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Abstract

The terrestrial biosphere plays a critical role in mitigating climate change by 
absorbing anthropogenic CO2 emissions through photosynthesis. The rate of 
photosynthesis is determined jointly by environmental variables and the 
intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation 

rate;  ). A lack of an effective means to derive spatially and temporally 

explicit   has long hampered efforts towards estimating global 
photosynthesis accurately. Recent work suggests that leaf chlorophyll 

content (Chlleaf) is strongly related to  , since Chlleaf and   are both 
correlated with photosynthetic nitrogen content. We used medium resolution
satellite images to derive spatially and temporally explicit Chlleaf, which we 

then used to parameterize   within a terrestrial biosphere model. 
Modelled photosynthesis estimates were evaluated against measured 
photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a 
terrestrial biosphere model improved the spatial and temporal variability of 
photosynthesis estimates, reducing biases at eddy covariance sites by 8% on
average, with the largest improvements occurring for croplands (21% bias 
reduction) and deciduous forests (15% bias reduction). At the global scale, 
the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/
year and improved the correlations with a reconstructed solar‐induced 
fluorescence product and a gridded photosynthesis product upscaled from 
tower measurements. We found positive impacts of Chlleaf on modelled 
photosynthesis for deciduous forests, croplands, grasslands, savannas and 
wetlands, but mixed impacts for shrublands and evergreen broadleaf forests 
and negative impacts for evergreen needleleaf forests and mixed forests. 
Our results highlight the potential of Chlleaf to reduce the uncertainty of 
global photosynthesis but identify challenges for incorporating Chlleaf in 
future terrestrial biosphere models.

KEYWORDS: gross primary productivity, leaf chlorophyll content, 
photosynthetic capacity, remote sensing, solar‐induced fluorescence, 
terrestrial biosphere models



1 INTRODUCTION

The terrestrial biosphere has been a substantial carbon sink over the past 
half century, absorbing around one third of anthropogenic CO2 emissions 
(Keenan & Williams, 2018; Le Quéré et al., 2017). This net carbon sink exists 
due to a slight difference between carbon uptake through photosynthesis 
and carbon loss through ecosystem respiration and natural disturbances (i.e.
wild fires). The size of individual carbon fluxes is generally one to two orders 
of magnitude larger than the net carbon sink (Beer et al., 2010; Bond‐
Lamberty & Thomson, 2010; Sitch et al., 2015), therefore, a small negative 
change in photosynthesis can easily influence the ability of the land sink to 
mitigate anthropogenic CO2 emissions.

Currently, estimates of global photosynthesis (gross primary production; 
GPP) from state‐of‐the‐art terrestrial biosphere models (TBMs) vary in a wide 
range from 112 to 169 PgC/year (Baldocchi, Ryu, & Keenan, 2016; Piao et 
al., 2013), accompanied by substantial discrepancies in estimated trends and
variability of GPP (Anav et al., 2015; Li, Ciais, et al., 2018). Much of the 
uncertainty in GPP is attributed to an inadequate constraint of the maximum 

leaf carboxylation rate (normalized to 25 degrees;  ) in TBMs (Bonan et 

al., 2011; Schaefer et al., 2012; Walker et al., 2017).   is related to the 
concentration of the photosynthetic enzyme ribulose‐1,5‐bisphosphate 
carboxylase/oxygenase (Rubisco) (Farquhar, von Caemmerer, & Berry, 1980)
and is known to change over time and space under the influence of a wide 
range of factors, including leaf ontogeny (Croft et al., 2017), nutrient 
availability (Walker et al., 2014), seasonality of climatic variables (Misson, 
Tu, Boniello, & Goldstein, 2006), extreme weather (Zhou et al., 2014) and 
biodiversity and stand age (Musavi et al., 2017). However, the variability 

of   has yet to be fully considered in most currently used TBMs because 

of the difficulty in obtaining spatially and temporally continuous   for 

large‐scale simulations from direct observations of  , which require 
measurements of leaf photosynthesis under varying CO2 concentrations 
(Stinziano et al., 2017; Wullschleger, 1993; Xu & Baldocchi, 2003). Therefore,

current TBMs are limited to using fixed   values specific to plant 
functional types (PFTs) and empirical scaling functions to partly consider the 

variation in   when estimating global photosynthesis (Ryu et al., 2011; 
Thornton & Zimmermann, 2007).

Previous studies have attempted to derive   from remotely sensed data, 
given that the spectrum of the land surface reflectance is influenced by leaf 
physiology and plant function. Statistical models (i.e. partial least square 
regression, PLSR) have been used to derive nitrogen content from the 
surface reflectance spectra for both leaves (Singh, Serbin, McNeil, Kingdon, &
Townsend, 2015) and canopies (Dechant, Cuntz, Vohland, Schulz, & 



Doktor, 2017). Some studies have adopted similar models to estimate   
of leaves (Barnes et al., 2017; Dechant et al., 2017) and canopies (Serbin et 

al., 2015), considering that nitrogen content is a strong indicator of   
(Kattge, Knorr, Raddatz, & Wirth, 2009; Walker et al., 2014). However, these 
empirical models are mostly only reliable in site‐specific studies (Wang, 
Skidmore, Darvishzadeh, & Wang, 2018) and face some challenges when 
extrapolated to broad spatial scales because of the difficulty in separating 
the spectral signature of nitrogen, a nonpigment constituent, from 
overlapping and covarying signatures of other biochemical constituents of 
vegetation within different landscapes (Kokaly, Asner, Ollinger, Martin, & 
Wessman, 2009). Solar‐induced fluorescence (SIF; 650–800 nm) is another 

remotely sensed indicator that has been used to derive   (Zhang et 
al., 2014; Zhang, Guanter, Joiner, Song, & Guan, 2018), considering the 
widely reported tight correlation between SIF and leaf photosynthesis (Yang 
et al., 2017) or GPP (Frankenberg et al., 2011; Guanter et al., 2014; Li, Xiao, 

& He, 2018). However, the derivation of   from SIF faces the challenge of 
separating the impact of canopy structure on GPP from that of leaf 
physiological traits since the canopy‐scale SIF contains information of both 
(Liu et al., 2018; Yang & van der Tol, 2018).

