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ABSTRACT: In this study, a marine fog event that occurred from 0000 to 1800 UTC on 7

September 2018 near Canada’s Grand Banks is used to investigate the sensitivity of simulated fog

properties to six model parameters found primarily in the microphysics scheme. To do so, we ran

a large suite of regional simulations that spanned the life cycle of the fog event using the Regional

Atmospheric Modeling System (RAMS). We randomly selected parameter combinations for the

simulation suite and used Gaussian Process Regression to emulate the response of a variety of

simulated fog properties to the parameters. We find that the microphysics shape parameter, which

controls the relative width of the droplet size distribution, and the aerosol number concentration

have the greatest impact on fog in terms of spatial extent, duration, and surface visibility. In

general, parameters that reduce mean fall speed of droplets and/or suppress drizzle formation lead

to reduced visibility in fog but also delayed onset, shorter lifetimes, and reduced spatial extent. The

importance of the distribution width suggests a need for better characterization of this property for

fog droplet distributions and better treatment of this property in microphysics schemes.
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1. Introduction20

Marine fog is a major meteorological hazard. Total annual economic losses due to fog can be21

comparable to hurricanes (Gultepe et al. 2007). An out-sized proportion of maritime accidents22

occur in the presence of fog (Gultepe et al. 2009), including the sinking of the RMS Titanic23

(Koračin 2017). The loss of the Titanic prompted GI Taylor to study fog off of Canada’s Atlantic24

coast, culminating in The Formation of Fog and Mist (Taylor 1917). Taylor hypothesized that25

marine fog forms in regions with high sea surface temperature gradients due to the advection of26

warm, moist air over cold water. This "cold sea"
::
or

:::::::::
warm-air

:::::::::::::
modification advection mechanism of27

marine fog formation is viewed as the most common type of marine fog (Lewis et al. 2004; Gultepe28

et al. 2007; Koračin et al. 2014). Willett (1928) discusses additional fog formation mechanisms,29

including cold and warm sea advection fog, and frontal fog. Frontal fog can form in a variety of30

ways. It is sometimes "precipitation fog", which forms when precipitation cools and/or moistens31

the boundary layer to saturation (Goldman 1951; Tardif 2007; Tardif and Rasmussen 2008, 2010).32

Alternatively, Anderson (1931) found that turbulent mixing within stratus clouds lowered cloud33

base and led to fog formation. Oliver et al. (1978) and Pilié et al. (1979) further studied this "stratus34

lowering fog", and Pilié et al. (1979) concluded that it is one of the most common fog formation35

mechanisms in California.36

Globally, marine fog occurs most often near western ocean boundary currents. Specifically,37

fog is most common where these warm currents interact with protected regions of cold water38

(Lewis et al. 2004; Gultepe et al. 2007; Koračin 2017). Understanding marine fog formation39

near Canada’s Grand Banks is particularly important due to the prevalence of fog as well as its40

importance as a shipping lane. The 2018 C-Fog campaign provided an extensive observational41

dataset with the aim of improving understanding of coastal and marine fog in the Grand Banks42

(Dorman et al. 2021a). Contrary to Taylor’s hypothesis, the C-Fog data shows that most fog in43

the region results from large-scale cyclonic systems, with surface-level advection playing a minor44

role (Dorman et al. 2021b).
::::::::::::::::::::
Boutle et al. (2010)

:::::
found

::::
that

:::::::::::::
mid-latitude

:::::::::
cyclonic

::::::::
systems

::::::::
provide45

:
a
::::::
ready

:::::::
supply

:::
of

::::::::::
moisture

::
to

::::
the

::::::::::
boundary

::::::
layer

::::::::
through

:::::::::::::
convergence,

:::::::
which

::::
can

::::::
form

::::
fog

:::
as46

:::::::::
described

:::
in

::::::::::::::::::::::
Fernando et al. (2021).

::
Stratus lowering fog was found to be common in the Grand47

Banks. Many studies on stratus lowering fog have focused on the California coast (Pilié et al. 1979;48

Leipper 1994; Koračin et al. 2001, 2005a) and have found that radiative cloud-top cooling is the49
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primary driver of fog formation. The findings of Wagh et al. (2021) for Atlantic Canada agree,50

noting that stratus lowering fog cases during the C-Fog campaign were related to cloud top cooling,51

stability, and entrainment at the top of the boundary layer.52

Marine fog is a modeling challenge due to the number of possible formation mechanisms
:
,
:::::
such53

::
as

::::::
warm

::::::::::
advection

:::::
over

::::
cold

:::::::
water,

::::
cold

::::::::::
advection

:::::
over

::::::
warm

::::::
water,

::::
and

:::::::::::
downward

:::::::
growth

:::
of

::::
low54

::::::
clouds. Different physical processes are important for different types of fog, and fog in general55

is sensitive to minor variations in temperature, moisture, and wind (Lewis et al. 2004; Koračin56

et al. 2005b; Gultepe et al. 2007; Koračin et al. 2014; Koračin 2017). Many marine fog studies57

have focused on cold sea advection fog, providing understanding on its sensitivity to sea surface58

temperature, wind profiles, and radiative and turbulent parameterizations (Fu et al. 2010; Heo and59

Ha 2010; Kim and Yum 2012, 2013; Huang et al. 2015). Microphysical impacts on fog have60

been investigated through observational (Gultepe et al. 1996; Duynkerke 1999; Zhao et al. 2013;61

Haeffelin et al. 2010; Niu et al. 2012) and modeling (Gultepe and Milbrandt 2007; Tardif and62

Rasmussen 2010) studies. Gultepe and Milbrandt (2007) found that accurate parameterization of63

microphysical properties helped improve the accuracy of fog simulations. Studies of radiation fog64

over land find that higher aerosol concentration and larger diameter favor fog formation (Koračin65

2017; Boutle et al. 2018), but the dependence varies based on the type of fog being considered66

(Niu et al. 2012). Haeffelin et al. (2010) found that radiation fog and cloud base lowering fog near67

Paris probably had different, uncertain sensitivities to microphysics. Different possible formation68

mechanisms and their corresponding microphysical dependencies mean that the sensitivity of69

marine fog to microphysics is still an active area of research. Boutle et al. (2022) found that70

different models vary significantly in their prediction of fog.71

This paper aims to address the uncertain relationship between microphysics and marine fog72

:::::::::
important

::::::::::
properties

:::
of

:::::::
marine

::::
fog

:::::::::
including

:::::::
spatial

::::
and

:::::::::
temporal

::::::
extent through sensitivity testing.73

::::
The

:::::
goal

::
is

:::
to

::::::
better

:::::::::
constrain

::::
the

:::::::::
response

::::
and

::::::::::
response

::::::::::::
mechanisms

:::
of

:::::::::
cyclonic

:::::::
marine

::::
fog

:::
in74

:::
the

:::::::
Grand

::::::
Banks

:::::::::::
variations

::
in

::
a
::::
set

::
of

:::::::::::::::
microphysical

:::::::::::
parameters.

