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Exploring Scalar Fields Using Critical Isovalues

Gunther H. Weber1,2 Gerik Scheuermann1 Hans Hagen1 Bernd Hamann2
1 AG Graphische Datenverarbeitung und Computergeometrie, FB Informatik, University of Kaiserslautern, Germany

2 Center for Image Processing and Integrated Computing, Dept. of Computer Science, University of California, Davis, U.S.A.

ABSTRACT

Isosurfaces are commonly used to visualize scalar fields. Critical
isovalues indicate isosurface topology changes: the creation of new
surface components, merging of surface components or the forma-
tion of holes in a surface component. Therefore, they highlight
“interesting” isosurface behavior and are helpful in exploration of
large trivariate data sets. We present a method that detects critical
isovalues in a scalar field defined by piecewise trilinear interpola-
tion over a rectilinear grid and describe how to use them when ex-
amining volume data. We further review varieties of the Marching
Cubes (MC) algorithm, with the intention to preserve topology of
the trilinear interpolant when extracting an isosurface. We combine
and extend two approaches in such a way that it is possible to ex-
tract meaningful isosurfaces even when a critical value is chosen as
isovalue.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation— [I.3.6]: Computer Graphics—Methodology and
Techniques I.3.8 [Computer Graphics]: A—pplications

Keywords: scalar field topology, critical point, volume visualiza-
tion, data exploration, isosurfaces, marching cubes

1 INTRODUCTION

An isosurface is a surface representing all locations in three-
dimensional (3D) space, where a trivariate scalar fieldf(x, y, z)
assumes a given isovaluev, i.e., wheref = v holds. It partitions a
3D volume into two distinct regions: Locations “inside” an isosur-
face have an associated value greater than or equal to the isovalue;
locations “outside” an isosurface have an associated value less than
the isovalue. By varying the isovaluev it is possible to visualize the
entire scalar field.

Determining isovalues where “interesting” isosurface behavior
occurs is difficult. Features of a scalar data set can be easily missed
when certain isovalues are not considered. By examining the topo-
logical properties of a scalar field it is possible to determine critical
isovalues indicating topological changes. We track all fundamental
changes: At local minima or maxima closed surface components
emerge or vanish. At saddles thegenus of an isosurface changes,
i.e., holes appear/disappear in a surface component, or disjoint sur-
face components merge. We determine the values and locations
where such changes occur and use them to aid a user in data explo-
ration.

We consider the common case of data sets with data values given
at vertices of a regular rectilinear grid. We define isosurface topol-
ogy by assuming that trilinear interpolation is used within individ-
ual cells. The topology of the resulting isocontour defines isosur-
face topology within a particular cell. MC, introduced by Lorensen
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Figure 1: Ambiguous face: Considering bilinear interpolation (a)
possible isocontours are hyperbolic arcs separating negative ver-
tices (b) or positive vertices (c). In the degenerate case, the isoline
corresponds to the asymptotes (v = 0.5 in this example). Correct
connectivity is violated by the original MC algorithm.

(a) (b)

Figure 2: Trilinear interpolation within a cell. Opposite cell vertices
can be separated (a) by two isosurface sheets or (b) connected by
one isosurface.

and Cline [16], is commonly used to produce an isosurface trian-
gulation from scalar data given on rectilinear grids. In its origi-
nal version MC only uses vertex “polarities” (vertices with a value
less than the isovalue are classified as being “negative” and vertices
with a value larger than the isovalue are classified as being “pos-
itive”) to triangulate an isosurface within a cell via a lookup table
(LUT). MC only uses linear interpolation along edges and makes no
assumptions about interpolation on a cell’s faces or within its inte-
rior. Consequently, the topology of an isosurface extracted by MC
does not always match that of the piecewise trilinear interpolant.
To get an exact match, topology on a cell’s boundary faces and in
its interior must be determined for certain ambiguous cases: If a
cell contains an ambiguous face,i.e., a face with alternating vertex
polarities, different choices are possible when connecting the edge
intersection points, see Figure 1. Similarly, as Figure 2 illustrates,
different isosurface topologies are possible in a cell’s interior. By
extending the LUT and examining the trilinear interpolant within a
cell, it is possible to obtain a MC variant that accurately reproduces
the topology of a trilinear interpolant. Current MC implementations
(VTK’s MC implementation [22], for example), however, use “im-
plicit disambiguation,” proposed by Montaniet al. [17]. This ap-
proach generates a LUT that consistently separates positive vertices
on a cell’s faces. It furthermore assumes that no tunnels exist in a
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Figure 3: Bilinear interpolation. A vertexv is a minimum, if its four
edge-connected neighbors have larger values (red). (a) If no saddle
within a face exists, this is correctly determined by an unmodified
MC method. (b) If a saddle exists within a face and “implicit dis-
ambiguation” always separates positive vertices, a topologically in-
correct isosurface results. The minimum is no longer origin of a
new, connected component. It is “merged” with the saddle. (c) The
asymptotic decider extracts a correct isosurface that preserves the
minimum.

cell’s interior. When “implicit disambiguation” is used, it becomes
necessary to consider more vertices to determine whether a vertex is
critical or not than for a trilinear functions’ correct contour, see Fig-
ure 3. Thus, the critical isovalues detected by our method are only
meaningful if a MC scheme is used that extracts a topologically
correct isosurface triangulation of a trilinear function. We imple-
mented a MC scheme based on a method presented by Lopes [15]
in his dissertation with small alterations to fix remaining errors in
the topology of extracted isosurfaces and to obtain meaningful re-
sults when a critical isovalue is chosen.

