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Abstract

The Transport of Cosmic Rays and Their Impact on the Thermal Evolution of Galaxy Halos and
Clusters

by

Philipp Alexander Kempski

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Eliot Quataert, Chair

Although negligible by number density, relativistic cosmic rays (CRs) are an energetically impor-
tant component of the plasmas filling the inter-stellar media and halos of galaxies, and the cores
of galaxy clusters. As a result, CRs can have a large impact on their host systems, for example
by heating diffuse gas or by driving galactic winds. This "CR feedback" is a strong function of
how CRs are transported across galactic environments. Despite elaborate efforts to constrain it,
the transport of galactic CRs remains uncertain, which makes CR feedback one of the biggest un-
solved puzzles in galaxy evolution. The goal of this thesis has been two-fold. A large portion of
this work uses theoretically favoured models of CR transport to study how CRs affect the dilute
gases in galactic halos and in the intra-cluster medium of galaxy clusters. It is shown that CRs
can significantly affect wave propagation by driving rapidly growing fluid instabilities, which has
significant implications for the thermal evolution of these systems. This work is complemented
by a study that compares existing micro-physical theories of CR transport with detailed measure-
ments of spectra of galactic CRs in the solar neighbourhood. It reveals that existing CR transport
models are generally not in good agreement with the data and provides speculations on how this
discrepancy could be remedied.
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Chapter 1

Introduction

Galaxies and galaxy clusters are filled with a population of relativistic particles called cosmic
rays (CRs), which contain the most energetic particles in the Universe. Ever since their discovery
more than a century ago by Victor Hess, continuous observational and theoretical efforts have led
to an ever-increasing understanding of how these energetic particles are created and transported
across galaxies. Detailed measurements in the solar neighbourhood have revealed that galactic
CRs arrive at Earth nearly isotropically, with a spectrum that is an almost perfect power law over
many orders of magnitude in energy, with exponent ≈ −2.7. The steep slope of this spectrum
implies that most of the energy is carried by the mildly relativistic ∼GeV CR protons, although
the most energetic CRs have energies up to 1011 GeV.1 The measured galactic CR number density,
of order 10−9 cm−3, is much less than typical inter-stellar number densities of thermal particles
(0.001− 1 cm−3 depending on inter-stellar medium phase). Quite remarkably, however, because of
the large energies carried by individual CR particles, the total energy density in CRs is comparable
to the energy density of thermal particles in many astrophysical environments, including the Milky
Way. It is because of this astonishing fact that CRs can have a large impact on the evolution of
galaxies and galaxy clusters. How these astrophysical systems are affected by their most energetic
particles is the overarching topic of this thesis.

1.1 Cosmic Ray Transport and Feedback in Galaxies and Clus-
ters

CRs are believed to be accelerated and injected into the inter-stellar media (ISM) of galaxies
and intra-cluster media (ICM) of galaxy clusters by supernovae (SNe) and active galactic nuclei
(AGN) (see, e.g., Drury 2012; Amato 2014 for recent reviews). One would naively expect that
CRs produced by SNe and AGN escape their hosts rather quickly, namely at the speed of light.
However, the CR lifetime in the Galaxy (>Myr) inferred from their chemical abundances is many
orders of magnitude larger than the Milky Way’s light crossing time. The long lifetime is believed

1Remarkably, the kinetic energy of a 1011 GeV CR particle is comparable to the energy of a tennis ball moving at
almost 100 mph!
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to be due to (resonant) scattering of CRs by magnetic-field fluctuations that permeate inter-stellar
gas (e.g., review by Zweibel 2013). The scattering results in CRs escaping via a random walk,
rather than ballistic propagation at the speed of light, and therefore significantly extends their
galactic residence time.

The scattering of CRs turns out to have significant implications for the evolution of galaxies
and clusters. In particular, the scattering allows CRs to exchange energy and momentum with the
ambient magnetic field and inter-stellar gas. This coupling is important because CRs are ener-
getically significant in many astrophysical systems. As a result, CRs can have a big impact on
large-scale galactic dynamics and thermodynamics, for example by driving galactic winds and/or
heating diffuse gas.

The waves responsible for coupling the energetically important GeV CRs have very short wave-
lengths, comparable to their gyro-radius, which is of order 1 astronomical unit. This is many orders
of magnitude smaller than the kiloparsec scales on which CRs affect their host galaxies. The im-
pact of CRs on galaxy evolution on large scales (e.g., mass outflow rates in galactic winds) is very
sensitive to how CRs are scattered by the microscopic gyro-scale fluctuations. How CRs affect
galaxies, usually termed “CR feedback”, is therefore a remarkable example of cross-talk between
micro- and macro-scales, and a challenging multi-scale astrophysics problem.

A good understanding of the waves that scatter CRs is therefore essential for studying CR
feedback in galaxies. However, the origin and nature of the waves remain uncertain. As a result,
CR feedback is one of the major unsolved puzzles in galaxy evolution. In particular, the two
leading theories of CR scattering give rise to two very different types of transport and forms of CR
feedback. In “self-confinement” theory, the bulk of CRs are scattered by magneto-hydrodynamic
(MHD) Alfvén waves that they themselves excite through the streaming instability (Kulsrud &
Pearce 1969). In this picture, on galactic scales the bulk of CRs are well described as a fluid that is
streaming at the Alfvén speed relative to the thermal gas (Skilling 1971). The leading alternative
to self-confinement theory is “extrinsic turbulence” theory, in which CRs are instead scattered
by a pre-existing turbulent cascade of magnetic fluctuations. In this picture, CRs diffuse rather
than stream. A variety of simulations have shown that these distinct forms of CR transport yield
dramatically different outcomes in galaxy evolution models (e.g., Ruszkowski et al. 2017; Wiener
et al. 2017; Farber et al. 2018; Quataert et al. 2022a; Quataert et al. 2022b). In particular, the
heating of inter-stellar gas and the launching of galactic winds depend sensitively on the type of
CR transport.

1.2 Thesis Summary and Guide to Chapters
My journey into CR astrophysics began by studying how streaming CRs affect the propagation

and (in)stability of waves in the dilute plasmas that fill the halos of galaxies and the ICM of galaxy
clusters. The evolution of these fluctuations directly affects the phase structure of the gas and the
transport of energy from one place to another. This has significant implications for the thermal
evolution of these systems. The results of this work are presented in Chapters 2, 3 and 4.

By exciting short-wavelength (gyro-resonant) Alfvén waves, streaming CRs heat the ambient



1.2. THESIS SUMMARY AND GUIDE TO CHAPTERS 3

thermal gas (Wentzel 1971). In Chapter 2, I study how this heating affects the thermal (in)stability
of gas in galactic halos. I first demonstrate that CR heating is plausibly important in galactic
halos and may play a role counteracting cooling to keep the hot thermal plasma in these systems
in approximate thermal equilibrium. I then proceed by studying how the heating affects local
thermal instability, i.e. the condensation of cold gas out of the hot phase. Thermal instability is
often invoked to explain the observed cool gas in circum-galactic media (CGM) and in the cores
of galaxy clusters (e.g., Nulsen 1986; McCourt et al. 2012; Voit et al. 2015). The presence of
this cold gas is important because it provides the fuel for galactic star formation (Tumlinson et al.
2017). Interestingly, I show that even if CRs and CR heating are energetically important, they do
not significantly affect the excitation of thermal instability. Heating by streaming CRs turns purely
exponential growth into oscillatory growth (overstability), but without significantly affecting the
growth rate itself. The surprisingly small impact of CR heating on thermal instability was later
confirmed numerically by Butsky et al. (2020).

In Chapters 3 and 4, I study how the presence of streaming CRs affects wave propagation in the
dilute ICM of galaxy clusters. The evolution of waves in the ICM is a long-standing problem, with
potentially significant implications for its thermal balance. In particular, observations show that
despite large cooling losses, the ICM stays in approximate thermal equilibrium. This suggests that
there is a source of heating present, which approximately offsets the cooling (Peterson & Fabian
2006). The energy that prevents runaway cooling likely comes from the central AGN and the
gigantic radio bubbles inflated by its jet (e.g., Churazov et al. 2000; Bîrzan et al. 2004; Werner
et al. 2019). However, how this energy is transported and thermalized throughout the ICM remains
an open question. One possibility is that the non-thermally supported radio bubbles inject CRs into
the ICM, which heat the gas via streaming (Guo & Oh 2008; Jacob & Pfrommer 2017a; Jacob &
Pfrommer 2017b). Alternatively, the buoyantly rising radio bubbles may excite turbulence (e.g.,
Zhuravleva et al. 2016), and/or weak shocks/sound waves (e.g., Fabian et al. 2003; Sternberg &
Soker 2009) which transport the energy from the AGN throughout the ICM. The turbulence/wave
models are supported by the observations that cluster cores are turbulent (e.g., Li et al. 2020) and
also show signs of powerful sound waves/weak shocks propagating from the AGN out to large
distances (Fabian et al. 2003; Fabian et al. 2006). However, sound waves are expected to be
strongly damped in the dilute ICM plasma, and so their observed long-term survival has been a
theoretical puzzle (e.g., Zweibel et al. 2018). Whether the radio bubbles can indeed efficiently
excite turbulence also remains unclear (e.g., Reynolds et al. 2015). In Chapters 3 and 4, I show
that the evolution of ICM waves is very sensitive to CR physics, even if the CR energy density is
small compared to the thermal energy density. In Chapter 3, I show that in the low-collisionality
ICM plasma streaming CRs couple to the thermal gas in a novel way, which drives a rapidly-
growing acoustic instability. In Chapter 4, I further show that CR streaming in the ICM also drives
a new type of buoyancy instability. The instability is characterised by growth rates of order the
local free-fall time for plausible ICM parameters. Both instabilities do not require significant CR
pressures when magnetic fields are weak, as is expected in the ICM. Excitation of these instabilities
is especially likely in the vicinity of the radio bubbles, where the CR pressure is locally enhanced.
My ongoing numerical work on the saturation of the acoustic instability suggests that it evolves
into a series of weak shocks. This is broadly consistent with the acoustic disturbances observed in
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the core of the Perseus cluster (Fabian et al. 2003; Fabian et al. 2006).
The results from Chapters 2, 3 and 4 rely on the assumption that the bulk of CRs stream at the

Alfvén speed relative to the thermal gas. In other words, it is assumed that the energetically im-
portant GeV CRs are predominantly scattered by self-excited waves and not an ambient turbulent
cascade. There is, in fact, a very reasonable theoretical motivation for this choice. First, existing
theoretical models of MHD turbulence predict that on small scales the turbulent cascade does not
have the properties necessary for efficient scattering of GeV CRs, especially in dilute plasmas like
the ICM. At the same time, GeV CRs are the most likely to self-excite Alfvén waves through the
streaming instability. This type of argument, which supports the choice of CR transport in Chapters
2, 3 and 4, is arguably quite convincing on a theoretical level. However, it will perhaps not come
as a surprise to the reader that issues inevitably arise outside of the theoretical realm. In particular,
there are detailed observations of spectra of galactic CRs measured in the solar neighbourhood,
which put tight constraints on CR transport in the Galaxy (e.g., Aguilar et al. 2015; Aguilar et al.
2016; Cummings et al. 2016). These turn out to be quite challenging for existing theories of CR
transport, a problem I became aware of halfway into graduate school and which quickly became
my scientific obsession. My attempts to reconcile CR transport theory with observations resulted
in Chapter 5 of this thesis.

To a good approximation, local CR data is consistent with CR scattering by magnetic-field
fluctuations with spectrum ∝ k−δ and δ ∼ [1.4, 1.7] (e.g., Amato & Blasi 2018 for a recent review).
This corresponds to a CR lifetime in the Galaxy that is energy dependent with rough scaling τ ∝
E−(2−δ). Phenomenological models of CR transport can successfully reproduce the main trends in
local CR data using a combination of isotropic Kolmogorov-like turbulence and waves excited by
the CR streaming instability (e.g., Blasi et al. 2012; Aloisio et al. 2015). However, these models
are not well motivated theoretically, because MHD turbulence is known to be very different from
isotropic Kolmogorov-like turbulence. In particular, incompressible (Alfvénic) MHD turbulence
is very anisotropic on small scales (Goldreich & Sridhar 1995), which makes it very inefficient
at scattering CRs (Chandran 2000). For this reason, Yan & Lazarian (2004) proposed that CRs
are instead scattered by the isotropic turbulent cascade of MHD fast modes. In Chapter 5, I test
whether CR observables can be explained using a combination of waves excited by the streaming
instability and the weak cascade of fast modes. The key difference relative to models based on
isotropic Kolmogorov turbulence is that fast modes are strongly damped on small scales. This
makes their effect on CR transport very different from what previous work concluded. While some
of the main trends in CR observables can still be reproduced using this combination of scattering
mechanisms, I show that it requires a significant amount of fine-tuning of ISM plasma conditions.
This is primarily due to the fact that MHD fast modes are strongly damped. I further argue that the
weak cascade of fast modes is in fact not well motivated theoretically. This is because the weak
cascade is suppressed by wave steepening and weak-shock dissipation even in subsonic turbulence.
This raises the significant possibility that fast modes are not important for CR scattering. The
significant challenges faced by current micro-physical theories of CR transport suggest that there
may be a big gap in our understanding of MHD turbulence and how it scatters CRs. Roughly
Alfvénic streaming is still the favored model for low-energy CRs, as assumed in Chapters 2–4.
In particular, the breaks in CR spectra around a few hundred GeV suggest that the physics of CR
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transport changes around that energy (Blasi et al. 2012). A transition from external fluctuations
dominating the transport to some degree of self-confinement at lower energies remains the most
likely explanation for the origin of the spectral breaks. The main unknown is the source of external
scattering waves that could explain the empirically derived transport of higher-energy CRs.

Given how much time and energy was spent on this problem over the last two years, having a
single-chapter summary of my efforts does not feel completely adequate. However, although my
PhD is coming to an end, my journey with this theoretical mystery continues.

1.3 Other Work
In the first two years of graduate school I completed a first-author publication that is unrelated

to this thesis. However, it used similar concepts in low-collisionality plasma physics as Chapters 3
and 4 of this dissertation. In Kempski et al. (2019), we studied turbulence in black-hole accretion
flows, with a focus on systems in which the mean free paths of the thermal particles are large. This
includes Radiatively Inefficient Accretion Flows (RIAFs; Mahadevan & Quataert 1997) onto Su-
permassive Black Holes (SMBHs), which encompasses the SMBHs targeted by the Event Horizon
Telescope (EHT). Simulations with low-collisionality plasma physics are needed to understand
the accretion flows in such systems and the generated radiation observed by EHT. However, fully
kinetic simulations remain prohibitively expensive and fully collisional MHD simulations are rou-
tinely used instead. In Kempski et al. (2019) we attempted to bridge the gap between fully kinetic
and fluid simulations by studying the computationally simpler weakly-collisional plasma regime
(often referred to as Braginskii MHD; Braginskii 1965) characterized by a large anisotropic vis-
cosity. This weakly-collisional fluid model is the simplest, well-motivated model that captures es-
sential features of kinetic plasma physics on large scales. We employed the pseudo-spectral code
Snoopy (Lesur & Longaretti 2007) to simulate the turbulence driven by the magneto-rotational
instability (MRI; Balbus & Hawley 1991) in a local patch of the accretion disk using the shearing-
box method. We found that the large anisotropic viscous forces significantly change the structure
of MRI-driven turbulence and are an important dissipation channel. In particular, we found that
anisotropic viscous heating is a major source of plasma heating. At the same time, notably, we
found that there are no significant differences in the overall level of angular-momentum transport
between our weakly-collisional (Braginskii MHD) and fully-collisional (MHD) simulations.
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Chapter 2

Thermal Instability of Halo Gas Heated by
Streaming Cosmic Rays

An earlier version of this article was previously published as Kempski P., Quataert E., 2020,
MNRAS, 493, 1801. Figure 2.2 has been reorganised to accommodate the format of this thesis.

2.1 Abstract
Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in

galaxy halos, groups and clusters. We present a linear thermal stability analysis of plasmas heated
by streaming CRs. We separately treat equilibria with and without background gradients, and
with and without gravity. We include both CR streaming and diffusion along the magnetic-field
direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which
determines whether modes are isobaric or isochoric. Modes with k ·B , 0 are strongly affected by
CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable
modes (with k · B , 0) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in pho-
toionization equilibrium is thermally stable independent of CR pressure, while gas in collisional
ionization equilbrium is unstable for physically realistic parameters. In gravitationally stratified
plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence
of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at
which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated
medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective
entropy involving the gas and CR pressures. We discuss the implications of our results for the
thermal evolution and multiphase structure of galaxy halos, groups and clusters.

2.2 Introduction
The short radiative cooling times of virialized gas in galaxies and clusters suggest that these

systems should contain significantly more cool gas at their centers than is observed (Peterson

https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.1801K/abstract
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& Fabian 2006). This implies that the hot gas surrounding galaxy halos is also heated, which is
thought to come from feedback by star formation and central active galactic nuclei (AGN; e.g., Guo
et al. 2008). An appreciable fraction of the energy released by AGNs and supernova explosions
comes in the form of relativistic cosmic-ray particles (McNamara & Nulsen 2007; Ackermann et al.
2013), which may be important for the dynamics and gas heating in galaxies, halos and clusters
(e.g., Breitschwerdt et al. 1991; Loewenstein et al. 1991; Everett et al. 2008; Socrates et al. 2008;
Guo & Oh 2008; Zweibel 2013; Ruszkowski et al. 2017; Zweibel 2017; Ehlert et al. 2018).

Cosmic rays are confined in galaxies for times much longer than would be expected from their
propagation speed (≈ speed of light), due to scattering off small-scale electromagnetic fluctuations.
These fluctuations can be either due to external turbulence, or Alfvén waves generated by the
cosmic rays themselves. In the self-excitation scenario, wave growth is driven by the cosmic ray
streaming instability (Kulsrud & Pearce 1969): as cosmic rays collectively drift down their pressure
gradient, the free energy associated with their velocity anisotropy can excite Alfvén waves. Pitch-
angle scattering isotropizes the cosmic rays in the frame comoving with the waves, which, in the
absence of strong wave damping, limits the CR drift speed to the local Alfvén speed (by contrast,
the cosmic-ray drift speed can be significantly larger than the Alfvén speed in the strong-damping
limit; Skilling 1971; Wiener et al. 2013). In a steady state, the streaming-induced wave growth is
balanced by wave damping, so that the energy of the cosmic rays is essentially being transferred to
the thermal plasma. This couples the background plasma to the cosmic rays, which heat the gas at
a rate −vA · ∇pc, where vA is the local Alfvén speed and pc is the CR pressure (Wentzel 1971).

Guo & Oh (2008), Jacob & Pfrommer (2017a) and Jacob & Pfrommer (2017b) showed that
this cosmic-ray heating can suppress the cooling catastrophe in clusters for CR pressures that are
consistent with observational bounds. Indeed, they found that the required CR pressure (gradient)
is small compared to the gas pressure (gradient), as is also found observationally (e.g., Huber et al.
2013). Whether the same is true in galaxy halos is still unclear (e.g., Hopkins et al. 2020b).

While heating suppresses cooling globally (i.e. on sufficiently long time and length scales) and
maintains the hot virialized gas in massive halos in approximate hydrostatic and thermal balance,1

there is strong observational evidence for cold gas in the halos of galaxies. Cool gas is present
both in the circumgalactic medium (CGM) of massive and Milky-Way-like galaxies, and in the
intracluster medium (ICM). In the ICM, detailed spatially-resolved observations (that use both
atomic and molecular transitions, e.g., Salomé et al. 2006, Cavagnolo et al. 2009) indicate the
presence of cold-gas filaments embedded within the otherwise hot, virialized gas, which constitutes
most of the intracluster gas mass. In the CGM, the cool-gas morphology is less certain (i.e., it could
be filamentary or volume-filling), and the cold gas mass may comprise a significant fraction of the
total halo gas mass. Indeed, observations of the CGM using Ly α emission and quasar absorption
lines (Werk et al. 2013; Stocke et al. 2013; Cantalupo et al. 2014; Hennawi et al. 2015; Bowen et al.
2016; Cai et al. 2017) suggest the presence of multiphase gas along most lines of sight (suggesting
that the cold phase may permeate the CGM, instead of forming a filamentary structure).

The origin of the cold gas remains uncertain. It could be gas elevated into the halo by galac-

1While the hot virialized gas in clusters has a sufficiently high temperature to be seen directly in emission, the
emission from virialized gas in the CGM is too faint for current telescopes. Nevertheless, hot virialized gas is expected
to be present in halos of mass ≳ 1011.5M⊙ (Birnboim & Dekel 2003; Dekel et al. 2009).
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tic winds. However, how the cold gas in high-velocity galactic winds is produced and entrained
remains uncertain (Scannapieco & Brüggen 2015; Thompson et al. 2016; Zhang et al. 2017). Al-
ternatively (or, in addition), the cold phase may be produced in situ via thermal instability. Thermal
instability is commonly linked to the existence of multiphase gas in the interstellar medium (Field
1965) and has been studied in the context of galaxy halos and clusters using a number of simu-
lations and models (Nulsen 1986; Binney et al. 2009; McCourt et al. 2012; Sharma et al. 2012;
Voit et al. 2015; Meece et al. 2015; Voit et al. 2017; Voit 2018). These simulations suggest that
the condensation of cold gas via thermal instability can occur if the ratio of the cooling time to
the free-fall time is sufficiently small. Typically they find that tcool/tff ≲ 10, however, this value
may depend on the size of the initial perturbations (Pizzolato & Soker 2005; Singh & Sharma
2015; Choudhury et al. 2019) and whether magnetic fields are included (Ji et al. 2018). The con-
nection between tcool/tff ≲ 10 and the existence of multiphase structure has been partly born out
by the cluster observations of McDonald et al. (2010), but in a more recent sample of 56 clusters
observed by the Chandra X-ray Observatory, cold gas is present even when tcool/tff ≳ 10 (Hogan
et al. 2017).

The purpose of this paper is to understand the thermal stability of systems heated by streaming
cosmic rays, which may be an important heating mechanism in galaxy halos. We first present
order-of-magnitude estimates showing that heating due to streaming CRs may be important for
a wide range of halo masses. We then perform a linear stability analysis, in which we take into
account both CR streaming and diffusion, and we look at equilibria with and without gravity. While
we find that explicitly including gravity is not very important for thermal instability growth rates,
it can transform thermal instability into a convective instability driven by buoyancy.2

The thermal stability of systems with heating by streaming CRs was first considered heuristi-
cally in the context of a cooling flow by Loewenstein et al. (1991). Pfrommer (2013) and Wiener
et al. (2013) then studied thermal instability with CR heating by assuming that the CR pressure
(pc) and gas density (ρ) follow the adiabatic relation pc ∝ ρ

γc . In this work, we instead explicitly
include the evolution equation for the CR pressure, which is in general not consistent with adia-
baticity. Cosmic rays are adiabatic only for modes propagating perpendicular to the magnetic field
(see Section 2.5.3), but even then we show that correctly perturbing the CR heating produces re-
sults that are different from the heuristic calculation in Pfrommer (2013). We also extend previous
work by studying the impact of CR diffusion on thermal instability, and we study the instability in
different background equilibria.

The remainder of this paper is organised as follows. We introduce the gas–CR equations in
Section 2.3. In Section 2.4 we argue that cosmic-ray heating may be important in galactic halos.
The linear thermal stability of CR heating is derived in Sections 2.5, 2.6 and 2.7. We solve the
perturbed linearised equations in a uniform medium without gravity in Section 2.5. We introduce
gas and CR background gradients in Section 2.6 and consider gravitationally stratified equilibria in
Section 2.7. In the latter case, we also obtain a criterion for convective instability. We summarize
our results and discuss their implications for the multiphase structure of galaxy halos in Section
2.8.

2This is a rather unsurprising side result of our analysis, because thermal and convective stability are closely linked
(Balbus 1995).
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We derive estimates for the (global) ratio of CR to thermal pressure in galaxy halos in Appendix
2.A. A heuristic description of the impact of CR diffusion on thermal instability is provided in Ap-
pendix 2.B. We show the linearised perturbed equations of a CR-heated background in Appendix
2.C. In Appendix 2.D, we explain why a 1-dimensional calculation (see Section 2.6.2) gives the
correct eigenfrequency of the gas entropy mode in a CR-heated background. Finally, we derive
an approximate growth rate for the convective instability in a gravitationally stratified medium in
Appendix 2.E.

2.3 Equations and Timescales

2.3.1 Gas–CR Equations
We consider a thermal plasma interacting with a population of relativistic cosmic rays. We

model the system by including CR heating and the CR pressure force in the equations of ideal
MHD. This results in the following coupled differential equations,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ
dv
dt
= −∇

(
pg + pc +

B2

8π

)
+
B · ∇B

4π
+ ρg, (2.2)

∂B

∂t
=∇× (v ×B), (2.3)

ρT
ds
dt
= H − vA · ∇pc − ρ

2Λ(T ), (2.4)

dpc

dt
= −

4
3

pc∇ · (v + vA) − vA · ∇pc +∇ ·
(
κb̂b̂ · ∇pc

)
(2.5)

where v is the gas velocity, ρ is the gas density, pg and pc are the gas and CR pressures respec-
tively, B is the magnetic field (with unit vector along b̂), g is the acceleration due to gravity,
s = kB ln(p/ργ)/(γ − 1)mH is the gas entropy per unit mass, Λ(T ) is the temperature-dependent
cooling function, and H is an unspecified heating rate (which we set to 0 except in Section 2.5).
d/dt ≡ ∂/∂t + v · ∇ denotes a total (Lagrangian) time derivative. We assume that cosmic rays
stream down their pressure gradient at the Alfvén velocity vA = B/

√
4πρ, and we also include

CR diffusion along the magnetic field, for which we assume a constant diffusion coefficient κ. We
note that formally CRs stream with velocity vst = −sgn(b̂ · ∇pc)vA. This ensures that cosmic
rays stream along the magnetic field down their pressure gradient and makes the CR heating term
−vst · ∇pc positive definite. In our linear stability analysis cosmic rays stream at vA, as we con-
sider background equilibria which satisfy −vA · ∇pc > 0 (see footnote 3 in Section 2.5.1 for how
this is achieved in a uniform background).
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2.3.2 CR Transport: Streaming versus Diffusion
The interplay between cosmic-ray streaming and diffusion calls for some further discussion.

In the self-confinement picture, the importance of streaming versus diffusion is intimately tied to
the saturation of the streaming instability (Kulsrud & Cesarsky 1971; Skilling 1971; Wiener et al.
2013). In the limit of weak damping, the excited Alfvén waves can grow to large amplitudes
(compared to when significant damping is present, see next paragraph) until the resultant rapid
pitch-angle scattering isotropizes the CRs in the frame of the waves. In this scenario, the cosmic
rays are advected down their pressure gradient at the Alfvén speed relative to the thermal plasma,
with no diffusive contribution (we neglect diffusion due to external turbulence). This is tantamount
to setting κ = 0 in the above equations. Note that the term −vA·∇pc in equation 2.4 is then positive
definite, because in the limit of self-excited Alfvén waves only (no background turbulence) energy
flows from the CRs to the gas (mediated by Alfvén waves), but not vice-versa.

In the opposite limit of significant wave damping, the waves generated by the streaming insta-
bility saturate at lower amplitudes. As a result, the CR pitch-angle scattering rate is reduced, and
the cosmic-ray momenta do not become fully isotropic in the Alfvén-comoving frame. In this case,
the cosmic-ray bulk motion deviates from pure streaming at vA and κ will generally be nonzero.
The diffusion coefficient will depend on how the waves are damped. Quite notably, for many of the
known damping mechanisms (e.g. turbulent, ambipolar and linear Landau damping), the diffusion
term ends up not being diffusive at all (Skilling 1971; Wiener et al. 2013; Wiener et al. 2018).
Instead, it has the form of an advective flux (streaming) and the cosmic rays essentially stream
down their pressure gradient at super-Alfvénic speeds. This, however, is not always true (e.g.,
when non-linear Landau damping is dominant and/or if there are external sources of cosmic-ray
scattering distinct from self-excited Alfvén waves). For this reason, we keep the diffusion term
in our equations (with constant κ for simplicity). We do not consider super-Alfvénic streaming
in this work, as the dependence of super-Alfvénic streaming velocities on other fluid quantities is
uncertain.

2.3.3 Dimensionless Parameters and Characteristic Frequencies
We define the ratio of CR pressure to gas pressure,

η ≡
pc

pg
, (2.6)

and the ratio of thermal to magnetic pressure,

β ≡
8πpg

B2 . (2.7)

We also write the logarithmic slope of the cooling function as

ΛT ≡
∂ lnΛ
∂ ln T

. (2.8)
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There are a number of timescales that characterise the problem. We define the cooling frequency,

ωc ≡
ρ2Λ

pg
; (2.9)

the wavenumber (k) dependent sound frequency (with cs being the adiabatic sound speed),

ωs ≡ kcs; (2.10)

the Alfvén and CR-heating frequency,

ωa ≡ k · vA; (2.11)

the cosmic-ray diffusion frequency,
ωd ≡ κ (b̂ · k)2; (2.12)

and the free-fall frequency,
ωff ≡

g
cs
. (2.13)

We stress that ωa characterizes both the perturbed magnetic tension (its usual meaning) and the
perturbed CR heating −vA · ∇pc. Throughout our linear stability calculation in Sections 2.5, 2.6
and 2.7, we focus on local perturbations (kH ≫ 1, H being a characteristic background length
scale), which for our application considered in Section 2.4 corresponds to

ωs ≫ ωc, ωff, (2.14)

and
ωa ≫ ωc (2.15)

(unless k · B = 0, in which case eq. 2.15 need not be satisfied). In the CR-heated background,
kH ≳ 1 corresponds to ωa ≳ ωcη

−1 (Section 2.6.1). We find that thermal instability growth rates
do not depend significantly on wavenumber k, provided that ωa > ωc (ωa ≳ ωcη

−1) in the uniform
(CR-heated) background.

As our fiducial set of parameters, we choose ωa = 103ωc (which corresponds to fairly high
k, but such high k is necessary for the CR-heated background if we want to consider η > 0.01),
β = 100 and, when we include gravity in Section 2.7, ωff = 20ωc. ωff ≳ 10ωc is motivated by
observations of hot gas in groups and clusters (McDonald et al. 2010; Hogan et al. 2017), which
largely satisfy this constraint. We stress that this choice of ωff ≳ 10ωc is motivated by halo gas
specifically, but need not be true in other applications. We show how smaller β and ωa affect our
results in Figure 2.2.

2.4 Heating by Cosmic Rays in Galaxy Halos
Before we look at the thermal stability of CR heating, we check under what conditions thermal

balance between CR heating and radiative cooling,

− vA · ∇pc = ρ
2Λ(T ), (2.16)
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Figure 2.1: Top: CR heating versus cooling as a function of η (eq. 2.6) and β (eq. 2.7). R is the ratio
of CR heating to radiative cooling (eq. 2.18; here we use ωff = 20ωc and Hc = 3H), and increases with
increasing CR pressure fraction η and with decreasing β. The white dashed line indicates the approximate
region where cosmic-ray heating is comparable to cooling (R ∼ 1). Bottom: Order-of-magnitude estimate of
the CR pressure fraction as a function of halo mass (see Appendix 2.A). We separately consider cosmic rays
injected into the halo by Type II SNe and central SMBHs. We include this plot to motivate that significant
cosmic ray pressures are plausible for a wide range of halo masses, especially in M ≈ 1012M⊙ halos (large
CR pressures, η ≳ 1, have also been found in cosmological simulations, see e.g. Hopkins et al. 2020b).
Together, the two panels suggest that there may be significant cosmic-ray heating in galaxy halos for a wide
range of halo masses.
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may occur in galaxy halos. Our estimates presented in this section suggest that heating by cosmic
rays can be important for a broad range of values of η and β (see Figure 2.1).

We quantify the importance of cosmic-ray heating by defining

R ≡
|vA · ∇pc|

ρ2Λ
∼

vA pc/Hc

ωc pcη−1 , (2.17)

where we used our definition of the cooling frequency (2.9). Hc is the CR pressure scale height.
Using definition 2.13 and β ≈ (cs/vA)2, we obtain

R ∼
η
√
β

H
Hc

ωff
ωc
, (2.18)

where H = c2
s/g. When gas pressure dominates, H is approximately equal to the gas pressure scale

height Hg.
Our estimate for R as a function of η and β is plotted in the top panel of Figure 2.1 for ωff/ωc =

20. We choose a fairly extended CR profile, with Hc/H = 3. The dashed white line indicates the
approximate region where heating by cosmic rays is comparable to cooling, i.e. R ∼ 1.

The top panel of Figure 2.1 suggests that heating by cosmic rays may be important for a wide
range of η and β. There is some evidence, from both observations and theory/simulations, sug-
gesting that galaxy halos may often reside above/around the white dashed line (where CR heating
is important). While significant CR pressures were measured in the Milky Way (Boulares & Cox
1990) and nearby starburst galaxies (Paglione & Abrahams 2012), observations of cosmic rays
and magnetic fields in galaxy halos are challenging and sparse. Nevertheless, there are some con-
straints that come from synchrotron emission and Faraday rotation measurements along quasar
sightlines. Synchrotron emission measurements suggest that cosmic rays and magnetic fields have
significantly larger scale heights than the thermal gas (Beck 2015). There is also evidence for
strong magnetic fields (1 − 10µG) that may extend far out (tens of kpc) into the halo (Mora &
Krause 2013; Bernet et al. 2013). As a result, it is plausible that there are regions in the halo where
η is large (e.g., ∼ 1) and/or β is relatively small (e.g., ≲ 10). Under such conditions, equation 2.18
and the top panel of Figure 2.1 suggest that there may be significant CR heating.

Recent cosmological zoom-in simulations with cosmic rays strengthen the claim that CR pres-
sure can be important (even dominant) in galaxy halos (Hopkins et al. 2020b). This is broadly
consistent with our estimate for the CR pressure fraction η, which we show as a function of halo
mass in the bottom panel of Figure 2.1 (the calculation can be found in Appendix 2.A). We sepa-
rately consider the injection of cosmic rays by Type II Supernovae and central Supermassive Black
Holes (SMBHs), and we estimate the total energy of cosmic rays out to the virial radius. We as-
sume the (broken power law) stellar mass – halo mass relation from Moster et al. (2013) and the
SMBH mass – total stellar mass relation (for ellipticals) from Reines & Volonteri (2015). Com-
paring the CR energy to the total thermal energy within the virial radius yields the lower panel of
Figure 2.1. We find that CR pressure should be significant for a broad range of halo masses and
most important in halos of mass ≈ 1012M⊙, consistent with Hopkins et al. (2020b).
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2.5 Cosmic-Ray Thermal Instability in a Uniform Medium
Before we analyse equilibria in which CR heating balances cooling (due to a finite background

CR pressure gradient), we look at the simpler case of a uniform background. This setup is particu-
larly relevant for cases where CR heating is not the dominant heating process, but can nevertheless
affect the evolution of entropy perturbations (photoionization equilibrium is one such example).
The uniform-medium calculation does not capture (slight) modifications to the thermal instability
that come from a background CR pressure gradient, but in many ways it produces results that are
very similar to the non-uniform medium calculation. For example, the thermal instability growth
rates have an almost identical dependence on η and CR diffusion. As a result, many of the conclu-
sions drawn here will still be valid in the calculation with background CR heating.

We perform a linear stability calculation of the equations described in Section 2.3. All per-
turbed quantities are assumed to vary as δQ(r, t) ∝ exp

[
ik · r − iωt

]
. Throughout this (and the

next) section, we also ignore gravity, i.e. we set g = 0 (we include gravity in Section 2.7).

2.5.1 Equilibrium
We consider an equilibrium with

H = ρ2Λ(T ), (2.19)

where H is an unspecified heating rate, which is set to balance cooling (i.e. H ≫ −vA · ∇pc).
Equilibrium CR heating is considered negligible, and the CR heating term only enters in the per-
turbed equations. All background fluid variables are assumed to be spatially constant. Without loss
of generality, we consider a vertical magnetic field, B = Bẑ. This equilibrium has the advantage
that there are no background gradients in our linear stability analysis.3 Moreover, treating κ as a
constant (and not a function of B, pc and other fluid variables) is exact to linear order in a uniform
background.

2.5.2 Linearised Equations
We ignore perturbations of H , i.e. we set δH = 0 (generalization to finite δH is straightfor-

ward). We do, however, perturb the cosmic-ray heating term. The linearised perturbed versions of
equations 2.1–2.5 are

δρ

ρ
= −ik · ξ, (2.20)

3For ∇pc to have a well-defined sign in our linear stability analysis, so that −vA · ∇pc is positive definite, pc

cannot be completely uniform. We therefore need a small background CR pressure gradient and to this end, we write
−vA ·∇pc = ϵρ

2Λ. In our linear calculation we can then still drop any background gradients if we adopt the ordering
1 ≫ ϵ ≫ δQ/Q for any quantity Q. Under this ordering, we can essentially treat the equlibrium ρ, pg and pc as
uniform. We note, however, that this approach breaks down when δpc/pc > (kHc)−1, as the perturbations are large
enough to flatten out the CR pressure distribution and decouple the cosmic rays from the gas. In the small-background-
gradient limit that is the assumption in our uniform medium calculation, this can in practice happen at small δpc/pc.
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− ρω2ξ = −ik
(
δpc + δpg +

B · δB
4π

)
+ i

(B · k)δB
4π

, (2.21)

δB = i(B · k)ξ − iB(k · ξ), (2.22)

δpg

pg

( ω
γ − 1

+ iωcΛT

)
− ωa

δpc

pg
=
δρ

ρ

(
ω
γ

γ − 1
− iωc(2 − ΛT )

)
, (2.23)

δpc

pg
(ω − ωa + iωd) =

δρ

ρ
η
(4
3
ω −

2
3
ωa

)
. (2.24)

2.5.3 Dispersion Relation
We find the exact solutions to (2.20)–(2.24) by numerically solving for the matrix eigenvalues

using MATLAB (because the complete dispersion relation is long and not very enlightening, we do
not write it down explicitly). We filter out Alfvén waves, which decouple and do not affect thermal
instability, by restricting ξ, δB and k to lie in the xz-plane. The exact gas entropy eigenmode that
can be derived from (2.20)–(2.24) is necessary for studying thermal instability at low β. However,
we find that our results depend only mildly on β for β ≳ 3 (see middle panels of Figure 2.2).
In the high-β regime the equations simplify considerably, as the CR and gas pressures satisfy the
approximate pressure balance δpc ≈ −δpg. Equations 2.23 and 2.24 then decouple from the rest
(cf. thermal instability is associated with the entropy mode in standard hydrodynamics/MHD) and
we end up with a quadratic dispersion relation:

0 = η
(4
3
ω −

2
3
ωa

)(3
2
ω + ωa + iωcΛT

)
+(

ω − ωa + iωd

)(5
2
ω − iωc(2 − ΛT )

)
.

(2.25)

Note that ωa here is due to the perturbed CR heating, and not due to the magnetic tension or
pressure forces; the latter are 0 in the approximation used here. We show the calculated growth
rate as a function of η in the left panels of Figure 2.2, focusing mainly on our fiducial parameters,
ωa = 103ωc and β = 100. The solution of equation 2.25 is not explicitly plotted, as it agrees
almost perfectly with the exact solution at β = 100 and would not be visible (the second solution
to equation 2.25, associated with the CR entropy mode, is not shown as it is stable for all η). The
top plot shows the growth rate for different cooling curve slopes ΛT . For ΛT = −1, we also show
how our results change for ωa = 10ωc (green dashed line; no visible change), ωa = ωc (green
dash-dotted line) and ωa = 0 (i.e. k · B = 0; green dotted line). The middle panel shows how
the β = 100 growth rate (≈ β → ∞ growth rate; blue line, ΛT = −1) compares to growth rates at
smaller β. We see that the agreement with, e.g., the β = 3 calculation is still remarkably good. The
bottom panel shows the effects of diffusion (again for ΛT = −1) for modes with ωd = 0 (blue),
ωa ≫ ωd ≫ ωc (orange) and ωd ≫ ωa (green). For more discussion of the effects of diffusion, see
Section 2.5.6 and Appendix 2.B.

In the case ωa = 0 (due to k ·B = 0; green dotted line in top panel) and ωd = 0 (no diffusion),
equation 2.24 reduces to an adiabatic relation between δpc and δρ, with adiabatic index 4/3. Our
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perpendicular-modes calculation is therefore the closest to the calculation in Pfrommer (2013),
who assumed an adiabatic relation between CR pressure and gas density. However, our results
are different, as the heuristic calculation in Pfrommer (2013) is not accurate: in particular, their
perturbed CR heating is not correct.4

2.5.3.1 Effect of CR Streaming on Entropy Modes

Before discussing the thermally unstable modes driven by cooling in more detail, we first con-
sider the effect of CR streaming on the entropy modes, which becomes clear if we ignore cooling
and CR diffusion in (2.25), i.e. consider ωc = ωd = 0. The dispersion relation then becomes:

η
(4
3
ω −

2
3
ωa

)(3
2
ω + ωa

)
+

5
2
ω
(
ω − ωa

)
= 0. (2.26)

This dispersion relation is in fact a statement of pressure balance and can be obtained by setting
δpc + δpg = 0 (without cooling and CR diffusion). When CR pressure is negligible (η → 0), we
see that the two solutions are the ordinary MHD gas entropy mode, with ω = 0 (as CR heating is
negligible), and the CR entropy mode, which due to the perturbed work done by the CRs (−vA ·
∇δpc)5 has a frequency ω = ωa.

When CR pressure dominates (η ≫ 1), the CR entropy mode frequency is ω = ωa/2, as
can also be seen directly from equation 2.24 (with ωd = 0). This comes directly from the CR
compressibility term −(4/3)pc∇ · (v + δvA), which at large CR pressures is more important for
the CR entropy mode evolution than the work done by the CRs on the gas (which is related to the
term −vA ·∇δpc). The gas entropy mode at large η is isochoric (|δpc/pg| ≈ |δpg/pg| ≫ |δρ/ρ|; see
Section 2.5.4). CR heating then dominates the evolution of gas-pressure oscillations (LHS of eq.
2.23) and the oscillations occur at a frequency ω = −(2/3)ωa.

Thus, CR streaming always gives rise to an oscillatory frequency O(ωa) in the CR entropy
mode, while in the gas entropy mode CR heating introduces oscillations as long as η is finite, and
the oscillation frequency approaches O(ωa) once η ∼ 1. Note that while in the classic calculations
of thermal instability (e.g., Field 1965) the entropy mode is overstable just due to gravity (rather

4For perpendicular modes (ωa = 0), the perturbed CR heating is δvA · ∇Pc, which is 0 in a uniform background.
In the adiabatic calculation in Pfrommer (2013), the CR heating is incorrectly assumed to scale as HCR ∝ ρ

γc+1/3−1/2

and contributes to thermal instability as long as there are density perturbations. This heating term is dominated
by an assumed dependence HCR ∝ δpc ∝ ρ

γc ; in fact, because CRs are adiabatic only for perpendicular modes
with ωa = 0, there is no contribution to HCR from δpc. Moreover, for modes with k · B , 0, perturbations to
HCR ∝ vA · ∇δpc ∝ ωaδpc primarily contribute to an oscillatory response, not a change to the growth rate. This is
also not captured in the heuristic calculation in Pfrommer (2013).

