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Abstract

We present a quasi-conforming embedded reproducing kernel particle method (QCE-RKPM) for modeling heterogeneous
aterials that makes use of techniques not available to mesh-based methods such as the finite element method (FEM) and

voids many of the drawbacks in current embedded and immersed formulations which are based on meshed methods. The
ifferent material domains are discretized independently thus avoiding time-consuming, conformal meshing. In this approach,
he superposition of foreground (inclusion) and background (matrix) domain integration smoothing cells are corrected by a
uasi-conforming quadtree subdivision on the background integration smoothing cells. Due to the non-conforming nature of
he background integration smoothing cells near the material interfaces, a variationally consistent (VC) correction for domain
ntegration is introduced to restore integration constraints and thus optimal convergence rates at a minor computational cost.
dditional interface integration smoothing cells with area (volume) correction, while non-conforming, can be easily introduced

o further enhance the accuracy and stability of the Galerkin solution using VC integration on non-conforming cells. To properly
pproximate the weak discontinuity across the material interface by a penalty-free Nitsche’s method with enhanced coercivity,
he interface nodes on the surface of the foreground discretization are also shared with the background discretization. As such,
here are no tunable parameters, such as those involved in the penalty type method, to enforce interface compatibility in this
pproach. The advantage of this meshfree formulation is that it avoids many of the instabilities in mesh-based immersed and
mbedded methods. The effectiveness of QCE-RKPM is illustrated with several examples.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Meshfree modeling; Reproducing kernel particle method; Heterogeneous materials; Embedded discretization; Quasi-conforming;
uadtree subdivision

1. Introduction

A vast array of engineering problems involving heterogeneous materials have been modeled by the finite element
ethod (FEM) with a body-fitted mesh in which the discretizations of two different materials conform to their

nterface allowing for gradient jumps across the interface. Constructing such meshes, however, can be quite time-
onsuming and complicated, especially for complex, three-dimensional geometry. One way to reduce meshing
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time for heterogeneous materials is to use embedded or immersed methods, both of which allow one to create
independent, typically uniform discretizations of the different materials and which can sort out the communication
between the meshes during the analysis. However, this reduction in manual meshing time comes at the cost of
the algorithmic complexity in enforcing the constraint between the two materials while maintaining stability and
accuracy.

“Immersed methods” refer to those methods in which the weak form equations assume overlapping meshes and,
herefore, a fictitious background domain is placed underneath the foreground domain. These may be classified by
he constraint type with 1) interface-constrained immersed methods (ICIMs) enforcing compatibility only on the
nterface and 2) volume-constrained immersed methods (VCIMs) constraining the background deformation in the
ntire overlapping region to the foreground motion. The first ICIM devised was the immersed boundary method
IBM) proposed by Peskin [1,2] (cf. [3–5] for FEM and hybrid versions) which distributes fluid–structure interaction
FSI) forces and interpolates velocities using a smoothed approximation of the Dirac delta function. However, IBM
everely restricts the mesh size ratio between foreground and background to prevent fluid from leaking through
he solid boundary [4]. Also, the smooth Dirac delta function smears the solution over several grid cells rather
han a sharp discontinuity in the normal gradient at the interface thus limiting IBM to first-order accuracy unless

ore complicated procedures are added [6,7]. A more recent ICIM formulation introduced by Bazilevs et al. [8,9]
ses a uniform background mesh discretized with IGA splines [10] to approximate the momentum equations for
oth the background and foreground meshes. One issue with this approach is the undesirable smooth background
pproximation for the discontinuous kinematics in fracture and fragmentation which results in damage zones whose
ize scales with the background mesh [11].

VCIMs began with Glowinsky et al.’s distributed Lagrange multiplier method [12] which used Lagrange
ultipliers (LM) requiring the approximation spaces to meet the LBB condition [13,14]. Developments of VCIMs

n recent years include the immersed finite element method (IFEM) [15,16] and the modified IFEM (mIFEM) [17]
hich use the reproducing kernel (RK) approximation [18,19] to interpolate velocities between solid and fluid,

nd FSI forces are treated as volumetric body forces. However, like all VCIMs, the smooth approximation in the
uid smears the effect of the interface over several elements leading to low convergence rates [20]. The variational
ultiscale immersed method (VMIM) for heterogeneous materials [21] uses the reproducing kernel particle method

RKPM) with volumetric Lagrange multipliers and a variational multiscale decomposition [22,23] of the background
pproximation leading to a residual-based stabilization which also suppresses the leaking instability caused by large
olid to fluid mesh size ratios [24]. But again, it too suffers from large interpolation errors near the interface resulting
n low convergence rates [21]. While VCIMs are effective without a tedious contour integral along the interface,
chieving optimal convergence rates requires a direct treatment of the gradient discontinuity at the interface [25].
urthermore, VCIMs require some sort of stabilization [21,26].

“Embedded methods” refer to those methods in which there are no overlapping meshes, and the conformity of
atrix and inclusion domains (which allows for discontinuous normal gradients) is solved using techniques such as

utting elements, aggregating elements, using surrogate domains, etc. Cut element approaches either add extra DOFs
o elements intersecting the interface (e.g., CutFEM [27,28]) or divide the original elements into smaller “integration
lements” (e.g., discontinuity-enriched FEM (DE-FEM) [29–31]). Nonetheless, cutting or dividing elements requires
otentially complex computational geometry algorithms and, more importantly, creates what is called the small cut
lement problem in which an element can be cut in an arbitrary fashion leaving a very small or slender element on
ne side [32]. This results in an ill-conditioned stiffness matrix. Several methods have been proposed to mitigate
he effect of the cut cell problem such as the ghost penalty [32–34], bubble functions [35,36], carefully weighting
he gradients in the Nitsche integrals [37,38], or discarding the problematic DOFs altogether [31]. The Finite Cell

ethod (FCM) [39–42] utilizes an adaptive integration scheme which sub-divides elements into sub-cells (not sub-
lements) to place quadrature points thus allowing one to better approximate the boundary/interface and avoiding the
roblem of small elements. However, one must divide elements many times to accurately approximate the domain
eing integrated which yields a computationally intensive domain integration [41].

The shifted boundary/interface method (SBM/SIM) [43–45] integrates over a surrogate domain (e.g., all elements
holly inside the interface) and shifts the interface conditions from the true interface to the surrogate interface
sing a Taylor series expansion involving the intersected elements’ gradients; this allows the method to maintain
ptimal rates of convergence without cutting elements (cf. [46,47] for a similar idea). However, the transfer algorithm

nvolves a potentially complex closest point projection procedure, and the transfer of Neumann boundary conditions

2
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Fig. 1. (a) Heterogeneous material domain consisting of matrix Ω− and inclusion Ω+ materials with outer boundary ∂Ω and interface Γ

between the two materials and (b) separate matrix and inclusion domains with their outward normal vectors on the interface.

requires either a higher-order approximation [48] or a stabilized equal-order mixed method [49] to prevent reduction
in convergence rates. In the aggregated finite element method (AgFEM) [50–52], elements intersected by the
interface are merged with elements inside the interface, and the problematic DOFs are constrained as a linear
combination of non-problematic DOFs (cf. similar approaches in [53–56]). This avoids small cut elements and
achieves optimal convergence rates but can possibly introduce error in the aggregation and constraint process.

In this paper, we propose a formulation that fits into the category of embedded methods but is unique in
that it makes use of techniques available exclusively to meshfree methods and avoids many of the pitfalls of
the formulations outlined above due to their reliance on mesh-based methods. First, the background (matrix) and
foreground (inclusions) are discretized independently with superposition. Then what follows is a quasi-conforming
quadtree subdivision on the background integration smoothing cells where needed (which mesh-based methods
are incapable of doing). Due to the loss of integration smoothing cell conformity, a variationally consistent (VC)
correction [57] of domain integration is employed at a minimal computational cost to restore the integration
constraint for Galerkin exactness, enhance accuracy, and achieve optimal convergence rates. The interface nodes are
shared by both domains which provides enough coercivity to make Nitsche’s penalty parameter unnecessary. Thus,
unlike most immersed and embedded methods, this formulation does not have any tunable parameters present to
enforce interface compatibility. Our meshfree method of choice is the reproducing kernel particle method (RKPM),
and so, we call this formulation a quasi-conforming embedded RKPM (QCE-RKPM).

