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SUMMARY

This paper studies the containment control problem for multi-agent systems consisting of multiple leaders and
followers connected as a network. The objective is to design control protocols so that the leaders will converge
to a certain desired formation while the followers converge to the convex hull of the leaders. A novel protocol is
proposed by exploiting the control input information of neighbors. Both continuous-time and discrete-time
systems are considered. For continuous-time systems, it is proved that the protocol is robust to any constant
delays of the neighbors’ control inputs. For discrete-time systems, a sufficient condition on the feedback gain
for the containment control is given in terms of the time delay and graph information. Some numerical
examples are given to demonstrate the results. Copyright © 2013 John Wiley & Sons, Ltd.

Received 21 November 2012; Revised 16 April 2013; Accepted 26 April 2013

KEY WORDS: containment control; multi-agent system; cooperative control; time delay

1. INTRODUCTION

The consensus problem for multi-agent systems has gained more and more attentions in recent years
[1-3]. The problem is widely encountered in the real world, for example, in distributed computation,
flocking, formation flight, and traffic congestion control.

For the distributed consensus problem, we need to design a local control protocol for each agent
such that the states of all the agents converge to a common value based on the information of the
agent itself and that of its neighbors. The consensus problem can be classified into leader-following
consensus and leaderless consensus. In the leader-following consensus, there is one single leader
agent that does not have access to any information of other agents. All the other agents have to fol-
low the leader agent and finally converge to the leader by locally exchanging information through the
network (see [1,4-8] for reference). In [1], the consensus on the heading angles based on the Vicsek
model [9] is studied for both leaderless and leader-following cases. For second-order multi-agent
systems, if the velocity of the leader is not available to one or more followers, an observer-based pro-
tocol is proposed in [4]. Peng and Yang [5] consider the leader-following problem for multi-agent
systems with a dynamic leader and communication delays. For multi-agent systems with general
linear dynamics, the leader-following problem is investigated in [6]. In [7], measurement noises are
considered in communication channels. A consensus protocol that can maintain the communication
connectivity is studied in [8].

The containment control problem where a collection of agents is to be driven to a certain com-
pact set [10], has recently attracted much interest. The containment control may be considered as
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a leader-following problem with multiple leaders. The leaders may be connected to form a certain
geometric formation. All the follower agents are to be controlled to converge to the convex hull of
the leaders [11]. One motivation of this problem is to ensure that a collection of autonomous robots
does not venture into hazardous areas. As such, some virtual/actual leaders are introduced to guide
the robots to move around safe areas. Other motivations include distributed sensor localization [12].
In [13], it is shown that the followers asymptotically converge to the convex hull of the leaders if
the graph is connected. When the followers cannot connect with the leaders all the time, the con-
tainment problem is considered in [14]. On the basis of the convex analysis, Shi and Hong in [15]
study target aggregation of nonlinear multi-agent systems under switching topologies. They show
that if the communication graph is jointly connected, then all the agents will converge to a convex
set. A finite-time containment controller that involves a signum function is proposed in [16], which,
however, may encounter the chattering problem in the implementation of the algorithm. When the
communication links are randomly switching, a second-order multi-agent system guided by mul-
tiple leaders is studied in [17]. A distributed containment control protocol is proposed such that
all the agents almost surely asymptotically converge to the static convex leader set. By introduc-
ing the notions of set input-to-state stability and set integral input-to-state stability, necessary and
sufficient conditions on the connectivity are provided in [18] for containment tracking with moving
leaders. For multi-agent systems with general linear dynamics, the containment problem has been
investigated in [19].

In this paper, we consider the two-level containment control problem where the leaders will
cooperate with each other to achieve certain formation while the followers are to be driven to
the convex hull of the leaders. We note that in the single leader case, there are advantages in
exploiting the neighbors’ control input information in the protocol design [20]. For example, it
has been shown in [20] that speed of convergence can be selected arbitrarily, independently of
the graph topology. Moreover, the consensus performance with respect to a certain quadratic per-
formance index is improved. In many distributed control systems, for example, Unmanned Aerial
Vehicle (UAV) formation control, the relative state information can be obtained by on-board sensors
such as laser scanner and camera, whereas the control input information of neighbors need to be
communicated through wireless transmission channels that suffer from time delays. On the other
hand, the calculation of the protocol with exploiting the neighbors’ control inputs depends on each
other, which makes the protocol not implementable. To address these problems, only delayed neigh-
bors’ control input information will be considered in the proposed protocol. In this paper, we shall
extend the delayed neighbors’ control input-based protocol into the containment control problem
for multi-agent systems with both continuous-time and discrete-time dynamics. We show that in the
continuous setting, all the agents will converge into the convex hull of the leaders asymptotically
for any time delay in the neighbors’ control inputs, whereas in the discrete-time setting, a sufficient
condition on the feedback gain is derived to guarantee the containment of the agents by the multiple
leaders.