Chlorophyll is a crucial component of plant photosynthesis machinery, 
through harvesting photons and transporting electrons to support the 
production of biochemical energy for the Calvin‐Benson cycle (Alton, 2017; 
Porcar‐Castell et al., 2014). Leaf chlorophyll content (Chlleaf), defined as the 
total chlorophyll a and chlorophyll b content per one half of the total leaf 
area (all sided), can act as a proxy for the photosynthetic nitrogen pool, 
which is also shared by Rubisco (Evans, 1989b; Hikosaka & 
Terashima, 1996). Recent studies have found linear relationships between 

Chlleaf and   for several tree species (Croft et al., 2017) and agricultural 
crops (Houborg, Cescatti, Migliavacca, & Kustas, 2013; Houborg, McCabe, 

Cescatti, & Gitelson, 2015), and the integration of these Chlleaf‐  
relationships into TBMs has been reported to reduce errors of estimated GPP 
at a cropland site (Houborg et al., 2013) and a forest site (Luo, Croft, et 

al., 2018). Since the Chlleaf‐  relationship is known to change with the 
light environment within a canopy (Evans, 1989a; Poorter, Kwant, 
Hernández, & Medina, 2000), an updated two‐leaf scheme has been 

developed to account for the difference between the Chlleaf‐  relationship 
for sunlit leaves and that for shaded leaves in TBMs (Luo, Croft, et al., 2018). 

It is also argued that Chlleaf serves as a better proxy for   than the 
commonly used area‐based leaf nitrogen content (Narea), because 
Narea includes the nitrogen for both photosynthetic and nonphotosynthetic 
components (i.e. structural development), and the nonphotosynthetic 

component can complicate the apparent Narea‐  relationships (Croft et 



al., 2017). Chlleaf effectively removes the influence of nonphotosynthetic 
nitrogen and only reflects the changes in the photosynthetically active 
nitrogen pool (Croft et al., 2017).

Recent developments in using physically based approaches to estimate 
Chlleaf from satellite data (Croft, Chen, Zhang, & Simic, 2013; Houborg, 
McCabe, Cescatti, Gao, et al., 2015; Zhang, Chen, Miller, & Noland, 2008) 

have made it possible to estimate globally continuous  . These physically
based approaches used established radiative transfer theories to downscale 
the remotely sensed canopy reflectance to leaf reflectance (Kuusk, 2018) 
and then use the leaf reflectance in a leaf optical model (Jacquemoud & 
Ustin, 2001) to estimate Chlleaf. This can remove the effect of background 
reflectance, multiple scattering and the bidirectional reflectance distribution 
function (BRDF) effects of a canopy to distil the spectral signal of Chlleaf only.

Here, we examine the potential of using satellite‐derived Chlleaf to estimate 

temporally and spatially explicit   across a diverse array of sites around 
the globe. To do so, we applied a two‐step physically based approach (Croft 
et al., 2013; Simic, Chen, & Noland, 2011; Zhang et al., 2008) to derive 
Chlleaf at 124 eddy covariance sites (555 site‐years) from the FLUXNET2015 
tier 1 data set (Baldocchi, 2008; Pastorello et al., 2017), and modelled the 

GPP of these sites with and without Chlleaf‐based  . We examined the 
effects of the inclusion of Chlleaf in GPP modelling for each of the nine PFTs 
and further estimated global GPP. We compared the global GPP against a 
reconstructed SIF product (Gentine & Alemohammad, 2018), a remote 
sensing‐based GPP product (Zhao, Heinsch, Nemani, & Running, 2005) and a 
global GPP product upscaled from eddy covariance measurements (Jung et 
al., 2017).

2 MATERIALS AND METHODS

2.1 Flux, meteorological and satellite data

FLUXNET2015 is the latest effort to refine the flux measurements from eddy 
covariance towers of different regional networks and publish the data in a 
standard format (Pastorello et al., 2017). It provides gap‐filled GPP estimates 
and their concurrent meteorological records for over 200 sites. In this study, 
we used the FLUXNET2015 tier 1 data set released in November 2016. We 
selected 124 sites (555 site‐years) (Supporting Information, section 1) based 
on the availability of the MEdium Resolution Imaging Spectrometer (MERIS) 
satellite data that were used for the leaf chlorophyll content (Chlleaf) 
derivation. We chose to use GPP partitioned from Net Ecosystem Exchange 
(NEE) using a night‐time method (NT) with variable u* threshold (VUT) for 
each year. NT uses only night‐time data to parameterize a respiration model 
that is then applied to the whole data set to estimate ecosystem respiration 
and then calculate GPP (Reichstein et al., 2005). Many versions of the GPP 
records were created by using different percentiles of u*. Among those GPP 
versions, we regarded GPP_NT_VUT_REF as the reference GPP, which was 



estimated by using the VUT and the original u* values. The observational 
uncertainty of GPP was provided by the field GPP_NT_VUT_SE in the data set.

Half‐hourly and hourly meteorological records in the FLUXNET2015 data set 
were used to drive a TBM to estimate GPP. Gap‐filled solar radiation 
(SW_IN_F), air temperature (TA_F), vapour pressure deficit (VPD_F), 
precipitation (P_F) and wind speed (WS_F) were selected as the forcing 
variables for the TBM, to allow the TBM to produce continuous hourly results.
For GPP modelling at the global scale, we used MERRA‐2 (Modern‐Era 
Retrospective Analysis for Research and Applications, Version 2) data from 
Goddard Space Flight Center, NASA as the climate forcing to drive the TBM 
(He et al., 2018).

Leaf area index (LAI) series are required to drive the TBM and derive Chlleaf. 
We selected the Copernicus Global Land Service GEOV1 LAI product derived 
from SPOT‐VEGETATION satellite, which has a global coverage of LAI from 
1999 to 2014, at 10 day temporal intervals and a spatial resolution of 1 km 
(Baret et al., 2013). We used the Locally Adjusted Cubic‐spline Capping 
(LACC) method (Chen, Deng, & Chen, 2006) to interpolate and smooth the 
discontinuous LAI into daily LAI series.

