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Abstract

Cells, as complex systems, consist of diverse interacting biomolecules arranged in dynamic 

hierarchical modules. Recent advances in deep learning methods now allow one to encode this rich 

existing knowledge in the architecture of the learning procedure, thus providing the models with 

the knowledge that is absent in the training data. By encoding biological networks in the 

architecture, one can develop flexible deep models that propagate information through the 

molecular networks to successfully classify cell states. Moreover, this flexibility in the architecture 

can be harnessed to model the hierarchical structure of real biological systems, efficiently 

converting gene-level data to pathway-level information with an ultimate impact on cell 

phenotype. Furthermore, such models could require fewer training samples, are more 

generalizable across diverse biological contexts, and can make predictions that are more consistent 

with the current understanding on the inner-working of biological systems.

Introduction

Biological networks are widely used to combine and contextualize knowledge across diverse 

domains from genetics to transcriptomics, proteomics and biochemistry and from small-

scale to large-scale experiments (Figure 1a) [1–4]. These enable one to map the dynamics of 

molecular subsystems over time and under various conditions to identify their contribution 

to the overall behavior of a cell [4–7]. In the era of big data, where massive high-throughput 

molecular data are accumulating rapidly, machine learning has emerged as a powerful 

toolbox for extracting systems-level information from high-dimensional data and their 

integration with prior knowledge.
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Recent advances in deep neural networks (DNNs) are revolutionizing the field[8–14]. Deep 

learning generalizes other machine learning approaches by enabling the design of flexible 

architectures that 1) streamline feature representation and classification and 2) incorporate 

domain knowledge into their learning procedure. DNNs are constructed by stacking multiple 

layers of artificial neurons (Figure 1b) [15–17]. Each layer receives and processes data from 

the previous layers and sends it to the next layer, while the last layer is tasked with the data 

classification. In this design, the intermediate hidden layers learn how to represent the data 

to make different class labels separable for the classification layer[15]. By adjusting the 

number of intermediate layers, one changes a DNN model’s flexibility and its ability to 

capture complex structures, while avoiding strong assumptions about the data[15,18]. The 

other power of DNNs arises from their flexibility in the connection patterns of artificial 

neurons between layers. This allows one to efficiently encode domain knowledge 

(potentially absent in input data) into the architecture of the learning machinery. For 

example, convolutional architectures are designed to capture patterns that re-occur with 

modest variations in different locations such as edges and lines in images[15,19] or cis-

regulatory motifs in DNA sequences[20] (for a comprehensive review on the technical 

aspects of deep learning architectures see [15,16]). As we summarize recent advances below, 

the towering flexibility of DNN architectures allows one to encode knowledge of biological 

systems into DNN models, thus enabling new applications of machine learning approaches 

in networks and systems biology.

Deep learning and identification of active subsystems

Genes involved in the same biological process or phenotype often form connected 

subnetworks[5,21]. By exploiting this property, network propagation algorithms flow 

information across genes through molecular networks (i.e., genes connected by interactions 

such as protein-protein interactions, genetic interactions, gene co-expression, etc.) to identify 

active subsystems and discover their other gene members. These approaches are useful for 

functional annotation of genes, drug target identification, and inference of genes associated 

with complex diseases[5,21,22]. A variety of propagation algorithms have been developed 

by making different assumptions about the flow of information on the molecular networks. 

However, a more flexible propagation framework would allow the adoption of information 

flow dynamics based on the properties of the underlying network (e.g., network size, 

interaction density or interaction type) and the connection pattern of molecules involved in 

the subsystem of interest (e.g., genes involved in a detailed biological process versus those 

participating in cancer progression).

Recent advances enable network propagation in the context of neural networks[23–27]. For 

example, in a simple yet effective DNN architecture, each gene is connected to itself and its 

interacting partners from the previous layer (Figure 1c) [23]. Therefore, at each propagation 

layer, genes receive information from their neighbors while retaining some of their own. 