5Due to the “-", −vA · ∇pc is actually positive definite, possibly suggesting that the CRs gain energy according to
eq. 2.5. However, when the CR energy equation is rewritten in the conservative form,

∂pc

∂t
+

4
3
∇ ·
(
(v + vA)pc

)
=

1
3

(v + vA) · ∇pc,

it becomes clear that this term is in fact associated with the work done by the CRs on the Alfvén waves (and hence the
gas). Note that the CR energy is Ec = 3pc.
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than purely growing when there is no gravity), thermal instability modes are overstable even with-
out gravity when there is a finite CR pressure. In particular, in the presence of CR heating thermally
unstable modes are waves propagating at a speed ∝ vA.

2.5.4 Density versus Temperature Perturbations
Equation 2.24 (and δpc ≈ −δpg) offers insight into the relative importance of δpg and δρ for

driving thermal instability. This turns out to depend primarily on the CR pressure fraction η, due
to the coupling of δpc and δρ via equation 2.24. Typically, we have that:6

|δpg/pg| ≈ |δpc/pg| ∼ η|δρ/ρ|, (2.27)

so that perturbations are essentially isobaric for η ≪ 1 and isochoric when η ≫ 1 (large CR
pressure stiffens the gas). For large ωd, CR pressure perturbations are suppressed because they are
smoothed out by diffusion, and perturbations are isobaric up to larger η.

2.5.5 Asymptotic Limits
We now look back at the dispersion relation in (2.25). How the solutions of (2.25) depend on

η is particularly transparent. We can read off the solutions in the limits η → 0 and η → ∞. 7 As
η→ 0, the unstable gas entropy mode is just the standard isobaric thermal instability result, with a
small oscillatory part due to the perturbed CR heating:8

ω = −
4

15
ηωa +

2
5

i
(
2 − ΛT

)
ωc, (2.28)

which comes from the isobarically perturbed cooling function, δ(−ρ2Λ) = −ωc pg (2 − ΛT )δρ/ρ
(at small η we have that δpg/pg ≪ δρ/ρ, as discussed in Section 2.5.4). As η → ∞, we get an
overstable solution:

ω = −
2
3
ωa −

2
3

iΛTωc. (2.29)

Note that the −(2/3)ωa comes from the perturbed CR heating, as discussed in 2.5.3.1, while the
−(2/3)ΛTωc growth rate comes from the isochorically perturbed cooling function (recall that in the
limit η→ ∞, δpg/pg ≫ δρ/ρ, so that unstable modes are isochoric). CR heating does not directly
affect the growth rate. Equations 2.28 and 2.29 are consistent with the low and high η limits in
Figure 2.2 (left panels).

6The exceptions to this are if ωd ≫ ωa (so that diffusion wipes out the CR pressure perturbation), or ω = ωa − iωd

or ω = ωa/2, which are the CR entropy modes at small and large η respectively, see Section 2.5.3.1.
7Note that in our notation the limits η → 0 (η → ∞) mean that η is much smaller (larger) than any other dimen-

sionless parameter in the problem, e.g. ωd/ωa, ωa/ωc etc.
8The real (oscillatory) part of the solution in eq. 2.28 also assumes ωa > ωd (for ωd > ωa the real part vanishes as

δpc is suppressed by diffusion).
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Figure 2.2: Thermal instability growth rates as a function of η. Im(ω) > 0 corresponds to growing modes.
Unless explicitly stated otherwise in the plots, the presented growth rates are for our fiducial parameters
(ωa = 103ωc and β = 100). We consider smaller ωa in the top panels (with β = 100 fixed) and smaller β
in the middle panels (with ωa = 103ωc fixed). Left panels: Thermal instability in uniform medium. Top:
growth/damping rate for different cooling curve slopes. Middle: ΛT = −1 growth rate for different β. For
β ≳ 3, the high-β result is a very good approximation. Bottom: impact of diffusion on modes with k ·B , 0.
Right panels: same as left panels, but for a background with cosmic-ray heating balancing cooling, but no
gravity. The small-η limit is different for perpendicular modes with ωa = 0 (dotted green line in top panel;
see Section 2.6.3). For ωa = 10ωc in the top right panel (dash-dotted green line), we only plot the growth
rate for η > 0.1, where our WKB analysis is applicable. In the bottom right plot, the plateau at small η
depends on whether diffusion is more important than streaming (i.e. whether ωd > ωa or ωa > ωd).
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2.5.6 Effect of CR Diffusion
CR diffusion does not suppress the overall excitation of thermal instability. It nevertheless

suppresses the growth of some modes which would otherwise be thermally unstable (see, e.g.,
bottom left panel of Figure 2.2).

We can study the effects of CR diffusion on modes with k · B , 0 by looking at thermal
stability maps in the (η, ωd/ωa) plane. We show this in Figure 2.3. The results of the uniform
medium calculation are shown in the top panels, for ΛT < 0 (left panel, ΛT = −1) and for 2 >
ΛT > 0 (right panel, ΛT = 1/2). The blue color corresponds to stable solutions, red denotes
growing (i.e. thermally unstable) solutions. We provide approximate boundaries for the region
of parameter space where cosmic-ray diffusion can suppress thermal instability (dashed lines). A
heuristic derivation of these boundaries can be found in Appendix 2.B.

Here we summarise the main results from Appendix 2.B. For modes with ωd < ωa, diffusion
suppresses thermal instability if η satisfies:

|2 − ΛT |
ωc

ωd
≲ η ≲ |ΛT |

−1ωd

ωc
. (2.30)

If η is too small for the above condition to be satisfied, the instability is isobaric, with Im(ω) =
(2/5)ωc

(
2 − ΛT

)
. If η > |ΛT |

−1ωd/ωc, the growth rate approaches the asymptotic limit Im(ω) =
−(2/3)ΛTωc from equation 2.29.

For modes with ωd > ωa, diffusion suppresses thermal instability if η satisfies:

|2 − ΛT |
ωdωc

ω2
a
≲ η ≲ |ΛT |

−1ωd

ωc
. (2.31)

If η < |2 − ΛT |ωdωc/ω
2
a = |2 − ΛT |κωc/v2

A, the instability is again isobaric, with Im(ω) =
(2/5)

(
2 − ΛT

)
ωc. When η is large, the growth rate again approaches the asymptotic limit

Im(ω) = −(2/3)ΛTωc. Note that in the limit κ → ∞, the instability is isobaric for arbitrary η
because CR diffusion suppresses δpc (recall that in the high-β limit we have that δpc ≈ −δpg, so
δpg ≈ 0 if δpc is suppressed by CR diffusion).

2.5.6.1 Cosmic-Ray Field Length

In Appendix 2.B we show that CR diffusion can suppress thermal instability because it affects
the thermal gas in a way akin to thermal conduction (mediated by the perturbed CR heating term,
see Appendix 2.B.2). This suggests that there is a CR-diffusion analogue of the Field length for
thermal conduction (Field 1965), below which thermal instability is suppressed.

In Appendix 2.B.4 we show that the dimensionless ratio κωc/(ηv2
A), the ratio of the cooling

rate to the CR-heating rate at high-k, determines whether there is a Field length associated with
CR diffusion. If κωc/(ηv2

A) ≳ 1 then CR diffusion does not suppress thermal instability of high-k
modes (ωd ≫ ωa), as the cooling rate exceeds the CR heating rate. There is no “CR Field length"
below which thermal instability is completely suppressed. Instead, the instability of high-k modes
is isobaric with growth rates Im(ω) = (2/5)

(
2 − ΛT

)
ωc (as δpg ≈ −δpc is suppressed by CR



2.5. COSMIC-RAY THERMAL INSTABILITY IN A UNIFORM MEDIUM 20

diffusion). On the other hand, if κ ≲ ηv2
A/ωc, there is a maximum b̂ · k at which thermal instability

occurs (Figure 2.7). The CR Field length is (Appendix 2.B.4):

λCRF ∼


2π|b̂ · k̂|

√
ηκ

ωc
η < 1

2π|b̂ · k̂|
√
κ
ηωc

η > 1.
(2.32)

Note that the CR Field length is very similar to the classic Field length with the thermal diffu-
sion coefficient replaced by the CR diffusion coefficient. We can estimate κωc/ηv2

A for CGMs of
Milky-Way-like galaxies:

κωc

ηv2
A

∼ 1
κ

1028 cm2 s−1

ωc

10−15 s−1

(η
1

)−1( vA

3 × 106 cm s−1

)−2
. (2.33)

We chose κ = 1028 cm2 s−1 motivated by diffusion-only models of CR observations in the Milky
Way, which infer κ ∼ 1028 − 1029 cm2 s−1 depending on the size of the CR halo (e.g., Linden et al.
2010). It is plausible that κωc/ηv2

A > 1, so that CR diffusion does not suppress thermal instability at
small scales. However, if instead κωc/ηv2

A < 1 (e.g., if streaming is the dominant transport process
κ may be ≪ 1028 cm2 s−1), thermal instability of modes with wavelengths smaller than the CR
Field length,

λCRF ∼ 7 kpc |b̂ · k̂|
( κ

1028 cm2 s−1

)1/2( ωc

10−15 s−1 ,
)−1/2

(2.34)

is suppressed by CR diffusion (here we assumed η ∼ 1).

2.5.7 Thermal Stability versus Instability
In addition to the slope of the cooling function, ΛT , thermal stability clearly also depends on

the CR pressure fraction, η (which sets whether perturbations are isobaric or isochoric, see Section
2.5.4). We show the “critical" cooling function logarithmic slope, ΛT,c, demarcating the boundary
between thermal stability and instability to any local perturbation (satisfying ωa ≫ ωc), in the top
panel of Figure 2.4. The solid black line shows the boundary without CR diffusion, i.e. κ = 0, and
the magenta dotted line is a simple broken power-law fit of the form

ΛT,c = 2[1 + η/η∗]q, (2.35)

where η∗ = 1.62 and q = −1.19 are the best-fit parameters. For a given η, the system is thermally
unstable if ΛT < ΛT,c. The dotted line is the thermal stability boundary for perpendicular modes
only, i.e. for ωa = 0, for which pc and ρ follow an adiabatic relation with index 4/3 (note that
our thermal stability criterion is not the same as in Pfrommer 2013; see last paragraph of Section
2.5.3). It is notable that the ωa = 0 and ωa ≫ ωc values of ΛT,c in Figure 2.4 are very similar. This
again highlights that perturbed CR heating does not significantly affect the growth rates of thermal
instability. Instead, it turns a purely growing mode into an overstability (see Section 2.5.3.1).

The dashed horizontal line ΛT,c = 2 is the thermal stability/instability boundary if CR diffusion
is present and κ ≫ ηv2

A/ωc. ΛT,c = 2 due to the fact that for κ ≫ ηv2
A/ωc high-k perturbations are
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Figure 2.3: Effect of CR diffusion on thermal instability. We show thermal stability/instability boundaries of
modes with k ·B , 0 in the (η, ωd/ωa) plane, for ωa = 103ωc and β→ ∞ (the fiducial β = 100 case looks
the same). Im(ω) > 0 (growing modes) are shown in red, Im(ω) < 0 (decaying modes) are shown in blue.
Top panels: Stability/instability boundaries in uniform medium. Left: ΛT = −1. Right: ΛT = 1/2. The
dark blue shows the region where thermal instability is suppressed by CR diffusion. The light blue shows
thermal stability due to ΛT > 0 (eq. 2.39). The approximate boundaries (dashed lines) of the diffusion-
affected region are derived in Appendix 2.B. Bottom panels: same as top panels, but in a background with
CR heating balancing cooling (but no gravity). Note that the growth rate at small η (dark vs light red) now
depends on whether ωa > ωd or ωd > ωa (Im(ω) = (2/5)ωc

(
11/6 − ΛT

)
and Im(ω) = (2/5)ωc

(
5/2 − ΛT

)
respectively).
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Figure 2.4: ΛT,c versus η ≡ pc/pg, where ΛT,c is the ∂ lnΛ/∂ ln T that defines the boundary between overall
thermal stability and instability. For a given η, thermal instability occurs if ΛT < ΛT,c. Top: ΛT,c in a
uniform medium. Bottom: ΛT,c in a medium with background CR heating. We use β = 100 and we include
modes that satisfy ωa > 10ωc (ωa > 10ωc and ωa > 10ωcη

−1) in the uniform (CR-heated) background.
ΛT,c does not change significantly for β ≳ 3, and for ωa ≳ ωc (ωa ≳ ωcη

−1) in the uniform (CR-heated)
background absent diffusion (i.e. growth rates are approximately constant for local perturbations satisfying
kH ≳ 1; in Figure 2.2 we show how growth rates depend on ωa and β). The solid black line is for κ = 0 (no
CR diffusion) and the dotted magenta line is a simple broken power-law fit. The horizontal dashed line is
the stability/instability boundary when CR diffusion is present and κ ≫ ηv2

A/ωc, while the green dashed line
shows the boundary for κ = v2

A/ωc. The dotted lines are the thermal instability boundaries for perpendicular
modes only (i.e. ωa = ωd = 0).
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isobaric, and so high-k modes (with k ·B , 0) always have a growth rate Im(ω) = (2/5)ωc

(
2−ΛT

)
(see discussion in Section 2.5.6.1). For κ ≲ ηv2

A/ωc, high-k perturbations are suppressed by CR
diffusion. Only modes with wavelengths longer than the CR Field length can be thermally unstable.
For κ = v2

A/ωc (green dashed line) and η > 1, the CR Field length is at lower k than the modes
used for the stability boundary calculation (ωa > 10ωc) and so CR diffusion suppresses thermal
instability of these modes. Note that for κ = v2

A/ωc and η ≪ 1 ΛT,c = 2, as high-k modes are
isobaric at low η. We stress again that perpendicular modes (k · B = 0, dotted line) are not
affected by CR diffusion.

2.5.8 Photoionization Equilibrium
We can easily extend our CR thermal instability analysis to a background in photoionization

equilibrium (PIE), with no background CR heating, but where CR heating is still present in the
perturbed equations. We can then treat PIE analogously to our uniform background, by absorbing
photoionization heating and cooling into an effective cooling function Λ. In PIE, this effective
cooling function satisfies ΛT > 2 (e.g., Wiersma et al. 2009), and so such systems are thermally
stable for any CR pressure fraction η.

2.6 Equilibrium with Cosmic-Ray Heating Balancing Cooling

2.6.1 Equilibrium
In this section we look at equilibria in which cooling is completely balanced by cosmic-ray

heating,
− vA · ∇pc = ρ

2Λ(T ) = ωc pg. (2.36)

We still ignore gravity, i.e. we set g = 0. Hydrostatic equilibrium implies that the CR pressure
gradient is balanced by the gas pressure gradient:

∇pc = −∇pg. (2.37)

Without loss of generality, we assume that the variation is purely in the vertical direction, i.e.
∇pc = (∂pc/∂z)ẑ. We assume a uniform magnetic field, B = B sin θBx̂ + B cos θBẑ.

We choose the background pressures such that they have a linear profile, i.e. ∂pc/∂z = const,
so that CR diffusion does not enter in the equilibrium setup. The cosmic-ray pressure equation
(2.5) then implies that pc ∝ ρ

2/3 and ∇ · vA = (3/4)ωcη
−1.

2.6.2 Linear Perturbations in 1 Dimension
The background gradients give rise to extra terms in linear perturbation theory, which modify

equations 2.20–2.24. We show the linearised equations in a medium with background CR heating
in Appendix 2.C, which we again solve using MATLAB (there is again little physical insight gained
from explicitly writing down the 6th-order dispersion relation).
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In addition to explicitly solving equations 2.74–2.78, we consider the simpler 1-dimensional
problem in which B, k, ξ (as well as the background gradients) are all along ẑ. This is motivated
by the fact that we find that 1D thermal instability growth rates agree essentially perfectly with the
more general calculation with B, k and ẑ not aligned (unless k ·B = 0, which we treat separately
in Section 2.6.3). We explain why the 1D calculation correctly predicts the gas entropy mode
eigenfrequency in Appendix 2.D. In the high-β limit, the 1D dispersion relation simplifies to a
quadratic:
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(2.38)

Note that ωa again shows up due to the perturbed CR heating, and not as a result of the perturbed
magnetic field (indeed, δB = 0 in 1D).

Thermal instability growth rates as a function of η in a medium with background CR heating
are shown in the right panels of Figure 2.2. Unless explicitly stated otherwise, the growth rates
are for our fiducial parameters, ωa = 103ωc and β = 100. The β → ∞ growth rates calculated
from (2.38) overlap almost perfectly with the β = 100 calculation (and are therefore not explicitly
plotted). The top right panel shows the growth rates for different cooling curve slopes ΛT . We
also show how ΛT = −1 growth rates change for smaller ωa: ωa = 102ωc, ωa = 10ωc and ωa = 0
(k ·B = 0, see Section 2.6.3). The middle panel shows how the β = 100 growth rate (≈ β → ∞
growth rate) compares to the growth rate at smaller β and the same ΛT . The bottom panel shows
the effects of diffusion (again for ΛT = −1.0), in the limits ωd = 0 (blue), ωa ≫ ωd ≫ ωc (orange)
and ωd ≫ ωa (green). Note that unlike the uniform-medium calculation, the growth rate at small η
now depends on whether the mode is diffusion dominated (i.e. whether ωd > ωa, see 2.6.2.1).

2.6.2.1 Asymptotic Limits

We now consider the asymptotic limits in the presence of cooling, CR streaming and diffu-
sion. The η → ∞ limit is again simple and can be read off directly from (2.38). The solution is
overstable,

ω = −
2
3
ωa −

2
3

iΛTωc, (2.39)

and is identical to the uniform-medium large-η result. The −(2/3)ωa oscillation frequency again
comes from the perturbed CR heating (see Section 2.5.3.1), which turns thermally unstable modes
into propagating waves.

The small-η limit (ωa ≫ ωcη
−1 ≫ ωc)9 depends on whether the mode is streaming or diffusion

dominated. In the streaming-dominated case (i.e. modes with ωd ≪ ωa), the isobaric growth rate,
9Recall that in our local analysis we only consider ωa > ωcη

−1. This corresponds to perturbations that satisfy
kH ≳ 1, H being a characteristic background length scale.
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(2/5)ωc(2 − ΛT ), which comes from isobaric perturbations to the cooling function, δ(−ρ2Λ) =
−ωc pg (2 − ΛT )δρ/ρ, is modified by CR streaming and background heating,10

ω = −
4

15
ηωa + i

2
5
ωc

(11
6
− ΛT

)
. (2.40)

For modes with ωd ≫ ωa, one can show that

ω = i
2
5
ωc

(5
2
− ΛT

)
. (2.41)

In this strong-diffusion limit, the 5/2 (instead of 2) arises from the perturbed CR heating term,
−δvA ·∇pc = −(1/2)ωc pgδρ/ρ. Note that diffusion suppresses CR pressure perturbations, so that
−vA ·∇δpc is suppressed and does not give rise to gas-entropy oscillations (i.e., the mode is purely
growing, unlike eq. 2.40).

These results differ modestly from the uniform medium calculation (see Section 2.5.5 or com-
pare the left and right panels of Figure 2.2), as now the background CR pressure gradient modifies
the growth rate.

2.6.3 Perpendicular Modes
2.6.3.1 Dispersion Relation

The 1D calculation does not apply to modes propagating perpendicular to the magnetic field
direction, such that k · B = 0. In this case, we can obtain an approximate quadratic dispersion
relation by taking the high-β limit and dropping advective (ξ · ∇) background-gradient terms:(
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Note that ωa = ωd = 0 for modes with k ·B = 0, and so do not show up in the above dispersion
relation.

2.6.3.2 Asymptotic Limits

The η → ∞ growth rate does not change, and the solution is now a purely growing mode (as
ωa = 0):

ω = −
2
3

iΛTωc. (2.43)

For η→ 0, the mode is also purely growing, with

ω =
2
5

i
(3
2
− ΛT

)
ωc. (2.44)

10This can be shown by solving eq. 2.38 perturbatively using the ordering ωa ≫ ωcη
−1 ≫ ωc.
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This differs from the corresponding limit in Section 2.6.2.1, as for perpendicular modes the per-
turbed CR heating is −δvA · ∇pc ≈ (1/2)ωc pgδρ/ρ, while the isobarically perturbed cooling
function is still −ωc pg (2−ΛT )δρ/ρ. Note that because k ·B = 0, there are no entropy oscillations
driven by CR heating. The growth rate of perpendicular modes as a function of η (for ΛT = −1) is
plotted as a dotted green line in the top-right panel of Figure 2.2.

2.6.4 Effect of CR Diffusion
The bottom panels of Figure 2.3 show stability maps of modes with k ·B , 0 in the

(
η, ωd/ωa

)
plane in a medium with background CR heating. Once again, blue denotes stable solutions, while
red denotes growing solutions. The left panel is for ΛT = −1 and the right panel is for ΛT = 1/2.
We again provide approximate boundaries for the region of parameter space where CR diffusion
suppresses thermal instability (dashed lines). Note that these order-of-magnitude boundaries are
essentially the same as in the uniform medium case (see equations 2.30 and 2.31, and Appendix
2.B for a heuristic derivation). (2.30) and (2.31) are only slightly modified to emphasise the extra
contribution coming from terms related to background CR heating, and are now:
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respectively. If η satisfies the above, thermal instability of modes with the corresponding ωd and
ωa is suppressed by CR diffusion.

As in Section 2.5.6.1, conditions 2.45 and 2.46 can be used to derive a CR Field length be-
low which thermal instability is suppressed by CR diffusion. Like in the uniform medium, if
κωc/(ηv2

A) ≳ 1 then CR diffusion does not suppress thermal instability of high-k modes and there
is no associated CR Field length. If on the other hand κωc/(ηv2

A) ≲ 1, the CR Field length be-
low which CR diffusion suppresses thermal instability is approximately given by (2.32) (ignoring
factors of order unity, e.g. ∝ ΛT ). See Appendix 2.B.4 for more discussion.

2.6.5 Thermal Stability versus Instability
We show ΛT,c (the ΛT that is the boundary between overall thermal stability and instability, to

any local perturbation satisfying ωa ≫ ωcη
−1) as a function of η in the bottom panel of Figure 2.4.

The solid black line again shows the boundary for κ = 0, and the magenta dotted line is a broken
power-law fit of the form

ΛT,c =
11
6

[1 + η/η∗]q, (2.47)

with η∗ = 1.19 and q = −1.13 being the best-fit parameters. For a given η, the system is thermally
unstable if ΛT < ΛT,c. The dotted line shows the thermal stability boundary for perpendicular
modes only, with ωa = ωd = 0 (note the lower plateau at small η, see eq. 2.44).
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The dashed horizontal line ΛT,c = 5/2 is the thermal stability/instability boundary if CR dif-
fusion is present and κ ≫ ηv2

A/ωc. For κ ≫ ηv2
A/ωc high-k perturbations are isobaric and have a

growth rate Im(ω) = (2/5)ωc

(
5/2 − ΛT

)
(Section 2.5.6.1). For κ ≲ ηv2

A/ωc, high-k perturbations
are suppressed by CR diffusion. Only long-wavelength modes above the CR Field length can be
thermally unstable. For κ = v2

A/ωc (green dashed line) and η > 1, the CR Field length is at lower k
than the modes used for the stability boundary calculation (ωa > 10ωcη

−1, 10ωc) and so CR diffu-
sion suppresses thermal instability of these modes. Perpendicular modes (k ·B = 0, dotted line)
are not affected by CR diffusion.

2.7 CR Heating in Gravitational Field

2.7.1 Equilibrium
As in Section 2.6, we consider equilibria in which cooling is completely balanced by cosmic-

ray heating (equation 2.16). Throughout this section, we neglect the effects of diffusion. Gravity,
g = −gẑ, changes the background gas pressure gradient to:

dpg

dz
=

dpc

dz

(
γ
ωff
ωc

vA,z

cs
− 1
)
, (2.48)

where vA,z is the z-component of the Alfvén velocity. We again assume a uniform magnetic field,
B = B sin θBx̂ + B cos θBẑ.

2.7.2 Thermal Instability
We find numerically (by solving equations 2.74–2.78 in MATLAB) that gravity does not sig-

nificantly change thermal overstability growth rates for most modes (and it only slightly changes
the entropy-mode oscillation frequency, which is dominated by the perturbed CR heating, i.e. ωa,
unless ωa < ωff). In particular, for ωa ≫ ωff we recover the same growth rates as in Section 2.6
and the growth rates obtained from equation 2.38 generally agree well with the exact calculation
(which includes gravity). The green line in Figure 2.5 shows this for ΛT = −1.0, ωff = 20ωc and
ωa ≫ ωff (ωa = 103ωc): the growth rate is again (2/5)ωc

(
11/6 − ΛT

)
at small η and −(2/3)ΛTωc

at large η.
Gravity is more important when ωa < ωff (e.g. modes with k ·B = 0). This is shown by the

blue and orange curves in Figure 2.5 (with ωa = 0 and ωff = 20ωc). At small η, gravity reduces the
thermal instability growth rate by a factor of ∼ 2 and the real part of the overstable entropy mode
is dominated by the free-fall frequency, as has been found in previous work (Field 1965).11

11For η ≪ 1, gravity reduces the thermal instability growth rate to (1/5)ωc

(
5/2 − ΛT

)
, where the 5/2 (instead of 2)

arises from the perturbed CR heating term, −δvA · ∇pc ≈ −(1/2)ωc pgδρ/ρ.
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2.7.3 Convective Instability
Figure 2.5 also shows that there is a new form of instability occurring at larger η. We will

show below that buoyancy is responsible for the increased growth rate. The buoyancy instability
occurs only when ωa ≲ ωff , which corresponds to approximate adiabaticity. We note that con-
vective behaviour in the presence of cosmic rays has been studied before by Chandran & Dennis
(2006), Dennis & Chandran (2009) and Heintz & Zweibel (2018). However, the setup we consider
here, i.e. gravitationally stratified media with background CR heating, was not part of their cal-
culations. Chandran & Dennis (2006) and Dennis & Chandran (2009) did not include CR heating
and focused on the effects of CR diffusion and thermal conduction (which tend to smooth out CR
pressure and gas temperature along field lines, so their calculation differs substantially from our
Schwarzschild-like calculation below). Heintz & Zweibel (2018) looked at the effect of CR heating
on the Parker instability. However, they did not consider background CR heating, which is central
to our buoyancy-instability calculation. As a result, their instability calculation was different from
the setup we consider here.

2.7.3.1 Convective Instability Condition via Schwarzschild Criterion

We can derive a convective stability criterion using the standard picture of a rising blob, which
maintains pressure balance with its surroundings and is (approximately) adiabatic. For the latter,
we require that ωc < ωff (typically satisfied in galactic and cluster halos) and that ωa < ωff . The
latter inequality is always satisfied for modes propagating perpendicular to the magnetic field, i.e.
k ·B = 0. If both conditions are satisfied, then δ ln(pc/ρ

4/3) ≈ 0 (from the CR pressure equation)
and δ ln(pg/ρ

5/3) ≈ 0 (from the gas entropy equation). In the high-β limit, pressure balance and
adiabaticity imply that:

δpg + δpc =
5
3

pg
δρ

ρ
+

4
3

pc
δρ

ρ
= ξ · ∇pg + ξ · ∇pc. (2.49)

The displaced fluid element will be buoyantly unstable if δρ < ξ · ∇ρ, so the condition for insta-
bility is

ξ · ∇pg + ξ · ∇pc <
5
3

pg

ρ
ξ · ∇ρ + 4

3
pc

ρ
ξ · ∇ρ. (2.50)

Using (2.48) and that the background density and CR pressure satisfy ρ ∝ p3/2
c , this can be rewritten

as:
η
(
γ
ωff
ωc

vA,z

cs
− 2
)
>

3
2
γ, (2.51)

where γ = 5/3 is the gas adiabatic index. We derive the same criterion directly from the lin-
earised equations in Appendix 2.E (also assuming adiabaticity). The above condition turns out to
be equivalent to

dseff

dz
∝

d
dz

(
ln

pg

ρ5/3 + η ln
pc

ρ4/3

)
< 0. (2.52)

If the above is satisfied, the system is convectively unstable. Condition (2.51) is shown in Figure
2.5 as the dashed vertical line.
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Figure 2.5: Thermal and convective instability of gravitationally stratified plasmas with ωff = 20ωc, β = 10
and ωa = 0 (blue and orange lines). Buoyancy-driven instability occurs when η satisfies eq. 2.51 (vertical
dashed line). The dashed curve shows the approximate growth rate from equation (2.86). At smaller η
(and ωa < ωff), gravity reduces the thermal instability growth rate by a factor of ∼ 2. When ωa > ωff
(ωa = 103ωc; green line), perturbations are not adiabatic and we recover the same thermal instability growth
rate as without gravity.

Using hydrostatic equilibrium (2.48), we can further rephrase the instability criterion in terms
of the CR and gas pressure scale heights (H−1

c ≡ d ln pc/dz, H−1
g ≡ d ln pg/dz),

Hc

Hg
− η >

3
2
γ. (2.53)

Therefore, a necessary condition for convection is that Hc/Hg > 5/2. We show the convective
(in)stability in the (η, β) plane in Figure 2.6. The system becomes convectively unstable for a
larger range of η and β when ωff cos θB/ωc is increased.

We derive an approximate growth rate for the convective instability in the limit ωff ≫ ωc, ωa in
Appendix 2.E. The approximate growth rate (equation 2.86, which is derived by dropping any de-
pendence on ΛT ) is shown in Figure 2.5 as the dashed line and agrees well with the exact solution.

2.8 Discussion
In this paper, we have studied the linear thermal stability of systems heated by streaming cosmic

rays. Streaming cosmic rays can be an important heating mechanism in cluster halos (Guo & Oh
2008; Jacob & Pfrommer 2017a; Jacob & Pfrommer 2017b). Our order-of-magnitude estimates
suggest that CR heating may also be important in galactic halos, particularly for Milky Way mass
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Figure 2.6: Convective stability/instability boundary in the (β, η) plane for two choices of ωff cos θB/ωc,
where θB is the angle between the z-axis (direction of gravity and pressure gradients) and the magnetic field.
For a given choice of ωff cos θB/ωc, there is a maximum β for which convection can occur, as determined
by equation (2.51).

systems (see Section 2.4 and Figure 2.1). Thermal instability is a viable mechanism for creating
the cold gas that is found in these systems.

We calculated thermal instability growth rates in the presence of CR heating for a wide range
of η ≡ pc/pg, in three background equilibria: in a uniform background (where cooling is balanced
by an unspecified volumetric heating, but CR heating is present in the perturbed equations; Section
2.5), in a background with CR heating balancing cooling (Section 2.6), and in a gravitationally
stratified background heated by CRs (Section 2.7). Gas in PIE in galactic halos is a special case of
our uniform background calculation (Section 2.5.8), which is always thermally stable, independent
of CR pressure.

The key timescales/frequencies in this problem are summarised in equations 2.9–2.13 and in-
clude the cooling, sound, Alfvén (CR heating), CR diffusion and free-fall frequencies. The Alfvén
frequency enters the thermal instability calculation primarily via the perturbed CR heating, as the
entropy mode is not sensitive to magnetic tension and pressure. We focused on local WKB per-
turbations, satisfying equations 2.14 and 2.15, in the high-β limit. Our fiducial parameter set was
ωa = 103ωc, β = 100, and ωff = 20ωc when we included gravity (this is well motivated in galactic
and cluster halos, where typically ωff ≳ 10ωc, but we stress that it need not be true in general astro-
physical systems). Our results depend weakly on β for β ≳ 3. Thermal instability growth rates also
do not depend strongly on wavenumber k for ωa ≳ ωc (ωa ≳ ωcη

−1) in the uniform (CR-heated)
background, which corresponds to WKB perturbations satisfying kH ≳ 1. Figure 2.2 shows this
weak dependence for ωa ≤ 103ωc (top panels) and 3 ≤ β ≤ 100 (middle panels).

We have focused on cosmic rays that stream down their pressure gradient at the Alfvén ve-
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locity, while also including CR diffusion along the magnetic field. We find that CR diffusion can
suppress thermal instability of a subset of modes (bottom panels of Figure 2.2 and Figure 2.3) and
modify the overall thermal stability to arbitrary perturbations (Figure 2.4). However, the dominant
CR transport process in galactic halos remains unclear and it is uncertain whether CR streaming
and diffusion are generally simultaneously relevant. Indeed, a variety of work suggests that if CR
scattering is mostly due to self-excited Alfvén waves, then even cosmic rays that are imperfectly
coupled to the thermal plasma (where the imperfect coupling is what gives rise to a possibly diffu-
sive behaviour) are not truly diffusive (Skilling 1971; Wiener et al. 2013; Wiener et al. 2018), and
instead stream at super-Alvénic speeds. Super-Alfvénic streaming does not, however, increase the
rate at which CRs heat the gas (i.e. the CRs still heat the gas at a rate −vA · ∇pc). Moreover, how
super-Alfvénic streaming speeds depend on other fluid quantities is not well known. As a result,
we did not include super-Alfvénic streaming in our calculation.

The different background equilibria we have considered allowed us to disentangle how CR
physics affects thermal instability. Independent of background, thermal instability growth rates
depend strongly on η, which determines whether the instability is isobaric (small η) or isochoric
(large η); see equation 2.27 and associated discussion. The perturbed CR heating also introduces
high-frequency oscillations (order ωa for η ∼ 1, independent of background) in the gas entropy
mode (see Section 2.5.3.1), so that thermal instability is formally an overstability with an oscilla-
tion frequency comparable to or larger than its growth rate. This is true even in a uniform medium,
where thermal instability is normally a purely growing mode. CR heating does not, however, mod-
ify isobaric (small η) or isochoric (large η) thermal instability growth rates, (2/5)ωc(2 − ΛT ) and
−(2/3)ΛTωc respectively, in a uniform background (Section 2.5.5 and left panels of Figure 2.2).
Background CR heating does slightly change isobaric thermal instability growth rates at small η
(Sections 2.6.2 and 2.6.3, and right panels of Figure 2.2). Incorporating gravity in our analysis
(Section 2.7) did not significantly affect thermal instability growth rates, but it allowed us to deter-
mine under what conditions a gravitationally stratified, CR-heated medium is buoyantly unstable.

Thermal instability growth rates as a function of η are plotted in Figure 2.2 for different cooling
curve slopes ΛT (top panels), plasma-β (middle panels) and for different CR-diffusion frequencies
ωd (bottom panels; there is no CR diffusion present in the top and middle panels). The left panels
show the uniform-background (Section 2.5) calculation results, the right panels show the corre-
sponding results in a background in which cosmic-ray heating balances cooling (Section 2.6). As
already mentioned in the previous paragraph, thermal instability growth rates depend strongly on
η. Growth rates do not depend strongly on β for β ≳ 3, as is expected in galaxy halos, groups and
clusters.

Figure 2.4 shows the boundary between thermal stability and instability to arbitrary (WKB and
high-β) perturbations in a uniform background (top) and the CR-heated background (bottom). We
formulate this in terms of the critical cooling curve slope ΛT,c = ∂ lnΛ/∂ ln T above which all
perturbations are thermally stable. When there is no CR diffusion present, the “critical" cooling
curve slope ΛT,c as a function of η is well described by a broken power law. If CR diffusion is
present and κωc/ηv2

A ≫ 1, the stability/instability boundary is simple and independent of η: CR
diffusion renders high-k (large ωd, k ·B , 0) perturbations isobaric, so that ΛT,c = 2 in a uniform
background (eq. 2.28) and ΛT,c = 5/2 in the CR-heated background (eq. 2.41). If κωc/ηv2

A ≲ 1,
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CR diffusion introduces a Field length below which thermal instability is suppressed (eq. 2.32).
This affects the thermal stability/instability boundary in Figure 2.4 (e.g., green dashed line for
κ = v2

A/ωc). We stress, however, that unlike thermal conduction, there is only an effective CR Field
length for particular CR diffusion coefficients, namely κ ≲ ηv2

A/ωc. For κ → ∞ CRs have no effect
on thermal instability because the CR pressure is essentially uniform.

Modes with ωff > ωa (i.e. nearly adiabatic modes) can further be convectively unstable (driven
by buoyancy). Convective instability occurs if equation 2.51 is satisfied (see also Figure 2.6). By
defining seff ∝ ln pg/ρ

5/3 + η ln pc/ρ
4/3, the criterion for convective instability can be written in

the form dseff/dz < 0. In our setup, this turns out to be satisfied if the ratio of the CR pressure
scale height to the gas pressure scale height is sufficiently large (equation 2.53). We also derive an
approximate expression for the growth rate of the convective instability for perpendicular modes
(see equation 2.86 and the dashed curve in Figure 2.5). Our calculation differs from previous
work that considered buoyancy instabilities in the presence of cosmic rays, which did not consider
background CR heating (Chandran & Dennis 2006; Dennis & Chandran 2009; Heintz & Zweibel
2018). Background CR heating is essential in our calculation, as it is the background gas-pressure
gradient, set by hydrostatic equilibrium and ∇pc (which is set by cooling), that drives convection.

Our calculations show that systems heated by cosmic rays are likely thermally unstable for
temperature ranges relevant to galactic halos (105K ≲ T ≲ 107K, where ΛT ≲ 0; Draine 2011).
In halos that are in PIE, however, ΛT is large (> 2) and the gas is thermally stable for any η.
In cluster halos, where the temperature can exceed ≈ 107K and thermal Bremsstrahlung is the
dominant radiative cooling process (with ΛT = 0.5), CR heating could lead to thermal stability if
CR pressure dominates (i.e. η ≳ 1) and CR streaming dominates over diffusion. If CR diffusion
is important (and κ ≫ ηv2

A/ωc), however, it eliminates CR pressure perturbations and cooling by
Bremsstrahlung would be thermally unstable. Moreover, η ≳ 1 in cluster halos is disfavoured
observationally (e.g., Huber et al. 2013). It is thus likely that all halo gas in CIE is thermally
unstable in the presence of CR heating.

It remains to be seen how CR heating affects the nonlinear evolution of the thermal instability
and the resulting multiphase structure of halo gas. In particular, are there significant differences
introduced by the O(ωa) entropy oscillations introduced by the CR heating term? This heating
frequency can be larger than the free-fall frequency, and it is plausible that this may change the
effect of buoyant oscillations on the saturation of thermal instability. However, we note the caveat
that long-wavelength modes tend to dominate the nonlinear saturation of thermal instability, for
which ωa > ωff is not necessarily satisfied. A sufficiently small ratio of the cooling time to the
free-fall time, tcool/tff ≲ 10, has been identified as crucial for the development of multiphase gas in
hydro simulations (e.g. Sharma et al. 2012). Ji et al. (2018) showed that magnetic fields enhance
thermal instability by suppressing buoyant oscillations via magnetic tension. Future simulations
will address how entropy oscillations driven by CR heating (which also occur at ∼ the Alfvén
frequency) affect this evolution and the creation of multiphase gas. In particular, it seems plausible
that the dimensionless ratios tcool/tA (with tA ≡ H/vA) and η = pc/pg, which are related to the
propagation speed of thermally unstable modes, may be important for the nonlinear evolution of
thermal instability.



33

Appendix

2.A Cosmic-Ray Pressure Fraction
In this section we derive order-of-magnitude estimates of the CR pressure fraction, η, which

we used to create the bottom panel of Figure 2.1. We consider the injection of cosmic rays by Type
II Supernovae (Section 2.A.2) and AGNs (Section 2.A.3). This enables us to estimate the (global)
cosmic ray energy budget, which is related to a spatially-averaged CR pressure fraction η. We find
that both mechanisms can in principle produce a significant cosmic-ray pressure, with the caveat
that we treat the system in a globally-averaged sense.

2.A.1 Gas Thermal Energy
We want to compare the total cosmic ray energy to the total thermal energy of the gas within

the halo. In what follows, we estimate the thermal energy of the gas filling the galaxy out to the
virial radius Rvir. We define Rvir as the radius within which the mean matter density is 200 times
the cosmic critical density, i.e. ⟨ρm⟩Rvir = 200ρc. We can approximate the total thermal energy
within the virial radius as

Eth ∼
3
2

∫ Rvir

0

ρgkBT
mH

4πr2dr (2.54)

where ρg is the thermal gas density. We assume an isothermal profile with virialized kBT =
GM200mH/(3Rvir):

Eth ∼ 2πR3
vir

⟨ρg⟩RvirkBT
mH

∼
⟨ρg⟩Rvir

⟨ρm⟩Rvir

GM2
200

2Rvir
, (2.55)

where M200 = (4π/3)⟨ρm⟩R3
vir. For ⟨ρg⟩Rvir = (xΩB/ΩM)⟨ρm⟩vir, where x accounts for missing

baryonic mass relative to the cosmic mean, we obtain

Eth ∼
xΩB

ΩM

GM2
200

2Rvir
∼ 3.6 × 1058 ergs

( x
1.0

)( M200

1012M⊙

)5/3
. (2.56)

2.A.2 Energy of Cosmic Rays: Injection by Type II SNe
We first consider cosmic rays injected by Type II Supernovae. We assume that there is a core-

collapse Supernova for every 100M⊙ of stars formed, so that NII = M∗/100M⊙ is the total number



2.B. COSMIC-RAY DIFFUSION VERSUS THERMAL INSTABILITY 34

of Type II SNe in a galaxy with stellar mass M∗. We define χ as the ratio of the number of cosmic
rays still present in the halo (out to the virial radius) to the total number produced throughout the
galaxy’s lifetime. The total cosmic ray energy in the halo is then

Ec = χ fIIEIINII. (2.57)

In the above expression, fIIEII is the typical CR energy injected by a single type II Supernova ( fII

is the fraction of supernova energy released as cosmic rays). As is commonly assumed, we take
fII ≈ 0.1 (Zweibel 2017), so that for a typical non-neutrino energy of 1051 ergs released by Type II
Supernovae, fIIEII ≈ 1050ergs. This implies that

Ec ∼ 1059 ergs
( χ
1.0

)( M∗
1011M⊙

)
, (2.58)

where our choice of χ = 1.0 reflects the possibility that in massive galaxies with large Rvir, the
escape time of cosmic rays may be of order the galaxy age. Comparing (2.58) to (2.56) gives

η ∼
Ec

2Eth
∼ 1.4

( χ
1.0

) ( x
1.0

)−1( M∗
1011M⊙

)( M200

1012M⊙

)−5/3
. (2.59)

2.A.3 Energy of Cosmic Rays: Injection by SMBHs
We now consider cosmic rays that are created by SMBHs. We can estimate the CR energy

content by assuming that a fraction fBH of the SMBH luminosity goes into cosmic rays, i.e. the
SMBH injects cosmic-ray energy at a rate ϵ fBHṀc2, where ϵ is the black hole’s radiative efficiency
and Ṁ is its mass accretion rate. This gives:

Ec ∼ χϵ fBHMBHc2, (2.60)

where χ is again defined as the ratio of the number of cosmic rays still present in the halo to the
total number produced throughout the galaxy’s lifetime. The total CR energy is approximately

Ec ∼ 18 × 1059ergs
( χ
1.0

) (ϵ fBH

10−3

)( MBH

109M⊙

)
. (2.61)

Comparing this to the total thermal energy in equation (2.56), we find that

η ∼
Ec

2Eth
∼ 25

( χ
1.0

) (ϵ fBH

10−3

) ( x
1.0

)−1( MBH

109M⊙

)( M200

1012M⊙

)−5/3
. (2.62)

2.B Cosmic-Ray Diffusion versus Thermal Instability
We now provide a short, heuristic derivation for conditions (2.30) and (2.31). For simplicity,

here we consider the case of a uniform background (Section 2.5). An analogous calculation for the
CR-heated background gives the very similar conditions (2.45) and (2.46) (see also Figure 2.3). In
2.B.4 we show that CR diffusion can introduce a Field length, below which thermal instability is
suppressed.
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2.B.1 Modes with ωd ≪ ωc

In the limit where ωd = 0 or ωd ≪ ωc, diffusion is negligible for any η and the η → 0, η → ∞
limits are connected smoothly at intermediate η (as in Figure 2.2).