Before closing this section, some notations should be introduced. R (respectively R”, R™*")
denotes the set of real numbers (respectively n-dimensional real vectors, m x n real matrices). /A
means the set of positive integers and Z* = Z* U {0}. Given A € R™", A"/ means the ele-
ment on the ith row and jth column of A. We use col{xy, x3,...,x,} and diag{xy, x2,...,X,} to
denote a column vector and a diagonal matrix formed by xi, x5, ..., X,, respectively. 1, denotes
the n-dimensional column vector with all elements of 1. R(-) means the real component of a
complex number.

Let Z ={z1,..., 2%} be a finite set in R. The convex hull of Z, denoted by co(Z), is defined as
co(Z) = {Zf-;l Aizi | Zle Ai = 1, A; = 0}. dist(x, S) means the distance from x € R” to the
set S € R” in the sense of Euclidean norm, that is,

dist(x,S) = inf ||x — y|2.
yeS

2. PRELIMINARIES AND ASSUMPTIONS

In this section, some definitions and assumptions in graph theory are reviewed.
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A directed graph, denoted by G, with node set V(G) and edge set £(G) € V x V), is often used to
model communications among agents. For convenience, we define V = {1,2,..., N}, where N is
the number of nodes. For any pair (i, j) € £(G), i is called parent node whose information is trans-
mitted to agent j . The set of neighbors of node i is denotedby N; ={j | j €V, (j,i) € £(G)}. We
denote by a; ; = 0 the weighting on the edge (j,i). a; j > Oifand only if j € N;. If a; j = aj;,
the corresponding graph is called undirected graph. Usually, we use the triplet {), £, A} to describe
a graph G, where A € RN N s the adjacency matrix associated with G and Vi, j € V, AT = ai j.

We call d; 2 > jey @i,j the in-degree of node i. The Laplacian matrix L of the graph § is defined
as follows:
Lig A { —aij, 1 F],
di, i = J-

In this paper, we assume that the agents can be classified into two groups, leader agents and fol-
lower agents. The leaders will not receive any information from the followers, and the followers
will be controlled on the basis of local information to cooperate with the leaders. We consider N
agents with n leaders and ny = N — n) followers. We assume that n) satisfies 1 < n; < N, which
implies that there are multiple leaders and at least one follower. Moreover, the followers connect
with each other via an undirected graph. Without loss of generality, the followers are labeled as the
first n¢ agents, that is, Vi = {1,2, ..., n¢} with Vy as the node set of the followers. The node set of

the leaders is denoted by V = {n¢+ 1,..., N}. Itis clear that Vy UV, =V and Vy N V| = @. Then,
the adjacency matrix A and Laplacian matrix L can be partitioned in the following way

_ Af A1 _ L¢ —A1
A_|:0 0 ]’L_[O 0 ]’ M

where
Lf = Df — Af, Df = diag{dl, ey dnf}. (2)

Ap € R"™" reflects the communication topology of the followers, 4; € R*™" reflects how the
followers connect to the leaders. Specifically, if Ai’J > 0, agent i is connected to leader ;.

We say that a graph has a united spanning tree if for any one of the followers, there exists at
least one leader that has a directed path to that follower [21]. In this paper, we assume that the
communication graph has a united spanning tree.

3. PROBLEM STATEMENT

We consider each agent with the following dynamics
Xi(t)=u;(t),i=1,...,N, 3)

where x; € R and u; € R are, respectively, the state and the input of agent i. Two cases are studied.
First is that all the leaders are stationary, that is, u; = 0, i € V. Second is that the leaders are con-
trolled to reach a desired formation. In this case, the topology of the leaders is assumed to contain a
spanning tree. In both cases, the control inputs of the followers can be designed with access to only
local information such as their own state and the states of the neighboring agents to make sure that
the followers are asymptotically contained in the convex hull of the leaders, that is, Vi € V¢,

lim dist(x;(z),co{x;(t),j € Vi}) =0.
1—>00
Two protocols of the followers are given as follows:

wi(®)= 2 =y Y a sl — 51+ Y a0 7 € Vi @

JEV JEVs
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ui(0) = =23 g b0 = x, (). €V &)

Ljey

where d; is the in-degree of agent i, and y > 0 is a constant. Protocol (5) can be found in [22-24]
and others. Protocol (4) is an extension of the leader-following consensus protocol in [3,20].