2 RELATED WORK

MC was introduced by Lorensen and Cline [16] and has become
the most commonly used method for isosurface extraction in sci-
entific visualization. Duerst [6], among others, discovered that the
original approach could produce holes in an isosurface triangula-
tion. Montaniet al. [17] proposed a slightly altered LUT genera-
tion scheme that prevented these holes by consistently separating
positive vertices on ambiguous faces. Hamann [12,13] and Nielson
and Hamann [20] resolved the problem differently by examining
isocontour topology on a cell’s boundary faces. They pointed out
that bilinear interpolation on a cell’s faces is a natural extension
to linear interpolation along edges and used bilinear contour topol-
ogy to resolve ambiguities on faces. Nielson and Hamann [20] also
showed that configurations exist where points in a cell’s interior
must be used in addition to the edge intersection points to obtain
valid triangulations.

Natarajan [18], Chernyaev [4] and Cignoniet al. [5] extended
this concept by examining the trilinear interpolant in a cell’s interior
and completely determining piecewise trilinear isosurface topology.
However, Natarajan’s [18] method does not use interior points re-
sulting in invalid triangulations. Chernyaev’s [4] method uses ad-
ditional points but still specifies invalid triangulations. In his dis-
sertation, Lopes [15] discussed methods for improving “accuracy
in scientific visualization.” His algorithm analyzes the trilinear in-
terpolant to determine its topology and uses additional points in a
cell’s interior and on its faces to improve the accuracy of isosurface
generation. These additional points are also used to obtain valid
triangulations for all specified cases. We discuss his approach in
greater detail in section 4. Nielson [19] has recently provided a
comprehensive analysis of the behavior of the trilinear interpolant.
This analysis leads to an extension of the MC algorithm to accu-
rately extract topologically correct contours of the trilinear inter-
polant. Again, points lying on the isosurface in the interior of a cell
are needed. These are chosen based on isosurface topology. This

extended MC algorithm always generates valid triangulations for
all possible topological configurations. Comparing Nielson’s work
to the approaches of Cignoniet al. [5] and Lopes [15] shows that
their case tables are incomplete.

Hamannet al. [14] analyzed the exact behavior of contours on
cell faces leading to a method that approximates a trilinear isosur-
face with rational quadratic B́ezier patches. For their construction,
they consider points lying on an isosurface and normals/gradients
at these points. Theisel [24] represented the exact contours of a
piecewise trilinear scalar field by trimmed rational cubic Bézier
patches and specified a reparametrization scheme that results inG1-
continuous functions that preserve topology of piecewise trilinear
interpolation. Woodet al. [25] presented an isosurface extraction
scheme based on mesh refinement. Their method first constructs
a coarse mesh with the same topology as the final isosurface and
refines it subsequently.

Van Gelder and Williams [10] considered sampled values from
quadratic functions to address topological correctness and pre-
sented topology definitions for sampled data different from the
topology of piecewise trilinear interpolation. Stander and Hart [23]
considered implicit functions. Their approach detects all critical
points of these functions and constructs polygonizations with the
same topology as the implicit function. Rockwood [21] considered
general higher-order interpolation schemes.

Few authors utilize topological analysis for scalar field visual-
ization. Bajajet al. [1] determined acontour spectrum for data
given on tetrahedral meshes. The contour spectrum specifies con-
tour properties like2D contour length,3D contour area and gradi-
ent integral as functions of the isovalue and can aid a user in identi-
fying “interesting” isovalues. Bajajet al. [3] also developed a tech-
nique to visualize topology to enhance visualizations of trivariate
scalar fields. Their method employs aC1-continuous interpolation
scheme for rectilinear grids, and detects critical points of a scalar
field, i.e., points where the gradient of the scalar field vanishes.
Subsequently, integral curves (tangent curves) are traced starting
from locations close to saddle points. These integral curves are su-
perimposed onto volume-rendered images to convey structural in-
formation of the scalar field.

Fujishiro et al. [7] used ahyper-Reeb graph for exploration of
scalar fields. A Reeb graph encodes topology of a surface. The
hyper-Reeb graph encodes changes of topology in an extracted iso-
surface. For each isovalue that corresponds to an isosurface topol-
ogy change, a node exists in the hyper-Reeb graph containing a
Reeb graph encoding the topology of that isosurface. Fujishiroet
al. [7] constructed a hyper-Reeb graph using “focusing with interval
volumes,” an iterative approach that finds a subset of all critical iso-
values , which has been introduced by Fujishiro and Takeshima [8].
The hyper-Reeb graph can be used, for example, for automatic gen-
eration of transfer functions. Fujishiroet al. [9] extended this work
and used a hyper-Reeb graph for exploration of volume data. In ad-
dition to automatic transfer function design, their extended method
allows them to generate translucent isosurfaces between critical iso-
values. Considering just the images shown in their paper, it seems
that their approach does not detect all critical isovalues of a scalar
field.

Critical point behavior is also important in the context of data
simplification to preserve important features of a data set. Bajaj
and Schikore [2] extended previous methods to develop a com-
pression scheme preserving topological features. Their approach
detects critical points of a piecewise linear bivariate scalar field
f(x, y). “Critical vertices” are those vertices for which the “nor-
mal space” of the surrounding triangle platelet contains the vector
(0, 0, 1). Integral curves are computed by tracing edges of triangles
along a “ridge” or “channel.” Bajaj and Schikore’s method incor-
porates an error measure and can be used for topology-preserving
mesh simplification.