This parallels the traditional network propagation techniques where signals shared among 

interacting neighbors are amplified, while suppressing noise and false positives in the input 

data. However, the DNN model has more flexibility in three ways. First, although the 

structure of propagation layers is dictated by the existing network level information, the 

coefficients (i.e., parameters) controlling the network propagation is automatically learned 
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from input training data and the topology of the encoding network. Second, by varying the 

number of stacked propagation layers, one can obtain network propagation machineries of 

different flexibility. The number of propagation layers is effectively a model hyperparameter 

and can be optimized by well-established techniques such as cross validation. Third, one can 

easily instruct the learning algorithm to assign different propagation coefficients based on 

the amount of available training data. More specifically, the model can consider different 

propagation coefficients for different genes or the propagation coefficients can be tied to one 

another based on the interaction type. For example, all gene regulatory interactions could 

share the same coefficient, while different than those of physical binding interactions. 

GraphSAGE presents an alternative framework wherein a DNN model is trained to predict a 

node role based on the functions of its first and second degree neighbors in the network[27]. 

Under this framework, one can train a GraphSAGE DNN model on well annotated networks 

and apply it on other networks, a task that is not feasible by traditional network propagation 

algorithms. Authors indeed explored this by training a GraphSAGE DNN model on some 

tissue specific gene networks and showed that the trained DNN model can predict the 

functions of genes in networks from other tissues[27].

The other advantage of formulating the network propagation in the context of neural 

networks is that one could readily add other types of artificial layers on top of the 

propagation layers to streamline the processes of network propagation with other tasks such 

as cluster identification or disease classification. Lin et al. explored the advantages of such 

design by linking propagation layers with the classification layers to identify the cell type 

and cell state, based on the single cell expression data[28]. In this design, the propagation 

layers amplify the network-level dysregulations by aggregating the relative expression data 

of each gene with its network neighbors, empowering the classification layers to make 

accurate predictions based on expression data from one experiment.

Deep learning and modeling biological systems

DNNs are a natural choice for representing the hierarchical structure of biological systems 

where a genotype ultimately influences biological processes and phenotypes [14,29,30]. In 

DNNs, each neuron receives and combines information from the connected neurons in the 

preceding layer in a nonlinear way. As data pass through the layers, it can undergo a gradual 

abstraction (Figure 1d). To explore this concept, Ma et al. constructed a DNN architecture, 

called DCell, that encodes the multi-scale structure of a Gene Ontology tree, where several 

genes cooperate to perform a detailed biological process. They then combine with one 

another in the following layers to deliver bigger processes with an ultimate impact on the 

phenotype[14]. In this design, in contrast to propagation layers that amplify the network 

level dysregulations, DCell reduces the dimensionality of input data from genotype to Gene 

Ontology terms to phenotype. Indeed, DCell successfully predicted the effect of gene 

mutations on cell proliferation in yeast[14].

One limitation of DNN models with dense intermediate layers is that their inner working is a 

black box; i.e., while the model performs well in predicting the output given the input, the 

meaning and function of neurons in the intermediate layers are not clear. A major benefit of 

biologically inspired architectures such as DCell is that neurons in the intermediate layers 
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are more interpretable since they are engineered to represent specific Gene Ontology terms. 

Therefore, the trained model potentially could provide mechanistic insights on the inner 

working of the biological systems. However, care should be taken in interpreting the results. 

Although the architecture of DNNs can be engineered to be similar to biological systems, 

there is no guarantee that the inner-working of the two will be consistent. It is possible that 

physicochemical laws governing biological systems do not follow the same rules as the 

mathematically derived systems in the DNNs. This is especially true when DNNs are trained 

based on the input (e.g., gene mutations) and output (e.g., cell phenotype) of the biological 

system and the model is blind to “intermediate-phenotypes” of the biological system 

including mRNA and protein expression or cell metabolism. Consequently, follow-up 

experiments are needed to establish biological relevance of mechanistic interpretations from 

such models. A recent study by Wang et al. took initial steps in addressing this issue by 

integrating data on intermediate-phenotypes in the learning procedure[29]. Briefly, Wang et 

al. constructed a global gene regulatory network by generating data on chromatin structure 

and gene expression levels and then combined it with nucleotide binding preferences of gene 

regulators from databases[29]. Authors next encoded the hierarchical structure of the 

constructed gene regulatory network in a DNN model to connect genotype data with 

intermediate-phenotypes including gene expression, tissue cell type composition, and 

enhancer activity as indicators of status of inner-working subsystems. Wang et al. 

demonstrated that incorporation of intermediate-phenotypes indeed boosts the performance 

of DNNs in predicting the disease status[29].

