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Abstract

Explainable AI (XAI) aims to explain the behavior of opaque
AI systems, and in this way, increase their trustworthiness.
However, current XAI methods are explanatorily deficient. On
the one hand, “top-down” XAI methods allow for global and
local prediction, but rarely support targeted internal interven-
tions. On the other hand, “bottom-up” XAI methods may sup-
port such interventions, but rarely provide global behavioral
predictions. To overcome this limitation, we argue that XAI
should follow the lead of cognitive science in developing cog-
nitive models that simultaneously reproduce behavior and sup-
port interventions. Indeed, novel methods such as mechanistic
interpretability and causal abstraction analysis already reflect
cognitive modeling principles that are familiar from the expla-
nation of animal and human intelligence. As these methods
might serve as best practices for trustworthy AI, they deserve
closer philosophical scrutiny.
Keywords: Explainable AI; cognitive models; trustworthi-
ness; interventions

Introduction
Many recent milestones in Artificial Intelligence (AI) have
been achieved through the use of machine learning. Unfor-
tunately, many state-of-the-art AI systems are opaque: it is
difficult to know what they do, why they do what they do,
and how they work (Zednik, 2021). Among other draw-
backs, opacity undermines trustworthiness, which according
to EU AI Ethics guidelines requires that humans be able to
accurately describe and control AI systems’ behaviors (High-
Level Expert Group on AI, 2019). For example, banks seek-
ing to comply with principles of anti-discrimination are un-
likely to trust an algorithmic credit scoring application if they
cannot predict that it will treat women equally to men. Simi-
larly, vehicle manufacturers should not trust a vision module
for autonomous driving if they do not know how to intervene
on that module if it fails to reliably detect cyclists.

Where opacity is a problem, explainable AI (XAI) is often
considered a solution. Indeed, many different XAI methods
have been developed to answer questions about what AI sys-
tems actually do, why they do it, and how they work. Never-
theless, a closer look at the methodological principles govern-
ing these methods reveals that they are likely to fall short of
ensuring trustworthiness. Indeed, XAI methods traditionally
follow either one of two explanatory strategies, each of which
can be likened to longstanding research strategies in the study
of human and animal behavior, and each of which has charac-
teristic advantages and disadvantages. On the one hand, “top-

down” XAI methods that follow the basic logic of psycho-
logical explanation (see e.g. Rahwan et al., 2019; Taylor &
Taylor, 2021) may adequately describe an AI system’s overt
behavior, but typically fall short of providing insights into
the underlying processes or mechanisms that can be targeted
by systematic interventions. On the other hand, “bottom-up”
methods that adopt the logic of neuroscientific investigation
(see e.g. Olah, Mordvintsev, & Schubert, 2017; Lam, 2022)
focus on describing causal and computational structures at the
level of layers, nodes, or learned representations, but mostly
fail to account for AI systems’ global behavior in real-world
contexts. Insofar as trust in AI technology is grounded in an
ability to describe and control its behavior, traditional XAI
methods provide insufficient grounds for trust.

In this contribution, we advance the idea that, in order to
adequately promote trustworthiness, explainable AI should
adopt a dually constrained explanatory strategy familiar from
cognitive science. This strategy centers on the development
of cognitive models (Busemeyer & Diederich, 2010): abstract
mathematical or computational representations of the cogni-
tive processes that are realized in a system’s physical hard-
ware and that are causally responsible for that system’s be-
havior. As such, cognitive models are constrained by behav-
ior “from above” and by causal structures “from below”, and
are for this reason able to simultaneously reproduce behavior
and to support systematic and targeted interventions. While
current XAI methods typically either reproduce behavior or
support interventions, explanations that center on cognitive
models are capable of doing both.

More specifically, the goals of this contribution are three-
fold. First, we argue that current XAI methods insufficiently
promote trustworthiness because they are either “top-down”
or “bottom-up”. Second, we argue that a unified explana-
tory strategy grounded in cognitive modeling may be better
suited to promoting trustworthiness because it simultaneously
allows for reproduction of behavior and support for interven-
tion. Finally, we introduce two very recent XAI methods—
mechanistic interpretability (Elhage et al., 2021) and causal
abstraction analysis (Geiger, Lu, Icard, & Potts, 2021)—and
argue that these methods may be promising first examples of
cognitive modeling in explainable AI.
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State-of-the-art XAI is explanatorily deficient
Explainable AI aims to explain the behavior of opaque AI
systems using mathematical and computational methods. In
this section, we will classify XAI methods into two broad
groups, distinguished by their basic logic or strategy: XAI
methods that follow a “top-down” explanatory strategy that
broadly resembles methods from cognitive psychology, ver-
sus those that follow a “bottom-up” explanatory strategy that
follows the logic of neuroscientific investigation. While it
is not possible to provide a comprehensive review of XAI
methods, we will provide an illustrative example for each
group and identify the general advantages and disadvantages
of each.