Gerstner and Pajarola [11] defined a bisection scheme that enu-
merates all grid points of a rectilinear grid in a tetrahedral hierarchy.
Using piecewise linear interpolation in tetrahedra, critical points
can be detected. Data sets are simplified by specifying a traver-
sal scheme that descends only as deep into the tetrahedral hierar-
chy as necessary to preserve topology within a certain error bound.
This method incorporates heuristics that assign importance values
to topological features, enabling a controlled topology simplifica-
tion.

3 DETECTING CRITICAL ISOVALUES

Our goal is to detectcritical isovalues of a piecewise trilinear scalar
field given on a regular rectilinear grid. Gerstner and Pajorala [11]
developed criteria for detecting critical points of piecewise linear
scalar fields defined on tetrahedral meshes and used them in mesh
simplification. We provide a comprehensive analysis of the topo-
logical behavior of piecewise trilinear interpolation and develop
criteria to detect critical isovalues for these scalar fields. We fur-
ther develop methods to use these critical isovalues for volume data
exploration.

3.1 Definitions
For aC2-continuous functionf , critical points occur where the gra-
dient∇f assumes a value of zero,i.e., ∇f = 0. The type of a
critical point can be determined by the signs of the eigenvalues of
the Hermitian off . Piecewise trilinear interpolation when applied
to rectilinear grids, in general, produces onlyC0-continuous func-
tions. Therefore, we must define critical points differently.

Gerstner and Pajarola [11] considered piecewise linear inter-
polation applied to tetrahedral grids, which also leads toC0-
continuous functions. Considering piecewise linear interpolation,
critical points can only occur at mesh vertices. Gerstner and Pa-
jarola’s method classifies a mesh vertex depending on its relation-
ship with vertices in a local neighborhood. In the context of a re-
finement scheme, all tetrahedra sharing an edge that is to be col-
lapsed define a “surrounding polyhedron.” Vertices of this sur-
rounding polyhedron constitute the considered neighborhood of a
vertex. These vertices are marked with a “+” if their associated
function values are greater than the value of the classified vertex;
or they are marked with a “-” if their associated function values are
less than the value of the classified vertex. Equal values are not
considered. Edges of the surrounding polyhedron define an edge
graph. In this graph, all edges connecting vertices of different po-
larities are deleted. A vertex is classified according to the number
of connected components in the remaining graph. If this number
is one, the classified vertex is a maximum or minimum (depending
on the sign of the connected component). If it is two, the classified
vertex is a regular point. Otherwise, the vertex is a saddle point.
Connected components in an edge graph of a surrounding polyhe-
dron correspond to connected components in a neighborhood of a
vertex. This observation leads us to the following definition:

Definition 1 (Regular and Critical Points) Let F : Rd → R,
d ≥ 2, be a continuous function. A pointx ∈ Rd is called
a (a) regular point, (b) minimum, (c) maximum, (d) saddle, or
(e) flat point ofF , if for all ε > 0 there exists a neighborhood
U ⊂ Uε with the following properties: If

⋃̇np

i=1Pi is a partition
of the preimage of[F (s), +∞) in U − {x} into “positive” con-
nected components anḋ

⋃nn

j=jNj is a partition of the preimage of
(−∞, F (s))] in U − {x} into “negative” connected components,
then (a)np = nn = 1 andP1 6= N1, (b) np = 1 andnn = 0,
(c) nn = 1 andnp = 0, (d) np + nn > 2, or (e) np = nn =
1 andP1 = N1.

(a) (b) (c) (d)

Figure 4: (a) Around a regular pointx ∈ R3, the isosurface
F−1(F (x)) divides space into a single connected volumeP with
F > 0 (red) and a single connected volumeN with F < 0 (blue).
(b) Around a minimum, all points inU have a larger value than
F (x). (c) Around a maximum, all points inU have a smaller value
thanF (x). (d) In case of a saddle, there are more than one sepa-
rated regions with values larger or smaller than the valueF (x).

Remark 1 For (a) – (d), see Figure 4. Concerning case (e), all
points inU have the same value asF (x). It is possible to extend
the concept of being critical to entire regions and classify regions
rather than specific locations.

Remark 2 The casesnp = 2, nn = 0 andnp = 0, nn = 2 are
not possible ford ≥ 2.

We consider piecewise trilinear interpolation, which reduces to
bilinear interpolation on cell faces and to linear interpolation along
cell edges. All values that trilinear interpolation assigns to posi-
tions in a cell lie between the minimal and maximal function values
at the cell’s vertices (convex hull property). In fact, maxima and
minima can only occur at cell vertices. If two vertices connected
by an edge have the same function value, the entire edge can rep-
resent an extremum or a saddle. It is even possible that a polyline
defined by multiple edges in the grid, or a region consisting of sev-
eral cells, becomes critical. In these cases, it is no longer possible
to determine, locally, whether a function value is a critical isovalue.
To avoid these types of problem, we impose the restriction on the
data that function values at vertices connected by an edge must dif-
fer. Saddles can occur at cell vertices, on cell faces of a cell, and
in a cell’s interior, but not on cell edges. This fact is due to the
restriction that an edge cannot have one constant function value.

Lemma 1 (Regular Edge Points)All points on edges of a trilin-
ear interpolant with distinct edge-connected values are regular
points.