Under protocol (4), the combined system of the followers can be written into the following
compact form

X(t) = —yDi ' [LiXe(t) — AX)] + Dy ' AXi (o), (6)
where
Xe(t) = col{xi(t), ..., xn ()}, X1 =col{xXp;41,.... XN} @)
After mathematical manipulation, system (6) can be simplified as
Xi(t) = —yXe(t) + yLi ' A X, ®)

In (8), we use the fact that Ly is positive definite if the communication graph has a united spanning
tree. From (8), it is shown that if X;() converges, lim;—o0 X¢(1) = Ly ' A4;X), where L7 14 is a
nonnegative matrix. According to the definition of L, we have 4,1,, = L¢l,,. Note that

L' A, = LY (All,) = L (Lely,,) = 1,

which means that the row sums of nonnegative matrix L; ! 4; are equal to 1. Hence, the steady states
of the followers lie in the convex hull of the leaders. From (8), we can see that the convergence rate
of the multi-agent system depends only on y. Therefore, we can choose the convergence rate without
the information of the network. By contrast, when protocol (5) is applied, the closed-loop system of
the followers becomes

Xi(t) = —yD; LeXi(t) + yDy P AL X,

and the convergence rate of the multi-agent system depends on not only y but also the network
connection. Furthermore, in [20], it has been proved that given a certain quadratic cost function,
protocol (4) can lead to a better performance. This can be understood as that protocol (4) contains
more information, that is, neighbors’ control inputs.

It should be noted that protocol (4) is not implementable because the control inputs are coupled;
that is, the control inputs depend on each other and none of them can be figured out. On the other
hand, in many practical systems such as UAV formation control, the relative position can be directly
obtained, but the control input information of neighbors needs to be communicated through wireless
channels. In this case, communication delay is unavoidable during the transmission. In the rest of
the paper, we shall solve this implementation problem and provide stability analysis for stationary
leaders and dynamically moving leaders. Parallel results for discrete-time systems are also provided.

4. CONTAINMENT CONTROLLER DESIGN AND STABILITY ANALYSIS

4.1. Containment control for continuous-time systems

We study multi-agent systems with each agent being single integrator dynamics (3). We first con-
sider that all the leaders are stationary. Later, we shall provide the result for two-level control, which
means to control the leaders to form a formation meanwhile to control the followers to asymptot-
ically converge into the convex hull formed by the leaders. As is analyzed in the last section, we
prefer protocol (4) to (5). To make the protocol more practical, we consider a protocol based on (4)
by replacing the second term with an outdated one, that is,

w0 = 2~y Y a0~ O+ Y au -0 b i ©)

JEV JEVr



CONTAINMENT CONTROL OF MULTI-AGENT SYSTEMS

Protocol (9) is expected to approximate (4) when t approaches 0. Then, we have the following
result.

Theorem 4.1
For multi-agent systems (3), if the communication topology G contains a united spanning tree, then
the followers with protocol (9) are asymptotically contained in co{x;(0), j € V}} for any 7 > 0.

Before proving the result, the following lemma is needed.

Lemma 4.1
Given Ar and Dy defined in (1) and (2), we denote the eigenvalues of Dy LAy by wi, 1 € Vy. If the
communication graph G contains a united spanning tree, we have

—l<pui<l,ielV (10)

Proof
Define

p :|: I, 0 i|ER(nf+l)xN, D =|: l())f (1) :| € R+ DX(+1).

It can be verified that

L&

D_IPLP’=|: I—=Di'4; | b }

0 \ 0
is a valid Laplacian matrix, where L is the Laplacian matrix of graph G, b = D, 1 4,1,,. Denote by

G the graph corresponding to Laplacian matrix L. Note that graph G that contains a united spanning
tree is equivalent to graph G that contains a spanning tree. Then, by recalling [25], we can see that

= Df_lAf b
I_L_[ 0 1}

is a stochastic indecomposable and aperiodic matrix. According to [1], it follows that all of the
eigenvalues of D! Ay lie strictly inside the unit disk. On the other hand, thanks to the undirected

connection of the followers, we know that A¢ and D, Y 2Afo_ 12 are symmetric matrices. Because
D! Ay is similar to Df_l/zAfo_l/z, all the eigenvalues of Dy ! Ay are real, which implies (10). O

Now, we are in the position to prove Theorem 4.1.