Artificial Psychology: “Top-down” XAI
One way to explain an AI system’s behavior is to take a “top-
down” approach that bears methodological resemblance to
the basic logic of cognitive psychology (for discussion, see
Rahwan et al., 2019; Taylor & Taylor, 2021). The starting
point of this approach is to observe a particular AI system’s
local behavior in a specific experimental setting, or its global
behavior over a wide range of contexts. For instance, one
could study a visual classifier’s local behavior by describing
the effect of perturbations on its classification performance,
or its global behavior for an entire dataset by keeping track of
those instances for which its classification is incorrect. Then,
in a direct parallel to many scientific investigations of human
and animal behavior, a mathematical or computational model
is constructed to adequately reproduce the observed behavior
(description) and predict future behavior (prediction).

One well-known “top-down” XAI method is Local In-
terpretable Model-Agnostic Explanation (LIME, Ribeiro,
Singh, & Guestrin, 2016). LIME aims to determine the fea-
tures of an input that have a particularly high effect on the
system’s output. That is, the goal is to determine why the
system returned a particular output by analyzing which input
features would have changed its prediction. While the deci-
sion boundary of the original system is likely to be nonlinear,
the assumption is that it can be locally approximated as a lin-
ear function near a single data point. As this linear approx-
imation is much simpler than the original nonlinear decision
boundary, it can be used to infer how the output would have
been different for small perturbations in the input. In this
way, LIME adequately describes local system behavior by
constructing a simpler surrogate model that reproduces the
important aspects of the AI system’s behavior.

While LIME reproduces a system’s local behavior for in-
dividual inputs, other “top-down” XAI methods approximate
global behavior for all inputs. For example, tree-extraction
methods (Wu et al., 2018) use a system’s global input/output
behavior to train a decision tree that adequately reproduces
this behavior. Insofar as the decision tree is likely to be
smaller and simpler than the original system–e.g. a deep neu-
ral network–this method can be used to develop a surrogate
model that approximates the original system’s global behav-

ior to an arbitrary degree of precision, but that requires less
computational resources to run.

LIME, tree-extraction, and other “top-down” XAI methods
describe and predict AI systems’ behaviors by constructing
simplified models that reproduce these systems’ observed be-
haviors and predict unobserved behaviors. In cognitive psy-
chology, analogous “top-down” methods are traditionally de-
ployed because the underlying processes or mechanisms are
unknown and cannot easily be studied. Relatedly, in artifi-
cial intelligence these methods are helpful because they can
be used to describe the behavior of systems whose imple-
mentation is particularly complex or unavailable to the public
(Burrell, 2016).

Despite these advantages, “top-down” XAI methods are
explanatorily deficient in light of the demands posed by trust-
worthiness. While these methods may succeed at describ-
ing and predicting a system’s behavior, there is no guaran-
tee that the internal structure of the model actually reflects
the causally-relevant features of the original system. While
methods like LIME and tree-extraction might provide plau-
sible “explanatory stories” that fit the behavioral data (e.g.
by indicating that the presence of pointy ears is important for
classifying an image as “cat”), there is no guarantee that these
stories are actually true (e.g. the system internally represents
the presence of pointy ears and deploys that representation
to classify an image as a cat, as opposed to doing something
else). As such, while “top-down” methods successfully pre-
dict and reproduce behavior, they do not typically allow for
the application of surgical interventions on the system’s in-
ternal elements. That is, “top-down” XAI methods do not
typically identify causally-relevant structures within the sys-
tem–such as nodes or other representational structures–that
could be targeted by interventions so as to change the sys-
tem’s behavior.

Artificial Neuroscience: “Bottom-up” XAI
While “top-down” XAI methods take an AI system’s be-
havior as the starting point, “bottom-up” XAI methods fo-
cus on the processing within the system. This general ap-
proach is familiar from neuroscience, in which various meth-
ods such as single-cell recording or fMRI imaging are used
to identify and describe the neural structures and functions
that contribute to a particular behavioral or cognitive capacity
(Bechtel, 2007). Similarly, “bottom-up” XAI methods study
particular elements of the AI system (e.g. a network’s unit ac-
tivations or connection weights) and try to characterize how
these components contribute to the behavior of the system as
a whole. Similar to the way in which neuroscience might in-
vestigate the way in which the spike pattern of a particular
neuron might contribute to e.g. visual perception, “bottom-
up” XAI methods determine which role particular elements
of the network play in its overt behavior (for discussion, see
e.g. Lam, 2022).

