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Abstract
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Upconverting nanoparticles provide valuable benefits as optical probes for bioimag-

ing and Förster resonant energy transfer (FRET) due to their high signal-to-noise

ratio, photostability, and biocompatibility; yet making nanoparticles small yields a

significant decay in brightness due to increased surface quenching. Approaches to

improve the brightness of UCNPs exist but often require increased nanoparticle size.

Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20

nm), bright upconversion with several key features: 1) maximal sensitizer concen-

tration in the core for high near-infrared absorption, 2) efficient energy transfer be-

tween core and interior shell for strong emission, and 3) emitter localization near the

nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core)

@NaY0.8−xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensi-

tizer and emitter ions are partitioned into core and interior shell, respectively. Emitter

concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence

on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET

coupling. We compare these seven samples with the field-standard core-shell archi-

tecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer

and emitter ions codoped in the core. At a single particle level, the core-shell-shell de-

sign was up to 2-fold brighter than the standard core-shell design. Further, by coupling

a fluorescent dye to the surface of the two different architectures, we demonstrated up

to 8-fold improved emission enhancement with the core-shell-shell compared to the

core-shell design. We show how, given proper consideration for emitter concentration,

we can design a unique nanoparticle architecture to yield comparable or improved

brightness and FRET coupling within a small volume.

Introduction

Bioimaging generally relies on fluorescent probes to monitor the structure and function of

various biomolecules informing both fundamental cell biology and disease diagnostics.1–3

Beyond imaging, fluorescent probes are also useful as Förster resonance energy transfer

2



(FRET) sensors, in which molecules can be detected with high spatial resolution through

nonradiative dipole-dipole coupling. FRET probes have enabled detection of protein-protein

interactions at the single molecule level, the unfolding and refolding of ribozymes and pro-

teins, and the interactions of proteins with DNA.1,4–7 While fluorescent proteins and dyes

are commonly used as FRET probes, they face challenges stemming from photobleaching,

cross-talk between excitation and emission wavelengths, and poor penetration depth in bi-

ological tissues.1,8,9 Consequently, other optical probes such as upconverting nanoparticles

(UCNPs) have gained increasing attention for their FRET-based capabilities.

Upconverting nanoparticles absorb near-infrared (NIR) light and emit visible light through

a multiphoton process. They are noteworthy optical probes for bioimaging due to their high

signal-to-noise ratio, photostability, and biocompatibility.8 Their distinct absorption and

emission spectra for upconversion remove issues pertaining to cross-talk for FRET and their

NIR excitation allows for high penetration depth within biological specimens. UCNPs are

increasingly used as optogenetic probes,10 chemical sensors,11,12 photodynamic therapeu-

tics,13,14 and bioimaging labels.8,15,16 To fully utilize the unique advantages of UCNPs for

FRET-based studies, UCNPs must be small, bright, and demonstrate exceptional FRET

coupling. Generally, UCNPs should be as small as possible but less than 50 nm in di-

ameter to ensure efficient delivery into cells, proper targeting of proteins,17 and minimal

perturbation of biomolecular processes.18 However, maintaining brightness in such a small

size regime is difficult due to the enormous loss in upconversion efficiency. At small length

scales the brightness of UCNPs is limited by surface quenching effects (such as nonradiative

losses from surface defects and ligands, etc.), which dominate because of the high surface-

to-volume ratio.19–21 Additionally, improved FRET coupling has been shown with smaller

nanoparticles,22,23 further driving the need for small and bright UCNPs.

Several approaches to improve the brightness of UCNPs exist, including surface pas-

sivation via an inert shell,24,25 increased sensitizer ion doping for improved absorption of

near-infrared (NIR) light,26,27 and modulation of the emitter-to-sensitizer ion doping ratio
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for optimal energy transfer.28–30 Passivation of the UCNP surface by an inert shell is often

used to mediate surface quenching. For example, Fischer et al. showed that a 4 nm thick

inert shell on 23 nm cores boosted the UCNP quantum yield by approximately two orders

of magnitude.25 Increasing the concentration of sensitizer ions (often Yb3+) has also been

shown to improve the brightness of nanoparticles simply by increasing the fraction of ab-

sorbed photons.26 Through alloying29 or templating,26,27 arbitrarily high concentrations of

Yb3+ and Er3+ have been achieved but producing small, sub-20 nm hexagonal phase (β)

NaYbF4 UCNPs remains challenging. Alternatively, the emitter ion (often Er3+) concentra-

tion can be manipulated for brighter emission. In particular, the optimal Er3+ concentration

for upconversion depends strongly on the illumination power density, with more Er3+ optimal

for the higher power densities (>105 W/cm2) required for single particle studies.31