2.B.2 Modes with ωc ≪ ωd ≲ ωa

In this limit, (2.24) gives an approximate leading-order relation between δpc and δρ:

δpc

pg
∼ η
δρ

ρ

(
1 + i
ωd

ωa

)
. (2.63)

Inserting this approximate relation into equation 2.23 gives

δpg

pg

( ω
γ − 1

+ iωcΛT

)
−
δρ

ρ

( γω
γ − 1

− iωc(2 − ΛT )
)
∼
δρ

ρ
η(ωa + iωd). (2.64)

For η ≪ 1, i.e. δpg/pg ≈ −δpc/pg ≪ δρ/ρ, the CR-diffusion term introduced by the perturbed CR
heating essentially acts like a thermal-conduction term with a thermal diffusion coefficient ∼ ηκ.
The diffusive term ∝ iηωdδρ/ρ acts to oppose the perturbed cooling term ∝ iωc(2−ΛT )δρ/ρ which
drives thermal instability. Diffusion suppresses thermal instability if:

ηωd ≳ |2 − ΛT | ωc, (2.65)

which gives the lower bound in (2.30).
This suppression of thermal instability by CR diffusion is not present at large η, when the

second term on the LHS of (2.64), ∝ δρ/ρ, is negligible (thermal instability is isochoric). Using
δpg ≈ −δpc and (2.63) in eq. 2.64 one can show that CR diffusion is unimportant when

η ≳
ωd

ωc
|ΛT |

−1, (2.66)

at which point we recover the η→ ∞ (isochoric) asymptotic growth rate (eq. 2.39).

2.B.3 Modes with ωd ≫ ωa

In this limit, (2.24) gives:
δpc

pg
∼
δρ

ρ
iη
ωa

ωd
. (2.67)

Inserting this into equation 2.23 gives

δpg

pg

( ω
γ − 1

+ iωcΛT

)
−
δρ

ρ

( γω
γ − 1

− iωc(2 − ΛT )
)
∼
δρ

ρ
iη
ω2

a

ωd
. (2.68)
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Figure 2.7: Thermal instability growth rates as a function of wavenumber k for ΛT = −1, β = 100 and η = 1
in a uniform medium. θ is the angle between k and the background magnetic field. We show growth rates
for different CR diffusion coefficients κ. For κ ≫ ηv2

A/ωc (solid line) CR diffusion does not affect thermal
instability growth rates at high k. For κ ≪ ηv2

A/ωc (dotted line) diffusion introduces a CR Field length below
which thermal instability is suppressed. In all cases, growth/damping rates are constant at high k, as the
perturbed CR heating is scale-independent for ωd ≫ ωa.

Note that the CR heating term ∝ ηω2
a/ωd = ηv2

A/κ is scale independent. CR diffusion again acts
to oppose the perturbed cooling term ∝ iωc(2 − ΛT )δρ/ρ which drives thermal instability. For
δpg/pg ≪ δρ/ρ (for η ≪ ωd/ωa) CR diffusion suppresses thermal instability if

η
ω2

a

ωd
∼
ηv2

A

κ
≳ |2 − ΛT |ωc. (2.69)

This is the lower bound in (2.31). Note that there is no scale dependence. As a result, if
κωc/(ηv2

A) ≫ 1 then short-wavelength modes with ωd ≫ ωa are not suppressed by CR diffu-
sion. If, however, κωc/(ηv2

A) ≪ 1, CR diffusion instead leads to the decay of high-k gas-entropy
modes (see Figure 2.7).

As described before in 2.B.2, when η is sufficiently large for the second term on the LHS to be
negligible (thermal instability is isochoric), CR diffusion does not affect the TI growth rate. CR
diffusion is unimportant when:

η ≳
ωd

ωc
|ΛT |

−1. (2.70)

This is the upper bound in (2.31).
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2.B.4 CR-Diffusion Field Length
We can rephrase conditions 2.30 (eq. 2.65 and eq. 2.66) and 2.31 (eq. 2.69 and eq. 2.70)

in terms of length scales at which CR diffusion suppresses thermal instability. In particular, in
Appendix 2.B.2 we demonstrate that CR diffusion can play a role similar to thermal conduction.
This suggests that there is a CR-diffusion analogue of the Field length for thermal conduction
(Field 1965) below which thermal instability is suppressed. Thermal instability of long-wavelength
modes with b̂ · k < vA/κ (ωd < ωa) is suppressed by CR diffusion if

(b̂ · k)2 ≳ max
(ωc

ηκ
|2 − ΛT |,

ηωc

κ
|ΛT |
)
. (2.71)

The above is derived from and equivalent to equation 2.30. Thermal instability of short-wavelength
modes with rapid CR diffusion, b̂ · k > vA/κ (ωd > ωa), is suppressed by CR diffusion if

κωc

ηv2
A

|2 − ΛT | ≲ 1 and (b̂ · k)2 ≳
ηωc

κ
|ΛT |. (2.72)

The above is equivalent to equation 2.31.
Note that if κ ≳ ηv2

A/ωc (ωd ≳ ηω
2
a/ωc) then CR diffusion does not suppress thermal instability

of high-k modes (ωd ≫ ωa), even though ωd is large. There is therefore no “CR Field length"
below which thermal instability is completely suppressed. Instead, the instability of high-k modes
is isobaric with growth rates Im(ω) = (2/5)

(
2 − ΛT

)
ωc. Cosmic rays have no effect on thermal

instability as the rate at which they heat the gas at high k is less than the cooling rate (κωc/ηv2
A is

the ratio of the cooling rate to the CR heating rate at high k, see eq. 2.68).
Conversely, if κ ≲ ηv2

A/ωc, the cosmic-ray heating rate at high k exceeds the gas cooling rate.
CR diffusion then suppresses thermal instability of high-k gas-entropy modes. In other words,
when κ ≲ ηv2

A/ωc there is a maximum b̂ · k at which thermal instability occurs. Using (2.71) and
(2.72) and dropping order unity ∼ ΛT factors one can show that the CR Field length is given by:

λCRF ∼


2π|b̂ · k̂|

√
ηκ

ωc
η < 1

2π|b̂ · k̂|
√
κ
ηωc

η > 1.
(2.73)

This is the CR-diffusion analogue of the Field length (Field 1965). We stress again that this CR
Field length exists only if κ ≲ ηv2

A/ωc. Figure 2.7 shows how the value of κ determines the
stability/instability of high-k modes.

2.C Linearised Equations with Background Cosmic-Ray Heat-
ing

When there is background cosmic-ray heating (balancing cooling), the linearised equations are

δρ

ρ
−

3
2
η−1ωc

ξz
vA,z
= −ik · ξ, (2.74)
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− ρω2ξ = −ik
(
δpc + δpg +

B · δB
4π

)
+ i

(B · k)δB
4π

− ωffcsδρ ẑ (2.75)

δB = i(B · k)ξ − iB(k · ξ), (2.76)

δpg

pg

( ω
γ − 1

+ iωcΛT

)
+
ωωcξz

(γ − 1)vA,z

(
1 − γ

ωff
ωc

vA,z

cs

)
= ωa

δpc

pg

− ωaωc
ξz

vA,z
− iωc

δρ

ρ

(5
2
− ΛT

)
−
( γ
γ − 1

ω + iωc

)
ik · ξ, (2.77)

δpc

pg
(ω − ωa + iωd + iωcη

−1) − ωωc
ξz

vA,z
=
δρ

ρ

(
−

2
3
ηωa + iωc

)
−

4
3

iηωk · ξ + iκb̂ · k(δb̂ · ∇pc) + iκk · δb̂(b̂ · ∇pc), (2.78)

where δb̂ = δB/B − δB/B b̂. For the calculations in Section 2.6, where we ignore gravity, we set
ωff = 0 in the above equations.

2.D Validity of the 1D Thermal Instability Calculation
For a high-β uniform medium, the dispersion relation of the thermally unstable entropy mode

can be derived simply by imposing pressure balance δpc ≃ −δpg and combining the CR and gas
energy equations. This leads directly to equation 2.25. The same approach does not work in the
presence of background cosmic-ray heating and/or gravity because then the cosmic-ray and gas
energy equations have terms proportional to the fluid displacement ξ (see Appendix 2.C) and so
imposing δpc ≃ −δpg is not sufficient to uniquely determine the entropy mode properties. In this
Appendix, we discuss the approximations that successfully reproduce the entropy mode in this
limit. In particular, we explain why the 1D calculation in Section 2.6.2, which assumes ξ ∥ B, is a
reasonable approximation for the thermal instability eigenfrequency.

We note from the start that the usual Boussinesq approximation, k · ξ = 0, often utilized to
impose pressure balanced fluctuations, is not appropriate for this problem. Instead, for ωa ≫ ωc,
pressure balance, δpc + δpg ≈ 0 (ω ≪ kcs implies that δpc + δpg ≪ δρc2

s), simply determines
the leading-order gas entropy frequency (eq. 2.26), which satisfies ω < ωa for all η. For η ≲ 1,
ω ≪ ωa and the induction equation implies that δB/B≪ δρ/ρ. Moreover, one can show that

ξ⊥
ξ∥
=

k⊥k∥ω2

ω2k2
∥
− ω2

ak2
∼
ω2

ω2
a
, (2.79)

where ξ⊥ and ξ∥ are the fluid displacements perpendicular and parallel to the magnetic field, re-
spectively. So, for η ≲ 1, where ω ≪ ωa, we can restrict our analysis to field-aligned perturbations
ξ ∥ B, for which δB = 0 (just like in the 1D calculation). It turns out that ξ ∥ B yields the same
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dispersion relation as the 1D calculation (2.38), independent of propagation direction (for a fixed
ωa).

For η ≫ 1 thermal instability becomes isochoric. As a result, the 1D dispersion relation still
gives the correct thermal-instability eigenfrequency, even though ξ ∥ B is not strictly true (ξ∥ still
exceeds ξ⊥ by a factor of a few). When δpc/pg ≫ δρ/ρ, ξ is not important for thermal instability,
as it is tied to density perturbations.

The 1D calculation also works well in the limit of strong diffusion, ωd ≫ ωa. In this case, the
ω of the gas entropy mode also never exceeds ωa. This, again, is determined by δpc + δpg ≈ 0,
which to leading order gives the quadratic:

η
(4
3
ω −

2
3
ωa

)(3
2
ω + ωa

)
+

5
2
ω
(
ω − ωa + iωd

)
= 0. (2.80)

Small deviations (primarily in the real part) between the 1D thermal instability eigenfrequency
and the exact solution occur only when η ∼ ωcωd/ωa, where thermal instability is most strongly
damped by diffusion. The CR-diffusion induced damping rate is O(ωa), while δpc/pg ∼ δρ/ρ, and
so the assumption that ξ ∥ B is only approximately well motivated. We stress, however, that the
deviations (which mainly affect the oscillation frequency) occur only in the case where thermal
instability is very rapidly damped.

2.E Convective Instability: Growth-Rate Derivation from Lin-
earised Equations

In this section we derive an approximate growth rate for the CR convective instability in the
limitωff ≫ ωc, ωa. The growth rate is not exact, as we drop any dependence that isO(ωc) ≪ ωff , ω.
We consider the simplest case of a purely vertical magnetic field and horizontal propagation: B =
Bẑ and k = kx̂, for which ωa = 0.

In this limit, one can derive the approximate dispersion relation

ω4 + bω2 + c = 0, (2.81)

where
b = −

(
ω2

s +
4

3γ
ηω2

s +
3
2
η−1ωcωff

cs

vA,z

)
, (2.82)

c = −
ω2

sωcωff

2γη
cs

vA,z

[
2η
(
γ
ωffvA,z

ωccs
− 2
)
− 3γ
]
. (2.83)

This has solutions of the form:

ω2 =
−b ±

√
b2 − 4c

2
(2.84)

which will have an unstable branch if c < 0, i.e.

2η
(
γ
ωff
ωc

vA,z

cs
− 2
)
> 3γ, (2.85)



2.E. CONVECTIVE INSTABILITY FROM LINEARISED EQUATIONS 40

which is the same condition as obtained in the main text using the Schwarzschild criterion (equa-
tion 2.51). Equations (2.82)–(2.84) can be combined to give an expression for the growth rate. In
the common limit b2 ≫ c (large ωs limit), the growth rate simplifies to

ω ≈ i
√

c
b
≈ i
√
ωcωff

cs

vA,z

[ 1
γ

(
γ
ωffvA,z

ωccs
− 2
)
− 3

2η
−1

1 + 4η/(3γ)

]1/2
(2.86)

Note that as η→ ∞, the growth rate goes to 0. The dashed curve in Figure 2.5 shows the approxi-
mate growth rate from equation (2.86), which agrees well with the exact calculation.
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Chapter 3

Sound-Wave Instabilities in Dilute Plasmas
with Cosmic Rays: Implications for
Cosmic-Ray Confinement and the Perseus
X-ray Ripples

An earlier version of this article was previously published as Kempski P., Quataert E., and
Squire J., 2020, MNRAS, 493, 5323 with a correction published in Kempski P., Quataert E., and
Squire J., 2021, MNRAS, 500, 1231. Some text, figures and equations in this chapter are updated
versions of the originally published ones to include the correction.

3.1 Abstract
Weakly collisional, magnetised plasmas characterised by anisotropic viscosity and conduction

are ubiquitous in galaxies, halos and the intracluster medium (ICM). Cosmic rays (CRs) play
an important role in these environments as well, by providing additional pressure and heating to
the thermal plasma. We carry out a linear stability analysis of weakly collisional plasmas with
cosmic rays using Braginskii MHD for the thermal gas. We assume that the CRs stream at the
Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy (∆p) of
the thermal plasma. We find that this ∆p-dependence introduces a phase shift between the CR-
pressure and gas-density fluctuations. This drives a fast-growing acoustic instability: CRs offset
the damping of acoustic waves by anisotropic viscosity and give rise to wave growth when the ratio
of CR pressure to gas pressure is ≳ αβ−1/2, where β is the ratio of thermal to magnetic pressure,
and α, typically ∼ 1, depends on other dimensionless parameters. In high-β environments like the
ICM, this condition is satisfied for small CR pressures. We speculate that the instability studied
here may contribute to the scattering of high-energy CRs and to the excitation of sound waves
in galaxy-halo, group and cluster plasmas, including the long-wavelength X-ray fluctuations in
Chandra observations of the Perseus cluster. It may also be important in the vicinity of shocks

https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5323K/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.1231K/abstract
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in dilute plasmas (e.g., cluster virial shocks or galactic wind termination shocks), where the CR
pressure is locally enhanced.

3.2 Introduction
The interstellar medium (ISM), the intracluster medium (ICM), and the halos of galaxy groups

and Milky-Way-like galaxies are filled with hot and dilute gas, in which the electron/ion mean
free paths along the magnetic field greatly exceed the particle gyroradii. Under such conditions,
transport of heat and momentum is anisotropic and happens preferentially in the direction of the
local magnetic field. The particle mean free path in these tenuous plasma environments can be
large (i.e. the plasma is weakly collisional). As a result, anisotropic transport is efficient and can
significantly affect the thermal and dynamical evolution of the gas.

The importance of anisotropic conduction and viscosity in cluster environments has been un-
derpinned by a variety of analytic theory and simulations. Anisotropic transport is an efficient
driver of buoyancy instabilities (Balbus 2000; Quataert 2008; Kunz et al. 2012) and significantly
affects the gas dynamics in cluster simulations (e.g., Ruszkowski & Oh 2010; Parrish et al. 2012;
Yang & Reynolds 2016; Barnes et al. 2019; Kingsland et al. 2019).

The ISM, galaxy halos, groups and the ICM are also permeated by a non-thermal population
of relativistic particles known as cosmic rays (CRs). Even though they essentially propagate at
the speed of light, their lifetime in galactic discs and halos can be quite long due to scattering off
electromagnetic fluctuations. The waves responsible for the scattering can be Alfvén waves gen-
erated by the cosmic rays themselves through the streaming instability (Kulsrud & Pearce 1969).
Pitch-angle scattering by the excited waves isotropises the cosmic rays in the frame of the Alfvén
waves. In this so-called self-confinement picture, cosmic rays are scattered towards isotropy in
the Alfvén frame and collectively drift down their pressure gradient at the Alfvén speed, provided
that the pitch-angle scattering is sufficiently rapid. For slower pitch-angle scattering rates, the CR
transport deviates from pure streaming at the Alfvén speed, but its exact nature remains uncertain
(cosmic rays are believed to either diffuse or stream at super-Alfvénic speeds, or both; Skilling
1971, Wiener et al. 2013; Amato & Blasi 2018). The self-confinement picture is in contrast to the
extrinsic turbulence picture, where CRs are scattered primarily by extrinsic fluctuations that are not
excited by the particles themselves. In this case, cosmic rays generally do not stream at Alfvénic
speeds, even in the limit of fast scattering. In this work, we focus on self-confined cosmic rays.

The additional pressure force (−∇pc) and gas heating (−vA · ∇pc; Wentzel 1971) provided
by the cosmic rays can be important for the dynamics and thermal evolution of gas in galaxies,
halos and clusters (e.g., Breitschwerdt et al. 1991; Loewenstein et al. 1991; Everett et al. 2008;
Socrates et al. 2008; Guo & Oh 2008; Zweibel 2013; Ruszkowski et al. 2017; Zweibel 2017; Jacob
& Pfrommer 2017a; Jacob & Pfrommer 2017b; Ehlert et al. 2018; Farber et al. 2018; Kempski
& Quataert 2020). Cosmic rays can also directly affect MHD waves. For example, Begelman &
Zweibel (1994), hereafter BZ94, showed that CR heating can drive an acoustic instability in low-β
plasmas (β ≲ 1).

The purpose of this work is to study sound waves in the presence of cosmic rays in magnetised,
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weakly collisional plasmas, i.e. plasmas with large anisotropic viscosity and conduction. We use
the Braginskii MHD closure for weakly collisional plasmas (Braginskii 1965) with anisotropic
conduction and anisotropic pressure (the latter acts as an anisotropic viscosity), coupled to a 1-
moment fluid equation for the cosmic-ray pressure. The cosmic rays are assumed to stream at the
Alfvén speed vA,∆p, which in a weakly collisional plasma depends on the pressure anisotropy of the
thermal plasma, ∆p. We find that this dependence of vA,∆p on ∆p, which is not present in standard
high-collisionality MHD, gives rise to a rapidly growing acoustic instability (i.e. instability of the
fast magnetosonic mode). The instability is driven by a phase shift between the CR pressure and
gas density. Unlike the acoustic instability in BZ94, the Cosmic Ray Acoustic Braginskii (CRAB)
instability that we find here is not driven by CR heating and does not require low β. In fact, the
CRAB instability exists even at small CR pressures and has faster growth rates in high-β systems.
It is thus likely important in the ICM, in galactic halos and in the hot ISM.

The remainder of this work is organised as follows. We present the CR–gas equations, exam-
ine the validity of our model and introduce characteristic timescales in Section 3.3. We describe
the CR-driven acoustic instability in Section 3.4 and consider possible astrophysical implications
in Section 3.5. In Section 3.5.1 we speculate on the potential connection between the acous-
tic instability and the X-ray surface-brightness fluctuations observed in galaxy clusters such as
Perseus (Fabian et al. 2003). In 3.5.2 we hypothesise that the instability is likely important close
to shocks, including the vicinity of the virial radius. We discuss the potential contribution of the
long-wavelength waves generated by the instability to the scattering of high-energy cosmic rays in
Section 3.5.3. We summarise our results in Section 3.6.

3.3 Equations
We model the dilute, weakly-collisional plasmas filled with cosmic rays by using the Braginskii

MHD equations coupled to a cosmic-ray pressure,

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

ρ
dv
dt
= −∇

(
p⊥ + pc +

B2

8π

)
+
B · ∇B

4π
+∇ · (b̂b̂∆p

)
(3.2)

∂B

∂t
=∇× (v ×B) (3.3)

ρT
ds
dt
= −vA,∆p · ∇pc +H − C −∇ ·

(
Π · v

)
−∇ ·Q (3.4)

dpc

dt
= −

4
3

pc∇ · (v + vA,∆p) − vA,∆p · ∇pc +∇ · (κb̂b̂ · ∇pc
)
, (3.5)

where v is the gas velocity, ρ is the gas density, pg and pc are the gas and CR pressures respectively,
B is the magnetic field (with unit vector b̂), and s = kB ln(pg/ρ

γ)/(γ − 1)mH is the gas entropy per
unit mass. d/dt ≡ ∂/∂t + v ·∇ denotes a total (Lagrangian) time derivative. H and C are arbitrary
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volumetric heating and cooling rates. The Braginskii MHD pressure anisotropy (with viscosity νB)
is

∆p = p⊥ − p∥ = 3ρνB
(
b̂b̂ : ∇v −

1
3
∇ · v

)
= 3ρνB

d
dt

ln
B
ρ2/3 , (3.6)

where ⊥ and ∥ denote the directions perpendicular and parallel to the magnetic field (Braginskii
1965). p⊥ and p∥ are related to the total thermal pressure by

p⊥ = pg +
1
3
∆p. (3.7)

The viscous stress tensor in the gas-entropy equation depends on the pressure anisotropy and is
given by

Π = −∆p
(
b̂b̂− I

3

)
. (3.8)

Note that in the absence of background flow, the perturbed ∇ · (Π · v) in the gas-entropy equation
is second-order and does not contribute in our linear analysis. Q in equation 3.4 is the anisotropic
thermal heat flux,

Q = −κBb̂b̂ · ∇T, (3.9)

where κB is the thermal conductivity.1 vA,∆p in equations 3.4 and 3.5 is the Alfvén speed in the
presence of pressure anisotropy,

vA,∆p =
B√
4πρ

(
1 +

4π∆p
B2

)1/2
. (3.10)

We assume that cosmic rays stream down their pressure gradient at the Alfvén velocity vA,∆p
and we also include CR diffusion along the magnetic field, for which we assume a constant diffu-
sion coefficient κ. We note that formally CRs stream with velocity vst = −sgn(b̂ · ∇pc)vA,∆p. This
ensures that cosmic rays stream along the magnetic field down their pressure gradient and makes
the CR heating term −vst ·∇pc positive definite. In our linear stability analysis cosmic rays stream
at vA,∆p, as we consider background equilibria which satisfy −vA,∆p · ∇pc > 0.2

1While in this work we assume that the heat transport is diffusive, we note that recent particle-in-cell simulations
suggest that the transport may also occur down the temperature gradient at the whistler phase speed (Roberg-Clark
et al. 2018).

2We do not explicitly include background gradients in our linear stability calculation, and so we treat the back-
ground as effectively uniform. However, for ∇pc to have a well-defined sign in the linear stability calculation, so that
−vA,∆p · ∇pc is positive definite, pc cannot be exactly uniform. A background CR pressure gradient is necessary.
However, we can neglect terms associated with background gradients as long as the additional timescale introduced
by a spatially varying background is much longer than the timescale associated with the acoustic instability consid-
ered here. This is well-motivated given the fast growth rates of the instability, which can be comparable to the sound
oscillation frequency. We can, for example, consider an equilibrium with −vA,∆p · ∇pc = C, where C is a cooling rate
with an associated cooling frequency ωc. Our linear stability calculation can neglect background gradients provided
that ωs, Im(ω) ≫ ωc. If this is satisfied, the equlibrium ρ, pg and pc can be treated as uniform without significantly
changing the results.
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3.3.1 MHD Waves in Weakly Collisional Plasmas
In this section we ignore cosmic rays and review how standard MHD waves are modified at low

collisionality. The pressure anisotropy changes the Alfvén speed (eq. 3.10) because it modifies the
effective magnetic tension, as can be seen by rewriting eq. 3.2:

ρ
dv
dt
= −∇(p⊥ + pc +

B2

8π
) +∇ ·

(BB

4π
(
1 +

4π∆p
B2

))
. (3.11)

Note that the factor
(
1+4π∆p/B2) enters the effective magnetic tension term (which is responsible

for Alfvén waves). The dispersion relation for Alfvén waves can then be easily derived by assum-
ing wave perturbations ∝ exp

(
ik · r − iωt

)
, crossing the momentum equation twice with k and

noting that δ∆p = 0 for Alfvénic perturbations (which are incompressible and do not change the
B-field strength, see eq. 3.6). From this, equation 3.10 follows.

The pressure anisotropy has a different effect on the slow and fast modes, which are viscously
damped in Braginskii MHD (still ignoring cosmic rays). By inserting eq. 3.6 into eq. 3.2 (and
noting eq. 3.7), we obtain:

ρ
dv
dt
= ... +∇ ·

(
3ρνB
(
b̂b̂ −

I

3
)(
b̂b̂ : ∇v −

1
3
∇ · v

))
. (3.12)

This diffusion operator associated with the Braginskii viscosity damps the fast and slow magne-
tosonic waves, because they involve perturbations that linearly generate δ∆p, unlike the linearly
undamped Alfvén waves for which δ∆p = 0. In the weak damping limit, the fast and slow modes
are damped at a rate (Braginskii 1965; Parrish et al. 2012):

ων =
νBk2

6

(
(k̂ · v̂) − 3(b̂ · k̂)(b̂ · v̂)

)2
, (3.13)

where v̂ is the unit vector in the direction of the mode’s perturbed velocity. We will show that
in the presence of cosmic rays this is strongly modified, and sound waves can instead be linearly
unstable.

3.3.2 Validity of the Model
Our CR–Braginskii MHD fluid model requires that the CR scattering rate is fast, so that eq.

3.5 appropriately describes the CR pressure evolution. It also requires that the collision time of
the thermal ions is short compared to the macroscopic timescales of interest (so that a weakly
collisional, rather than collisionless, treatment is appropriate for the thermal plasma). In what
follows, we check the validity of the CR–Braginskii MHD fluid model, focusing on the ICM and
the hot phase of the ISM.

For the CR pressure equation (eq. 3.5) to be a good model of the cosmic rays, the GeV CR
collision frequency must be large. It is the GeV CRs that are important, as they dominate the bulk
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CR energy. The CR collision frequency is the rate at which the pitch angle changes by order unity,
due to scattering by EM fluctuations of magnitude δB⊥ at the resonant wavelength:

νCR ∼ Ω
(δB⊥

B

)2
∼ 10−8 s−1

(γc

1

)−1 B
1 µG

(δB⊥/B
10−3

)2
, (3.14)

where γc is the CR Lorentz factor and δB⊥ is evaluated for fluctuations whose wavelength parallel
to the mean B-field is of order the Larmor radius of the GeV particles. Models of CR observations
in the Milky Way based on pure diffusion infer a CR diffusion coefficient κ ∼ 1028 − 1029 cm2 s−1

depending on assumptions about the CR halo size (e.g., Linden et al. 2010). This motivates the
choice of δB⊥/B ∼ 10−3 used in (3.14), as δB⊥/B ∼ 10−3 corresponds to a GeV CR diffusion
coefficient κ ∼ c2/νCR ∼ 1029 cm2 s−1 in a 1 µG field. However, this observationally inferred
CR diffusion coefficient is not necessarily appropriate if CR streaming is the dominant transport
process, as is theoretically favoured for the low-energy CRs that dominate the total energy density
(these low-energy cosmic rays are the most likely to be adequately described by the fluid model
used in this paper; Blasi et al. 2012). In the case of streaming transport the diffusion coefficient
may be ≪ 1028 − 1029 cm2 s−1. In particular, in the hot ISM and ICM damping processes are
weaker than in the cold/neutral ISM and so the streaming instability can grow to large amplitudes
(e.g., Figure 1 in Amato & Blasi 2018). For example, if δB⊥/B ∼ 10−2 then νCR ∼ 10−6 s−1 and the
CR diffusion coefficient is significantly smaller, κ ∼ 1027 cm2 s−1.

The weakly collisional fluid model used in this paper requires that the ion-ion collision fre-
quency is larger than the rate of change of all fields, ω ≲ νii. We note that ω ≪ νii is formally
required in deriving the equations of Braginskii MHD. We will considerωs ≲ νii in our calculations
(where ωs is the adiabatic sound frequency and typically the largest frequency in the problem), but
our main conclusions do not change if we choose a smaller upper limit on ωs. We now separately
estimate the ion collision rates in the ICM and the hot ISM. We will show that the CR scattering
rate is much higher than the ion-ion collision frequency in both the ICM and hot ISM.

3.3.2.1 ICM

Under typical ICM conditions, the plasma is magnetised and the collisionality is low. For
representative ICM temperatures and densities, the ion-ion collision frequency is

νii ∼
nie4π lnΛ

m1/2
i (kBT )3/2

∼ 8 × 10−14 s−1
( T
5 × 107 K

)−3/2 ni

0.01 cm−3 , (3.15)

for a Coulomb logarithm lnΛ ≈ 38. This corresponds to a collision time of approximately 0.4
Myrs. We note that νCR ≫ νii (see eq. 3.14) and so the CR–Braginskii MHD fluid model is a good
description for the ICM if we consider fields that vary at a frequency ω ≪ νii (see Section 3.3.3
for how this translates into constraints on the characteristic frequencies in our problem).
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3.3.2.2 Hot ISM

The plasma filling the hot ISM is cooler, so that the ion-ion collision frequency is larger than
in the ICM:

νii ∼ 3 × 10−11 s−1
( T
106 K

)−3/2 ni

0.01 cm−3 (3.16)

(for lnΛ ≈ 32). This ion-ion collision frequency is still, however, significantly smaller than the
CR collision frequency (order unity pitch angle change; see eq. 3.14). Just like in the ICM, the
CR–Braginskii MHD formulation is therefore well motivated in the hot ISM as long as we consider
ω ≪ νii.

3.3.3 Dimensionless Parameters and Characteristic Timescales
We define the ratio of CR pressure to gas pressure,

η ≡
pc

pg
, (3.17)

and the ratio of thermal to magnetic pressure,

β ≡
8πpg

B2 . (3.18)

The key frequencies in this problem are the gas sound frequency (with cs being the adiabatic gas
sound speed),

ωs ≡ kcs; (3.19)

the Alfvén and CR-heating frequency,

ωa ≡ k · vA; (3.20)

the cosmic-ray diffusion frequency,
ωd ≡ κ (b̂ · k)2; (3.21)

the Braginskii viscous frequency,

ωB ≡ νB(b̂ · k)2 ≈
pg

3ρνii
(b̂ · k)2; (3.22)

and the conductive frequency
ωcond ≡ χB(b̂ · k)2, (3.23)

where χB = κB/nkB is the thermal diffusion coefficient. We define the Braginskii viscous scale,

lνB ≡
νB

cs
∼ lmfp, (3.24)
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where lmfp in the last step is the ion mean free path. We can relate the diffusive timescales by
defining the thermal Prandtl number,

Pr ≡
νB

χB
, (3.25)

and the ratio of the CR diffusion coefficient to the Braginskii viscosity,

Φ ≡
κ

νB
. (3.26)

It is commonly assumed that the heat flow is dominated by electrons, such that for a typical plasma
Pr ∼ 10−2 (set by the ion-to-electron mass ratio). This assumption is, however, not well motivated
when the timescales of interest are shorter than the ion-electron temperature equilibration time
(which is longer than the ion-ion collision time by a square root of the ion to electron mass ratio).
This is the case in this work, where we consider sound waves at low collisionalities. A more
accurate calculation should therefore consist of two entropy equations and two heat fluxes, one for
each species. We avoid this complication in the main text of this paper by considering a single heat
flux with varying conductivity: ωcond = ωB (Pr = 1, ∼ heat flux carried by ions) and ωcond = 100ωB

(Pr = 0.01, ∼ heat flux carried by electrons). We show in Appendix 3.A and Figure 3.7 that our
conclusions do not change when a two-fluid electron-ion system is considered instead, and that
Pr ∼ 1 is a somewhat better approximation to the two-fluid results (a similar two-fluid electron-ion
system was used in the context of cluster sound waves by Zweibel et al. 2018).
Φ in eq. 3.26 relates the Braginskii viscous frequency to the CR diffusion frequency,

Φ =
ωd

ωB
∼

c2

c2
s

νii

Ω(δB⊥/B)2 , (3.27)

where c is the speed of light. For typical ICM parameters,

Φ ∼ 2
( T
5 × 107 K

)−5/2 ni

0.01 cm−3

( B
1 µG

)−1(δB⊥/B
10−3

)−2
. (3.28)

This suggests that Φ ∼ 1 in the ICM (or Φ ≪ 1, if δB⊥/B ≫ 10−3). Φ ≫ 1 for typical temper-
atures in the hot ISM, unless δB⊥/B ≫ 10−3 (which is plausible, see discussion in Section 3.3.2).
Motivated by these results, we will focus primarily on Φ = 0 (ωd = 0), Φ = 1 (ωd = ωB) and
Φ = 10 (ωd = 10ωB).
ωs is the largest characteristic frequency in the β > 1 plasmas that we focus on. We require

that ωs ≲ νii so that the weakly collisional description is appropriate (see Section 3.3.2), which
translates into

ωs

νii
∼
ωB

ωs
≲ 1. (3.29)

The ICM is of primary interest in this work and so we will focus mainly on the high-β limit
(β ∼ 100 unless specified otherwise).
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3.3.4 Linearised Equations
We consider a uniform and static background equilibrium with H = C, i.e. all background

fluid variables are assumed to be spatially constant. Thus, there are no background gradients in
the linear stability analysis (see the comment regarding the CR pressure gradient in Footnote 2).
Without loss of generality, we consider a vertical magnetic field, B = Bẑ.

We carry out a linear stability calculation of the CR–gas equations (see Section 3.3). All
perturbed quantities are assumed to vary as δX(r, t) ∝ exp

(
ik ·r− iωt

)
. Without loss of generality,

we take k in the xz-plane, k = k sin θx̂ + k cos θẑ. Alfvén waves can be isolated as described in
Section 3.3.1, which remains valid in the presence of CRs. The remaining modes can be found by
considering all linearised equations excluding the y-component of the momentum and induction
equations:

ω
δρ

ρ
= k · v, (3.30)

ωvx =kx
c2

s

γ

δpg

pg
− ωavA

δBx

B
+ kxv2

A
δBz

B
+

2
3

i
kx

kz
ωBvz −

1
3

i
k2

x

k2
z
ωBvx + ηkx

c2
s

γ

δpc

pc
, (3.31)

ωvz =kz
c2

s

γ

δpg

pg
− ωavA

δBz

B
+ kzv2

A
δBz

B
−

4
3

iωBvz +
2
3

i
kx

kz
ωBvx + ηkz

c2
s

γ

δpc

pc
, (3.32)

ω
δBx

B
= −kzvx, (3.33)

ω
δBz

B
= kxvx, (3.34)

ω
δpg

pg
= γk · v − i(γ − 1)ωcond

(δpg

pg
−
δρ

ρ

)
+ η(γ − 1)ωa

δpc

pc
, (3.35)

ω
δpc

pc
=

4
3
k · v −

2
3
ωa
δρ

ρ
+

4
3

i
ωB

ωa
kzvz −

2
3

i
ωB

ωa
kxvx + (ωa − iωd)

δpc

pc
, (3.36)

where γ = 5/3 is the gas adiabatic index. We find the exact eigenmodes by solving the full matrix
eigenvalue problem using MATLAB.

3.4 The Cosmic-Ray Acoustic Instability in Braginskii MHD
Before we show growth rates and simplified dispersion relations, we discuss the physical mech-

anism that drives the sound-wave instability.
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Figure 3.1: Schematic of the mechanism driving the acoustic instability. The solid waveforms show the
leading-order adiabatic gas-density, gas-pressure and CR-pressure perturbations in the frame comoving with
the sound wave at the phase speed vph in the B-direction. The pressure-anisotropy perturbation δ∆p ∼
νBvphdδρ/dz (eq. 3.6 in the moving frame; dashed magenta line) has a 90◦ phase shift relative to δρ/ρ,
δpc/pc and δpg/pg. Without CRs this phase shift leads to the well-known damping of acoustic waves by
anisotropic viscosity. In the presence of cosmic rays, the work done by δ∆p on the CRs (dashed blue line
and eq. 3.37) is positive in regions where δpc > 0: it therefore amplifies δpc in the regions where δpc > 0
and reduces δpc where δpc < 0. This drives the perturbations and leads to wave growth.
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3.4.1 Driving Mechanism and Negative Effective Viscosity from Cosmic
Rays

The instability is driven by a phase shift between the CR-pressure and the gas-density pertur-
bations, which comes from the dependence of the Alfvén speed on ∆p (see eq. 3.39 in Section
3.4.2). Such phase shifts generally occur in the presence of diffusion operators (e.g., CR diffusion
also leads to a phase shift between δpc and δρ). However, these tend to damp the perturbations
instead of driving instabilities. The phase shift introduced by vA,∆p gives rise to an instability be-
cause it introduces an additional diffusion operator in the momentum equation (eq. 3.2) which can
have a negative diffusivity (negative viscosity) and thus generate wave growth.3

For standard, collisional MHD sound waves, the CR pressure responds essentially adiabatically
to density fluctuations in the limit ωa, ωd ≪ ωs (otherwise the CR response is generally non-
adiabatic, see eq. 3.36 with ωB = 0). In weakly collisional plasmas the CR pressure also responds
to changes in the pressure anisotropy, which in turn depends on the rate of change of δρ. This
phase shift (in addition to the adiabatic response) provides a driving force to the wave, which can
win over the damping by anisotropic viscosity and give rise to instability.

The key term for driving the instability is the compression work done on the cosmic rays by
the pressure anisotropy,

dδpc

dt
= −

2pc

3ρv2
A

vA · ∇δ∆p + ... , (3.37)

which comes from the ∇ · vA,∆p term in equation 3.5. To see what this term does to the sound
wave, it is useful to consider the frame comoving with the wave in the B-direction. In this frame,
moving at a phase speed vph, the wave profile is stationary to leading order (i.e. ignoring the growth
or damping of the wave) and is shown in Figure 3.1. δ∆p ∼ νBvphdδρ/dz (eq. 3.6 in the moving
frame) has a 90◦ phase shift relative to δρ/ρ, δpc/pc and δpg/pg, and without cosmic rays this phase
shift leads to wave damping. However, the work done by ∆p on the CRs (eq. 3.37) is positive in
regions where δpc > 0, as shown in Figure 3.1. This process amplifies δpc in the regions where
δpc > 0 and reduces δpc where δpc < 0. This drives the perturbations and leads to wave growth.

This driving manifests itself mathematically as a negative effective diffusion coefficient (i.e.
negative viscosity) introduced by the cosmic rays in the momentum equation. This can be demon-
strated by inserting equation 3.5 into equation 3.2 and assuming wave perturbations proportional
to f (k · r − ωt) propagating at the sound speed. Ignoring all other non-diffusive terms in the
momentum equation, this gives:

ρ
dv
dt
= ... +∇ ·

(
3ρνB
(
b̂b̂ −

I

3
)(
b̂b̂ : ∇v −

1
3
∇ · v

))
−

2η
√
β

3
√

2γ
(b̂ · k̂)∇

(
3ρνB
(
b̂b̂ : ∇v −

1
3
∇ · v

))
.

(3.38)

The first term is the damping by Braginskii viscosity, the second term is the additional diffusive
term that comes from δpc. Longitudinal acoustic waves approximately satisfy v ∥ k. If b̂ · k̂ > 0,

3A negative diffusion coefficient can be thought of as standard diffusion reversed in time.
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Figure 3.2: Growth rates of the CR-driven acoustic instability in the (η = pc/pg, θ) plane for β = 8πpg/B2 =

10, 100, 400, Pr = 1, Φ = 0 and νBk2 = 0.2ωs (klνB = 0.2 ∼ klmfp, where lmfp is the ion mean free path; see
eq. 3.24). Im(ω) > 0 corresponds to wave growth and the contour lines show the boundary between damping
by anisotropic viscosity and the growth driven by the CRs. Marginal stability occurs first for oblique modes,
but otherwise parallel propagating modes are fastest-growing. The dotted vertical lines show η = β−1/2,
which is the approximate instability-threshold scaling at high β (e.g., eq. 3.43). Even for η well above the
instability threshold (shown by the contour line), there is a ridge of stability around θ = 55◦. For θ ≲ 55◦,
the mode with Re(ω) ≈ ωs is unstable, while for θ ≳ 55◦, the counterpropagating mode with Re(ω) ≈ −ωs

is unstable (see Section 3.4.1). All colormaps in this work have log-linear scales that are linear between
−0.1 and 0.1.

the last term acts as a diffusion operator with negative viscosity if b̂b̂ : ∇v − 1
3∇ · v ≳ 0, i.e.

cos2 θ ≳ 1/3 (θ ≲ 55◦), where θ is the angle between k and B. For cos2 θ ≲ 1/3 (θ ≳ 55◦), it acts
as a diffusion operator with negative viscosity for longitudinal acoustic modes propagating in the
opposite direction, b̂ · k̂ < 0.4

The transition at θ ≈ 55◦ is clearly present in Figure 3.2, where we show growth rates of the
sound-wave instability in the (η, θ) plane, for νBk2 = 0.2ωs (klνB = 0.2) and β = 10, 100, 400. Even
for η well above the instability threshold (shown by the contour line), there is a ridge of stability
around θ = 55◦. For θ ≲ 55◦, the mode with Re(ω) ≈ ωs is unstable, while for θ ≳ 55◦, the
counterpropagating mode with Re(ω) ≈ −ωs is unstable.

3.4.2 1D Dispersion Relation
Because sound waves are primarily longitudinal, it is instructive and also physically well mo-

tivated to look at the instability in the 1-dimensional case. This also turns out to be sufficient to
predict the approximate growth rate of the fastest growing mode in most cases, as fastest growth
typically occurs for propagation parallel to B. As we will show, this is not true for η just above

4Note that the magnetic-field direction in b̂ · k̂ in eq. 3.38 comes from the direction of CR streaming (which occurs
in the b̂-direction due to our assumption that the background CR pressure decreases in the direction of the magnetic
field).
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Figure 3.3: Wavenumber dependence of growth rates of the acoustic instability as a function of η = pc/pg

(β = 100 and Pr = 1 in all panels). On the y-axis, lνB ≡ νB/cs ∼ lmfp, where lmfp is the ion mean free path
(i.e. the y-axis can be written as klνB = νBk2/ωs). We consider different CR diffusion coefficients (see eq.
3.26 for the definition of Φ). The solid line corresponds to Im(ω) = 0, the dashed line is Im(ω) = 0.1ωs.
At each k, we plot the fastest growth rate (i.e. fastest growing mode across all directions of propagation, θ).
See Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3 for more discussion of how Φ affects the growth rates.

marginal stability, where fastest growth can occur at finite θ, and when the CR diffusion coefficient
is large.