::
We have identified a fog case75

that is characteristic of the Grand Banks, as well as several microphysical parameters and one76

surface flux parameter that may be impactful. We then sample the parameter space to create a suite77

of simulations that we use to explore the relationships between our input parameters and several78

output variables meant to characterize fog formationand evolution,
:::::::::::
evolution,

::::
and

:::::::::::
dissipation. In79
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this way, we can identify which microphysical parameters are
:::::
most

:
important for fog in the Grand80

Banks region. This can be extended to shed light on the physics of fog formation, or on improving81

model parameterizations for more accurate forecasting.82

2. Experimental Design83

There were four major challenges when designing our experiment: choice of fog case, sampling84

of the parameter space, choosing output variables to quantify fog, and fitting those output variables85

to our input parameters. Fog case choice needs to strike a balance between selecting a fog case that86

is representative of fog
::::
Our

::::::
choice

:::
of

:::
fog

:::::
case

::::::
needs

::
to

::::::::::
faithfully

:::::::::
represent

:::
fog

:
in the region that can87

also be easily recreated in our model without using excessive computational resources. We need88

to
::::::
while

::::
also

::::::
being

:::::::
simple

::
to

:::::::::
simulate

:::
to

:::::::::
conserve

::::::::::::
computation

:::::
time

::::::
when

::::::::
running

:
a
::::::
large

::::::::
number89

::
of

::::::::::::
simulations.

:::::
We

::::
also

:
sample the multi-dimensional space defined by our

:::
the input parameters90

to capture all behavior while limiting the number of simulationsthat we need to run. Our output91

variables need to describe fog formation and evolution using 0-D data points
:::::::::
summary

::::::::::
quantities92

::::
such

:::
as

::::::::
average

:::::::::
visibility

:::
and

:::::::
extent. To construct relationships between input and output variables,93

we need to capture non-linearity and interactions between our parameters with strong prediction94

strength without over-fitting.95

a. Fog Case96

::::
Fog

::
in

::::
the

::::::
Grand

:::::::
Banks

::
is

::::::
often

:::::::
related

:::
to

:
a
:::::::::
cyclonic

::::::::
system.

:::::::::::::::::::::::
Dorman et al. (2021b)

:::::
found

:::::
that97

:::::
every

:::::::::::
significant

:::
fog

::::::
event

::::::::
recored

::
at

::::::::::
Ferryland

:::
on

::::
the

::::::
island

::
of

::::::::::::::::
Newfoundland,

:::::
close

:::
to

:::
the

:::::::
Grand98

:::::::
Banks,

::::
was

:::::::
related

:::
to

::
a
:::::::::
cyclonic

::::::::
system.

:::::::::::::
Additionally,

:::::::::::
individual

::::
fog

:::::::
events

::
at

::::::::::
Ferryland

:::::::
lasted99

::
up

:::
to

:::
31

::::::
hours

:::::::::::::
continuously

::::::::::::::::::::::
(Dorman et al. 2021b).

:::::::::::
Measuring

::::
fog

:::::::
events

::
at

:::::
fixed

:::::::
points

::::
will

:::::
also100

::::
tend

:::
to

::::::::::::::
underestimate

::::
fog

:::::::::
duration

::::
due

::
to

::::::::::
advection

:::
of

::::
the

::::
fog

::::::::
system.

::::
For

:::::
this

::::::
study,

::::
we

::::::
adopt101

:::
the

:::::
view

::::
that

::
a
::::
fog

::::::
event

::::::
begins

::::::
when

::::
fog

::::::
forms

::::::::::
anywhere

:::::::
within

::::
the

::::::
region

:::
of

::::::
study

:::::::
(rather

:::::
than102

:::::
being

:::::::::
advected

:::::
into

:::
the

:::::::::
domain)

::::
and

:::::
ends

::::::
when

:::
fog

::::::::::::
completely

::::::::::
dissipates

:::::::::::
completely.

:
103

Since this study examines marine fog specifically, and not coastal fog, in situ observations
:
,104

::::
such

:::
as

::::::
those

:::
in

::::
the

::::::::::
ICOADS

:::::::::
database

:::::::::::::
(ICO 2018) were sparse. Instead, we analyzed ERA5105

(Hersbach et al. 2020) hourly reanalysis data for the Grand Banks region east of Newfoundland.106

The primary variable used to identify fog from ERA5 data was cloud base height. We assumed107

5



that any cloud base height below 30 m is probable fog. We also checked the 2 m relative humidity108

and 1000 mb cloud liquid water concentration to confirm the presence of fog.
:::::
Most

:::::::::
potential

::::
fog109

:::::
cases

::::::::::
identified

::::::
from

::::::
ERA5

:::::::::::
reanalysis

::::::::::
following

:::
the

:::::::
above

::::::::
method

:::::::
agreed

:::::
with

::::
the

:::::::::
findings

:::
of110

::::::::::::::::::::::
Dorman et al. (2021b)