Clumping index (Ω, or CI) describes the nonrandomness of the leaf 
distribution in the canopy (Chen, Rich, Gower, Norman, & Plummer, 1997). It 
is a key parameter to drive the canopy radiation transfer module in both the 
TBM and the Chlleaf derivation algorithm. Site‐specific CI values were obtained
from a global foliage clumping index map produced from the MODIS BRDF 
products (He, Chen, Pisek, Schaaf, & Strahler, 2012). The map has a 
resolution of 500 m, which is comparable to the size of regular tower 
footprints.

MEdium Resolution Imaging Spectrometer (MERIS) full resolution surface 
reflectance (SR) product was selected for deriving global Chlleaf maps. MERIS 
SR data were chosen due to the presence of chlorophyll‐sensitive red‐edge 
bands, fine temporal resolution (every 2–3 days), medium spatial resolution 
(300 m) and high radiometric accuracy (Curran & Steele, 2005). The SR 
product was produced as a 7 day temporal synthesis from images collected 
at the original 2–3 day revisit frequency (Rast, Bezy, & Bruzzi, 1999). The 
MERIS surface reflectance series were produced by a series of preprocessing 
steps, including radiometric, geometric and BRDF correction, pixel 
identification and atmospheric correction with aerosol retrieval. There are 13
bands (spectral resolution ~=10 nm) in the visible, red‐edge and near‐
infrared bands sampled in the reflectance data set. MERIS covers the 
complete years from 2003 to 2011. We extracted the surface reflectance in 
all bands at every flux tower site as the input for the Chlleaf derivation 
algorithm. In order to retain enough sampling points to detect the seasonal 
patterns of Chlleaf, only the site‐years that have more than 10 MERIS surface 
reflectance records were considered in this study.



Solar‐induced fluorescence (SIF). We used a recently released reconstructed 
SIF product (Gentine & Alemohammad, 2018) to evaluate the estimates of 
global photosynthesis. The reconstructed SIF (RSIF) is the product of 
photosynthetic active radiation (PAR) estimated by BESS (Ryu et al., 2011) 
and the reconstructed Global Ozone Monitoring‐2 (GOME‐2) SIF normalized 
by solar zenith angle (SZA), while the reconstructed GOME‐2 SIF normalized 
by SZA was produced by a neural network trained on the original GOME‐2 SIF
normalized by SZA (Joiner et al., 2011) with the input of MODIS surface 
reflectance. This RSIF product exhibits much higher seasonal and interannual
correlation than the original SIF when compared with eddy covariance 
estimates of GPP and two reference global GPP products (Gentine & 
Alemohammad, 2018). It has a more continuous coverage over time and 
space and a higher signal‐to‐noise ratio than the original SIF. We downloaded
the monthly RSIF at 0.5° 
from https://gentinelab.eee.columbia.edu/content/datasets. While using RSIF 
as a proxy for GPP in this study, we acknowledged that the strong correlation
between SIF and GPP is largely explained by the dependence of both 
absorbed photosynthetic active radiation (APAR) (Zhang et al., 2016), and a 
recent study even suggested that SIF is more likely a proxy for APAR than for
photosynthesis at a rice paddy (Yang et al., 2018).

FLUXCOM global carbon flux data set. FLUXCOM (Jung et al., 2017) produced 
global GPP estimates by upscaling site‐level GPP from 224 flux tower sites 
using three machine learning algorithms: Random forests (RF), Artificial 
Neural Networks (ANN) and Multivariate Adaptive Regression Splines (MARS).
Each machine learning algorithm was trained on daily fluxes using 11 inputs 
including site‐level meteorological and remote sensing observations. After 
obtaining the trained algorithm, gridded climatic variables (CRU‐NCEP v6) 
and satellite observations from MODIS were used to produce the gridded 
carbon flux estimations. We downloaded the monthly GPP estimation at 0.5° 
from www.bgc-jena.mpg.de/geodb/projects/Data.php.

MODIS GPP. We used MODIS GPP product (MOD17 collection 55) released by 
the Numerical Terradynamic Simulation Group (NTSG) at the University of 
Montana. The collection 55 GPP rectifies the underestimation of GPP incurred
by cloud‐contaminated pixels in the near‐real‐time MODIS GPP product 
(MOD17 collection 5) and was recommend for ecological studies (Zhao et 
al., 2005). MODIS GPP is provided at a monthly step and 0.5° resolution 
(http://files.ntsg.umt.edu/data/NTSG_Products/).

Plant Functional Types (PFTs). Nine major PFTs were studied, including: 
croplands (CRO), deciduous broadleaf forests (DBF), evergreen broadleaf 
forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), 
savannas and woody savannas (SAV), shrublands (SH) and wetlands (WET). 
For eddy covariance towers, their PFTs types were provided in metadata of 
the FLUXNET data set (Supporting Information, section 1). For the global‐
scale study, we used the PFTs classified by the MODIS Land Cover maps 
(Friedl et al., 2010) curated at 0.5°. For each 0.5° grid cell, we used the PFT 



that was most prevalent during the period 2000–2012. FLUXNET metadata 
and MODIS Land Cover maps both adopted the vegetation classification 
protocol of the International Geosphere‐Biosphere Programme (IGBP) which 
does not include a C4 class.

2.2 Derivation of global Chlleaf

Global Chlleaf maps were derived from MERIS surface reflectance, according 
to the procedure outlined in Croft et al. (), using a two‐step process‐based 
algorithm. The first step was to retrieve leaf reflectance spectra from 
satellite‐derived canopy reflectance spectra through the inversion of canopy 
radiative transfer models. The second step was to use the retrieved leaf 
reflectance spectra from step 1 to estimate Chlleaf by inverting a leaf 
radiative transfer model. For the first step, two canopy radiative transfer 
models were selected, according to the structural characteristics of the 
vegetation present. For spatially ‘clumped’ vegetation types (i.e. deciduous 
and coniferous trees, shrubs) we selected the 4‐Scale geometrical‐optical 
model (Chen & Leblanc, 1997). The 4‐Scale model simulates the BRDF based
on the canopy architecture described at four scales: (a) vegetation grouping,
(b) crown geometry, (c) branches and (d) foliage elements. A plant crown is, 
therefore, represented as a complex medium, where mutual scattering 
occurs between shoots or leaves. The 4‐Scale model calculates canopy 
reflectance (ρ) as a linear summation of four components:

(1)

where the sunlit vegetation (ρPT), shaded vegetation (ρZT), sunlit ground (ρPG) 
and shaded ground (ρZG), and FPT, FPG, FPG and FZT represent the probability of 
viewing each component respectively. To derive leaf reflectance (ρL) from 
sunlit crown reflectance (ρPT), the enhancement of both sunlit and shaded 
reflectance due to multiple scattering is accounted for using a multiple 
scattering factor (M factor) (Croft et al., 2013; Simic et al., 2011; Zhang et 
al., 2008). For homogenous canopies, such as grassland and cropland 
species, where the distribution of foliage approaches randomness, we used 
the scattering by arbitrary inclined leaves (SAIL) model (Verhoef, 1984). 
Turbid medium models such as SAIL assume that the canopy is composed of 
homogeneous, horizontal layers of Lambertian scatters randomly distributed 
in space. SAIL is based on the following differential equations: (a) diffuse 
incoming flux, (b) diffuse outgoing flux, (c) direct solar flux and (d) direct 
radiant flux in the direction of the sensor. Both canopy reflectance models 
were inverted using a lookup table (LUT) approach, selected to optimize 
computational resources and reduce problems associated with local minima 
(Croft et al., ).

In the second step, Chlleaf was retrieved using the PROSPECT leaf radiative 
transfer model (Jacquemoud & Baret, 1990) from the modelled leaf 
reflectance that was derived in step 1. In PROSPECT‐5, leaf reflectance and 
transmittance (400–2,500 nm) are defined as a function of six parameters: 
structure parameter (N), chlorophyll (a + b) concentration (Cab), carotenoid 



content (Car), brown pigment (Cb), dry matter (Cm) and equivalent water 
thickness (Cw). This two‐step approach has been successfully validated over 
various sites and biomes (Croft et al., 2013; Croft, Chen, Zhang, et al., 2015; 
Simic et al., 2011; Zhang et al., 2008). Chlleaf derived from the weekly MERIS 
reflectance observations was then interpolated to daily steps using the LACC 
method (Chen et al., 2006). Modelled Chlleaf showed a strong relationship 
with 248 ground measurements collected from 29 globally distributed sites. 
The relationship has R2 = 0.47 (p < 0.001) and RMSE = 10.8 µg/cm2 (Croft et 
al., ) (Supporting Information, section 2).

2.3 Conversion of Chlleaf into 

Several linear equations were used to translate the daily Chlleaf into   

(Table 1). The  ‐Chlleaf relationships used for DBF, ENF, MF, SAV, WET 
were based on a recent work (Croft et al., 2017), who built a single and 
significant linear relationship across four deciduous broadleaf tree species 

through direct measurements of Chlleaf and  . The  ‐
Chlleaf relationships used for CRO were based on the approach developed by 
Houborg, McCabe, Cescatti, and Gitelson (2015), who used a mechanistic 

framework to build an equation to link Chlleaf and   via area‐based leaf 
total nitrogen content (Narea), in which a single equation was developed for 
croplands. This relationship was also applied to another herbaceous type 

(GRA) in this study. We then applied a similar method to build  ‐

Chlleaf equations for EBF and SH, using a comprehensive  ‐Narea database 
(Kattge et al., 2009) and a constant ratio between Chlleaf and 
Narea (Evans, 1989b) (Table 1).

2.4 Modelling GPP using Chlleaf

The TBM used in this study is the Boreal Ecosystem Productivity Simulator 
(BEPS), which is a two‐leaf enzyme kinetic model that has been intensively 
used to simulate carbon and water fluxes across different biomes (Gonsamo 
et al., 2013; Wang et al., 2004). It has participated in several cross‐model 
validation studies and been proved to be one of the better performing 
models for GPP simulations (Grant et al., 2006; Schaefer et al., 2012). 



Parameterization of BEPS was demonstrated in detail in previous studies 
(Chen, Liu, Cihlar, & Goulden, 1999; He et al., 2017; Luo, Chen, et al., 2018). 
A recent study has upgraded BEPS to integrate Chlleaf (a.k.a. BEPS‐Chlleaf) in 
modelling fluxes in a deciduous broadleaf forest (Luo, Croft, et al., 2018).

Hourly meteorological variables (i.e. solar radiation, temperature, VPD, 
precipitation and wind speed) are the inputs for BEPS. The solar radiation 
and leaf temperature are separately calculated for sunlit and shaded leaves 
through a two‐leaf scheme using LAI and CI (Chen et al., 1999). Leaf‐level 
photosynthesis is then obtained from the embedded Farquhar biochemical 
model with the input of leaf traits.

Three cases were studied depending on the types of   used in BEPS: (a) 

BEPS‐TRY used constant   provided by the TRY database (Kattge et 

al., 2009); (b) BEPS‐Chlleaf used daily Chlleaf‐based  ; (c) BEPS‐Chlavg used 

the average of daily Chlleaf‐based  .

After using the biochemical model to calculate leaf photosynthesis, stomatal 
conductance gs is in turn derived from the Ball–Woodrow–Berry equation and 
used in the Penman–Monteith model to get leaf transpiration. In feedback, 
the changes in leaf energy budget modulate the leaf temperature and adjust 
the photosynthesis rate (Supporting Information, section 3).

After the leaf‐level calculation, canopy‐scale photosynthesis and 
transpiration are acquired by multiplying the leaf‐level fluxes by the 
corresponding sunlit and shaded LAI through the two‐leaf scheme. Soil 
texture is prescribed for each site using a global map 
(https://www.soilgrids.org/) to quantify the hydrological and thermal 
properties of soil and to simulate soil water content. We apply a linear soil 
stress factor derived from multilayer soil water content to simulate the 
stomatal response to possible droughts (Supporting Information, section 3).

Statistical analysis. We used squared Pearson correlation coefficient (r2), 
accumulated absolute bias (AAB) and root mean square error (RMSE) to 
evaluate the performance of models.

AAB was used to quantify the sum of daily GPP biases in a year, avoiding the 
potential offset of positive and negative daily biases:

(2)

where n is the size of data population, Ai is the estimate and Bi is the 
observation.