A notable example of “bottom-up” XAI is feature opti-
mization (Olah et al., 2017). Feature optimization focuses
on a particular element of an AI system, such as an individ-
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ual node or layer, and tries to determine what kind of input
this node is particularly sensitive to or activated by. This
is generally done by optimizing synthetic inputs, which are
more likely to lead to maximal activation than actual inputs
from the training set. In this way, one can develop a set of
images—in the case of a vision system—that allow us to infer
the kinds of input features the element in question “detects”.
Thus for example, Olah and colleagues identified nodes that
were sensitive to curves, and even so-called circuits–groups
of nodes–that detect dog heads.

The main advantage of “bottom-up” methods like feature
optimization is that they are frequently able to identify par-
ticular structures within a network that can be thought to de-
tect or represent recognizable features such as edges, ears, or
balls. As the focus is on actual structures within the network,
these methods could support targeted interventions: if a net-
work appears to be using a particular unit or layer to detect
a particular feature or object, it might be sufficient to sup-
press or promote the relevant unit activations to change the
system’s overall ability to classify certain kinds of images in
a predictable way.

Nevertheless, “bottom-up” methods like feature optimiza-
tion also fall short of satisfying the requirements for trust-
worthiness. One issue is that synthetic inputs generally have
limited naturalistic value and can be hard to interpret using an
everyday conceptual repertoire (Bau, Zhou, Khosla, Oliva, &
Torralba, 2017; Borowski et al., 2020). Moreover, feature op-
timization generally focuses on single nodes or small groups
of nodes. While these structures can be thought to detect par-
ticular input features, feature optimization does not provide
insight into how these nodes interact with other nodes in the
system to drive the network’s overall behavior. That is, while
feature optimization might suggest that activity in a partic-
ular node correlates with the presence of pointy ears in cats,
this does not guarantee that this particular node actually plays
a causal role in the prediction of “cat”. As such, “bottom-
up” methods like feature optimization fall short of predicting
global system behavior; at most, these methods can be used
to describe and influence a system’s responses to the pres-
ence or absence of very specific features. While these meth-
ods therefore support interventions to a limited extent, it re-
mains unclear how useful such limited interventions are for
controlling AI systems’ behaviors in complex and dynamic
real-world environments.

Cognitive modeling as an explanatory strategy
As shown in the previous section, current XAI methods pro-
vide insufficient grounds for trust. On the one hand, “top-
down” methods describe and predict behavior, but do not sup-
port surgical interventions that allow us to modify that behav-
ior. On the other hand, “bottom-up” methods promise to sup-
port such interventions, but have limited ability to reproduce
global behavior. Insofar as trust requires a combination of
prediction and intervention, there is a need for better expla-
nation.

In section 4 below, we will propose that explainable AI
might take inspiration from one of the main explanatory
strategies of cognitive science, centering on the development
of cognitive models. Cognitive models are scientific repre-
sentations of cognitive processes.1 That is, they represent the
“mental” structures and functions that contribute to a partic-
ular behavior or that underlie a particular cognitive capacity
at an algorithmic level of analysis (Marr, 1982). Of course,
there is much mystery, and thus little agreement, about what
these structures and functions are actually like. Although
there is no need to be overly specific, it will suffice to as-
sume that cognitive processes are realized or implemented in
neural “hardware”, and that they can be likened to the “soft-
ware” that governs the causal processes that eventually give
rise to some observed behavior or capacity (figure 1).

Figure 1: A schematic overview of cognitive modeling.
Cognitive models represent cognitive processes. In doing so,
they reproduce overt behavior, and are plausibly realized in
physical hardware. Investigators may infer the structure of
cognitive processes (and thus, decide on the structure of a
cognitive model) from the “top down”, by focusing on behav-
ior, or from the “bottom up”, by focusing on the hardware.