The remaining parts of this paper are outlined as follows. In Section 2, we detail the equations for heterogeneous
materials. Section 3 reviews the reproducing kernel approximation and discusses domain integration in meshfree
methods. Section 4 details the discretization process of the background domain from an immersed state to a quasi-
conforming embedded domain. Section 5 then presents numerical examples to demonstrate the effectiveness of our
method, and Section 6 summarizes our findings.

2. Governing equations

2.1. Strong form

Consider a heterogeneous solid domain Ω comprised of a matrix domain Ω− and an inclusion domain Ω+, where
Ω = Ω

+ ⋃
Ω

−

and · represents the closure of the domain. The interface between the two materials is denoted by
Γ , where Γ = Ω

+

∩ Ω
−

. The matrix material possesses an outer boundary ∂Ω which is comprised of Neumann
ΩN and Dirichlet ∂ΩD components such that ∂Ω = ∂ΩN

⋃
∂ΩD and ∂ΩN

⋂
∂ΩD = ∅, see Fig. 1(a) for an

llustration.
Our governing equation is the equation of equilibrium for a linear elastic material:

∇ · σ x + b x = 0, x ∈ Ω , (1)
( ) ( )

3
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σ (x) · n (x) = t (x) , x ∈ ∂ΩN (2)

u (x) = g (x) , x ∈ ∂ΩD, (3)

σ (x) = C (x) : ε (u (x)) , x ∈ Ω , (4)

where:

b (x) =

{
b−, x ∈ Ω−

b+, x ∈ Ω+
, (5)

u (x) =

{
u−, x ∈ Ω−

u+, x ∈ Ω+
, (6)

C (x) =

{
C−, x ∈ Ω−

C+, x ∈ Ω+
, (7)

hence:

σ (x) =

{
σ−

(
u−

)
= C−

: ε
(
u−

)
, x ∈ Ω−

σ+
(
u+

)
= C+

: ε
(
u+

)
, x ∈ Ω+

, (8)

where σ (x) is the Cauchy stress tensor, b (x) is the body force vector, n (x) is the outward normal vector on ∂ΩN ,
t (x) is the prescribed traction vector on ∂ΩN , u (x) is the displacement vector, g (x) is the prescribed displacement
vector on ∂ΩD , C (x) is the elastic constitutive tensor, and ε (u (x)) =

1
2 (∇ ⊗ u (x) + u (x) ⊗ ∇) is the small strain

tensor. Additionally, continuity and equilibrium conditions on the interface Γ are:

u+
− u−

= 0, ∀x ∈ Γ , (9)

σ+
(
u+

)
· n+

+ σ−
(
u−

)
· n−

= 0, ∀x ∈ Γ , (10)

where n+ and n− are the outward normal vectors on Γ from the inclusion and matrix sides, respectively, as illustrated
in Fig. 1(b).

2.2. Weak form

To begin deriving the weak form of Eqs. (1) through (4), we multiply Eq. (1) by a test function δu (x) and
integrate over the domain Ω :

(δu (x) , ∇ · σ (x))Ω + (δu (x) , b (x))Ω = 0, x ∈ Ω , (11)

here (·, ·)Ω is the inner product in Ω , and

δu (x) =

{
δu−, x ∈ Ω−

δu+, x ∈ Ω+.
(12)

iven the definitions in Eqs. (5) through (8) and (12), Eq. (11) may be split by domain:(
δu−, ∇ · σ−

(
u−

))
Ω− +

(
δu−, b−

)
Ω− = 0, (13)(

δu+, ∇ · σ+
(
u+

))
Ω+ +

(
δu+, b+

)
Ω+ = 0. (14)

Performing integration by parts on the terms containing the stress divergences and using Gauss’s theorem, we
ave: (

ε
(
δu−

)
, σ−

(
u−

))
Ω− −

(
δu−, n−

· σ−
(
u−

))
Γ

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

, (15)(
ε

(
δu+

)
, σ+

(
u+

))
Ω+ −

(
δu+, n+

· σ+
(
u+

))
Γ

=
(
δu+, b+

)
Ω+ . (16)

Note that by substituting n−
= −n+ into interface equilibrium (10), we have:

+
(

+
)

+ −
(

−
)

+
σ u · n = σ u · n . (17)

4
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This implies that σ+
(
u+

)
, σ−

(
u−

)
, or a linear combination of the two may be used interchangeably in the interface

raction terms. Define a linear combination of stresses on the interface as:

σ (u) ≡ ασ+
(
u+

)
+ (1 − α) σ−

(
u−

)
(18)

where α ∈ [0, 1]. We can rearrange (18) as σ (u) = σ−
(
u−

)
+ α

(
σ+

(
u+

)
− σ−

(
u−

))
, and using (17), we have:

σ (u) · n+
= σ+

(
u+

)
· n+

= −σ−
(
u−

)
· n−. (19)

Substituting (19) into (15) and (16), we have:(
ε

(
δu−

)
, σ−

(
u−

))
Ω− +

(
δu−, n+

· σ (u)
)
Γ

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

, (20)(
ε

(
δu+

)
, σ+

(
u+

))
Ω+ −

(
δu+, n+

· σ (u)
)
Γ

=
(
δu+, b+

)
Ω+ , (21)

r: (
ε

(
δu−

)
, σ−

(
u−

))
Ω− + α

(
δu−, n+

· σ+
(
u+

))
Γ

+ (1 − α)
(
δu−, n+

· σ−
(
u−

))
Γ

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

,
(22)(

ε
(
δu+

)
, σ+

(
u+

))
Ω+ − α

(
δu+, n+

· σ+
(
u+

))
Γ

− (1 − α)
(
δu+, n+

· σ−
(
u−

))
Γ

=
(
δu+, b+

)
Ω+ ,

(23)

Since meshfree shape functions do not possess the Kronecker delta property, we use Nitsche’s method to
nforce Dirichlet boundary conditions. Our weak form reads: Find

(
u+, u−

)
∈ H 1

(
Ω+

)
× H 1

(
Ω−

)
such that(

δu+, δu−
)

∈ H 1
(
Ω+

)
× H 1

(
Ω−

)(
ε

(
δu−

)
, σ−

(
u−

))
Ω− + α

(
δu−, n+

· σ+
(
u+

))
Γ

+ (1 − α)
(
δu−, n+

· σ−
(
u−

))
Γ

−
(
δu−, n−

· σ−
(
u−

))
∂ΩD

−
(
σ−

(
δu−

)
· n−, u−

)
∂ΩD

+ β
(
δu−, u−

)
∂ΩD

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

−
(
σ−

(
δu−

)
· n−, g

)
∂ΩD

+ β
(
δu−, g

)
∂ΩD

,

(24)

(
ε

(
δu+

)
, σ+

(
u+

))
Ω+ − α

(
δu+, n+

· σ+
(
u+

))
Γ

− (1 − α)
(
δu+, n+

· σ−
(
u−

))
Γ

=
(
δu+, b+

)
Ω+ ,

(25)

where β is the penalty parameter.

Remark 2.1. Alternatively, one could derive a symmetric weak form from the following potential:

Π =
1
2

(
ε

(
u−

)
, C−

: ε
(
u−

))
Ω− +

1
2

(
ε

(
u+

)
, C+

: ε
(
u+

))
Ω+ −

(
u−, b−

)
Ω−

−
(
u−, t

)
∂ΩN

−
(
u+, b+

)
Ω+ −

(
σ (u) · n+, u+

− u−
)
Γ

−
(
σ−

(
u−

)
· n−, u−

− g
)
∂ΩD

+
β

2

(
u−

− g, u−
− g

)
∂ΩD

.