Nanoparticle architecture has been manipulated to study FRET coupling with FRET

acceptors including dyes, molecules, or other probes such as quantum dots.32–34 Marin et

al. showed that both decreasing the size of LiYF4:Yb3+,Tm3+ UCNPs and distributing

emitter ions in an external shell increased the FRET efficiency to CuInS2 quantum dots.22

Other works have investigated FRET coupling and related energy transfer through active

core and active shell strategies,35 passivating shell effects,32 and sensitization via dye anten-

nas.36–38 Further when UCNPs are coupled to a fluorescent dye via FRET, the upconversion

quantum yield (UCQY) of the system has been shown to improve by nearly an order of

magnitude.23 Together, these studies inform design considerations for bright upconversion

in a small nanoparticle for FRET: a passivating inert shell, a high concentration of Yb3+, a

tuned Er3+ concentration, and efficient coupling to a FRET acceptor.

Here we introduce a unique nanoparticle architecture that, within a sub-20 nm foot-

print, achieves improved brightness and FRET coupling compared to the field standard

architecture. This design partitions sensitizer and emitter ions through a core-shell-shell

(CSS) architecture and consists of β-NaYbF4 (core) @NaY0.8−xErxGd0.2F4 (interior shell)

@NaY0.8Gd0.2F4 (exterior shell). In this structure, Yb3+ is isolated in the core while Er3+
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is isolated in the interior shell of the nanoparticle. This architecture possesses several key

attributes of interest: 1) maximum sensitizer ion concentration in the core, maximizing ab-

sorption of NIR light; 2) efficient energy migration between core and interior shell, enabling

strong excitation of emitter ions; and 3) close proximity of emitter ions to FRET acceptors

such as molecules or probes bound to the UCNP surface. Due to the distinct nature of energy

transfer in this structure, we tuned the doping of Er3+ to investigate influence on brightness,

quantum yield, and FRET coupling. For comparison, we also synthesized a conventional

core-shell (CS) structure, consisting of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4

(shell). We showed that in terms of single particle brightness the CSS structure was up

to 2x brighter than the standard CS structure. Quantum yield and lifetime measurements

highlight more dominant nonradiative pathways for the CSS structure, likely from emitters

localized near the nanoparticle surface. Finally, we demonstrated how this CSS architecture

exhibits efficient resonance energy transfer by coupling a fluorescent dye to the surface of

these nanoparticles, showing FRET coupling comparable to the CS architecture for low Er3+

doped CSS nanoparticles and up to 8x improved emission enhancement for high Er3+ doped

CSS nanoparticles.

Results and Discussion

We synthesized all UCNPs using a colloidal procedure adapted from previously described

work,29,39 modified to acquire the appropriate doping concentrations in each core and shell.

For the CSS structure (Figure 1a), all samples were derived from the same batch of core

β-NaYbF4 nanoparticles with a diameter of 9.5 ± 0.8 nm (Figure 1b). Therefore, all CSS

samples were similarly sensitized by Yb3+. These core nanoparticles were then shelled with

two shells, both containing 20% Gd3+ to maintain hexagonal phase growth in this small size

regime.29,40 The interior shell, hereafter referred to as the emitter shell, was approximately 1

nm thick and composed of β-NaY0.8−xErxGd0.2F4 where x is the emitter dopant fraction (x
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= 1, 2, 5, 10, 20, 50, and 80%). We systematically varied this concentration to investigate

its influence on energy transfer and ultimately the quantum yield, brightness, and FRET

coupling for this CSS structure. The emitter shell was purposely kept thin to ensure all Er3+

are well-coupled to Yb3+ and to keep the overall nanoparticle diameter small. Finally, an ap-

proximately 2 nm thick shell passivates the nanoparticle from surface quenching, consisting of

β-NaY0.8Gd0.2F4 (Figure 1c). The inert shell thickness was a compromise between passivat-

ing the structure, and therefore improving quantum yield and brightness, while maintaining

a small nanoparticle size. Seven samples consisting of this CSS architecture were synthe-

sized, one for each of the emitter concentrations listed above. All nanoparticles had a total

diameter of approximately 16 nm (see Supporting Information).

For comparison, we synthesized a CS structure consisting of a core with Yb3+ and Er3+

codoped and a passivating shell (Figure 1d). The core of the CS structure had a diameter of

11.4± 0.7 nm to match the diameter of the core-shell in the CSS structure and consisted of

NaY0.58Yb0.2Er0.02Gd0.2F4 (Figure 1e), utilizing the field-standard doping levels of approx-

imately 20% Yb3+ and 2% Er3+. The CS structure was passivated with an inert shell of

thickness similar to that of the CSS structure (Figure 1f). Due to the prominent effects of

size on the optical properties of UCNPs,19,41,42 careful consideration was taken to match the

nanoparticles in size and keep the thickness of the passivating shells within one standard

deviation of size measurement of each other across all samples (see Figure 1g). The different

structures were all confirmed as pure hexagonal-phase with x-ray diffraction (see Figure S2)

and doping concentrations were measured using inductively coupled plasma optical emission

spectroscopy (ICP-OES) (see Table S2).