For simplicity, we consider sound waves in the high-β limit, such that ω ∼ ωs ≫ ωa. Equation
3.36 then simplifies to

δpc

pc
=
δρ

ρ

(4
3
+

4
3

i
ωB

ωa

)(
1 + i
ωd

ω

)−1
. (3.39)

The phase shift between the CR pressure and gas density introduced by ∆p (the first bracket multi-
plying δρ/ρ) is what destabilises the wave. In contrast, the phase shift introduced by CR diffusion
(second term in the second bracket) acts as a damping.

In the high-β limit (ωs ≫ ωa), the 1D dispersion relation for sound waves is given by,

0 = ω2 −
ω2

s

γ

γω + i(γ − 1)ωcond

ω + i(γ − 1)ωcond
+

4
3

iωBω

− η
ω2

s

γ

(4
3
+

4
3

i
ωB

ωa

)(
1 + i
ωd

ω

)−1
.

(3.40)

The second term represents the standard sound-wave frequency in the presence of anisotropic
conduction (adiabatic without conduction, isothermal in the limit of rapid conduction), the third
term is the damping by anisotropic viscosity and the fourth term is the additional pressure response
that comes from the cosmic rays, which can be destabilising.

We first consider equation 3.40 without CR diffusion, i.e. ωd = 0. We then look at the impact
of CR diffusion in Section 3.4.2.3.



3.4. THE COSMIC-RAY ACOUSTIC INSTABILITY IN BRAGINSKII MHD 54

3.4.2.1 Nearly Isothermal Sound Waves

In the limit of rapid conduction, ωcond ≫ ωs (heat conduction carried by electrons and equili-
brated with the ions, i.e. Pr ≪ 1), the dispersion relation is (in the absence of CR diffusion)

ω2 −
ω2

s

γ
+

4
3

iωBω − η
ω2

s

γ

(4
3
+

4
3

i
ωB

ωa

)
= 0. (3.41)

Driving by δpc (Section 3.4.1) wins over damping by anisotropic viscosity when

η
4ω2

sωB

3γωa
≳

4
3
ωBω ≈

4ωBωs

3
√
γ
, (3.42)

where we ignored O(η) corrections to the sound speed due to the cosmic rays. The condition for
instability can be written in terms of η and β as (in 1D):

η ≳ β−1/2 (nearly isothermal). (3.43)

Note that the instability threshold is independent ofωB, asωB is the characteristic frequency of both
anisotropic viscous damping and the driving by δpc. We will show that the instability threshold is
generally at slightly lower η if oblique propagation is included.

3.4.2.2 Nearly Adiabatic Sound Waves

If the thermal Prandtl number is not set by electron conduction and we instead have Pr ∼ 1, the
appropriate limit to consider is ωs ≫ ωB ∼ ωcond. The dispersion relation is then approximately
given by

ω3 − ω2
sω + iω2

s
(γ − 1)2

γ
ωcond +

4
3

iωBω
2 − η

ω2
sω

γ

(4
3
+

4
3

i
ωB

ωa

)
≈ 0. (3.44)

Now the driving from the δpc response has to compete against damping by both anisotropic con-
duction and viscosity (third and fourth terms, respectively). For ωcond ∼ ωB (Pr ∼ 1), however, the
correction to the instability threshold is at most order unity, and η ≳ β−1/2 (eq. 3.43) is still the
approximate instability condition.

Figure 3.2 shows that this η ≳ β−1/2 scaling for instability works well for a wide range of β
(η = β−1/2 is shown by the dotted vertical lines). The plots are for νBk2 = 0.2ωs and Pr = 1, i.e.
ωs ≫ ωB, ωcond. The contours show the transition from damping by Braginskii viscosity to growth
driven by the cosmic rays. Marginal stability occurs first for oblique modes, but otherwise parallel
propagating modes are fastest-growing.

Figure 3.3a shows how growth rates depend on wavenumber k, for Pr = 1, β = 100 and Φ = 0
(no CR diffusion). The solid line corresponds to Im(ω) = 0, the dashed line is Im(ω) = 0.1ωs. At
each k, we plot the fastest growth rate (i.e. fastest growing mode across all directions of propaga-
tion, θ). The instability threshold is nearly independent of k, as the damping rates by conduction
and viscosity are comparable at all k, so that η ≳ β−1/2 is sufficient for instability across the entire
range in k (equation 3.43 and discussion in the paragraph following eq. 3.44). However, the growth
rates generally increase with increasing k.
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3.4.2.3 Effect of CR Diffusion

In the limit where CR diffusion is slow compared to the sound frequency, ωd ≪ ωs (this
corresponds to Φ ≪ (klmfp)−1), the CR term driving the instability in equation 3.40 is mildly
reduced (compared to the ωd = 0 case):

η
ω2

s

γ

4
3

i
ωB

ωa
→ η
ω2

s

γ

(4
3

i
ωB

ωa
−

4
3

i
ωd

ω

)
. (3.45)

CR diffusion acts to oppose the ∆p perturbations in the CR pressure equation that drive the insta-
bility, and as a result shifts the instability threshold to larger η (compared to, e.g., eq. 3.43). This
shift is small, however, if ωd/ωs ≪ ωB/ωa, i.e. Φ ≪

√
β (as well as Φ ≪ (klmfp)−1, i.e. the weak

diffusion limit).
In the limit ωd ≫ ω ∼ ωs, the CR term in eq. 3.40 is:
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)
. (3.46)

The driving by CR pressure is completely shut off as δpc is suppressed by diffusion. In the 1D case
considered here, for ωd ≫ ωs instability can only occur if ω ≫ ωs, i.e. the sound speed is much
larger than the thermal adiabatic sound speed. This occurs at η ≫ 1, when the CRs set the sound
speed (the CR sound speed is

√
4pc/3ρ ).

Note, however, that even if ωd ≫ ωs for parallel propagation, ωd will be less than ωs at the
same k for θ close to 90 degrees. As a result, for η ≲ 1 and large CR diffusion coefficients, Φ ≫ 1,
the short-wavelength perturbations with κk2 ≫ kcs can still be unstable for oblique propagation
(this can, e.g., be seen in Figure 3.4c).

The effects of CR diffusion as a function of wavenumber k and CR pressure fraction η are
shown in Figure 3.3b and Figure 3.3c. As before, the solid line corresponds to Im(ω) = 0, the
dashed line is Im(ω) = 0.1ωs. At each k, we plot the fastest growth rate across all propagation
angles. All parameters are the same as in Figure 3.3a, except for Φ, which now is Φ = 1 in 3.3b
and Φ = 10 in 3.3c. The Φ = 1 growth rates are quite similar to Φ = 0 (no diffusion). Noticeable
differences occur primarily at high k, so that the overall instability threshold is not significantly
changed. When CR diffusion is strong (Φ = 10), significantly larger η is required for instability.

3.4.3 Stability versus Instability &Maximum Growth Rate
We show the fastest growing mode as a function of η, restricting to modes with klνB ≤ 1, in

Figure 3.4. We select the mode with the maximum Im(ω), but in the plots we normalise its growth
rate using the ωs at the k at which the maximum growth occurs. At each η, we also show the θ and
k at which the fastest growth occurs. The top panel is forΦ = 0 (no CR diffusion), the middle panel
is for Φ = 1 (ωd = ωB) and the bottom panel is for Φ = 10 (ωd = 10ωB). We see that the minimum
CR pressure fraction (η) required for instability is lowest for small thermal Prandtl numbers and
no CR diffusion (see also Figure 3.3). While the instability threshold is not significantly modified
when Φ = 1, it occurs at significantly larger η in the limit of strong CR diffusion, Φ = 10.
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Figure 3.4: Fastest growing mode of the
acoustic instability as a function of η. We
consider wavelengths that satisfy klνB ≤ 1,
i.e. νBk2 ≤ ωs (klmfp ≲ 1). We select the
mode with the maximum Im(ω), but in the
plots we normalise its growth rate using the
adiabatic sound frequency at the k where
the maximum growth occurs. Panel a) is
for Φ = 0 (no CR diffusion), panel b) is for
Φ = 1 (ωd = ωB) and Panel c) is forΦ = 10
(ωd = 10ωB). In each of the three panels,
we also show the wavenumber k and direc-
tion of propagation θ of the fastest growing
mode (at klνB = 1 the lines are slightly dis-
placed for visualisation purposes). Insta-
bility occurs for smaller ηwhen the thermal
Prandtl number Pr is small and when there
is no CR diffusion. When CR diffusion is
strong (Φ = 10) significantly larger η are
required for instability. See Section 3.4.3
for more discussion.
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In the absence of CR diffusion (Figure 3.4a), fastest growth occurs at the highest k and θ = 0,
except when η is just above marginal stability. CR diffusion often shifts the fastest growing mode
to lower k (middle and bottom panels). However, even in the presence of CR diffusion, when η is
sufficiently above threshold, fastest growth again occurs at the highest k and θ = 0.

We conclude by stressing that for the wide range of parameters (Pr, Φ, β) considered here,
the instability and fast growth rates ∼ O(ωs) occur even for small η in high-β evironments like the
ICM. We also note that while we have focused on the simple case of a background equilibrium
with ∆p = 0, the acoustic instability will not be significantly affected by a finite background ∆p as
long as the timescale over which the background ∆p changes is slow compared to the growth rate
of the instability.5

3.4.4 Short Wavelengths and the Collisionless Limit
For the acoustic instability considered in this work, the Braginskii MHD model of the thermal

plasma is only valid for timescales longer than the ion-ion collision time, i.e. wavelengths longer
than the ion mean free path. To examine the acoustic instability below the mean-free-path scale (but
at scales sufficiently large for the cosmic rays to be coupled to the gas), a collisionless description
of the thermal plasma is necessary. Preliminary calculations using the CGL and Landau-fluid
closures of the kinetic MHD equations (Chew et al. 1956; Snyder et al. 1997) suggest that the
instability still exists below mean-free-path scales and has growth rates that are faster than in
the weakly collisional limit. The mechanism driving the instability is somewhat different from the
weakly-collisional regime illustrated in Figure 3.1: the predominant driver in the collisionless limit
is that at high β, the pressure anisotropy can turn cosmic rays into a fluid with ∼negative effective
adiabatic index, thus rendering sound waves unstable.6

We note, however, that the collisionless description of the thermal plasma coupled to a CR-
pressure equation (eq. 3.5) is itself valid only at sufficiently large scales. It breaks down on small
scales below the CR mean free path, where the CRs are no longer coupled to the thermal plasma

5When the background ∆p is spatially varying, there will be an extra timescale, τ, in our problem. However, as
long as Im(ω)τ ≫ 1, which is reasonable for short-wavelength sound waves, the instability will not be significantly
affected by the background ∆p. The effect of a spatially constant ∆p is to modify the effective magnetic-tension and
CR-heating terms, i.e. terms that are O(ωa) and negligible for our acoustic instability at high β.

6We consider the 1D case in which δB = 0 and for simplicity ignore the effect of heat fluxes on the pressure
anisotropy (i.e. CGL closure). In the collisionless limit ∆p approximately satisfies,

1
pg

d∆p
dt
∼ −

1
ρ

dρ
dt
, (3.47)

so that δ∆p/pg ∼ −δρ/ρ. In contrast to the weakly collisional case, the relative phase shift between δ∆p and δρ is π
instead of π/2 (Figure 3.1). Assuming ω ≈ ωs ≈

√
βωa and β ≫ 1, δpc and δρ then roughly satisfy:

δpc/pc ∼ −
√
βδρ/ρ. (3.48)

Cosmic rays thus behave like a fluid with large negative (∼ −
√
β) adiabatic index. This can destabilise the sound wave.
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(i.e. the CR scattering rate is no longer the fastest timescale in the problem). We defer a more
detailed treatment of the collisionless limit to future work.

3.4.5 Relation to BZ94 Acoustic Instability
The CRAB instability is very different from the low-β acoustic instability driven by CR heating

found in BZ94. BZ94 considered high-collisionality MHD, not the Braginskii MHD limit we have
focused on. Moreover, the CRAB instability is not driven by CR heating, but by the work done on
the cosmic rays by the pressure anisotropy of the thermal plasma (and is more unstable at high β).

Nevertheless, at low β (β < 1) we do also find the BZ94 acoustic instability, albeit diminished
by the damping by anisotropic viscosity and conduction (most strongly at short wavelengths). In
addition to the BZ94 acoustic instability, at β < 1 there are still unstable modes driven by the
pressure anisotropy.

3.4.6 Role of Plasma Microinstabilities
Future simulations will shed light on the long-term evolution of the CRAB instability. Never-

theless, we can already anticipate that plasma microinstabilities growing at the ion gyroscale, such
as the mirror and firehose instabilities, may significantly affect the instability at large amplitudes.

Both the mirror (Barnes 1966; Hasegawa 1969) and firehose (Rosenbluth 1956; Chandrasekhar
et al. 1958; Parker 1958) instabilities are excited when the pressure anisotropy becomes compara-
ble to the magnetic pressure: the mirror instability is excited when ∆p ≳ B2/8π, while the firehose
instability is excited when ∆p ≲ −B2/4π. Kinetic simulations have shown that these instabili-
ties tend to pin the pressure anisotropy near the instability thresholds via increased scattering of
particles through wave-particle interactions (Kunz et al. 2014).

When the acoustic waves grow to large amplitudes and the microinstabilities become important
(δ∆p ∼ B2/8π), ∆p will no longer be set just by the fluid flow (i.e. the sound wave). Instead, it
will be set by the plasma microinstabilities, which will act to pin ∆p near marginal stability. Recall
that the work done by ∆p on the cosmic rays is the driver of the acoustic instability. It thus seems
plausible that the role of the gyroscale microinstabilities will be to slow down (and/or perhaps
ultimately suppress) the acoustic instability.

At what sound-wave amplitudes do the plasma microinstabilities become important? For sim-
plicity, consider an acoustic wave with δρ/ρ ≫ δB/B (as is the case for the rapidly growing mode
propagating parallel to B). The pressure anisotropy is given by

δ∆p = 3ρνB
d
dt

ln
B
ρ2/3 ∼ ρνBωs

δρ

ρ
. (3.49)

δ∆p ∼ B2/8π when
δpg

pg
∼
ωs

ωB
β−1 ∼

1
klmfp

β−1. (3.50)

In high-β systems, it is therefore the long-wavelength modes that can grow to large amplitudes
without exciting kinetic microinstabilities. Short-wavelength perturbations (klmfp ∼ 1), which tend
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to be the fastest growing modes, are affected by pressure-anisotropy-driven microinstabilities at
smaller amplitudes than the long-wavelength modes.

3.5 Applications
In this section we speculate on example astrophysical applications of the CR-driven acoustic

instability. We first consider the impact of the CRAB instability on sound waves propagating
through galaxy clusters (Section 3.5.1). This is motivated by large-amplitude surface-brightness
fluctuations observed in the Perseus cluster (Fabian et al. 2003), often interpreted to be long-
wavelength sound waves. In 3.5.2 we speculate that cosmic rays may efficiently excite sound
waves in the vicinity of shocks and in the outskirts of galaxy and cluster halos close to the virial
radius. We also argue that the sound waves excited by the low-energy GeV cosmic rays may be
important for the scattering of higher-energy cosmic rays (Section 3.5.3).

3.5.1 X-Ray Ripples in Perseus
Chandra X-ray observations have revealed long-wavelength, O(10 kpc), surface-brightness

ripples in the Perseus cluster (Fabian et al. 2003; Fabian et al. 2006). The inferred O(10%) density
fluctuations are believed to be sound waves propagating through the cluster. More generally, it is
believed that sound waves excited by time-variable AGN activity are important for heating cluster
plasmas (e.g., Li et al. 2015; Bambic & Reynolds 2019). The gas in Perseus and other clusters is
weakly collisional and is likely also filled with cosmic rays. Thus, it is plausible that these sound
waves are affected by the CRAB instability described in this paper.

The CR pressure fraction in Perseus and other cluster environments is constrained to be of order
a few percent to a few tens of percent.7 For a gas temperature of 5 × 107K and number density
0.03 cm−3 appropriate for Perseus (Fabian et al. 2006), the ion mean free path is of order 0.1 kpc.
This translates into ωB/ωs ∼ klmfp ∼ 0.1 for a ∼10 kpc wavelength. By how much can this wave
be amplified through the CRAB instability?

We show growth rates of a klνB = 0.1 (a wavelength of order λ ∼ 10 kpc) acoustic wave in
Myrs−1 in the (η, β) plane in Figure 3.5a. We use Pr = 1 and assume no CR diffusion, Φ = 0.
To clearly show where the instability becomes important, we explicitly show contours where the
growth rates are 0, 0.02 and 0.1 Myrs−1.

The sound speed in Perseus is of order ∼ 108 cm s−1, so that waves propagate a distance 50
kpc (say) in ∼50 Myrs. For the wave to undergo at least one e-folding in that time, the required
growth rate is Im(ω) ≳ 0.02 Myrs−1. This is satisfied if η and β are sufficiently large, see Figure
3.5a. Whether rapid growth of long-wavelength waves does indeed occur in Perseus is somewhat
unclear, due to the lack of sufficiently good constraints on the cluster magnetic-field strength and
cosmic-ray pressure (there are also uncertainties in the particle mean free path due to the role of

7A few percent according to Aleksić et al. (2010) and Aleksić et al. (2012), but their study uses primarily high-
energy CRs. The upper limit on the total CR pressure in Perseus – dominated by the low-energy CRs that are the most
important for this work – is significantly larger in Huber et al. (2013).
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Figure 3.5: Growth rate of the acoustic instability as a function of η and β for Perseus-like parameters:
T ∼ 5 × 107K and ni ∼ 0.03 cm−3 (Fabian et al. 2006), so that the ion mean free path lmfp is of order 0.1
kpc. Here we assume β = 100, Pr = 1 and no CR diffusion. Panel a) shows the maximum growth rate
of a klνB = 0.1 sound wave (λ ∼ 10 kpc; 10 kpc corresponds to the approximate wavelength of the X-ray
surface-brightness fluctuations in Perseus as observed by Chandra). Note that these growth rates are larger
at larger distances from the cluster center, where the density is lower and the mean free path is larger. Panel
b) shows the maximum growth rate when we consider all wavelengths that satisfy klmfp ≤ 1. Significant
amplification over timescales of order 10 Myrs (timescale for sound waves to propagate tens of kpc) is
plausible for realistic values of η and β.
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plasma microinstabilities). However, it seems possible at least in localised regions with sufficiently
large η and β (see also Section 3.5.2). We also note that for β ∼ 100, a klmfp = 0.1 (∼ 10 kpc) wave
can grow to fairly large amplitudes, δpg/pg ∼ δρ/ρ ∼ 10%, before pressure-anisotropy microin-
stabilities become important which likely slow down and/or ultimately suppress the instability (see
Section 3.4.6). This is consistent with the O(10%) density fluctuations inferred in Perseus (Fabian
et al. 2003; Fabian et al. 2006). Finally, we note that at larger distances from the cluster core the
density is lower and the mean free path is larger. As a result, long-wavelength (λ ∼ 10 kpc) modes
will have faster growth rates at large distances from the cluster center.

In Figure 3.5b we do not restrict our attention to λ ∼ 10 kpc wavelengths, and instead show
the overall maximum growth rates in the (η, β) plane. We use the same Perseus temperatures and
densities as before, such that lmfp ∼ 0.1 kpc, and we consider wavelengths satisfying klmfp ≤ 1
(klνB ≤ 1). The CRAB instability occurs and has fast growth rates for a wide range of realistic
cluster values of η and β. We therefore conclude that cosmic rays likely lead to large amplifications
of kpc-scale sound waves propagating in dilute cluster plasmas.

3.5.2 Sound-Wave Excitation in the Vicinity of (Virial) Shocks
The CRAB instability is particularly important at high cosmic-ray pressures, i.e. large η. This

suggests that the instability is easily excited in the vicinity of shocks that are responsible for CR
acceleration, i.e. where η is typically much higher than its average value in the ambient medium.
This may be relevant for shocks in supernova remnants and shocks driven by galactic winds or
AGN jets in galaxy halos and clusters.

In addition, cluster simulations that include the production of cosmic rays in structure-
formation shocks find that the CR pressure fraction is higher close to the virial radius (virial shock)
than in the central regions of the cluster (Pfrommer et al. 2008). It seems possible that sound waves
excited close to the virial radius through the CRAB instability discussed in this work can then prop-
agate in towards the cluster core. Modes with longer wavelengths, ∼ 10s of kpc, will grow much
faster at large radii near the viral radius than in the cluster core because of the much lower density
and larger ion mean free path at these radii.

3.5.3 Scattering of High-Energy Cosmic Rays
The overstable sound waves found in this paper have long wavelengths (≳ 1 kpc in the ICM and

≳ 1 pc in the hot ISM) and can have growth rates that are significant compared to the oscillation
frequency. The purpose of this section is to point out that the growth rates of the sound-wave
instability are significantly larger than the growth rates of the Alfvén waves excited by high-energy
CRs through the streaming instability. The streaming-instability growth rate is given by (Kulsrud
& Pearce 1969; Zweibel 2013),

Γk ∼ Ω0
nCR(p > pmin)

ni

vD − vA

vA
, (3.51)

where vD is the CR drift speed, Ω0 is the nonrelativistic gyrofrequency and ni is the thermal ion
number density. nCR(p > pmin) is the number density of CRs that can resonate with a wave with
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Figure 3.6: Schematic growth-rate comparison of the gyroresonant streaming instability of Alfvén waves
and the long-wavelength acoustic instability excited by the GeV CR fluid coupled to the thermal plasma.
The growth rate is plotted against CR energy (bottom horizontal axis) as well as wavelength (top horizontal
axis; the two are related by the resonance condition rL/λ ∼ ϵCR/λeB ∼ 1, where rL is the CR gyroradius).
For the streaming-instability growth rates we use a single CR spectral slope, α = 4.5, a 1 µG magnetic
field, nCR/ni = 10−7 and (vD − vA)/vA = 1 (eq. 3.51). The acoustic instability is plotted for Pr = 1 and
Φ = 0 (no CR diffusion), and wavelengths larger than the ion mean free path, lmfp/λ ≤ 1 (we assume
lmfp = 1 pc in the hot ISM and lmfp = 1 kpc in the ICM). We use η = 1, β = 10 in the hot ISM and
η = 0.2, β = 100 in the ICM (these values of η correspond to nCR/ni ∼ O(10−7) for typical hot ISM and
ICM temperatures). At long wavelengths, the growth rates of the acoustic instability are orders of magnitude
larger than the streaming-instability growth rates. In principle, the sound-wave instability grows sufficiently
fast to contribute to the scattering of higher-energy (∼PeV and ∼EeV) cosmic rays. The dashed blue and
red lines represent sub-mean-free-path scales, where the thermal plasma is collisionless. We defer a detailed
treatment of this regime to future work, but preliminary calculations suggest that the instability is still present
in the collisionless limit.
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wavenumber k, and pmin = mΩ0/k. Because the CR spectrum is steep, the number of high-energy
cosmic rays resonating with long-wavelength modes is very small. This leads to very small Γk

for modes with wavelengths that can scatter and confine the high-energy CRs: f (p) ∝ p−α with
α ≈ 4.5, so nCR(p > pmin) ∝ p3−α

min ∝ kα−3, which decays rapidly with CR energy. As a result,
high-energy cosmic rays are not able to confine themselves. Here we inspect the possibility that
the acoustic instability excited by the GeV cosmic-ray fluid can scatter and at least partially confine
higher-energy cosmic rays.

Figure 3.6 shows a schematic growth-rate comparison of the gyroresonant streaming instabil-
ity of Alfvén waves and the CRAB instability considered in this work. The growth rate is plotted
against CR energy (bottom horizontal axis) as well as wavelength (top horizontal axis). The wave-
length and CR energy are related by the resonance condition ϵCR ∼ λeB. We assume a CR spectral
slope α = 4.5 and (vD − vA)/vA = 1. For the acoustic instability we consider wavelengths larger
than the ion mean free path, lmfp/λ ≤ 1. For the hot ISM, we assume an ion mean free path
lmfp = 1 pc and for the ICM we assume an ion mean free path lmfp = 1 kpc. The Braginskii MHD
description of the thermal plasma is appropriate above the ion mean-free-path scale. However, pre-
liminary calculations using collisionless fluid closures suggest that the instability also exists below
the mean-free-path scale (see Section 3.4.4). We show this using the dashed blue and red lines.
We stress again that the collisionless description of the thermal plasma coupled to a CR-pressure
equation breaks down at small scales where the CRs are no longer coupled to the thermal plasma.
The growth rates are not plotted below this scale in Figure 3.6 (the CR mean free path is somewhat
uncertain and for this reason we extend growth rates only one order of magnitude below the ion
mean-free-path scale; however, this range might be significantly larger, e.g. in the ICM where the
ion mean free path is large).

Figure 3.6 shows that the growth rates of the CRAB instability are orders of magnitude faster
than the growth rates of the streaming instability excited by the high-energy CRs. The growth rate
is relatively independent of propagation angle for θ ≲ 55◦ (Figure 3.2), so modes with apprecia-
ble δB⊥/B can be excited. Sound waves may, in principle, grow sufficiently fast to reach large
amplitudes and efficiently scatter high-energy cosmic rays. The CR scattering rate is proportional
to Ω(δB⊥/B)2. If the acoustic waves destabilised by the GeV CRs saturate at sufficiently large
δB⊥/B, the acoustic instability identified here may significantly affect cosmic-ray confinement.
While large δB⊥/B seem possible given the fast growth rates, future simulations will be necessary
to study the saturation of the instability and address the efficiency of scattering high-energy CRs.
Finally, we note that turbulence will likely be produced in the gas as a result of the CRAB insta-
bility. This may significantly affect the scattering and transport properties of intermediate-energy
(≲ PeV) cosmic rays, whose gyroradii are too small to directly resonate with linearly unstable
acoustic waves.

3.6 Conclusions
The interstellar, circum-galactic and intracluster media are filled with dilute, weakly-collisional

plasmas characterised by anisotropic viscosity and conduction. Without cosmic rays, these
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anisotropic transport properties lead to the well-known damping of sound waves (the slow and
fast magnetosonic modes). In this paper we have shown that when cosmic rays are present, sound
waves can instead grow exponentially in time, even for small CR pressures. We have termed this
the Cosmic Ray Acoustic Braginskii (CRAB) instability.

We model the dilute plasmas filled with cosmic rays by using the Braginskii MHD closure for
weakly collisional plasmas (Braginskii 1965) coupled to a pressure equation for the cosmic rays
(Section 3.3). The cosmic rays are assumed to stream at the Alfvén speed vA,∆p, which in a weakly
collisional plasma depends on the pressure anisotropy ∆p (eq. 3.10). We also include CR diffusion
along the magnetic-field direction.

The key frequencies and dimensionless parameters in our problem are summarised in Section
3.3.3. We focus on high-β (β = 8πpg/B2 ∼ 100) plasmas, as is appropriate for the ICM. The
Braginskii MHD model is valid provided that the timescales of interest are longer than the ion-ion
collision time. We impose this by constraining the anisotropic-viscous (Braginskii) frequency, ωB,
to be smaller than the sound frequency, ωs (see Section 3.3.3).

The CRAB instability is driven by a phase shift between the CR-pressure and gas-density
perturbations. This phase shift is introduced by the dependence of the Alfvén speed on ∆p (eq.
3.10). The physical mechanism driving the instability is sketched out in Figure 3.1: work done by
the pressure anisotropy on the cosmic rays enhances regions of larger than average CR pressure,
leading to a positive feedback loop. Sound waves are unstable if η = pc/pg ≳ αβ

−1/2, where α
depends on the thermal Prandtl number and the CR diffusion coefficient. We find that α is typically
of order 1 (unless the CR diffusion coefficient is much larger than the thermal-plasma anisotropic
viscosity, in which case α > 1; see bottom panel of Figure 3.4). Thus, even small CR pressures are
sufficient for instability in high-β plasmas such as the ICM. We find that the acoustic instability is
characterised by large growth rates, comparable to the sound-wave oscillation frequency (Figure
3.4).

The growth rates absent CR diffusion are not a strong function of propagation angle relative to
B for θ ≲ 55◦ (Figure 3.2). However, the fastest growing mode is typically propagating parallel
to the magnetic-field direction (except for η just above marginal stability or when CR diffusion
is strong, see Figure 3.2 and Figure 3.4). This result motivated a simplified 1D derivation of the
dispersion relation, which we show in (3.40). Growth rates are typically largest at the highest k,
except at small η just above the instability threshold or when CR diffusion is significant (Figure
3.3 and Figure 3.4).

We considered astrophysical implications of the CRAB instability in Section 3.5. In Section
3.5.1 we argue that the instability is likely important for amplifying sound waves propagating
through galaxy cluster and group environments. This includes the Perseus cluster, where long-
wavelength, large-amplitude X-ray surface-brightness fluctuations observed by Chandra are often
interpreted as sound waves. We show instability growth rates as a function of η and β for Perseus-
like parameters in Figure 3.5. In Section 3.5.2 we hypothesise that the acoustic instability is likely
important near shocks, where the CR pressure is large. This includes the outskirts of galactic and
cluster halos, i.e. regions close to the virial shock, as well as shocks associated with supernovae,
galactic winds, or AGN winds/jets propagating into the hot ISM or halo environments. In Section
3.5.3 we speculate that the long-wavelength acoustic modes excited by the GeV cosmic-ray fluid
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can contribute to the scattering of higher-energy cosmic rays. In Figure 3.6 we show that the
long-wavelength acoustic modes grow orders of magnitude faster than the Alfvén waves excited
by the high-energy CRs through the gyroresonant streaming instability. It remains to be seen,
however, whether the sound waves grow to large enough amplitudes and/or generate smaller-scale
fluctuations through turbulence to efficiently scatter TeV to EeV cosmic rays.

Future simulations will address the saturation of the CRAB instability. They will show whether
the excited sound waves can grow to large enough amplitudes to efficiently scatter high-energy
cosmic rays. Global simulations that include both Braginskii MHD and cosmic rays will shed light
on the importance of the acoustic instability for the evolution of gas and the propagation of sound
waves in the ISM, galactic halos and the ICM. We also plan to extend the CR–Braginskii MHD
fluid model to collisionless models of the thermal plasma.

Finally, we note the caveat that the dominant transport process of cosmic rays through galaxies
and clusters remains uncertain (e.g., Amato & Blasi 2018). For example, even cosmic rays that
are not strongly coupled to the thermal plasma (i.e. not locked to the Alfvén frame, as a result of
a low pitch-angle scattering rate, e.g. due to wave damping) may actually not be diffusing under
certain conditions, but instead streaming at super-Alfvénic speeds (Skilling 1971; Wiener et al.
2013). The development of more accurate fluid models of cosmic rays is therefore a high priority.
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Appendix

3.A Acoustic Instability in Two-Fluid Plasma
In Section 3.3.3 we pointed out that the ion-electron temperature equilibration timescale is

longer in the regime of interest than the relevant sound timescale. Using a single-fluid approach
with heat flow carried by the electrons is then not correct. Instead, separate entropy equations and
heat fluxes should be used for each species. In the main text, we only considered a single thermal
fluid and a single heat flux for simplicity (with varying thermal Prandtl number), and we demon-
strated that our results do not depend strongly on the value of the chosen thermal diffusivity. Here
we show that our conclusions do not change in a more accurate two-fluid model, when separate
electron and ion pressure equations are included.

In the two-fluid model we consider, the continuity, induction and CR pressure equations (3.1,
3.3 and 3.5) remain unchanged (we assume quasi-neutrality, ni = ne). The remaining equations
that we need to solve are the momentum equation, and the ion and electron entropy equations:

ρ
dv
dt
= −∇(pi + pe + pc +

B2

8π
) +

B · ∇B

4π
+∇ · (b̂b̂∆p

)
−

1
3
∇∆p, (3.52)

1
γ − 1

dpi

dt
= −

γ

γ − 1
pi∇ · v − α1vA,∆p · ∇pc − α2∇ ·

(
Π · v

)
−∇ ·Qi −

pi − pe

τeq
, (3.53)

1
γ − 1

dpe

dt
= −

γ

γ − 1
pe∇ · v − (1 − α1)vA,∆p · ∇pc − (1 − α2)∇ ·

(
Π · v

)
−∇ ·Qe +

pi − pe

τeq
.

(3.54)

pi and pe are the ion and electron pressures, respectively. τeq is the timescale over which the
electrons and ions come into thermal equilibrium. This timescale is long compared to the electron-
electron and ion-ion collision times, τee ∼

√
me/miτii ∼ (me/mi)τeq. The smallness of the equi-

libration term in a weakly collisional plasma is what motivates the 2-fluid model and so we will
drop the terms ∝ τ−1

eq in equations 3.53 and 3.54 in this section. α1 and α2 are parameters which
set how much of the CR and viscous heating goes into the ions vs. electrons. Viscous heating does
not enter in our analysis to linear order, and so α2 can be ignored. We choose α1 = 0.5, but our
results do not depend on it, as the instability is ultimately not driven by CR heating at high β. In
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Figure 3.7: Comparison of the maximum sound-wave growth rates for the single-fluid (1F) and two-fluid
(2F) ion-electron plasma as a function of η, for β = 100 and ωd = 0 (no CR diffusion). This figure is
analogous to Figure 3.4. We find that our results are not significantly affected by the extension to two
entropy equations and heat fluxes. The two-fluid growth rate for νB/χi = 1 and νB/χe = 0.01 (black line) is
essentially in between the 1-fluid prediction with Pr = 1 and Pr = 0.01 (red lines).
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(3.53) and (3.54), Qi = −nikBχib̂b̂ · ∇Ti is the ion heat flux (χi is the ion thermal diffusivity) and
Qe = −nekBχeb̂b̂ · ∇Te is the electron heat flux (χe is the electron thermal diffusivity).

The linearised versions of (3.53) and (3.54) are:

ω
δpi

pi
= γk · v + 2α1(γ − 1)ωaη

δpc

pc
− i(γ − 1)ωcond,i

(δpi

pi
−
δρ

ρ

)
, (3.55)

ω
δpe

pe
= γk · v + 2(1 − α1)(γ − 1)ωaη

δpc

pc
− i(γ − 1)ωcond,e

(δpe

pe
−
δρ

ρ

)
, (3.56)

where we defined the ion and electron thermal diffusion frequencies, ωcond,i/e = χi/e(b̂ · k)2.
We assume an equilibrium with pi = pe. As in Section 3.4.2, we can derive a 1D dispersion

relation for the two-fluid acoustic instability (again assuming high β, ωs ≫ ωa):

0 =ω2 −
ω2

s

2γ

(γω + i(γ − 1)ωcond,i

ω + i(γ − 1)ωcond,i
+
γω + i(γ − 1)ωcond,e

ω + i(γ − 1)ωcond,e

)
+

4
3

iωωB − η
ω2

s

γ

(4
3
+

4
3

i
ωB

ωa

)(
1 + i
ωd

ω

)−1
.

(3.57)

Since electron conduction is rapid, we can consider the regime ωcond,e ≫ ωs, such that the electrons
are essentially isothermal. The above then simplifies to:

0 =ω2 −
ω2

s

2γ

(γω + i(γ − 1)ωcond,i

ω + i(γ − 1)ωcond,i
+ 1
)
+

4
3

iωωB

− η
ω2

s

γ

(4
3
+

4
3

i
ωB

ωa

)(
1 + i
ωd

ω

)−1
(3.58)

Note that (3.57) and (3.58) are very similar to the dispersion relation in (3.40). As a result, we find
that our results are not significantly affected by the extension to two entropy equations and heat
fluxes. This is confirmed in Figure 3.7, where we see that the two-fluid fast magnetosonic growth
rate for νB/χi = 1 and νB/χe = 0.01 is essentially in between the single-fluid prediction with Pr = 1
and Pr = 0.01.
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Chapter 4

A New Buoyancy Instability in Galaxy
Clusters due to Streaming Cosmic Rays

A version of this article is to be submitted to MNRAS by Kempski P., Quataert E., and Squire
J.

4.1 Abstract
Active Galactic Nuclei (AGN) are believed to provide the energy that prevents runaway cool-

ing of gas in the cores of galaxy clusters. However, how this energy is transported and thermal-
ized throughout the Intracluster Medium (ICM) remains unclear. In recent work we showed that
streaming cosmic rays (CRs) destabilise sound waves in dilute ICM plasmas. Here we show that
CR streaming in the presence of gravity also destabilises a pressure-balanced wave. We term this
new instability the CR buoyancy instability (CRBI). In stark contrast to standard results without
CRs, the pressure-balanced mode is highly compressible at short wavelengths due to CR streaming.
Growth rates at short wavelengths are of order (pc/pg)β1/2ωff , where pc/pg is the ratio of CR pres-
sure to thermal gas pressure, β is the ratio of thermal to magnetic pressure and ωff is the free-fall
frequency. The CRBI operates alongside buoyancy instabilities driven by background heat fluxes,
i.e. the heat-flux-driven buoyancy instability (HBI) and the magneto-thermal instability (MTI).
When the thermal mean free path lmfp is≪ the gas scale height H, the HBI/MTI set the growth rate
on large scales, while the CRBI sets the growth rate on small scales. Conversely, when lmfp ∼ H
and (pc/pg)β1/2 ≳ 1, the CRBI has growth rates that exceed HBI/MTI growth rates even on large
scales. Our results suggest that CR-driven instabilities may be partially responsible for the sound
waves/weak shocks and turbulence observed in galaxy clusters. CR-driven instabilities generated
near radio bubbles may also play an important role redistributing AGN energy throughout clusters.
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4.2 Introduction
The cores of galaxy clusters are filled with virialized, hot gas, with typical temperatures exceed-

ing 107 K. The X-ray luminosities of most cluster cores imply cooling times that are significantly
shorter than the ages of these systems. Without a source of heating, this hot gas is expected to cool,
sink to the center and form stars at a high rate. However, observations find significantly smaller star
formation rates and cold gas masses than are predicted by the “cooling flow" model (e.g., Peterson
& Fabian 2006). This suggests that there is a source of heating present that keeps the gas in cluster
cores in approximate thermal balance.

Central Active Galactic Nuclei (AGN) and the interaction of their jets with the Intracluster
Medium (ICM) are believed to play an important role in providing the energy that prevents runaway
cooling of ICM gas. In particular, observations suggest that energy is carried away from the central
AGN by jet-inflated bubbles of relativistic plasma that buoyantly rise into the ICM. There is a
strong correlation between the power needed to inflate the bubbles and the radiative losses of
the hot gas (Churazov et al. 2000; Bîrzan et al. 2004; Rafferty et al. 2006; Nulsen et al. 2009;
Hlavacek-Larrondo et al. 2012; see Werner et al. 2019 for a recent review).

How this energy is subsequently transported and thermalized throughout cluster cores remains
an open question. It is possible that the buoyantly rising radio bubbles stir turbulence by exciting
internal gravity waves (IGWs; e.g., Zhuravleva et al. 2016, Zhang et al. 2018), launch sound waves
and/or weak shocks (e.g., Fabian et al. 2003, Fabian et al. 2006, Sternberg & Soker 2009), and/or
inject cosmic rays (CRs) into the ICM (e.g., Guo & Oh 2008, Jacob & Pfrommer 2017a, Jacob
& Pfrommer 2017b). These processes can plausibly occur to some extent simultaneously, but it is
unclear which (if any) one is the dominant channel for ICM heating.

Relativistic CRs from both star formation and AGN may play an important role in the evolu-
tion of gas in clusters by driving outflows and heating diffuse gas (e.g., Breitschwerdt et al. 1991;
Loewenstein et al. 1991; Everett et al. 2008; Socrates et al. 2008; Guo & Oh 2008 Zweibel 2013;
Ruszkowski et al. 2017; Zweibel 2017; Jacob & Pfrommer 2017a; Jacob & Pfrommer 2017b;
Ehlert et al. 2018; Farber et al. 2018; Kempski & Quataert 2020; Quataert et al. 2022b; Quataert
et al. 2022a). CRs couple to the thermal gas by scattering from small-scale magnetic fluctua-
tions. In self-confinement theory, cosmic rays are scattered by Alfvén waves propagating down
the CR pressure gradient, which they themselves excite through the streaming instability (Kulsrud
& Pearce 1969). Pitch-angle scattering by the excited Alfvén waves isotropises the cosmic rays
in the frame of the waves. In the absence of damping of the self-excited waves, this results in CR
streaming relative to the thermal gas at the local Alfvén speed. If damping is present, CR propaga-
tion deviates from pure Alfvénic streaming. The form of the transport correction is, however, quite
peculiar, as it corresponds to neither streaming nor diffusion (Skilling 1971, Wiener et al. 2013;
Kempski & Quataert 2021).

In recent work, we showed that streaming cosmic rays drive a rapidly growing acoustic insta-
bility in dilute ICM plasmas, the Cosmic Ray Acoustic Braginskii (CRAB) instability (Kempski
et al. 2020). This suggests that the different channels for transferring and thermalizing energy in
the ICM (waves, CRs, turbulence...), usually considered separately in theoretical models, may in
fact be closely related. Here, we demonstrate that in the presence of gravity, streaming cosmic
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rays also destabilise a pressure-balanced wave, more specifically the CR entropy mode modified
by gravity. We term this instability the CR buoyancy instability (CRBI) because CRs and buoy-
ancy (gravity) are critical for setting its properties. The growth rates of the CRBI are of order the
natural buoyancy frequency (the local free-fall frequency) for plausible ICM parameters. Our work
demonstrates the potential physical richness of CR feedback in dilute plasmas: both the CRBI con-
sidered in this work and the CRAB instability in Kempski et al. (2020) are driven by CR streaming
at the Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy of
the thermal gas (the pressure is anisotropic because of the large thermal-particle mean free path in
the ICM). This dependence introduces a new form of coupling between the CRs and the thermal
gas, which is very unstable.

The remainder of this work is organised as follows. We present our model of cosmic rays cou-
pled to a low-collisionality plasma in Section 4.3. In Section 4.4 we provide a physical overview
of the instability. We derive a dispersion relation and asymptotic growth rates in Section 4.5. In
Section 4.6 we present numerical solutions to the linearised system of equations for an isothermal
background. We discuss the relationship to other buoyancy instabilities and thermal instability,
and the importance of CR diffusion in Section 4.7. We summarise our results in Section 4.8.