Proof
Define
Xi(1) = Xi(t) — L7 ' A1 X, (11)
Then, we obtain
Xe(t) = DY AsXi(t — 1) — y D7 P Le Xi(2). (12)

It is obvious that the containment control problem is solved if system (12) is asymptotically stable.
Define Fy = —yD; U Fi = D¢ ! A;. We can obtain the following conditions that guarantee the
stability of system (12) by [26]:

(1) det[I — Fie?] #0, V0 € [0,27],

(2) Re (A [(I — F))"'Fy]) <0,

(3) det[wy(I — Fie'®) — Fo] #0, Yy e R/{0}, V6 € [0,27],

where 1 = +/—1.
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By Lemma 4.1, we know that condition 1 is satisfied.
(I = F1)"'Fo=—y(I = D; ' A) ' D' Ly = —y(Ds — Ap) "' Ly ==y,
which implies the satisfaction of condition 2. Now, we consider condition 3. We write
(I — Fre'®) — Fo = 1y[I — D; ' Ag(cos 6 + tsin 0)] + yD; ! Lg
=yl —yD; ' A; 4+ yD; ' Agsin @ 4 1y (I — D7 Agcos 9).
Then, condition 3 is equivalent to that
y—ypi + yuisind +1y(1 —pjcosh) #0, i €y (13)

From (10), we know that the imaginary part in (13) cannot go to 0, which verifies the third condition.

Therefore, system (12) is stable, which implies lim;_, o X t(t) = 0. Denote by e; a row vector with
the ith entry being 1 and the rest of the entries being 0. Because L; ! 4 is a stochastic matrix, one
has e; X(1) = x; (1) and ¢; L; ' A1 X € co{x;(t), j € V}}. Then, we have

lim dist(x; (¢),co{x;, j € V1}) < lim dist(e; X;(t), e; L7 ' A1 X7)
—>00 —>00
+ lim dist(e; Ly ' A1 Xy, cofx;, j € Vi})
—>00
= lim [ei %],
=0,

which implies that all the followers are in the convex hull of the leaders asymptotically. O

Next, we shall consider dynamically moving leaders. In this case, all the leaders are connected as
a network that is assumed to contain a spanning tree. They are controlled to form a given formation
while moving along a direction with a same speed. To be specific, we assume that each leader is
with the following dynamics

() =ui(0) =ne Y aij[(c;(0) = hj) = (i) =h)] + v, i €W, (14)

JEVI

where a; ; > 0 when leader i can receive information from leader j and a; ; = 0 otherwise; 7. > 0
is the control gain; h;, i € V), are the formation information of the leaders; v is a given common
velocity of the leaders. Denote by L, the Laplacian matrix of the network formed by all the leaders,
which is defined in Section 2. Then, we have

Xi(1) = —ne Li(X\(1) — H) + v, (15)
where X is defined in (7),
H =COl{hnf+1,...,hN}. (16)

Denote by £ satisfying £'1,, = 1 the left eigenvector of L; corresponding to eigenvalue 0 and define
Xi(t) = Xi(t) — H — vt1,,. Then, according to (15), we have

Xi(t) = —ne LiXi(0), (17)
where we have applied the fact that L,1,, = 0. The solution of (17) can be written as
Xi(t) = &' X1(0)1,,, + O(e™ 42", (18)

where A, is the eigenvalue of L, with the second smallest real part. Because the graph of the leaders
contains a spanning tree, we have R(A,) > 0. Then, (18) implies

Jim i (1) = hy — vt — £X(0)] =0,



CONTAINMENT CONTROL OF MULTI-AGENT SYSTEMS

which means that the leaders finally converge to the desired formation while moving with the same
speed v. Then, we arrive at that

Xi(t) = Xi(t — 1) = Xi(t) — Xi(t —7) = O(e"*2"), (19)

Now, we are in the position to propose the control protocol for dynamically moving leaders case.

1
wi(t) = — 3=y Y aijlxi(@) —x; O+ ) _aijujt—7)p, i€k (20)

di jev jev
Different from (9), the leaders’ control information is included in protocol (20). The result is given

as follows.

Theorem 4.2

For multi-agent systems (3) with multiple moving leaders satisfying (14), if the communication
topology contains a united spanning tree, then the followers with protocol (20) are asymptotically
contained in co{x;(¢), j € W} for any v > 0.