::
in

::::
that

:::::
they

:::::
were

:::::::
related

::
to

:::::::::
cyclonic

::::::::
systems

:::
in

:::
the

::::::::
region.111

Many of the fog events over the Grand Banks persist for several days from their initial formation112

until complete dissipation,
:::::
even

::
if

:::::
they

:::
are

:::::
only

:::::::
present

:::
for

::::::::
several

:::::
hours

:::
at

:
a
::::::
fixed

:::::
point. These are113

unsuitable because they occur over a very large area for a very long time, and thus are impractical for114

simulating repeatedly. Most short-lived events are very patchy, making them difficult to replicate115

in a model.116

The fog case we chose occurred between 0000 and 1800 UTC on 7 September, 2018. Fog117

formed behind a fast-moving, low pressure system that passed East of Newfoundland, forming fog118

primarily over the cold waters of the Grand Banks. Fog occurred in several small-to-medium sized119

patches that overlapped temporally. There was one primary fog patch that grew the largest and120

persisted for around six hours. All fog in the event formed and completely dissipated or moved out121

of the domain within the an 18-hour life-cycle.122

The case was simulated using the Regional Atmospheric Modeling System (RAMS; Cotton et123

al. 2003). The simulation domain is shown in ??e
::::::
figure

::
1. In order to ensure that the simulations124

would run reasonably quickly, we used amoderate 5km spacing in the horizontal. In the vertical, we125

used 51 levels with 7 levels in the bottom 150mwhere the spacing between the lowest levels was 10126

m. A 5 second time step was used. Parameterization schemes included the LEAF3 surface scheme127

(Walko et al. 2000), the Harrington radiation scheme (Harrington 1997), a Smagorinsky-based128

subgrid mixing scheme (Smagorinsky 1963), and RAMS double-moment microphysics (Saleeby129

and van den Heever 2013). Sea surface temperatures were provided by the Reynolds daily sea130

surface temperature dataset (Reynolds et al. 2007) and were interpolated in time. Initial conditions131

and boundary nudging conditions were provdied by the ERA5 reanalysis. A simulation using132

default parameters produced adequate agreement with ERA5 reanalysis data (Figure 1).133

Here we briefly look at the evolution of the event. Precipitating clouds associated with the136

low pressure system swept eastward through the region. Behind them, lightly-precipitating stratus137

clouds descended from an initial height of over 1000 m to a few hundred meters and, in some138

places, all the way to the ground. Figure 2 shows this process. The presence of clouds prior to fog139
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Fig. 1. Cloud base height
:::
and

:::
sea

:::::
level

:::::::
pressure

::::::
(black

:::::::::
contours) at 4 hr intervals for the fog case in (A-D)

::
in

ERA5 reanalysis
:::
with

:::::::::
ICOADS

:::::::::::
observations

::::::
shown

:::::::
(colored

:::::::
circles) and (E-H) as simulated by RAMS.

134

135

onset indicates that fog can be classified either as precipitation fog or as cloud base lowering. The140

distinction between the two is subtle. In precipitation fog, there is typically an inversion-capped141

boundary layer that is cooled/moistened by precipitation falling through it from clouds above the142

inversion (Tardif 2007). In stratus-lowering fog, the cloud base is initially under the boundary143

layer capping inversion (Pilié et al. 1979). An observer at 49◦ N and 45◦Wwould have seen cloud144

base descend at approximately 300 m per hour between 0300 and 0600 UTC. Cloud base at 45◦W145

then remains low for 6 hours before the system eventually passes. In panel E of Figure 2 for 0900146

UTC, we see low clouds forming under a dense, precipitating cloud towards the east, indicating147

precipitation fog, and also low clouds without precipitation forming above them. This shows that148

both precipitation fog and cloud-base lowering fog are present within our simulation.149

b. Parameters154

We chose to test the sensitivity of fog to aerosols, cloud droplet shape parameter, surface155

deposition rate parameterization, and sea surface roughness. Table 1 shows the variables tested156

and their ranges within the suite of simulations. The subsections below detail the motivation for157

choosing these parameters, the assumptions behind them, and why the parameter range was chosen.158
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Fig. 2. Time series showing cross sections at 48.81 N of simulated cloud liquid water content (kg kg−1) at 2

hour intervals.
:::
The

:::::::
vertical

:::::::
dashed

:::
line

:::::::::
represents

::::
the

::::::::
transition

::::::::
between

:::::::::::
precipitation

:::
and

::::::
stratus

::::::::
lowering

::::
fog

:::::::
regimes.

::::
The

:::::
solid

:::::
black

::::
line

:::::
shows

:::::::::::
longitudinal

:::::
mean

:::::::::::
precipitation

::::
rate

::::::
within

:::
the

:::::::
domain

::::
with

:::::
scale

:::::
shown

:::
in

::::::
mm/hr

::
by

::::::
orange

::::::::
numbers

::
at

:::
the

:::::
right

::
of

::::
each

::::::::
subplot.

150

151

152

153

Parameter Min Max Sampling (log or linear)

Aerosol Number Concentration 50 cm-3 1000 cm-3 Log

Mean Aerosol Diameter 10 nm 500 nm Log

Shape Parameter (Microphysics) 2 10 Linear

Shape Parameter (Radiation) 2 10 Linear

Turbulent Deposition Enhancement 1 4 Linear

Surface Roughness 𝛼 0.01 0.1 Log

Table 1. Table of input parameters for sensitivity testing showing minimum value, maximum value, and

logarithmic or linear sampling.

159

160

1) Aerosols161

For coastal fog and land fog, particle concentrations play a major role in both the formation and162

properties of fog. Witiw and LaDochy (2008) hypothesized that the decrease in coastal fog events163

in California observed since the 1970s has been due in part to reduced air pollution, with another164

major factor being changes in SST (Witiw and LaDochy 2008; O’Brien et al. 2013). Studies have165

found a correlation between aerosol number concentration and fog for radiation fog (Maalick et al.166

2016; Schwenkel and Maronga 2019) and marine fog formed where the air temperature is higher167
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than SST (Wainwright and Richter 2021). Maalick et al. (2016) and Wainwright and Richter168

(2021) both find higher fog lifetime and liquid water content with higher aerosol concentration due169

to increased droplet activation
::::::::::::::::::::::::
(Gultepe and Isaac 1999).170