The two endpoints of the edge have different values. Interpo-
lation along edges is linear, and the derivative differs from zero.
The implicit function theorem defines neighborhoodsUi × Vi and
a height functionhi : Ui ⇒ Vi in each of the four cubes around
the edge, such that the isosurface is a height field in the direction
of the edge partitioning a neighborhood in a positive and a negative
region1. Thus, in order to detect critical isovalues of a piecewise
trilinear scalar field, we only need to detect critical values at ver-
tices of a grid and saddle values within cells and on their boundary
faces.

3.2 Critical Values at Vertices
In order to classify a vertex,i.e., to determine whether a vertex is
regular or represents an extremum or a saddle, it is sufficient to
consider the values at the six edge-connected vertices of a given
vertex. We provide a criterion for classification in the following.

1For details, see Appendix??on the DVD proceedings.
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Figure 6: When a small neighborhood is considered, a “tetrahedral
region” havingv as a corner is partitioned in the same way as a
linear tetrahedron.

Lemma 2 (Local Maximum) Consider a cellC with vertex num-
bering as shown in Figure 5. Ifv0 > max{v1, v2, v4}, thenv0 is a
local maximum inC.

Lemma 3 (Linear Cell Partition) Consider a cellC with vertex
valuesvi and vertex positionspi numbered as shown in Figure 5.
If v := v0 6= v1, v2 6= v4 holds, then for allε > 0 there exists
a δ < ε such that for the intersectionR = Uδ ∩ C the follow-
ing statements hold: (a) Ifv > max{v1, v2, v4} then nn = 1
and N1 = R, i.e., all values in the region are less thanv. (b)
If there existi, j, k ∈ {1, 2, 4}, i 6= j 6= k, i 6= k, such that
v > max{vi, vj} and v < vk, thennn = np = 1 and R com-
pletely contains a surface dividingN1 and P1. Furthermore, all
values on the trianglep0pipj are less thanv. (c) If there exist
i, j, k ∈ {1, 2, 4}, i 6= j 6= k, i 6= k, such thatv < min{vi, vj}
andv > vk, thennn = np = 1, andR completely contains a sur-
face dividingN1 andP1. Furthermore, all values on the triangle
p0pipj are less thanv. (d) If v < max{v1, v2, v4}, thennn = 1
andN1 = R, i.e., all values in the region are greater thanv.

The complete proof for Lemma 3 relies on Lemma 2, see Ap-
pendix??. It is based on the fact, that the behavior of the trilin-
ear interpolant in close proximity to a vertexv is determined by
the first derivatives with respect to the coordinate axes. These first
derivatives only depend on the values of the edge connected ver-
tices, as trilinear interpolation reduces to linear interpolation along
edges. It can be shown that with trilinear interpolation a neighbor-
hood aroundv is partitioned into the same amount of regions with
the same connectivity as it would be the case if linear interpolation
was used.

Using theL1-norm2, the intersection of a neighborhood with a
cell corresponds to a tetrahedron. According to Lemma 3, this tetra-
hedron is partitioned in the same way as a tetrahedron using lin-
ear interpolation (even when, as in our case, partitioning surfaces
are not necessarily planar), see Figure 6. A vertex can be classi-
fied by considering its edge-connected neighbor vertices. We treat
these vertices as part of a local implicit tetrahedrization surround-
ing a classified vertex, where the classified vertex and three edge-
connected vertices belonging to the same rectilinear cell imply a
tetrahedron, see Figure 7.

When applying Gerstner and Pajarola’s criterion [11] for con-
nected components in an edge graph for the resulting implicit tetra-
hedrization, we obtain a case table with26 = 64 entries that maps

2‖x‖1 =
∑

i |xi|

Figure 7: Edge-connected vertices as part of an implicit tetra-
hedrization.
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Figure 8: Vertex numbering scheme used in Lemma 4.

a configuration of “+” and “-” of edge-connected vertices to a ver-
tex classification. (It can be shown that the connected components
in an edge graph correspond to connected components in a neigh-
borhood.) We decided to generate this relatively small case table
manually.

3.3 Critical Values on Faces
When linear interpolation is used, critical points can only occur at
grid vertices. When piecewise trilinear interpolation is used, critical
points can also occur on boundary faces. On a boundary face piece-
wise trilinear interpolation reduces to bilinear interpolation and the
interpolant on a face can have a saddle. This face saddle is not nec-
essarily a saddle of the piecewise trilinear interpolant. The follow-
ing lemma provides a criterion to whether a face saddle is a saddle
of the trilinear interpolant:

Lemma 4 (Face Saddle)Let p be a point on the shared face of
two cells, where both trilinear interpolants degenerate to the same
bilinear interpolant. The pointp is a saddle point when these two
statements hold:

1. The pointp is a saddle point of the bilinear interpolant de-
fined on the face.

2. With the notations of Figure 8, where, without loss of general-
ity, cells are rotated such thatA andC are the values on the
shared cell face having a value larger than the saddle value,
C(A1−A) + A(C1−C)−D(B1−B)−B(D1−D) and
C(A−1−A)+A(C−1−C)−D(B−1−B)−B(D−1−D)
have the same sign.

Otherwise,p is a regular point of the trilinear interpolant.