Proof
According to protocol (20), we have the following closed-loop system

X¢(t) = yD; [—LeXe(t) + AiXi(1)] + Dy ' AeXe(t — ©) + Dy P A Xt — 7).
By introducing X:(t) defined in (11), we have
Xi(t) = —yDy ' LiXi(t) + Dy ' AeXi(t — 1) + Dy VALY A X0 (0 — 1) + Dy ' A X (0 — 1)
— L7 A X (1) (21)
= —yD ' LiX¢(t) + Dy ' AcXi(t — 1) + e (1),
where e.(t) = Lf_lA][Xl (t — 1) — X)(1)] that is O(e"<*2") according to (19). In (21), we use the
fact Dy YA(L7YA; = (I — Dy 'Ly)L;7' Ay = L7'A) — D' A;. Therefore, there exists a constant
C; > 0 such that ||ec(¢)]|» < Cre A2t
Define the Hilbert space H = R”" x L,{—t,0;R"™}, with the obvious inner product, where

Lo{—7,0; R"} denotes a square integrable vector function over [—t,0]. A semigroup S(-) over
space H based on system (12) is introduced, which is defined as

X (1) =S()X(0),

where X(1) 2 (Xi(t), X¢(t + v)) € H, v € [7,0]. It can be checked that S is differentiable, and
the corresponding infinitesimal generator A is given as

A(w,z) = (—yDi ' Liw + Dyt Aezo (1), 24),

where z,,(—1) 2 % |y=—r. By recalling [27], the type of S is given as follows:

w(S) = inf M — lim In[|S@)|| .

>0 t t—o00 t

In the proof of Theorem 4.1, we know that system (12) is stable, which implies that @ < 0. There
exists a constant C, > 0 such that

IS@)] < C2e®".
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Let ¢ (t) = (ec(t),0) € H. Then, according to (21), we have

IX®I = ”S(Z)X(O) +/0 S(t —s)p(s)ds

< [SONxXO)] + /0 IS =) ¢s)] ds

t
< Coe® || X (0) || +/ Cre®=9 Ce P25 g5
0

Wl _p—nNc Aot

vty @+ ncA2 #0,

_ ) Gt | X(O)]| + C1C#

C2e?" | X (0)]| + C1 Cae®'t, w+nechy =0,
which implies that lim;_, o X ¢(2) = 0. The rest of the proof follows from the same line of arguments
as that of Theorem 4.1. |

Remark 4.1

Note that the calculation of the protocol with exploiting the neighbors’ control inputs depends on
each other, which makes protocol (4) not implementable. On the other hand, in many practical
systems, the relative state information can be directly obtained, but the control input information
of neighbors needs to be communicated through wireless channels with time delays. To overcome
these problems, delayed neighbors’ control input information instead of the instantaneous one is
applied in the protocol. Theorems 4.1 and 4.2 show that the convergence can be guaranteed for any
7> 0.

Remark 4.2

The dynamically moving leaders case has also been considered in [23] and [18]. In [18], the leaders
are assumed to move with limited velocities. The containment tracking error is given in terms of the
upper bound of the leaders’ velocity and transmission disturbances. Different from [18], our focus
is on developing a new protocol and proving the convergence and robustness to the time delay t.

4.2. Containment control for discrete-time systems

In this section, we consider the agents with the following first-order discrete-time systems
xi(k+1) =x;(k)+uj(k), i eVy, keZ™ (22)

Similar to the continuous-time case, the control objective is

klim dist(x; (k),co{x;(k), j e Vi}) =0.
—00

We first assume that the leaders are stationary, that is, x; (k) = x;(0), i € V. The following protocol
is proposed

ui ) = — | —y Y aijlxi)—x; 01+ Y aijujk—) ¢, i €V, (23)

d : .
JEY JEV:

where y > 0 is the feedback gain to be designed, and T € Z™ is the time delay. Here, T is strictly
positive because the neighbors’ control input information u j (k) is not available at time instant k.
Next, given time delay 7, we need to find the condition of y such that the follower is contained in
the leaders’ convex hull asymptotically. Denote

:2u(1—(1—9)’)
0((1—6)"—p)’

(24)
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where 0 is any number satisfying 6 € (0,1 — /i), and p = max{|p1|,...,|tn|} and p;, i € V¢
are eigenvalues of D} 1 A¢. From Lemma 4.1, we know that < 1, which implies M > 0. Then, we
have the following result.

Theorem 4.3
For multi-agent systems (22) with the communication topology containing a united spanning tree,
the control protocol (23) with

16 ll—u} 03)

y<min{—, -, ———
M 2 tl1+pu

guarantees that the followers converge to the convex hull of the leaders for any initial conditions.