Recent studies demonstrate that incorporating vast amounts of biological knowledge in the 

learning procedure lowers the number of model parameters, up to an order of magnitude 

(Figure 1), while preserving or even improving the model performance, compared to DNN 

models without biologically inspired architectures [14,28]. Therefore, the engineering of the 

architecture allows development of learning procedures that require fewer training samples 

and are still capable of capturing complex nonlinear relationships among biological 

subsystems. One challenge in designing such architectures is the missing information. There 

are biological processes and interactions that are yet to be discovered but important for the 

proper functioning of biological systems. Such missing gaps might impede the performance 

of the DNNs or severely influence the interpretations from their inner workings. Recent 

studies have approached this issue in different ways. Ma et al. supplemented the current state 

of knowledge on the Gene Ontology annotations by computational predictions[14]. Wang et 

al. based the architecture on a gene regulatory network that was systematically constructed 

by genome-wide data[29]. In an alternate approach, Lin et al. incorporated additional 

artificial neurons in the design of intermediate layers to provide the model with the required 

flexibility to account for gene interactions that are unknown yet[28].

Deep learning model generalizability, transferability and interpretability

One primary obstacle in inference from high-throughput molecular data is the curse of 

dimensionality[31,32]; the number of input features far exceeds the number of available 

samples in most biological problems. Biological systems are intricate, composed of 

numerous subsystems with a hierarchical structure and complex interactions (e.g., synergy, 

redundancy, and competition among RNA binding proteins and miRNAs or between 

Gazestani and Lewis Page 4

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enzymes). However, there is an upper limit on the number of samples one can obtain from a 

given condition due to technological (e.g., instrument resolution, associated cost) or 

fundamental biological reasons (e.g., limits on cohort size with a given condition, or the 

inherent correlation structures among SNPs). In these conditions, spurious correlation 

structures arise between features, thus hindering the accuracy of the inferences and 

predictions. One common solution is to use data-driven feature reduction techniques such as 

principal component analysis (PCA)[33]. However, these approaches reduce the dimension 

by aggregating true signal with the correlating confounding factors. Another approach is 

gene set enrichment analysis (GSEA)[34] and related approaches[35] wherein data are 

converted from gene to pathway level, thereby reducing the number of features. However, in 

addition to having low flexibility in the way that gene set activity is defined, these 

knowledge-driven approaches commonly ignore the hierarchical structure of biological 

subsystems. Consequently, the activity of subsystems at different levels of hierarchy are 

predicted independently based on only the gene level data.

Engineering DNN architectures would help distinguish and disentangle these false 

correlation structures that exist in data by identifying processes that involve distinct 

subsystems but show parallel responses in high-throughput data. In this context, similar to 

GSEA, initial layers reduce feature dimension by aggregating gene data to pathway level 

data. However, in addition to being more flexible, the DNN model incorporates the 

hierarchical structure of biological systems. Therefore, such models would learn feature 

abstraction rules that are better generalizable across different biological conditions while 

avoiding issues related to the curse of dimensionality[31,36,37]. This increase in 

generalizability allows the application of transfer learning techniques where in models are 

pre-trained on broader contexts and are next fine-tuned based on context specific datasets 

with fewer available samples. As a hypothetical example, consider a classification task on a 

human tissue (e.g., disease versus normal) based on gene expression data. As discussed 

above, there is a limit on the number of samples one can obtain from a specific tissue with a 

specific condition. However, in the broader context, there already exists a large repository of 

human transcriptome datasets from different tissues and under different biological 

conditions. One can develop an encoder-decoder DNN model that exploits this vast amount 

of existing data to learn how to reduce the dimension of gene level data in an unsupervised 

manner. If the architecture of the encoder part of the model is inspired by the connection 

patterns of biological subsystems, such a model would learn how to abstract gene expression 

to pathway level data at different abstraction levels. This encoder model, trained on all 

available human expression data, can be next coupled with the classification layers that can 

be trained by far fewer samples for the classification of tissue of interest.

DNN architectures that are designed to resemble biological systems could make predictions 

that are consistent with the knowledge on the hierarchical structure of biological systems. 

For example, Kulmanov et al. used a DNN model to predict protein functions based on their 

sequence and network context[38]. By encoding the structure of the Gene Ontology tree in 

the classification layers, Kulmanov et al. enforced the learning procedure to predict 

functions that are consistent with the hierarchical structure of the tree[38]. As elaborated 

above, the engineering the architecture of DNN models using biological knowledge 

increases the interpretability of the inner working of the DNN models as well.
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Conclusion and future perspectives

In different biological conditions, hundreds to thousands of biological subsystems work 

together, in parallel, and in a hierarchy to adapt the system and tune its response. It is 

impossible to capture this complexity by a single dataset or a single type of data[30,31]. 