Most cognitive models take the form of mathematical or
computational descriptions that represent the relevant cogni-
tive processes (Busemeyer & Diederich, 2010). This kind of
representation has numerous advantages. For one, it allows
the model to be implemented on a digital computer, and for
its behavior to be simulated so as to derive quantitative as well
as qualitative predictions. For another, it allows investigators
to easily intervene on the model, e.g. by modifying the value
of a parameter, or by changing a specific architectural feature.
Finally, it is worth noting that certain mathematical or com-
putational descriptions may be considered more interpretable
than others, in the sense of being comparatively low in size
and complexity, and in the sense of containing structures or
functions that are meaningful to a human investigator. Al-

1This notion of ‘cognitive model’ in the sense of a model that is
used by scientists to explain cognitive or behavioral phenomena is
not to be confused with the notion of a ‘cognitive model’ (also often
called a ‘mental model’) in the sense of a mental representation that
drives a particular cognitive system’s behavior.
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though there is no general requirement that a cognitive model
be interpretable in this sense—indeed, many of the best cog-
nitive models, including many neural network models, are not
interpretable—interpretability does offer specific advantages
during model development and model operation.

Although the development of cognitive models remains
somewhat of an ill-understood “dark art” (Zednik & Jäkel,
2016), there are a number of rather general model-
development strategies that are worth highlighting in part be-
cause they may also be applied in the context of explain-
able AI. One common strategy, when confronted with the
challenge of explaining a particular behavior or capacity,
is to consider pre-existing engineering solutions for tasks
that resemble the behavior being explained. This strategy,
which Gerd Gigerenzer (1991) has previously called tools-
to-theories, involves postulating that an algorithm that has
been successfully deployed in engineering applications (e.g.
Monte Carlo sampling for estimating probability distribu-
tions, or the drift-diffusion method for decision-making) is
also a good description of a cognitive process. This strategy
culminates in efforts to identify traces of the algorithm’s ac-
tivity in neural “hardware”.

Another common model-development strategy is a divide-
and-conquer strategy which Robert Cummins (1985) has pre-
viously termed functional analysis: analyzing a complex ca-
pacity (such as language-learning) into simpler capacities
(such as learning of grammatical rules on the one hand and
learning of semantic relations on the other), and then repeat-
ing the analytic process for each one of the simpler capaci-
ties. The strategy completes when simple capacities can be
identified with the behavior of particular parts of a physical
system (e.g., neurons or columns in the brain). If such iden-
tification succeeds, functional analysis contributes to what is
commonly referred to as mechanistic explanation (Bechtel,
2007; Craver, 2007).

No matter how cognitive models are developed, the criti-
cal feature is that they are dually constrained. Whereas the
“top-down” and “bottom-up” XAI methods that represent the
current state-of-the-art focus on either behavioral data or the
underlying system, good cognitive models always take into
account both simultaneously. As a consequence, they are
not only capable of reproducing behavior (e.g. by way of
simulation on a digital computer), but also support system-
atic and surgical interventions (e.g. by way of modifying a
model component or parameter). By combining “top-down”
and “bottom-up” constraints, cognitive models can simulta-
neously ensure the reproduction of behavior and the support
for intervention.

Cognitive models of artificial intelligence?
Given that cognitive models have been successfully deployed
in cognitive science to explain the behavior of humans and
animals, the question is whether they might also be useful
for explaining the behavior of opaque AI systems. Although
there is no need to assume that artificial intelligence closely

resembles human or animal intelligence, it is apparent that
the explanatory task facing XAI is closely analogous to the
one facing cognitive science: explaining the behavior of high-
dimensional nonlinear systems that interact with, learn from,
and adapt to dynamic environments. Given that the task is
similar, it is natural to consider the possibility that the solu-
tion might be similar as well. Specifically, it is worth consid-
ering whether the explanations being delivered in explainable
AI can and should take the form of cognitive models.

In this section, we suggest that recent work on large lan-
guage models (LLMs) has in fact begun to adopt a cognitive
modeling approach. In particular, novel methods like mech-
anistic interpretability (MI, Elhage et al., 2021) and causal
abstraction analysis (CAA, Geiger et al., 2021) use familiar
model-development strategies to construct cognitive models
that are constrained from both directions, and as such, re-
construct behavior while also supporting interventions. In
contrast to more well-established XAI methods that deploy
either a “top-down” or “bottom-up” approach in isolation,
both mechanistic interpretability and causal abstraction anal-
ysis appear to do both simultaneously. Although it is unclear
whether the adoption of cognitive modeling principles is in-
tentional on the part of these methods’ developers, inspecting
them with these principles in mind can be helpful for bet-
ter evaluating their potential to promote the development of
trustworthy AI.