Proof
By substituting (23) into (22), the closed-loop system can be written in the following compact form

Xi(k + 1) = X¢(k) — yDi ' (LeXi(k) = A1X0) + D AeXe(k — 7+ 1) = Di ' ArXe(k — 0),
where Xr and Xj are defined in (7). By introducing
Xe(k) = Xe(k) — L7 AiX, (26)
we have
Xi(k + 1) = (I —yD; L) Xp(k) + D7 A Xi(k — © + 1) — D7 ApXi(k — 7). (27)
We can find an invertible matrix T such that D' Ay = T~1AT, where A = diag{it1, ..., in,}-

Then, we introduce a linear transformation T)Zf = col{Xy,..., X }. Realizing that DS e =
I — D; ! Ay, system (27) can be decoupled in the following way
Xik+)=0—-y(Q—=pu))xitk)+ pixitk —t+ 1) —puixi(k — 1), i €V (28)

What remains is to derive the condition on y to guarantee the stability of system (28). However, (28)
is a multiple-delay system, and the stability of which is difficult to be analyzed. Motivated by [28],
we introduce the following auxiliary systems

Ki(k +1) = a(k)x; (k) + fi (k). (29)
fitky="" B, (k) fi(k = j). (30)
j=1

By comparing the coefficients of (28)—(30), one has the following relationships:
(1) Whent =1,

a(k) + pi(k) =1+ i —y(1 — i), (3D
ke = D () = . (32)

(2) When t > 1,
a(k) + pr(k) =1—y(1 — i), (33)

a(k —=1)B1(k) — pa(k) =0, (34)

alk =7 +2)Br2(k) = Br—1(k) =0, (35)
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alk —t+ 1)Br—1(k) — B (k) = — i, (36)

a(k — ) (k) = pi. (37)

Equations (34) and (35) are ignored in case 2 when 7 = 2. There are infinite number of ways to

decompose system (28) into (29) and(30). However, once the initial conditions of o are determined,

the decomposition is fixed. Define Ay (k) = a(k) — (1 — y). We choose the initial conditions of «
in the following way

a(k)eC(M,y) 2 {a(k) eR:|Ag(k)| S My?}, k=—1,...,—1, (38)

where M is defined in (24). Now, we are going to prove a(k) € C(M, y) for all k € Z* by induction.
On the basis of (31)—(37), we have

a(k) =1-y( =) + (O _y )" @tk —1) = 1),

where 1'[;’"_]. =a()a(i—1)...a(j), i = j.Givenk € ZT, we assume a(k — j) € C(M, y), that is,
|[Ag(k — j)| < My?, j =1,..., 7 that holds when k = 0 in light of (38). Then, we can calculate
the upper bound of |Ag (k)].

[Aa ()l = i [y + (M_ )™ =y + Aalk —1))]
< Miﬂ(H%kafr)_l — 1+ w (Hszkfr)_l |[Ag(k — 1)

1—0)""—1 _
Suiy(y+My2)%+m (1-6)"My?
1—60)"—1 _
$21w2%+m (1-0)"" My?
< My?,

which leads to a(k) € C(M,y). The second inequality is due to (25) that guarantees y + My? <
2y < 0. The last inequality is due to the definition of M in (24). By induction, we can see that
Vk € ZF, |Ag (k)| < My?, thatis, a(k) € C(M,y). Because y < 1/M according to (25), we have

az2 sup a(k) < 1.

keZ+

On the other hand, on the basis of condition (25) and the definition of 8, Yk € Z+,
ak)=1—y—My*>1-2y>1-0> /u=0.

We can see that system (29) is uniformly stable. B
Now, we consider system (30). Because Yk € Z*, a(k) > 0, from (31)—(37), we find that
Bj(k)y>O0forall j =1,...,7, k> 0. Moreover, when 7 = 1,

i i
k)= — <— <1,
Pik) =~ G-D - 4
which implies that f; (k) is contracting and limg .o f; (k) = 0. When t > 1, we define

fitky = max_|fi(k—j)|.
Jj=1,...1
On the basis of (33)—(37), we have the following inequalities:

Bilk)=1—y +typn—alk)=yu—Ayk) <y(l+ p), (39)

B2(k) = a(k —Dpi(k) < pr(k) < y(1+ ), (40)

Be1(k) = a(k — 7+ 2)Bra(k) < y(1 4 ), (41)
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Hi <M

k) = . 42
Bl = s < T3 “2)
Because)/<%111—ﬁ$%};—l‘i,wehave
W | _ 21 1
l_zy—y( +u)=pty —ay | TH