4.3 Model

4.3.1 Equations
We consider a low-collisionality plasma coupled to streaming cosmic rays. We use the weakly-

collisional Braginskii MHD model to describe the thermal gas (Braginskii 1965). The equations
for the gas and cosmic rays are,

∂ρ

∂t
+∇ · (ρv) = 0, (4.1)

ρ
dv
dt
= −∇

(
p⊥ + pc +

B2

8π

)
+
B · ∇B

4π
+∇ · (b̂b̂∆p

)
+ ρg, (4.2)

∂B

∂t
=∇× (v ×B), (4.3)

ρT
ds
dt
= −vst,∆p · ∇pc −∇ ·

(
Π · v

)
−∇ ·Q − ρ2Λ(T ), (4.4)

dpc

dt
= −

4
3

pc∇ · (v + vst,∆p) − vst,∆p · ∇pc +∇ ·
(
κb̂b̂ · ∇pc

)
, (4.5)

where v is the gas velocity, ρ is the gas density, B is the magnetic field (with unit vector b̂),
s = kB ln(pg/ρ

γ)/(γ − 1)mH is the gas entropy per unit mass, Λ(T ) is the temperature-dependent
cooling function and pc is the CR pressure. d/dt ≡ ∂/∂t + v · ∇ denotes a total (Lagrangian) time
derivative. ∆p = p⊥ − p∥ is the gas pressure anisotropy, where p⊥ and p∥ denote the pressures in
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the directions perpendicular and parallel to the magnetic field, respectively. p⊥ and p∥ are related
to pg in eq. (4.4) by

p⊥ = pg +
1
3
∆p. (4.6)

The pressure anisotropy in Braginskii MHD (with viscosity νB ≈ pg/ρνii, where νii is the ion-ion
collision rate; Braginskii 1965) is given by

∆p = p⊥ − p∥ = 3ρνB
(
b̂b̂ : ∇v −

1
3
∇ · v

)
. (4.7)

The viscous stress tensor in the gas-entropy equation is

Π = −∆p
(
b̂b̂− I

3

)
. (4.8)

In the absence of background ∆p, the perturbed ∇ · (Π · v) in the gas-entropy equation is second-
order and does not contribute in our linear analysis. Q in equation (4.4) is the anisotropic thermal
heat flux,

Q = −κBb̂b̂ · ∇T, (4.9)

where κB is the thermal conductivity.
vst,∆p in equation (4.5) is the CR streaming speed. We assume that cosmic rays stream down

their pressure gradient at the Alfvén speed, which in low-collisionality plasmas depends on the
thermal-gas pressure anisotropy,1

vst,∆p = χ
B√
4πρ

(
1 +

4π∆p
B2

)1/2
, (4.10)

where χ ≡ −b̂ · ∇pc/|b̂ · ∇pc| = ±1 ensures that the cosmic rays stream along B down their
pressure gradient and makes the CR heating term −vst · ∇pc in the gas energy equation (4.4)
positive definite. We also include CR diffusion along the magnetic field in eq. (4.5).

4.3.2 Dimensionless Parameters and Characteristic Frequencies
We define the ratio of CR pressure to gas pressure,

η ≡
pc

pg
, (4.11)

and the ratio of thermal to magnetic pressure,

β ≡
8πpg

B2 . (4.12)

1We note that the original expression for the Alfvén speed in Kempski et al. (2020) was incorrect, as the 1/2
exponent in the ∆p term in (4.10) was by accident omitted. This was corrected in Kempski et al. (2021). However, the
conclusions of Kempski et al. (2020) are not affected by this change.
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The relevant frequencies are the gas sound frequency (with cs being the isothermal gas sound
speed),

ωs ≡ kcs; (4.13)

the Alfvén and CR-streaming frequency,

ωA ≡ k · vA; (4.14)

the CR diffusion frequency,
ωd ≡ κ (b̂ · k)2; (4.15)

the free-fall frequency,
ωff ≡

g
cs
=

cs

H
, (4.16)

where H is the gas scale height; the cooling frequency,

ωc ≡
ρ2Λ

pg
; (4.17)

the ion-ion collsion frequency νii and the associated Braginskii viscous frequency,

ωB ≡ νB(b̂ · k)2 ≈
pg

ρνii
(b̂ · k)2; (4.18)

and the conductive frequency,
ωcond ≡ χB(b̂ · k)2, (4.19)

where χB = κB/nkB is the thermal diffusion coefficient. We can relate the diffusive timescales by
defining the thermal Prandtl number,

Pr ≡
νB

χB
. (4.20)

We use Pr = 0.02 as the default thermal Prandtl number in this work (≈ square root of the electron-
to-ion mass ratio), i.e. heat conduction due to electrons operates on a much shorter timescale
than viscous forces due to the ions. We also define the ratio of the CR diffusion coefficient to the
Braginskii viscosity,

Φ ≡
κ

νB
, (4.21)

which turns out to be an important parameter quantifying the suppression of the CRBI and CRAB
instability by CR diffusion (see also Kempski et al. 2020).

4.3.3 Validity of the Model
4.3.3.1 Thermal Gas

The CR entropy mode describes the response of the two-fluid CR–thermal gas system to a CR
pressure perturbation. Since CRs propagate along field lines at the Alfvén speed, this mode is
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characterised by a frequency of order ωA (absent CR diffusion). The collisional (Braginskii MHD)
regime then requires that ωA ≪ νii. To ignore the effect of heat fluxes in the calculation of the
pressure anisotropy we also require that ωA ≲ νiiβ

−1/2. The Braginskii MHD model is thus valid
for

ωA ≲ νiiβ
−1/2 ⇐⇒

ωB

ωA
≲ β1/2, (4.22)

or equivalently
klmfp ≲ 1. (4.23)

In the dilute and hot ICM, the ion-ion collision rate is small

νii ∼
nie4π lnΛ

m1/2
i (kBT )3/2

∼ 8 × 10−14 s−1
( T
5 × 107 K

)−3/2 ni

0.01 cm−3 , (4.24)

for a Coulomb logarithm lnΛ ≈ 38. The collision rate in (4.24) corresponds to a mean free path of
order 0.1 kpc.

4.3.3.2 Cosmic Rays

The CR pressure equation (eq. 4.5) is a good model for the cosmic rays if the collision fre-
quency of the energetically important GeV CRs is much larger than any other timescale of interest.
As pointed out in Kempski et al. (2020), the GeV CR collision frequency (the rate at which the
pitch angle changes by order unity, due to scattering by magnetic fluctuations) is likely much
higher than the thermal ion-ion collision frequency in the ICM:

νCR ∼ Ω0

(δB⊥
B

)2
∼ 10−8 s−1

(δB⊥/B
10−3

)2
, (4.25)

where Ω0 is the non-relativistic gyro-frequency and δB⊥/B is evaluated for fluctuations whose
wavelength parallel to the mean B-field is of order the Larmor radius of the GeV particles. The
above collision frequency corresponds to a CR mean free path of order 1 pc, which approximately
corresponds to the empirically derived CR mean free path in the Milky Way (e.g., Amato & Blasi
2018). This suggests that treating cosmic rays as collisional on thermal-ion-mean-free-path scales
is a reasonable model for the ICM.

In the limit of good coupling between the GeV cosmic rays and the self-excited Alfvén waves
(large pitch-angle scattering rate), CR transport is to leading order described by Alfvénic stream-
ing. Damping of the self-excited Alfvén waves introduces corrections to Alfvénic streaming. We
model this by also including CR diffusion in our linear analysis. As we will show, significant CR
diffusion suppresses the CRBI on small scales.

4.3.4 Background Equilibrium
We consider static background equilibria with constant B = (Bx, 0, Bz), in which the CR and

gas pressure gradients balance gravity, g = −gẑ,

d
dz

(pg + pc) = −ρg. (4.26)
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If CR diffusion does not affect the background state (either because κ = 0 or dpc/dz = const), CRs
are in equilibrium according to (4.5) if pc ∝ vA

−4/3, or equivalently,

pc ∝ ρ
2/3. (4.27)

In this work we perturb equilibria that satisfy (4.26) and (4.27), although these equations do not
yet constrain the background temperature T (z). We will consider different temperature profiles in
Sections 4.6 and 4.7.

4.3.5 Linearised Equations
We carry out a linear stability calculation of the CR–thermal gas equations (Section 4.3.1)

for backgrounds that satisfy (4.26) and (4.27). We focus on short-wavelength modes satisfying
kH ≫ 1 and perform a local WKB calculation in which all perturbed quantities are assumed to vary
as δX(r, t) ∝ exp

(
ik · r − iωt

)
. We consider two coordinate systems in this work. We will mostly

use the usual cartesian coordinate system with the z-axis anti-parallel to g and x and y defining
the plane perpendicular to gravity. We define associated polar angles such that Bx = B sin θB,
Bz = B cos θB, kx = k sin θk cos ϕk, ky = k sin θk sin ϕk and kz = k cos θk. We use ϕk = 0 in all the
figures except Figure 4.5, because ϕk = 0 captures the fastest-growing mode. For analytic purposes,
it is convenient to also use a coordinate system aligned with the direction of the magnetic field. We
define ⊥ and ∥ to denote the directions perpendicular and parallel to the magnetic field. We will
use this coordinate system in Section 4.5 when we derive an approximate dispersion relation, as it
makes the analytics more tractable. However, when we plot numerically calculated growth rates
of the instability in Figures 4.2–4.9, we adopt the more standard notation with directions/angles
defined relative to the positive z-direction, i.e. cos θB ≡ −b̂ · ĝ and cos θk ≡ −k̂ · ĝ.

The linearised equations are

ω
δρ

ρ
= k · v − ivz

d ln ρ
dz
× BG, (4.28)

ωv =kc2
s

(δp⊥
pg
+ η
δpc

pc
+

v2
A

c2
s

δB∥
B

)
− ωAvA

δB

B
− b̂(b̂ · k)c2

s
δ∆p
pg
+ ig
δρ

ρ
, (4.29)

ω
δB⊥

B
= −k∥v⊥, (4.30)

ω
δB∥
B
= k⊥ · v⊥, (4.31)

ω
δpg

pg
=γk · v − i(γ − 1)ωcond

(δpg

pg
−
δρ

ρ

)
+ χη(γ − 1)ωA

δpc

pc
− iωc

∂ lnΛ
∂ ln T

δpg

pg
− iωc

(
2 −
∂ lnΛ
∂ ln T

)δρ
ρ

+ BG ×
[
− ivz

d ln pg

dz
− iχη(γ − 1)δvA,z

d ln pc

dz
+

i(γ − 1)
T

∇ · (χBδb̂b̂ · ∇T + χBb̂δb̂ · ∇T )
]
,

(4.32)
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δ∆p
pg
= i
ρνB

pg
(2k∥v∥ − k⊥ · v⊥). (4.33)

ω
δpc

pc
=

4
3
k · v −

2
3
χωA
δρ

ρ
+

1
3
βχωA

δ∆p
pg
+ (χωA − iωd)

δpc

pc
+ BG ×

[
− ivz

d ln pc

dz

+
2
3

iχvA,z
d ln ρ

dz

(δpc

pc
−
δρ

ρ

)
+

i
pc
∇·
(
κδb̂b̂ · ∇pc + κb̂δb̂ · ∇pc

)]
,

(4.34)

where BG in equations (4.28)–(4.34) is a flag equal to 1 or 0. It specifies whether gradients from
the background equilibrium in (4.26) and (4.27), i.e. terms of the form vzdρ/dz, are included in
the calculation. Without the background gradients equilibrium is not satisfied and so the BG terms
should formally be kept in the linear perturbation analysis. However, for analytic simplicity, we set
BG = 0 when we discuss the physics of the instability and derive approximate dispersion relations
in Sections 4.4.2, 4.4.3 and 4.5. This turns out to be a reasonable approximation, as the CRBI is
not directly driven by the background gradients. We do, however, include background gradients,
i.e. we set BG = 1, when we solve for the exact eigenmodes numerically (Section 4.6 and all the
figures presented in this paper).

4.4 Physical Overview of the Instability
In this section, we provide an overview of the key physics describing the CRBI. To start, we

give a brief summary of entropy and gravity waves in stratified CR MHD (4.4.1). This will set the
stage for our analysis and elucidate how the CRBI is related to other instabilities that may operate
in the ICM (such as thermal instability or other buoyancy instabilities).

4.4.1 Gravity and Entropy Modes in Stratified Media
4.4.1.1 MHD Modes

In a gravitationally stratified medium without magnetic fields, the hydrodynamic entropy mode
becomes an internal gravity wave characterised by the Brunt–Väisälä frequency,

N2 =
g
γ

(d ln pg

dz
− γ

d ln ρ
dz

)
. (4.35)

In MHD, gravitational stratification affects the MHD slow magnetosonic modes, as both buoyancy
and magnetic tension act as the modes’ restoring forces. The resulting mode resembles the hydro
IGW at long wavelengths, and the standard MHD slow mode (absent gravity) at short wavelengths.
In contrast to hydrodynamics, in MHD there is also a mode that is unaffected by buoyancy despite
a non-zero density perturbation. We refer to this mode as the MHD entropy mode.

We now compute these modes more explicitly in high-β collisional MHD, first assuming that
no cosmic rays are present. For simplicity, we shall consider the 2D case with B = Bẑ, g = −gẑ
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Figure 4.1: Oscillation frequencies of gravity/slow and entropy modes in stratified, collisional CR MHD.
The frequencies are normalised by the Brunt–Väisälä frequency. Here and in other figures (except Figure
4.5), we use ϕk = 0. The two modes that are characterised by the buoyancy frequency at long wavelengths
(orange and pink lines) become the MHD slow magnetosonic modes at short wavelengths. The oscillation
frequency of the gas-entropy mode (green line) is due to CR heating. The blue line shows the CR-entropy
mode with frequency ≈ ωA, with the small deviation arising from finite η. We will show that gravity
destabilises the CR-entropy mode in low-collisionality MHD. We term this instability the CR buoyancy
instability (CRBI).

Figure 4.2: Growth rates of the CRBI for β = 107, η = 0.1, and H = 1000lmfp. The angles θB and θk
are the directions of B and k with respect to the positive z-direction (g = −gẑ). At high β, damping by
anisotropic pressure is negligible over a range of k and the instability is well described by the simple model
in Section 4.4.3. The dotted line labelled ∼

√
ωsωff shows the predicted growth rate from eq. (4.48). This

elucidates the physics of the CRBI in its simplest form. Figures 4.3 – 4.9 show results for more realistic
ICM conditions.
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and k in the x − z plane. We start with the momentum equation,

ωv = k
(δpg

pg
+

B2

4π
δB
B

)
− ωAvA

δB

B
− i
δρ

ρ
gẑ. (4.36)

Crossing the momentum equation twice with k and taking the z-component we find,

ω2(kzkxvx − k2
xvz) = ωAvAk2kxvx + iωgk2

x
δρ

ρ
. (4.37)

In the Boussinesq limit (δpg/pg ≪ δρ/ρ), the adiabatic gas entropy equation ds/dt = 0 (eq. 4.32
without CRs, cooling and conduction) implies that

ω
δρ

ρ
=

i
γ

vz

(d ln pg

dz
− γ

d ln ρ
dz

)
= i

vz

g
N2 (4.38)

Using incompressibility kxvx ≈ −kzvz we find the dispersion relation for MHD slow modes modi-
fied by gravity,

ω2k2 = ωAvAk2kz + gk2
x
γ − 1
γ

d ln s
dz
, (4.39)

or,

ω2 = ω2
A +

k2
x

k2 N2. (4.40)

For subdominant magnetic tension (first term on RHS) we get the usual dispersion relation for the
two hydrodynamic IGWs, ω = ±Nkx/k. At short wavelengths where magnetic tension dominates,
the two gravity waves satisfy the standard dispersion relation for the MHD slow modes at high β.

Unlike the hydrodynamic entropy mode, the MHD entropy mode does not pick up a buoyancy
response. To see why this is the case, we first note that a mode with ω = 0 and v = 0, but finite
δρ/ρ, satisfies the continuity (eq. 4.28), induction (eq. 4.30–4.31), as well as the gas-entropy (eq.
4.32 absent heating, cooling and conduction) equations. In hydrodynamics, however, this mode
does not satisfy the momentum equation (see eq. 4.36 without the perturbed magnetic field), as
the direction of gravity and k are generally not co-linear. By contrast, in MHD the perturbed
pressure and magnetic-tension terms (first and second terms on the RHS of eq. 4.36) are mutually
orthogonal and can exactly cancel the perturbed gravitational force. As a result, while a mode
with ω = 0 and v = 0, but finite δρ/ρ, is not an eigenmode in stratified hydrodynamics, it is an
eigenmode in stratified MHD and involves a finite δB perturbation. When magnetic tension is
negligible, i.e. in the hydrodynamic limit with ωA ≪ N (long wavelengths or β → ∞), the ω = 0
mode can only be satisfied if δB/B ≫ δρ/ρ. The hydrodynamic variables are therefore essentially
unperturbed in this limit, which is consistent with the result in stratified hydrodynamics.

4.4.1.2 CR MHD Modes

When Alfvénically streaming CRs are present, the CR pressure equation (eq. 4.5) introduces a
new mode, which we refer to as the CR entropy mode. Because CRs are assumed to stream at the
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Alfvén speed along field lines, the CR entropy mode is characterised by the Alfvén frequency, ω =
χk · vA = χωA (although the eigenfrequency can deviate appreciably from the Alfvén frequency if
CR diffusion is important or if η ≳ 1 due to the fact that the CR entropy mode is then associated
with significant density fluctuations). The χ factor in front of ωA reflects the fact that the CR
entropy mode propagates down the CR pressure gradient. For η → 0 the impact of CRs on the
thermal gas is small, and so the CR entropy mode does not perturb the thermal gas. Using that
2d ln ρ/dz = 3d ln pc/dz in equilibrium, (4.34) becomes,(

ω − χωA + iωd − iχvA,z
d ln pc

dz

)δpc

pc
≈ 0, (4.41)

with solution,

ω = χωA − iωd + iχvA,z
d ln pc

dz
. (4.42)

Diffusive corrections to CR streaming act to damp the mode. The CR background gradient term
also introduces an imaginary part that looks like damping. However, the more accurate interpre-
tation of this term is that as the mode propagates down the CR pressure gradient, the perturbation
amplitude normalized by the local CR pressure, δpc/pc(z), remains constant.

Because streaming CRs heat the gas at a rate −χvA · ∇pc, they also modify the gas-entropy
mode by giving it a real (oscillatory) frequency, which at small η is ω ≈ −4ηωA/15 (Kemp-
ski & Quataert 2020). Importantly, to leading order CR heating does not significantly affect the
growth/damping of the gas-entropy mode (e.g., due to thermal instability), just its real frequency.

We summarise the discussion above by showing the oscillation frequencies of gravity and en-
tropy modes in stratified, collisional CR MHD in Figure 4.1. The frequencies are normalised by
the Brunt–Väisälä frequency. The two modes that are characterised by the buoyancy frequency
at long wavelengths (orange and pink lines) become the MHD slow magnetosonic modes at short
wavelengths. The gas-entropy mode (green line) is unaffected by buoyancy, and its oscillation
frequency is due to CR heating. The blue line shows the CR-entropy mode with frequency ≈ ωA.
Figure 4.1 suggests that the CR-entropy mode is not significantly affected by buoyancy in colli-
sional MHD. However, we will show that gravity destabilises the mode in low-collisionality MHD
(i.e., on small scales), which we term the CR buoyancy instability (CRBI).

4.4.2 Compressible CR Entropy Mode due to Streaming
Surprisingly, the CR entropy mode becomes highly compressible at short wavelengths due to

the influence of a finite mean free path in the background plasma, i.e. due to ∆p. At high β,
pressure balance implies δpc + δp⊥ ≈ 0. In the isothermal limit due to rapid conduction (Pr ≪ 1),
and neglecting CR diffusion, this can be rewritten as (see eq. 4.34):

δρ

ρ
+ η

4
3k · v − 2

3χωA
δρ

ρ
+ 1

3βωAχ
δ∆p
pg

ω − χωA
≈ 0. (4.43)

In the limit of long wavelengths/high collisionality such that δ∆p is negligible, pressure balance is
achieved if δρ/ρ→ 0, i.e. kxvx + kyvy + kzvz = 0 or k⊥ · v⊥ + k∥v∥ = 0. This is the standard result
that pressure-balanced modes are nearly incompressible at high β.
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At shorter wavelengths and high β, the δ∆p/pg term is dominant for the CR entropy mode with
ω ≈ ωA. Pressure balance then requires that the pressure anisotropy is minimised, δ∆p ≈ 0. This
condition leads to the unusual requirement that the pressure-balanced mode is highly compressible.
In Braginskii MHD ∆p ∝ (2k∥v∥ − k⊥ · v⊥) so that (4.43) is satisfied when,

k⊥ · v⊥ ≈ 2k∥v∥. (4.44)

The exact relation satisfied by v⊥ and v∥ can be different in the collisionless regime, i.e. below the
ion mean free path, where Braginskii MHD is no longer valid. However, the qualitative conclusion
remains the same and the mode is very compressible. We next show how the pressure-balanced
compressible mode is destabilised by gravity.

4.4.3 How Gravity Destabilises the Compressible CR Entropy Mode
To show how gravity destabilises the compressible CR entropy mode discussed above, we

consider a simple model in which we ignore magnetic tension and damping by anisotropic pressure
(viscosity). As in Section 4.4.1, we consider the case B = Bẑ, g = −gẑ, and consider a mode
with kxvx = αkzvz imposed by pressure balance. As described in Section 4.4.2, α = −1 in standard
MHD, while α = 2 in Braginskii MHD with CRs. The momentum equations are,

ωvx =
kx

ρ
δPtot, (4.45)

ωvz =
kz

ρ
δPtot − iωffcs

(1 + α)kzvz

ω
, (4.46)

where in the vz equation we used thatωδρ/ρ ≈ (1+α)kzvz. Multiplying (4.45) by kx and subtracting
from (4.46) times αkz, we find that

δPtot

ρ
(αk2

z − k2
x) = iα(1 + α)kzcsωff

kzvz

ω
. (4.47)

Using this expression for δPtot back in equations (4.45) and (4.46) gives a simple dispersion rela-
tion:

ω ≈
1
√

2
(1 + i)

[
(1 + α)kzcsωff

kx2

αk2
z − k2

x

]1/2
∼
√
ωsωff. (4.48)

In this simplified picture gravity leads to growth rates that are of order ∼
√
ωffωs ≫ ωff . The above

analysis can be easily repeated for the case g ⊥ B (i.e. horizontal magnetic field in a vertical
gravitational field), with very similar results. We stress that the scaling ∼

√
ωffωs in (4.48) does

not describe compressible sound waves, which are approximately longitudinal at high β: α ≈ k2
x/k

2
z

and the denominator in (4.48) is approximately zero.
Akin to standard buoyancy instabilities, the mode found here is destabilised by the unbalanced

gravitational force acting on the mode’s density fluctuations. However, in contrast to standard
buoyancy instabilities, such as thermal convection in stars or the magneto-thermal instability (MTI;
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Balbus 2000) and the heat-flux-driven buoyancy instability (HBI; Quataert 2008) in clusters, the
density fluctuations in the CR-driven instability are not due to the background stratification of the
plasma. The density fluctuations at short wavelengths are instead due to CR streaming, independent
of the background stratification.

In subsequent sections we show that while magnetic tension does not affect the growth rate
significantly, the effect of damping by anisotropic pressure should generally be retained. However,
at sufficiently high β there is a range of scales for which the simple model considered in this
section provides a good picture of the instability (see eq. 4.52 below), and the growth rates are
indeed ∼

√
ωsωff . This regime is shown in Figure 4.2. The solid black line shows the instability

growth rate, computed from numerical solutions of the full set of linear equations in 4.3.5, as a
function of wavenumber for β = 107, η = 0.1, B antiparallel to g and kx = kz. The ’x’ markers
show the growth rate for B perpendicular to g and kx = −kz. The dotted line labelled ∼

√
ωsωff

shows the predicted growth rate from (4.48), which matches the exact solution very well over a
wide range in k.

We now discuss the instability in the astrophysically more relevant regimes where (4.48) is not
as accurate.

4.5 Dispersion Relation and Growth Rates of Short-
Wavelength Modes

In 4.4.3 we neglected damping by anisotropic pressure (viscosity), which generally changes
the growth rates relative to those predicted in (4.48) (except for certain asymptotic limits, e.g. very
large β as in Figure 4.2). In this section we present a more accurate calculation and derive an
approximate dispersion relation.

For simplicity, we here ignore background gradient terms (i.e. we set BG = 0 in equations
4.28–4.34) in our analytic derivation of the growth rates. Ignoring background gradients is a rea-
sonable simplification because we find that short-wavelength modes (which are the fastest growing
modes) are not significantly affected by explicitly including background gradients (even though
they should formally be included). This is because the CRBI is due to streaming-induced com-
pressibility and not background stratification.2 This is in contrast to thermal convection in stars or
the MTI/HBI in clusters, which are driven by heat conduction and background temperature gradi-
ents. Our analytic results from this section will be supplemented by numerical solutions of the full
system of linearised equations (equations 4.28-4.34) including background gradients in Section
4.6.

2However, we note that a nonzero CR pressure gradient along the magnetic field is generally necessary for equi-
librium and to couple CRs to the thermal gas.
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Figure 4.3: Mode properties for η = 0.1,
β = 100 and H = 100lmfp. θB = 45◦

and θk = 90◦ are the directions of B

and k with respect to ẑ (g = −gẑ),
while ⊥ and ∥ are defined w.r.t. B. We
plot oscillation frequencies in panel a),
growth rates in b) (Γ > 0 corresponds
to growth), k∥v∥/k⊥v⊥, which quantifies
the compressibility of the mode, in c),
and [δpc + δ(B2/8π)]/δpg, which quan-
tifies the degree of pressure balance, in
d). The blue line shows the unsta-
ble CR entropy mode, the orange and
pink lines are the MHD slow modes and
the green line is the gas-entropy mode.
All modes except the CR entropy mode
are damped by low-collisionality effects.
Long-wavelength CR entropy modes are
approximately incompressible and the
growth rates are small. High-k CR en-
tropy modes become compressible due
to CR streaming while maintaining pres-
sure balance, and the growth rate reaches
the plateau given by eq. (4.54).
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Figure 4.4: Growth rates of the CRBI for β = 100, H = 100lmfp and different ratios of CR pressure to gas
pressure, η. The other parameters are set to the fiducial values (Section 4.6). The angles θB = 45◦ and
θk = 90◦ are the directions of B and k with respect to the positive z-direction (g = −gẑ). Even at very small
CR pressures (small η), the instability still exists, but with reduced growth rates (eq. 4.54).

4.5.1 Dispersion Relation
In this section, it is convenient to work in a coordinate system aligned with the magnetic field:

B = (0, 0, B), k = (k⊥, 0, k∥) and g = (g⊥;1, g⊥;2, g∥). In this coordinate system, and if we neglect
background-gradient terms (which we do here), Alfvénic fluctuations of the form δB = (0, δB, 0)
and δv = (0, δv, 0) decouple, which leaves velocity/magnetic field fluctuations in the k −B plane
for the remaining modes. If background gradients are kept, this is strictly true only if gravity is
coplanar with k and B. In the high-β and isothermal limit (ωcond ≫ ω), the third order dispersion
relation for the slow-magnetosonic and CR-entropy modes can be found by crossing the momen-
tum equation (4.29) twice with k, taking the component parallel to B and using (4.43):

0 = ω2
(2
3

iχη
ωB

ωA
ω(2k2

∥ − k2
⊥) + k2∆

)
+ 3ik2

⊥ωBω∆

+ 2χη
ωB

ωA
k∥ωffcsω

(
− k2(b̂ · ĝ) + (k · ĝ)k∥

)
− ωAvAk2k∥

(4
3

iηχ
ωB

ωA
ω + ∆

)
,

(4.49)

where,

∆ = ω − χωA + iωd +
4
3
ηω −

2
3
ηχωA. (4.50)

The 3 solutions of the cubic dispersion relation in (4.49) are the two slow magnetosonic waves
and the CR entropy mode. The gas entropy mode is not present because our calculation assumed
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that modes are isothermal, δpg/pg = δρ/ρ, which eliminates the gas entropy mode (i.e. the gas
entropy equation acts as a constraint). The first term in (4.49) comes from crossing the velocity
perturbation twice with k, the second term is the damping by Braginskii viscosity, the third term is
the gravitational force and the last term comes from the perturbed magnetic tension. We note that
the gravitational force term, which drives the instability, is zero if g is perpendicular to the k −B
plane.

As explained in Section 4.4.3, the instability is driven by gravity mediated by compressibil-
ity induced by CR streaming. The compressibility is a consequence of the perturbed pressure
anisotropy δ∆p, characterised by the Braginskii viscous frequency ωB, in the CR entropy equa-
tion. This suggests that compressibility effects are most important in the short-wavelength limit
ωB/ωA ≫ 1. In this limit, the dispersion relation can be simplified to

0 = ω2 2
3

iχη
ωB

ωA
(2k2
∥ − k2

⊥) + 3ik2
⊥ωB∆ + 2χη

ωB

ωA
k∥ωffcs

(
− k2(b̂ · ĝ) + (k · ĝ)k∥

)
− ωAvAk2k∥

4
3

iηχ
ωB

ωA
.

(4.51)

4.5.2 Growth Rates of Short-Wavelength Modes
We split the eigenmode frequency into real and imaginary parts, ω = ωR + iΓ, such that Γ > 0

corresponds to exponential growth. We note that if magnetic tension and damping by pressure
anisotropy in eq. (4.51) can be ignored (4th and 2nd term, respectively), we recover the growth
rate that was derived in Section 4.4.3, i.e. Γ ∼

√
ωsωff . From (4.51) we see that damping by

anisotropic viscosity (pressure) can be ignored if the third term ∝ ωff is much larger than the
damping term, or

β ≫ η−2
(ωs

ωff

)
. (4.52)

At sufficiently high β there is therefore a finite range of scales where the simple model from Section
4.4.3 and eq. (4.48) correctly predict the solution (see Figure 4.2).

We proceed by solving (4.51) in the limit η ≪ 1, i.e. for small CR pressure fractions. To
leading order, ∆ = 0 is a solution, which, ignoring CR diffusion, implies

ω ≈ χωA. (4.53)

This mode is the CR entropy mode. We stress again that the dependence on ωA in the CR entropy
mode does not come from the perturbed magnetic tension, but from CR streaming along field lines
at the Alfvén speed, which also has characteristic frequency ωA. The growth rate of the mode can
be found at first order in η and is approximately given by,

Γ ≈ χ

√
2

3
ηβ1/2ωff

−k2b̂ · ĝ + k · ĝk∥
k2
⊥

, (4.54)

where χ = ±1 is the parameter that ensures that CR stream down their pressure gradient (eq.
4.10). The growth rate increases with increasing β, as at higher β the pressure anisotropy is better
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Figure 4.5: CRBI growth rates as a func-
tion of propagation direction for η =
0.1, β = 100, H = 100lmfp and fixed
kH = 20. The angles θk and ϕk are de-
fined such that kx = k sin θk cos ϕk, ky =

k sin θk sin ϕk and kz = k cos θk (all the
other figures in this paper use ϕk = 0).
The three panels show growth rates for
different orientations of the background
magnetic field relative to gravity, which
is in the −ẑ direction. The growth rates
have a qualitatively different angular de-
pendence for the different field geome-
tries (see equations 4.54, 4.55 and 4.56).
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minimised (eq. 4.43) and anisotropic viscous damping is reduced. There is no unstable growth if
gravity is normal to the k −B plane. In the case of a magnetic field that is antiparallel to g,

Γ ∼ χηβ1/2ωff , B = Bẑ, g = −gẑ. (4.55)

For a horizontal magnetic field along x,

Γ ∼ −χηβ1/2ωff
kzkx

k2
z + k2

y
, B = Bx̂, g = −gẑ. (4.56)

While for B = Bẑ and χ > 0 all modes are unstable (except when k is approximately parallel to
or perpendicular to B), for B = Bx̂ growth occurs if χkxkz < 0. Unless B ∥ g and χB · g > 0
(dpc/dz > 0, which is unlikely), there exists a region in k-space where there is wave growth. We
note that for horizontal magnetic fields growth rates can be higher than for vertical magnetic fields
because of the extra factor that depends on the direction of propagation, although growth rates with
kx ≫ ky, kz do not diverge because the ordering used to derive (4.54)–(4.56) breaks down.

The above solutions are for pure CR streaming and also do not include the impact of back-
ground gradients on the growth rates. By neglecting CR diffusion we have assumed that CRs are
perfectly coupled to the self-excited Alfvén waves and so stream at the Alfvén speed. We include
CR diffusion in our analysis to relax the assumption of pure Alfvénic streaming, which certainly
breaks down on small scales. From eq. (4.49), or from the fact that in the presence of diffusion
the CRs’ natural frequency is ω ≈ ωA − iωd (see eq. 4.42), we can estimate that CR diffusion
suppresses the instability when

ωd ≳ ηβ
1/2ωff (4.57)

or equivalently

klmfp ≳
(
Φ−1 lmfp

H
ηβ1/2

)1/2
, (4.58)

where we used the parameter Φ defined in eq. (4.21).
(4.42) also allows us to estimate how background gradients affect the growth rate in (4.54). The

background CR pressure gradient modifies the mode’s imaginary part by vA,zd ln pc/dz ∼ vA,z/H ∼
ωff/β

1/2, which encapsulates that as the perturbation propagates down the CR pressure gradient,
δpc/pc(z) remains constant in collisional MHD without CR diffusion. The background therefore
significantly modifies the growth rate if,

ωff
β1/2 ≳ ηβ

1/2ωff =⇒ η ≲ β−1. (4.59)

We stress again that for η ≲ β−1 the mode is not damped in the usual sense, because it maintains
approximately constant δpc/pc(z) as it propagates down the CR pressure gradient.

4.6 CR Buoyancy Instability in an Isothermal Atmosphere
We now complement the analytics of Section 4.5 with numerical solutions of equations (4.28)-

(4.34) including background gradients. In this section, we consider an isothermal atmosphere in
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Figure 4.6: CRBI growth rates as a function of wavenumber and the CR diffusion coefficient (quantified
using the parameter Φ defined in eq. 4.21). We assume η = 0.1, β = 100, H = 100lmfp and the isothermal
background described in Section 4.6. CR diffusion suppresses growth at high k (eq. 4.58) and can completely
shut off the instability if sufficiently large (eq. 4.60).

order to isolate the CRBI from the HBI/MTI, which require background temperature gradients. As
our fiducial set of parameters, we use η = 0.1, β = 100 and H = 100lmfp. The background is in the
hydrostatic equilibrium described by (4.26) and (4.27). We assume that the background CR heating
is balanced by an unspecified cooling function, which we do not perturb in our linear analysis,
except in Section 4.7.2 (see Kempski & Quataert 2020 for a discussion of thermal instability with
streaming CRs). Unless specified otherwise, we will consider wavevectors k in the B − g plane,
i.e. ϕk = 0 (see Section 4.3.5), motivated by the fact that the instability is not present if g is
perpendicular to the B − k plane. We show how growth rates depend on ϕk in Figure 4.5.

The physics of the instability described in Section 4.4 becomes apparent by plotting the prop-
erties of the CRBI. We show the mode properties for η = 0.1 and β = 100 in Figure 4.3. We plot
the oscillation frequency in panel a), the growth rate in panel b), k∥v∥/k⊥v⊥, which quantifies the
compressibility of the mode (= −1 if incompressible), in panel c), and [δpc+δ(B2/8π)]/δpg, which
quantifies the degree of pressure balance (= −1 if pressure balanced, i.e. δpc+δ(B2/8π)+δpg = 0),
in panel d). The blue line shows the unstable CR entropy mode. For completeness, we also plot the
MHD slow modes and the gas-entropy mode. Panel b) shows that all modes except the CR entropy
mode are strongly damped by low-collisionality physics (viscosity and conduction). At small k,
the CR entropy mode is approximately incompressible (k∥v∥ ≈ −k⊥v⊥) and the growth rates are
≪ ωff. At high k, the mode becomes compressible due to CR streaming, approaches k⊥v⊥ = 2k∥v∥,
and the growth rate reaches the plateau given by eq. (4.54). We note that k⊥v⊥ does not quite reach
2k∥v∥ because we limit the x-axis to klmfp < 1, where the Braginskii MHD model is valid. The
oscillation frequency ≈ ωA is set by the characteristic frequency of CR streaming.
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In Figure 4.4 we show growth rates of the CRBI for the fiducial parameters and different ratios
of CR pressure to gas pressure, η. The instability exists even for small CR pressures, but with
reduced growth rates. In the analytics in Section 4.5 without background gradients, the instability
exists for arbitrarily small CR pressures. Here we find that with background gradients, within our
local WKB framework, the instability exists for any η ≳ β−1 (ignoring CR diffusion), which is
consistent with the discussion at the end of Section 4.5.2.

We show growth rates as a function of propagation direction at fixed kH = 20 in Figure 4.5
for different orientations of the background magnetic field. The growth rates in the three panels
have a qualitatively different angular dependence, consistent with equations (4.55) and (4.56). For
horizontal magnetic fields growth rates are larger than for vertical magnetic fields, but growth
occurs in a smaller region of k-space.

In Section 4.5.2 we noted that significant CR diffusion suppresses the CRBI at short wave-
lengths. We now show this explicitly in Figure 4.6 for different values of Φ, which quantifies the
strength of CR diffusion (eq. 4.21).3 As predicted by (4.58), diffusion suppresses the instability at
high k.

Given that the CRBI typically becomes important on scales kH ≫ 1 and that at longer wave-
lengths buoyancy instabilities such as the HBI and MTI are generally more important (see Section
4.7.1 and Figure 4.7), we can rephrase (4.58) in terms of a rough overall criterion for the suppres-
sion of the CRBI by CR diffusion (however, we note that for large thermal mean free paths, as in
cluster outskirts, the CR-driven instability is important on scales kH ∼ 1, see Figure 4.9). Setting
kminH as the largest scale on which the CRBI operates and using (4.58), we find that CR diffusion
suppresses the instability if,

Φ ≳ 0.01ηβ1/2 H
lmfp

(kminH
10

)−2
. (4.60)

For η = 0.1, β = 100, kminH = 10 and H = 100lmfp, CR diffusion suppresses the instability for
Φ ≳ 1, roughly consistent with Figure 4.6.

4.7 Discussion

4.7.1 CRBI versus HBI/MTI
We now consider the relationship between the CRBI and previously identified buoyancy insta-

bilities driven by background temperature gradients and heat fluxes, i.e. the MTI (Balbus 2000)
and the HBI (Quataert 2008). How CRs may affect these buoyancy instabilities has been consid-
ered in previous work (e.g., Chandran & Dennis 2006, Dennis & Chandran 2009, Sharma et al.
2009). However, they did not use streaming CR transport and so the CRBI was not included in
their calculation.

3We assume that CR diffusion does not affect the background equilibrium, i.e. we assume an approximately linear
CR pressure profile, κd2 pc/dz2 ≈ 0.
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Figure 4.7: CRBI versus buoyancy instabilities driven by background stratification and anisotropic heat
conduction, the HBI (top) and MTI (bottom). We use β = 100, H = 100lmfp and different η. Long-
wavelength modes are destabilised by thermal conduction, as in the MTI/HBI. Short-wavelength modes are
stable to the HBI/MTI due to the stabilising effect of magnetic tension. Short-wavelength modes are, how-
ever, destabilised by the compressibility induced by CR streaming. The CRBI therefore operates alongside
the long-wavelength HBI and MTI. For η = 0.4, the CRBI and the MTI are destabilising the same mode
(also true for the HBI at higher β).
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Instead of an isothermal atmosphere as in Section 4.6, we here consider a background temper-
ature that increases with height, as is the case in cluster cores:

d
dz

(pg + pc) = −ρg, pc ∝ ρ
2/3,

d ln T
dz
= H−1, (4.61)

where H = c2
s/g = ωff/cs. This equilibrium with vertical magnetic field and T increasing with

height is unstable to the HBI at high β (driven by the background anisotropic heat flux). We also
consider a background with dT/dz < 0 and a horizontal magnetic field, B = Bx̂, which is unstable
to the MTI. To study the MTI we consider the following background,

dpg

dz
= −ρg, ρ = const,

d ln T
dz
= −H−1 = −

ωff
cs
. (4.62)

For the MTI, we assume that |b̂ · ∇pc|/pc ≪ H−1, so that the cosmic rays are coupled but their
background gradient is sufficiently small to be ignored (which is consistent with our choice of
ρ ≈ const). We stress that this choice is made for the sake of simplicity and is not necessarily
representative of cluster conditions.

We show growth rates for the backgrounds described by equations (4.61) and (4.62) in Figure
4.7, for β = 100, H/lmfp = 100 and different values of η. At small k, growth rates are dominated
by the HBI/MTI. At high k, the HBI is partially stabilized by anisotropic viscosity (Kunz 2011),
and the MTI and HBI are completely suppressed by magnetic tension. The HBI is also partially
suppressed by the CR pressure gradient at long wavelengths (for large η), where CRs are approx-
imately adiabatic, ωA < ωff (Sharma et al. 2009). Short-wavelength modes are destabilised by
compressibility induced by CR streaming. We note that in the top panel there is a range of wave-
lengths where our calculation does not predict unstable growth at small η, which is not the case in
the bottom panel. This is due to the effect of the background CR pressure gradient on the growth
rate, explained in Section 4.5.2, which is not present in the equilibrium used to study the MTI (eq.
4.62). Finally, we note that for η = 0.4 the CRBI and the MTI are in fact driving the same mode
(this is also true for the HBI for β slightly larger than used in Figure 4.7).

The CRBI considered in this work therefore operates alongside standard buoyancy instabilities
driven by background gradients, such as the HBI/MTI. Both types of instabilities are driven by
gravity acting on density fluctuations. At long wavelengths, for which the HBI/MTI operate, the
density fluctuations that introduce unstable buoyancy are due to a combination of background den-
sity stratification, rapid heat conduction and pressure balance. At short wavelengths, the unstable
density fluctuations are due to CR streaming and pressure balance, independent of the background
stratification.

The transition from heat-flux-driven growth to CR-driven growth in Figure 4.7 occurs around
kH ∼ 5. The exact value is sensitive to our choice of parameters, such as η or β. It also depends
strongly on the thermal mean free path, more specifically the ratio H/lmfp, which sets the range of
k for which CR streaming drives the mode away from incompressibility. In particular, for H ∼ lmfp

the CRBI can have faster growth rates than the HBI/MTI at long wavelengths (see Figure 4.9) for
plausible parameters. We discuss the dependence of the CRBI on the value of the thermal particle
mean free path in more detail in Section 4.7.3.
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Figure 4.8: Growth rates of the CRBI are not significantly affected by cooling even when the cooling rate
ωc is comparable to the growth rate. This is because the mode is isothermal due to rapid conduction (the
wavelengths shown are below the Field length where thermal instability is suppressed by conduction; Field
1965). For this plot, we assume thermal Bremsstrahlung to be the dominant radiative cooling process.

4.7.2 Impact of Cooling
We have ignored cooling throughout this work. Given that the unstable short-wavelength CR

entropy modes have significant density fluctuations due to CR streaming, cooling could in principle
have an impact on the instability. However, because the unstable wavelengths are characterised by
thermal-conduction times that are much shorter than the cooling time, the dominant response of
the gas is simply that it is isothermal, even in the presence of cooling and large CR-driven density
fluctuations. The perturbed cooling therefore has no significant effect on the CRBI even when the
cooling rate ωc is comparable to the growth rate, as we show in Figure 4.8.

4.7.3 Dilute Cluster Outskirts and the Collisionless Regime
In Figures 4.3–4.8 we used a fixed H/lmfp = 100. While H/lmfp ≫ 1 is representative of

the conditions in the inner regions of galaxy clusters, H/lmfp is likely smaller in the outskirts,
where the ICM plasma density is significantly reduced. A larger mean free path implies that CR-
streaming-induced compressibility effects become important on larger scales; the growth rates of
long-wavelength modes will thus be enhanced relative to the results from Figures 4.3–4.8.