Mechanistic interpretability
Mechanistic interpretability (Elhage et al., 2021) is a novel
approach that has been used to explain the language-learning
ability of state-of-the-art LLMs. While the development of
this method was inspired by results from feature optimiza-
tion (Olah et al., 2017), it poses significant improvements in
terms of facilitating trustworthiness. Specifically, MI aims
to explain—in an interpretable way—the high-dimensional
function an AI system learns during training by analyzing this
problem into smaller component problems.

For example, to explain how LLMs perform next-word pre-
diction, mechanistic interpretability divides the problem into
smaller functional parts, such as in-context learning (figure
2). These smaller functional parts can then be identified with
particular structures in the network. That is, MI aims to local-
ize causally-relevant structures within the network and iden-
tify these with particular functional parts, i.e. aspects of the
model’s behavior. Notably, in this sense MI exemplifies the
functional analysis strategy for cognitive model-development
introduced above. Essential to the success of MI is the
assumption that the internal processing of an AI system—
consisting of e.g. its weights and activations—can be seg-
mented into (potentially human-interpretable) variables. If
this is indeed the case, particular behaviors of the network
can be explained by describing these variables and the opera-
tions applied to them.

Elhage and colleagues take exactly this approach to inves-
tigate in-context learning—the system’s ability to learn from
examples—as one component of a large language model’s
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ability to perform next-word prediction. To identify the struc-
tures responsible for in-context learning, Elhage and col-
leagues first analyze a toy example: the smallest possible net-
work that exhibits in-context learning. In this toy model, the
authors identify so-called induction heads that play a role in
performing the task. Specifically, when encountering a partic-
ular token A, induction heads “look back” into the text to find
previous occurrences of A as well as the token that follows it,
let’s call it B. Induction heads then increase the likelihood of
again predicting B in response to A. Finally, the authors show
that such induction heads not only occur in the toy model,
but also throughout the original LLM, thereby explaining the
occurrence of in-context learning in the original system.

Figure 2: A schematic overview of mechanistic inter-
pretability. First, a target behavior–such as next-token pre-
diction–is analyzed into simpler component behaviors–such
as in-context learning. Mechanistic interpretability then iden-
tifies particular structures in the network–in this case in-
duction heads–in which the component behaviors can be
localized. This instantiates the functional analysis model-
development strategy widely invoked in cognitive science.

In this example, the explanation achieved through MI
seems to both reproduce behavior and facilitate systematic
interventions. First, the authors show that the toy model re-
produces the target behavior—in-context learning—and iden-
tify the structure responsible for this behavior—induction
heads. Then, they verify that the presence of induction heads
is responsible for in-context learning in the original LLM,
amongst others by “knocking out” induction heads, which
is followed by a significant decrease in in-context learning.
This illustrates that MI in fact identifies particular causally-
relevant structures within the network, which can serve as
targets for systematic interventions.

An advantage of MI is that, like many traditional “top-
down” methods, it requires relatively little prior knowledge
about the internal processing of the system, as the analysis
and explanation start from the behavior of the target system
and only then try to identify internal structures responsible for
this behavior. Nevertheless, because it culminates in the iden-
tification of simple behavioral capacities localized in simple
structural parts, the method is unlike traditional “top-down”
methods in that it is likely to support systematic and targeted

interventions on those parts.
Nevertheless, MI faces challenges as well. One challenge

is that it is unclear to what extent functional parts of behav-
ior can be localized to specific structures in the model inter-
nals. For example, it might be that many layers are involved
in a particular aspect of behavior, in which case the explana-
tion would likely be hard to interpret. Moreover, it remains
unclear whether the identified structures provide appropriate
targets for effective and systematic interventions. While in-
tervention on e.g. induction heads might successfully change
behavior, there is also a risk that this could lead to catas-
trophic interference.

Causal abstraction analysis
Another promising novel method is causal abstraction anal-
ysis (Beckers & Halpern, 2019; Geiger et al., 2021). Origi-
nally, CAA was developed to explain complex behaviors and
phenomena that arise from systems that can be described at
multiple levels of abstraction. For example, human behavior
might be explained at the level of neuronal spike trains, or
alternatively at the level of folk-psychological concepts such
as beliefs and desires. At each of these levels, we can de-
velop a causal model of how different variables interact, for
example how a particular neuron affects the observed behav-
ior. The question CAA aims to answer is whether a high-level
causal model whose variables may for example represent “be-
liefs” and “desires” can be considered a faithful abstraction of
a low-level causal model, such as one that represents neural
activations (Beckers & Halpern, 2019).