21 43
<M+)/|:1TM—1—/,L:| ( )

T Tt

Then, we can reach the contraction of f, based on the following inequality:
T
FAGIED N GINALEN]
j=1

< k) [y(r—l)(l + 0+ 1_"2y}

< fi(k) [yt(1 + p) +
< fi(k),

where the second inequality comes from (39)—(42), the third inequality comes from (43), and the
last inequality comes from (25). Similarly, we can arrive at that f;(k + j) < f;(k), j > 0, which
implies the existence of A € (yt(1 + u) + i, 1) such that

fitk + 1) <Afi(k), Yk e Z7.

In light of the definition of f_,-, we have limy_, o fi (k) = 0, which together with uniform stability
of system (29) yields limg_, o X; (k) = 0. Then, we have

lim X;(k) =T"! lim col{%(k),..., % (k)} =0,
k—o00 k—o00
which leads to

lim X;(k) = lim X;(k) + L7 AsX) = L7 Ag X € cofx;(0), j € ).
k—o00 k—o00

Remark 4.3

When all the followers are directly connected to the leaders and no communication exists among
the followers, it has u© = 0, and consequently, M = 0. 1/M in (25) goes to infinity. In fact, the
upper bound in (25) is not tight. In this particular case, we know that the second term in protocol
(23) disappears, and the upper bound of y is 1. Although the condition of y given in (25) may be
conservative in some particular scenarios, it provides a uniform condition for any time delays in
neighbors’ control input information.

Now, we consider dynamically moving leaders. Assume that the leaders are connected with a
network and the corresponding graph contains a spanning tree. Each leader is with the following
dynamics:

Xi (k + 1) = X; (k) + Mi(k), eV, 44)
where

ui(k) =na Y aij[(x; (k) —hj) = (xi(k) = hi)] + v;
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a; j > 0 when leader i can receive information from leader j and a; ; = 0 otherwise; ng €
(0,1/d) and dgy = max;{}_ ey, ;4 @i j}- Denote by L the Laplacian matrix of the graph
corresponding to the leaders’ network and by £ satisfying &'1,, = 1 the left eigenvalue of L,
corresponding to the eigenvalue 0. Then, we have

Xik +1)—H = —naL)(Xi(k) — H) + v1,,
where H is defined in (16), and the solution to the aforementioned equation satisfies
Xi(k) = H + ' (X1(0) — H) 1y, + vk1p, + O((1 = nar2)"), 43)

where A, is the eigenvalue of L; with the second smallest real part. Because the graph contains
a spanning tree, we have R(A,) > 0. From (45), we can see that the leaders can asymptotically
achieve a formation while moving along a direction at the same speed.

We propose the following controller

1
upk) = = 1=y 3 aijlxit) —x; (0] + D aijujtk =) b, i €V, (46)

g jev jev

which is protocol (23) by incorporating the delayed control input information of the leaders. Then,
we have the following result.

Theorem 4.4

For multi-agent systems (22) with dynamically moving leaders satisfying (44), if the communica-
tion topology contains a united spanning tree, then the control protocol (46) with y satisfying (25)
leads the followers to the convex hull of the leaders for any initial conditions.

Proof
By substituting (46) into system (22), we have

Xi(k + 1) =X¢(k) — yDy ' (LeXe(k) — A1 X)) + Dy ' AeXe(k — T + 1) — Dy ' AeXe(k — 1)
+ DA X (k — 7 + 1) — D7 A X (k — 7).
By introducing X¢(k) defined in (26), we have the closed-loop system of the error X;(k) as follows:
Xi(k + 1) = (I —yD; ' L) Xi(k) + D ' A Xe(k — 7 4+ 1) — X¢(k — 7)]
— L7 A Xy(k + 1) — X1(k)] + D PAsL P Al X (k — T + 1) — Xi(k — 1)]
+ D' AX (k=T 4+ 1) = Xi(k —7)]
= (I —yD{ ' L) X¢(k) + Dy Ae[ Xe(k — v + 1) — Xi(k — 0)] + L; ' Areq (k),
where eqg(k) = [Xi(k — v + 1) — Xi(k — )] — [Xi(k + 1) — Xi(k)]. Then, according to (45),
we know that |leg(k)|> = O((1 — ngA2)¥). Denote TL:'Ajeg(k) = col{er(k), ... en(k)}

and TX (k) = col{%(k),...,%n(k)}, where T is an invertible matrix such that TD;' A;T " is
diagonal. Then, (47) can be decomposed into the following systems:

Xitk+1) ==yl —pi)Xi(k) + piXi(k —t+ 1) — i Xi(k —7) +ei(k), i =1,...,ns.