3 RESULTS

Our satellite‐derived estimates of Chlleaf show different seasonal patterns for 
different PFTs (Figure 1). Chlleaf of DBF, ENF, SAV and WET mostly varied in 



range from approximately 5 to 70 μg/cm2 across a year with a single peak in 
the growing season; Chlleaf of CRO, MF and SH varied in a similar range 
showing two or more peaks; Chlleaf of EBF and GRA demonstrated less 
seasonal variability with the Chlleaf of EBF centred around 67 μg/cm2 and the 
Chlleaf of GRA centred around 29 μg/cm2. There were considerable intersite 
variations in Chlleaf, as we found the Chlleaf difference between the top quartile
sites and the bottom quartile sites for each PFT ranged from 13 μg/cm2 to 
40 μg/cm2 (Figure 1). We also noticed that there were temporal 
discrepancies shown between the development of LAI and that of Chlleaf for 
some PFTs (Figure 1): for DBF and CRO, the peak of Chlleaf appeared 4–
5 weeks later than the peak of LAI, and LAI tended to change more 
dramatically than Chlleaf during a short time frame (i.e. during budburst and 
leaf fall); for GRA, Chlleaf was relatively stable in contrast to the clear seasonal
pattern of LAI; for ENF and SH, Chlleaf showed multiple peaks in a year while 
LAI only peaked once.

Figure 1. Seasonal dynamics of Chlleaf (blue), LAI (red) and Chlleaf‐based   (solid black) for nine 
plant functional types (a–i). The plant functional types are croplands (CRO), deciduous broadleaf 
forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), mixed forests 
(MF), grasslands (GRA), savannas (SAV), shrublands (SH) and wetlands (WET). The dash lines (black) 

indicate the constant   based on the TRY database. n indicates the number of site‐years for each 
plant functional type (PFT). The shadings indicate the spatial variations among site‐years. In each 
panel, the solid line is the median of a variable for the group of site‐years in a PFT, upper and lower 
boundaries refer to 75% and 25% percentiles of the variable respectively



We calculated   from Chlleaf using the PFT‐specific equations that we 

compiled in Table 1. Chlleaf‐based   followed the pattern of Chlleaf across the

year (Figure 1). Chlleaf‐based   varied seasonally and spatially in a range 
between 10 and 80 μmol m−2s−1 for most PFTs except for CRO where the 

Chlleaf‐based   varied between 40 and 175 μmol m−2s−1. In comparison 

with   from the TRY database, we found that the TRY‐based   were 

around the annual mean of Chlleaf‐based   for CRO, DBF, SH and WET, and 

the TRY‐based   generally were larger than their Chlleaf‐based   for 
ENF, MF, GRA and SAV and vice versa for EBF.

We further used an established two‐leaf enzyme kinetic TBM—the Boreal 
Ecosystem Productivity Simulator (BEPS) to estimate GPP using either Chlleaf‐

based   (BEPS‐Chlleaf) or TRY‐based   (BEPS‐TRY) (see Material and 
Methods). While BEPS‐TRY only used LAI to describe the variability of 
vegetation status, BEPS‐Chlleaf considered both the variabilities of LAI and 
Chlleaf in the estimation of GPP. The bias of estimated GPP from BEPS‐
Chlleaf was much smaller, showing seasonal biases closer to zero in all weeks 
for all PFTs except for EBF and ENF (Figure 2). In spring and autumn, 
Chlleaf reduced the overestimation of GPP for CRO, DBF, GRA and WET and the
underestimation for SAV; in summer, Chlleaf reduced the overestimation of 
GPP for CRO, GRA and SH and the underestimation for DBF, MF and WET.



Figure 2. Temporal patterns of the bias of gross primary production estimated by BEPS‐Chlleaf (blue) 
and BEPS‐TRY (red) for nine plant functional types (a–i). The plant functional types are croplands 
(CRO), deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf 
forests (ENF), mixed forests (MF), grasslands (GRA), savannas (SAV), shrublands (SH) and wetlands 
(WET). n indicates the number of sites for each plant functional type. The shadings indicate the spatial 
variations among site‐years. In each panel, the solid line is the median of a variable for the group of 
site‐years in a PFT, upper and lower boundaries refer to 75% and 25% percentiles of the variable 
respectively

The results above showed that the inclusion of Chlleaf can reduce the spatial 
and temporal biases in GPP in some cases (Figure 2). To separate the 
impacts of spatial and temporal variations of Chlleaf on estimated GPP, we 
added the GPP estimates from BEPS‐Chlavg to specifically evaluate the impact
of the spatial variation of Chlleaf on GPP estimates, and then evaluated the 
impact of the temporal variation of Chlleaf based on the difference between 
BEPS‐Chlleaf and BEPS‐Chlavg (Figure 3).



Figure 3. Comparison of daily gross primary production (GPP) estimated by BEPS‐Chlleaf, BEPS‐Chlavg or 
BEPS‐TRY and measured daily GPP for 555 site‐years categorized by PFTs. (a) r2 between the estimated
and the measured GPP; (b) accumulated absolute bias (AAB) of the estimated GPP. “+” indicates that 
BEPS‐Chlleaf or BEPS‐Chlavg significantly improved GPP estimates compared to those of BEPS‐TRY 
(student's t test, p < 0.05) and “x” suggests BEPS‐Chlleaf or BEPS‐Chlavg results were significantly 
inferior to those of BEPS‐TRY (student's t test, p < 0.05). Uncertainty of measured GPP (see Material 
and Methods) was multiplied by 5 to improve the visibility of shadings in the figure. Acronyms for PFTs 
are CRO (croplands), DBF (deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF 
(evergreen needleleaf forests), MF (mixed forests), GRA (grasslands), SAV (savannas), SH (shrublands) 
and WET (wetlands)

We found that the temporal correlation (r2) between daily GPP estimates and 
measurements was improved from 0.67 ± 0.23 to 0.70 ± 0.22 after the 
inclusion of Chlleaf (Figure 3a). All PFTs except SH showed significant changes 
in r2 (student's t test, p < 0.05) after the inclusion of Chlleaf. The r2 for CRO, 
DBF and WET were improved the most from 0.55 ± 0.19, 0.80 ± 0.17 and 
0.79 ± 0.17 to 0.67 ± 0.17, 0.87 ± 0.12 and 0.83 ± 0.18 respectively. In 
contrast, the r2 for EBF, ENF and MF decreased slightly. The inclusion of 
Chlavg fell short of improving the temporal correlation for most PFTs, though 
some PFTs like CRO, GRA, SAV and WET demonstrated significant 
(student's t test, p < 0.05) but slight increases in r2.