Considering a larger mean free path runs into the issue that the range of scales for which
both the Braginskii MHD model and the WKB approximation are valid (klmfp ≪ 1 and kH ≫ 1,
respectively) becomes very limited. To alleviate this issue, we here consider a different model
for the low-collisionality thermal plasma. We use the kinetic MHD equations (Chew et al. 1956)
with a “Landau-fluid" prescription for the heat fluxes, i.e. the heat fluxes are constrained by the
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Figure 4.9: Growth rates of the CRBI, calculated using the Landau-fluid model (black lines), for η = 0.1,
β = 100 and different H/lmfp. The Landau-fluid model allows us to compute approximate growth rates
for both the collisional and collisionless regimes. For larger lmfp, as is likely the case in dilute cluster
outskirts, the growth rates of long-wavelength modes are enhanced, as CR streaming leads to significant
density fluctuations on large scales. There is good agreement between Landau-fluid and Braginskii MHD
(magenta crosses) predictions in the collisional regime, as expected.

requirement that the fluid equations approximately match the linear response of the kinetic thermal
plasma (Snyder et al. 1997). We use the heat fluxes from Snyder et al. (1997) that depend on the
collision rate, allowing for a smooth transition between the weakly-collisional (Braginskii MHD)
and collisionless regimes. The equations of the Landau-fluid model are provided in Appendix 4.A.
For simplicity, we ignore electron physics and only consider the thermal ions, which dominate the
pressure anisotropy because the ion collision rate is much smaller than the electron collision rate.
Ignoring the effect of the electron heat flux on the ions is generally not rigorous (in our Braginskii
calculation the heat flux was due to electrons, hence Pr = 0.02). However, the electron-ion thermal
equilibration rate is slower than the ion-ion collision frequency by the square root of the electron-
to-ion mass ratio, τ−1

eq ∼ (me/mi)1/2νii ∼ νii/40, which means that ions and electrons are thermally
decoupled for ω ∼ ωA modes if klmfp ≳ β

1/2/40. For β ∼ 100 and klmfp ≳ 1 electrons and ions are
then approximately thermally decoupled. It is therefore reasonable to neglect the electron heat flux
in the collisionless regime, which is of primary interest in this section.

We show growth rates of the CRBI, calculated using the Landau-fluid model (black lines), in
Figure 4.9 for η = 0.1, β = 100 and different H/lmfp. As expected, for larger lmfp the growth rates
of long-wavelength modes are enhanced, as CR streaming leads to larger density fluctuations on
large scales. The asymptotic growth rate at high k is independent of the mean free path (absent CR
diffusion). We also compare the Landau-fluid results to the Braginskii MHD calculation for the
fiducial case H/lmfp = 100 (solid line and magenta crosses in Figure 4.9). There is good agreement
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between the two models in the collisional regime, which shows that instability growth rates are not
very sensitive to the thermal Prandtl number, as the Braginskii MHD model has Pr = 0.02 while
the Landau-fluid model has Pr ∼ 1 (this is consistent with our finding that Pr = 0.02 and Pr ∼ 1
yield similar results in Braginskii MHD). The asymptotic high-k growth rates in the two models are
also remarkably similar. This is because the qualitative physical picture of the instability does not
change between the collisional and collisionless regimes (although the exact relationship satisfied
by k∥v∥ and k⊥v⊥ at high k is different in the two models, and in the Landau-fluid model k∥v∥ ≫
k⊥v⊥).

4.7.4 Diffusive Correction to CR streaming
Figure 4.6 shows that significant CR diffusion can suppress the CRBI. The magnitude of the

diffusive correction to Alfvénic streaming is therefore critical. The diffusive correction depends on
the damping of the Alfvén waves excited by the CR streaming instability. In the ICM, the dominant
damping mechanisms are nonlinear Landau damping ∼ kvth(δB/B)2 (Kulsrud 2005) and linear
Landau damping of Alfvén waves in a turbulent background (Wiener et al. 2018). For turbulence
injected on ∼ 10 kpc (a common scale for the radio bubbles) with perturbations comparable to
the Alfvén speed, the linear-Landau damping rate of k ∼ r−1

L Alfvén waves excited by GeV CRs
(where rL is the GeV CR gyroradius) is

ΓL ∼
0.4vth

(rLLturb)1/2 ∼ 10−10 s−1 vth

108cm s−1

( Lturb

10 kpc

)−1/2( B
1 µG

)1/2
. (4.63)

We compute the correction to Alfvénic streaming for a combination of linear and nonlinear damp-
ing mechanisms in Appendix 4.B. The resulting diffusion coefficient is a function of the back-
ground CR pressure gradient. We split the total diffusion coefficient κ into two components,
κ(∇pc) = κdiff(∇pc) + κst(∇pc), where κst is the part of the diffusion coefficient that scales as
κst ∝ (∇pc)−1 and therefore does not result in real diffusive behaviour (as needed to suppress
the CRBI). For purely linear damping mechanisms, κ = κst (Skilling 1971). Diffusive behaviour in
the form of a finite κdiff comes from non-zero nonlinear damping.
κdiff is plotted for different linear damping strengths in Figure 4.10 as a function of the CR

pressure gradient, normalized using pc = 10−12 ergs/cm3 and a scale height Hc = 10 kpc. In
addition to linear damping, the waves excited by the streaming instability are damped by nonlinear
Landau damping. We plot κdiff rather than the total κ = κdiff + κst because κdiff is the component that
acts as a diffusion term (see Appendix 4.B). The non-diffusive correction to Alfvénic streaming κst

likely does not suppress the CRBI and is a small correction to Alfvénic streaming for the GeV CRs
in a steady state (Kempski & Quataert 2021).

The horizontal dotted line in Figure 4.10 shows the Braginskii viscosity of the thermal plasma
for lmfp = 0.2kpc and T = 3 × 107K, and is larger than κdiff in most of the parameter space. Figure
4.10 therefore shows that Φ < 1 is plausible in the ICM, and so the CRBI is not completely
suppressed by CR diffusion.



4.8. CONCLUSIONS 94

Figure 4.10: The diffusive correction to Alfvénic streaming calculated from eq. (4.71) as a function of
the CR pressure gradient, for different magnitudes of the linear damping of Alfvén waves excited by the
CR streaming instability. The horizontal dotted line is the anisotropic viscosity of the thermal gas for
lmfp ∼ 0.2 kpc and T = 3 × 107K. Thus, Φ < 1 (see eq. 4.21) is plausible in cluster cores and the CRBI is
likely only partially suppressed by CR diffusion (Figure 4.6).

4.8 Conclusions
In Kempski et al. (2020) we showed that streaming CRs destabilise sound waves in the low-

collisionality ICM. The instability arises because the Alfvén speed in low-collisionality plasmas
depends on the pressure anisotropy of the thermal gas (eq. 4.10). This introduces a new unstable
form of coupling between CRs and the thermal plasma. In this work, we showed that Alfvéni-
cally streaming CRs in a gravitationally stratified medium also destabilise a pressure-balanced
mode, more specifically the CR entropy mode. We term this the Cosmic Ray buoyancy instability
(CRBI) because it is the combined action of CR streaming and gravity (buoyancy) that drives the
instability. CR entropy modes are highly compressible on small scales (Figure 4.3), which drives
them unstable in a gravitational field. In the limit of pure CR streaming (no diffusion), there likely
is no threshold for the CRBI (see discussion in Sections 4.5.2 and 4.6). The fastest growth occurs
at short wavelengths, where the mode is highly compressible, with growth rates of order ηβ1/2ωff
(eq. 4.54) where η = pc/pg, β = 8πpg/B2 and ωff is the free-fall frequency. Our results show
that CR streaming in cluster plasmas is a dramatically unstable process and that CR physics is
important for understanding wave propagation in the ICM, even for subdominant CR pressures.

We gave a physical overview of the CRBI in Section 4.4. Instability arises due to gravity acting
on the mode’s density fluctuations. In standard buoyancy instabilities, such as thermal convection
in stars or the magneto-thermal instability (MTI; Balbus 2000) and the heat-flux-driven buoyancy
instability (HBI; Quataert 2008) in clusters, the density fluctuations are due to the background
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stratification of the plasma. Notably, in the CRBI the density fluctuations at short wavelengths are
due to the combined action of CR streaming and pressure balance, independent of the background
stratification. We complemented the qualitative physical picture from Section 4.4 with a quantita-
tive dispersion-relation calculation in Section 4.5, and showed growth rates and mode properties
for a wide range of physical parameters in Figures 4.3–4.9.

Previous work on dilute cluster plasmas showed that anisotropic conduction leads to buoyancy
instabilities, the MTI and HBI. Figure 4.7 shows that these instabilities dominate growth rates at
long wavelengths even in the presence of CRs, if the gas scale height is significantly larger than
the thermal mean free path, as is the case in cluster cores. The CR-driven instability operates on
small scales, precisely where the heat-flux-driven buoyancy instabilities are stable due to magnetic
tension. The MTI/HBI and the CRBI of this paper can thus operate simultaneously in cluster plas-
mas. However, we note that the scale separation between the MTI/HBI and the CRBI is not always
so clear: in the more dilute cluster outskirts, where the thermal mean free path is significantly
larger, the CRBI can have significant growth rates (of order the free-fall frequency for plausible
parameters) even for long-wavelength kH ∼ 1 modes (Figure 4.9).

In Figure 4.11, we summarise how the CRBI and the Cosmic Ray Acoustic Braginskii (CRAB)
instability from Kempski et al. (2020) compare to previously identified instabilities that may op-
erate in ICM plasmas. We sketch representative growth rates due to the different instabilities as
a function of η. For small η, the HBI/MTI are the fastest growing instabilities operating in the
ICM (at large CR pressures we use a dashed line for HBI/MTI because CRs may suppress the
HBI, and the CRBI and HBI/MTI can be associated with the same mode; see Figure 4.7). For
η ≳ β−1/2 (recall that β ≫ 1 in the ICM), the growth rate of short-wavelength CR entropy modes
driven compressible by CR streaming becomes comparable to or larger than ωff . For η ≳ β−1/2

the CRAB instability of sound waves is also excited (Kempski et al. 2020). The impact of CRs on
thermal-instability (TI) growth rates is modest (Kempski & Quataert 2020). The CRAB instabil-
ity generally drives the fastest growing mode. This, however, does not necessarily mean that for
large η the nonlinear dynamics are dominated by the CRAB instability, as the saturation of both
CR-driven instabilities remains unclear and is the subject of ongoing work. In particular, while the
unstable CR entropy modes have smaller growth rates, they also have smaller group speeds and so
remain in the region in which they are excited for longer. This is especially true at high β: waves
propagating at the Alfvén speed with growth rates of order ωff undergo several e-foldings over the
distance of one gas scale height.

Heating by streaming CRs may balance cooling in the inner regions of cluster cores (Guo & Oh
2008; Jacob & Pfrommer 2017a; Jacob & Pfrommer 2017b). For a cooling rate ωc, this requires
CR pressures of order (Kempski & Quataert 2020),

η ∼ β1/2 ωc

ωff
. (4.64)

The CRAB instability and the CRBI become important for ηβ1/2 ≳ 1 and therefore destabilise a
CR-heated medium if,

ηβ1/2 ∼ β
ωc

ωff
≳ 1. (4.65)
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Figure 4.11: Overview of instabilities in dilute ICM plasmas as a function of η = pc/pg. For small η, the
HBI/MTI have the highest growth rates. For η ≳ β−1/2, the CRBI has growth rates larger than the HBI/MTI,
and the CRAB instability of sound waves is excited. We include approximate growth rates of the CRBI
and CRAB instability (Γ ∼ ηβ1/2ωB for the CRAB instability is valid above the instability threshold and
as long as Γ ≪ ωs; Kempski et al. 2020). CRs do not significantly affect thermal-instability (TI) growth
rates for η ≲ 1 (Kempski & Quataert 2020). The CRAB instability drives the fastest growing mode for
η ≳ β−1/2. However, while the CR entropy modes have smaller growth rates, they also have smaller group
speeds and so remain in the region in which they are excited for longer, potentially leading to larger overall
amplification.

Observations suggest that ωff/ωc ≳ 10 in cluster cores (e.g., McDonald et al. 2010, Hogan et al.
2017). A CR-heated medium is therefore plausibly unstable to the CRAB instability and the CRBI
for β ≳ 10, a condition that is likely satisfied in the ICM.

We also note that the CRAB and CR buoyancy instabilities may have, to some extent, simi-
lar observational appearances. In particular, although CR entropy modes are pressure-balanced,
they are compressible and involve finite gas-pressure fluctuations (balanced by CR-pressure fluc-
tuations). CR entropy modes may therefore masquerade as sound waves if only the thermal-gas
fluctuations are measured. Moreover, due to their compressible nature both the CRAB instability
and the CRBI may evolve into shock-like structures that resemble the weak shocks observed in the
Perseus cluster (Fabian et al. 2003; Fabian et al. 2006).

Both the CRBI considered in this work and the CRAB instability in Kempski et al. (2020) are
driven by CR streaming at the Alfvén speed. The instabilities therefore operate only if the bulk
of CRs in the ICM are self-confined, rather than scattered by an extrinsic turbulent cascade of
magnetic fluctuations. According to current theoretical models of MHD turbulence, CR scattering
by Alfvénic turbulence is likely negligible, due to the anisotropy of the cascade (Chandran 2000).
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The MHD weak cascade of fast modes may be isotropic and more efficient at scattering CRs, and
has been proposed as an alternative to self-confinement (Yan & Lazarian 2004). However, because
the weak cascade of fast modes is strongly damped in dilute high-β plasmas, and may generally
be suppressed by wave steepening (Kadomtsev & Petviashvili 1973; Kempski & Quataert 2021),
scattering of energetically important GeV CRs by fast modes is likely suppressed in the high-β
ICM. Self-confinement and streaming transport are therefore plausible.

The finite CR mean free path in the frame moving with the self-excited Alfvén waves necessar-
ily implies a correction to the pure Alfvénic streaming model. Significant CR diffusion resulting
from this correction can suppress the CRBI (Figure 4.6). However, the magnitude and nature of
the correction to Alfvénic streaming remains uncertain. In particular, the form of the transport cor-
rection turns out to be rather peculiar, as it corresponds to neither streaming nor diffusion (Skilling
1971, Wiener et al. 2013; Kempski & Quataert 2021). We attempted to quantify the magnitude
of the diffusive part of the transport correction, i.e. the contribution that may suppress the CRBI,
in Section 4.7.4, which was based on the calculation from Appendix 4.B. Figure 4.10 shows that
the CRBI is usually not suppressed by CR diffusion for expected ICM conditions. It would also
be valuable to carry out a more complete calculation – based on CR kinetic theory – to test the
conclusions of our simplified fluid treatment (although it is worth noting that existing theories of
CR transport are quite uncertain and have difficulties explaining CR measurements in the Milky
Way; e.g., Kempski & Quataert 2021, Hopkins et al. 2021b).

In the standard picture, AGN in cool cluster cores excite sound waves and internal gravity
waves via the time dependence of the AGN jet and the buoyant motion of radio bubbles into
the ICM. Kempski et al. (2020) and this work suggest that waves can also be excited by the CR
pressure gradient that the bubbles provide. Future simulations will address the nonlinear evolution
of the CR-driven instabilities. There are two important stages that are crucial for the nonlinear
evolution and saturation: when the amplitudes become large enough to locally flatten the CR
pressure gradient and shut off CR streaming (δpc/pc ∼ 1/kH; though this does not necessarily
shut off the instability, see Hin Navin Tsung et al. 2021) and when the amplitudes become large
enough for the pressure anisotropy to excite kinetic microinstabilities such as the mirror (Barnes
1966; Hasegawa 1969) and firehose (Rosenbluth 1956; Chandrasekhar et al. 1958; Parker 1958)
instabilities (which occur when |∆p| ∼ B2/4π). Upcoming work will address how this additional
physics, which is not part of the linear analysis presented here, affects the evolution of the CR-
driven instabilities and their impact on the ICM.
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Appendix

4.A Landau-Fluid Closure for Low-Collisionality Plasmas
Here we provide the kinetic MHD equations and the Landau-fluid closure for the heat fluxes

used in Section 4.7.3 and Figure 4.9. The kinetic MHD evolution equations for the pressures
perpendicular and parallel to the magnetic field are (Chew et al. 1956),

∂p⊥
∂t
+∇ · (p⊥v) + p⊥∇ · v +∇ · (q⊥b̂) + q⊥∇ · b̂ = p⊥b̂b̂ : ∇v −

1
3
νii∆p, (4.66)

∂p∥
∂t
+∇ · (p∥v) +∇ · (q∥b̂) − 2q⊥∇ · b̂ = − 2p∥b̂b̂ : ∇v +

2
3
νii∆p − 3(γ − 1)vst · ∇pc, (4.67)

where we made the somewhat uncertain assumption that CR heating is predominantly in the di-
rection parallel to the magnetic field. This is motivated by the fact that CR heating is due to
the excitation of parallel-propagating modes, although we note that this is not true if damping
by Alfvénic turbulence dominates, which acts to shear the waves to high k⊥. This choice does
not, however, significantly affect the results. The above equations are not yet complete, as the heat
fluxes are still undetermined. In the Landau-fluid closure, the heat fluxes are set such that the linear
behaviour of the fluid model approximately matches the linear response of the fully kinetic thermal
plasma (Snyder et al. 1997). The Landau-fluid closure has been popular for modeling collisionless
plasmas, as it recovers the fully kinetic linear damping rates (e.g. linear Landau damping of ion
acoustic waves) and instabilities (e.g. MRI) of all MHD modes. A convenient form for the heat
fluxes, which recovers Braginskii MHD in the collisional limit, is given by (Snyder et al. 1997),

q⊥ = −
2c2

s∥
√

2π|k∥|cs∥ + νii

[
ρ∇∥
( p⊥
ρ

)
− p⊥
(
1 −

p⊥
p∥

)∇∥B
B

]
, (4.68)

q∥ = −
8c2

s∥
√

8π|k∥|cs∥ + (3π − 8)νii

ρ∇∥
( p∥
ρ

)
, (4.69)

where cs∥ =
√

p∥/ρ. In Section 4.7.3 and Figure 4.9 we use the linearised versions of (4.66)–(4.69)
instead of the linearised Braginskii MHD equations (4.32) and (4.33).
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Figure 4.12: κdiff as a function of the CR pressure gradient for a linear damping rate ΓL = 10−10 s−1,
where κdiff is the component of the diffusion coefficient κ that gives rise to actually diffusive behaviour. We
estimate κdiff from self-confinement theory by computing the total diffusion coefficient κ from eq. 4.71 and
subtracting κst (eq. 4.74) in order to not include the non-diffusive correction when linear damping dominates.
While this method of computing κdiff is not exact, it correctly recovers the diffusive correction in the two
asymptotic shown by the dashed lines (equations 4.75 and 4.76). This suggests that the solid line in Figure
4.12 is a reasonable approximation of the diffusive correction to Alfvénic streaming.

4.B CR Diffusion Coefficient in Self-Confinement Theory
In this section we provide a heuristic calculation of the CR diffusion coefficient in self-

confinement theory (a similar calculation can be found in Hopkins et al. 2020a). One challenge
in this calculation is that leading-order corrections to Alfvénic streaming are often not diffusive.
Instead they are better described by a (super-Alfvénic) streaming or sink term (this is the case
when linear damping of Alfvén waves dominates; Skilling 1971; Wiener et al. 2018; Kempski &
Quataert 2021). For our linear analysis calculation, we are mainly interested in the leading-order
diffusive correction, which is more likely to suppress the instability than a streaming/sink term.

We calculate the amplitude of waves excited by the CR streaming instability, and the resulting
CR scattering frequency, by equating Alfvén-wave growth and damping. We consider a steady
state with

(ΓL + ΓNL)
δB2

4π
= |vA · ∇pc|, (4.70)

where we split the wave damping into a linear and nonlinear part (∝ δB2). ΓL is the sum of all
linear damping contributions, turbulent (Farmer & Goldreich 2004), linear-Landau (Wiener et al.
2018), ion-neutral and dust (Squire et al. 2021) damping, although the latter two are likely not
important in the hot and dilute ICM. ΓNL is the nonlinear Landau damping rate (Kulsrud 2005),
ΓNL = γNL(δB/B)2, where γNL ∼ kvth, k is the wavenumber of Alfvén waves resonant with ∼ GeV
CRs and vth is the ion thermal speed. Equation 4.70 becomes a quadratic equation for the wave
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amplitude (δB2

B2

)2
+
ΓL

γNL

δB2

B2 −
ΓA

2γNL

pc

ϵB
= 0, (4.71)

where ΓA ≡ |vA · ∇pc|/pc is the inverse of the Alfvén crossing time and ϵB is the magnetic-field
energy density. We first consider the the limit ΓL ≫ ΓNL. (4.71) can then be solved perturbatively
to yield

δB2

B2 ≈
ΓA pc

2ΓLϵB

(
1 −
γNL

2ΓL

ΓA pc

2ΓLϵB

)
. (4.72)

The pitch-angle scattering rate of GeV CRs is νCR ∼ Ω0δB2/B2, which corresponds to a diffusion
coefficient

κ ∼
c2

νCR
≈ κst + κdiff , (4.73)

where,

κst =
c2

Ω0

2ΓLϵB
ΓA pc

, (4.74)

and

κdiff =
c2

Ω0

γNL

ΓL
∼

cvth

ΓL
. (4.75)

κst ∝ |vA · ∇pc|
−1 reflects the well-known result that for purely linear damping rates the diffusion

coefficient is inversely proportional to the CR pressure gradient, so that the diffusion term ∇·(κb̂b̂·
∇pc) ends up not being diffusive at all and is better described as a (super-Alfvénic) streaming or
sink term (Skilling 1971; Wiener et al. 2013; Kempski & Quataert 2021). By contrast, κdiff is
independent of the CR pressure gradient and is therefore a regular diffusion coefficient.

Conversely, if nonlinear Landau damping dominates, the CR diffusion coefficient is to leading
order (from eq. 4.71):

κNL ≈ κdiff ≈
c2

Ω0

(2γNLϵB
ΓA pc

)1/2
. (4.76)

κNL ∝ |vA · ∇pc|
−1/2 and so we end up with a term that is again not diffusive in the usual sense.

However, in linear theory with a background CR pressure gradient, ∇ · (κb̂b̂ · ∇pc) still gives a
term ∝ κk2 (where κ depends on the background gradient) and is therefore linearly diffusive.

In the high-β ICM, linear Landau damping (Wiener et al. 2018) is likely the most important
linear damping rate. For turbulence injected on ∼ 10 kpc (common scale of the radio bubbles) with
perturbations comparable to the Alfvén speed, the damping rate of k ∼ r−1

L Alfvén waves excited
by GeV CRs (where rL is the GeV CR gyroradius) is

ΓL ∼
0.4vth

(rLLturb)1/2 ∼ 10−10 s−1 vth

108cm s−1

( Lturb

10 kpc

)−1/2( B
1 µG

)1/2
. (4.77)

We plot κdiff , i.e. the component of the diffusion coefficient κ that gives rise to actually diffusive
behaviour, as a function of the CR pressure gradient in Figure 4.12 (see also Figure 4.10 for a
different version of this plot). We calculate κdiff by computing the total diffusion coefficient κ from
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eq. 4.71 and subtracting κst (eq. 4.74) in order to not include the non-diffusive correction when
linear damping dominates. Simply subtracting κst to obtain the diffusive correction is not exact.
However, it correctly recovers the two asymptotic limits (equations 4.75 and 4.76 and the dashed
lines in Figure 4.12). This suggests that the solid line in Figure 4.12 is a reasonable approximation
of the diffusive correction to Alfvénic streaming.

For large CR pressure gradients, the streaming instability reaches large amplitudes (for a fixed
linear damping rate) and nonlinear Landau damping is more important than linear damping mech-
anisms. The resulting diffusion coefficients are ∝ (dpc/dz)−1/2. For small CR pressure gradients,
linear damping dominates as the amplitudes reached by the streaming instability are not large
enough for nonlinear Landau damping to be important. The diffusion coefficient is constant and
approximately given by eq. 4.75. The horizontal dotted line in Figure 4.12 is the anisotropic vis-
cosity of the thermal gas for lmfp ∼ 0.2 kpc and T = 3 × 107 K. It is therefore plausible to expect
Φ < 1 in cluster cores and the CRBI remains active, though is likely partially suppressed (Figure
4.6).
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Chapter 5

Reconciling Cosmic-Ray Transport Theory
with Phenomenological Models Motivated
by Milky-Way Data

An earlier version of this article by Kempski P., and Quataert E. has been accepted for publica-
tion in MNRAS.

5.1 Abstract
Phenomenological models of cosmic-ray (CR) transport in the Milky Way (MW) can repro-

duce a wide range of observations assuming that CRs scatter off of magnetic-field fluctuations
with spectrum ∝ k−δ and δ ∼ [1.4, 1.67]. We study the extent to which such models can be rec-
onciled with current microphysical theories of CR transport, specifically self-confinement due to
the streaming instability and/or extrinsic turbulence due to a cascade of MHD fast modes. We
first review why it is that on their own neither theory is compatible with observations. We then
highlight that CR transport is a strong function of local plasma conditions in the multi-phase inter-
stellar medium (ISM), and may be diffusive due to turbulence in some regions and streaming due to
self-confinement in others. A multi-phase combination of scattering mechanisms can in principle
reproduce the main trends in the proton spectrum and the boron-to-carbon ratio (B/C). However,
models with a combination of scattering by self-excited waves and fast-mode turbulence require
significant fine-tuning due to fast-mode damping, unlike phenomenological models that assume
undamped Kolmogorov turbulence. The assumption that fast modes follow a weak cascade is also
not well justified theoretically, as the weak cascade is suppressed by wave steepening and weak-
shock dissipation even in subsonic turbulence. These issues suggest that there may be a significant
theoretical gap in our understanding of MHD turbulence. We discuss a few topics at the frontier of
MHD turbulence theory that bear on this (possible) gap and that may be relevant for CR scattering.
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5.2 Introduction
Cosmic rays may play an important role in the evolution of galaxies and diffuse gas in galaxy

halos (see Zweibel 2017 for a recent review). However, the impact that CRs have on their host
environment is a strong function of the adopted transport model (e.g., Ruszkowski et al. 2017;
Farber et al. 2018; Hopkins et al. 2020b; Quataert et al. 2022a; Quataert et al. 2022b). As a result,
the uncertainties in CR feedback are primarily driven by uncertainties in CR transport.

The CR lifetime in galaxies is much longer than the light-crossing time. It is widely accepted
that the long CR confinement time is due to (resonant) scattering by small-scale electromagnetic
fluctuations. Progress in understanding this scattering has occurred on both observational and theo-
retical fronts. There are now detailed measurements of CR spectra in the solar neighbourhood (e.g.,
Stone et al. 2013; Aguilar et al. 2015; Aguilar et al. 2016; Cummings et al. 2016), which put strong
constraints on CR propagation models. On the theoretical side, there is growing understanding of
how CRs are scattered in pre-existing MHD turbulence (Chandran 2000; Yan & Lazarian 2004;
Yan & Lazarian 2008; Xu & Lazarian 2018; Lazarian & Xu 2021; Fornieri et al. 2021) and/or
by self-excited waves (Kulsrud & Pearce 1969; Skilling 1971; Felice & Kulsrud 2001; Farmer &
Goldreich 2004; Bai et al. 2019; Squire et al. 2021; Bai 2021).

In the self-excitation scenario, waves are generated by the CR streaming instability (Kulsrud
& Pearce 1969): cosmic rays excite Alfvén waves if they collectively drift down their pressure
gradient at speeds exceeding the Alfvén speed. The excited waves pitch-angle scatter cosmic rays
towards isotropy in the wave frame. In the absence of damping of the self-excited waves, this limits
the CR drift speed to the local Alfvén speed. In this limit, all CRs stream at the Alfvén speed, and
so CR transport and the lifetime of CRs in the galaxy is energy-independent. In the presence
of wave damping, the CRs are no longer fully isotropic in the frame of the self-excited Alfvén
waves and CR transport exceeds the Alfvén speed by an amount that depends on the damping
strength (e.g., Skilling 1971; Wiener et al. 2013). Importantly, the transport correction due to
damping introduces energy dependence. However, due to the peculiar form of the correction term
introduced by damping, which is neither truly diffusive nor streaming in nature,1 its consequences
for CR transport remain somewhat unclear.

The alternative to self-confinement is that CRs are scattered by a pre-existing turbulent MHD
cascade. Phenomenological models of CR transport often assume that the cascade is isotropic, un-
damped and follows the Kolmogorov k−5/3 (or close to Kolmogorov, e.g. ∝ k−3/2) spectral scaling,
as in hydrodynamics. The resulting CR diffusion coefficient κturb ∝ Eδ with δ ∼ 0.3 − 0.6 turns out
to match CR observables in the Milky Way remarkably well (e.g., Trotta et al. 2011; Gaggero et al.
2014; Hopkins et al. 2021a); this includes the spectra of secondary-to-primary CRs (e.g. the B/C
ratio), which under the assumption of diffusive CR transport directly probe CR transport indepen-
dent of injection physics (this is not true for streaming transport, as we show in Section 5.5). A
subset of the phenomenological literature uses a combination of isotropic undamped Kolmogorov
turbulence and waves excited by the CR streaming instability, which are assumed to cascade in k∥

1For example, for linear damping mechanisms the term is independent of the CR distribution function. The term
has been often interpreted, not entirely correctly, as super-Alfvénic streaming, with a streaming speed correction that
is inversely proportional to the CR distribution function.
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just like the background turbulence, to model the break in CR spectra around a few hundred GeV
(e.g., Blasi et al. 2012; Aloisio & Blasi 2013 Aloisio et al. 2015). However, these phenomenolog-
ical models are not justified theoretically, as MHD turbulence is known to be very different from
hydrodynamic Kolmogorov-like turbulence. In MHD, the turbulent cascade of Alfvén and slow
waves does have a Kolmogorov spectrum, but only in directions perpendicular to the magnetic
field (the spectrum may be slightly shallower than Kolmogorov, Boldyrev 2006). The spectrum
along the local magnetic-field direction, which is relevant for scattering, is k−2

∥
and thus steeper

than Kolmogorov. Moreover, on small scales the cascade is highly anisotropic with k⊥ ≫ k∥ (Gol-
dreich & Sridhar 1995), which is very inefficient at scattering cosmic rays (Chandran 2000). As a
result, existing models of Alfvénic turbulence predict negligible CR confinement. The compress-
ible fast-mode cascade may be isotropic (Cho & Lazarian 2003), and may have a spectral slope
that is not too far from Kolmogorov, ∝ k−3/2 (Zakharov & Sagdeev 1970; Cho & Lazarian 2003).
But fast modes are subject to strong damping and the physics of their cascade (and thus spectral
slope) remains uncertain. As a result, reconciling CR observables with existing theories of MHD
turbulence remains an open problem (see Fornieri et al. 2021 for a recent attempt that uses only
fast-mode turbulence).

In this paper we attempt to reconcile microscopic CR transport theory with phenomenological
models based on MW data and highlight some of the main issues that existing theories face. We
prioritise building physical intuition rather than deriving exact results. For this reason, we use
simplified CR transport models to calculate order-of-magnitude estimates of MW observables. We
first give a pedagogical review of the issue that existing theories of self-confinement and scattering
by ambient turbulence cannot, on their own, reproduce observed CR spectra. Instead, a combi-
nation of self-confinement and turbulence may be needed to explain CR observables. We then
argue that the phase structure of the ISM is important because CR transport depends on the local
plasma conditions. In particular, the streaming instability is suppressed by strong damping unless
the plasma is well ionized. And how efficiently turbulence can cascade to small scales to scat-
ter cosmic rays depends on the local plasma conditions. The interstellar medium of star-forming
galaxies is multi-phase with most of the volume near the mid plane dominated by the warm and hot
ISM, while a significant fraction of the mass is in denser phases (e.g., McKee & Ostriker 1977). At
larger heights above the midplane, the hot ISM increasingly becomes the dominant ISM compo-
nent by volume and perhaps by mass (e.g., Kim & Ostriker 2017). We show that as a result of the
dramatically changing conditions throughout the ISM, CR transport may be either diffusive due to
turbulence or streaming due to self-confinement, depending on the ISM phase.

The paper is structured as follows. We first give an overview of CR self-confinement theory
and derive associated steady-state solutions in Section 5.3. We then review CR scattering by MHD
turbulence, specifically the cascade of MHD fast modes, in Section 5.4. Many of the results in
Sections 5.3 and 5.4, e.g. the conclusion that neither self-confinement nor extrinsic-turbulence
theory can on their own explain the CR data in the Milky Way, are not new (e.g., Kulsrud &
Cesarsky 1971; Farmer & Goldreich 2004; Blasi et al. 2012; Fornieri et al. 2021), but we repeat
them for pedagogical purposes (for self-confinement our approach is also quite different from what
is usually done in the literature). In Section 5.5 we consider CR scattering by a combination of self-
excited Alfvén waves and fast-mode turbulence. In Section 5.5.1 we show that CR transport may
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be multi-phase, i.e. streaming or diffusion depending on the ISM phase. We consider a particular
multi-phase transport model and compare it to observations in Section 5.5.2. Our calculations
show that a multi-phase combination of scattering by self-excited waves and a weak fast-mode
cascade can in principle reproduce the main trends in the proton spectrum and the boron-to-carbon
ratio (B/C), but that requires a significant amount of fine-tuning. We note that there already exists
literature that tries to combine streaming and turbulence to explain CR observables (e.g., Blasi et al.
2012; Aloisio & Blasi 2013; Aloisio et al. 2015). However, these models assume an undamped
Kolmogorov cascade. We instead focus on the theoretically better motivated interplay of streaming
instability and fast-mode turbulence. The key difference is that fast modes are damped on scales
∼ the Larmor radius of ∼ 100 − 1000 GeV particles. This makes their effect on CR transport and
their interaction with CR-streaming-unstable Alfvén waves very different from what previous work
concluded, which focused on undamped Kolmogorov fluctuations. We discuss uncertainties in the
physics of MHD fast-mode turbulence in Section 5.6, which have significant implications for CR
transport, but have not been taken into account in previous work (e.g. Yan & Lazarian 2004; Yan &
Lazarian 2008; Fornieri et al. 2021). In Section 5.7 we speculate about additional uncertainties and
ongoing developments from the field of MHD turbulence that may be relevant for CR transport.
We summarise our results in Section 5.8.

5.3 Self-Confinement Theory and Steady-State Solutions
As a simple model of CR transport in galaxies, we consider 1D propagation away from the

galactic disk. CRs are assumed to be injected in the disk by supernovae at a rate 2Q(p). We
consider a uniform vertical magnetic field, B = Bẑ. In a steady state, (∂ f /∂t = 0) the CR
distribution function as a function of momentum p satisfies

(u + vst)
∂ f
∂z
=

1
3

p
∂ f
∂p
∂

∂z
(u + vst) +

∂

∂z

(
κ
∂ f
∂z

)
+ 2Qδ(z) − 2

f
τloss(p)

hδ(z).
(5.1)

The terms in the first line describe CR transport by advection and diffusion. The first term in
the second line is the source function, while the second term represents losses due to interactions
with ISM material in the dense galactic mid-plane of half-thickness h. We ignore hadronic pion-
producing collisions, as measurements in the Milky Way show that the Galaxy loses its cosmic
rays through escape and not hadronic losses (Strong et al. 2010; Lacki et al. 2011). We use the
expressions in Schlickeiser (2002) to evaluate τloss(p) for ionisation and Coulomb losses. For both
loss mechanisms, τloss(p) ∝ p3 for sub-relativistic CRs and τloss(p) ∝ p for super-relativistic CRs
(see also eq. 5.51). Due to the strong dependence on momentum, the loss term is negligible for
ultra-relativistic CRs (E ≫GeV) and so we ignore it for much of the discussion in Sections 5.3
and 5.4. However, the loss term is important for trans- and sub-relativistic CRs. We note that
the loss term is more correctly described by a flux in momentum space. For the CR protons and
the purposes of this paper, however, the approximate form in (5.1) is a reasonable approximation
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and we use it to compare our model predictions to observed proton spectra at low energies. By
contrast, for boron nuclei it is important to use the flux form of the energy loss term, as we discuss
in Appendix 5.C. For this reason, including energy losses in the calculations of B/C spectra is
beyond the scope of this paper.

In this section, we consider CR scattering by self-excited waves generated by the streaming
instability (Kulsrud & Pearce 1969). We consider CR scattering by extrinsic turbulence in Section
5.4. For self-confinement, vst = vAsgn(z) and the diffusive correction to streaming, κ, is calculated
by equating the Alfvén wave damping rate and the growth rate due to the streaming instability
(see, e.g., Skilling 1971). In this work, we ignore the motion of the thermal gas, i.e. we set u = 0.
However, our results for vst , 0 easily generalise to the case with finite u, so our streaming results
also mimic gas advection in, e.g., supernova-heated flows. For a constant vA and ignoring the
energy loss term, we can integrate (5.1) to find that f satisfies,

vA f (z) − κ
∂ f
∂z
= const ≈ Q. (5.2)

The interpretation of equation 5.2 is simple. The rate of escape of CRs (i.e. the flux) balances
the injection rate at the central source. The conserved flux on the right hand side is exactly Q
for scattering by turbulence and ≈ Q for self-confinement, with a fractional error that does not
qualitatively affect the results in this paper. For a spatially varying Alfvén speed, (5.2) is valid for
z ≲ HA, where HA is the ∼Alfvén scale height.2

5.3.1 Single-Phase Steady-State Solutions
We assume that the diffusion coefficient κ = κ( fp) is a function of the CR proton distribution

function only, as protons are the most abundant CR species. κ in self-confinement theory is calcu-
lated by balancing the damping rate of Alfvén waves and the growth rate due to the CR streaming
instability. As a result, the “diffusive" correction to Alfvénic streaming in (5.2) strongly depends
on the mechanisms that damp the excited Alfvén waves, which in turn depend on the ISM phase.

5.3.1.1 Linear Damping Mechanisms

For linear damping mechanisms, the resulting diffusion coefficient has the form (Skilling 1971),

κsc = S |b̂ · ∇ fp|
−1, (5.4)

2For a CR distribution function that is a power-law in momentum, f ∼ p−α, the steady-state solution of (5.1) for
pure Alfvénic streaming is,

f (z, p) =
[vA(0)

vA(z)

]α/3 3Q
αvA(0)

, (5.3)

and so the CR scale height is comparable to the Alfvén scale height. For a constant Alfvén speed, the exact conserved
flux in (5.2) is [Q − vA f (0)(α − 3)/3], which gives f = 3Q/αvA instead of the f = Q/vA implied by (5.2). The
correction is therefore at most order unity (as α ≈ 4.5) and is essentially degenerate with the choice of vA. Because α
is an a priori unknown function of CR momentum, using the exact conserved flux unnecessarily obscures the essential
physics of the calculation by making it more mathematically complicated (especially when diffusive corrections are
included, e.g. in Section 5.5.1). For pedagogical purposes, we therefore use the approximation in (5.2), which does
not affect our results qualitatively.
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Figure 5.1: Top: steady-state solution in self-confinement theory with linear damping mechanisms (eq.
5.5). Here we use damping by Alfvénic turbulence with Γ ∝ k1/2. For a wide range of rigidities the solution
(blue solid line) agrees well with the solution absent any corrections to Alfvénic streaming (green dashed
line). This is followed by a sharp cutoff and at higher energies CRs are not self-confined. Bottom: effective
streaming speed associated with the solution in the top panel (eq. 5.8). To reasonable approximation, for all
linear damping mechanisms self-confinement theory predicts that CRs stream at either the Alfvén speed or
the speed of light.
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where S depends on the properties of the plasma and the damping. Because κsc ∝ |b̂ · ∇ fp|
−1, the

“diffusion" term ends up not being diffusive at all and is in fact independent of the CR distribution
function. This peculiar result implies that linear damping mechanisms lead to a transport correction
that in a steady state effectively acts like a sink of CRs, as can be seen from (5.2) combined with
(5.4),

f ≈
Q − S

vA
. (5.5)

The two terms in the numerator are functions of CR momentum, Q ∼ Q0(p/p0)−γinj with γinj ≳ 4
and S ∝ p−3−a for a damping Γ ∝ ka (Skilling 1971). Thus, the two terms in the numerator have
a different power-law dependence on CR momentum, and for known linear damping mechanisms,
S will generally have a harder spectrum than Q. For example, for linear damping by ambient
Alfvénic turbulence with Γ ∼ k1/2 (Farmer & Goldreich 2004), S ∼ p−3.5, for damping by charged
interstellar dust grains with Γ ∼ k3/4 (Squire et al. 2021), S ∼ p−3.75, and for ion-neutral damping
with Γ ∼ k0, S ∼ p−3. We can therefore define a cutoff momentum,

Q(pc) = S (pc). (5.6)

For p > pc, S > Q which gives a negative solution for f : CRs are unable to confine themselves.
On the other hand, for almost all p < pc we have Q ≫ S and

f ≈
Q
vA

p ≪ pc. (5.7)

Almost all self-confined CRs therefore stream at essentially the Alfvén speed. Thus, the primary
role of linear damping in self-confinement theory is to set the energy range of CRs that are able to
self-confine. An example of this is provided in Figure 5.1. In the top panel, we plot the steady-
state solution from equation 5.5 (blue line). For the CR source term (= 2Q, see eq. 5.1) we use
a supernova rate of 1 per 100 years, each supernova injecting 1050 ergs in cosmic rays with a
spectrum Q ∝ p−4.3. For S , we use Γ ∝ k1/2 (e.g., damping by ambient Alfénic turbulence) with
Γ = 10−11 s−1 at scales resonant with 1 GeV CRs. We use a 1µG magnetic field and thermal-gas
density n = 0.001 cm−3. We see that for a wide range of energies the solution agrees well with the
solution absent any corrections to Alfvénic streaming (green dashed line). This is followed by a
sharp cutoff and at higher energies CRs are not self-confined. We can define an effective streaming
speed,

Q
vst,eff

≡
Q − S

vA
, (5.8)

which we plot in the bottom panel of Figure 5.1. The effective streaming speed is essentially
the Alfvén speed for a wide range of energies. It sharply transitions to propagation at the speed
of light at the cutoff energy for self-confinement. The above analysis and Figure 5.1 show that
linear damping corrections to Alfvénic streaming cannot produce energy-dependent transport like
that needed in phenomenological models. Instead, the linear damping of Alfvén waves just sets a
maximum CR energy above which the streaming instability ceases to operate.
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The above calculation can be easily extended to include the proton energy-loss term from eq.
5.1 by modifying the RHS of eq. 5.2 to Q − f (0)h/τloss(p). One can then show that

f (0) =
Q − S

vA

(
1 +

h
vAτloss(p)

)−1
. (5.9)

At high energies h ≪ vAτloss and we recover eq. 5.7, i.e. the steady state is set by CR escape
from the Galaxy. At low energies h ≫ vAτloss so that f (0) = [Q − S (0)]τloss/h and CRs are in the
loss-dominated regime.

5.3.1.2 Nonlinear Damping Mechanisms

If instead nonlinear Landau damping (NLLD; Γ ∼ kvth(δB/B)2; Lee & Völk 1973, Kulsrud
2005) is the dominant damping mechanism for self-excited waves, the diffusion coefficient in self-
confinement theory can be calculated analogously to the linear damping case in Skilling (1971).
We find,

κsc ≈ X|b̂ · ∇ fp|
−1/2, (5.10)

with X given by,

X ∼
vp

2

2π2Ω0

( 8vthΩ0B2

mpvAvp
3 p3

)1/2
, (5.11)

where vp ≈ c is the speed of individual CR protons, Ω0 is the non-relativistic gyro-frequency, and
the other symbols have the usual meaning.