We chose to vary both aerosol number concentration and mean aerosol diameter. Both of171

these serve to modify total aerosol mass concentration. In this study, we vary aerosol number172

concentration from 50-1000 cm-3, which covers the range from typical (clean) marine aerosol173

concentrations to a reasonably polluted atmosphere. We expect most realistic situations for marine174

air masses to be towards the lower end of this range (Fitzgerald 1991). As for aerosol diameter,175

we used values between 10 and 500 nm. 10 nm is quite small and would correspond to the Aitken176

mode. We expect most realistic situations to be somewhere in the middle of this range. Both177

parameters are sampled logarithmically to attain greater sampling density at the lower ends of their178

ranges.179

2) Shape Parameters180

RAMS uses a double-moment bulk microphysics scheme which assumes a gamma size distribu-181

tion for all hydrometeor species. Because this is a three-parameter distribution and we only predict182

two moments of the distribution, one parameter of the size distribution must be specified. As in183

many bulk schemes, the "shape parameter" is specified. The shape parameter is directly related184

to the relative width of a distribution; a lower shape parameter means a wider size distribution for185

a given mass and number concentration. In this study, we vary the shape parameter of the cloud186

droplet size distribution. The shape parameter of a droplet distribution impacts cloud properties and187

microphysical process rates, and thus cloud development (Igel and van den Heever 2017; Barthlott188

et al. 2022). In terms of microphysical processes, we expect that the droplet shape parameter189

will be important due to its effects on mean fall speed of droplet mass and number concentration190

and on collision-coalescence. Sensitivity to the cloud droplet shape parameter has been found in191

radiation fog previously (Boutle et al. 2022). The droplet shape parameter will also impact fog192

formation by changing the rate of cloud-top radiative cooling, which is thought to be important193

for stratus lowering fog (Pilié et al. 1979; Koračin et al. 2001). In order to capture the effects of194

microphysics and radiation separately, we used different assumed shape parameters for the micro-195

physics and radiation parameterizations within the model. We varied the shape parameters used196
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for both radiation and
::::::::
(referred

:::
to

:::
as

:::::::::::::
microphysics

::::
and

::::::::::
radiation

::::::
shape

::::::::::::
parameters,

:::::::::::::
respectively)197

:::
and

:
microphysics from 2 to 10, which is a realistic range for cloud droplet size distributions (Miles198

et al. 2000).199

3) Deposition200

When modeling clouds, it is typically assumed that the settling velocities of cloud droplets are201

negligible–except with respect to collisions for autoconversion. However, since fog occurs at the202

surface, gravitational settling leads to moisture loss through deposition. Findlater et al. (1989)203

found that loss of moisture to the surface is among the most important factors in the formation204

of marine fog off the coast of Scotland. Moisture loss to the surface through direct deposition of205

cloud droplets as well as drizzle can alter the properties of the fog (Mazoyer et al. 2017; Taylor206

2021; Taylor et al. 2021). More generally, the fall speed of larger droplets causes them to fall out207

of fog, changing the fog’s properties (Koračin et al. 2014).208

In addition to the impact of gravitational settling, we expect fog droplet deposition to be enhanced209

through turbulence (Taylor 2021). In the absence of a body ofwork detailing exactly how turbulence210

might enhance settling and deposition, we decided to parameterize this process as a multiplicative211

enhancement on the gravitational settling velocity that only applies to the lowest model level (the212

lowest 10 m of the atmosphere). We used a range of 1 to 4 for our new turbulent deposition213

enhancement parameter.
::::
This

::::::
range

::
is
:::::::::::
reasonable

::::::
given

::
a

:::::::
typical

::::::
cloud

:::::::
droplet

::::::::
settling

::::::::
velocity

:::
of214

:
1
:::::
cm/s

:::::
and

:::
the

:::::::::::
deposition

::::::::
velocity

:::
of

::::::
about

::
4

:::::
cm/s

::::::::::
calculated

::::::
using

::::
Eq.

::
8
:::
of

::::::::::::::
Taylor (2021)

::::::
using215

:::
the

:::::::
height

:::
of

::::
our

:::::::
lowest

::::::
scalar

:::::
grid

:::::
level

:::
(5

:::
m)

:::::
and

::::
0.4

::::
m/s

:::
for

::::
the

::::::::
friction

:::::::::
velocity

:::::
(this

::::::
value216

::
is

::::::::::::::
approximately

::::
the

:::::
90th

::::::::::
percentile

::::::
value

::
in

::::
our

:::::::::::::
simulations).

::::::::::::::
Additionally,

::::::
waves

:::::
may

:::::::::
increase217

:::::::
surface

::::::::::
deposition

:::::
rates

::::::::
relative

::
to

:::::::::::::
gravitational

::::::::
settling

::::::::
velocity

::::::::::::::::::
(Zufall et al. 1999)

:
,
::::::
which

::::
has

::::
not218

:::::
been

::::::::::
accounted

:::
for

:::
in

:::
the

:::::::::
equation

:::::
from

::::::::::::::
Taylor (2021)

:
.219

4) Sea Surface Roughness220

Since marine fog has been shown to be sensitive to turbulence and mean wind at the surface (Fu221

et al. 2010), we investigated its sensitivity to marine surface roughness in addition to the micro-222

physical parameter described above. Surface roughness impacts both mean wind and turbulence by223

creating drag, which leads to shearing and the mechanical generation of turbulence. RAMS uses224

the Charnock-Ellison relation (Charnock 1955). The Charnock-Ellison relation posits that marine225
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surface roughness is a function of friction velocity, 𝑢∗. Specifically, 𝑧0 = 𝛼
𝑔
𝑢2∗, where 𝛼 is a constant226

determined for each body of water . In RAMS, 𝛼 is assumed to be 0.016 globally. However,227

more recent studies have offered other parameterizations of 𝑧0 for the ocean that sometimes lead228

to dramatically higher roughness lengths, particularly in high-wind environments. For example229

(Taylor and Yelland 2001) presents a formula based on wave height and period.230

Rather than implement a new parameterization for sea surface roughness, we decided to vary 𝛼231

within the Charnock-Ellison relation to reflect the overall uncertainty. We varied 𝛼 from 0.01 to232

0.1. Note that the default 𝛼, and indeed most calculated values of 𝛼, are towards the bottom of this233

range. As a result, we assume that realistic values of 𝛼 will be towards the lower end of our range,234

but effective values near the upper end are possible under different environmental conditions.235

c. Simulation Suite236

The general methodology of this study follows that of Lee et al. (2011), Lee et al. (2013), Johnson237

et al. (2015) and others. We set up a suite of 78 simulations with different combinations of our input238

parameters. To do this, we used Latin Hypercube Sampling, which uses our different parameters as239

orthogonal bases for a 6-dimensional space and constructs a hypercube within that space bounded240

by the rages of our parameters. This allows us to sample our parameter space.241

We also had the choice of whether to sample each parameter in log space or linear space.242

Sampling log space biases our samples towards the lower end of our range for a given parameter243

and is preferable when the sensitivity of the outputs to a parameter is expected to be greater244

at the lower end of the range. As discussed previously, aerosol number concentration, aerosol245

diameter, and surface roughness 𝛼 are sampled logarithmically whereas the other input parameters246

are sampled linearly.247

d. Output Variables248

The fog present in our simulations needs to be described using a set of continuous values chosen249

to be as descriptive as possible. However, we first need to define fog. For our purposes, fog is when250

the presence of liquid water suspended in the air as cloud droplets reduces visibility at 10 m above251

the surface (the first model level) to less than 1 km (WMO 1974)
::::::::::::::::::::::::::::
(WMO 1974; Koračin 2017)

::
in252

:::
the

:::::::
lowest

:::::::
model

::::
grid

::::::
level. Following Stoelinga and Warner (1999), visibility is calculated as253
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3.912/𝛽 where 𝛽 is the extinction in the visible band
::::
(245

::
-
::::
700

:::::
nm) of the Harrington radiation254

parameterization (Harrington 1997). To quantify simulation fogginess, we used both superlatives255

and time-averaged quantities. Specifically, we examine the following six quantities:256

1. The maximum spatial extent of the fog, found by counting the total number of grid cells257

defined to be foggy and then finding the maximum at any one time.258

2. The difference
::::::::
between

:
fog onset and dissipation times to quantify the duration of our fog259

event. Onset is defined when the fog condition is met anywhere in the domain except the 100260

km nearest to the simulation edges due to nudging at the boundaries. Fog dissipation is defined261

using mean 10 m liquid water concentration. Specifically, we assume that the fog event is over262

when mean 10 m liquid water concentration drops below 5% of its maximum value. This is not263

strictly the end of the fog event. However, we found that small patches of fog may linger for hours264

after the majority of fog has dissipated and we did not feel that accounting for these patches best265

characterized the bulk behavior of the fog. Therefore, we chose this alternative definition of fog266

dissipation
:::::::::::::
Additionally,

:::::
there

:::::
were

::::::
some

::::::
cases

::::::
where

::::
fog

::::::::
became

:::::
mist

::::
and

::::
then

::::::
more

::::
fog

::::::::
formed.267

::
To

::::::
make

::::::
onset

::::
and

:::::::::::
dissipation

:::::
times

::::::::::
consistent

:::::
with

::::
the

::::
first

::::::
onset

::::
and

::::
final

:::::::::::
dissipation

:::
of

:::
the

::::::
main268

:::
fog

:::::::::
patches,

:::
we

::::::
chose

:::::::::
different

::::::
onset

::::
and

:::::::::::
dissipation

:::::::::::
conditions. Onset and dissipation times are269

reported in 600 second
::
10

:::::::
minute

:
intervals.270

3. The time-integrated fog water, which effectively finds the mean fog spatial coverage and271

thickness derived from vertically-continuous cloudy cells up to 800 m, the approximate height of272

the capping inversion in our simulations.273

4. The minimum visibility at the 10 m level achieved during the simulation.274

5. The maximum 10 m droplet number concentration.275

6. The maximum 10 m cloud water concentration.276

The maximum fog extent and the fog duration together help to understand the fog water hours.277

Likewise, the maximum surface water concentration and droplet concentration can together help278

to explain the minimum visibility. Note that simulation output is available every 10 minutes to279

assess these quantities.280
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e. Gaussian Process Regression281

Using these outputs, we create statistical emulators using the first 60 simulations in the simulation282

suite. To create each statistical emulator, we used Gaussian Process Regression to simultaneously283

fit all of our input parameters to each of our output values. Gaussian process regression, or kriging,284

is a non-parametric fitting approach that uses a stochastic process to interpolate a curve based on285

sampled points (Williams andRasmussen 2006; Lee et al. 2011, 2013; Johnson et al. 2015). Kriging286

uses hyperparameters, like a covariance function, to tune the Bayesian interpolation process. We287

created models using the MATLAB Gaussian Process Regression tools with a large number of288

different basis function, kernel, and hyperparameter combinations and then evaluated these against289

each other to determine the best performer for use in our analysis. Model performance was290

evaluated based on several criteria and with the 18 reserved validator simulations. Specifically,291

the evaluation metrics included 1) the mean of the 95% confidence interval of the emulator’s292

prediction for each data point normalized by the total data spread, 2) the fraction of validator points293

that fell within the 95% confidence intervals, 3) the fractional reduction of root mean squared294

error (RMSE) for the validator dataset relative to a constant function of the dataset mean, and 4)295

the correlation coefficient between emulator predictions the outputs of the validator simulations.296

These four scores, normalized confidence interval, confidence interval skill, RMSE reduction, and297

correlation coefficient, were constructed to range from 0 to 1 and then summed together to create a298

total score. For each output variable, the combination of fit parameters that produced the emulator299

with the highest total score was chosen for use in analysis.300

3. Results301

a. Overview302

Figure 3 shows the performance of our best emulators in predicting the output values from our303

simulation suite in RAMS. There are no obvious systematic biases in the statistical emulators.304

The prediction-value pairs are distributed more-or-less evenly about the one-to-one line in all305

six subplots. It is worth noting that using machine learning to optimize fitting hyperparameters306

sometimes led to fitting the emulator dataset extremely accurately, causing all the points in blue to307

lie almost exactly on the one-to-one line. This likely indicates that we are overfitting the training308

data, and evidence of overfitting is apparent in some of the figures that follow. However, when309
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evaluating the performance of our statistical emulator models, we looked primarily at how well it310

predicted the validator dataset, shown in red. Even in the cases of overfitting, the emulators predict311

the validator dataset reasonably well and we have confidence that they can correctly identify the312

primary factors that cause variance in the simulated fog properties.313

Fig. 3. Plots of emulator predictions versus RAMS output values for six output variables. Training datasets

plotted in blue and validator sets plotted in red. Dashed one-to-one line displayed for reference.

314

315

Figure 4 shows partial dependence plots for all six fog properties on all of the input parameters.316

Partial dependence plots are created by fixing one input value and finding the average output317

value over every combination of the other five input values, then repeating this process over the318

full range of each input value until curves have been created for all of them. The difference319

between the maximum and minimum of each partial dependence curve gives the approximate total320

sensitivity of the output value to that input parameter. Mean aerosol diameter (blue) is typically321

the most important input parameter, which we can identify by the fact that it has the greatest322

difference between its minimum and maximum values in each partial dependence plot. Most of323
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the sensitivity to the mean diameter is often for normalized values less than 0.2 which corresponds324

to mean diameters of 10 - 108 nm. These sizes are smaller than those typical for marine boundary325

layers (Porter and Clarke 1997) and as such the potential importance of the aerosol size is likely326

exaggerated in these results. Above about 100 nm, where aerosol sizes are more realistic, there327

is very little sensitivity to the aerosol size for most fog properties, and therefore, we won’t focus328

too much on understanding the impacts of aerosol size. Microphysics shape parameter (red) is the329

next most important, followed by aerosol number concentration (black). We will focus on these330

two input parameters in the remainder of the discussion. The effects of radiation shape parameter331

(green), turbulent deposition enhancement (pink), and sea surface roughness 𝛼 are generally small.332

While the latter three parameters appear less important than the former three, that does not mean333

that they do not impact fog. If only these parameters were varied, we would be able to see their334

impacts more clearly, but our simulations appear to show that aerosol number concentration and335

microphysical shape parameter have a far greater impact.336

b. Minimum Visibility340

The relationship between the input parameters and the minimum 10 m visibility align with341

expectations (Figure 4d). The turbulent deposition enhancement, which increases the gravitational342

settling rate for the lowest 10 m of the simulation, is positively correlated with minimum visibility.343

Put another way, a higher gravitational settling rate near the surface leads to more moisture flux out344

of this layer through deposition to the surface, leading to lower cloud liquid water concentration345

(magenta line in Figure 4e) and higher visibility (Figure 4d). The impact of the turbulent deposition346

enhancement comes primarily from the mass concentration of cloud liquid water concentration347

rather than the number concentration of cloud droplets (Figure 4f) due to its preferentially impacting348

larger droplets.349

Higher aerosol number concentration and mean aerosol diameter are both positively correlated350

to 10 m cloud droplet concentration (black and blue lines, respectively, in Figure 4f) and max351

surface water concentration (Figure 4e). As a result, higher aerosol concentration and higher mean352

diameter are correlated to lower minimum visibility (Figure 4d). More aerosols and larger aerosol353

particles, which are easier to activate, lead to higher cloud droplet number concentration and lower354
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Fig. 4. Partial dependence plots for each of output variables with respect to all six input variables. All predictor

values are normalized with their minima at zero and maxima at one on a linear scale.
::::
Note

::::
that

:::
the

:::::::::
turbulent

:::::::::
deposition

:::::::::::
enhancement

::::
line

::
is

:::::::::
obstructed

:::
by

:::
the

::::::
surface

::::::::::
roughness

:::::
alpha

:::
line

::
in

:::::
panel

:::
A.

337

338

339

mean cloud droplet radius, which leads to less gravitational settling flux and more moisture content355

in the lowest 10 m.356

The microphysics shape parameter is negatively correlated with minimum visibility (red line in357

Figure 4d). For a given number and mass concentration of droplets, a higher shape parameter358

means a narrower cloud droplet size distribution which in turn corresponds to two changes: a359

slower mass-weighted mean fall speed and reduced collision-coalescence. Both changes reduce360

the moisture loss to the surface, increasing the amount of cloud liquid water in the lowest 10 m.361

In summary, minimum visibility is reduced by changes to the input parameters that lead to less362

gravitational settling and moisture loss to the surface, either directly through changes to turbulent363

deposition enhancement and microphysics shape parameter or indirectly through activation of364

more, smaller cloud droplets.365
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c. Fog Extent366

The reasons for the sensitivity of fog extent, duration, and water hours to the input parameters367

are less apparent. The parameters that we have tested have the potential to impact the processes368

leading to formation and maintenance of fog as well as those leading to removal and dissipation of369

fog and all are important for controlling the fog extent and duration. As discussed previously, fog370

seems to have formed due both to precipitation and stratus cloud base lowering. The trends in fog371

with the input parameters may reflect local changes to these processes, but may also reflect changes372

to synoptic scale precipitation. Dissipation may be driven by a local cloud base rise, evaporation,373

and/or direction deposition to the surface. We will focus first on the direct deposition and the374

synoptic precipitation, and then discuss more local formation and dissipation processes.375

Deposition of moisture on the surface represents a significant portion of the moisture budget376

of fog (Mazoyer et al. 2017). If changes to moisture loss through deposition were controlling377

the partial dependencies of fog properties (Figure 4), then higher aerosol number (which leads to378

smaller, more slowly falling droplets), higher microphysics shape parameter (which reduces drizzle379

production), and lower turbulent deposition enhancement all would presumably have led to reduced380

deposition to the surface and hence more fog. As already discussed, these reductions in deposition381

are certainly reflected when examining visibility and surface water concentration. However, the382

spatial extent of the fog is reduced, not increased, for both higher aerosol concentration and higher383

microphysics shape parameter. The turbulent deposition enhancement, meanwhile, was found to384

be unimportant. These results together suggest that fog water loss to the surface is not an important385

limiting factor for the fog extent or duration
:
,
::::::::
perhaps

:::::
due

::
to

::::::::::
low-level

:::::::::::::
convergence

::::::::::
providing

::
a386

::::::
source

:::
of

::::::
water

::::::
vapor

::
in

::::
the

:::::::::
boundary

::::::
layer

:::::::::::::::::::
(Boutle et al. 2010).387

In terms of synoptic
::::::::
domain

:::::
mean

:
precipitation, a reasonable hypothesis is that fewer aerosols388

and a lower microphysics shape parameter (wider droplet distribution) enhance precipitation by389

increasing average droplet size and collision coalescence, moistening the boundary layer and390

promoting fog formation. Such a process could occur in the synoptic precipitation ahead of the391

fog formation, leading to a pre-moistening of the boundary layer, or it could happen locally in the392

low cloud deck trailing the synoptic precipitation.393

Enhanced fog formation driven by greater synoptic precipitation is not borne out by the data.394

Figure 5 shows that the simulations with the most extensive fog also have above average synoptic395
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precipitation, but that the highest-precipitation simulations did not produce the most fog. Instead,396

we see two regimes, a low fog extent regime with a weak correlation to precipitation, and a high397

fog extent regime that correlates negatively with precipitation. The high fog regime requires both398

low aerosol size
:::::
mean

::::::::
aerosol

:::::::::
diameter

:
and low microphysics shape parameter. The negative399

correlation between fog extent and domain mean precipitation in the high fog regime is not related400

to fog losing moisture to the surface through the formation of drizzle and direct deposition of cloud401

droplets. Most of the precipitation precedes fog onset. Higher synoptic precipitation is not driving402

higher fog extent.403

Fig. 5. Scatter plot of maximum fog extent versus domain mean accumulated precipitation, sized by mean

aerosol size.

404

405

Perhaps then the relationship betweenmicrophysics and fog formation in this fog case is primarily406

driven by local precipitation effects. Figure 6 shows temperature, dew point, and precipitation over407

time for three points in each of three simulations, the most foggy, the closest-to-average foggy,408

and the least foggy. The plots suggest that light, local precipitation just ahead of fog formation is409

an important driver of fog formation in the early part of the simulation, but is not as significant410
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in the second part of the simulation. This indicates that there are two fog formations, one that is411

precipitation-driven, and one that is not, as also discussed in Section 5.2.1.412

Fig. 6. Plot showing temperature (black) dew point temperature (dashed red), and precipitation rate (blue)

for the foggiest simulation, the simulation closest to the mean fog water hours, and the least foggy simulation at

locations corresponding to the foggiest points for each simulation. Shaded regions correspond to times when fog

was present.

413

414

415

416

The two fog sub-events have different formation mechanisms. The first event appears to be417

precipitation fog while the second appears to be stratus lowering. Figure 7 shows temperature and418

dew point profiles for two sets of time series. The first time series compares tests 60 and 67
:::
the419

:::::
most

::::
and

:::::
least

::::::
foggy

::::::::::::
simulations

:
for the first fog formation. A precipitating cloud moistens air420

below an inversion. In test 60
:::
the

:::::
high

::::
fog

:::
test, the air saturates all the way down to the surface, but421

this does not occur in test 67.
:::
the

::::
low

:::
fog

:::::
test.

:
This fog event forms in the manner of precipitation422

fog described by Tardif (2007). All simulations were broadly similar for the second time series (not423

shown), where a low cloud capped by an inversion grows downward until it contacts the surface,424

matching well with descriptions of stratus lowering fog (Oliver et al. 1978; Pilié et al. 1979). Since425

we appear to have fog forming by different mechanisms, we next attempt to separately assess the426

importance of the input parameters on each fog type and further explore the role of local processes427

in explaining the dependencies on these parameters.428
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Fig. 7. Vertical profiles of temperature and dew point showing fog formation or lack thereof during two time

series. The first fog formation, hypothesized to be precipitation fog, occurred in high fog
:::::
most

:::::
foggy

:
test (60)

but not in low fog
::::
least

::::::
foggy test(67). The second fog formation is hypothesized to be cloud base lowering and

occurred in all simulations.

429

430

431

432

Sub-Event Microphysical Dependencies433

To investigate the two fog sub-events individually, we separate the simulation domain using a434

dividing line that moves eastward at a specified rate of 33 km/hr such that it falls between the two435

fog banks. We then performed the same sensitivity testing procedure on both the precipitation436

fog and the cloud base lowering fog separately. The resulting partial dependence plots are shown437

in figure 8. The emulator struggled with overfitting the cloud base lowering fog with respect to438

aerosol diameter, but inspection of the validation tests indicates that the emulator is nonetheless439

performing well (not shown).440
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Fig. 8. Partial dependence plots of maximum fog extent and minimum visibility for the precipitation fog and

cloud base lowering (CBL) fog formation sub-events.

441

442

Figure 6 anecdotally suggests that cases with more fog overall tend to have more fog in both443

sub-events and that each fog type depends on the input parameters in broadly similar ways. Indeed,444

the maximum fog extents of each sub event are strongly correlated to each other (not shown).445

However, the early, precipitation fog sub-event is far more sensitive to our input parameters (Figure446

8). Specifically, if we look at the ranges of our output parameters for each sub-event, we see447

roughly twice the range for precipitation maximum fog extent than cloud base lowering maximum448

fog extent. This shows that precipitation fog is the main source of spread between the models in449

terms of fog amount (Figure 4).450

We find that precipitation fog is strongly related to mean below-cloud evaporation prior to fog451

onset, calculated as the mean evaporation east of the dividing line at the 10m level, where precipita-452

tion fog extent is greater for more evaporation (Figure 9a). Notably, the simulations with the highest453

evaporation did not have the highest precipitation, both domain-wide and just ahead of fog onset.454

Rather, consistent with the sensitivity of fog extent (Figure 8a), more evaporation is associated with455

a smaller microphysics shape parameter and lower aerosol concentrations (Figure 9b). Both of456

these conditions should favor the production of drizzle within the cloud which subsequently evap-457

orates below cloud base. Because evaporation is strong, the drizzle doesn’t necessarily reach the458

surface and these simulations don’t necessarily have the largest local precipitation accumulations.459

Finally, if the mean below-cloud evaporation is included as a predictor in the emulator, then we460
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see that it accounts for most of the differences among simulations, with only microphysics shape461

parameter having an appreciable independent impact. This independent impact could possibly462

come from the direct influence of the microphysics shape parameter on evaporation rates. Igel and463

van den Heever (2017) found that cloud water with an underlying droplet distributions
:::::::::::
distribution464

characterized by a high shape parameters
::::::::::
parameter

:
will evaporate more quickly and that this465

increased evaporation rate is associated with reduced cloud fraction in shallow cumulus clouds. It466

is possible that a similar process is occurring here to limit fog extent when the shape parameter is467

high (Figure 8a and 9).468

Fig. 9. Plots showing the relationship of mean 10 m evaporation east of the dividing line to max fog extent

alone (left), the dependence of evaporation on all six input parameters (center), and a partial dependence plot of

max fog extent on all input parameters with evaporation included as an extra predictor (right)

469

470

471

The cloud base lowering fog extent is dependent on the input parameters in a way that is very472

similar to precipitation fog (Figure 8). This may be because cloud base lowering fog is also473

influenced by sub-cloud evaporation processes or possibly because the precipitation primes the474

environment for the subsequent cloud base lowering fog. To test the extent to which the second,475

cloud base lowering sub-event is dependent on the precipitation fog that precedes it, we take the476

mean 10 m relative humidity at the dividing line described earlier (line RH) as a proxy for the477

conditions left behind by the precipitation fog. This line RH is then used as an input to the emulator.478

This gives us a way to isolate the impacts of our input parameters on cloud base lowering fog,479

albeit an imperfect one due to the relationship between our inputs and line RH.480

Gaussian process regression of our input parameters and line RH yields the partial dependence483

plots shown in figure 10. Line RH is the most important factor in determining the amount of fog484
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Fig. 10. Partial dependence of cloud base lowering fog on all input parameters as well as the average relative

humidity at the dividing line between the precipitation and cloud base lowering sub-events.

481

482

formed through cloud base lowering. More fog formation early in the simulation leads to higher485

relative humidity near the surface, which in turn enhances fog formation later in the simulation.486

Of the other parameters, only microphysics shape parameter remains significant. Microphysics487

shape parameter maintains its negative correlation to fogginess, much as it did for precipitation fog488

after sub-cloud evaporation is accounted for (Figure 9c). The reasons are unclear, but they could489

be related to changes in fog evaporation or possibly processes within the lowering cloud. Finally,490

despite the importance for cloud top radiative cooling in driving cloud base lowering (Koračin491

et al. 2005a), this fog does not strongly depend on the radiation shape parameter. This may be492

because the shape parameter simply does not modify cloud top cooling rates enough to have a large493

impact, or that perhaps processes other than radiative cooling were more important for driving the494

fog formation.495

4. Conclusion496

This study examined the sensitivity of a marine fog event that occurred on 7 September 2018497

over the Grand Banks to six microphysical and turbulent parameters. Fog formation was driven498
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by a passing front and occurred in two distinct sub-events with different formation mechanisms.499

The first sub-event formed as light precipitation from above evaporated in the boundary layer,500

moistening the layer until it became saturated all the way down to the surface, creating fog. The501

second fog formation resulted from low stratus clouds behind the front and capped by the top of the502

boundary layer growing downwards until they reached the surface. Both fog types are driven by503

the downward flux of liquid water. As a result, their sensitivities to microphysical input parameters504

correspond to parameter combinations that typically lead to fewer, larger droplets that tend to505

descend more quickly. Lower minimum 10 m visibility, which occurs when gravitational settling506

flux is lower
::::
and less moisture is lost to the surface, is related to a lower spatial and temporal extent507

of fog.508

Among the input parameters, microphysics shape parameter is the most important. Mean aerosol509

size has the greatest overall effect between its minimum and maximum values, but the sensitivity of510

fog properties is confined to mean aerosol sizes between 10 and 50 nm, meaning that it is probably511

irrelevant in real-world contexts. This leaves aerosol number concentration andmicrophysics shape512

parameter as the two most important parameters, with the latter having a substantially larger effect513

overall. Previous studies have found radiation fog to be sensitive to aerosol (Maalick et al. 2016;514

Schwenkel and Maronga 2019; Wainwright and Richter 2021). These studies reported increased515

fog with higher aerosol content, which is consistent with the minimum visibility trends from this516

study. However, they also found increases in the fog lifetime, whereas here we see reduced fog517

lifetimes and fog extents. Likely the difference is linked to the different types of fog studied and it518

highlights the importance of studying different fog formation mechanisms independently.519

The impact of the shape parameter of the cloud droplet size distribution is less well established,520

but this case study indicates that it strongly impacts the behavior of fog. A narrower cloud droplet521

size distribution is a distribution with a lower mean mass-weighted fall speed and one that will have522

less collision-coalescence, leading to reduced drizzle formation. As such, and as was also seen in523

radiation fog (Boutle et al. 2022), a narrower droplet size distribution decreases visibility at the524

surface. In our study it also decreases fog extent and lifetime. The impacts of the shape parameter525

on fog formation occur almost exclusively through microphysical processes rather than its direct526

impact on the radiative properties of the cloud/fog system. Additionally, microphysics shape527

parameter was the only input to have a significant independent impact on both the precipitation528
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and stratus lowering fog independent of either the relative humidity of the boundary layer between529

the sub-events or by the boundary-layer evaporation prior to initial fog onset.530

The substantial impact of microphysics shape parameter on fog in this set of simulations indicates531

that better understanding and treatment of the cloud droplet size distribution as it pertains to fog is532

an important area of further research. While measurements of the droplet size distribution in fog533

are common, it is difficult to find quantification of the distribution width in the literature and we534

are uncertain what the most realistic values of the shape parameter are. Additionally, the observed535

bimodal size distribution found in many fog cases (Pinnick et al. 1978; Niu et al. 2012) may play536

a significant role in the life-cycle of a fog case, requiring further research.537
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