(26)

Taking the variation of the potential, setting it equal to zero, splitting the equation in two by test function, and
rearranging, we have:(

ε
(
δu−

)
, σ−

(
u−

))
Ω− + α

(
δu−, n+

· σ+
(
u+

))
Γ

+ (1 − α)
(
δu−, n+

· σ−
(
u−

))
Γ

+ (1 − α)
(
σ−

(
δu−

)
· n+, u−

− u+
)
Γ

−
(
δu−, n−

· σ−
(
u−

))
∂ΩD

−
(
σ−

(
δu−

)
· n−, u−

)
∂ΩD

+ β
(
δu−, u−

)
∂ΩD

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

−
(
σ−

(
δu−

)
· n−, g

)
∂ΩD

+ β
(
δu−, g

)
∂ΩD

,

(27)

(
ε

(
δu+

)
, σ+

(
u+

))
Ω+ − α

(
δu+, n+

· σ+
(
u+

))
Γ

− (1 − α)
(
δu+, n+

· σ−
(
u−

))
Γ

+α
(
σ+

(
δu+

)
· n+, u−

− u+
)
Γ

=
(
δu+, b+

)
Ω+ .

(28)

The only difference between this weak form and the one given in Eqs. (24) and (25) is the addition of the interface
term −

(
σ (δu) · n+, u+

− u−
)
Γ

. This weak form is essentially Nitsche’s method without penalty for enforcing
interface compatibility. It has been shown in [58] that an interface penalty term is not needed if the interface nodes
are shared by the foreground and background discretizations for enhanced coercivity.
5
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We have found that any value of α in Eqs. (24) and (25) using the proposed method to be discussed in Section 4
will provide an equally good approximation. This is in contrast with FEM cut-element techniques which must
carefully balance the interface gradients to avoid matrix ill-conditioning [37,38]. For simplicity, we have chosen to
use the inclusion interface stress exclusively for the interface terms (i.e., α = 1). We thus arrive at the weak form
used for our numerical examples:(

ε
(
δu−

)
, σ−

(
u−

))
Ω− +

(
δu−, n+

· σ+
(
u+

))
Γ

−
(
δu−, n−

· σ−
(
u−

))
∂ΩD

−
(
σ−

(
δu−

)
· n−, u−

)
∂ΩD

+ β
(
δu−, u−

)
∂ΩD

=
(
δu−, b−

)
Ω− +

(
δu−, t

)
∂ΩN

−
(
σ−

(
δu−

)
· n−, g

)
∂ΩD

+ β
(
δu−, g

)
∂ΩD

,

(29)

(
ε

(
δu+

)
, σ+

(
u+

))
Ω+ −

(
δu+, n+

· σ+
(
u+

))
Γ

=
(
δu+, b+

)
Ω+ . (30)

Remark 2.2. The foreground and background domains use separate approximations and are tied together using
the shared interface nodes with the penalty-free Nitsche’s method. This allows the approximation to capture strain
discontinuities across the material interface.

Remark 2.3. The use of Nitsche’s method for essential boundary condition enforcement comes at little additional
cost when used in conjunction with SCNI (detailed in Section 3.2.1) since the evaluation of shape functions and
gradients on the boundary will have already been calculated during the gradient smoothing calculations in domain
integration and stored in memory. Thus, no new evaluations are needed for Nitsche’s method since one can simply
reuse the shape functions and gradients calculated during the gradient smoothing process.

3. Variationally consistent reproducing kernel particle method

In this section, we detail the reproducing kernel approximation and discuss the stabilized nodal integration
suitable for the proposed embedded method. The matrix form may be found in the appendix.

3.1. Reproducing kernel approximation

The reproducing kernel (RK) approximation [18,19] is constructed based on a set of N P scattered nodes that
discretize the domain Ω as shown in Fig. 2.

Let uh (x) be the approximation of u (x); the RK approximation is given as follows [19]:

uh (x) =

N P∑
I=1

ΨI (x) u I , (31)

where u I is the generalized coefficient associated with node I , and ΨI (x) is the RK approximation function
associated with node I expressed as:

ΨI (x) = HT (0) M−1 (x) H (x − x I ) φa (x − x I ) , (32)

where φa (x − x I ) is the kernel function that defines the locality and smoothness (i.e., the order of continuity) of
the approximation. A common kernel function used in RK approximations is the cubic B-spline kernel which is C2

continuous:

φa (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3

− 4z2
I + 4z3

I , 0 ≤ z I ≤
1
2

4
3

(1 − z I )
3 ,

1
2

< z I ≤ 1

0, z I > 1

, z I =
∥x − x I ∥

aI
, (33)

here aI is the support size of node I and M (x) is the moment matrix:

M (x) =

N P∑
H (x − x I ) HT (x − x I ) φa (x − x I ) , (34)
I=1

6
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Fig. 2. A domain Ω with boundary ∂Ω is discretized by a set of nodes. Each node possesses a circular kernel support where the shape
function ΨI is defined.

where H (x − x I ) is the basis vector of monomials:

HT (x − x I ) =
[
1, x1 − x1I , x2 − x2I , x3 − x3I , (x1 − x1I )

2 , . . . , (x3 − x3I )
n] . (35)

Here H (x − x I ) of basis order n enforces the nth order of completeness in the approximation:
N P∑
I=1

ΨI (x) x i
1I x j

2I xk
3I = x i

1x j
2 xk

3 , 0 ≤ i + j + k ≤ n. (36)

For the moment matrix to be invertible, the point being evaluated x must be covered by at least the number of
non-collinear (in 2D) or non-coplanar (in 3D) kernel supports equal to the dimension of the basis vector [59].

Remark 3.1.

1. When using meshfree methods in the presence of concave features, which commonly exist in microstructures,
it is necessary to use a line-of-sight algorithm to determine a node’s influence on an evaluation point [60,61].
The fact that a node’s kernel support covers an evaluation point is not sufficient to determine influence; the
node also needs to have a line of sight within the material body to the evaluation point. For example, consider
Fig. 3. Node 1’s kernel support covers nodes 2, 3, and 4 along with other nodes in the domain. Node 1 has
line-of-sight within the domain to node 2, and since the boundary of the domain connects nodes 1 and 3
with a straight line, node 1 also has line-of-sight to node 3. While node 4 is within node 1’s kernel support,
a straight line drawn from node 1 to node 4 would pass outside the domain, and thus node 1’s kernel will
have a value of zero when evaluated at node 4.

2. After doing a runtime study, the line-of-sight algorithm takes only about 10% of the total runtime when run
in serial. Parallelization of this subroutine would lower that figure considerably.

3. The line-of-sight algorithm creates a discontinuous kernel function, which leads to an undesired discontinuity
in the approximation. Another approach to handle concave features while maintaining continuity in the
approximation is to use a diffracted kernel support [61–63] which bends around the corner, e.g., at node
3 in Fig. 3. In this work, we consider the line-of-sight approach for simplicity.
7
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Fig. 3. Example of line-of-sight.

3.2. Domain integration

3.2.1. Stabilized conforming/non-conforming nodal integration
The Gauss quadrature rules commonly used in the finite element method are not suitable for meshfree methods

due to the absence of a mesh in a meshfree discretization. While “background” meshes, independent of the
discretization points, have been used to define Gauss quadratures, it is almost impossible to match the mesh with the
supports of the RK kernel functions as shown in Fig. 3, leading to integration errors and hence reduced convergence
rates in meshfree methods [57,59,64,65]. Higher-order quadratures have also been considered. For example, use
of the cubic B-spline kernel in (33) in combination with a linear basis would require at least a 5th order Gauss
quadrature rule for sufficient accuracy in common practice, which is computationally intractable [57,59,66,67].
Alternatively, direct nodal integration (DNI) which locates an integration point at the node is natural to meshfree
methods, but it under-integrates the strain energy and yields spurious zero energy modes [65].