Representative images of UCNPs dispersed in hexanes and upconversion emission spectra

are shown in Figure 2a-b (see Figure S3 for full sample comparison). Figure 2a compares

digital images of the eight samples synthesized in this work. These images show qualitative

changes in both color and brightness between the CSS structure, with varying Er3+ concen-

tration in the emitter shell, and the CS structure. The emission spectrum for Er3+ under
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980 nm excitation includes three characteristic peaks from the 4H11/2 (525 nm), 4S3/2 (540

nm), and 4F9/2 (654 nm) states. Spectra for the CSS structure doped with 2% Er3+ and

20% Er3+ as well as the CS structure, all normalized to the peak at 540 nm, are shown in

Figure 2b. We can attribute the differences in “color” of these nanoparticles to differences

in nanoparticle structure43 (CSS vs. CS) and doping concentration.44

In many bioimaging and biosensing applications it is important to understand the bright-

ness of individual UCNPs. For FRET-based studies, this is imperative for localizing and

monitoring specific biomolecules and their interactions.45–47 For this reason, we performed

single particle measurements using a scanning confocal microscope to characterize the emis-

sion intensity of single particles. A solution of approximately 500 ng/mL of each sample

was dropcast onto a coverslip and scanned using a confocal microscope and a 976 nm fiber

coupled laser at 500 kW/cm2. Figure 2c shows confocal scans of CSS: 20% Er3+ and CS

UCNPs (top and bottom, respectively) and correlated SEM images to verify emission from

single nanoparticles (see SI for full SEM colocalization). Using these confocal scans, the

upconversion emission rate was determined by fitting a 2D Gaussian to individual nanopar-

ticles. All eight samples were measured and compared by the average brightness (measured

as upconversion emission rate) of each sample, averaged over at least 450 nanoparticles (Fig-

ure 2d); note that 1 and 2% Er3+ doped CSS structures were not bright enough to exceed

the detection limit. Figure 2e shows histograms of the single particle brightness data for the

brightest CSS sample, 20% Er3+ doping, and the CS structure. The CSS: 20% Er3+ UCNPs

measured 34 ± 6 kilocounts/s at the single particle level compared to the CS UCNPs at 16

± 4 kilocounts/s, showing a 2x enhancement in brightness. Meanwhile, CSS structures with

10, 50, and 80% Er3+ showed similar or improved single particle brightness compared to the

CS UCNPs.

Several factors may contribute to these CSS UCNPs’ brightness and explain why the

20% Er3+ doping is optimal for the CSS structure. First, the enhancement in upconversion

emission rate is likely due to the increased doping concentration of both Yb3+ and Er3+.
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The increased absorptance is likely a large factor in why CSS: 20% Er3+ is 2x brighter than

the CS structure. As measured by ICP-OES, the CSS nanoparticles have approximately

4x the amount of Yb3+ present (see Table S2). The increased amount of Yb3+ means the

nanoparticles are absorbing roughly 4x more NIR light; even with low internal quantum

yield, UCNPs can be bright if they absorb enough NIR light.26,35 The concentration of

Er3+ in the nanoparticle also plays a key role in the upconversion emission rate, as seen

by the dependence of the single particle brightness on Er3+ concentration. Typically, high

concentrations of Er3+ are associated with high cross-relaxation rates and/or high energy

migration rates to the UCNP surface. Cross-relaxation and surface migration decrease the

efficiency of upconversion as both processes provide nonradiative pathways and therefore

losses. However, due to the high flux of NIR light required for single particle measurements,

more Er3+ states can be populated simultaneously, necessitating more Er3+ to utilize the

energy mediated through so many Yb3+.29,31 Previous work has shown for different UCNP

architectures there exists an optimal Yb3+/Er3+ concentration to maximize single particle

emission; through experimental tuning we were able to show that this CSS architecture is

optimized at 20% Er.27,29,31 The low-Er3+ doped UCNPs saturate in brightness at such high

power densities, while higher Er3+ concentrations facilitate brighter UCNPs, even in this CSS

architecture; however, sufficiently high doping levels still result in luminescence quenching.

To better understand the complex photodynamics of the CSS structure, we performed

ensemble quantum yield and lifetime measurements. We used quantum yield as a metric to

compare the upconversion efficiency of these structures. UCQY is defined as the number of

visible photons emitted divided by the number of NIR photons absorbed. Figure 3a shows

the total, red, and green UCQY for the eight samples at an irradiance of 70 W/cm2 (see Table

S3 for other irradiances). For the CSS structure, as the Er3+ concentration increases from

1% to 2%, the UCQY increases; thereafter, the UCQY decreases with increasing Er3+ con-

centration. Interestingly, for the CSS structure, the quantum yield peaked at 0.16 ± 0.01%

with a 2% Er3+ concentration, consistent with what is generally accepted as the optimal
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Er3+ doping concentration for NaYF4:Yb3+,Er3+.48,49 In comparison, the UCQY of the CS

sample was measured at 0.8 ± 0.1%, a 5x greater quantum yield. Therefore, while the CSS

structure is brighter, its UCQY is reduced compared to the standard. Meanwhile, comparing

the red and green UCQY values, the CSS UCNPs became “greener” with increasing Er3+

concentration (with CSS: 80% Er3+ as an exception). In comparison, the CS sample had

more dominant green emission. These observations are consistent with the digital images

and spectra shown in Figure 2a-b.

To understand the brightness and UCQY data, we consider the pathways involved with

populating and depopulating the states relevant to upconversion and how those pathways

change as we alter Er3+ concentration and architecture (CSS vs. CS). The optimization

of total UCQY with Er3+ concentration for the CSS structure results from two compet-

ing effects: 1) insufficient emitter ions to undergo upconversion and emit light and 2) the

deleterious effects of too many emitter ions due to cross-relaxation pathways or energy mi-

gration to surface quenchers. The trend for the CSS structure can likely be explained by

not enough emitters to utilize the absorbed NIR light effectively at low Er3+ concentrations

and concentration quenching (cross-relaxation, energy migration, etc.) dominating at higher

concentrations, with an optimization around 2% Er3+. Meanwhile, the difference in UCQY

between CSS and CS is likely more complex. There could be greater energy back-transfer

to Yb3+, due to the larger quantity of Yb3+ present in the CSS architecture, or a greater

likelihood of energy migration to the surface, due to the localization of all of the emitter

ions to approximately 2 nm from the UCNP surface. These nonradiative pathways may

be significantly more dominant in the CSS structure than in the CS structure, resulting in

relatively lower UCQY.

Lifetime measurements were performed to understand how structuring the nanoparticle

alters the decay lifetimes of the excited states of Yb3+ and Er3+. These observations can

provide insight into how states are populated and subsequently radiatively emit light. Here

we define the decay lifetime as the time required for emission intensity to reach 1/e of its
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maximum value. Figure 3b shows the measured decay lifetimes for NIR emission from Yb3+

2F5/2 (1000 nm emission after 980 nm excitation, note that the Yb3+ 2F5/2 lifetime values

are scaled by a factor of 1/10), red emission from Er3+ 4F9/2 (654 nm emission after 649 nm

excitation), and green emission from Er3+ 4S3/2 (540 nm emission after 520 nm excitation).

Other lifetimes, including indirect decay lifetimes and rise times, are included in the SI.

Looking at the Yb3+ 2F5/2 state for direct excitation at 980 nm, CSS: 1% Er3+ has the

longest decay lifetime at 790 ± 30 µs, followed by CS (540 ± 10 µs) and CSS: 2% Er3+

(510 ± 30 µs) behaving comparably. The decay lifetime then decreases with increasing Er3+

concentration along the CSS series. The longer lifetime of CSS: 1% Er3+ may be due to

a better effective passivation for this sample; notably, due to the low doping concentration

in the emitter shell, the emitter shell acts effectively as an additional inert shell (increasing

the passivation effect) while simultaneously containing fewer Er3+ to depopulate the Yb3+

2F5/2 state. Beyond this observation, at higher Er3+ concentrations the lifetime decreases

as the Yb3+ level is depopulated more readily through energy transfer to Er3+. While more

Yb3+ is present in the CSS structure, there is no Yb3+-Yb3+ cross-relaxation due to the

lack of a resonant cross relaxation pathway. Therefore, the decrease in lifetime across the

CSS samples can be attributed to energy transfer to Er3+. A similar dependence on Er3+

concentration is seen with the decay lifetimes for green emission from the Er3+ 4S3/2 state.

Er3+ 4S3/2 decay lifetimes decrease from 95 ± 2 µs for the CS structure down to 79 ± 4 µs

for CSS: 1% Er3+ and continue to decrease with increasing Er3+ to 3.0 ± 0.3 µs for CSS:

80% Er3+. While the trend with Er3+ concentration is likely from concentration quenching,

the decrease in lifetime from CS to CSS may be something inherent to the CSS structure.

Lifetime measurements for red emission from Er3+ 4F9/2 are useful due to the lack of

resonant cross-relaxation pathways for this state.50 Therefore, there should be no significant

change in the lifetime value with Er3+ concentration, which is consistent with what we see

for the CSS structure: all of these Er3+ 4F9/2 decay lifetimes fall in the range of 15-25 µs.

