointing on sub-iteration of nwchem. In 2019 IEEE/ACM
5th International Workshop on Data Analysis and Reduction for Big Scientific Data
(DRBSD-5), pages 23–27, 2019.

[66] Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. Control flow checking
or not? (for soft errors). ACM Trans. Embed. Comput. Syst., 18(1), February 2019.

[67] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Exploration of lossy
compression for application-level checkpoint/restart. In 2015 IEEE International Par-
allel and Distributed Processing Symposium, pages 914–922. IEEE, 2015.

[68] Daniel Sp̊angberg, Daniel SD Larsson, and David van der Spoel. Trajectory ng:
portable, compressed, general molecular dynamics trajectories. Journal of molecular
modeling, 17(10):2669–2685, 2011.

[69] O. Subasi, S. Di, P. Balaprakash, O. Unsal, J. Labarta, A. Cristal, S. Krishnamoorthy,
and F. Cappello. Macord: Online adaptive machine learning framework for silent error
detection. In 2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 717–724, Sep. 2017.

[70] ANL Theta supercomputer. https://www.alcf.anl.gov/theta. Online.

[71] Li Tan, Shashank Kothapalli, Longxiang Chen, Omar Hussaini, Ryan Bissiri, and
Zizhong Chen. A survey of power and energy efficient techniques for high performance
numerical linear algebra operations. Parallel Computing, 40(10):559–573, 2014.

[72] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. In-depth exploration
of single-snapshot lossy compression techniques for n-body simulations. In 2017 IEEE
International Conference on Big Data (Big Data), pages 486–493. IEEE, 2017.

117

https://www.alcf.anl.gov/theta

[73] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving
lossy compression for scientific data sets based on multidimensional prediction and
error-controlled quantization. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1129–1139. IEEE, 2017.

[74] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Improving
performance of iterative methods by lossy checkponting. In Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed Computing,
pages 52–65, 2018.

[75] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Optimizing
lossy compression rate-distortion from automatic online selection between sz and zfp.
IEEE Transactions on Parallel and Distributed Systems, 30(8):1857–1871, 2019.

[76] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert Un-
derwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, et al. cusz: An efficient
gpu-based error-bounded lossy compression framework for scientific data. In Proceed-
ings of the ACM International Conference on Parallel Architectures and Compilation
Techniques, pages 3–15, 2020.

[77] BryanE Usevitch. Jpeg2000 compatible lossless coding of floating-point data.
EURASIP Journal on Image and Video Processing, 2007(1):085385, 2007.

[78] Owen Walsh. Eddy solutions of the navier-stokes equations. The Navier-Stokes Equa-
tions II – Theory and Numerical Methods, pages 306–309, 1992.

[79] Chen Wang, Nikoli Dryden, Franck Cappello, and Marc Snir. Neural network based
silent error detector. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER), pages 168–178. IEEE, 2018.

[80] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEE Signal Processing Magazine, 26(1):98–117, Jan 2009.

[81] Brent Welch. Posix io extensions for hpc. In Proceedings of the 4th USENIX Conference
on File and Storage Technologies (FAST), 2005.

[82] Panruo Wu, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, Jieyang Chen, Ding-
wen Tao, Xin Liang, Kaiming Ouyang, and Zizhong Chen. Silent data corruption re-
silient two-sided matrix factorizations. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 415–427, 2017.

[83] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao, Xin
Liang, Jieyang Chen, and Zizhong Chen. Towards practical algorithm based fault toler-
ance in dense linear algebra. In Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing, pages 31–42, 2016.

[84] Panruo Wu, Dong Li, Zizhong Chen, Jeffrey S Vetter, and Sparsh Mittal. Algorithm-
directed data placement in explicitly managed non-volatile memory. In Proceedings of

118

the 25th ACM International Symposium on High-Performance Parallel and Distributed
Computing, pages 141–152, 2016.