More recently, CAA has been used specifically for XAI
(Geiger et al., 2021). In this context, a trained neural net-
work can be considered a low-level causal model. While this
low-level network describes the causal relationships between
variables—in this case nodes—these are generally hard to in-
terpret. One way to explain such a low-level system could be
to develop a high-level causal model that is a faithful abstrac-
tion of the original system, insofar as it contains the same
causal relationships, but that is simpler and potentially more
interpretable than the original system. Similar to MI, CAA
thus aims to “break down” the internal processing of a sys-
tem into high-level (and ideally, interpretable) causal vari-
ables that explain the observed behavior.

To this end, CAA starts with developing one or multiple
causal models that might reproduce the AI system’s behavior.
Although this often requires considerable ingenuity, depend-
ing on the target domain it might also be possible to refer
to prior theoretical and empirical knowledge and apply the
tools-to-theories strategy introduced above. Once a causal
model has been developed, the variables within this causal
model are mathematically “aligned”, generally through a
search, with the low-level learned variables in the target sys-
tem. The goal is thus to identify structures within the target
network that play the same causal role as the high-level vari-
ables in the causal model. Finally, interventions are applied
to the causal model and target network to verify that both ex-
hibit the same behavior.
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Consider a simple example by Geiger et al. (2021), who
aim to explain how a model might perform an arithmetic op-
eration: addition of three integers X , Y , and Z. One very
intuitive algorithm for solving this problem is to first add two
numbers, X and Y , and then add the sum S1 to Z, to come
up with the final answer S2 (figure 3). If the network applies
this algorithm, it should be possible to localize intermediate
encodings that correspond to e.g. S1 and Z. Given this hy-
pothesized model, the task is to align the internal representa-
tions of the target model—the trained neural network—with
the nodes of the causal model. If such an “alignment” can
be found–and an additional condition of similarity under in-
terventions is met–the causal model can be considered an ab-
straction of the low-level neural network. While the example
above is of course very simple, CAA was also used success-
fully to explain behavior related to, for example, natural lan-
guage inference (Geiger et al., 2021).

Figure 3: An example of an alignment between a neural
network (left) and a causal model (right). The locations L1
and L2 in the neural network are aligned, for example through
a search, to nodes S1 and W in the causal model.

The main strength of CAA is that it provides a relatively
simple model that both reproduces behavior and supports sys-
tematic interventions on the original model, through aligning
the variables with the simpler, causal model. Moreover, CAA
can, in principle, be applied to any network, provided that
one has access to its internal variables and parameters. Fi-
nally, CAA can be used to an arbitrary degree of precision,
depending on the level at which the explanatory causal model
is defined.

At the same time, it remains unclear whether CAA scales
up to increasingly large and complex AI systems. While it
is relatively simple to come up with candidate causal models
that explain the addition of three numbers, the scale and num-
ber of causal models that could explain more complex be-
havior like next-word prediction or in-context learning might
make this method infeasible in practice. That said, tools-to-
theories is known to be a useful guide for constraining the
”space” of possible models in cognitive science (Zednik &
Jäkel, 2016), and could play a similar role in explainable AI.

Conclusion
To summarize, explainable AI could benefit from taking in-
spiration from the predominant explanatory strategy in cog-
nitive science. By developing cognitive models to explain
the behavior of opaque AI systems, explainable AI can si-

multaneously facilitate the reproduction of those systems’ be-
haviors and support internal interventions to systematically
modify those behaviors. While traditional XAI methods are
explanatorily deficient in the sense of falling short of the re-
quirements for trustworthiness—they either do not reproduce
behavior or do not provide support for interventions—we
argued that two novel methods—mechanistic interpretabil-
ity and causal abstraction analysis—seem to be adopting a
cognitive modeling strategy. Thus, these kinds of strategies,
grounded in basic cognitive modeling principles, seem more
amenable to ensuring that AI can be trusted.

That said, given that MI and CAA are both very novel
methods, some practical challenges remain. For example, it
remains an open question whether these methods will scale
to large models (e.g. increasingly large LLMs), and whether
the provided explanations are sufficient for systematic inter-
ventions that can change behavior at a global scale. As such,
further methodological and philosophical scrutiny is still nec-
essary to further develop and improve these methods. Even
if the connection to cognitive modeling principles is uninten-
tional, these principles provide a revealing lens with which to
better understand these methods’ explanatory logic, and with
which to better evaluate their promise for explainable AI.
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