The complete proof for this Lemma is provided in Appendix??.
If a point on a boundary face is a saddle of the piecewise trilinear
interpolant the neighborhood is partitioned into at least two disjoint
positive regions and two disjoint negative regions. These regions
meet at the critical point. Any plane that contains the critical point
is also partitioned into the same number of regions. Thus, the crit-
ical point is also a critical point of the plane. If a boundary surface
contains a saddle, it is partitioned into two disjoint positive regions
and two disjoint negative regions, see Figure 8. Each of the two
adjacent cells connects either the two disjoint positive regions or
the two disjoint negative regions. The face saddle is a saddle of
the trilinear interpolant, if both adjacent cells connect the same two
disjoint regions. The signs of the expressions in the lemma indicate
which regions are connected in both adjacent cells. We thus can de-
tect face saddles of piecewise trilinear interpolation effectively by
considering all cell faces for a saddle of the bilinear interpolants on
faces and checking whether the criterion stated in Lemma 4 holds.
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Figure 9: Subset of configurations used by Lopes’ MC method.
Case numbering according to Lopes [15], which contains the full
list of configurations.
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Figure 10: Incorporating shoulder points. (a) Using shoulder point,
shown as “*,” increases approximation quality of a contour (green)
by replacing its one-segment approximation (dashed black) with
a two-segment approximation (black). (b) In the degenerate case,
both shoulder points coincide with the location of the face saddle. If
the shoulder points are merged, polyline approximations and con-
tours (green) coincide at the saddle. Without adding a shoulder
point, the topology of a contour approximation is incorrect.

3.4 Critical Values inside a Cell
Saddles of the trilinear interpolant in the interior of a cell are easy
to handle as they are always saddles of the piecewise trilinear in-
terpolant as well. Interior saddles are already used by various MC
variants to determine isosurface topology within a cell. We com-
pute these saddles by using the equations given by Nielson [19].
Inner saddles of a trilinear interpolant that coincide with a cell’s
boundary faces or vertices are not necessarily saddles of a piecewise
trilinear interpolant. Trilinear interpolation assigns constant values
to locations along coordinate-axis-parallel lines passing through the
saddle. We currently rule out the possibility of an internal saddle
coinciding with a vertex or an edge. Otherwise, our requirement
that edge-connected vertices differ in value would be violated. Sad-
dles of trilinear interpolants that coincide with cell faces are also
saddles of the bilinear interpolant on the face. As such they are
discussed in Section 3.3.

4 TOPOLOGICALLY CORRECT MARCHING
CUBES

Our MC approach is based on the works of Lopes [15] and Niel-
son [19]. Lopes’ method constructs an isosurface in two steps:
Based on the Asymptotic Decider described by Hamann [12] and
Nielson and Hamann [20] a configuration is chosen depending on
vertex polarities and contour topology on cell faces. An LUT de-
fines “topological polygons” (TPs) that represent the intersection of
an isosurface approximation with cell faces, see Figure 9.

TPs are independent of possible tunnels in a cell. The two
quadrilaterals shown in configuration10a of Figure 9, for example,
can either separate the diagonally opposite bold vertices or can con-
nect them with a tunnel. Each TP contains additional information
specifying the number of so-called “loop-back” faces intersected
by the polygon. (Loop-back faces are faces of a cell containing two
edges of the same TP counting opposite faces only once.)

After selecting the appropriate configuration, corresponding TPs
are refined by adding shoulder points of the conic (hyperbolic arc)
implied by bilinear interpolants defined on cell faces, see Figure 10.

A shoulder point is computed as the intersection of a line connect-
ing the midpoint of a linear contour approximation and the location
of the face saddle with the isocontour. Therefore, the shoulder point
moves toward the saddle as the contour behavior approaches the de-
generate case (two perpendicular lines). In the degenerate case, the
shoulder point becomes the saddle point.

By merging the shoulder points of the two hyperbolic arcs an
exact representation of a degenerate contour is possible. The grad-
ual movement of two shoulder points toward the location of a face
saddle supports a smooth transition between different topologies on
a face. Each resulting TP is triangulated individually by connect-
ing its vertices to one or more internal contour points. Topological
polygons that contain at least one loop-back face cannot be part of
tunnels and are always triangulated using inflection points. (Inflec-
tion points occur at locations on the isosurface where two deriva-
tives of the functionF (x, y, z) vanish.) Up to six inflection points
exist in a cell and can be associated with its six faces. For each
TP, a triangulation is stored in an LUT based on its number of ver-
tices and loop-back faces. A triangulation of a TP uses inflection
points associated with its loop-back faces. If a TP does not contain
loop-back faces, two cases are possible:

1. All six inflection points are in a cell’s interior and form a poly-
line along the edges of a cuboid. A tunnel exists in the cell’s
interior, and TP without loop-back faces are connected to the
polyline formed by the inflection points forming a part of a
tunnel.

2. A tunnel does not exist. A triangulation for a TP is ob-
tained by connecting all its edges to a “bi-shoulder point.”
(A bi-shoulder point is a point that is a shoulder point on a
pair of perpendicular planes passing through a cell and being
parallel to coordinate-system planes.) Lopes’ method com-
putes bi-shoulder points in an iterative approach by sweep-
ing planes through a cell, starting from faces intersected by
the TP. Since bi-shoulder points are not unique, a selection
scheme is needed for two sweep faces that locates the most
appropriate bi-shoulder point.