[85] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel,
Yuri Alexeev, and Frederic T Chong. Full-state quantum circuit simulation by using
data compression. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–24, 2019.

[86] Dow-Yung Yang, Ananth Grama, and Vivek Sarin. Bounded-error compression of
particle data from hierarchical approximate methods. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing, pages 71–es, 1999.

[87] Zheng Yuan, William Hendrix, Seung Woo Son, Christoph Federrath, Ankit Agrawal,
Wei-keng Liao, and Alok Choudhary. Parallel implementation of lossy data compres-
sion for temporal data sets. In 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC), pages 62–71. IEEE, 2016.

[88] Andrew L. Zachary, Andrea. Malagoli, and Phillip. Colella. A higher-order godunov
method for multidimensional ideal magnetohydrodynamics. SIAM Journal on Scien-
tific Computing, 15(2):263–284, 1994.

[89] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming Ouyang,
Franck Cappello, and Zizhong Chen. Algorithm-based fault tolerance for convolutional
neural networks. arXiv preprint arXiv:2003.12203, 2020.

[90] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen,
and Franck Cappello. Sdrbench: Scientific data reduction benchmark for lossy com-
pressors.

[91] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and Franck
Cappello. Significantly improving lossy compression for hpc datasets with second-
order prediction and parameter optimization. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’20, page
89–100, New York, NY, USA, 2020. Association for Computing Machinery.

[92] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3):337–343, 1977.

119

	List of Figures
	List of Tables
	Introduction
	Optimizing Lossy Compression with Adjacent Snapshots for N-body Simulation Data
	Introduction
	Research Background
	Problem Formulation
	Understanding the N-Body Simulation Data
	Characteristics of Particles in Consecutive Snapshots
	HACC variable visualization

	Optimized Error-Bounded Compression Model for N-Body Simulation Framework
	An Efficient Particle Alignment Mechanism
	Optimization of Data Compression
	Optimizing Data Prediction Accuracy
	Optimizing Frequencies of Space-Based Compression vs. Time-Based Compression

	Performance Evaluation
	Experimental Setting
	Evaluation Results

	Related Work
	Summary

	SDC Resilient Error-bounded Lossy Compressor
	Introduction
	Background and Problem Formulation
	SZ Lossy Compression Framework
	Algorithm based fault tolerance (ABFT)
	Error model and assumptions
	Formulation of SDC Detection Evaluation in SZ

	Resilience Analysis of SZ 2.1
	SDC Resiliency – Computation error
	SDC Resilience – Memory error

	Error Tolerance Methodology
	Blockwise independent design
	Fault tolerant compression
	Fault tolerant decompression
	Avoiding round off errors in checksums
	Impact to compression ratio without protecting regression and sampling

	Discussion for SZ Time Based Compression
	Introsort
	Comparison Errors
	Efficient Error Resilience for Introsort

	Experimental Evaluation
	Experimental Setup
	Evaluation of Independent-block Compression
	Error free experimental results
	Error injected experimental results
	Parallel experimental results

	Related Work
	Summary

	Towards End-to-end SDC Detection for HPC Applications Equipped with Lossy Compression
	Introduction
	Problem formulation
	Preliminary Concept and Background
	Adaptive Impact Driven SDC Detector (AID)
	Error-bounded Lossy Compression

	Data-analytic based End-to-end SDC Detection
	Design Overview
	Impact Factor vs. Compression Error Bound
	Solution A: Synchronous End-to-End SDC Detection with Separate Comparisons (SESD(S))
	Solution B: Synchronous End-to-End SDC Detection with Coupled Comparisons (SESD(C))
	Solution C: Asynchronous End-to-End SDC Detection
	Inaccuracy that impacts SDC detection
	Overhead Analysis

	Evaluation and Discussion
	Experimental Setup
	Investigation of False Positives in Error-free Cases
	Investigation of Detection Performance in Erroneous Cases
	Performance overheads in parallel environment

	Related Work
	Summary

	Conclusions
	Bibliography