These problems with conventional integration methods led to the development of stabilized conforming nodal
integration (SCNI) [65], where a smoothed gradient is calculated over a conforming nodal “integration smoothing
cell” rather than taking a direct derivative at the nodal integration points, see Fig. 4. The following smoothed gradient
has been introduced [65]:

Ψ̃I,i (xL) =
1

VL

∫
ΩL

ΨI,i (x) dΩ =
1

VL

∫
∂ΩL

ΨI (x) ni (x) dΓ , (37)

here Ψ̃I,i (xL) is the smoothed shape function gradient in the i th direction of node I which is constant over the
ell of node L located at xL , VL is the nodal cell volume of the integration smoothing cell ΩL associated with
ode L , and ni is the i th component of the outward normal vector on the integration smoothing cell boundary
ΩL ; see Fig. 4. It has been shown that SCNI fulfills the integration constraint and meets linear exactness in the
alerkin approximation [57,65]. The conforming integration smoothing cells may be constructed in several ways

ncluding Voronoi diagrams, Delaunay triangulations, or from a finite element mesh with the requirement that the
ells’ boundaries conform to each other.

To model extreme deformation and fragmentation problems, a non-conforming counterpart to SCNI was
eveloped, the stabilized non-conforming nodal integration (SNNI) [68,69]. In SNNI, the integration smoothing

ells are constructed with simple geometries, such as cubes or spheres centered on the nodes, and whose volume is

8
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Fig. 4. Smoothing integration cells; SCNI using a Voronoi diagram to achieve conformity (left) and SNNI using square non-conforming
cells (right); red arrows indicate the outward normal vectors of the cells at the cell boundary evaluation points.

equal to that of their conforming counterparts. Two-dimensional examples of SCNI and SNNI cells are shown in
Fig. 4.

3.2.2. Variationally consistent correction for non-conforming nodal integration
For the proposed quasi-conforming embedded RKPM formulation, SNNI will be employed which is essential

o the effectiveness and reliability of the proposed method. Since the integration smoothing cells in SNNI no
onger conform to each other, SNNI loses first order variational consistency and, consequently, optimal convergence
ates. To restore variational consistency, a variationally consistent correction of integration methods that are not
ariationally consistent, including SNNI, was developed and termed variationally consistent SNNI (VC-SNNI) [66].
he correction allows a nodal integration with conforming or non-conforming integration smoothing cells to achieve
ariational consistency for any basis order.

Variational consistency is the ability of a Galerkin method to achieve nth order Galerkin exactness for optimal
convergence. Variational consistency of the nth order requires nth order completeness, which can be achieved by
RK with nth order bases, and an nth order integration constraint of the following form [57]:∫ ˆ

ΨI, j PdΩ =

∫ ˆ

ΨI n j PdΓ −

∫ ˆ

ΨI P , j dΩ , (38)

Ω ∂Ω Ω

9
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where ΨI is the approximation function for the test function, “ˆ” in
∫ ˆ denotes numerical integration, and P is the

n-1)th order monomial vector:

P =
[
1 x y x2 xy y2 · · · xα yβ

· · · y(n−1)
]T

. (39)

q. (38) is called the integration constraint in [57]. For any Galerkin approximation to achieve a desired level of
ariational consistency, it must (1) have a trial function that can reproduce the desired basis order exactly in (36)
nd (2) satisfy the integration constraint in (38). For linear variational consistency, P = 1, and Eq. (38) reduces to:

∫ ˆ

Ω

ΨI, j dΩ =

∫ ˆ

∂Ω

ΨI n j dΓ , (40)

hich can be achieved by Eq. (37) with conforming integration smoothing cells. This indicates that SCNI with
linear basis automatically meets first-order variational consistency and does not need VC correction. If we
ant a higher-order variational consistency in (38) for integration methods that are not variationally consistent,
modification to the test function gradient can be considered [57]:

Ψ I, j = ΨI, j + ΘI PT ζ I j , (41)

here Ψ I, j is the modified test function gradient, ΘI is:

ΘI =

{
1, supp (ΨI ) ̸= 0

0, else
, (42)

nd ζ I j is a column vector of unknown coefficients for each node I and direction j . Substituting the modified test
unction gradient in (41) in place of the standard test function gradient of (38) and rearranging:∫ ˆ

Ω

ΘI P PT dΩζ I j =

∫ ˆ

∂Ω

ΨI n j PdΓ −

∫ ˆ

Ω

(
ΨI P , j + ΨI, j P

)
dΩ , (43)

r:

M I ζ I j = r j
I , (44)

M I =

∫
Ω

ΘI P PT dΩ , (45)

r j
I =

∫ ˆ

∂Ω

ΨI n j PdΓ −

∫ ˆ

Ω

(
ΨI P , j + ΨI, j P

)
dΩ , (46)

here r j
I is the residual of the formulation without VC correction (38). Once (43) is solved for ζ I j , the modified test

unction gradients (41) can be computed. Using the modified test function gradients, the Galerkin approximation
f elasticity can be expressed as:∫ ˆ

Ω

BT
I σdΩ =

∫ ˆ

∂Ω

Ψ T
I ηT σdΓ +

∫ ˆ

Ω

Ψ T
I bdΩ , (47)

where B I is the modified strain–displacement matrix for node I and is comprised of the modified test function
gradients calculated from Eq. (41). Substituting σ = C Bd into the LHS of (47), the stiffness matrix is:

K I J =

∫ ˆ

Ω

BT
I C B J dΩ , (48)

hich is a Petrov–Galerkin formulation. It was shown in [57] that such a form is stable if the coefficients in ζ I j
re sufficiently small.

For the examples in this paper, we use a linear basis and seek to achieve first order variational consistency. For
linear basis, P = 1, and Eqs. (44) to (46) become:

MI ζI j = r j
I , (49)

MI =

∫ ˆ

ΘI dΩ , (50)

Ω

10



R.T. Schlinkman, J. Baek, F.N. Beckwith et al. Computer Methods in Applied Mechanics and Engineering 416 (2023) 116363

3

t
t
T
n

w
m
g

w

w

r j
I =

∫ ˆ

∂Ω

ΨI n j dΓ −

∫ ˆ

Ω

ΨI, j dΩ . (51)

.2.3. Naturally stabilized nodal integration
Although SCNI and VC-SNNI with linear bases achieve first-order variational consistency, they are still nodal in-

egration methods and, consequently, reduced-order integration methods. As such, these integration methods can still
rigger non-physical, low-energy modes which necessitate the use of stabilization methods as a remedy [66,70,71].
he most computationally efficient stabilization method that avoids tunable parameters is the naturally stabilized
odal integration (NSNI) [66]. NSNI expands the strain–displacement matrix in a Taylor series [72–74]:

ˆ̃B I (xL) = B̃ I (xL) + (x − xL) · B̃
∇

I x (xL) + (y − yL) · B̃
∇

I y (xL) + (z − zL) · B̃
∇

I z (xL) (52)

here ˆ̃B I is the smoothed and expanded strain–displacement matrix, B̃ I is the smoothed shape function gradient
atrix from SCNI or VC-SNNI following (37) and B̃

∇

I x , B̃
∇

I y , and B̃
∇

I z are the smoothed gradients of the implicit
radients [66,74] in the x-, y-, and z-directions, respectively:

B̃
∇

I x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̃∇

I,xx 0 0

0 Ψ̃∇

I,yx 0

0 0 Ψ̃∇

I,zx

Ψ̃∇

I,yx Ψ̃∇

I,xx 0

Ψ̃∇

I,zx 0 Ψ̃∇

I,xx

0 Ψ̃∇

I,zx Ψ̃∇

I,yx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (53)

B̃
∇

I y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̃∇

I,xy 0 0

0 Ψ̃∇

I,yy 0

0 0 Ψ̃∇

I,zy

Ψ̃∇

I,yy Ψ̃∇

I,xy 0

Ψ̃∇

I,zy 0 Ψ̃∇

I,xy

0 Ψ̃∇

I,zy Ψ̃∇

I,yy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (54)

B̃
∇

I z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̃∇

I,xz 0 0

0 Ψ̃∇

I,yz 0

0 0 Ψ̃∇

I,zz

Ψ̃∇

I,yz Ψ̃∇

I,xz 0

Ψ̃∇

I,zz 0 Ψ̃∇

I,xz

0 Ψ̃∇

I,zz Ψ̃∇

I,yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (55)

here Ψ̃∇

I,i j denotes the smoothed gradient in the i th-direction using the implicit gradient shape function in the
j th-direction. The implicit gradient shape function in the j th-direction is given as:

Ψ∇

I, j (x) = HT
j M−1 (x) H (x − x I ) φa (x − x I ) (56)

here H j for a linear basis has the following values:

HT
x = [0, −1, 0, 0] (57)

HT
y = [0, 0, −1, 0] (58)

HT
z = [0, 0, 0, −1] (59)
11
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Note that (56) has the same form as the standard RK shape function Eq. (32) with the only difference being the
substitution of HT

j in place of HT (0). As a result, the NSNI stabilization requires only a minimal computational
effort [66].

Remark 3.2. Complexity analyses of SCNI/SNNI and NSNI have been reported in [66], and complexity analyses
of the direct RK gradient and implicit gradient have been studied in [75] and [76], respectively.

With NSNI in (52), the stiffness matrix with VC correction becomes:∫ ˆ

Ω

ˆ̃B
T

I C ˆ̃B J dΩ =

N P∑
L=1

(
B̃

T

I C B̃ J VL + B̃
∇

T

I x C B̃
∇

J x MLx + B̃
∇

T

I y C B̃
∇

J y MLy + B̃
∇

T

I z C B̃
∇

J z MLz

)
, (60)

here
ˆ̃B I is the VC-corrected, smoothed, and expanded strain–displacement matrix, B̃ I is the VC-corrected,

smoothed strain–displacement matrix from SCNI or SNNI following (41) and (53) through (59), and MLx , MLy ,
and MLz are the second moments of inertia about node L . In (60), we have assumed that the first moments of
nertia and products of inertia are zero when nodes are located at the centroids of their nodal cells. While boundary
odes are not located at their cell centers, it has been observed that the second moments of inertia are sufficient to
tabilize these nodes [66].

As we will show in Section 4, the background matrix domain will be comprised of conforming smoothing
ntegration cells except near the interface where the cells are non-conforming, while the foreground inclusion
omain(s) will be comprised exclusively of conforming cells. Thus, VC-SNNI and SCNI, both stabilized with
SNI, will be used for the background and foreground domains, respectively. Direct nodal integration will be used

or all other volume integrals such as the body force terms.

. Quasi-conforming embedded discretization

The proposed quasi-conforming embedded (QCE) discretization is a three-stage process, and this section details
he reasoning behind the geometric manipulations at each stage. The advantages of this meshfree strategy over
tandard immersed and embedded techniques rooted in mesh-based methods such as FEM will be noted throughout.

.1. Initial immersed state

To avoid time-consuming, conformal discretization, the background and foreground domains are discretized
ndependently, and the foreground discretization is initially immersed in the background discretization as shown
n Fig. 5. The region shared by both background and foreground domains is called the overlapping region, and the

background discretization in the overlapping region is called the fictitious discretization.

Remark 4.1.

1. In this work, we have chosen to use Voronoi cells as our conforming smoothing cells. Voronoi cell
construction is quite fast as there is no concern for mesh connectivity or element quality. The use of the
smoothed gradient (as detailed in Section 3.2.1) in combination with Voronoi cells avoids the pitfall of getting
poor results due to the generation of distorted finite elements. Thus, the QCE algorithm is much faster than
the manual meshing necessary to create a quality finite element mesh free of distorted elements.

2. The background discretization is comprised of simple, square smoothing cells which have only four evaluation
points needed to integrate a cell’s area, and the typical foreground smoothing cell has only a few more. Thus,
the computational burden for integrating the domain is relatively small.

3. It is possible to use non-conforming cells for both foreground and background discretizations which would
minimize the complexity and computational cost of discretizing the domains. While utilizing this option will
lower the accuracy of the approximation as compared to the use of conforming cells, the use of the variational
correction detailed in Section 3.2.2 would still allow the approximation to achieve optimal convergence
rates [57].
12
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Fig. 5. Background and foreground smoothing integration cells at the initial immersed state.

4.2. Non-conforming quadtree subdivision

One problem with immersed methods (especially VCIMs) is the “smearing” of the background solution caused
by that approximation’s continuity across the interface. Capturing the weak discontinuity at the interface is essential
when modeling, for example, the debonding of inclusions in composite materials. The second problem with
immersed methods is that the discretization ratio (between background and foreground domains) must stay in a
certain range to prevent the ill-conditioning of the stiffness matrix. In our proposed framework, we remove the
fictitious domain nodes and cells thereby preventing the smearing of the background approximation and the ill-
conditioning of the stiffness matrix. For RKPM with RK approximation, these discretization cells are used as a
“reference” for computing nodal areas (volumes) and as the integration smoothing cells for SCNI or SNNI strain
smoothing.

For the matrix integration points to fulfill the first order integration constraint in a non-conforming manner, the
gap resulting from the complete removal of the fictitious smoothing integration cells that intersect the interface
can be recovered easily by correcting the area (volume) of these cells. In the case where the background to
foreground nodal spacing ratio is too large (and vice versa), node and smoothing integration cell insertions can
be done systematically, see Fig. 6.

A simple strategy to determine the level of sub-division of the background smoothing integration cells, denoted
as nR , is given as follows:

nR =

{⌊
nlog

⌋
, nlog > 0

0, nlog ≤ 0
, (61)

nlog = log2

(
R′

)
, (62)

R′
=

⎧⎪⎪⎨⎪⎪⎩
⌈R⌉ , R mod 1 ≥ k,R > 1

⌊R⌋ , R mod 1 < k,R > 1

1, R ≤ 1

, (63)

R =
h−

h+

Intf
, (64)

here nR is the number of times background smoothing integration cells intersecting the interface are subdivided,
·⌋ is the floor function which rounds a fraction down to the nearest integer, ⌈·⌉ is the ceiling function which
13
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Fig. 6. Quadtree subdivision process: (1) Remove all nodes and smoothing integration cells that are completely in the overlapping region.
(2) If nR ≥ 1, refine remaining smoothing integration cells within a specified distance or that intersect the interface. (3) If nR ≥ 2, repeat
steps (1) and (2) above nR − 1 more times for cells that straddle the interface. (4) Remove any new smoothing integration cells with cell
boundary evaluation points in the overlapping region.

rounds a fraction up to the nearest integer, k is a real number between 0 and 1, R is the nodal spacing ratio, h− is
the uniform background nodal spacing before quadtree subdivision, and h+

Intf is the averaged nodal spacing of the
inclusion nodes on the interface. In our examples, as demonstrated in Fig. 6, we have used k = 0.5 which simply
makes (63) round R to the nearest integer unless R ≤ 1. This quadtree subdivision provides a smooth discretization
density transition near the material interfaces. A similar strategy can be defined in the case where the background
discretization density is higher than the foreground discretization density. Fig. 7(a) and Fig. 7(b) show one-level
and two-level non-conforming quadtree subdivision intermediate states, respectively. This non-conforming quadtree
subdivision strategy with variable subdivision levels can also be considered, as shown in Fig. 7(c).

4.3. Integration constraint correction of non-conforming nodal integration

In this section, we investigate the influence of the missing area (volume) due to the removal of overlapping
smoothing cells and quadtree subdivisions. It is worth noting that the missing area (volume) can be corrected

j
by the residual r I in the VC correction of non-conforming nodal integration in (44) and (46). As mentioned in

14
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Fig. 7. Non-conforming quadtree subdivisions: (a) one-level subdivision, (b) two-level subdivision, and (c) variable-level quadtree subdivisions.

Section 3.2.2, the variationally consistent (VC) correction leads to a Petrov–Galerkin formulation, the stability of
which depends on the magnitude of the residual r j

I [57]. Thus, although it is not required that the volume of
ll smoothing cells equals the volume of the computational domain for the VC correction in (41) to work, the
orrection residual r j

I is reduced by meeting the area (volume) conservation for better stability. The influence of
he area (volume) conservation on the correction coefficients can be shown by replacing the RK shape functions in
he first order integration constraint in (41) and (51) with a linear function. Let ΨI = Ψ = x + y + z whose support
overs the entirety of an arbitrary three-dimensional domain Ω . Then from (51), we have:

r j
=

∫ ˆ

∂Ω

(x + y + z) n j dΓ −

∫ ˆ

Ω

dΩ , (65)

Using Gauss’s theorem:∫
∂Ω

xi n j dΓ =

∫
Ω

xi, j dΩ =

∫
Ω

δi j dΩ = V δi j . (66)

here V is the volume of the computational domain. Using (66) in (65), we have:

r j
= V − V̂ , (67)

here V̂ is the total volume of all integration smoothing cells:∫ ˆ

Ω

dΩ =

NC∑
I=1

VI ≡ V̂ , (68)

n which NC is the number of smoothing cells and VI is the volume of each smoothing cell. Since the support of
I = Ψ extends over the entire computational domain, then ΘI = Θ = 1 for ∀x ∈ Ω , and since the integral in

50) is over all smoothing cells, (50) becomes:

MI = M =

∫ ˆ

Ω

ΘdΩ =

∫ ˆ

Ω

dΩ =

NC∑
I=1

VI ≡ V̂ , (69)

herefore, (49) becomes:

V̂ ζ j = V − V̂ , (70)

r:

ζ j =
V − V̂

=
V

− 1, (71)

V̂ V̂
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Fig. 8. Addition of square, non-conforming integration smoothing cells centered on interface nodes.

Using (71) and noting that PT
= P = 1 for a linear basis, (41) becomes:

Ψ I, j = Ψ , j = 1 +
V

V̂
− 1 =

V

V̂
. (72)

qs. (71) and (72) show that the VC correction, in addition to meeting variational consistency, also acts as a volume
orrection, where the size of the VC correction is partially driven by the deviation of the total integration smoothing
ell area (volume) from the computational domain area (volume).

emark 4.2. Enforcing area (volume) conservation in the integration smoothing cells, though non-conforming,
llows the VC correction to contribute mainly to the correction of integration smoothing cell non-conformity,
esulting in a more accurate Galerkin solution. Additionally, area (volume) conservation reduces the size of the VC
oefficients resulting in better stability [57]. Integration smoothing cell volume conservation can be easily achieved
y adding non-conforming “volume-recovery” smoothing cells centered on the interface nodes, as shown in Fig. 8.

emark 4.3. The interface nodes can be shared by both foreground and background domain approximations,
hich has the following advantages: (1) as discussed in Section 2.2, the enhanced coercivity allows for a penalty-

ree Nitsche’s method, and (2) the partition of unity in the RK approximation can be maintained in each of the
ub-domains.

emark 4.4. All the procedures detailed in Sections 4.2 and 4.3 to create the QCE discretization are automatic
nd require no manual user input. After doing a runtime study, these procedures take only about 10% of the total
untime when run in serial. Parallelization of this subroutine would lower that figure considerably.

. Numerical examples

In this section, the effectiveness of the proposed QCE-RKPM is demonstrated through several numerical
xamples with comparisons to body-fitted FEM and analytical solutions. For all examples, the RK approximation
ses a linear basis and a cubic B-spline kernel function with a normalized support size of c = 2.0, and the line-of-
ight algorithm (see Section 3.1 and the modification in Section 4.3) is used to determine the influence of nodes.
dditionally, the interface nodes are shared by both foreground and background domain approximations. SCNI
nd VC-SNNI are utilized for the domain integration of the foreground and background domains, respectively,
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Fig. 9. Composite bar with left end fixed.

Fig. 10. Pre-QCE immersed discretization.

and NSNI is employed for the stabilization of both. Nitsche’s method with a penalty parameter of β = 100 E−

h−

is utilized for enforcing Dirichlet boundary conditions where h− is the original nodal spacing of the background
domain prior to quadtree subdivision. The quadtree subdivision of the background integration smoothing cells near
the interface follows the strategies given in Section 4.2. For post-processing the QCE-RKPM results, the nodal
smoothed gradients are used to calculate strain values at the nodes for those nodes with integration smoothing cells,
while the direct gradient evaluated at the node is used for those nodes without integration smoothing cells. The
RK shape functions are then utilized to interpolate those values to the Gauss points which have the dual purpose
of both error calculation and contour plotting. To make a fair comparison, the FEM strains are calculated using
the standard shape function gradients evaluated at the nodes for each element, and the nodal strains are averaged
over all elements to which a node belongs. The element shape functions are then used to interpolate averaged nodal
strain values to the Gauss points. To calculate error norms, 10th order Gauss quadratures are used for sufficient
accuracy.

5.1. One-dimensional composite bar

This example is used to examine how the “non-conforming” integration smoothing cells in the proposed QCE-
RKPM affect the solution accuracy and convergence rates. As shown in Fig. 9, a fixed-end composite bar is subjected
to different loading and boundary conditions in the following studies. The linear elastic material properties are set
to be E+

= 100,000 and E−
= 1,000.

5.1.1. A piece-wise linear patch test with weak discontinuities
In this sub-section, a displacement of u = g = 0.3 is prescribed at the right end of the composite bar. As

shown in Fig. 10, the foreground domain Ω+ is discretized with 30 nodes and is initially immersed in the entire
domain Ω = Ω

− ⋃
Ω

+

which is also discretized by 30 nodes. This creates the situation where the foreground
odal spacing is half that of the background nodal spacing and such that their corresponding integration smoothing
ells do not match at the interface as shown in Fig. 10.

As outlined in Section 4.2, the background nodes and integration smoothing cells completely inside the
oreground discretization are deleted, and background cells within 1.5h+ of the interface are divided in two. Any

background cells still intersecting the interface are removed. Two cases were created to test the effect of the volume-
recovery integration smoothing cells discussed in Section 4.3, one with these cells present (Fig. 11(a)) and one
without (Fig. 11(b)). Lastly, the foreground interface nodes are shared with the background discretization.

As expected, both QCE-RKPM cases exactly reproduce the analytical solution at the nodes to nearly machine
precision and give L2 error norms of 1.6 × 10−13 for the case with volume-recovery cells and 1.8 × 10−13 for the
case without these cells. The ability of QCE-RKPM to obtain an exact solution in this manufactured problem is
due to the VC-SNNI that meets first order variational consistency even with non-conforming integration smoothing

cells. Fig. 12 shows the displacement, strain, and stress plots.
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v

Fig. 11. QCE-RKPM discretization for the 1D bar problem: (a) volume-recovery cells added around interface nodes and (b) no
olume-recovery cells.

Fig. 12. Displacement (left), strain (center), and stress (right) plots for both QCE-RKPM cases.

5.1.2. Piecewise higher-order solution with weak discontinuities
This problem exhibits a piecewise higher-order solution and is designed to examine QCE-RKPM’s convergence

properties when linear basis functions are used. The composite bar is subjected to piecewise sinusoidal body force
loadings as follows:

b−
= 10 sin

(
πx
L1

)
, 0 ≤ x ≤ x1, (73)

b+
= 50 sin

(
π (x − x1)

L2

)
, x1 ≤ x ≤ x2, (74)

b−
= 10 sin

(
π (x − x2)

L3

)
, x2 ≤ x ≤ x3. (75)

The body force terms (see Eqs. (85) and (91) in the Appendix) are integrated with direct nodal integration.
Fig. 13 shows the QCE-RKPM displacement, strain, and stress results for the discretizations shown in Fig. 11

along with the analytical solution. The results for the QCE-RKPM case with volume recovery cells (Fig. 13(a)) are
shown to be highly accurate compared with the exact solution, and while the QCE-RKPM case with no volume-
recovery cells (Fig. 13(b)) does show the expected inaccuracy near the material interfaces, the results are still very
good.

Fig. 14 shows the convergence plots in the L2 norm and H1 semi-norm for both QCE-RKPM cases as well as
body-fitted FEM. The numbers in the legends are the convergence rates. As shown in Fig. 14, both QCE-RKPM
cases and FEM converge at an optimal rate in the L2 norm and possess super-convergence in the H1 error semi-norm
due to the re-interpolation of the smoothed and averaged nodal strain values, respectively. While the QCE-RKPM
overall error is higher in the L2 norm compared to FEM, the QCE-RKPM with volume-recovery cells is shown to

have roughly the same error level as body-fitted FEM in the H1 error semi-norm.
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Fig. 13. Displacement (left), strain (center), and stress (right) plots: (a) QCE-RKPM case with volume-recovery cells and (b) QCE-RKPM
case without these cells.

Fig. 14. Convergence plots for the L2 error norm (left) and H1 error semi-norm (right).

.2. Circular inclusion in an infinite plate subjected to far-field traction

In this example, an infinite plate with a circular inclusion of diameter D = 2 is subjected to a far-field traction
F = 100 as shown in Fig. 15.

The computational domain is a 4 × 4 square with outer boundary ∂Ω and an interface Γ between the background
atrix domain and foreground inclusion domain as shown in Fig. 16. The elastic moduli used for this example are

E+
= 100,000 and E−

= 1,000, and the Poisson’s ratios are ν+
= ν−

= 0.3. The problem is modeled as plane
tress. This problem possesses an analytical solution which is applied as a Dirichlet boundary condition to the entire

ackground outer boundary ∂Ω . The analytical solution to this problem can be found in [77]. Three discretization
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Fig. 15. Infinite plate with circular inclusion subjected to far-field traction.

Fig. 16. h−
= 0.2, h+

Intf ≈ 0.1: (a) QCE-RKPM with volume-recovery integration smoothing cells centered on interface nodes, (b) QCE-RKPM
without the volume-recovery smoothing cells, (c) and body-fitted FEM with gradual refinement.

cases were run for the convergence study, two QCE-RKPM cases and one body-fitted FEM case. The two QCE-
RKPM cases use an initial background nodal spacing which is approximately twice the spacing of the foreground
interface nodes with quadtree subdivision around the interface. The first QCE-RKPM case uses square, volume-
recovery non-conforming integration smoothing cells centered on the interface nodes (Fig. 16(a) and Fig. 17(a)),
while the second QCE-RKPM case does not employ these volume-recovery integration smoothing cells (Fig. 16(b)
and Fig. 17(b)). Note that, for both QCE-RKPM cases shown in Fig. 17, the foreground interface nodes are shared
with the background domain for enhanced coercivity in a penalty-free Nitsche’s method as well as ensuring the
partition of unity in both domains, as discussed in Sections 2.2 and 4.3. The corresponding body-fitted FEM case
has a gradual element refinement analogous to the quadtree refinement as shown in Fig. 16(c) for comparison.

Fig. 18 shows the strain fields and the σyy field for the discretizations in Fig. 16 as well as the analytical solution.
The contour plots for the QCE-RKPM case with volume-recovery integration smoothing cells show very little
difference between them and the analytical solution, demonstrating the effectiveness of the proposed QCE-RKPM
in achieving an accurate solution without the tedious effort in constructing a body-fitted discretization. The contour
plots for the QCE-RKPM case without volume-recovery cells, while showing good results in the strain fields, do
show a deviation in the stress from the analytical solution inside the inclusion region. This shows that conserving
area (volume) with volume-recovery cells allows for more integration points and for the VC correction to contribute
20
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Fig. 17. Magnified views of (a) Fig. 16(a) and (b) Fig. 16(b).

mainly to the lack of variational consistency thereby increasing the accuracy of the approximation. The body-fitted
FEM solution, while superior to the QCE-RKPM case without volume-recovery cells, appears rough and asymmetric
in places and is inferior in most respects to the QCE-RKPM case with volume-recovery integration smoothing cells.

Fig. 19 plots cross-sections of the normal strains and stresses along y = 0 for the discretizations in Fig. 16. Again,
these cross-sections show that the QCE-RKPM formulation using volume-recovery cells, though non-conforming,
provides better accuracy than body-fitted FEM without the tedium of creating a body-fitted mesh. Cross-sections
of the normal strains and stresses for the most refined case (h+

Intf ≈ h−
= 0.0125) are plotted in Fig. 20 and

how that both QCE-RKPM cases converge to the analytical solution with refinement. The convergence studies
re shown in the plots of Fig. 21. These plots demonstrate that QCE-RKPM with volume-recovery cells, while
on-conforming, can achieve optimal convergence properties and similar overall error levels in the L2 error norm
s those of body-fitted FEM, and both QCE-RKPM cases achieve a super-convergent rate and superior overall error
evels in the H1 error semi-norm compared to body-fitted FEM.

.3. Multiple inclusion microstructure subjected to combined tension and shear loading

Our last example is of a heterogeneous microstructure with multiple, arbitrarily shaped interfaces, some of which
ontain concave features. Fig. 22 shows a heterogeneous material consisting of randomly sized circular inclusions
hich is subjected to a combined tension and shear displacement of g = [0.02, 0.02]. We assign the material
roperties to be E−

= 1,000, ν−
= 0.3, E+

= 100,000, ν+
= 0.3.

In this study, QCE-RKPM results obtained from a coarse smoothing-cell discretization and two finer smoothing-
ell discretizations with and without quadtree subdivisions (Fig. 23) are compared with the reference solution
btained from a highly-refined, body-fitted FEM model (Fig. 25). As shown in Fig. 24, all QCE-RKPM cases possess
ackground integration smoothing cells that are non-conforming near the interface. The QCE-RKPM discretizations
n Fig. 23(a), (b), and (c) are with 709, 1,639, and 1,839 nodes, respectively, and the FEM discretization in Fig. 25
s with 424,063 nodes. All QCE-RKPM discretizations utilize the volume-recovery integration smoothing cells for
nhanced accuracy. The FEM reference solution was run in Abaqus CAE [78] and post-processed in MATLAB.
he results displayed in Fig. 26 show that QCE-RKPM can achieve similar results to a highly refined, body-fitted
EM solution without the effort of constructing a body-fitted discretization.
21



R.T. Schlinkman, J. Baek, F.N. Beckwith et al. Computer Methods in Applied Mechanics and Engineering 416 (2023) 116363
Fig. 18. εxx , εyy , γxy , and σyy fields for the discretizations in Fig. 16 and the analytical solution.

6. Summary

In this work, we proposed a quasi-conforming embedded reproducing kernel particle method (QCE-RKPM) for
problems involving heterogeneous materials. The proposed formulation has demonstrated many advantages over
the standard mesh-based immersed and embedded methods. The inclusion and matrix domains are discretized
independently which avoids time-consuming conformal meshing. After immersing the inclusion discretization in
a uniform matrix discretization, the fictitious domain, the source of stability and interpolation error problems
in conventional immersed methods, is removed. Due to the non-conforming discretization, the VC correction is
needed to meet first order exactness in the Galerkin approximation for optimal convergence. Additional interface
smoothing cells with volume correction, while non-conforming, can be introduced in a straightforward way to
further enhance solution accuracy. This ability to add nodes and smoothing cells where needed without concerns
for mesh connectivity and conformity is a major advantage over mesh-based methods which require cell-cutting,
cell-aggregation, or surrogate domain techniques. Finally, the inclusion nodes on the interface are shared with the
matrix discretization to provide additional coercivity for a penalty-free Nitsche’s method as well as ensuring the
22
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Fig. 19. Cross-sections of the normal strains and stresses along y = 0 obtained by QCE-RKPM and Body-fitted FEM with discretizations
in Fig. 16.

partition of unity in the approximation in each of the sub-domains. Thus, unlike most immersed and embedded
methods, our formulation does not have any tunable parameters present to enforce interface compatibility.

QCE-RKPM was implemented with stabilized conforming/non-conforming nodal integration, variationally con-
sistent correction, NSNI stabilization, and a line-of-sight algorithm. Several numerical examples were given which
23
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s
T
d
n

Fig. 20. Cross-sections of the normal strains and stresses along y = 0 for the most refined discretization (h+

Intf ≈ h−
= 0.0125).

how that QCE-RKPM is a viable embedded method for modeling weak discontinuities in heterogeneous materials.
he first numerical example shows that the proposed QCE-RKPM passes the piecewise linear patch test with weak
iscontinuities, and in problems with piecewise higher order solutions, it exhibits optimal convergence in the L2
orm and superconvergence in the H1 semi-norm. In a two-dimensional example of an infinite plate with a circular
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Fig. 21. Convergence plots for the L2 error norm and the H1 error semi-norm.

Fig. 22. Combined tensile and shear loading of a heterogeneous microstructure.

Fig. 23. (a) h−
≈ h+

≈ 0.175 with 709 nodes; (b) h−
≈ 0.2, h+

≈ 0.1 with 1,639 nodes; (c) h−
≈ h+

≈ 0.1 with 1,839 nodes.
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Fig. 24. Magnified views of (a) Fig. 23(a), (b) Fig. 23(b), and (c) Fig. 23(c).

Fig. 25. Conforming FEM discretization with h−
= h+

≈ 0.00625 with 424,063 nodes used as the reference solution.

nclusion, QCE-RKPM with volume-recovery cells achieves accuracy comparable to body-fitted FEM and yields
ptimal convergence rates in the L2 error norm. It also shows that QCE-RKPM with or without volume-recovery
ells outperforms body-fitted FEM in the H1 error semi-norm in both overall error and convergence rate. Finally, a
wo-dimensional example of a multi-inclusion microstructure was simulated using QCE-RKPM and was compared
ith a highly refined, body-fitted FEM mesh. The QCE-RKPM with much coarser discretizations provided similar

esults to the highly-refined, body-fitted FEM reference solution.
In summary, our method is distinct from standard, mesh-based immersed and embedded formulations. Unlike

mmersed methods in general, our formulation does not involve a fictitious domain and thus does not have a
iscretization ratio limitation. Unlike VCIMs, it presents a sharp discontinuity at the interface which captures the
radient jump. Unlike standard embedded methods, our formulation does not suffer from the small cut element
roblem, use surrogate domains, or aggregate elements. While we have shown the QCE discretization process in
wo dimensions and present two-dimensional examples, the extension to three dimensions is straightforward. The
uadtree refinement extended to 3D would be to subdivide a cubic background cell into eight smaller cells (i.e.,
ctree refinement). The inclusion of foreground interface nodes in the background approximation is the same, and if
ne uses the “volume-recovery” cells mentioned in Remark 4.2 above, these cells would be simple cubes centered

n the interface nodes.
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Fig. 26. Strain and τxy fields for the QCE-RKPM discretizations shown in Fig. 23 and the body-fitted FEM reference discretization shown
n Fig. 25.
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Appendix. Galerkin and matrix forms

Let uh− and uh+ be the RK approximations of u− and u+ in Ω− and Ω+, respectively. Substituting these
pproximations into the weak form of (29) and (30) yields the Galerkin form: Find

(
uh+, uh−

)
∈ H 1

(
Ω+

)
×

H 1
(
Ω−

)
such that ∀

(
δuh+, δuh−

)
∈ H 1

(
Ω+

)
× H 1

(
Ω−

)(
ε

(
δuh−

)
, σ−

(
uh−

))
Ω− +

(
δuh−, n+

· σ+
(
uh+

))
Γ

−
(
δuh−, n−

· σ−
(
uh−

))
∂ΩD

−
(
σ−

(
δuh−

)
· n−, uh−

)
∂ΩD

+ β
(
δuh−, uh−

)
∂ΩD

=
(
δuh−, b−

)
Ω− +

(
δuh−, t

)
∂ΩN

−
(
σ−

(
δuh−

)
· n−, g

)
∂ΩD

+β
(
δuh−, g

)
∂ΩD

,

(76)

(
ε

(
δuh+

)
, σ+

(
uh+

))
Ω+ −

(
δuh+, n+

· σ+
(
uh+

))
Γ

=
(
δuh+, b+

)
Ω+ , (77)

Using VC-SNNI and SCNI both with NSNI stabilization for the background matrix and foreground inclusion
domains, respectively, we arrive at our matrix form:[∫

Ω−

ˆ̃
B

−

I

T

C− ˆ̃B
−

J dΩ −

∫
∂ΩD

Ψ−

I
T
η−T C− B̃

−

J dΓ −

∫
∂ΩD

˜B−

I

T
C−η−Ψ−

J dΓ

+β

∫
∂ΩD

Ψ−

I
T
Ψ−

J dΓ
]

d−

J +

∫
Γ

Ψ−

I
T
η+T C+ B̃

+

J dΓ d+

J (78)

=

∫
Ω−

Ψ−

I
T b−dΩ +

∫
∂ΩN

Ψ−

I
T tdΓ −

∫
∂ΩD

˜B−

I

T
C−η− gdΓ + β

∫
∂ΩD

Ψ−

I
T gdΓ ,[∫

Ω+

ˆ̃B+

I

T
C+ ˆ̃B

+

J dΩ −

∫
Γ

Ψ+

I
T
η+T C+ B̃

+

J dΓ
]

d+

J =

∫
Ω+

Ψ+

I
T b+dΩ , (79)

r: [
K̂

−−

I J − K̆
−−

I J − K̆
−−

I J
T

+ Kβ−−

I J KΓ−+

I J

0 K̂
++

I J − KΓ++

I J

] [
d−

J

d+

J

]
=

[
f b−

I + f t−
I − f̆

g−

I + f β−

I

f b+

I

]
, (80)

where:

K̂
−−

I J =

∫
Ω−

ˆ̃
B

−

I

T

C− ˆ̃B
−

J dΩ , (81)

K̆
−−

I J =

∫
∂ΩD

Ψ−

I
T
η−T C− B̃

−

J dΓ , (82)

Kβ−−

I J = β

∫
∂ΩD

Ψ−

I
T
Ψ−

J dΓ , (83)

KΓ−+

I J =

∫
Γ

Ψ−

I
T
η+T C+ B̃

+

J dΓ , (84)

f b−

I =

∫
Ω−

Ψ−

I
T b−dΩ , (85)

f t−
I =

∫
∂ΩN

Ψ−

I
T tdΓ , (86)

f̆
g−

I =

∫
˜B−

I

T
C−η− gdΓ , (87)
∂ΩD
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a

f β−

I = β

∫
∂ΩD

Ψ−

I
T gdΓ , (88)

K̂
++

I J =

∫
Ω+

ˆ̃B+

I

T
C+ ˆ̃B

+

J dΩ , (89)

KΓ++

I J =

∫
Γ

Ψ+

I
T
η+T C+ B̃

+

J dΓ , (90)

f b+

I =

∫
Ω+

Ψ+

I
T b+dΩ . (91)

nd where d−

J and d+

J are the background and foreground generalized nodal displacements, respectively. Again, B̂ I

is a VC-corrected and NSNI stabilized smoothed strain–displacement matrix, B̂ I is a NSNI stabilized smoothed
strain–displacement matrix, B̃ I is a smoothed strain–displacement matrix, Ψ I = ΨI I is the multi-dimensional shape
function matrix, I is the identity matrix, and η is the matrix of outward normal vector components on either the
interface Γ or the outer boundary ∂Ω .

Remark A.1. Note that the smoothed strain–displacement matrices used for domain integration have been reused in
the contour integrals for computational efficiency. From numerical experiments, we have determined that using the
smoothed gradient in the contour integrals works just as well as using the direct gradient of the RK shape function.
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