Using the diffusion coefficient due to NLLD in (5.10) and assuming ∂ f /∂z < 0 above the
galactic plane, equation 5.2 for CR protons becomes,

vA fp + X
(
−
∂ fp

∂z

)1/2
≈ Q. (5.12)

This differential equation is separable with solution,

fp(z) =
Q
vA
+

X2

vA
2(z +C)

. (5.13)

C is a yet undetermined integration constant, for which we need to specify a boundary condition.
In phenomenological models of CR transport one traditionally specifies a “CR halo size", such
that fp(zH) = 0. It may seem unphysical to introduce an ad hoc cutoff, especially if it is at a
small distance above the disk (e.g. a few kpc, which is difficult to reconcile with more extended
CR synchrotron emission). This boundary condition also still requires specifying a value for zH,
which is a commonly encountered ambiguity in the CR literature. In particular, there turns out to
be a degeneracy between the CR diffusion coefficient and zH when trying to infer the CR diffusion
coefficient from local measurements. This degeneracy is lifted once zH ≳ r ∼ 10kpc, i.e. of
order the CR injection length scale in the disk (see, e.g., Figure 10 in Linden et al. 2010). The
physical reason is that for z ≳ r, CRs start propagating spherically away from the galaxy and have
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a smaller chance of making it back to the disk. Whether the same remains true for streaming is
unclear. However, given the lack of unambiguously better alternatives, we adopt fp(z = r) = 0 as
our boundary condition here. We then have,

fp(z) =
Q
vA
+

X2

vA
2(z − r − X2/(QvA))

. (5.14)

For small X (negligible diffusion set by NLLD), we have escape via Alfvénic streaming and fp ≈

Q/vA ∝ p−γinj . At higher energies (X2 ≫ QvAr), the NLLD term becomes dominant and fp is
given by fp(z) ≈ (r − z)Q2/X2 ∝ p−5.4, for γinj = 4.2. In this regime, the CR escape time from
the Galaxy therefore has a strong energy dependence, τesc ∝ p−γinj+3 ∝ p−1.2(see also Ptuskin et al.
1997). We note that in a steady state with CR injection balancing escape, the energy dependence
of CR transport due to nonlinear Landau damping is significantly stronger than the scaling usually
quoted in the literature, where the measured MW CR spectrum is used to calculate the CR diffusion
coefficient (e.g., τesc ∝ p0.75 in Kulsrud 2005 assuming fp ∝ p−4.5; τesc ∝ p0.85 in Blasi 2019
assuming fp ∝ p−4.7).

We stress that eq. 5.13 is only valid when Γlin < ΓNLLD. The nonlinear Landau damping rate
can be approximately expressed as,

ΓNLLD ∼
(nCR

nth

vth

vA
Ω0

c
LCR

)1/2
R−(α−3)/2

GV , (5.15)

where nCR is the total CR number density, RGV is the CR rigidity in GV and α is the slope of the CR
spectrum. For α ≈ 4.7, ΓNLLD ∼ R−0.85, which is similar to the energy dependence for damping by
charged interstellar dust grains and stronger than the energy dependence for damping by ambient
Alfvénic turbulence (Γ ∼ R−0.5). Thus, even if NLLD is the dominant damping mechanism at low
energies, linear damping likely becomes dominant above a rigidity R for which Γlin(R) ∼ ΓNLLD(R).

We can again include the proton energy-loss term from (5.1) in our solution through the trans-
formation Q → Q − fp(0)h/τloss in (5.14). Evaluating the result at z = 0 then involves a quadratic
equation for fp(0). However, because the term associated with NLLD (second term on the RHS of
eq. 5.14) becomes important at ultra-relativistic energies where losses are unimportant, to a very
good approximation it is sufficient to carry out the transformation only on the term associated with
Alfvénic streaming (first term on the RHS of eq. 5.14). As in (5.9), to include losses we therefore
should multiply the solution absent losses (eq. 5.14) by (1 + h/vAτloss)−1:

fp(0) ≈
[ Q
vA
−

X2

vA
2(r + X2/(QvA))

](
1 +

h
vAτloss(p)

)−1
. (5.16)

5.3.2 Self-Confinement in a Stratified Galaxy
In Section 5.3.1 we showed that predictions from self-confinement theory are not compatible

with phenomenological models of CR transport based on MW data. In particular, for both linear
and nonlinear damping mechanisms, the energy dependence of CR transport is very different from
the empirically derived κ ∼ Eδ with δ ∼ 0.3 − 0.7 (see, e.g., Blasi et al. 2012, or Hopkins et al.
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Figure 5.2: Comparison of self-confinement proton spectra in a stratified galaxy with AMS-02 and Voyager
data (Aguilar et al. 2015; Cummings et al. 2016). In this calculation, waves excited by the streaming
instability are damped linearly by the ambient Alfvénic turbulence. The CR spectrum is steepened by
transport in a stratified medium, in which the Alfvén speed and the damping of self-excited Alfvén waves
depend on the distance from the disk, z. The spectrum is steepened relative to the injection spectrum despite
roughly Alfvénic streaming in most of the volume where CRs are confined. The spectral slope depends
sensitively on the spatial profiles of the plasma properties that affect the Alfvén speed and the damping
strength. We show how variations around the fiducial scalings (black solid line; vA ∼ z0.5, S ∼ z−1, where
S characterises the spatial variation of the linear damping) affect the spectrum. See section 5.3.2 for details
of the calculation. The galactic phase structure has significant implications for the interpretation of CR
observables.
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2021a who favour δ ∼ 0.5−0.6). The discrepancy between theoretical predictions and observations
is particularly strong for linear damping mechanisms: based on Figure 5.1 it may seem hopeless
to reconcile the theoretical transport prediction with empirical scalings.

However, before we completely discard transport corrections due to linear damping mecha-
nisms, we note that an energy dependence in CR observables can also be introduced in rather un-
conventional ways. As an example, in this section we will show how roughly Alfvénic streaming,
a process usually considered to be energy independent, in a stratified galaxy with linear damping
of self-excited Alfvén waves can mimic energy-dependent transport with the appropriate scaling.
While our calculation is not much more than a toy model, it illustrates the importance of the ISM
phase structure, and its spatial variation, for interpreting CR observables. We note that CR trans-
port in a stratified galaxy has been studied in recent years by numerous authors (see, e.g., Ptuskin
et al. 1997, Recchia et al. 2016, Evoli et al. 2018 for CR transport with advection by winds or
Alfvén waves, and Tomassetti 2012 for pure diffusion with vertical variation), who showed that
features in CR spectra (e.g. hardening) can be the product of vertical variations in CR transport.
However, our calculation is significantly different from their models. In particular, the energy
dependence in CR transport that we derive is a product of the spatial variation of the linear damp-
ing rate of self-excited Alfvén waves, which can shut off the streaming instability (not considered
in the works referenced above), and the simultaneous spatial variation of the Alfvén speed. Our
calculation is thus similar to the models considered in Holmes (1974) and Holmes (1975), who
considered exponentially varying ion-neutral damping rates and Alfvén speeds. The calculation
presented here is valid for arbitrary linear damping mechanisms, including damping due ambient
Alfvénic turbulence, which unlike ion-neutral damping operates in the hot ionized phases of the
ISM. These occupy most of the galactic volume and are most important for setting CR observables.

In reality, galaxies and their halos are vertically stratified. In particular, the Alfvén speed likely
increases, while the damping strength of self-excited Alfvén waves decreases, with increasing
distance from the galactic disk. As a result of the decreasing damping, the range of CR energies that
are self-confined changes with distance from the disk. And because of the simultaneous increase in
Alfvén speed, CRs of different energies sample different effective escape speeds from the galaxy,
even though their transport is approximately Alfvénic as discussed in Section 5.3.1.1. In a stratified
medium, the distribution function for self-confined CR protons roughly satisfies (cf. equation 5.5),

f (p, z) ∼
Q(p) − S (p, z)

vA(z)
z ≳ zsc, (5.17)

where we have introduced the “self-confinement height" zsc(p), the height beyond which CRs of a
given momentum are self-confined, Q(p) = S (p, zsc), and S is the correction term that comes from
an arbitrary linear damping mechanism of self-excited Alfvén waves. For z < zsc CRs are not self-
confined and the distribution function is approximately given by equations 5.18 and 5.19 below.
We shall consider cases in which the spatial variation of S is stronger than the spatial variation
of vA. We note that (5.17) is an approximation, as we used (5.5), which assumes a constant vA.
In a vertically stratified galaxy, with vA , const, the Alfvénic loss term on the RHS of (5.1) is
not zero and so (5.2), used to derive (5.5), is not correct. Equation 5.17 is, however, a reasonable
approximation in the region (z − zsc)/HA ≲ 1, where HA is the Alfvén scale height.
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The approximate solution at some small height above the disk, z = z0, for low-energy CRs with
Q ≫ S (z0) is found by directly evaluating (5.17), which yields the very weak energy dependence
of CR transport described in Section 5.3.1.1 with f ∼ Q/vA(z0). The more interesting energy
dependence comes from CR momenta p > p∗ which are unable to self-confine at small z due to
large damping rates, S (p > p∗, z = z0) > Q(p > p∗). While the injection rate Q is fixed, S (z) is
plausibly a decreasing function of z, and so for sufficiently low-energy CRs there may be a zsc(p)
where Q(p) = S (p, zsc) and CRs start to self-confine. We stress that zsc(p) is a function of CR
momentum, which will give rise to energy dependence in the CR distribution function.

What are the consequences for CR observables close to the disk? Because close to the disk CRs
with p > p∗ are not self-confined, one might first guess the free-streaming solution f (p > p∗) ∼
Q/c at small z. However, if CRs do confine themselves above some height and f (z ∼ zsc) ∼ Q/vA,
the free-streaming solution is unphysical as it corresponds to CRs streaming up their pressure
gradient. Instead, the solution relaxes to a steady state with a flat spatial profile in regions where
self-confinement does not operate,

f (p > p∗, z0 ≤ z ≤ zsc) ∼ max
[Q(p > p∗) − S (p > p∗, z)

vA(z)

]
z
, (5.18)

i.e. f is independent of z for z < zsc. To get a sense of the energy scaling implied by (5.18), it is
useful to further approximate the above by,

f (p > p∗, z0 ≤ z ≤ zsc) ∼
Q(p > p∗)
vA(zsc(p))

∼ p−γinj−λ1λ3 , (5.19)

where we used our assumption that the spatial variation of S is stronger than the spatial variation
of vA and in the last step we assumed that the spatial variations are well described by simple power
laws, vA ∼ zλ1 , S ∼ z−λ2 , and as a result zsc ∼ pλ3 . For λ1 > 0 and λ3 > 0, the CR spectrum is
steepened. For a linear damping Γ ∝ ka, S ∼ z−λ2 p−3−a and one can show that the self-confinement
height zsc is given by,

zsc ∼ z0 pλ3 ∼ z0 p
γinj−(3+a)
λ2 , (5.20)

and (5.19) becomes,
f (p > p∗, z0 ≤ z ≤ zsc) ∼ p−γinj−λ1(γinj−3−a)/λ2 . (5.21)

For λ1 > 0 (vA increases with increasing z), λ2 > 0 (S decreases with increasing z) and a < γinj − 3
(true for all known linear damping mechanisms except ion-neutral damping at long wavelengths),
the spectrum is steepened relative to the injection spectrum.

So far we have kept the discussion fairly general and considered arbitrary linear damping mech-
anisms. Let us now provide a more concrete solution for the steady-state f . We consider CR
propagation in a turbulent inner galactic halo, so that the linear damping is due to the shearing of
self-excited waves by the ambient Alfvénic turbulence. Thus, Γ ∝ k0.5 and for turbulence injected
with Ma ∼ 1 on scales L (Skilling 1971; Farmer & Goldreich 2004),

S ∼ p−3.5 L−0.5BtotBz

4π3(mΩ0)0.5 ∝ B0.5
tot BzL−0.5 ∝ z−λ2 , (5.22)
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where Btot is the total magnetic field (as opposed to just the vertical component). Suppose we
take vA ∼ z0.5 i.e. λ1 = 0.5 (e.g. ρ ∼ z−1 and constant Bz). Let us further assume S ∼ z−1, i.e.
λ2 = 1. For γinj = 4.3, zsc ∼ p0.8 per equation 5.20, i.e. λ3 = 0.8. Then, f (p > p∗, z ≤ zsc) per
equations 5.19 or 5.21 scales as f ∼ p−4.3−0.4 ∼ p−4.7, approximately consistent with observations.
This is despite the fact that CRs are advected at ≈ vA in most of the volume in which they are
self-confined. Roughly Alfvénic streaming in a stratified medium with the right spatial variations
can therefore mimic energy-dependent streaming ∝ E0.3−0.7.

In Figure 5.2 we show example proton spectra from the stratified-halo calculation and compare
them to AMS-02 and Voyager data (Aguilar et al. 2015; Cummings et al. 2016; for AMS-02 we
only consider E ≳ 10GeV, as measurements of lower-energy CR protons are strongly affected by
solar modulation). We take z0 = 500pc as our base height. For the CR source term (= 2Q, see
eq. 5.1) we take a supernova rate of 1 per 100 years (every supernova injecting 1050 ergs of CR
energy) with a spectral slope γinj = 4.3. We assume that the spatial variation of f below z0 is
small, so that f (z0) ≈ f (0). At the base we take nth = 0.005cm−3 and B = 1µG. The domain of
our calculation extends from z0 to zmax = 20 kpc. We include ionisation losses as described in
Section 5.3.1 and eq. 5.9, which we assume occur in a disk of neutral-gas density 1.25 cm−3 and
half-thickness 200 pc. Turbulence at the base is injected on scales L = z0 = 500pc. As our fiducial
spatial scalings we take vA ∼ z0.5 (λ1 = 0.5) and S ∼ z−1 (λ2 = 1), as described in the paragraph
above. We show the proton spectrum for the fiducial parameters and scalings as the solid line. We
also show how variations around the fiducial scalings affect the spectrum. Interestingly, according
to this mechanism of spectral steepening, small changes in the spectral slope as a function of CR
energy in MW data are the result of changes in the spatial profiles with increasing distance from
the galaxy.

The cutoff in the spectra in Figure 5.2 is set by zmax = 20kpc. We could in principle shift
the cutoff to higher energies by increasing zmax (or rmax in spherical geometry), but our adopted
scalings would not hold indefinitely and would likely be different in the CGM relative to the near-
disk environment. Thus, in the stratified-halo model it remains true that self-confinement cannot
explain CR observations at high energies and there remains a need for additional scattering.

5.3.3 The Need for Extrinsic Waves
Sections 5.3.1 and 5.3.2 showed the well-known result that higher-energy CRs are unable to

self-confine due to the linear damping of waves excited by the streaming instability. Moreover,
even in the limit of negligible linear damping, nonlinear Landau damping predicts a proton spec-
trum that is asymptotically significantly steeper than the observed spectrum in the solar neighbour-
hood (Section 5.3.1.2). Thus, it transpires that self-confinement alone cannot explain observations
of CRs with energies ≳TeV. There must exist a different scattering mechanism that is necessarily
dominant at high energies, and potentially dominant at low energies. A natural way of generating
waves over a wide range of spatial scales, that can scatter CRs over a wide range of energies, is via
a turbulent cascade. Currently, the most likely candidate for efficient CR scattering is the cascade
of fast modes (Yan & Lazarian 2004; Yan & Lazarian 2008).
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Figure 5.3: Diffusion coefficients due to the weak-turbulence MHD fast-mode cascade in a low-β warm
ISM (black solid line) and a low-β halo (black dashed line; see main text in Section 5.4 for parameters). In
the halo, the diffusion coefficient has a very weak energy dependence due to the collisionless damping of
the cascade. In the warm ISM, the thermal mean free path is small, and the fast-mode cascade is isotropic
(with κturb ∝ p0.5) until viscous damping becomes important on scales resonant with ∼ 103 GeV CRs. For
comparison, we show the scaling of κturb for undamped Kolmogorov (∝ R1/3) and Kraichnan-like (∝ R1/2)
cascades (often assumed in phenomenological models), which have a very different energy dependence from
the MHD fast-mode calculation at low energies.

5.4 Scattering by Turbulence
When CR scattering is due to an extrinsic (balanced) turbulent cascade, vst = 0 in (5.1) and

(5.2), and κ = κturb is specified by the properties of the turbulent cascade. For κturb independent of
position, the solution to (5.2) is particularly simple,

f (z) =
Q
κturb

(H − z) + f (H), z < H, (5.23)

where we used f = f (H) at z = H as an outer boundary condition.
The main theoretical challenge with (5.23) lies in specifying κturb. The MHD turbulent cas-

cades of Alfvén and slow magnetosonic waves are believed to be inefficient at scattering CRs due
to the fact that eddies are highly elongated along the local magnetic field (Chandran 2000). For this
reason, Yan & Lazarian (2004) proposed that CRs are scattered by the MHD fast-mode cascade,
which they took to be isotropic and obey a weak-turbulence ∝ k−3/2 spectrum based on the theory
put forward by Zakharov & Sagdeev (1970) and the numerical work by Cho & Lazarian (2003).
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Following Yan & Lazarian (2004) and Yan & Lazarian (2008), in this section we review the calcu-
lation of κturb using the weak-turbulence formalism for fast modes. In Section 5.6 we discuss some
of the significant uncertainties in this calculation.

We include both collisionless damping (Ginzburg 1961) on scales smaller than the thermal-
particle mean free path and anisotropic viscous damping (Braginskii 1965) on scales larger than the
mean free path (∼ 1013 cm in the warm ISM, comparable to the Larmor radius of ∼ 10 GeV CRs).
At low β, where β = 8πpg/B2 is the ratio of thermal to magnetic pressure, the damping makes the
fast-mode cascade highly anisotropic below the viscous scale because parallel propagating modes
are damped least efficiently. In particular, there is a scale-dependent critical wave pitch angle θc(k)
for which the cascade rate,

τ−1
casc ∼

kδv2

vph
∼
( k
L

)1/2 δV2

vph
(5.24)

(δv denotes the amplitude at scale k, while δV is the amplitude at the injection scale) is equal to
the wave damping rate. For viscous damping of quasi-parallel modes at low β the damping rate is
approximately (Braginskii 1965),

Γ(k∥lmfpvA/vth ≪ 1) ∼
νBk2

6
θ2 θ ≪ 1, (5.25)

and for collisionless damping of quasi-parallel modes at low β it is approximately (Ginzburg 1961),

Γ(k∥lmfpvA/vth ≫ 1) ∼
√
πβθ2

4

(me

mi

)1/2
kvA θ ≪ 1. (5.26)

We provide more general expressions for the damping rates in Appendix 5.A (eq. 5.45 for colli-
sional and eq. 5.46 for collisionless damping, respectively). Equating the cascade rate (eq. 5.24)
and the angle-dependent damping rates (eq. 5.45 and 5.46) gives the scale-dependent critical wave
pitch angle θc(k). Modes with θ < θc are not strongly damped. Yan & Lazarian 2004 and Yan &
Lazarian 2008 assume that fast modes with θ < θc continue cascading to smaller scales unaffected
by the damping, while the remaining modes are fully damped. Here we use the same assumption,
but we stress that it is quite uncertain. When we evaluate the cascade and damping rates in (5.24)
and (5.45)–(5.46), we take the average of the cascade/damping rate in the interval (θ − δθ, θ + δθ),
where δθ is the spread in mode pitch angle experienced by a fast mode during one cascade time
due to turbulent magnetic-field-line wandering. The field-line wandering due to ambient Alfvénic
turbulence with MaAlf ∼ 1 experienced by quasi-parallel fast modes with wavenumber k is,

δB
B
∼
(
Ma2(kL)1/2

)−1/2
. (5.27)

Throughout this work MaAlf is the turbulent amplitude (normalised by vA) at the injection scale in
the Alfvénic cascade, while Ma corresponds to the amplitude (normalised by vA) in the fast-mode
branch. In our calculation, we also assume that the medium is sufficiently ionized (neutral fraction
≲ 1%) to ignore ion-neutral damping (see Xu et al. 2016 for a recent discussion of MHD turbulence
in partially ionized media). In the warm phase of the ISM, however, this assumption is likely only



5.4. SCATTERING BY TURBULENCE 117

valid in a fraction of the volume. We provide a more complete summary of the κturb calculation in
Appendix 5.A.

We show example diffusion coefficients in fast-mode turbulence in Figure 5.3, for turbulence
injected with Mach number Ma = 1 on scales L = 100pc. The warm ISM (B = 6µG, nth = 0.1cm−3,
T = 2 × 104K) is shown as the solid line. We also show the diffusion coefficient for a low-β halo
for comparison (B = 6µG, nth = 0.001cm−3, T = 2 × 106K). The diffusion coefficient in the halo
has a very weak energy dependence, due to the influence of collisionless damping on the cascade.
In the warm ISM with a short thermal mean free path, the fast-mode cascade is unaffected by
damping (with κturb ∝ p0.5) down to scales resonant with ∼ 103GV CRs, where viscous damping
becomes important. Below a few GV, κturb decreases with decreasing rigidity as CRs become
trans-relativistic. For comparison we show the scaling of κturb for the undamped Kolmogorov
(κturb ∝ p0.33) and Iroshnikov-Kraichnan (κturb ∝ p0.5) phenomenologies commonly used in the
CR transport literature, which differ significantly from the fast-mode diffusion coefficients at low
energies.

We can explain the main trends in Figure 5.3 heuristically. On large scales the cascade is
isotropic and unaffected by the damping, with (δB/B)2 ∼ k−1/2 and κ ∼ v2/νG

Γ=0 ∼ v2/(Ω(δB/B)2) ∼
R0.5, where νG

Γ=0 is the gyroresonant scattering rate absent any damping. Recall that R ∼ k−1

for gyro-resonance. For collisionless damping, equating (5.24) and (5.26) gives θ2c ∼ k−1/2, i.e.
surviving fast modes cover a solid angle ∼ θ2c that shrinks ∝ k−1/2. Thus, the wave power available
to scatter CRs decreases with decreasing spatial scale. Gyroresonant scattering then scales as
νG ∼ νG

Γ=0θ
2
c ∼ R1/2−1/2 ∼ R0. Gyroresonant scattering is therefore rigidity independent in the

collisionlessly damped regime. Since scattering by transit time damping (TTD; see Appendix 5.A)
is also energy independent, this results in a roughly energy independent CR diffusion coefficient,
as shown by the black dashed line at small rigidities in Figure 5.3. The analogous calculation for
viscous damping gives θ2c ∼ k−3/2 and νG ∼ νG

Γ=0θ
2
c ∼ R1. Thus, gyroresonant scattering decreases

with decreasing rigidity, while the TTD scattering is energy-independent. As a result, the total
κturb in the warm ISM, shown as the solid line in Figure 5.3, increases slowly with decreasing
rigidity in the viscous regime (roughly 102−103 GV), followed by weak energy dependence in the
collisionless regime (energies ≲ 100 GV).

The low-energy scattering frequency associated with the diffusion coefficients in Figure 5.3,
ν ≳ 10−8s−1, likely sufficiently isotropises the CR distribution function to suppress the excitation
of the streaming instability. The CR anisotropy ∼ vD/c, where vD is the CR drift speed and c is the
speed of light, is (Skilling 1975)

vD

c
∼
κ/LCR

c
∼

c/LCR

ν
∼ 10−4 10 kpc

LCR

10−8 s−1

ν
, (5.28)

where LCR is the CR scale height and ν is the scattering rate (10−8s−1 corresponds to a CR mean
free path of ∼ 1pc and a diffusion coefficient of ∼ 1029 cm2s−1). If vD < vA, the streaming insta-
bility is suppressed. At low β with vA > cs, vD ∼ 3 × 106 cm s−1 is comparable to (less than) the
Alfvén speed in the warm ISM (the halo/hot ISM). The CR anisotropy in low-β turbulence is there-
fore plausibly small enough that it does not excite the streaming instability (especially if damping
of Alfvén waves is also taken into account), consistent with external turbulence dominating the
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transport. Interestingly, for a plausible LCR ∼ 10kpc, equation 5.28 suggests that it is implausible
that CR diffusion coefficients due to turbulence are ≫ 1029 cm2s−1 for the bulk of the CRs: in
such a regime, the streaming instability is excited, which increases the scattering rate on top of
the turbulent scattering rate, thus lowering the effective diffusion coefficient (at higher energies the
streaming instability is fully damped and so κturb can in principle be arbitrarily large).

Observations suggest a CR diffusion coefficient that approximately scales as κ ∝ E0.3−0.7 down
to ∼GeV energies. Thus, the very different scaling of κturb for fast modes at low energies in Figure
5.3 is not observed.

5.5 Self-Excited Waves + Fast-Mode Turbulence and Multi-
Phase Models of CR Transport

Sections 5.3 and 5.4, and Figures 5.1–5.3 suggest that existing theories of self-confinement
and scattering by weak fast-mode turbulence cannot, on their own, explain the rather consistent
scaling with energy of the CR diffusion coefficient inferred from observations, κ ∝ E0.3−0.7 (see
also Kulsrud & Cesarsky 1971; Farmer & Goldreich 2004; Fornieri et al. 2021). This suggests that
1) there is a different, yet unknown, universal process/cascade that efficiently scatters CRs with
the right energy dependence, or that 2) a combination of scattering by self-excited waves and fast-
mode turbulence conspires to mimic the empirically derived CR diffusion coefficient. At present,
no MHD cascade satisfies the properties required for scenario 1). We present some speculative
suggestions that might remedy this in Section 5.7. In what follows, we consider the alternative
possibility that CRs are scattered by a combination of fast modes and self-excited waves. We
shall assume that the MHD-fast mode cascade is isotropic and well-described by weak-turbulence
theory (Section 5.4), but we stress that this assumption is very uncertain, as we discuss in Sections
5.6.1 and 5.6.2.

Our calculation is the first attempt to combine microphysical theories of CR self-confinement
and scattering by MHD fast-mode turbulence. It will highlight the important issue that this theo-
retically motivated combination of scattering mechanisms can in principle reproduce rough trends
in CR spectra, but this requires significant fine-tuning of plasma parameters. The fine-tuning is-
sue arises primarily because the MHD fast-mode cascade is significantly damped on small scales
corresponding to CR energies ≲ TeV (Figure 5.3). As a result, the CR diffusion coefficient due to
fast-mode turbulence deviates strongly from the empirically derived E0.3−0.7 scaling. This is not
captured in phenomenological models of CR transport based on undamped isotropic (∼ isotropic
Alfvénic) turbulence.

5.5.1 Two-Phase Model of CR Transport
We now calculate CR spectra (the proton spectrum and the B/C spectrum) using a combination

of self-excited Alfvén waves and the fast-mode turbulence model from Section 5.4.
Because fast modes are strongly damped in dilute high-β environments (which likely make

up a large fraction of the volume), while in low-β regions they may be very efficient scatterers
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Figure 5.4: Example model for multi-phase CR transport in the Milky Way. Cosmic rays stream/diffuse
away from the galactic disk where they are injected by supernovae and/or spallation reactions (Q is the CR
injection rate per unit area). In the hot ionized medium and halo, CRs are self-confined and streaming. In the
warm ionized medium (WIM), where it is plausible that β ≡ 8πpg/B2 < 1, CRs are scattered by fast-mode
turbulence. This results in diffusive transport.

and suppress the streaming instability (assuming the weak-turbulence calculation of Figure 5.3
correctly describes the fast-mode cascade), a possible picture emerges that CRs are scattered by
only fast modes or only self-excited Alfvén waves, depending on the ISM phase. This motivates
treating CR propagation as a multi-phase problem. We show an illustration of what multi-phase
CR propagation may look like in Figure 5.4. There is observational evidence that the warm phases
of the ISM in spiral galaxies are magnetically dominated (e.g., Beck 2015), i.e. β = 8πpg/B2 ≲ 1.
This may also be true in the inner CGM (e.g., Beck 2015). The transport model in Figure 5.4
has a low-β warm ISM in which CRs diffuse due to scattering by fast-mode turbulence. If β > 1,
however, fast modes are damped and low-energy CRs are likely self-confined. We thus assume
that cosmic rays are self-confined and streaming in the remaining regions of the galaxy, i.e. the
hot ISM and inner halo. We note that different ISM phase structures are also plausible and the
depiction in Figure 5.4 should be regarded as one particular example of a broader class of multi-
phase propagation models. We focus on the particular model illustrated in Figure 5.4 because we
find that it can, in principle, match observations. This is important in terms of assessing whether
existing theories of CR transport are at all compatible with observations.

The warm ionized medium in our 1D formalism is modelled as a thin layer in the disk, i.e. we
assume that the region between z = 0 and z = zW is entirely filled by the warm ISM (this 1D picture
could, for example, approximate a more realistic multi-phase ISM where the warm ISM fills 50%
of the volume up to z = 2zW , as in Fig. 5.4). We treat CRs as self-confined in the coronal regions
and the inner halo of the galaxy, z > zW . We now consider solutions to (5.2) for the two regions
with different transport mechanisms, starting with the self-confinement region.
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5.5.1.1 Self-Confinement Regions with NLLD: the Proton Spectrum

For simplicity, we first consider a constant Alfvén speed throughout the self-confined coronal
regions and inner halo, so that (5.2) is the adequate CR transport equation (as we discuss below,
relaxing this assumption does not change our conclusions qualitatively). Since the “diffusive" cor-
rection due to linear damping mechanisms effectively acts like a sink of CRs, which is ≪ Q for
most self-confined CRs and thus does not introduce energy-dependence of the right form (eq. 5.5;
although we again point the reader to Section 5.3.2 for an interesting caveat), we here focus on
nonlinear Landau damping. Including linear damping mechanisms in addition to nonlinear Lan-
dau damping does not significantly affect our conclusions as long as the cutoff rigidity imposed
by linear damping Rcutoff ≫ 100GV (see Figure 5.5). In the hot and ionized halo, the relevant
linear damping is set by the ambient Alfvénic turbulence (Farmer & Goldreich 2004), so we essen-
tially assume a weakly turbulent halo, so that NLLD is more important than linear damping (this
requires fairly small amplitudes at the turbulence injection scale, δV/vA ∼ O(0.1)). Under these
assumptions, per equations 5.1 and 5.10 the CR flux in the self-confined halo, z > zW , satisfies,

vA fp + X
(
−
∂ fp

∂z

)1/2
= const = −κturb

[∂ fp

∂z

]
z→z−W
= Q, (5.29)

where we imposed flux continuity at z = zW and in the last step we used the solution in (5.23) to
evaluate the CR flux −κturb∂ fp/∂z in the warm ISM in which CRs are scattered by ambient fast-
mode turbulence. In the self-confinement region, the CR distribution function therefore satisfies
the same equation as for the single-phase medium in Section 5.3.1.2 (eq. 5.12). Thus, the steady-
state CR proton distribution function for z > zW is in our model given by equation 5.14.

In deriving eq. 5.14 we made the assumption that vA is constant and one may wonder how
much our results depend on it. For negligible NLLD and for an Alfvén speed that increases with
z, the solution to (5.1) is fp ≈ Q/vA exp(−z/HA), where HA is the ∼ Alfvén scale height. One
can show that in this case NLLD becomes important when X2 ≳ QvAHA. Previously, in (5.14)
we found that NLLD becomes important when X2 ≳ QvAr. At high energies (large X) our results
are independent of vA in both cases. So, a spatially-varying vA merely changes the CR energy at
which NLLD becomes important by order unity (since HA is expected to be quite large in the halo,
≳ 5kpc). Importantly, the exact spatial profile of vA does not qualitatively change our results.

The solution in (5.14) shows that the proton spectrum depends sensitively on the injection
spectrum Q. The slope of the injection spectrum remains uncertain, which is a limitation for putting
tight constraints on CR transport using just the proton flux. In this work we will assume that the
spectral slope at injection is around γinj ≈ 4.2±0.1, motivated by acceleration at strong shocks and
FERMI data on luminous starbursts (Ackermann et al. 2012), where gamma-ray emission likely
traces the injection spectrum without any energy-dependent losses (e.g., Lacki et al. 2011).

5.5.1.2 Self-Confinement Regions with NLLD: the Boron-to-Carbon Ratio

Cleaner constraints on CR transport can usually be obtained using the boron-to-carbon ratio
(B/C). While C nuclei are CR primaries, i.e. they are injected at the sources, B nuclei are secon-
daries created by spallation reactions of C nuclei in the ISM. The B/C ratio is therefore a direct
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probe of the average column density / grammage traversed by CRs during their lifetime in the
galaxy. Importantly, for diffusion in turbulence B/C is independent of the injection spectrum. How-
ever, there is significant dependence on the injection spectrum if one considers self-confinement
(see eq. 5.30 below).

In self-confinement regions (z > zW), B nuclei are passively scattered by the Alfvén waves
excited by the protons via the streaming instability. By imposing flux continuity at z = zW as
in Section 5.5.1.1 and equation 5.29, we find that B nuclei satisfy equation 5.2, with κ = κ( fp)
according to (5.10),3 and fp given by (5.14). As the production mechanism for B is different,
however, we need to replace the proton source term Q with fChδ(z)/τspall, where fC is the carbon
distribution function, h is the thickness of the dense thin disk in which boron is assumed to be
produced, and τspall is the spallation reaction timescale in the disk (we assume the cross section to
be constant for relativistic CRs, = 61mB). The differential equation is solvable, with

fB(z,R)
fC(0,R)

=
h

vAτspall

(r − z + X2/(QvA))vp/vB − (X2/(QvA))vp/vB

(r − z + X2/(QvA))vp/vB
, (5.30)

where vB and vp are the B and proton speeds at the same rigidity R (vp/vB ≈ 1 for R ≫ 1 GV),
and Q and X are evaluated for proton momenta corresponding to rigidity R. We note that fC in
the denominator is evaluated at z = 0 due to the delta function that appears in the B source term.
At low energies (small X), fB is set by Alfvénic escape, while at higher energies NLLD becomes
important. At high energies with vp ≈ vB and rvA ≪ X2/Q, fB(z = 0)/ fC(z = 0) ∝ Q/X2 ∝ p−γinj+3,
and so B/C in self-confinement theory depends strongly on the injection spectrum.

5.5.1.3 Diffusion in Turbulence in the Warm ISM

We now complete our solution for B/C and the proton spectrum by considering CR diffusion
in the warm ISM layer (z < zW). Because protons and B nuclei are both passively scattered by the
turbulent cascade, they are described by the same equation. Assuming κturb = const, the solution to
(5.2) is,

f (z) =
Q′

κturb
(zW − z) + f (zW), z < zW , (5.31)

where f can denote any CR species and Q′ is the source term for either protons or B nuclei. We
imposed continuity of f between the warm ISM and the coronal regions as the outer boundary
condition, i.e. we use (5.14) and (5.30) for the protons and boron nuclei, respectively (evaluated
at z = zW). Because f (zW) is set by the transport in the halo, eq. 5.31 highlights a key property
of our multi-modal CR transport models: different transport mechanisms set observables at z = 0
depending on CR energy and the ISM phase structure. In particular, the transport in the warm ISM
(assumed diffusive here) sets observables in the disk if

Q′zW

κturb
≳ f (zW). (5.32)

3For B nuclei with the same rigidity as protons, we have to multiply the proton diffusion coefficient by the speed
ratio vB(R)/vp(R) to get the boron diffusion coefficient at the same rigidity.
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Figure 5.5: The boron-to-carbon ratio (B/C) for our fiducial two-phase ISM model. The red points are
AMS-02 measurements (Aguilar et al. 2016) and the black line is the spectrum obtained using (5.30) and
(5.31) evaluated at z = 0. The dotted and dashed lines show the individual contributions from the turbulent
warm ISM, and the self-confined hot ISM and halo (first and second terms in eq. 5.31, respectively). There
is good agreement between the model and the data. For R ≲ 100 GV, self-confinement in the diffuse hot ISM
and halo sets the local B/C. At GeV energies, CR transport has a weak energy dependence as CRs stream
at the Alfvén speed. At intermediate energies, NLLD is important and introduces a strong dependence on
energy. Above a few hundred GeV, diffusion in the turbulent warm ISM becomes the escape-rate-limiting
step and sets the local (z = 0) CR observables. We show rigidities that correspond to kinetic energies > 1
GeV/nucleon, for which we find that escape dominates over ionisation losses, i.e. τion ≫ h/vA, consistent
with our model assumptions.



5.5. MULTI-PHASE MODELS OF CR TRANSPORT 123

In the opposite limit, it is the transport in the halo (assumed to be streaming here) that sets the local
observables. We note that the above inequality is similar, though not equivalent, to the common
assumption that low-energy CRs are scattered by self-excited waves, while higher-energy CRs are
scattered by turbulence. In fact, in the low-βwarm ISM CRs of all energies are scattered by the fast-
mode cascade (see Figure 5.3). For the model presented here, the more accurate interpretation is
that the escape-rate-limiting step is self-confinement for low-energy CRs and fast-mode turbulence
for higher-energy CRs.

5.5.1.4 Proton Ionisation Losses

CRs are also subject to ionisation losses in the dense disk in which boron is produced (here we
assume that the disk is mostly neutral, so that ionisation losses dominate over Coulomb losses).
The effect of ionisation losses on the CR proton spectrum can be included analogously to equations
5.9 and 5.16 by transforming the solution in (5.31),

f (0)→ f (0)
(
1 +

h
vAτloss

+
h
τloss

zW

κturb

)−1
. (5.33)

5.5.2 Two-Phase Model Versus Observations
We now compare our multi-phase model to local CR measurements. Finding a “best-fit" set of

parameters would be overkill given the simplicity of our model and the theoretical uncertainties.
Instead, we show that there exists a plausible set of physical parameters for which we can recover
the normalisation and essential trends of the proton and B/C spectra. However, our results also
show that the spectra calculated using a combination of self-excited Alfvén waves and fast-mode
turbulence are extremely sensitive to local plasma conditions. As a result, generating CR spectra
with approximately constant power-law slope using a combination of self-excited waves and fast-
mode turbulence requires significant fine-tuning, unlike phenomenological models of CR transport
based on self-generated waves and undamped isotropic (typically Kolmogorov) turbulence.

We use the following fiducial parameters: a supernova rate of 1 per century, injecting 1050 ergs
of CRs per supernova with a spectrum Q ∝ p−4.3. In the hot ISM we use nth = 0.003 cm−3,
T = 3 × 106 K and B = 1µG. For the warm ISM, we use a density nth = 0.2 cm−3, temperature
T = 104 K and magnetic field B = 6 µG. This corresponds to β ≈ 0.2 in the warm ISM and β ≈ 30
in the hot ISM. We assume that the transition between the warm ISM and the coronal regions
occurs at zW = 500 pc above the disk and we use r = 10 kpc as the characteristic CR injection
length scale in the disk. We assume that fast-mode turbulence in the warm ISM is injected with
Ma = 0.6 on scales of order L = 50 pc. For the boron source term and ionisation loss term, we
assume a thin disk of half-thickness 200 pc and density ≈ 1.25 cm−3. We stress that this is not a
constrained, unique set of parameters. It is merely a set of physical parameters that matches the
normalisation and main spectral trends in the observed data. We show some variation about these
parameters in Figure 5.6 discussed below.

The B/C spectrum for our fiducial parameters is shown in Figure 5.5. The red points are
AMS-02 measurements (Aguilar et al. 2016) and the black solid line is the spectrum obtained
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Figure 5.6: Dependence of spectra (top:
B/C, bottom: protons) on our choice of
parameters and propagation model. Red
points are AMS-02 measurements, green
points are Voyager measurements. The
black lines show the effect of variations
in the parameters for our fiducial two-
phase propagation model (Figure 5.4).
Modifying the parameters (black lines)
changes the quality of the fit, but some
qualitative trends remain the same. The
proton spectrum is significantly steeper
than the injection spectrum (red dotted
line) for energies ≳ 10GeV. However,
even small changes can introduce signif-
icant deviations from a power-law (e.g.,
the dotted line), which is incompatible
with the observations. Due to the wide
range of plasma conditions present in a
realistic multi-phase galaxy, CR trans-
port is likely some convolution of our
model’s results for different parameters.
A multi-phase combination of scattering
mechanisms can in principle reproduce
rough trends in CR spectra, but this re-
quires significant fine-tuning. The green
line is a different model with scatter-
ing by fast-mode turbulence everywhere,
i.e. no self-confinement; it shows quali-
tatively very different behaviour. Due to
the weak energy dependence of κturb in
the halo (Figure 5.3), B/C is essentially
flat and the proton spectrum ∼ p−γinj , in-
consistent with observations. The blue
dashed line in the bottom panel shows
the spectrum calculated using the self-
confined halo only (no contribution from
the warm ISM). Without scattering by
fast-mode turbulence, the spectrum at
high energies is too steep unless the
transport region is stratified as in Figure
5.2.
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using (5.30) and (5.31) evaluated at z = 0. The dotted and dashed lines show the contributions
from the turbulent warm ISM and self-confined halo, respectively. At rigidities ≲ 100 GV, self-
confinement in the diffuse hot ISM and halo sets the local B/C. At GeV energies, CRs stream
at the Alfvén speed. At higher energies, but still in the self-confined limit, NLLD introduces a
stronger dependence on energy. Above a few hundred GeV, diffusion in the turbulent warm ISM
becomes the escape-rate-limiting step and sets the local CR observables. There is good agreement
between our solution and the observations, especially given the simplicity of our model. As we
do not include ionisation losses in the B/C calculation, we do not compare our model predictions
to low-energy B/C data measured by Voyager (Cummings et al. 2016), which probe CRs in the
energy-loss dominated regime. In Figure 5.5 we instead only show rigidities that correspond to
kinetic energies > 1 GeV/nucleon, for which we find that escape dominates over ionisation losses,
i.e. τion ≫ h/vA, consistent with our model assumptions (at these energies solar modulation also
does not significantly affect B/C; e.g. Aloisio et al. 2015, Bresci et al. 2019).

While Figure 5.5 suggests that there exist parameters for which there is good agreement be-
tween the model and the data, this is not generally the case. We consider variations in our param-
eters and the propagation model in Figure 5.6. We show results for B/C in the top panel, and for
the proton spectrum in the bottom panel. We include proton ionisation losses using eq. 5.33 to
enable comparison to both AMS-02 and low-energy Voyager measurements (Aguilar et al. 2015;
Cummings et al. 2016). We again do not include energy losses in our calculation of the B/C spec-
tra, as our simple implementation of the loss term in (5.1) is not appropriate for B particles (see
Appendix 5.C). We therefore compare our calculated B/C only to AMS-02 data points with E > 1
GeV/nucleon. The black lines all correspond to the fiducial propagation model (Figure 5.4) for dif-
ferent choices of parameters (for example, nW,fid/3 in the legend means that the density in the warm
ISM is decreased by a factor of 3 relative to the fiducial parameter). Importantly, the proton spec-
trum is significantly steeper than the injection spectrum (red dotted line) for energies ≳ 10GeV.
There is a break in the spectra between 102 and 103 GeV, which comes from the transition be-
tween fp(0) being set by self-confinement in the halo and fp(0) being set by turbulent diffusion
in the warm ISM. The transition between self-confinement and extrinsic turbulence dominating
the transport also gives rise to a spectral break in phenomenological models based on undamped
Kolmogorov-like turbulence (e.g., Blasi et al. 2012; Aloisio & Blasi 2013; Aloisio et al. 2015).
However, unlike these phenomenological models, modest changes in our model parameters can in-
troduce significant deviations from a power-law (e.g., the dotted line), which is incompatible with
the observations. The real ISM samples a wide range of plasma conditions and so CR transport
likely is some convolution of our toy model’s results for different parameters. It is unclear what
the resulting CR spectrum would be in a more realistic multiphase model.