Interestingly though, the CS structure has a significantly longer decay lifetime for Er3+ 4F9/2
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at 65 ± 4 µs. This significant difference in lifetime between CS and CSS, which cannot be

attributed to a cross-relaxation pathway, must then stem from greater energy migration to

the UCNP surface or some other nonradiative pathway inherent to the CSS structure. These

decreased lifetimes may stem from the localization of Er3+ ions in the emitter shell, closer

to the nanoparticle surface. It is likely that multiple depopulation pathways play significant

roles in decreasing the lifetime of this system, due to the complexity of energy transfer

related to upconversion.51 Altogether, these decay lifetime measurements are indicative of

more dominant nonradiative pathways in the CSS structure compared to the CS structure

and consistent with the lower UCQY observed for the CSS structure.

Finally, we investigated the FRET coupling of the Er3+ to molecules on the surface by

attaching a luminescent dye to the surface of the UCNPs. Due to the partitioning of emitter

ions near the UCNP surface in the CSS structure, we expect coupling via FRET to be

more prominent. We chose the commercial dye ATTO 542 to use as our FRET acceptor,

specifically because the emission profile of our UCNPs overlaps well with the absorption

profile of this dye. Figure 4a shows schematically how energy can be siphoned from Er3+

to the lowest unoccupied molecular orbital (LUMO) of the fluorescent dye. As has been

shown previously,32–34 including with this specific dye,23 the fast radiative rate of the dye

molecule can improve the emission efficiency of upconverted light. While this does not

remove nonradiative energy transfer pathways, the pathway introduced through FRET to

the dye can be fast and efficient enough to dominate over other pathways.

To functionalize our nanoparticles with dye, we first stripped the UCNPs of their oleic

acid ligands using a common ligand-stripping procedure.23 Nanoparticles were then dispersed

in water at a fixed concentration. Using a cuvette holder, complete with a fiber coupled 980

nm diode and spectrometer, we collected emission spectra of the ligand-stripped UCNPs in

water. The dye was then injected into the cuvette while simultaneously stirring the mixture

and further emission spectra were collected to obtain a time-dependent measurement series.

This experiment was performed for all eight samples, each at three concentrations of dye.
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The dye concentrations were chosen to demonstrate a transition from low to high emission

enhancement from the dye. Following previous calculations,23,52 these dye concentrations

correspond to dye molecule:UCNP ratios of approximately 6:1, 1:1, and 1:2. These ratios

reflect the total number of dye molecules and UCNPs present in the system, and not neces-

sarily the number of dye molecules attached to any individual UCNP at one time. Figure 4b

and c compare emission spectra for the brightest samples of this study, CSS: 20% Er3+ and

CS samples, respectively, for each of the three dye concentrations investigated. To exhibit

the rapid dye enhancement, for each dye concentration a series of spectra is plotted showing

the emission before adding dye, immediately after adding dye (t = 0), 5 seconds later, 1

minute later, and 2 hours later. In all cases, enhancement is readily visible although more

prominent for the higher dye concentrations. As shown, in both cases the emission inten-

sity increases from dye functionalization. We quantified this enhancement by looking at the

integrated emission intensity after adding the dye, normalized by the integrated emission

intensity before adding the dye. These enhancement values (represented as γ) are included

next to each time series for each dye molecule:UCNP ratio. The comparison between these

two samples shows that the enhancement was more pronounced for the CSS: 20% Er3+ sam-

ple than for the CS sample. At the highest dye concentration (a dye:UCNP ratio of 6:1), γ

of CSS: 20% Er3+ is measured as 11.8 ± 0.3, nearly 4x better than that of the CS, measured

at 3.08 ± 0.09. At the lowest dye concentration (a dye:UCNP ratio of 1:2), the CSS: 20%

Er3+ shows nearly 2x greater enhancement with γ measured at 2.67 ± 0.07 compared to 1.49

± 0.05 for the CS.

Figure 4d shows the enhancement values for the three dye concentrations for each of the

eight samples. A clear trend in Er3+ concentration within the CSS architecture is apparent.

For the 6:1 dye:UCNP ratio, γ ranges from 2.73 ± 0.04 for CSS: 1% Er3+ to 26 ± 2 for CSS:

80% Er3+. The higher Er3+ concentrations benefit the most in terms of emission enhancement

from FRET because the bare nanoparticles are not as bright (see Supporting Information

for comparison of absolute intensities). Additionally, we expect that more Er3+ allows for
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more efficient siphoning of energy to dye molecules coupled to the surface. Interestingly, γ

for CSS: 2% Er3+ and CS (which also has 2% Er3+) are very similar: 3.5 ± 0.1 and 3.08

± 0.09, respectively. This comparison suggests that at such small length scales (relative to

the FRET distance, 10.8 nm for this donor-acceptor pair23) modifications to nanoparticle

architecture may not necessarily significantly improve FRET coupling. This conclusion might

be attributed to comparable coupling of the emitters within the particle volume to the ATTO

542 dye on the surface. Nevertheless, the FRET emission enhancement can be up to a factor

of 8x larger with tuned Er3+ (CSS: 80% Er3+) than the CS sample.

Conclusion and Outlook

In summary, we have developed UCNPs with a core-shell-shell (CSS) architecture exhibiting

up to 2x brighter single particle emission and up to 8x greater emission enhancement due

to FRET when compared with a traditional core-shell (CS) architecture. We investigated

this CSS architecture, where core and shell partition Yb3+ and Er3+, with seven different

emitter concentrations and compared the structure with a typical CS architecture. We used

both single particle and ensemble measurements to thoroughly characterize the 8 samples

investigated in this work. We showed that, compared to the typical CS structure, the

CSS structure exhibits 2x single particle brightness at 20% Er3+ doping. Single particle

brightness was optimized by greater absorption of NIR light and tuned Er3+ concentration.

The CSS structure was shown to be optimized for quantum yield at approximately 2%

Er3+ doping, though the CS structure produces 5-fold greater quantum yield. Lifetime

measurements revealed similar decay lifetimes between low Er3+ doped CSS nanoparticles

and CS nanoparticles for the Yb3+ 2F5/2 (1000 nm emission) and Er3+ 4S3/2 (green emission

at 540 nm) states but a significantly shorter Er3+ 4F9/2 (red emission at 654 nm) decay

lifetime for all Er3+ concentrations in the CSS structure. This difference was likely due

to more dominant nonradiative pathways inherent to the CSS structure such as greater
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energy transfer to the UCNP surface from the position of emitter ions and greater Er3+-

Yb3+ back-transfer. Comparing emission enhancement due to FRET to a fluorescent dye,

we saw larger values of enhancement from dye coupling for high concentrations of Er3+ in the

CSS architecture compared to the CS architecture. We showed that this architecture is able

to sustain significant improvements in single particle brightness and FRET coupling if the

Er3+ concentration is appropriately tuned. Ultimately, what matters for a given nanoparticle

design is the emitted light for a particular illumination intensity.

In future work, we anticipate that this structure could play two roles: first, as a small

and bright optical probe and second, as an efficient donor for FRET. The size of these

nanoparticles make them more relevant for delivery into and study of biological systems

without perturbation. Their usage could improve imaging and monitoring of specific proteins

or biological processes, utilizing the unique capabilities of UCNPs, without disturbing the

process or environment in question. Despite the small size, these CSS UCNPs are still very

bright, making them competitive with traditional UCNP architectures. The enhancements

shown here could be extended to photodynamic therapies,53,54 drug delivery,55 and studying

more complex dynamic biological processes with nanoscale resolution.18,56,57 More broadly,

our work shows how atomic-scale architecting provides a unique platform for enabling bright

upconversion and efficient FRET coupling, all within a sub-20 nm footprint.

Experimental Section

Materials

Yttrium(III) acetate hydrate (Y(CH3CO2)3·H2O), erbium(III) acetate hydrate

(Er(CH3CO2)3·H2O), gadolinium(III) acetate hydrate (Gd(CH3CO2)3·H2O), ytterbium(III)

chloride hexahydrate (YbCl3·6H2O), ammonium fluoride (NH4F), sodium trifluoroacetate

(NaCF3COO), 90% 1-octadecene (ODE), 90% oleic acid (OA), and 70% oleylamine were pur-

chased from Sigma-Aldrich. Sodium oleate (NaC18H33O2) was purchased from TCI America.
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All chemicals were used as received.

For the ligand stripping procedure, diethyl ether was purchased from Fisher Scientific.

The fluorescent dye, ATTO 542, used for emission enhancement was purchased from ATTO-

TEC GmbH.

Synthesis

All synthesis methods were adapted from previously described procedures.29,39 To synthesize

the NaYbF4 cores for the CSS architecture, 2 mmol YbCl3, 18.25 mL OA, and 20 mL ODE

were combined in a 250 mL flask. The contents were stirred under vacuum and then slowly

heated to 110◦C for 1 hour. The flask was then cooled and 6.25 mmol sodium oleate, 10

mmol NH4F, 6.25 mL oleylamine, and 8.75 mL ODE were added. Vacuum was pulled again

for 20 minutes, then the flask was cycled with argon gas three times prior to heating rapidly

to 315◦C for 45 minutes. The flask was then cooled rapidly and the nanoparticles were

washed twice with ethanol and acetone and finally resuspended in 50 mL hexanes.

Shelling precursors were prepared as follows. In a 100 mL flask, 2 mmol Ln acetate, 10

mL OA, and 15 mL ODE were combined to form the appropriate Ln oleate solution. The

flask was stirred and heated to 110◦C under vacuum, held at 110◦C for 15 min, and then

heated to 160◦C under argon gas. After all precursors were dissolved, the flask was cooled

to 110◦C and vacuum was pulled once more, followed by cooling to room temperature. For

the sodium trifluoroacetate solution, 6 mmol sodium trifluoroacetate was added to 15 mL

OA in a 50 mL flask and stirred under vacuum at room temperature until dissolved.

The shells of the CSS architecture were made as follows. In a 50 mL flask, 2.7 mL of

stock NaYbF4 nanoparticles were combined with 4 mL OA and 6 mL ODE. The solution was

stirred under vacuum and then heated to 70◦C. After 30 min, the flask was filled with argon

gas and heated to 300◦C. Injections of precursors were then cycled, with each cycle beginning

with injecting Ln oleate solution, waiting 15 minutes, and then ending with injecting sodium

trifluoroacetate solution. For the CSS structure, the first 4 cycles consisted of Ln oleate
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solution corresponding to the appropriate Er3+ concentration and the last 4 cycles correspond

with the inert shell material (see SI Table 1). After the last injection, the flask was held

at 300◦C for 30 min and then cooled rapidly to room temperature. The nanoparticles were

washed in the same way as the NaYbF4 core nanoparticles and were finally resuspended in

5 mL hexanes.

The CS architecture was synthesized by first combining 0.072 mmol YbCl3, 0.08 mmol

ErCl3, 0.24 mmol YCl3, 0.08 mmol GdCl3, 3.65 mL OA, and 4 mL ODE in a 50 mL flask.

The flask was stirred under vacuum and then heated to 110◦C for one hour. The flask was

cooled to room temperature and 1.25 mmol sodium oleate, 2 mmol NH4F, and 1.75 mL ODE

were added to the flask. The flask was stirred under vacuum for 20 min and then cycled three

times with argon gas before heating to 315◦C under argon. The flask was held at 315◦C for 45

min and then cooled rapidly to room temperature. These CS core nanoparticles were washed

identically to the NaYbF4 nanoparticles with ethanol and acetone and finally resuspended

in 10 mL hexanes.

The CS nanoparticles were shelled identically to the CSS nanoparticles except with only

4 injections, which correspond to the inert shell material.

Transmission Electron Microscopy

Transmission electron microscopy images were taken on a FEI Tecnai G2 F20 X-TWIN

Transmission Electron Microscope operated at 200 kV. Samples were prepared by dropcast-

ing approximately 10 µL of a dilute solution of the sample in hexanes onto a ultrathin carbon

type-A, 400 mesh, copper grid from Ted Pella, Inc.

Single Particle Measurements

The methods used in the single particle measurements were previously described.27 Nanopar-

ticles were dropcast onto clean coverslips and single particle optical characterization was

performed using a home-built stage scanning confocal microscope with a Nikon 60X oil ob-
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jective (NA 1.49) and a 976 nm fiber coupled laser at 500 kW/cm2. Custom Matlab code

was used to identify an individual point spread function for each particle and perform a 2D

Gaussian fit to determine the upconversion emission rate.

For correlative SEM, nanoparticles were dropcast onto a glass coverslip with a labeled

grid pattern. The sample was first imaged by the confocal microscope, followed by sputter-

coating a 2 nm gold-palladium layer to prep for SEM. Nanoparticles were imaged using a

Zeiss Sigma Field Emission Scanning Electron Microscope (Carl Zeiss Microscopy, Germany)

and InLens SE (Secondary Electron) detection, utilizing the grid pattern as a guide.

Quantum Yield and Lifetime Measurements

Quantum yield and lifetime measurements were conducted as previously reported.25 Briefly,

for quantum yield measurements a MDL-III-980/2W laser from Changchun New Industries

was used to excite each sample. The laser was guided into a Labsphere integrating sphere

containing the sample. Diffuse emitted light was collected from the sample and led into

a Princeton Instruments SP2300 spectrometer and imaged using a Princeton Instruments

PIXIS 400B silicon charge-coupled device.

Lifetime measurements were performed using an Edinburgh Instruments FLS980 spec-

trometer. Emission from various states was monitored using a Hamamatsu R2658P photo-

multiplier tube. An Opotek HE 355 LD optical parametric oscillator tunable laser operated

at 20 Hz was used as the excitation source for all lifetime measurements.

Dye Enhancement Experiments

To study the emission enhancement from a fluorescent dye, nanoparticles were first ligand-

stripped following a previous procedure.23 Briefly, nanoparticles were dried and then son-

icated in a solution of 0.04 M HCl in 80:20 (v/v%) ethanol/water for 30 min. Next, the

stripped oleic acid was separated from the nanoparticles using a separatory funnel and ad-

dition of diethyl ether and water. Diethyl ether, water, and the sample dispersed in 0.04 M
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HCl were mixed in a 1:1:1 ratio by volume. The nanoparticles were finally centrifuged with

isopropanol and dispersed in water at a concentration of 5 mg/mL.

In a quartz cuvette, 0.25 mL of 5 mg/mL nanoparticle solution was added to 1.75

mL of water. Separately, a syringe containing 0.26 mL of the appropriate dye concen-

tration (approximately 0.005, 0.001, and 0.0005 mg/mL, corresponding to approximate dye

molecule:UCNP ratios of 6:1, 1:1, and 1:2, respectively) was prepared. The cuvette was

stirred in a qpod 2e cuvette holder from Quantum Northwest, coupled to a 980 nm diode

(MDL-III-980/2W from Opto Engine LLC), and spectra were collected using an Ocean Op-

tics HR4000 Spectrometer while the temperature was maintained at 20◦C. Spectra were

acquired every 5 seconds with an integration time of 1 second. Three minutes of emission

spectra were collected prior to rapidly injecting the dye through a septa cap. We then

continued to collect emission spectra for two hours to monitor dye enhancement.

Figures
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Figure 1: Schematics, micrographs, and size information of UCNPs. a) Schematic of the
core-shell-shell (CSS) UCNP and TEM micrographs of b) the starting core and c) the final
CSS UCNPs. d) Schematic of the core-shell (CS) UCNP and TEM micrographs of e) the
starting core and f) the final CS UCNPs. All scale bars are 20 nm. g) Average diameters
of the 8 samples compared in this work: 7 CSS samples of different Er3+ doping and 1 CS
structure. Core, core-shell, and core-shell-shell diameters shown as blue, green, and grey,
respectively, for the CSS structure; core and core-shell diameters shown as teal and gray,
respectively, for the CS structure. Error bars represent the standard deviation of the size
measurement (N ≥ 700 nanoparticles).
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Figure 2: Ensemble and single particle upconversion characterization of CSS and CS struc-
tures. a) Digital images showing upconversion luminescence of UCNPs suspended in hexanes
when illuminated with a 980 nm diode laser. b) Representative upconversion spectra, nor-
malized to the same peak at 540 nm, comparing the CSS structure doped with 2% Er3+

and 20% Er3+ and the CS structure. Here, green emission is colored in green and similarly
red emission is colored in red. Emission spectra collected under 980 nm illumination at 70
W/cm2 for UCNPs suspended in hexanes. c) Single particle measurements for CSS: 20%
Er3+ (top) and CS (bottom) structures collected using a scanning confocal microscope with
a Nikon 60X oil objective (NA 1.49) and a 976 nm fiber coupled laser at 500 kW/cm2. Scale
bars are 2 µm for both confocal images. Corresponding colocalization of particles using
scanning electron microscopy (SEM) on right. Scale is identical for all SEM images. d)
Average single particle brightness for all 8 samples; note that 1 and 2% Er3+ doped CSS
samples were not bright enough to be measured. Error bars represent the standard deviation
of the measurement (N ≥ 450 nanoparticles). e) Single particle brightness comparison of CS
structure and CSS: 20% Er3+.
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Figure 3: Upconversion quantum yield and lifetime characterization of CSS and CS samples.
a) Total, red, and green upconversion quantum yield data for CSS structure and CS structure
taken under 980 nm illumination at 70 W/cm2. 50 and 80% Er3+ doped CSS data shown in
inset for visibility. Note that CSS sample data is plotted on a different y-axis than CS data.
b) Comparison of decay lifetimes for Yb3+ 2F5/2 emission after 980 nm excitation (Note that
these values are scaled by a factor of 1/10 so all lifetimes can be plotted on the same scale),
red Er3+ 4F9/2 emission after 649 nm excitation, and green Er3+ 4S3/2 emission after 520 nm
excitation.
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Figure 4: ATTO 542 dye emission enhancement. a) Schematic energy diagram showing
energy transfer from Er3+ to lowest unoccupied molecular orbital (LUMO) of dye, leading
to dye emission. Normalized emission intensity of b) CSS: 20% Er3+ and c) CS structures
at the three concentrations of dye investigated. Time traces of spectra shown prior to
adding dye, immediately after adding dye, 5 seconds after, 1 min after, and 2 hours after.
Included gamma (γ) values report the integrated emission enhancement after adding the
dye. d) Summary of the integrated emission enhancement (γ) for all samples at the three
dye concentrations.
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