47)

Similar to the proof of Theorem 4.3, we introduce the auxiliary systems

Xi(k +1) = a(k)xi (k) + fi(k), (48)
filky =" (k) fitk = j) + ei k), (49)
j=1

where « and B satisfy (31)—(37). It can be shown that if y satisfies (25),
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(1) « = 0and sup; .7+ (k) <1, )
2) filk+1) <Afi(k)+7 max};l_r lei(k+j)|, Yk € Z7", where f;(k) = max;=1_. . |fi(k—j)l,
A€ (0,1).

According to the definition of e;, one has ¢; (k) = O((1 — 4A2)¥). For any small number ¢ > 0,
there must exist a number N € Z* such that

Vk =N, t max |e; (k + j)| <e.
j=—t

Then, according to 2, it follows that
~ _ n—1 1
filk +nt) <" fi(k)+ > A" e max |ei(k +mz + )]
j=-t
m=0

and

n n—1
lim f;(k +nt) < lim {Z APm=LE fax e (k +mt + )| + & > A"—m—l}
n—>oo n—>oo Jj=—T -
m=0 m=n+1
€
=X
where 1 = argmin{k + jt = N}. The arbitrariness of ¢ implies klim fi(k) = 0, which together
j —00
with uniform stability of system (48) yields that klim X¢(k) = 0. The rest of the proof follows from
—> 00

the same line of arguments as that of Theorem 4.3. |

Remark 4.4

The key problem is to select y such that the time-delay system (28) is stable. The traditional
approaches including state augmentation and z-transformation approaches cannot work. It is dif-
ficult to guarantee the stability of the system matrix of the augmentation system or the stability of
the solution of character equation by selecting y. Motivated by [28] and [29], we introduced the aux-
iliary systems (29) and (30). By carefully designing the initial condition of «, the stability problem
can be solved.

5. NUMERICAL EXAMPLES

In this section, we shall provide some examples to demonstrate the results. We consider three leader
agents and five followers in a two-dimensional space; that is, the state of each agent satisfies x; € R2.
All the agents are connected as in Figure 1. We assume that ¢; ; = 1 when j € A and a; ; = 0
otherwise. Then, we have D¢ = diag{2,2,3,2,2} and

01 000 2 -1 0 0 0 1 00
10100 —1 2 -1 0 0 00 0
A=l 0101 0|, ;=] 0 -1 30 -1 o |, A4=]010
00101 0 0 -1 2 -1 00 0
00010 0 0 0 -1 2 00 1

(50)

@ ®
De—(2)+—3 (4)—(5)

Figure 1. Communication graph G.
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Figure 2. State trajectories of the followers.

2
15¢
4 7 1
'1 L
0.5
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Figure 3. State trajectories of the followers.

The initial conditions are x1(0) = [1.5,1]’, x2(0) = [-0.5,—0.5]", x3(0) = [0,—0.5]", x4(0) =
[=1,17, x5(0) =[1.5,0], x¢(0) = [-1,0]’, x7(0) = [0, 1]’, and x5(0) = [1,0]".

First, we consider continuous-time system (3) with protocol (9). Let y = 1 and t = 0.5. The
trajectories of the followers are shown in Figure 2. The initial positions of the followers are marked
with ‘0’, and the end positions are marked with “x’. It is clear that all the followers are finally
enclosed in the triangular formed by the leaders.

Now, we consider the discrete-time system (22) with control protocol (23). According to (50), we
have u = 0.764. Consider t = 1 and 8 = 0.134. In light of (25), y can be chosen as 0.067. The
state trajectories of the followers are illustrated in Figure 3.

6. CONCLUSION

We have studied the containment control problem by developing a delayed neighbors’ control input
information-based protocol. The stationary leaders case was first studied. It has been proved that all
the followers asymptotically converge into a convex hull of the leaders. The moving leaders case has
also been considered. In this case, all the leaders were controlled to asymptotically achieve a desired
formation while all the followers can be controlled to achieve the containment tracking. The prob-
lems were studied for both continuous-time and discrete-time systems. The result for discrete-time
systems is not a trivial extension from the result for continuous-time systems. A systematic method
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has been given to select the consensus gain y based on the time delay t and graph information L.
Numerical examples have been given to verify the algorithms.
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