Nielson [19] has provided a comprehensive analysis of the con-
tours of a trilinear interpolant. His analysis leads to triangulations
for all possible configurations. Again, points in the cell interior are
needed to generate valid triangulations. Nielson’s method uses in-
terior points only when they are necessary. This method utilizes
DeVella’s necklace DeV [T ] to obtain valid triangulations. (Points
on DeV [T ] are locations on coordinate-axis-perpendicular planes
where contours are degenerate; they correspond to Lopes’ inflection
points.) The methods of Nielson and Lopes both detect tunnels by
checking whether all six inflection points are inside a cell. Nielson’s
approach produces fewer triangles than Lopes’ and still guarantees
topological correctness in cases where an isovalue differs from a
critical value.

We decided to implement Lopes’ approach, since it produces
better results for isovalues close to critical isovalues. Careful com-
parison showed that Lopes’ approach is incomplete. Lopes stated
that he could observe no tunnels for case13. Nielson showed that
two types of tunnels are possible for Lopes’ case13j: One connects
positive vertices and one connects negative vertices. We modified
Lopes’ approach to take this into account. Lopes’ original approach
correctly detects the tunnel, but connects three TPs to the inflection
points, resulting in an invalid triangulation. By using Nielson’s cri-
terion to distinguish between the two sub-cases we can correct this
flaw.

Nielson’s method uses the sign of the trilinear interpolant in the
cuboid containingDeV [T ] to determine whether the positive or
negative vertices must be connected. We added a flag to the LUT
that specifies for each TP whether it is used only for a tunnel con-
necting positive or negative vertices. Since problems only arise in



case13j, this flag can also have a value of “irrelevant,” indicat-
ing that a TP is part of both tunnel types. If a tunnel is detected
by the presence of six inflection points, its type is determined by
Nielson’s criterion. Our algorithm connects only those TPs to the
polyline formed by the inflection points whose flags indicate that
they are part of that particular tunnel type.

5 APPLICATIONS

A convenient way to use critical isovalues is to provide a user with a
navigational tool in addition to an isosurface viewer. Prior to start-
ing an isosurface viewer, critical isovalues can be computed and
displayed in an “isovalue navigator.” In this window, critical iso-
values are listed along with a corresponding type (minimum, max-
imum, saddle, face saddle, interior saddle). When a user selects a
critical isovalue, its corresponding position in space is marked by a
sphere whose color depends on the type (blue, red and green repre-
senting a minimum, a maximum or a saddle, respectively). Buttons
allow a user to set the isovalue of a displayed isosurface to a value
slightly below, equal to, or slightly above a critical isovalue. The
isovalue offset for the isosurfaces below and above a chosen critical
isovalue is specified in a text field.

In data sets containing several “nested isosurfaces,”i.e., data sets
where one isosurface component is completely contained within an-
other, it can be difficult to locate a critical point, even if its position
is marked. The “isovalue navigator” contains a button that positions
the camera so that the viewing focus is the critical point.
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Figure 11: Transfer function emphasizing topologically equivalent
regions.

Critical isovalues can also help in automatic transfer function
design. Given a list of critical isovalues we construct a correspond-
ing transfer function based on the methods described by Fujishiro
et al. [9]. The domain of the transfer function corresponds to the
range of scalar values[smin, smax] occurring in a data set. Outside
this range the transfer function is undefined. Given a list of critical
isovaluescvi, we either construct a transfer function emphasizing
volumes containing topologically equivalent isosurfaces or a trans-
fer function emphasizing structures close to critical values.

Figure 11 shows the construction of a transfer function that em-
phasizes topologically equivalent regions. The color transfer is cho-
sen such that hue uniformly decreases with the mapped value, ex-
cept for a constant drop ofδh at each critical valuecvi. The opacity
is constant for all values except for hat-like elevations around each
critical valuecvi having a width ofωo and a heightδo.

Figure 12 shows the construction of a transfer function empha-
sizing details close to critical isovalues. The hue transfer function
is constant except for linear descents of a fixed amountδh within
an interval with a widthωh centered around each critical isovalue
cvi. The opacity is constant for all values except in intervals with
a widthωo centered around critical isovaluescvi where the opacity
is elevated byδo.
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Figure 12: Transfer function emphasizing details close to critical
isovalues.

When several isovalues are so close together that intervals with a
width ωh or ωo would overlap, all isovalues except the first are dis-
carded to avoid high frequencies in the transfer function that could
cause aliasing artifacts in the rendered image.

6 RESULTS

Figure 13 shows the “Drip” data set, obtained by sampling the ana-
lytic functionF (x, y, z) = x2 + y2− 0.5(0.995z2 + 0.005− z3).
(This function was provided by Terry J. Ligocki, Lawrence Berke-
ley National Laboratory.) The function was evaluated forx, y, z ∈
[−1.5, 1.5], sampled on a403 uniform rectilinear grid. Figure 13(a)
shows the isosurfaceF = 0. Our method can be used to de-
tect critical values of this scalar field and show how this “drop”
evolves. Originally, there exists just one component evolving from
the boundary of the domain of the scalar field. An “inner minimum”
exists for a value of−0.0754. Figure 13(b) shows an isosurface for
a value of−0.0754+0.01, where the isosurface component around
the minimum already has grown to a visible size. An inner saddle
of the scalar field exists for a value of−0.0025, shown in Figure
13(c), where a green sphere marks the saddle position. The isosur-
face components are still distinct, but touch at the saddle position.
For an isovalue of−0.0025 + 0.01, i.e., a value slightly above the
saddle value, both components have merged. Additional critical
points arise on faces lying on the domain boundary. Figures 13(e)
and 13(f) show a saddle that occurs as a result of the isosurface in-
tersecting the domain boundary. A hole in the isosurface is clearly
visible in Figure 13(f) as a result of domain boundary intersection.