The accumulated absolute bias (AAB) of GPP decreased by 4% from 
551 ± 303 to 527 ± 286 gC m−2 yr−1 after adding Chlavg to BEPS, and 
decreased by 8% to 507 ± 261 gC m−2 yr−1 after adding Chlleaf (Figure 3b). By 
using BEPS‐Chlleaf, CRO, DBF, GRA, SAV and SH demonstrated 21%, 15%, 
13%, 6% and 19% of AAB reduction respectively (student's t test, p < 0.05). 
But we also noticed a slight 9% increase in AAB for ENF. Meanwhile, BEPS‐
Chlavg demonstrated similar reductions in the AAB of GPP, only to a smaller 
degree than those using Chlleaf: CRO, GRA, SAV and SH showed a significant 



(student's t test, p < 0.05) decrease in AAB of 8%, 9%, 3% and 13% 
respectively. Considering the average AAB reductions across site‐years were 
4% for BEPS‐Chlavg and 8% for BEPS‐Chlleaf, we found that the spatial variation
and temporal variation of Chlleaf contributed equally to the improvement of 
GPP estimates.

The reductions of daily GPP biases accumulated and led to the improvement 
of GPP estimates at the annual scale. We found that the spatial correlation 
(r2) between estimated and measured annual GPP increased by 5% and 
RMSE reduced by 21% after the inclusion of Chlavg in BEPS (Figure 4a,b). 
BEPS‐Chlleaf further improved the estimates of GPP on top of BEPS‐Chlavg, 
increasing r2 by 14% and reducing RMSE by 28% compared to BEPS‐TRY 
(Figure 4a,c). Therefore, both the spatial and temporal variations in 
Chlleaf improved GPP estimates. The RMSE reduction for annual GPP estimates
(28%) appeared more substantial than the reduction of AAB for daily GPP 
estimates (8%), because the calculation of the former favoured those sites 
with larger changes in GPP estimates (Figure 4) while the later evaluated the 
percentage changes of all site‐years equally (Figure 3).

Figure 4. Correlation between measured and estimated annual gross primary production (GPP) of 124 
eddy covariance sites. GPP are estimated from (a) BEPS‐TRY, (b) BEPS‐Chlavg and (c) BEPS‐Chlleaf

The global GPP simulated by BEPS‐Chlleaf and BEPS‐TRY was 121 PgC and 130
PgC in 2011 respectively (Figure 5, Figure S3). The inclusion of Chlleaf in BEPS 
brought about a 7% decrease of total global GPP, resulting from smaller GPP 
in the Northern Hemisphere but larger GPP in tropics and the Southern 
Hemisphere (Figure 5b). Around 40% of the vegetated surface GPP estimates
changed more than 200 g m−2 per year after the inclusion of Chlleaf, and over 
10% of the vegetated surface showed a GPP change larger than 
500 g m−2 per year.



Figure 5. Global gross primary production (GPP) estimated by BEPS‐Chlleaf and its comparison with 
other products. (a) spatial distribution of global GPP estimated by BEPS‐Chl leaf; (b) difference between 
GPP estimated by BEPS‐Chlleaf and BEPS‐TRY; (c) PFT‐specific GPP estimates from BEPS‐Chlleaf, BEPS‐
TRY, MODIS and FLUXCOM. Acronyms for PFTs are CRO (croplands), DBF (deciduous broadleaf forests),
EBF (evergreen broadleaf forests), ENF (evergreen needleleaf forests), MF (mixed forests), GRA 
(grasslands), SAV (savannas), SH (shrublands) and WET (wetlands)

Compared to BEPS‐TRY, BEPS‐Chlleaf reduced the annual GPP estimates by 
6.1 Pg for CRO, 3.4 Pg for EBF and around 1 Pg for each of DBF, ENF and MF. 
Chlleaf increased the annual GPP estimates of SAV, GRA and SH by 4.7 Pg, 
2.1 Pg and 0.9 Pg respectively (Figure 4c). Compared to other widely used 
global GPP data sets in 2011, the global GPP estimated by BEPS‐Chlleaf was 
larger than MODIS GPP product (113 PgC) and close to the ensemble mean of
GPP upscaled from eddy covariance measurements (FLUXCOM; 
122 ± 8 PgC).

BEPS‐Chlleaf outperformed BEPS‐TRY in simulating the variability of global 
GPP, based on the correlations between estimated annual GPP and RSIF or 
FLUXCOM GPP (Figure 6). The r2 between RSIF and estimated GPP increased 
0.1 after using Chlleaf in BEPS, while the r2 between FLUXCOM GPP and 
estimated GPP increased 0.02. The RMSE between FLUXCOM GPP and 
estimated GPP also decreased by 5% after the inclusion of Chlleaf. There was 
a nonlinearity between the GPP estimated by BEPS‐TRY and RSIF and 
FLUXCOM GPP, as BEPS‐TRY tended to overestimate GPP at regions where 
FLUXCOM GPP was larger than 300 g m−2 yr−1 (Figure 6). But this 
overestimation of GPP by BEPS‐TRY was corrected by using BEPS‐
Chlleaf (Figure 6).



Figure 6. Validation of the spatial variability of annual gross primary production (GPP) estimated by 
BEPS‐TRY and BEPS‐Chlleaf against a reconstructed SIF product (RSIF) and the FLUXCOM gridded GPP 
product. (a) BEPS‐TRY GPP versus RSIF; (b) BEPS‐Chlleaf GPP versus RSIF; (c) BEPS‐TRY GPP versus 
FLUXCOM ensemble mean GPP; and (d) BEPS‐Chlleaf GPP versus FLUXCOM ensemble mean GPP. Density
of points is indicated by grey scale with darker colour meaning higher density. Dash lines are the linear
regression line and solid lines are the 1:1 reference line

Evaluation of estimated monthly GPP with RSIF and FLUXCOM GPP showed 
that Chlleaf effectively improved GPP estimates in most months and for some 
PFTs (Figure 7). Based on the correlation between estimated GPP and RSIF 
(Figure 7a), CRO, DBF, GRA, SAV and WET were the five PFTs that 
improved r2 in most months, with the average r2 increased 0.06. EBF, ENF, 
MF and SH showed decline in r2 in most months. Meanwhile, the validation 
against FLUXCOM GPP (Figure 7b) confirmed the positive impacts of Chlleaf in 
estimating GPP for CRO, DBF, GRA, SAV and WET. SH only showed 
increased r2 at the beginning of the year but had decreased r2 in most 
months. The comparison between estimated GPP and FLUXCOM GPP 
reaffirmed the negligible effect of Chlleaf on EBF, but suggested considerable 
increases in r2 for ENF and MF (Figure 7b), which was not found in the 
validation against RSIF (Figure 7a) and eddy covariance measurements 
(Figure 3).