The green line in Figure 5.6 shows the prediction for a different propagation model, in which
CRs are scattered by fast-mode turbulence throughout the entire volume of the galaxy, including
the halo and hot ISM (i.e. no self-confinement at all). We use the diffusion coefficients from
Figure 5.3 and a 5kpc halo size to adjust the normalisation. The green line shows qualitatively
very different behaviour from our multiphase model. Due to the weak energy dependence of κturb

in the halo (Figure 5.3), B/C is essentially flat and the proton spectrum ∼ p−γinj . The blue dashed
line in the bottom panel of Figure 5.6 is the proton spectrum calculated using the self-confined halo
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only (no warm ISM contribution; same as the dashed line in Figure 5.5 for B/C). Without scattering
by fast-mode turbulence, the spectrum at high energies is too steep (see discussion under eq. 5.14).

Figure 5.6 thus shows that neither fast-mode turbulence nor self-confinement alone give rea-
sonable agreement with the observations. The combination in principle can, but it requires a sig-
nificant amount of fine-tuning of plasma conditions. This includes our rather uncertain assumption
of a weakly turbulent halo, such that linear damping of self-excited Alfvén waves by ambient
Alfvénic turbulence does not inhibit self-confinement at R ∼ 100 GV. We briefly note that this
fine-tuning issue is not a consequence of multi-phase CR propagation, but is also present if CRs
are scattered by self-excited Alfvén waves and fast-mode turbulence in the same ISM phase, as we
discuss in Appendix 5.B. It is also worth stressing that models that use self-confinement + damped
fast-mode turbulence require significantly more fine-tuning than phenomenological models based
on self-confinement + undamped Kolmogorov turbulence. In these phenomenological models, CR
injection rates and streaming speeds are constrained by observables at low energies where self-
confinement dominates the transport, while the turbulence strength is set by CR observables at
high energies where self-confinement no longer operates. Combined, these two pieces of physics
constrain CR transport. By contrast, the MHD fast-mode cascade is very sensitive to local plasma
conditions, which strongly affect the damping rates. This is best illustrated by the solid and dotted
black lines in Figure 5.6. The only parameters that are different between these two models are the
warm ISM density and temperature. The turbulence strength at the outer scale is unchanged and
yet the two models have very different predictions for the CR proton and B/C spectra. In addition
to being theoretically unsatisfying, the fine-tuning required in Figures 5.5 and 5.6 may also face
challenges explaining the relatively small spatial variations in CR spectra in the MW inferred from
synchrotron and gamma-ray data (e.g., Miville-Deschênes et al. 2008; Acero et al. 2016; Yang
et al. 2016).

5.6 Uncertainties in Fast-Mode Turbulence
We now discuss significant uncertainties in the physics of MHD fast-mode turbulence, which

are usually not taken into account in the CR literature (e.g. Yan & Lazarian 2004; Yan & Lazarian
2008; Fornieri et al. 2021), but may strongly affect the CR diffusion coefficients from Figure
5.3 and the predicted spectra in Section 5.5. These uncertainties appear to primarily increase
the discrepancy between phenomenological CR scattering models and weak fast-mode turbulence
predictions, as we discuss below.

5.6.1 Suppression of the Weak Cascade by Wave Steepening
The governing principles of the MHD fast-mode cascade are still up for debate. It is uncertain

what happens to the cascade below the viscous scale at low β, where anisotropic damping becomes
important for non-parallel propagating modes. Moreover, the calculation from Yan & Lazarian
(2008), used in Sections 5.4 and 5.5 and in Figures 5.3–5.6, hinges on the assumption that MHD
fast modes (or hydro sound waves) indeed follow a weak-turbulence cascade as argued by Za-
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kharov & Sagdeev (1970). However, the weak turbulence assumption is uncertain. Kadomtsev
& Petviashvili (1973) instead argued that for sufficiently small viscosities sound waves inevitably
steepen to form (weak) shocks. Indeed, even for low-Ma turbulence the sound-wave steepen-
ing timescale is significantly shorter than the weak-turbulence nonlinear interaction (cascading)
timescale,

τ−1
steepen

τ−1
casc
∼

kδv
kδv2/vph

∼
vph

δv
≫ 1, (5.34)

where vph is the phase speed of sound waves. In the Kadomtsev & Petviashvili (1973) picture
steepened fast modes produce weak shocks and then follow a k−2 spectrum. This spectrum was
indeed observed by Kowal & Lazarian (2010) in their compressible MHD simulations and, more
recently, by Makwana & Yan (2020) in their sub-sonic turbulence simulations.

After sound waves steepen and form weak shocks, they dissipate on a timescale of order the
steepening timescale (Landau & Lifshitz 1959),

τ−1
diss ∼ kδv. (5.35)

Both the steepening and weak-shock dissipation timescales are thus shorter than the weak-cascade
timescale by a factor δv/vph (eq. 5.34). This factor is≪ 1 deep inside the inertial range on small
scales resonant with ≲ PeV CRs. It is therefore likely that wave steepening suppresses the weak
cascade and so the k−3/2 spectrum.

CR scattering in a field of weak shocks is qualitatively different from standard pitch-angle
diffusion in wave turbulence. In the latter case, CRs undergo frequent uncorrelated small changes
in pitch angle through wave-particle interactions. By contrast, in a field of weak shocks CRs are
likely scattered by single strong events at the shock discontinuities, if the width of the shock is≪
the CR gyroradius. Thus, for CRs with sufficiently large gyroradii (energies), the scattering mean
free path is constant and set by the separation of the shocks, which is likely of the same order of
magnitude as the turbulence injection scale. The width of the shock is of the order of the ion mean
free path in the collisional case (w ∼ lmfpvth/δV), and much smaller than the mean free path in the
collisionless case (∼ ion gyroradius). In the warm ionized medium the mean free path is of order
1013 cm, and so CRs with with energies E ≳ 10GeV can be scattered by this mechanism. We
note, however, that it is not fully clear how the steepening of sound waves in a low-collisionality
plasma progresses once the spatial scales approach the ion mean free path.The perturbation might
transition to a collisional shock or in some cases generate collisionless velocity space instabilities
that alter the subsequent evolution from what would be predicted by fluid theory. While this weak-
shock-mediated CR transport could be tuned to have the right normalisation, the transport is energy
independent, in disagreement with the empirical κ ∝ E0.3−0.7 (see blue dotted line in Figure 5.7).
This is a problem especially at high energies where self-confinement certainly no longer operates.
At lower energies, ≲TeV, there can in principle still be an energy dependence to CR transport due
to scattering by a combination of self-excited waves and extrinsic weak shocks.

5.6.2 Anisotropic Fast-Mode Turbulence at Low β
Yan & Lazarian (2004) and Yan & Lazarian (2008) assume that in the absence of damping the
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Figure 5.7: Uncertainties in MHD fast-
mode turbulence significantly affect CR
transport. Top: the blue dotted line
shows a roughly energy-independent CR
diffusion coefficient if wave steepen-
ing suppresses the weak cascade of fast
modes (Section 5.6.1). We assume O(1)
shocks separated by ∼ 10 pc. The black
lines are CR diffusion coefficients cal-
culated using the low-β anisotropic scal-
ings for a weak fast-mode cascade from
(5.36)–(5.39) for the same warm ISM
and halo plasma conditions as in Fig-
ure 5.3. Due to the slow cascade rate of
quasi-parallel modes (eq. 5.36) and field-
line wandering (eq. 5.39), CR scatter-
ing is completely suppressed for rigidi-
ties ≲ 100 GV. Bottom: the critical mode
pitch angle θc as a function of spatial
scale. Fast modes with θ > θc(k) are
fully damped. The red solid and dashed
lines show θc for the isotropic fast-mode
scalings in Section 5.4 and Figure 5.3.
The black solid and dashed lines are for
the anisotropic fast-mode scalings from
equations 5.36–5.39 (and correspond to
the black solid and dashed lines in the
top panel). In the anisotropic case θc
shrinks significantly faster with increas-
ing k. On scales kL ≳ 106 (CR rigidi-
ties ≲ few hundred GV) θc is smaller than
θmin, where θmin is the minimum well-
defined pitch angle a fast mode can have
over one cascade timescale due to field-
line wandering. As a result, the cascade
is fully damped for kL ≳ 106.
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fast-mode power spectrum is isotropic, P ∝ k−3/2, which is largely based on the numerical results
in Cho & Lazarian (2003). While fast-modes are very likely isotropic at high β, where they behave
essentially like hydro sound waves, this is probably not true at low β (which is the most important
regime for CR scattering). In particular, at low-β quasi-parallel fast modes are significantly less
compressive than oblique fast modes. At low β, δv∥/δv⊥ ∼ β sin θ cos θ (where ∥ and ⊥ denote the
velocity-fluctuation components parallel and perpendicular to B, and θ is the angle between k and
B). This means that for quasi-parallel modes δv∥/δv⊥ ∼ β sin θ ≪ 1 and k · δv ∼ kδv sin θ ≪ kδv.
Quasi-parallel fast modes therefore interact significantly more weakly than quasi-perpendicular
modes. This plausibly generates anisotropy in the cascade. In particular, the cascade timescale
becomes angle-dependent,

τ−1
casc ∼ k

δv2

vph
sin2 θ, (5.36)

(cf. equation 5.24). If turbulence is forced isotropically at the outer scale (the energy transfer rate
ϵ is isotropic), then

δv
vph
∼ Ma(kL)−1/4(sin θ)−1/2, (5.37)

where Ma is defined as δv/vph at the injection scale for sin θ ∼ 1. This corresponds to a power
spectrum,

P ∝ k−3/2/ sin θ (5.38)

(see also Chandran 2005 for a more rigorous weak-turbulence-theory derivation of this result). The
power does not diverge as θ → 0 due to the effect of field-line random walk. Before it cascades,
a fast mode with wavenumber k travels a distance vphτcasc(k, θ). A quasi-parallel mode which
cascades at a rate given by (5.36) experiences field-line wandering due to MaAlf ∼ 1 Alfvénic
turbulence of order,

δB
B
∼
(
Ma2(kL)1/2 sin θ

)−1/2
(5.39)

(cf. equation 5.27). A mode has a well-defined pitch-angle over a cascade time only if θ ≳ δθ ∼
δB/B. As in Section 5.4, when we evaluate the cascade (eq. 5.36) and damping (eq. 5.45 and 5.46)
rates, we take the average of the cascade/damping rate in the interval (θ − δθ, θ + δθ). According
to (5.39), δθ diverges as θ → 0. This is, however, unphysical given the presence of finite field-line
wandering. We remedy this by imposing a lower limit on θ in (5.39), θmin(k), defined such that
δθ(k, θmin) = θmin. θmin is therefore the smallest well-defined pitch-angle a fast mode can have.
For an isotropic fast-mode cascade, θmin is simply equal to the pitch-angle spread due to field-line
wandering in (5.27), θmin ∼ δB/B.

In the top panel of Figure 5.7, the black lines show CR diffusion coefficients calculated using
the anisotropic scalings of the fast-mode cascade from (5.36)–(5.39) for the same warm ISM and
halo plasma conditions as in Figure 5.3. CR scattering is completely suppressed for rigidities ≲ 100
GV. The suppression of CR scattering at small energies relative to Figure 5.3 is due to the slower
cascade rate of quasi-parallel modes (eq. 5.36) and increased field-line wandering experienced by
quasi-parallel modes during one cascade time (eq. 5.39). The solid and dashed lines in the bottom
panel of Figure 5.7 show how the critical mode pitch angle θc depends on spatial scale. Fast modes
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with θ > θc(k) are fully damped. The solid and dashed lines therefore show how the cone of
undamped fast modes shrinks with spatial scale. The red solid and dashed lines show θc for the
isotropic fast-mode scalings in Section 5.4 and Figure 5.3. On collisionless scales θc ∝ k−1/4 (see
Section 5.4), and because θmin (red dotted line) has the same scaling with k (eq. 5.27), the fast-mode
cascade is not fully damped. This is in contrast to the results for the anisotropic fast-mode scalings
from equations 5.36–5.39. In this case θc (black solid and dashed lines) shrinks significantly faster
with increasing k than θmin (black dotted line). On scales kL ≳ 106 (corresponding to CR energies
of a few hundred GeV) θc is smaller than θmin and the cascade is fully damped.

We also note that the θmin lines in Figure 5.7 are assumed to be due to Alfvénic turbulence.
There is, however, also the additional field-line wandering generated by the cascade of fast modes.
This may truncate the fast-mode cascade on even larger scales. The field-line wandering experi-
enced by a quasi-parallel fast-mode during one cascade time due to undamped fast-mode turbu-
lence is roughly,

δB
B
∼
( Ma2

(kL)1/2 sin3 θ

)1/4
(5.40)

(for an isotropic fast-mode cascade, the sin−3 θ factor should be dropped). Due to the weak de-
pendence on k, ∝ (kL)−1/8, weak fast-mode turbulence can be the dominant source of field-line
wandering experienced by high-k modes. The weaker dependence on k relative to eq. 5.39 is due
to the fact that the weak-turbulence fast-mode spectrum (∝ k−3/2) is shallower than the Alfvénic-
turbulence spectrum in the parallel direction (∝ k−2

∥
). Importantly, the field-line wandering experi-

enced by high-k modes is due to longer-wavelength modes on scales vphτcasc(k) ≫ k−1 which may
not be affected by damping. As a result, assuming an undamped cascade in (5.40) turns out to be
a reasonable assumption in e.g. the warm ISM.

As we noted in Section 5.6.1, it is unclear whether weak-turbulence theory is at all applica-
ble to the MHD fast-mode cascade given that wave steepening and weak-shock dissipation occur
on a shorter timescale than the weak-turbulence cascade.4 In this section we showed that if the-
oretically motivated cascade anisotropies at β ≲ 1 are taken into account, then even within the
weak-turbulence theory framework CR scattering by fast modes is completely suppressed at ener-
gies ≲100 GeV. The anisotropy of weak fast-mode turbulence at low β has not yet been observed in
simulations (e.g. Cho & Lazarian 2003). However, this is not very surprising given that the weak
cascade itself remains elusive. Moreover, close to the injection scale field-line-wandering effects
are significant and act to suppress the anisotropy of the cascade.

5.7 Discussion
The good agreement between the multi-phase model and observations in Section 5.5.2 may be

viewed as a success. After all, there appears to be a set of simplified yet plausible conditions where

4This is also true if fast-mode anisotropies at low β are taken into account. For β ≪ 1, fast modes steepen at a rate
τ−1

steepen ∼ kδv sin θ. At low β quasi-parallel fast modes therefore steepen at rate that is slower than at high β, but the
steepening rate is still faster than the weak-turbulence cascade rate (eq. 5.36) by a factor vph/(δv sin θ).
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existing theories of CR propagation meet observations. In that sense, our results can be interpreted
as a proof of concept for existing theoretical models of CR transport. However, the success of
a theory depends not only on its ability to match the data, but also on its robustness. For this
reason, the good fit in Section 5.5.2 should not overshadow the uncertain micro-physical building
blocks of our model (e.g., the significant uncertainties in the MHD fast-mode cascade discussed in
Sections 5.6.1 and 5.6.2). The fine-tuning of parameters that is necessary to create smooth spectra
with the right energy dependence may also, understandably, leave a bittersweet taste. Especially
since the fine-tuning carries a message of non-universality: in this model other Milky-Way-like
galaxies, even ones without calorimetric CR losses, may have very different CR spectra. And one
might expect rather different spectra in different regions of the Milky Way, which is naively not
consistent with synchrotron and gamma-ray data (e.g., Miville-Deschênes et al. 2008; Acero et al.
2016; Yang et al. 2016).

In this section we discuss some speculative extensions of self-confinement and MHD turbu-
lence theory that might improve agreement between CR scattering theory and phenomenological
models. We begin by noting that alternative nonlinear damping mechanisms of self-excited waves
would modify the energy dependence predicted by self-confinement theory, potentially yielding
better agreement with observations (Section 5.7.1). A more theoretically attractive alternative is
scattering of CRs by a single mechanism, which would be devoid of the fine-tuning problem dis-
cussed above, e.g., scattering by a turbulent cascade with a universal spectral index. This is in part
why the phenomenological Kolomogorov-turbulence model has been so successful in explaining
CR observations. However, the Kolmogorov phenomenology is not theoretically well motivated
and at present no MHD cascade is known to have the desired properties over the entire range of
CR energies. Still, MHD turbulence remains sufficiently uncertain to not discard this option. In
Sections 5.7.3–5.7.5 we discuss a few topics at the frontier of MHD turbulence theory that may be
relevant for a universal, turbulence-based theory of CR transport. In Section 5.7.2 we also briefly
consider the possibility that the waves that scatter CRs are excited on a wide range of scales by
an external driving process (e.g., stellar feedback), instead of only being generated via a turbulent
cascade from large scales.

5.7.1 Nonlinearities in Self-Confinement Theory
We showed in Section 5.3.1.2 that nonlinear damping of self-excited Alfvén waves gives rise to

a smooth transition from Alfvénic streaming to energy-dependent transport with constant spectral
index (in contrast to linear damping). However, the spectral index for nonlinear Landau damping
is too steep relative to observations (Section 5.3.1.2). This is not necessarily true for nonlinear
damping mechanisms that are different from ΓNLLD ∼ kvth(δB/B)2. For example, Alfvén waves
on scales larger than the thermal-particle mean free path are nonlinearly damped by pressure-
anisotropy effects at a rate Γ ∼ (klmfp)ΓNLLD (Squire et al. 2017). With this extra k dependence,
nonlinear damping yields energy-dependent transport very close to the observationally inferred
E0.3−0.7 scaling. However, this particular physical mechanism is only valid above the thermal-
particle mean free path, which is very large (≳pc) in the dilute and hot plasmas in which these
nonlinear damping mechanisms are important. This particular damping is thus not applicable
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for CRs below PeV energies. Nevertheless, this example illustrates that other nonlinear damping
mechanisms can in principle give rise to appropriate energy dependence. The nonlinear damping
would need to be strong, and linear damping negligible, so as to not introduce a sharp cutoff as in
Figure 5.1.

5.7.2 External Driving on a Range of Scales
It is also possible that the waves that scatter CRs over a wide range of energies are directly ex-

cited by some external driving process. This could be due to fluid instabilities acting on a range of
scales, e.g. Kelvin-Helmholtz or dust-driven instabilities (Squire & Hopkins 2018). Alternatively,
it is possible that stellar feedback (winds, supernovae, etc.) drives not only large-scale motions
(which then cascade down to smaller scales), but also fluctuations on a wide range of smaller
scales. Driving on smaller scales leads to less anisotropy in the Alfvénic cascade and thus more
efficient CR scattering. For example, the periods of the Alfvén waves resonant with GeV CRs are
comparable to the variability timescale of solar-type stars, and so it is in principle possible that stel-
lar winds interacting with the magnetized ISM can contribute to some scattering of lower-energy
CRs. The power required to excite waves with amplitudes consistent with phenomenological CR
transport models is ≪ the total power from stellar feedback. In particular, the power required to
excite δB/B ∼ 10−3 waves (rough amplitude suggested by phenomenological models) in a cylin-
drical galaxy with radius R = 10kpc and height H = 1kpc is Pscatt ∼ 4 × 1036 ergs/s, assuming
B ∼ 1µG and a plausible wave damping rate Γ ∼ 10−11s−1. This is indeed orders of magnitude
smaller than the total power injected by supernovae, PSN ∼ 3 × 1041 ergs/s for a supernova rate of
1 per century. However, this speculation faces a severe fine-tuning problem, as it is unclear how
waves excited on a range of scales would conspire to have a spectrum that resembles an undamped
turbulent cascade.

5.7.3 Cascade Damping: Role of the Plasma Echo
As shown in Figure 5.3 and Figure 5.7, damping prevents a weak-turbulence cascade of fast

modes from maintaining a universal k−3/2 power-law at high k (or κturb ∝ E1/2 at scales resonant
with low-energy CRs). The damping sets in at particularly large scales in dilute and hot plasmas
like the hot ISM or the galactic halo, which constitute most of the confining volume. In these
dilute systems, linear compressive waves are Landau-damped, which transfers energy from spatial
fluctuations to ever-finer structures in velocity space in the thermal-particle distribution function,
a process called phase-mixing.

Our calculation (based on the calculation in Yan & Lazarian 2008) assumes that compressive
fluctuations in a turbulent cascade are damped at their linear damping rates. However, recent
theoretical and numerical progress suggests that in the presence of nonlinear interactions and suf-
ficiently small particle collisionalities (so that phase mixing can be reversible), fluctuations that
have phase-mixed away to fine velocity scales can be brought back by coupling to other pertur-
bations, a process called the “stochastic plasma echo", which effectively reverses phase-mixing
(Schekochihin et al. 2016; Meyrand et al. 2019). Landau damping is suppressed and the collision-
less plasma behaves more fluid-like. The fluidization of plasma turbulence appears consistent with
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the seemingly undamped cascade of compressive fluctuations in the solar wind (in this case, slow
modes; Chen 2016; Verscharen et al. 2017). An analogous fluidization of fast-mode turbulence
would allow κturb in the halo (Figure 5.3) to continue its R0.5 scaling to lower CR energies.

One issue with this idea is that the plasma echo can anti-phase-mix fluctuations before they
are damped by collisions only if the nonlinear timescale is sufficiently short. This in turn requires
large amplitudes for the turbulent fluctuations, which then leads to small CR diffusion coefficients
if the desired E0.5 scaling continues to small energies. For example, using the results by Adkins &
Schekochihin (2018), we estimate that for the stochastic echo to operate in the hot ISM, amplitudes
of order Ma ≳1 on the outer scale appear necessary, leading to diffusion coefficients of order
1027 cm2 s−1 at a GeV, far too small compared to observationally inferred CR diffusion coefficients.
However, the theory of the stochastic echo in a fast-mode cascade has not been developed and
clearly merits more work. Moreover, if the conditions to realise the stochastic echo only occur
in a small fraction of the ISM volume, this would reduce the effective volume-averaged diffusion
coefficient.

5.7.4 Reconnection and the Anisotropy of Alfvénic Turbulence
An alternative to scattering by fast-mode turbulence is that there is a different, yet unknown,

regime of Alfvénic turbulence that can efficiently scatter CRs. Though critical balance as the main
governing principle of MHD turbulence stands on firm ground, it is possible that additional physics
on small scales can change the cascade physics. For example, the large aspect ratios of structures
formed in strong turbulence on small scales plausibly become unstable to instabilities such as
tearing and/or Kelvin-Helmholtz. In particular, Alfvénic turbulence may enter a new regime of
tearing-mediated turbulence on scales much larger than one would naively expect, i.e. ≫ the
resistive scale (Loureiro & Boldyrev 2017; Mallet et al. 2017a; Mallet et al. 2017b). There is some
numerical evidence/theory that turbulence in reconnecting layers may obey different anisotropy
scalings than standard Alfvénic turbulence, e.g. k∥ ∼ k⊥ (Huang & Bhattacharjee 2016; Boldyrev
& Loureiro 2019), or even k∥ ∼ k1.2

⊥ (Yang et al. 2020). This has the potential for more efficient CR
scattering and the latter scaling could even give rise to an energy dependence of CR scattering that
is roughly in the right ballpark. However, applying the theory of Mallet et al. (2017a), we estimate
that tearing-mediated turbulence is expected to become important only on scales≪ the gyroradius
of GeV CRs. If this is generally true, it would not be important for CR scattering.

5.7.5 Balanced versus Imbalanced Turbulence
Numerical studies of MHD turbulence usually assume approximate equipartition between ki-

netic and magnetic energies, and roughly equal energies in forward and backward propagating
Alfvén waves. While this setup is numerically convenient, it is generally not realised in na-
ture. Many of the cascade properties, including the spectral slopes and anisotropy, of imbalanced
Alfvénic turbulence are quite different from the usual balanced case (e.g., Beresnyak & Lazarian
2009 or Section 7 in the review by Schekochihin 2020 for a summary). However, it is believed
that the parallel spectrum remains steep, with a spectral slope ≲ −2 and k⊥ ≫ k∥. This still means
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inefficent CR scattering. Nevertheless, imbalanced MHD turbulence remains a fairly unexplored
terrain compared to its balanced counterpart, so there is still room for surprises there.

5.8 Summary
Neither confinement of CRs by self-excited Alfvén waves nor scattering by an ambient fast-

mode cascade can plausibly explain CR observations over the entire range of CR energies (e.g.,
Kulsrud & Cesarsky 1971; Farmer & Goldreich 2004; Fornieri et al. 2021). We provide a peda-
gogical review of this important result in Sections 5.3 and 5.4. Due to the strong damping of fast
modes on small scales, the energy dependence of the CR diffusion coefficient in fast-mode turbu-
lence is incompatible with observations at CR energies ≲ 103 GeV (Figure 5.3 and Figure 5.7). The
discrepancy is significantly larger than in phenomenological models which assume CR scattering
by an undamped isotropic turbulent cascade (e.g., Trotta et al. 2011; Gaggero et al. 2014; Hopkins
et al. 2021a). In self-confinement theory, higher-energy CRs are unable to self-confine due to the
linear damping of Alfvén waves excited by the streaming instability. Indeed, for self-excited waves
damped by linear damping mechanisms, self-confined CRs stream, to reasonable approximation,
at either the Alfvén speed or the speed of light (Figure 5.1), which is naively incompatible with
the smooth energy dependence measured empirically. Non-linear damping of self-excited waves
(e.g., non-linear Landau damping) introduces a smoother energy-dependence to CR transport but
existing theoretical models predict an energy dependence that is stronger than that observed (see
Section 5.3.1.2 and the dashed line in Figure 5.5).

CR transport is theoretically predicted to depend sensitively on spatial variations in the plasma
properties because local plasma conditions change the strength of ambient turbulence, the effi-
ciency of fast-mode damping and the damping of self-excited Alfvén waves. This strong depen-
dence of CR transport on local plasma conditions motivates our considering how such variations
might affect CR observables at Earth. To start, we have shown that even pure Alfvénic stream-
ing can in fact produce energy dependent transport and energy dependent observables if both the
Alfvén speed and the region in which CRs of a given energy are self-confined vary with height
above the galactic disk (see also Holmes 1974). These two conditions mean that CRs of different
energy effectively sample different Alfvén speeds, leading to energy dependent transport that can
in principle be similar to that observed (Section 5.3.2 and Figure 5.2). Even in this model, however,
self-excited Alfvén waves are eventually fully damped at sufficiently high energies and a separate
CR scattering mechanism is required.

The fact that neither self-confinement theory nor scattering by weak fast-mode turbulence can,
on their own, explain CR spectra in the Milky Way suggests two possibilities. There is either
a yet unidentified process that efficiently scatters CRs with the right energy dependence, or, a
combination of scattering by self-excited waves and fast-mode turbulence conspires to mimic the
empirically derived CR diffusion coefficient. In Section 5.5 we considered the latter possibility.
The multi-phase nature of the ISM of galaxies independently suggests that CR transport may be
multi-modal, i.e. a mix of streaming and diffusion in turbulence. Self-confinement likely operates
in regions where the turbulent cascade of scattering waves (e.g., fast modes) is strongly damped,
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whereas in regions with efficient scattering by turbulence the streaming instability is suppressed.
In Section 5.5.1, we have considered a particular model in which CRs diffuse in the warm ISM
due to scattering by the MHD fast-mode cascade, and are self-confined in the coronal regions and
the halo (Figure 5.4). We have assumed that turbulence in the halo is weak, so that nonlinear Lan-
dau damping is the dominant damping of Alfvén waves excited by the streaming instability. We
stress that this particular model belongs to a broader class of possible multi-phase CR propagation
models. In particular, the exact filling fractions of different phases is likely a function of a number
of properties of the galaxy, such as the local gas surface density and star formation rate surface
density, which set the cooling rates and supernovae heating rate. This will in turn modify CR prop-
agation. The purpose of the model considered in this work is to demonstrate that a relatively simple
model of multi-phase CR transport can in principle explain some of the main trends observed in
CR spectra in the solar neighbourhood (Figure 5.5 and Figure 5.6), but that significant fine-tuning
of plasma parameters is needed. These trends are difficult to explain using only self-confinement
theory (Section 5.3 and, e.g., dashed line in Figure 5.5) or only scattering by MHD turbulence
(Section 5.4, Figure 5.3 and the green line in Figure 5.6).

The calculation in Section 5.5 is the first attempt to combine microphysical theories of CR
self-confinement and scattering by MHD fast-mode turbulence. While there already exists liter-
ature that tries to combine streaming and turbulence to explain CR spectra measured in the MW
(e.g. Blasi et al. 2012; Aloisio & Blasi 2013; Aloisio et al. 2015), these models assume undamped
Kolmogorov-like (∼ isotropic Alfvénic) turbulence. In this work, we instead considered the theo-
retically better motivated interplay of the streaming instability and fast-mode turbulence. Because
fast modes are damped on scales ∼ the Larmor radius of ≲ TeV particles, their impact on CR trans-
port and their interaction with self-excited Alfvén waves are very different from results based on
an undamped Kolmogorov cascade (see also Appendix 5.B). In particular, Section 5.5 highlights
the important issue that, due to fast-mode damping, CR propagation models based on a combi-
nation of self-excited Alfvén waves and MHD fast-mode turbulence require a significant amount
of fine-tuning of plasma parameters to recover the almost-pure-power-law CR spectra measured
in the Milky Way. This issue is not captured in phenomenological models based on undamped
isotropic Kolmogorov-like turbulence.

Models of CR scattering by MHD fast-mode turbulence in the literature also rely on the uncer-
tain assumption that fast modes follow a weak isotropic cascade in the absence of wave damping
(e.g. Yan & Lazarian 2004; Yan & Lazarian 2008; Xu & Lazarian 2018; Fornieri et al. 2021). As
we discussed in Section 5.6, weak fast-mode turbulence is theoretically expected to be anisotropic
at low β (Section 5.6.2), and is probably completely suppressed by wave steepening (Section 5.6.1).
This raises the significant possibility that fast modes are unimportant at scattering CRs.

Interpreting CR data using a combination of scattering mechanisms in different phases of the
ISM is physically well-motivated, but will inevitably require some fine-tuning (especially if the
turbulent cascade is strongly damped). Moreover, CR scattering by fast-mode turbulence is likely
inefficient due to wave steepening. An attractive alternative is that CR scattering is dominated
by a currently unidentified source of a roughly Kolmogorov-like cascade, as is often assumed in
phenomenological models. Such a cascade is not well motivated by current theoretical models of
MHD turbulence. In Section 5.7, we discussed some of the uncertain aspects of MHD turbulence
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theory that could bear on the presence of such a cascade and thus on CR scattering. In this context
it is worth noting that the energetic requirements for confining CRs by scattering are very small
compared to the overall energetics of interstellar turbulence (Section 5.7.2). Thus, an energetically
minor component of the cascade or turbulent driving by an energetically subdominant channel
could nonetheless dominate CR scattering.

In this work we have focused on CR transport along field lines. There is a separate question of
how the geometry of magnetic-field lines, e.g. turbulent field-line wandering, affects CR transport
perpendicular to the mean magnetic field. We have ignored this aspect of CR transport in this
work because the perpendicular diffusion time is expected to be orders of magnitude longer than
the parallel diffusion time (e.g., Giacalone & Jokipii 1999; Desiati & Zweibel 2014; Dundovic
et al. 2020). Nevertheless, given that the magnetic field is on average close to being planar in
the galactic disk and that perpendicular diffusion of CRs remains quite uncertain, it is possible
that perpendicular transport is important for regulating CR escape from the Galaxy and setting CR
observables.

In the course of this work, we became aware of similar efforts to reconcile CR transport theories
with MW observables by Hopkins et al. (2021b). Using galaxy-formation simulations combined
with a broad selection of CR transport models motivated by microphysics, Hopkins et al. (2021b)
also conclude that self-confinement theory and “extrinsic turbulence" theory alone cannot qual-
itatively reproduce CR spectra observed in the solar neighbourhood. As we showed in Section
5.3.2 and Section 5.5, the exact ISM phase structure and spatial variations of plasma properties
can significantly affect CR observables and there exist multi-phase solutions (combinations of
self-confinement and extrinsic turbulence) that can, in principle, qualitatively reproduce local CR
spectra (Figure 5.6). These solutions require a particular set of fine-tuned ISM plasma conditions,
which are not realised in the simulations of Hopkins et al. (2021b). Hopkins et al. (2021b) instead
elucidate the form of driving/damping necessary for extrinsic turbulence and/or self-confinement
to be compatible with MW measurements (analogous to our Section 5.7).
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Appendix

5.A CR Diffusion Coefficient in Weak Fast-Mode Turbulence
To calculate the CR diffusion coefficient in isotropic weak fast-mode turbulence, we use the

results of Yan & Lazarian (2008). We use the same notation as Yan & Lazarian (2008) and define
the cosine of the wave pitch angle ξ = cos θ, the dimensionless wavenumber x = kL, the dimen-
sionless rigidity R = v/(LΩ) and the perpendicular wavenumber normalised by the CR gyroradius,
w = k⊥rL = x⊥R(1 − µ2)1/2, where v ≈ c is the speed of the CR particle, L is the outer scale of the
turbulence and Ω is the relativistic gyrofrequency. The CR pitch-angle diffusion coefficient due to
gyroresonant scattering is then (Yan & Lazarian 2008),

DG
µµ = Ma2 vπ1/2(1 − µ2)

2LR2

∫ 1

0
dξ
∫ kmax(ξ)L

1
dx

x−5/2ξ

∆µ
[J′1(w)]2 exp

(
−

(µ − (xξR)−1)2

∆µ2

)
(5.41)

where J1 is the Bessel function of the first kind and the prime indicates a derivative, ∆µ2 = Ma(1−
µ2) and the exponential reflects the broadening of the gyro-resonance condition k∥v∥ ≈ Ω due to
large-scale magnetosonic fluctuations (Völk 1973, Voelk 1975, Yan & Lazarian 2008). The CR
pitch angle diffusion coefficient due to nonresonant scattering by transit-time damping (TTD) is,

DT
µµ = Ma2 vπ1/2(1 − µ2)

2LR2

∫ 1

0
dξ
∫ kmax(ξ)L

1
dx

x−5/2ξ

∆µ
[J1(w)]2 exp

(
−

(µ − vA/(vξ))2

∆µ2

)
. (5.42)

The spatial diffusion coefficient due to gyroresonant and TTD scattering is (see, e.g., Zweibel
2017),

κ =
v2

4

∫ 1

0
dµ

(1 − µ2)2

DG
µµ + DT

µµ

. (5.43)

Because nonresonant scattering by TTD is dominated by large-scale modes, DT
µµ is essentially en-

ergy independent. Thus, energy-dependence in the CR diffusion coefficient comes from gyrores-
onant scattering, i.e. DG

µµ. The impact of wave damping on the cascade is reflected by the upper
bound = kmax(ξ)L in the x integral in equations 5.41 and 5.42. In particular, the angle-dependent
cutoff kmax(ξ)L corresponds to the scale k(ξ = cos θc) where the cascade timescale is equal to the
wave damping timescale. As in Yan & Lazarian 2004 and Yan & Lazarian 2008, we here assume
that fast modes with θ < θc continue cascading to smaller scales unaffected by the damping, while
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the remaining modes are fully damped. However, we stress again that this assumption is quite un-
certain. For example, non-linearities might transfer energy from small θ to larger θ where energy is
dissipated, thus removing energy from the otherwise weakly damped parallel propagating modes.

For a fully ionized plasma, the main damping mechanisms are viscous damping on scales larger
than the thermal ion mean free path and collisionless damping on scales smaller than the mean free
path. kmax(ξ)L is then found by equating the cascade rate,

τ−1
casc ∼

( k
L

)1/2 δV2

Vph
(5.44)

(δV is the amplitude at the injection scale) and the relevant damping rate. For β ≪ 1 in the
collisional limit, i.e. k∥lmfpvA/vth ≪ 1, the damping rate is (Braginskii 1965)

Γ(k∥lmfp
vA

vth
≪ 1) =

νBk2

6
(1 − ξ2)

∼
νBk2

6
θ2 θ ≪ 1,

(5.45)

where νB ∼ lmfpvth is the anisotropic Braginskii viscosity and in the second line we took the small-
angle limit. For β ≪ 1 and k∥lmfpvA/vth ≫ 1, the collisionless damping rate is (Ginzburg 1961)

Γ(k∥lmfp
vA

vth
≫ 1) =

(πβ)1/2 sin2 θ

4 cos θ
kvA

[(me

mi

)1/2
exp
(
−

me

βmi cos2 θ

)
+ 5 exp

(
−

1
β cos2 θ

)]
∼

√
πβθ2

4

(me

mi

)1/2
kvA θ ≪ 1,

(5.46)

where in the last step we again took the small-angle limit. We note that both damping mechanisms
→ 0 for modes propagating parallel to the local magnetic field (θ ≈ 0) We calculate kmax(ξ)L by
equating the cascade rate in (5.44) with the damping rates in (5.45) and (5.46), and then evaluate
the integrals in (5.41) and (5.42) numerically. To evaluate the cascade and damping rates in (5.44)–
(5.46), we take the average of the cascade/damping rate in the interval (θ − δθ, θ + δθ), where δθ is
the spread in mode pitch angle experienced by a fast mode during one cascade time due to turbu-
lent magnetic-field-line wandering. The field-line wandering due to ambient Alfvénic turbulence
with MaAlf ∼ 1 experienced by fast modes with wavenumber k and pitch angle θ can be roughly
approximated as,

δB
B
∼
[ cos θ
Ma2(kL)1/2

+
( sin θ
Ma2(kL)1/2

)2/3]1/2
. (5.47)

We stress that we include collisionless damping only on scales < lmfpvA/vth and collisional damp-
ing only on scales > lmfpvA/vth. For example, if equating (5.44) and (5.46) yields kmax,∥(ξ)vA/vth <
l−1
mfp for a ξ that was not damped in the viscous regime, we correct it by setting kmax,∥ = l−1

mfpvth/vA,
as collisionless damping is not the appropriate damping on scales k∥lmfpvA/vth < 1. Figure 5.3
shows the results of this calculation.
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5.B Simultaneous Scattering by Self-Excited Waves and Weak
Fast-Mode Turbulence

In some phenomenological models of CR transport it is assumed that the self-excited waves
cascade (diffuse in k-space) due to the ambient Kolmogorov-like turbulence, which produces a
spectrum of waves slightly different from Kolmogorov in the wavenumber range affected by the
streaming instability (e.g. Blasi et al. 2012; Aloisio & Blasi 2013; Aloisio et al. 2015). The self-
excited Alfvén waves can in principle interact with either the Alfvénic component of the turbulence
or the fast-mode component. While three-wave interactions between high-frequency self-excited
Alfvén waves and turbulent fast modes can in principle occur at low β (as the modes can satisfy
frequency-matching conditions; Chandran 2005), the fast-mode cascade is significantly affected
by damping in the wavelength regime where self-excitation is important (Figure 5.3). As a result,
the fast-mode cascade differs significantly from Kolmogorov (Figure 5.3; it may in fact be com-
pletely suppressed on small scales, see Figure 5.7). Moreover, even in the absence of fast-mode
damping, self-excited Alfvén waves are more likely to be sheared away to high k⊥ by the back-
ground Alfvénic turbulence (Farmer & Goldreich 2004; Lazarian 2016). To see this, we compare
the cascade time of the self-excited Alfvén waves due to fast modes, τcasc, to the shearing time set
by background Alfvénic turbulence, τshear. At low β and for turbulence injected with MaAlf < 1,

τ−1
casc

τ−1
shear

∼
( Ma
MaAlf

)2
, (5.48)

while for MaAlf > 1,
τ−1

casc

τ−1
shear

∼
( Ma
MaAlf

)3/2
Ma1/2, (5.49)

Most of the turbulent energy is expected to reside in the Alfvénic branch, MaAlf > Ma, and so
τshear < τcasc, i.e., the cascading of self-excited Alfvén waves to higher k∥ by fast-mode turbulence
is likely ineffective. We reiterate that damping reduces the power in fast-mode turbulence on small
scales, further increasing τcasc/τshear and reinforcing our conclusion.

This implies that self-excited Alfvén waves and weak-fast mode turbulence act as independent
scatterers of CRs. Their amplitudes and thus CR scattering rates are set by very different physics
(different driving, cascading and damping mechanisms). Combined with the non-uniform scaling
with energy of κturb in Figure 5.3, this implies that generating CR spectra with a roughly constant
power-law slope over a wide range of energies using a combination of these scattering mechanisms
requires significant fine-tuning of plasma conditions, regardless of whether CR propagation is
single- or multi-phase. This is in contrast to phenomenological models based on an undamped
Kolmogorov cascade, which do not face such significant fine-tuning issues.

5.C Impact of Ionisation Losses on the B/C Spectrum
As we pointed out in Section 5.3, the energy loss term from eq. 5.1 is more correctly written

as a flux in momentum space. Using the correct form turns out to be particularly important for B
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nuclei at low energies, as we now show. In the loss regime, B nuclei satisfy,

−
1
p2

∂

∂p

(
p2 p
τloss(p)

fB

)
=

fc

τspall
= nσspallv fC, (5.50)

where the energy loss rate of a nucleus with mass mB and charge Z due to ionisation of ISM
material is (Schlickeiser 2002),

τ−1
loss = τ

−1
ion ≈ 2 × 10−16 s−1 Z2 n

1 cm−3

(v
c

)−2( p
GeV/c

)−1

≈ L
( p

p0

)−3
, p ≪ mBc,

(5.51)

where L in the last step is a constant that depends on the density of the medium. (5.50) and (5.51)
imply that in the energy-loss dominated regime, the proton spectrum is fp ∼ Qpτloss ∝ p−γinj+3 and
similarly the carbon spectrum is fC ∼ QCτloss ∝ p−γinj+3. One might further guess that the boron
spectrum is given by, fB ∼ fCτloss/τspall ∼ QCτ

2
loss/τspall ∼ p−γinj+7. However, this turns out to not

be a valid solution of (5.50). In particular, the absolute value of the energy flux due to ionisation
losses associated with this spectrum decreases with decreasing momentum (the LHS of eq. 5.50
is negative becasue ∂ fB/∂p > 0). Equivalently, a given momentum shell is populated from higher
momenta at a rate that is faster than the rate at which it loses particles to lower momenta. The
correct solution of equation 5.50 is instead given by,

fB = A −
1

7 − γinj

( p
p0

)3
L−1τ−1

spall fC ≈ A (5.52)

where A is a constant. In the last step we used the requirement fB ≥ 0, which implies that the
B spectrum is set by A at most momenta in the energy-loss dominated regime, due to the strong
momentum dependence of the second term. The constant A can be found by imposing continuity
between the loss-dominated and escape-dominated regimes. The loss-dominated B/C spectrum is
then,

fB

fC
=

A
fC
−

1
7 − γinj

( p
p0

)3
L−1τ−1

spall ≈
A
fC
∝ pγinj−3, (5.53)

which is ∝ p1.3 for γinj = 4.3.
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