Figure 14 shows a data set obtained by simulating a two-body
distribution probability of a nucleon in the atomic nucleus “16O”
when a second nucleon is known to be positioned at distance of2
Fermi. This413 data set is courtesy of the Sonderforschungsbere-
ich (SFB) 382 of the German Research Council (DFG). It can be
obtained athttp://www.volvis.org . The isovalue naviga-
tor indicates a minimum for an isovalue of19. From a greater dis-
tance, special contour behavior for this value cannot be perceived,
see 14(a). By using the isovalue navigator to define a viewpoint
close to the minimum and looking at the minimum, a second com-
ponent forming inside the outer isosurface component becomes vis-
ible, see Figure 14(b). Several saddles exist. Among them is a sad-
dle for the isovalue of103, where one inner isosurface component
merges with the outer component. A clipping plane is used in the
figure to make the saddle location visible, see Figure 14(c). Figures
14(d) and 14(e) show a saddle inside the outer isosurface compo-
nent. Several saddles exist for the same value; one of them can be
seen in the background of the saddle, marked by a green sphere.

Figure 15 shows the results of rendering the same data set with
automatically generated transfer functions. Figure 15(a) empha-
sizes volumes containing topologically equivalent isosurfaces. De-
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Figure 13: Exploration of “Drip” data set.

(a) (b) (c) (d) (e)

Figure 14: “Nucleon” data set. Data set courtesy of SFB 382 of the German Research Council (DFG), seehttp://www.volvis.org .

tails close to these critical isovalues are better visible in Figure
15(b).

7 CONCLUSIONS AND FUTURE WORK

We have presented a method for the detection and utilization of crit-
ical isovalues for the exploration of trivariate scalar fields defined
by piecewise trilinear functions. Improvements to our method are
possible. For example, it would be helpful to eliminate the require-
ment that values at edge-connected vertices of a rectilinear grid
must differ. While our approach can be used at data sets that vio-
late this requirement, it fails to detect all critical isovalues for such
data. It is necessary to extend our mathematical framework and add
the concept of “critical regions” and “polylines.” Considering the
case of a properly sampled implicitly defined torus, its minimum
consists of a closed polyline around which the torus appears. Sim-
ilar regions of a constant value can exist that are extrema. These
extensions will require us to consider values in a larger region; and
they cannot be implemented in a purely local approach. Some data
sets contain a large number of critical points. Some of these critical
points correspond to locations/regions of actual interest, but some
are the result of noise or improper sampling. We need to develop
methods to eliminate such “false” critical points.

On the other hand it could be useful to consider more noisy data
sets and generate a histogram with the number of topology changes
for a lot of small isovalues ranges. It should be possible to automat-
ically detect interesting isovalues by looking for values where there
are many topological changes. This could be used to detect turbu-
lence in data sets resulting from unsteady flow simulations in which
turbulence is usually associated to “topological noise.” Histograms
could also be used to generate meaningful transfer functions for
data sets with a large number of closely spaced critical isovalues.

Small and skinny triangles can result when using bi-shoulder
points and contour points in a cell’s interior. An improved scheme
could consider distances between contour points and use a “blend”
of Nielson’s [19] and Lopes’ [15] approaches. Furthermore, find-

ing bi-shoulder points with an iterative scheme is expensive and
can cause problems. In some cases, bi-shoulder points can be com-
pletely missed, due to a poorly chosen step size. A fixed step size
cannot accommodate all cases. Thus, a step size must be chosen de-
pending on the data, or other means for finding bi-shoulder points
have to be found. Shoulder points are not unique, and for a sweep
over different isovalues different bi-shoulder points are used, result-
ing in “flickering” of animated isosurfaces.
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A PROOFS

A.1 Regular Edge Points
Lemma 1 (Regular Edge Points)All points on edges of a trilin-
ear interpolant with distinct edge-connected values are regular
points.

Proof: By assumption, the two endpoints of the edge have differ-
ent values. Interpolation along edges is linear, and the derivative
differs from zero. The implicit function theorem defines neighbor-
hoodsUi × Vi and a height functionhi : Ui ⇒ Vi in each of the
four cubes around the edge, such that the isosurface is a height field
in the direction of the edge. SettingU to the smallest interval and
determining suitableUi defines a neighborhood such that the larger
and smaller values are above and below a single height field. There-
fore, a point on an edge is a regular point, because it is possible to
start the construction with an arbitrary small neighborhood around
x. �

A.2 Local Minimum
Lemma 2 (Local maximum) Consider a cellC with vertex num-
bering as shown in Figure 5. Ifv0 > max{v1, v2, v4}, thenv0 is a
local maximum inC.