Flexibility of DNN architectures allow us to go beyond a general-purpose learning algorithm 

and encode the extensive, existing network- and systems-level knowledge that is generated 

by combing diverse data types. Such design would inform the model on aspects of the 

biological systems that are important for making accurate predictions but are not available in 

the input data.

Although powerful, there remain major challenges in the application of DNNs in the field. 

These include the need for large training datasets, missing biological knowledge on the 

biological systems, and interpretability of results. Throughout the text, we discussed 

possible solutions for each of these issues. For example, DNNs would require fewer samples 

if their architectures are inspired by biological systems. These architectures are also 

expected to have better generalizability across different biological conditions, making them 

amenable for transfer learning[39] or the conceptually similar technique of multi-task 

learning[40]. The missing biological knowledge can be also resolved by complementing 

biological knowledge with systematic genome-wide analyses or considering such 

uncertainties in the architecture of the DNN model. On the interpretability of DNN models, 

effective methods have been also developed to understand input characteristics that 

contribute to the outcome of these models[20,41]. Designing architectures that mirror those 

of biological systems could also enhance the interpretability of the intermediate hidden 

layers in DNN models.

Another challenge is in the design of high-performance DNN architectures that can extract 

meaningful patterns from encoded biological networks. First, current DNN architectures are 

designed primarily for regular graphs where each node has a fixed number of interactions 

(e.g., in an image, wherein each pixel has a fixed number of neighboring pixels). However, 

the number of interactions vary between nodes in biological networks and an ideal 

architecture could extract patterns from such complex structures. Encoding the Gene 

Ontology hierarchy where genes involved in similar processes are grouped together provides 

initial steps towards such designs[14]. Second, biological networks are complex, 

heterogenous, and context dependent. While the interactions between neighboring pixels in 

images represent a fixed Euclidian distance, the interactions within biological networks 

could have diverse interpretations, such as physical binding interactions, molecular 

similarity, or gene regulation. These interactions could also be from physical measurements, 

functional relationships, or computational predictions. Moreover, interactions in biological 

networks do not represent a static entity and rewire significantly under different conditions. 

Several endeavors are currently underway to design efficient architectures and we expect 

they will be pivotal in the success of deep learning methods in the field of network 

biology[24,41,42].
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Figure 1. Encoding network- and systems-level biological knowledge in the architecture of DNN 
models.
(A) Gene Ontology (GO) hierarchy and gene interaction networks are two rich resources on 

complex structure of biological systems. (B) Schematic representation of a fully connected 

DNN architecture with four intermediate hidden layers. In this architecture, each neuron is 

connected to every neuron in the previous layer. (C) Encoding the biological network 

represented in panel A in the architecture of DNN models. The first two intermediate layers 

are propagation layers. These layers are designed to amplify network-level dysregulation and 

suppress potential noise. The last two intermediate layers receive information from the final 

propagation layer and modify them nonlinearly so that the classes are separable in the output 

layer. Note that the propagation layers do not change the dimension of input feature space; 

i.e., for each gene in the input feature, there exists one corresponding gene in the 

propagation layer. Therefore, although they amplify the network-level signals, they are 

followed by additional layers to reduce the dimension of input data (D) The hierarchical 

structure of biological systems can be encoded into the architecture of DNN models. The 
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architecture of first two intermediate layers is based on the Gene Ontology tree represented 

in panel A. As illustrated, data undergo gradual abstractions through these layers consistent 

with the current knowledge on biological systems. Note that in contrast to propagation 

layers, Gene Ontology based layers reduce the dimensionality of input features from the 

gene level to the pathway level. Moreover, genes can be involved in more than one pathway. 

Likewise, pathways can intersect in their gene composition. Additionally, pathways in the 

second Gene Ontology-based layer (i.e.,P21, P22, and P23) receive data from the preceding 

Gene Ontology based layer (i.e., P11, P12, P13, and P14), rather than the gene level data that 

is in the input layer. This is in contrast to the traditional approaches on measuring pathway 

level activity such as GSEA. In all four panels, gi represents the gene level information. Pij 

represents Pathway j in layer i.
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