Figure 7. Evaluation of estimated monthly gross primary production (GPP) for each PFT using RSIF and 
FLUXCOM. (a) the increase or decrease of the correlation coefficient (r2) between estimated GPP and 
RSIF after the inclusion of Chlleaf; (b) the increase or decrease of the correlation coefficient (r2) between
estimated GPP and FLUXCOM after the inclusion of Chlleaf. Acronyms for PFTs are CRO (croplands), DBF 
(deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF (evergreen needleleaf forests), 
MF (mixed forests), GRA (grasslands), SAV (savannas), SH (shrublands) and WET (wetlands)

4 DISCUSSION

This study presents the first use of satellite‐derived, temporal‐spatially 
continuous plant physiological information (i.e. Chlleaf) to estimate GPP for 
globally distributed ecosystems. The inclusion of temporally and spatially 
explicit Chlleaf in a TBM reduced the bias of estimated daily GPP by 8% and 
improved the temporal correlation between estimates and observations by 
5% on average for 124 eddy covariance sites (555 site‐years). These 
improvements accumulated to a 28% reduction in RMSE of annual GPP 
estimates, and a 14% increase in the spatial correlation between annual 
estimates and observations. PFTs with strong seasonal cycles (i.e. DBF, CRO, 
GRA, SAV and WET) demonstrated significant improvements, with up to 21% 
reduction in bias and up to 22% increase in temporal r2. We also noticed 
mixed impacts of Chlleaf on GPP estimates for SH and EBF and mostly 
negative impacts for ENF and MF. Based on the reduction of bias of daily GPP
estimates, we found that the temporal and spatial variations of 
Chlleaf contributed equally to the improvements of GPP estimates. Global 
estimation of GPP was 9 PgC lower after the inclusion of Chlleaf in 2011 and 
better captured the variability of RSIF and FLUXCOM GPP.

4.1 Disparity in the temporal profiles of Chlleaf and LAI

Our results demonstrated a wide‐spread disparity in the temporal profiles of 
Chlleaf and LAI for all PFTs (Figure 1), which has been noted by several in situ 
studies on some tree species (Croft et al., 2017; Croft, Chen, & 
Zhang, 2014a; Kodani, Awaya, Tanaka, & Matsumura, 2002). This disparity 
highlights an asynchrony between the physiological and the structural 
development of plants. The reason for this disparity remains unidentified. It 
is possible that Chlleaf and LAI develop different temporal profiles to optimally 
use limited resources (i.e. light), in a way similar to some leaf traits (i.e. 



nitrogen,  ) which develop a vertical profile mimicking the gradient of 
solar radiation in the canopy to maximize the total carbon uptake of a whole 
stand (Anten, Schieving, & Werger, 1995; Field, 1983; Hirose & 
Werger, 1987). In addition, we noticed that the degree of the asynchrony 
between Chlleaf and LAI varies among PFTs (Figure 1). For SH and ENF, the 
disparities between the temporal profiles of Chlleaf and LAI were relatively 
small, which may justify some modelling practices to use LAI to emulate the 

seasonality of   of ENF (Luo, Chen, et al., 2018; Ryu et al., 2011). 
However, for most PFTs, the temporal profiles of physiological status (i.e. 
Chlleaf) cannot be replaced by those of LAI in TBMs.

4.2 Comparison with previous studies using Chlleaf to estimate GPP

The positive impact of Chlleaf on GPP estimates found in our study is 
comparable to the results of previous site‐level studies. Houborg et al. 
(2013) reported a 12% increase in temporal correlation (r2) and a 24% 
decrease in RMSE of estimated growing season GPP after using Chlleaf in the 
Community Land Model (Bonan et al., 2011) at a CRO site. Luo, Croft, et al. 
(2018) incorporated Chlleaf in BEPS at a DBF site and reported a 10% increase
in temporal r2 and a 32% decrease in RMSE. In this study, we found the 
average improvement in the temporal r2 for 87 site‐years of CRO and 65 site‐
years of DBF was 22% and 9%, respectively, and their reductions in AAB, an 
indicator similar to RMSE, were 21% and 15% respectively (Figure 3). At the 
global scale, Alton (2017) used MERIS terrestrial chlorophyll index (MTCI) as 

a proxy for chlorophyll content to retrieve the   of 296 FLUXNET sites and

found the inclusion of spatially and temporally varying MTCI‐based   in 
JULES‐SF led to a 15% decrease in annual GPP estimates on site‐average. 
Meanwhile, our study found a 7% decrease of annual GPP across 124 sites 
and a 7% decrease of global GPP. Our study took a somewhat different 
approach than the Alton (2017) study to incorporate Chlleaf into a TBM. The 

Alton (2017) study assumes a constant conversion rate from Chlleaf to   
for all leaves and PFTs, but several field‐based studies have suggested that 

the Chlleaf‐  relationship is likely to change with PFTs (Croft et al., 2017; 
Houborg, McCabe, Cescatti, & Gitelson, 2015) and light environment 
(Evans, 1989a). Our result also suggests that MTCI, though widely used for 
carbon modelling (He et al., 2017; Yao Zhang, Xiao, et al., 2018), might not 
be able to capture the variability of global measured Chlleaf (r2 = 0.27) as 
good as our satellite‐derived Chlleaf product (r2 = 0.47) (Supplementary 
Information, section 2). In addition, even though a site‐level study has 

established a Chlleaf‐  relationship for C4 species and reported improved 
photosynthesis estimates (Houborg et al., 2013), a lack of knowledge about 
the global distribution of C4 species in our PFT map prohibited us from 
applying this relationship for global GPP estimation.

4.3 Influence of light environment on Chlleaf‐  relationship



The ratio between Chlleaf and   can differ between sunlit and shaded 

leaves, with sunlit leaves showing a higher   to Chlleaf ratio than that of 
shaded leaves (Evans, 1989a). It is possible that such changes also reflect 
the optimal distribution of the nitrogen within the canopy to maximize the 
whole canopy photosynthesis (Anten et al.., 1995). This difference in 

the   to Chlleaf ratio between sunlit and shaded leaves is consistent with 
previous studies reporting Chlleaf varies little under different solar irradiance 
(Lambers, Chapin, & Pons, 2008; Walters, 2005) while leaf nitrogen content 

and   both decrease proportionally from the top to the bottom of the 
canopy following radiation gradient (Hirose & Werger, 1987; Warren & 
Adams, 2001). In this study, we incorporate these observational patterns in 
an updated two‐leaf upscaling scheme for BEPS (Luo, Croft, et al., 2018) in 
which we assume the sunlit and shaded leaves have Chlleaf similar to the 

Chlleaf of leaves on top of the canopy, and   of sunlit and shaded leave 
can be calculated based on a presumed nitrogen gradient (De Pury & 

Farquhar, 1997) and the Chlleaf‐based   of top leaves. The results from 
that site‐level study have suggested that the physiological difference 
between sunlit and shaded leaves was effectively reproduced by this 
updated two‐leaf scheme (Luo, Croft, et al., 2018). Although our approach 
assumes that leaf nitrogen content is not a robust proxy for the temporal 

profile of   (Croft et al., 2017) because of the dynamic allocation of 
nitrogen to photosynthetic and nonphotosynthetic components, leaf nitrogen

content remains a good proxy for the vertical profile of   (Wilson, 
Baldocchi, & Hanson, 2000).

4.4 Influence of leaf age on Chlleaf‐  relationship

Our results demonstrated mixed impacts of Chlleaf on the estimation of GPP 
for EBF and negative impacts of Chlleaf for ENF and MF. These three PFTs all 
have evergreen species that contain leaves or needles of several age groups.
Katahata, Naramoto, Kakubari, and Mukai (2007) reported that needle leaves
belonging to ages of 1, 2 and 3 years showed different seasonal trends in 

Chlleaf and  . Young needles had an increasing trend in Chlleaf while old 
needles showed the opposite. Warren and Adams (2001) and Ethier et al. 
(2006) both found reduced photosynthetic capacity for old needles while 
their leaf nitrogen content is almost the same as young needles. As for EBF, 
a study in Amazonia demonstrated that leaf age composition explains 27% of
the variation in photosynthesis, and that young leaves have higher light use 
efficiency than the old leaves (Wu et al., 2016). These studies indicate that 

leaf age is potentially another factor driving the variation in Chlleaf and 
within a canopy; however, the role of leaf age was not at all accounted for in 

our algorithms to derive Chlleaf or Chlleaf‐  relationships. A recent study has
managed to estimate leaf ages using the PLSR model driven by leaf 



reflectance for some Amazonian trees (Chavana‐Bryant et al., 2017), 
implying the possibility of deriving leaf age and its corresponding Chlleaf from 
satellite data in the future. We suggest that a proper consideration of leaf 

demography and its impact on Chlleaf and   for evergreen species is 
necessary to simulate GPP with Chlleaf for EBF, ENF and MF.

4.5 Influence of Chlleaf on fraction of absorbed photosynthetic active radiation
(fAPAR)

Many leaf‐level studies have found that absorptance of photosynthetic active
radiation (PAR; 400‐700 nm) of leaves increases with the increase of 
Chlleaf (Evans & Poorter, 2001; Poorter et al., 2000), suggesting that Chlleaf is a
major factor impacting fAPAR of leaves. However, our study did not explicitly 
consider the impact of Chlleaf on fAPAR, due to the fact that at the canopy 
scale Chlleaf can only impact fAPAR to a small degree. The limited impact of 
Chlleaf on canopy fAPAR was suggested by observational and model results 
(Daughtry, 2000; Migliavacca et al., 2017). Layers of leaves in a canopy 
leverage reflected and scattered solar radiation within the canopy, and 
subsequently render the canopy fAPAR much higher and less variable than 
its leaf counterpart (Croft, Chen, & Zhang, 2014b). Therefore, it is the canopy
structure (i.e. LAI, clumping, leaf angle distribution) that dictates canopy 
fAPAR (Asner, 1998; Asner & Wessman, 1997) rather than Chlleaf. A sensitivity
test of our radiative transfer model shows a sevenfold increase in Chlleaf only 
led to around 1%–5% of increase in canopy fAPAR (Croft et al., 2014b), which

is negligible compared to the impact of Chlleaf on   (i.e. sevenfold increase

in Chlleaf means 700% increase in  ). The changes in Chlleaf may impact the
amount of APAR distributed between leaves but the total APAR for the 
canopy is likely not sensitive to the changes in Chlleaf. It explains why most 
studies incorporating Chlleaf in TBMs only consider the impact of 

Chlleaf on   (Alton, 2017; Houborg et al., 2013; Luo, Croft, et al., 2018) and
light use efficiency (Croft, Chen, Froelich, Chen, & Staebler, 2015; Croft, 
Chen, Zhang, et al., 2015; Houborg, Anderson, Daughtry, Kustas, & 
Rodell, 2011) and neglect the impact of Chlleaf on APAR. However, we 
acknowledge that the impact of Chlleaf on canopy fAPAR, though usually small,
needs to be addressed in some special cases (i.e. planophile canopies) where
leaf optical properties likely impact canopy fAPAR considerably.

Chlorophyll is vital to all plants on the Earth's land surface by harvesting light
and transporting electrons to support the production of biochemical energy 
necessary to drive photosynthesis and maintaining ecosystem services. 
Chlleaf is an essential vegetation trait that impacts the cycling of carbon, 
water and energy between the terrestrial biosphere and the atmosphere. We
found that the inclusion of Chlleaf can effectively constrain the uncertainty of 
modelled photosynthesis for various PFTs, particularly those with strong 
seasonal cycles, and provide a more realistic estimation of global GPP. We 



suggest that Chlleaf is a valuable leaf physiological trait to add in future TBMs 
to better simulate the terrestrial carbon cycle.
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