Proof: Choosem := max{v1 − v0, v2 − v0, v4 − v0} < 0 and
M := max{v3−v0, v5−v0, v6−v0, v7−v0, 1} ≥ 1 andM 6= 0.
Let v′i = vi − v0. If 0 < x, y, z < ε := |m|

3|M| , then

F (x, y, z)− v0 =

(1− x)(1− y)(1− z)v′0 + x(1− y)(1− z)v′1+

(1− x)y(1− z)v′2 + xy(1− z)v′3+

(1− x)(1− y)zv′4 + x(1− y)zv′5+

(1− x)yzv′6 + xyzv′7

< x(1− y)(1− z)m + (1− x)y(1− z)M+

xy(1− z)m + (1− x)(1− y)zM+

x(1− y)zm + (1− x)yzM + xyzM

≤ mε [(1− y)(1− z) + (1− x)(1− z) + (1− x)(1− y)] +

Mε2 [1− z + 1− x + z + 1− y]

≤ 3mε(1− ε)2 + 3Mε2

= 3
|m|

3|M |

(
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)
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A.3 Linear Cell Partition
Lemma 3 (Linear Cell Partition) Consider a cellC with vertex
numbering as shown in Figure 5 for whichv := v0 6= v1, v2 6=
v4. Then, for allε > 0 there exists aδ < ε such that for the
intersectionR = Uδ ∩ C the following statements hold: (a) If
v > max{v1, v2, v4} thennn = 1 andN1 = R, i.e., all values in
the region are less thanv. (b) If there existi, j, k ∈ {1, 2, 4}, i 6=
j 6= k, i 6= k, such thatv > max{vi, vj} andv < vk, thennn =

np = 1 andR completely contains a surface dividingN1 andP1.
Furthermore, all values on the trianglep0pipj are less thanv. (c)
If there existi, j, k ∈ {1, 2, 4}, i 6= j 6= k, i 6= k, such thatv <
min{vi, vj} andv > vk, thennn = np = 1, andR completely
contains a surface dividingN1 andP1. Furthermore, all values on
the trianglep0pipj are less thanv. (d) If v < max{v1, v2, v4},
thennn = 1 andN1 = R, i.e., all values in the region are greater
thanv.

Proof: Cases (a) and (d) are symmetrical and follow from Lemma
2. Cases (b) and (c) are symmetrical as well, and it is sufficient to
prove one of them. Similarly, the same holds when we choose any
othervi asv and consider its edge-connected neighbor vertices.

Let ε > 0. The derivative ofF atp0 is (v1−v0, v2−v0, v4−v0).
There exists anε > δ > 0 such that the derivative has rank1 in the
whole neighborhoodR = Uδ(p0) ∩ C. In this case, the regular
value theorem guarantees the existence of an isosurface with func-
tion valuev0 dividing Uδ(p0) into a single region with larger and
a single region with lower function values. If the surface intersects
C outsidep0, R is split into exactly two parts. If not,p0 is a local
maximum or minimum. This fact proves the first part of (b) and (c).
For smallε > δ > 0, a calculation similar to the proof of Lemma 2
demonstrates that the face withp0,pi,pj is not intersected inside
R by the isosurface in cases (b) and (c). �

A.4 Face Saddle
Lemma 4 (Face Saddle)Let p be a point on the shared face of
two cells, where the trilinear interpolants degenerate to the same
bilinear interpolant. The pointp is a saddle point, when these two
statements hold:

1. The pointp is a saddle point of the bilinear interpolant de-
fined on the face.

2. With the notations of Figure 8, where, without loss of general-
ity, cells are rotated such thatA andC are the values on the
shared cell face having a value larger than the saddle value,
C(A1−A) + A(C1−C)−D(B1−B)−B(D1−D) and
C(A−1−A)+A(C−1−C)−D(B−1−B)−B(D−1−D)
have the same sign.

Otherwise,p is a regular point of the trilinear interpolant.

Proof:

1. If p is not a saddle of the bilinear interpolant on the face, one
partial derivative on the face is different from zero. The reg-
ular value theorem implies the existence of a dividing isosur-
face in both cells in a small neighborhoodUδ(p) ⊂ Uε(p),
leading to a single isosurface in the whole neighborhood that
splits into one connected component with values larger than
f(p) and one connected component smaller thanf(p).

2. Letp be a saddle point with respect to the bilinear interpolant
on the face. (We adopt an idea from Chernyaev [4].) To sim-
plify notation, we assume that the face is perpendicular to the
x–coordinate axis. If we consider any planex =const,x ∈
[0, 1], parallel to the face the functionF becomesF (y, z) =
Ax(1 − y)(1 − z) + Bxy(1 − z) + Cxyz + Dx(1 − y)z
with Ax = A(1 − x) + A1x, Bx = B(1 − x) + B1x,
Cx = C(1 − x) + C1x, Dx = D(1 − x) + D1x. As
pointed out by Nielson and Hamann [20], the sign of the
value at the intersection of the asymptotesAxCx−BxDx

Ax+Cx−Bx−Dx

determines whether the points with value higher thanF (p) or
lower thanF (p) are connected. SinceAx +Cx−Bx−Dx is
always positive (by our choice of “cell rotation”) for smallx,
we must consider the sign ofAxCx−BxDx. Forx = 0, this



expression is0 sincep is a saddle point of the face. Comput-
ing the derivative ofAxCx − BxDx with respect tox at p,
i.e., for x = 0, which turns out to beC(A1 − A) + A(C1 −
C)−D(B1−B)−B(D1−D), one can determine whether
AxCx − BxDx is positive or negative abovep. If it is pos-
itive, the negative values are connected abovep. Otherwise,
if it is negative, the positive values are connected abovep. A
value of0 implies bilinear variation in the cube which is not
possible, since we have different values along edges. The fi-
nal criterion results from application of this idea to both cells
sharing the face. If the negative or positive values are con-
nected aroundp in both cubes, we have a saddle of the piece-
wise trilinear interpolant, otherwise we do not have a critical
point of the piecewise trilinear interpolant. �




