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Drugs developed to slow, halt or reverse the progression of Alzheimer’s Disease (AD) 

have failed to alter the course of the disease in clinical trials. One possible explanation is that 

drugs need to be administered earlier, before the onset of clinical symptoms. AD-related 

pathological processes that occur before clinical symptoms emerge define the preclinical phase 

of the disease. Neuroimaging biomarkers and genetics together present a powerful system for 

characterizing potential preclinical changes in the brain. The work presented in this volume is 

predicated on the need for a better understanding of genetic risk and neuroimaging biomarkers 

for AD in healthy adults. In Chapter 1, a thorough review of neuroimaging genetics in AD is 

presented. The studies described in Chapters 2 and 3 explore the relationship between 

functional connectivity and the apolioprotein E (APOE) risk allele, APOEε4. In the first study a 

pattern of context-dependent connectivity was uncovered that indicates APOEε4 carriers 

disengage key cortical regions from the hippocampus during a memory task. These findings 

support the growing consensus that functional connectivity changes may be among the earliest 
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preclinical markers of AD-related changes in the brain. The second study utilized resting state 

fMRI scans from 570 healthy college-age adults. Young carriers of APOEε4 showed decreased 

connectivity between key regions involved in AD and increased segregation of task-positive and 

task-negative regions. This work is a crucial reminder that genetic risk for AD has important 

implications across the lifespan and that gene-biomarker associations must be tracked over 

time to identify changes that might be signs of imminent clinical decline. In Chapter 4, the focus 

expands to include additional genetic risk factors for AD beyond APOE. This study is the first to 

show that a genetic risk score for AD is significantly associated with hippocampal thinning over 

two years in a cohort of older, cognitively healthy adults. Finally, Chapter 5 is a call for the 

further development of polygenic approaches to studying neuroimaging markers of genetic risk 

for AD. Together, this volume represents steps toward understanding how genetic risk for AD 

and neuroimaging can be used to identify individuals at greatest risk for decline.  
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CHAPTER 1 
  

Background: Neuroimaging Genetics of Alzheimer’s Disease 
	
  
 
Introduction 
 

When the human genome project was completed in 2003 many believed it marked the 

beginning of an era of genomic medicine. The genetic basis of highly heritable neurological 

disorders like Alzheimer’s disease (AD), autism and schizophrenia would be discovered and 

applied to the development of new therapies. Some went one step further, predicting that 

personalized genomic medicine would soon follow the elucidation of disease-specific genetic 

fingerprints. These hopeful predictions have yet to come to fruition and, in their stead, an 

appreciation for the complexity of polygenic brain disorders has been steadily growing. Current 

estimates indicate that both autism and schizophrenia are associated with hundreds of genes 

and even more single nucleotide polymorphisms (SNPs) (1; 2). Similarly, the genetics of AD 

have proven to be a complex problem despite the early promise of the apolipoprotein E (APOE) 

gene. More than 20 years ago, Corder and colleagues discovered that a single copy of the E4 

allele of APOE increased an individual’s risk of getting AD 4-5-fold, and two copies increased 

AD risk up to 15-fold (3). Another way to measure the risk conferred by APOE is to examine 

what proportion of AD heritability can be accounted for by APOE. Twin studies reveal that the 

heritability of AD is 60-80% and APOE accounts for about 50% of the variation in heritability (4–

6).  Current understanding of human genetics allows one to appreciate that APOE has a 

relatively huge effect on AD risk. Still, roughly half of the variation in heritability is presumably 

due to other genetic risk factors, of which there are now greater than 20 validated candidates 

(7).  

The increasing number of risk loci associated with AD and other neurological disorders 

is the result of a recent surge in the efficiency of genomic technologies combined with data 

sharing efforts that have allowed researchers to identify genomic loci associated with disease, 
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even with very low effect sizes. Low effect size associations require extremely large cohorts in 

order to provide sufficient power for detection. Recently, a consortium of AD researchers 

created a large dataset of ~70,000 subjects known as the International Genomics of Alzheimer’s 

Project (IGAP) (8). Analyses performed on this large dataset were able to reveal 11 new AD risk 

loci, in addition to confirming previously identified loci (7). Based on this success and the 

success of other consortiums, there continues to be interest in ever-larger cohorts. However, as 

sample sizes continue to rise ‘significant’ effect sizes get smaller and smaller and there may be 

a risk of being statistically over-powered. Too much statistical power could lead to the 

identification of spurious risk loci that are not actually associated with the disease phenotype. 

The process of parsing out true and spurious associations will certainly be a topic of research in 

the coming years. Today, the major challenge is understanding the clinical and pathological 

roles played by each of the AD risk genes and their products. Neuroimaging has emerged as 

one popular method for characterizing genetic AD risk factors in humans. Progress on this front 

will be reviewed in subsequent sections. 

Neuroimaging methods, including magnetic resonance imaging (MRI) and positron 

emission tomography (PET) imaging, are often used to study AD in humans. Recent advances 

in MRI hardware and pulse sequence development have enabled characterization of brain 

structure and function at improved spatial and temporal resolutions with higher signal to noise 

ratio and better tissue-type contrast. Structural MRI (sMRI) is now able to reliably delineate 

subregions of the hippocampus while functional MRI (fMRI) has reached spatial resolution high 

enough to resolve functional units in visual cortex (9; 10). Improved tissue contrast in sMRI 

allows for consistent delineation of white and gray matter, making cortical thickness and 

volumes estimates more robust (11). fMRI sequences are utilizing fast, multiband acquisition 

techniques that minimize signal dropout without sacrificing signal-to-noise ratios (12). In 

addition, diffusion weighted imaging (DWI) acquisition and analysis are constantly evolving and 

improving. Gradient strengths and the number of directions in which pulses are applied are 
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increasing as equipment improves, allowing for better estimation of water diffusion at every 

voxel (13). Spatial resolution continues to increase with recent studies boasting sub-millimeter 

in-plane resolution (14). In PET imaging, the development of 18F radiotracers, such as 

florbetapir, has made it easier for more sites to acquire amyloid deposition data (a measure of 

AD pathology in the brain) than before when only the more volatile 11C tracers were available 

(15). In addition, there is now preliminary data on tau-specific tracers including one 18F tracer 

called T807 which, when analyzed alongside Aβ-specific tracers, will help to elucidate the 

temporal dynamics of Aβ and tau deposition in AD pathogenesis (16). Together, these 

advances in neuroimaging will allow for more sensitive and accurate biomarker detection and 

longitudinal monitoring, both of which are important to help identify individuals who are at 

increased risk for AD. 

This chapter focuses on AD, the genetic basis of the disease and how genetic markers 

have been studied in combination with neuroimaging methods to help elucidate the effects of 

genetic risk for AD on the structure and function of the brain. After a brief review of the clinical 

and pathological features of AD, we begin by discussing the rare autosomal dominant forms of 

AD that result from a mutation in one of three genes: APP, PSEN1 or PSEN2. Next, we cover 

how neuroimaging has helped to shed light on the still-murky relationship between AD and 

Down syndrome, a condition in which individuals have a third copy of chromosome 21 and, 

therefore, an extra copy of APP. The next portion of the chapter focuses on less penetrant, 

statistical genetic risk factors. Sections are organized to reflect the strength of the risk conferred 

by each locus, beginning with the discovery of the APOEε4 risk allele in the early 1990s, 

followed by the recent discoveries of strong AD associations with TOMM40 and TREM2 

variants, and finally the identification of AD associated loci through genome wide association 

studies (GWAS). We will also cover the growing literature linking the neurotrophic factor BDNF 

with AD. Next, genetic risk factors identified through studies of AD-related neuroimaging 

biomarkers and endophenotypes will be discussed. In each section, relevant work in structural 
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and functional imaging will be reviewed. In addition, challenges in the field of neuroimaging 

genetics of AD will be discussed, alongside possible future directions for the field. Finally, the 

relevance and impact of neuroimaging genetics research in the fight against AD will be 

examined.  

 

Pathological and Clinical Features of Alzheimer’s Disease 
 

More than 100 years ago, at a meeting of psychiatrists in Germany, Alois Alzheimer 

presented a case study of a woman who had suffered from progressive memory loss and other 

cognitive and psychiatric symptoms (17; 18). The most enduring aspect of his presentation was 

his description of abnormal deposits that he discovered after silver staining the patient’s brain 

tissue. These deposits, called plaques and tangles based on their morphology under the 

microscope, remain the defining neuropathological features of AD today.  

 At the molecular level there are two main proteins that accumulate abnormally in AD, beta-

amyloid (Aβ) and tau. Soluble Aβ oligomers collect to form extracellular neuritic plaques while 

hyperphosphorylated tau proteins form intracellular inclusions called neurofibrillary tangles. The 

gene that transcribes Aβ, as well as two genes that transcribe enzymes involved with regulating 

Aβ isoforms, are each the site of many mutations that give rise to dominantly inherited, familial 

AD. In addition, the link between Down syndrome and AD, which will be described in a 

subsequent section, can be traced back to Aβ. The connection is based on the fact that Aβ is 

transcribed from a gene on chromosome 21, the chromosome that is in triplicate in Down 

syndrome. It is believed that the third copy of this gene results in Aβ overexpression, which may 

be the cause of the near 100% incidence of AD in adults with Down syndrome. All of this 

evidence helped lead to the belief that Aβ is the primary pathology in AD and to the “amyloid 

cascade hypothesis” (19; 20). This hypothesis states, generally, that the ineffective clearance of 

Aβ leads to the deposition of plaques and that this is the first in a cascade of molecular events 

that eventually cause neuronal death and, in some cases, vascular damage. However, it has 
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been shown that Aβ pathology does not correlate with clinical symptoms of AD while tau 

pathology does (21). The formation of neurofibrillary tangles results from the polymerization of 

hyperphosphorylated tau. Under normal circumstances, tau is a major component of neuronal 

cytoskeleton but when tau becomes hyperphosphorylated it tends to accumulate into 

neurofibrillary tangles. These tangles are associated with the marked loss of synapses in AD, 

which is putatively caused, at least in part, by a breakdown in cytoskeletal maintenance (22). 

These findings have led to increased attention on tau and a convincing counterargument to the 

amyloid cascade hypothesis. Now it appears that other proteins may also play a role in AD, 

which may be further evidence that Aβ is not a trigger, but just one of several pathologies in AD. 

Very recent work has shown that two proteins known to play a role in other neurodegenerative 

diseases are, in fact, also associated with AD. For example, TDP-43 inclusions, a major feature 

of frontotemporal lobar degeneration (FTLD), have been shown to occur at a higher rate in 

those with AD compared to healthy controls (23). In addition, in mice it has been shown that 

decreased progranulin, another protein associated with FTLD, encourages Aβ deposition (24). 

Finally, the amyloid cascade hypothesis is also called into question based on data from PET 

imaging studies. PET scans acquired with Aβ specific tracers have revealed that individuals can 

be positive for Aβ in the brain and have no clinical symptoms. This state can persist for years. 

So while it is undeniable that Aβ pathology is necessary for a diagnosis of AD, it remains 

unclear whether it is sufficient to initiate the ‘cascade’ of events that leads to full-blown AD or 

whether it is just one of many factors that together cause AD. The emerging neuropathological 

picture of AD is complex. Hopefully, the development of additional, specific PET tracers will 

resolve some of the complexity by increasing our understanding of the temporal and spatial 

dynamics of each type of proteinaceous inclusion associated with AD. 

Clinically, dementia is defined as the loss of cognitive ability that interferes with activities 

of daily living. Dementia can be caused by many conditions. Differential diagnosis based on 

clinical symptoms, neuroimaging biomarkers and other criteria is necessary in order to identify 
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the cause of a dementia syndrome. AD is the most frequent cause of dementia, accounting for 

60-80% of cases (25; 26). The next most common cause is vascular dementia which accounts 

for about 10% of cases (26). It should be noted, however, that in about half of AD cases there is 

also concomitant vascular pathology discovered at autopsy (27). The most common 

presentation for AD involves a slow and steady decrease in episodic memory function as well as 

dysfunction in at least one other cognitive domain. In 2011, the diagnostic criteria for AD got a 

much-needed update. The National Institute on Aging worked alongside the Alzheimer’s 

Association to form a working group of experts who reviewed the then-current criteria first 

published in 1984 (28). The 1984 guidelines were primarily based on clinical presentation and 

focused on memory impairment. This meant that in order to receive a diagnosis of AD, clinical 

symptoms needed to already be present and interfering with daily activities (26). However, 

research over the past 20 years has shown beyond a doubt that AD pathogenesis is a process 

that begins long before the emergence of cognitive impairment. This early, pre-symptomatic  

stage is estimated to last as long as 15-20 years in some patients (29). In order to better 

account for the long and slow progression of AD during the preclinical phase, the new criteria 

describe three stages of AD:  preclinical AD, mild cognitive impairment (MCI) due to AD, and 

dementia due to AD (30). Another change to the criteria incorporates biomarker data in the 

process of diagnosis (31). Possible biomarkers for AD include levels of Aβ and tau analytes in 

cerebrospinal fluid (CSF), deposition of Aβ in the brain detected with PET imaging and 

hippocampal atrophy measured by MRI. It has been shown that decreased levels of Aβ in the 

CSF, increased levels of phosophorylated tau in the CSF, Aβ positivity as measured with PET 

tracers (cutoff ratios used to define positive or negative designations are still an active area of 

research) and hippocampal thickness or volume loss are all indications of possible AD. More 

work is needed before biomarker testing can be used to conclusively diagnose AD. The 

continued collection and development of these biomarker measurements are especially 

important to efforts to identify individuals who are in the early stages of AD, before clinical 
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symptoms emerge. These are the individuals who would benefit most from any available 

interventions or therapies. In addition, biomarkers provide critical benchmarks for monitoring the 

success of experimental treatments.  

A key concept in AD pathophysiology is that clinical symptoms emerge only after there 

has been a long period of degeneration resulting in substantial neuronal loss (32). Indeed, this 

is true of all age-related neurodegenerative disorders. The superstructure of neuronal circuitry is 

complex and the result of both genetic and environmental effects compounded over one’s 

lifetime. Thus, the prospect of regeneration after extensive cell death seems more like science 

fiction than a reasonable therapeutic goal. Therefore, investigators are increasingly focusing on 

the phase of AD progression that occurs before clinical symptoms can be detected. This phase, 

called preclinical or pre-symptomatic AD, is marked by progressive neuronal loss in the brain, 

especially the hippocampus, and by Aβ accumulation. It has been posited that some AD 

treatment trials have failed to show a positive effect because the drugs were given too late in 

the course of the disease (30). Preclinical AD is a hypothetical state (subjects may die before 

progressing to clinical AD) during which intervention aimed at halting disease progression may 

be most effective. Since its proposed addition to the AD diagnostic framework in 2011, many 

studies have attempted to focus on preclinical AD, which is still unfortunately difficult to define in 

the absence of longitudinal data. There are, however, exceptions to this definition problem. For 

example, the preclinical AD phase can be reliably identified in subjects who carry genetic 

mutations that cause dominantly inherited forms of AD. Therefore, families with these mutations 

are extremely valuable to the AD research community. 

 

Neuroimaging Highly Penetrant Genetic Causes of Alzheimer’s Disease 
 

In the introduction or background sections of most papers written about AD the authors 

will list statistics detailing the incidence and prevalence of the disease. If the authors are 

interested in genetics, they may also cite studies that describe the heritability of AD and lifetime 
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risk given certain genetic risk factors, including family history of the disease. In these cases, the 

authors are invariably referring to sporadic, late-onset AD, which is, by far, the most common 

form of the disease. There are, however, people who develop AD as a result of an identifiable, 

underlying genetic cause.  These genetic causes fall into two categories: familial AD and Down 

syndrome. The following sections will cover these highly penetrant forms of AD and how 

neuroimaging genetics findings in these unique cohorts can inform the study of AD in general. 

For a summary of the literature reviewed in this portion of the chapter see Table 1.1.  
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Table 1.1 Genetic Causes of and Risk Genes for AD: Neuroimaging Modalities in the Literature and 
Representative References. A ✔ mark indicates that there is published work exploring the relationship 
of a given genetic mutation or risk factor and a given neuroimaging modality. Citations of studies referred 
to in the text are given.  

 

Genetic 
Anomaly Gene 

First 
Associated 

with AD 
sMRI DWI t-fMRI rs-fMRI PET 

Point 
Mutation 

APP 1991 (33) 
✔ (40–
42,44, 
45,48–51) 

✔ (53) ✔ (56; 
58) 

✔ (60; 
61) 

✔ (42; 
62) 

PSEN1 1992 (34) 
✔ 40–
42,44,45, 
47–52 

✔ (52; 
53) 

✔ (55; 
56; 58; 
59) 

✔ (55; 
60; 61) 

✔ (42; 
62; 63) 

PSEN2 1995 (35) ✔ (42; 
45)   ✔ (60; 

61) ✔ (42) 

Duplication APP 2006 (64)      

Trisomy 21 APP 1948 (67) ✔ (69–
74) ✔ (75)   ✔ (77–

79) 

Poly-T 
repeat TOMM40 2010 (154) ✔(161; 

162) ✔(163)  ✔(265)  

SNPs 

APOE 1993 (3) 
✔(89–98; 
125–130; 
139–145) 

✔ (99–
101, 
120,126
,141) 

✔ (57,10
2–104, 
106,107,
127,128) 

✔(108–
112; 
133; 
136) 

✔(113–
119,133, 
142–
146) 

TREM2 2013 (165; 
166) 

✔(176; 
177)     

CLU 
1990 (182) 

(2009 
(168; 179)) 

✔(186; 
187) ✔(188) ✔(132; 

190) ✔(191)  

PICALM 2009 (179) ✔(186; 
195; 196)   ✔(191) ✔(197) 

CR1 2009 (164) ✔(195; 
200)     

BIN1 2010 (179) ✔(195)    ✔(197) 
ABCA7 2011 (180)     ✔(204) 

EphA1 2011 (180; 
192)     ✔(204) 

CD33 2011 
(176,188)     ✔(209) 
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Familial AD 
	
  

Early-onset AD is the clinical manifestation of the disease before the age of 65. In the 

vast majority of cases, early-onset AD is caused by a rare, autosomal dominant form of the 

disease, characterized by a mutation in one of three genes. Together, patients who have one of 

these mutations are diagnosed with what is called familial AD (FAD). The three genes with 

known mutations that cause FAD are amyloid precursor protein (APP), presenilin 1 (PSEN1) 

and presenilin 2 (PSEN2) (33–35). More than 50 specific deleterious mutations in APP have 

been discovered but these only account for less than 10% of early-onset AD cases. In contrast, 

more than 175 specific deleterious mutations in PSEN1 have been identified and these account 

for up to 70% of FAD cases. Less than 5% of cases are caused by PSEN2 mutations, of which 

just over a dozen have been identified (36). Average age of onset varies across the three 

genes, with PSEN1 mutations leading to earlier onsets (~42 years old) followed by APP (~52 

years old) and PSEN2 (~57 years old). Since the discovery of these highly penetrant AD genes 

over 20 years ago, studies of their function, both in normal and mutated conditions, have 

provided strong support to the so-called ‘amyloid cascade hypothesis’ (20). APP, PSEN1 and 

PSEN2 functionally converge on the production of Aβ, the peptide that aggregates to form 

extracellular amyloid plaques, one of the two primary neuropathological features of AD. 

Specifically, APP encodes the protein precursor of the pathogenic Aβ oligomer. PSEN1 and 

PSEN2 encode peptides that are components of secretase complexes, enzymes that modify 

proteins at specific cleavage sites. The protein presenilin 1 is a proteolytic subunit of a complex 

called gamma-secretase, which is perhaps best known for its role in cleaving the amyloid 

precursor protein, the protein product of the APP gene. Mutations in PSEN1 result in an 

overproduction of the pathogenic Aβ peptide. Mutations in PSEN2 cause a very similar effect, 

altering presenilin 2 such that gamma-secretase activity is disrupted leading to over production 

of pathogenic Aβ. Interestingly, recent work has indicated that there may also be mutations in 

these genes that decrease risk for AD. In a recent study led by Kari Stefansson and colleagues, 
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a unique Swedish population was found to harbor a protective mutation in APP that actually 

decreased risk for AD in carriers (37). The exact mechanism of this protection remains unknown 

but, presumably, the mutation causes a decrease either in amyloid precursor protein levels or, 

more downstream, results in a decrease of the amyloidogenic oligomers.  

A clinical feature of FAD that is useful in research is that specific mutations are 

associated with a relatively precise age of onset of disease. Because of this, researchers can 

stage the preclinical phase of a mutation carrier based on the age of onset of a parent or family 

member who carried the same mutation (38). Thus, biomarker data from carriers of different 

mutations can be pooled according to preclinical stage, represented by years-to-expected-

onset. Pooling data across specific rare mutation types is essential in order to assemble large 

cohorts for research. The Dominantly Inherited Alzheimer Network (DIAN) is a worldwide 

network of FAD research centers based out of Washington University in St. Louis, which has 

spearheaded much of the relatively large cohort neuroimaging research in FAD mutation 

carriers (39) . 

sMRI-based measurements indicate that the rate of change of hippocampal volume is 

higher in FAD mutation carriers than in age-matched non-carriers (40; 41). Hippocampal 

thinning or shrinkage is a feature of AD but it is a tricky biomarker candidate because 

hippocampal volume loss is also associated with normal aging. It is now believed that it is the 

rate of that loss that is important, with slow changes indicating normal aging and a faster 

trajectory indicating AD. A significant difference between FAD mutation carriers and non-carriers 

in the rate of change of hippocampal volume loss is evident ~2-5 years before the expected 

onset of disease (40–42).  Measuring rate of change, though, requires longitudinal data, which 

is not ideal for diagnostic use in a clinical setting. Cross-sectionally, it has been shown that FAD 

mutation carriers have decreased hippocampal volume bilaterally compared to non-mutation-

carrier controls up to 15 years before the expected onset of disease (42). This is potentially a 
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very early biomarker, but difficult to assess on an individual basis since size and shape and, 

thus, volume of hippocampi vary in healthy populations as well as disease populations (43).  

In addition to hippocampal changes, atrophy in the cortex in FAD mutation carriers has 

been studied using sMRI. One study, completed on preclinical FAD mutation carriers and non-

carriers in a Swedish cohort, found that the mutation carriers had decreased gray matter volume 

in the left precuneus, superior temporal gyrus and fusiform gyrus (44). Another large study 

showed that there was a significant difference in gray matter volumes between mildly 

symptomatic (Clinical Dementia Rating scale =0.5) carriers and healthy non-carriers in the 

thalamus and putamen, as well as in cortical regions, including the temporal lobe, precuneus 

and the cingulate gyrus (45). The authors observed the same differences, with a greater 

magnitude, in moderate-to-severely symptomatic carriers. Another group of investigators, led by 

Bradford Dickerson, used Freesurfer, a computational neuroanatomy software suite, to test for 

differences between preclinical PSEN1 mutation carriers and non-carriers in so-called AD-

signature regions of cortex. These regions were based on previous studies comparing the 

cortical thickness of sporadic, late-onset AD patients and controls (46) (Figure 1.1A). In other 

words, the AD-signature regions represent cortical regions that are particularly vulnerable to 

atrophy in AD. In the PSEN1 mutation carriers, they found that AD-signature regions as a whole 

were thinner when compared to non-carriers (47). Upon further analysis, the authors found that 

differences in the angular gyrus, superior parietal lobule and precuneus were driving this effect 

(Figure 1.1B). This is in agreement with other evidence that the precuneus is one of the earliest 

cortical regions to begin to atrophy in FAD mutation carriers (48).  Another study that used 

tensor-based morphometry found significant differences in cortical regions only when demented 

FAD subjects were compared to non-carriers (49). However, the lack of differences between 

pre-symptomatic carriers and non-carriers might be related to low sample size, as other studies 

of relatively small cohorts also were unable to detect differences (50).   
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Figure 1.1: Comparison of presenilin 1 (PSEN1) FAD mutation carriers and non-carriers in cortical 
thickness from a priori ROIs that compose the ‘Alzheimer’s-signature’ regions. Figure reproduced 
from Quiroz YT, et al. (2013), Journal of Neurology, Neurosurgery and Psychiatry. A. AD-signature 
regions: (a) Medial temporal lobe (MTL), (b) inferior temporal gyrus (ITG), (c) temporal pole (TP), (d) 
angular gyrus (AG), (e) superior frontal gyrus (SFG), (f) superior parietal lobule (SPL), (g) supramarginal 
gyrus (SG), (h) precuneus (Precun), (i) medial frontal gyrus (MFG), primary visual cortex (PVC). B. Bar 
graphs show mean cortical thickness within each ROI in the PSEN1 mutation carriers and non-carriers, 
averaged across hemispheres (p<0.005). AD-signature (AD-sig) regions combined cortical thickness is 
also compared.  Error bars show 1 SE of the mean. Reprinted with permission from BMJ Publishing 
Group Ltd.  
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 Interestingly, there is some evidence to indicate that specific FAD mutations, especially 

in different genes, may have distinct effects on atrophy patterns and rates across the cortex and 

in the hippocampus (51). Other studies have found no differences between mutation gene types 

when tested explicitly (42). Still, one must consider the validity of combining individuals from 

families with different mutations in a single cohort based on preclinical stage. This approach 

certainly increases sample sizes and statistical power, which is likely a worthwhile trade-off of 

combining multiple genetic mutation types in carrier groups.   

There has been relatively little work published examining white matter structure in FAD 

mutation carriers. One study showed that in carriers white matter volume is decreased in areas 

including the fornix and the cingulum, two important fiber bundles connecting the hippocampus 

and limbic areas (45). Another study examining white matter using tensor modeling found that 

symptomatic mutation carriers showed increased diffusivity (especially radial diffusivity) and 

reduced fractional anisotropy (FA) in the fornix, cingulum and the corpus callosum (52). The 

reduced FA phenotype in preclinical FAD mutation carriers has also been reported elsewhere 

(53). FA is an index that ranges from 0 to 1 that indicates, in a given voxel, the preference of 

water molecules to diffuse along the principal axis of diffusion. Reduced FA in a given region 

may indicate a breakdown of white matter, often referred to as decreased white matter integrity. 

Reduced FA is often, but not always, accompanied by increased diffusivity, an inversely related 

measure of how freely water molecules diffuse in a given voxel. FA and diffusivity are common 

metrics calculated based on tensor modeling of DWI data, and will be referred to in subsequent 

sections.  

It has been posited that functional changes in the brain measured by fMRI might be a 

candidate for an early AD biomarker (54). Task-based and resting fMRI have both been used to 

examine possible differences between FAD mutation carriers and non-carriers. Several task-

based studies found that FAD mutation carriers show reduced BOLD activity compared to non-

carriers in regions normally associated with the task (55; 56). Specifically, in one study, there 
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was reduced activity in the hippocampus, inferior parietal cortex, precuneus, and posterior 

middle temporal gyrus during the retrieval phase of a memory task (56). The authors also 

looked at behavior, noting that in no scenario did higher activity in mutation carriers correlate 

with better performance. This is important because, as will be discussed in subsequent 

sections, the fMRI literature in genetic risk for sporadic, late-onset AD is contradictory, which 

leads to contradictory interpretations of results. One possible interpretation of higher activity in 

high genetic risk groups is that it is a compensatory mechanism and a sign of early disease 

(57). However, if there is no correlation between higher activity and behavioral performance, this 

interpretation is difficult to support with evidence. Another study in preclinical FAD mutation 

carriers found that activity in carriers increased as a function of preclinical stage (in other words, 

there was an inverse relationship between activity and years to expected onset) in the middle 

temporal gyri and fusiform (58). The authors suggest that this increasing activity phenotype, 

which was not observed in non-carriers, could be related to early AD processes. They did not 

test for an association of the increased activity with behavior. Another study that controlled for 

behavior during the functional task (as a variable of non-interest) found increased activation in 

the right anterior hippocampus during encoding in a group of PSEN1 mutation carriers versus 

non-carriers (59).  

Resting state fMRI, or task-free fMRI, has only recently gained traction in the FAD 

literature. Based on spatial coherency, resting state fMRI data can be used to identify specific 

functional networks in the brain. As expected from work in sporadic, late-onset AD, the default 

mode network (DMN) is the principal network that is disrupted in FAD. A study led by Reisa 

Sperling and colleagues used resting state data from 83 FAD mutation carriers and found that 

overall DMN functional connectivity decreased in mutation carriers as their Clinical Dementia 

Rating score increased (higher scores indicate greater severity of dementia symptoms) (60). 

This relationship was especially pronounced in the precuneus, posterior cingulate and the 

parietal cortices. These same regions also showed significantly decreased DMN functional 
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connectivity in mutation carriers when compared directly to non-carriers. These results are 

supported by other studies that suggest DMN dysfunction is a feature of preclinical FAD (55; 

61). 

Perhaps some of the most important work being performed with FAD mutation carriers is 

the characterization of metabolic changes in the brain and amyloid deposition during preclinical 

AD using PET tracers. The precuneus, which is a region known to be affected by Aβ deposition 

and cortical thinning relatively early in AD, shows decreased glucose metabolism in FAD 

mutation carriers up to 10 years before the expected onset of symptoms (42). Metabolism is 

measured by using fluorodeoxyglucose (FDG)-PET, which is a radioactive glucose analog that 

gets taken up by tissues actively using glucose for energy. Lower uptake of the FDG tracer 

indicates reduced metabolic function, a relatively well-characterized feature of preclinical AD. Aβ 

imaging using Pittsburgh compound B (PiB)-PET reveals differences between FAD mutation 

carriers and non-carriers in the precuneus up to 15 years before expected onset of disease (42). 

In addition, imaging studies using PiB-PET identified one of the major pathological differences 

between FAD and sporadic, late-onset AD. Specifically, FAD mutation carriers have much 

higher levels of Aβ in the striatum than patients with sporadic, late-onset AD, even in the 

preclinical phase (62).  

As discussed previously, FAD provides a unique opportunity to learn about AD 

progression during the pre-symptomatic phase. The genetic mutations that cause FAD and 

many of the imaging findings discussed in this section seem to support an amyloid-centric view 

of AD pathogenesis. However, as discussed briefly above, there are problems with the amyloid 

cascade hypothesis, which points to amyloid as the catalytic pathology in AD. Namely, it 

appears that being positive for Aβ in the brain is a necessary component of AD, but it is not 

sufficient to cause the disease. Research shows that 20-40% of cognitively healthy elderly 

adults are positive for Aβ and can remain healthy in that state for years (32). Of course, these 

subjects do not have a FAD mutation, but work linking FAD to the much more common 
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sporadic, late-onset AD is promising (47). However, while there are certainly many similarities 

between FAD and sporadic, late-onset AD, it is still open for debate whether or not the findings 

in FAD carriers will be directly applicable to developing treatments for sporadic, late-onset AD 

patients. One notable difference between these two types of AD that was elucidated via 

neuroimaging studies is that FAD mutation carriers have early Aβ deposition and volume loss in 

deep brain structures including the thalamus, caudate and putamen (49; 52; 63). The pattern of 

Aβ deposition and atrophy in sporadic, late-onset AD does not include significant involvement of 

these structures.  

To close this section on autosomal dominant AD, let us consider another unique genetic 

event that can cause FAD. In addition to mutations in the APP, PSEN1 and PSEN2 genes, a 

duplication of APP, first identified in a Dutch sample, also leads to highly penetrant AD (64).  

While there is no neuroimaging work to review on these subjects, this is an appropriate segue 

into the next section that will focus on another genetic mechanism of presumed APP 

overexpression, Down syndrome. 

 
Down Syndrome 
	
  
Over 50 different mutations in APP are known to cause familial, autosomal dominant AD. APP is 

also implicated as a causative gene in the development of AD in individuals with Down 

syndrome (DS). DS results from an extra copy of chromosome 21. In ways not full understood, 

trisomy 21 causes intellectual disability and increases the risk for many medical conditions, 

including congenital heart defects, hearing and vision impairment, and endocrine dysfunction. 

Individuals with DS have an average life expectancy of 55 years and suffer from age-related 

cognitive decline after the age of 40 (65; 66). The APP gene is located on the long arm of 

chromosome 21 at position 21.3. Compared to healthy individuals with two copies of 

chromosome 21, there is a dose-dependent increase in the amount of Aβ produced in the 

brains of individuals with DS. The connection between DS and AD was first described in English 
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in the late 1940s (67; 68). The original paper describes the cognitive decline of three older DS 

patients. Post-mortem neuropathological examination of these three patients and countless 

others in the intervening decades have consistently revealed the presence of amyloid plaques 

and neurofibrillary tangles in the brains of individuals with DS over the age of 30 (66). Thus, 

there is assumed to be a connection between the increased expression of APP and the 

invariable and early appearance of amyloid pathology in the brain. The fact that tau pathology in 

the form of intracellular neurofibrillary tangles is also present in the brains of middle-aged 

persons with DS may support the theory that amyloid aggregation is the trigger in a cascade of 

physiological changes that lead to clinical AD.  

The relatively limited neuroimaging work in adults with DS has primarily been focused on 

characterizing brain structure using sMRI. Many studies are designed to compare nondemented 

DS subjects to demented DS subjects. Because differences in these studies are likely 

attributable to the advanced disease state of the demented subjects we choose to not review 

those studies here. Instead we focus on reports that compare nondemented elderly DS subjects 

to younger DS subjects. Genetics is not the major factor in group differences, but these studies 

may shed light on features of preclinical AD. Because there are other developmental effects of 

DS, directly comparing a DS group to a healthy, control group makes it difficult to parse apart 

developmental differences versus changes due to preclinical AD. That said, the hippocampus 

and entorhinal cortex, key structures affected early in AD, are reported as reduced in volume in 

nondemented adults with DS in several studies (69–71). Also, as expected, with advancing age 

there is a decrease in volume of medial temporal lobe structures in individuals with DS (70). 

Because nearly all DS patients will develop AD, it is assumed that this decrease in volume is 

representative of a disease process rather than normal aging. One study found that in the 

cerebral cortex age is correlated with atrophy in regions of frontal and parietal cortices as well 

as parahippocampal gyrus (72). Another, using cross-sectional data, found a steeper age-

related decrease in the volume of frontal, parietal and temporal lobes when compared with age-
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matched healthy controls (73). A third examined DS brain morphology compared to healthy 

controls and found decreases in volume in the cingulate gyrus, left medial frontal lobe and 

regions of the right temporal lobe (74). Aside from these three studies, there is a dearth of 

publications that employ modern volumetric analysis techniques, such as voxel based 

morphometry, tensor-based morphometry or cortical thickness measurements with Freesurfer, 

in aged DS cohorts. There are also almost no studies that use DWI as a method to interrogate 

the putative preclinical AD phase in DS. The exception is a very interesting recent study that 

used tensor modeling with DWI to calculate FA across the brain in healthy older DS subjects. 

Their findings included a positive correlation between decreasing scores on a global functioning 

measure and FA in specific frontal ROIs, which indicates that late-myelinating white matter 

tracts may be particularly vulnerable in older individuals with DS (75).  

Functional imaging in DS is limited to a handful of PET studies. To our knowledge, there 

are no fMRI studies in older or aging DS subjects. As mentioned previously, individuals with DS 

usually are positive for Aβ in the brain at, or soon after, age 30. Thus, the focus of much PET 

imaging work in DS has been to quantify this deposition in vivo. The first Aβ-specific tracer, PiB, 

was first published in 2004 (76). In 2011, a study to test the utility and safety of PiB in DS 

subjects was completed (77). The major findings of this study were that the tracer was 

successful in measuring Aβ plaque load and that age and a clinical diagnosis of AD were 

positive predictors of amyloid positivity (77). Also in 2011, there was a exhaustive case study 

published in which a 55-year-old DS subject with AD received a PET scan with florbetapir, 

another amyloid tracer (78). At death, the subject’s brain was donated and neuropathological 

analysis was completed. In general, the pattern of amyloid deposition matched the pattern found 

in sporadic, late-onset AD and was corroborated by the neuropathological findings. 

Furthermore, results from another study show that the reduction in glucose metabolism (as 

measured by FDG-PET) that has been observed years before the onset of sporadic, late-onset 

AD is recapitulated in nondemented, older DS subjects (79). Findings like these have helped to 



 20 

motivate the study of older DS subjects because there appear to be many similarities between 

AD in DS and sporadic, late-onset AD.  

Concomitant with the increasing interest in the preclinical phase of AD, there is recent, 

renewed interest in the connection between DS and AD. However, because DS results from an 

extra copy of an entire chromosome, there could be as yet undiscovered aging related genes on 

chromosome 21 that help to influence lifespan, aging and AD in individuals with DS, affecting 

the interpretability of results (66).  

 

Neuroimaging Genetic Risk for Alzheimer’s Disease 
 

In the vast majority of cases, AD presents with no clear, underlying genetic cause. This 

sporadic version of the disease usually affects patients later in life, with an average age of onset 

roughly 20 or 30 years later than FAD or AD associated with DS, respectively (36; 66; 80). The 

following sections will detail the genetic risk loci that have been associated with sporadic, late-

onset AD and neuroimaging findings related to these risk factors. For a summary of the 

literature reviewed in this portion of the chapter see Table 1.  

 

APOE 
 

The explosion of the neuroimaging genetics field is due largely to the recent rapid 

identification of novel risk factors for sporadic diseases. In AD, these risk factors can be 

genotyped in healthy human subjects, allowing genetic risk for AD to be studied in a highly 

generalizable way in the population at large, rather than small restricted groups of individuals 

with a highly penetrant genetic mutations or DS. This makes recruitment of large numbers of 

subjects much more feasible, increasing statistical power. After age, genetic risk factors such as 

APOE are the strongest predictors of sporadic, late-onset AD currently available (81). Because 

sporadic AD accounts for ~99% of the diagnosed cases of AD, a better understanding of this 

disease is essential to the development of prevention and treatment strategies.  
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Sporadic AD, hereafter referred to simply as AD, is unique among polygenic human 

neurological diseases because there is a well-validated, non-causative genetic risk factor, 

APOE, which accounts for a relatively large portion of the variation in heritability. Specifically, 

twin studies reveal that the heritability of AD may exceed 60-80% and APOE genotype accounts 

for about 50% of the variation in heritability (4–6). A single APOE ε4 (APOEε4) allele increases 

lifetime risk for AD 4-5 fold, and two copies of the allele confer at least a 10-fold increase (3; 

81). APOE was identified as a susceptibility gene for AD over 20 years ago and has been 

studied extensively since (3; 82; 83) . The APOE gene is localized on chromosome 19 and has 

three common alleles (e2, e3, and e4) determined by polymorphisms at two SNP sites, 

rs429358 and rs7412. Combinations of these three alleles result in six possible genotypes in the 

general population. APOE is a lipid transport protein that is believed to play a fundamental role 

in cell maintenance and repair (84). It has also been implicated as a regulator of normal cell 

metabolism, as well as other functions (84). In the years since the discovery of the association 

between APOE genotype and AD, fMRI has progressed from a novel, infant technology to one 

of the most popular methods in human neuroimaging research. The strength of the disease risk 

conferred by APOE, as well as the co-maturation of the fields of AD genetics and fMRI 

acquisition and analysis led to the first study combining a genetic risk factor for a disease and 

neuroimaging (57). This study, which found putative compensatory increases in activity in ε 

carriers, as well as others published shortly thereafter helped to expand the horizons of 

neuroimaging genetics, a new subfield of neuroscience and the topic of this book.  

To date, there have been hundreds of publications focusing on neuroimaging the genetic 

risk for AD conferred by APOE. Because it is impossible to cover every aspect of this dense 

literature, it is worth noting that there are excellent reviews available to complement the 

information included in this section (85–88). We will summarize the key elements of this body of 

work, focusing on new and emerging research. Due to the heterogeneity of cohorts across the 
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literature, we have divided our summary of imaging findings into three subsections: healthy 

older adult cohorts, young healthy cohorts and, finally, MCI and AD cohorts.  

 

Healthy, Older Adult Cohorts 
 

In healthy older adults, hippocampal volumes have been shown to be smaller in APOEε4 

carriers compared to non-carriers (89; 90). Hippocampal atrophy rates are also higher in 

APOEε4 carriers (91; 92). There is evidence that hippocampal volumes vary in an allele dose-

dependent manner, but most studies’ recruitment efforts conclude before they can amass 

enough homozygous APOEε4 carriers to consider them separately (93). In addition to whole 

hippocampal volume, sMRI can be used to measure structural changes within specific areas of 

the hippocampus. High resolution, partial field of view sMRI allows for the segmentation of the 

hippocampal complex into specific subregions, such as the subiculum, the entorhinal cortex and 

the CA subfields. Using this approach, several labs have reported smaller or thinner subregions 

in healthy APOEε4 carriers. Specifically, healthy APOEε4 carriers have been found to have 

thinner entorhinal cortex and subiculum compared to non-carriers (94). Two additional studies, 

each using MR images acquired at 4T, found thinner CA3 and dentate gyrus subfields in 

APOEε4 carriers (95; 96). However, some studies that examined hippocampal volumetric 

differences between healthy APOEε4 carriers and non-carriers did not find significant 

differences, although these are certainly in the minority (97).   

There are very few reports of differences in cerebral cortex volume or thickness in 

healthy older adults based on APOE genotype so a consensus is difficult to develop. This may 

be because neutral results are not published as often as results showing significant differences. 

One published study that examined cortical volumetric differences between healthy APOEε4 

carriers and non-carriers found no significant differences (97). However, another study found 

that APOEε4 carriers had thicker cortex in bilateral frontal and temporal regions, but a steeper 

longitudinal atrophic trajectory across the cortex (98). This points, again, to an emerging theme 
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that individuals with at least one copy of the APOEε4 allele experience an acceleration of the 

volume loss seen in normal aging.  

A caveat of volumetric, structural findings in the APOE literature is that atrophy or 

volume loss is often seen as an indication of disease processes, while increased volumes or 

decreased atrophy rates are not. Thus, it is likely that intuitive results, for example where 

APOEε4 carriers have lower or smaller volumetric measurements, are favored in the published 

literature. A lack of such a biasing intuition in fMRI may partially explain why the results in the 

APOE-fMRI literature are more contradictory, as will be discussed in the following text.  

Because APOE is a lipoprotein that transports endogenous lipids, there is interest in 

better understanding its relationship with myelin, which needs lipids for maintenance and repair. 

In neuroimaging, investigators can use DWI to examine the potential relationship between 

APOE and myelination, using ‘white matter integrity’ measured by FA as a proxy for myelin 

health. White matter integrity in the medial temporal lobe, but not entorhinal thickness, has been 

shown to be associated with improved performance on a verbal memory task (99). There is also 

evidence for a general decrease in FA in APOEε4 carriers (100). Diffusion tensor imaging (DTI) 

allows mathematical concepts from the field of graph theory to be applied to structural brain 

imaging data. In a study by Brown and colleagues, graph theory was used to measure global 

integration and local interconnectivity in healthy, older subjects. APOEε4 carriers had an age-

related decrease in local interconnectivity that may indicate different aging trajectories in 

APOEε4 carriers and non-carriers (101). The application of graph theory to sMRI data as well as 

resting state fMRI data may help to elucidate the local and global network properties that 

change during early AD, but more research is needed in this area before such measures can be 

considered as potential biomarkers or endophenotypes of AD.  

A quick review of the task-based fMRI-APOE literature reveals a frustratingly complex 

picture. Some studies have reported increased, putatively compensatory, activity in APOEε4 

carriers (57; 102). Others have reported decreased activity, putatively caused by a loss of 



 24 

function due to disease processes (103; 104). Part of the complexity stems from the 

heterogeneity of task designs (87). Differences can be stark. For example, it may be hard to 

compare results from a sematic memory task and a visuospatial memory task (57; 103). Other 

potentially confounding factors in task design can be more subtle. A task described as a “paired 

associates” memory task can actually vary widely on several factors including, but not limited to, 

method of presentation of stimuli (audio, visual, or both), types of stimuli (images, words, etc) 

and instructions (‘pay attention’ versus ‘remember these pairs’) (87). There are also many 

studies in the literature in which investigators used non-episodic-memory based tasks, 

complicating interpretation because there is evidence that APOEε4 exerts a specific effect on 

episodic memory systems (105). In contrast to the whole-brain approach of the studies cited 

here, the results from studies that examined BOLD activity in the hippocampus as an ROI are 

more cohesive. One study, which acquired data using a high-resolution fMRI sequence, found 

decreased activity in APOEε4 carriers in the CA2, CA3 and dentate gyrus subregions of the 

hippocampus (106). Another found decreased hippocampal activity during encoding in APOEε4 

carriers (107). 

Results from resting state fMRI work in healthy older APOEε4 carriers presents a more 

unified picture. There appears to be a convergence on the DMN and connectivity therein, by 

which APOEε4 carriers and non-carriers differ. In a very recent study, connectivity between the 

posterior cingulate cortex and the hippocampus, two major nodes of the DMN, was found to be 

diminished in APOEε4 carriers (108). Another study, focusing on female APOEε4 carriers, 

reported significantly reduced DMN connectivity compared to female non-carriers (109). Finally, 

decreased DMN connectivity and increased connectivity of another, opposing cognitive network, 

the salience network, have been described (110; 111). One theory explaining the DMN 

dysfunction reported in APOEε4 carriers states that the genetic vulnerability for AD may cause a 

loss of appropriate hippocampal decoupling from cortical DMN regions during activity, like when 

completing a task (112). This theory is supported by the discovery of a negative correlation 
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between hippocampus-DMN synchronization and performance on a memory test (112). More 

work is needed to explicitly test this theory. 

PET imaging has helped elucidate the relationship between APOE and Aβ. Today we 

understand that, while the relationship is still far from fully understood, the protein products of 

APOE play a role in Aβ clearance, with APOEε4 performing this task less well than the ε3 or ε2 

alleles (84). This idea is supported by PET imaging studies in which the relationship between Aβ 

(measured with PiB or florbetapir) and APOEε4 carrier status is examined. The majority of these 

studies report that healthy, older APOEε4 carriers have increased amyloid load compared to 

non-carriers (113–116) . There are also metabolic differences between healthy APOEε4 carriers 

and non-carriers. A very large study with 806 cognitively normal, PiB negative, subjects recently 

showed that glucose metabolism in APOEε4 carriers is lower than non-carriers in the posterior 

cingulate, precuneus, lateral parietal and inferior temporal regions (117) (Figure 1.2A). The 

magnitude of this difference was small but commensurate with differences observed between 

cognitively normal and MCI APOEε4 carriers (Figure 1.2B). There was also an overall negative 

correlation between FDG uptake and age across the whole cohort, with the posterior cingulate 

and precuneus exhibiting a particular vulnerability to both age and APOEε4 carrier status (117). 

This work is supported by previous studies that also reported hypometabolism in AD vulnerable 

regions in healthy APOEε4 carriers (118). However, a recent study of 600 cognitively normal 

older subjects found no FDG-PET metabolism differences in APOEε4 carriers and non-carrriers 

(119). This discrepancy may be based on the inclusion of PiB positive subjects in the latter 

report, who were stratified based on tracer uptake. Perhaps when subjects are binned by 

amyloid burden, the power to detect APOEε4 related differences in metabolism is diminished.  
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Figure 1.2: Boxplots of the FDG to reference region ratio (partial volume corrected; PVCY) in 
Alzheimer’s-signature meta-ROI. Figure adapted from Knopman DS, et al. (2014), Neurobiology of 
Aging. A. FDG binding in CN APOEε4 carriers and non-carriers of all ages. B. FDG binding across elderly 
(age ≥70 years) cognitively normal (CN), MCI, and AD cohorts. Metabolism decreases as clinical disease 
severity, as represented by clinical diagnosis, increases. The magnitude of the differences between 
cognitively normal APOEε4 carriers and non-carriers is similar to the difference between CN and MCI 
groups, which were matched for APOEε4 carrier status in addition to age and sex. Reprinted with 
permission from Elsevier. 
 

Magnetic resonance spectroscopy (MRS) is a technique that can be used to measure 

the relative concentrations of different hydrogen containing metabolites, each with a different 

peak resonance that can be plotted and quantified. Recent work using MRS in the posterior 

cingulate, a region particularly vulnerable to AD, has revealed that both GABA and 

glutamine/glutamate metabolites are reduced in individuals with MCI (120). However, the 

authors did not detect an association between the metabolites they measured and APOEε4 

status or amyloid deposition, which limits their usefulness as AD-specific biomarkers. In 

contrast, another recent study that also focused on the posterior cingulate examined 

choline/creatine and myoinositol/creatine ratios and found that they were significantly higher in 

older adult carriers of APOEε4 compared to non-carriers (121). This finding supports earlier 

work in this field that found that myoinositol/creatine ratio is associated with neurodegenerative 
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disease, as opposed to normal age related cognitive decline (122). Examining creatine levels 

alone, another study observed significantly lower creatine in APOEε4 carriers compared to non-

carriers (123). There is also evidence that healthy older individuals with smaller hippocampal 

volume have a lower N-acetylaspartate/myoinositol ratio, which has been associated with AD, 

compared to their peers with larger hippocampal volume (124). Taken together, these results 

indicate that some metabolite measures and ratios may be useful biomarkers in individuals 

already at increased risk for AD.  

 

Young, Healthy Cohorts 
 

There is a burgeoning literature focusing on the effects of the APOEε4 allele in younger 

people, from middle-aged adults to young adults to infants. While there are few uncontested 

results, it is evident that APOEε4 carrier status affects brain structure and function well before 

old age. One thorough study of the effect of APOEε4 measured by various imaging modalities in 

young adults only found differences in fMRI activity, despite also acquiring and analyzing DWI 

for tensor modeling and sMRI for VBM in the same subjects (125). Other studies have also 

found no differences in hippocampal volume (126; 127). However, there is some evidence that 

hippocampal volume differs between APOEε4 carriers and non-carriers. In a small study of 44 

subjects the authors found decreased hippocampal volume in the group of 22 APOEε4 carriers 

compared to non-carriers (128). Small sample size may be one reason that this finding does not 

fall in line with the others that interrogated hippocampal volume. In the cerebral cortex, reduced 

gray matter volume in AD-signature regions, including the lateral parietal, temporal and 

cingulate cortices, has been detected in young adult APOEε4 carriers (129). Another study 

found no differences in gray matter volume in young APOEε4 carriers and non-carriers (130). 

The contradictions in these structural findings will hopefully be resolved as larger datasets of 

young adults are being genotyped for larger numbers of SNPs (perhaps even undergoing whole 

genome sequencing). The expanding genetic data available may include AD risk factors that 
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were previously unlikely to be included in large data collection efforts focused on young adults. 

In contrast to sMRI, DWI appears to be a relatively sensitive imaging modality for uncovering 

differences between young APOEε4 carriers and non-carriers. A study of 203 subjects found a 

diffuse and widespread increase in mean diffusivity (MD) in APOEε4 carriers (131). Another 

found a general reduction in FA along with increased MD in carriers (100). More work is needed 

to establish alterations in DTI metrics as a potential biomarker of early APOE-mediated neural 

differences in young adults.  

Contradictory results in fMRI experiments comparing APOEε4 carriers to non-carriers 

are not limited to older adult cohorts. Functional studies in young adults have reported 

decreased task-related activity in APOEε4 carriers that may indicate a blunted recruitment of the 

neural machinery necessary to complete the task efficiently (132). However, there is also 

evidence that hippocampal activation during memory tasks is higher in young APOEε4 carriers 

(133). Greater activation could be indicative of a compensatory mechanism in order to maintain 

performance. This theory does not appear to be supported by the APOE literature in young 

adults. In fact, differences in activity and cognitive performance suggest that APOEε4 carriers 

have better attention and memory function than non-carriers  (134; 135). The latter findings and 

others have led to a moderately popular theory of antagonistic pleiotropy, still only tenuously 

supported, in which the APOEε4 allele confers some beneficial advantage in young people, only 

to then predispose older people to AD. One reason that this theory has gained some traction is 

that is may help explain why, despite the negative effects of the APOEε4 allele, it remains a 

relatively common variant, with 20-25% of the population carrying at least one copy (3). The 

argument is that an allele with deleterious effects would not be so common unless there were 

early life benefits. The counterargument to this evolutionary reasoning is that the human 

lifespan has only been long enough to experience the negative effects of the APOEε4 allele for 

a relatively brief epoch of our history as species. Furthermore, even in APOEε4 carriers, AD 
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usually manifests at the end of or after the reproductive phase of life, which would minimize 

selection pressure against APOEε4 carriers.  

Using resting state fMRI, there is evidence of altered DMN function in young adults with 

the APOEε4 allele (133). This mirrors what has been discovered in older healthy adults and, as 

will be discussed below, in MCI and AD. There is also evidence that alterations in resting state 

networks mediated by the APOEε4 allele may not be tightly linked to risk for AD. In a study by 

Trachtenberg and colleagues, resting state networks that differed between APOEε4 carriers and 

APOEε3 homozygotes (including bilateral hippocampal networks, the auditory network, the left 

frontal-parietal network and the lateral visual network) also differed between APOEε2 carriers 

and APOEε3 homozygotes (136) (Figure 1.3). The APOEε2 allele has been shown to be 

protective against AD (137). Therefore, the authors reason, these findings would indicate that 

the differences between APOEε4 carriers and non-carriers were not a reflection of increased AD 

risk or early AD-related changes, but rather point to a role for APOE in neurodevelopment. 

Certainly, this study provides a compelling rationale for including APOEε2 allele carriers as an 

additional experimental group in future studies that aim to elucidate early AD-related changes in 

the brain.  



 30 

 

Figure 1.3: The effects of APOE genotype on connectivity of several resting state networks, 
including the anterior hippocampal network (AHN), the posterior hippocampal network (PHN), the 
auditory network (AUN), and the left frontal-parietal network (lFPN). Figure reproduced from 
Trachtenberg AJ, et al. (2012), NeuroImage. The left column shows the results of voxel-wise comparisons 
between APOEε4 carriers and APOEε3 homozygotes. The right column shows the results of voxel-wise 
comparisons between APOEε2/3 heterozygotes and APOEε3 homozygotes. Images are thresholded at 
z>2.3 and corrected for multiple comparisons using a corrected cluster significance threshold of p<0.05. 
Bar graphs show the ROI analyses on the significant regions from the voxel-wise comparisons. Error bars 
denote standard error of the mean. *Significantly different from APOE3/3 (p < 0.05); **significantly 
different from APOE3/3 and APOE3/4 (p < 0.05); ***significantly different from APOE3/3, APOE3/4, and 
APOEε4/4 (p < 0.05). Reprinted with permission from Elsevier. 
 

As a final note on functional imaging of APOE genotype in young adults, a seminal FDG-

PET study in 2004 found that in a small cohort of young adults, APOEε4 carriers were 

hypometabolic compared to non-carriers in the posterior cingulate cortex, parietal, temporal and 

frontal lobes (138). These regions are particularly vulnerable to AD and are the sites of marked 

hypometabolism early in the disease. Unfortunately, there are very few studies using PET 

imaging in young adults, so these results have not been properly reproduced.  
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We expect the number of studies that report on cohorts of adolescents, children and 

infants and the APOE gene will increase in the coming years. Today, there are several 

interesting published reports that are sure to inspire follow-up and further experiments. A study 

completed on 239 children and adolescents found that APOEε4 carriers had significantly thinner 

entorhinal cortex than non-carriers (139). Moving to even younger subjects, a recent study led 

by Eric Reiman scanned 162 infants from 2 to 25 months old and found that APOEε4 carriers 

had lower gray matter volume in the precuneus, the cingulate, lateral temporal cortex and 

medial fusiform gyrus (140). Support for these findings can be found in a paper examining the 

effects of psychiatric risk genes in prenatal development. Specifically, the APOEε4 allele was 

related to decreased gray matter volume in bilateral hippocampus, parahippocampus, fusiform 

and temporal gyri (141). Together, these studies suggest that there is a role for APOEε4 in 

development. This begs the question, is APOEε4 risk for AD a developmental susceptibility or a 

direct interaction with diseases processes? It has been shown that APOEε4 risk is specific to 

amnestic dementia (105). Studies on extremely young subjects might help to uncover if there 

are developmental clues as to the mechanism of this specificity. To date, there are no studies 

examining the functional consequences, measured with fMRI or PET, of APOE risk in infants. 

fMRI studies are likely to be completed soon as safety concerns for infants in fMRI experiments 

are minimal and motion correction techniques are constantly improving. PET studies in infants 

are extremely unlikely due to the required radiation exposure via the use of the radioactive 

tracer.  

 

MCI and AD Cohorts 
 

Similar to findings in healthy, older adults, APOEε4 carriers with AD or MCI have higher 

rates of hippocampal atrophy compared to non-carriers with AD or MCI, respectively (142; 143). 

Related to the increased rates of atrophy, AD and MCI subjects who carry at least one copy of 

APOEε4 have reduced hippocampal volume or more severe hippocampal thinning (143; 144). 
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Earlier, it was mentioned that clinical symptoms of AD generally follow marked atrophy and 

synaptic and neuronal loss, so it is not surprising that volumetric loss has occurred in these 

symptomatic cohorts. However, these studies are highlighting that the APOEε4 allele mediates 

more severe disease phenotypes, even in clinically affected patients. In studies of the cerebral 

cortex, APOEε4 carriers with MCI who then progress to AD show decreased gray matter volume 

in the temporal and parietal lobes (as well as decreased hippocampal volume) while APOEε4 

non-carriers showed no gray matter volume changes over the same time elapsed (145). Taking 

together these sMRI findings and the many studies reporting that APOEε4 is associated with an 

earlier age of onset of AD, it is clear that APOEε4 is associated with a more rapid disease 

progression (80).  

Alterations in DTI metrics based on APOEε4 carrier status appear to be a feature of 

young, healthy subjects and the preclinical phase of AD but not of symptomatic cohorts. A study 

that calculated FA and MD in two groups, AD patients and healthy controls, found that MD was 

significantly greater in APOEε4 carriers compared to non-carriers in the healthy control group 

but not in the group of AD subjects (146). In fact, there were no differences in DTI metrics 

mediated by APOE genotype in the AD group.  

At the time of preparation of this chapter there were no published studies that employed 

either task-based or resting state fMRI to study differences in symptomatic populations based 

on APOE genotype. There is, however, a well-established literature in which PET tracers are 

used to assess differences in MCI and AD cohorts based on APOEε4 carrier status. With FDG-

PET, AD patients who are APOEε4 carriers present with more dramatic metabolic reductions in 

the regions that are normally hypometabolic in AD, including the lateral parietal lobe, the 

posterior cingulate, precuneus and the temporal lobes (147). The spatial extent of the 

hypometabolic regions is also greater in APOEε4 carriers (148).  PiB-PET studies that test for 

an association between Aβ deposition and APOEε4 carrier status in AD patients find that 

APOEε4 carriers have higher tracer uptake across diffuse regions of the cortex (149; 150). 
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Another PiB-PET study, this one in MCI patients, found that of the 61% of MCI subjects that 

were positive for Aβ, 80% of them were APOEε4 carriers (151). This indicates that APOEε4 

carrier status is associated with an increased risk for amyloid positivity in subjects with MCI. 

Taking this one step further, it would indicate that individuals with MCI who are also carriers of 

the APOEε4 allele are more likely to convert to AD than non-carriers because amyloid positivity 

is a good predictor of progression (152).  

As an interesting aside, let us consider APOE from another, extremely rare, perspective. 

Recently, it was discovered that a man with a severe form of dysbetalipoproteinemia was 

completely missing the APOE gene. A case study was published detailing his neurological 

status based on cognitive testing, MR imaging and CSF analytes (153). He was found to have 

no neurological deficits or structural abnormalities of the nervous system. The story of this 

remarkable patient has led to a resurgence of attention on APOE as a potential therapeutic 

target. If the absence of APOE does not negatively affect neurological function, perhaps the 

APOEε4 allele product can be silenced thus eliminating APOEε4-mediated AD risk. Of course, 

this therapy would need to be targeted to the CNS as a lack of APOE throughout the body 

results in excessively high cholesterol as well as other clinical problems.  

 

TOMM40 
 

In 2010, a non-coding region on chromosome 19 located just upstream from APOE was 

identified as a strong genetic risk locus for AD (154). This stretch of DNA, called TOMM40 for 

translocase of outer mitochrondrial membrane 40, varies with respect to the length of a poly-T 

polymorphism. Longer length poly-T variants were found to be associated with increased risk for 

AD as well as a lower age of onset (154). The authors of these initial findings contended that the 

discovery was important because Tom40, the protein encoded by this region, is crucial to 

healthy mitochondrial function. The Tom40 protein forms a channel in the outer mitochondrial 

membrane that is used to import proteins (155). Since these initial findings, there has been 
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much disagreement in the field as to whether or not TOMM40 is specifically associated with AD. 

Some believe that TOMM40 is in such close linkage disequilibrium with APOE that any signal at 

the TOMM40 locus in an AD association study is driven by the very strong APOE signal (156). 

These investigators postulate that the TOMM40 polymorphism is “behaving as a surrogate for 

the well-established AD risk allele, APOE ε4”. Subsequent to this, three groups attempted to 

replicate Roses and colleagues’ original findings. One group found that longer lengths of the 

TOMM40 poly-T repeat did in fact increase risk for AD, but only in the absence of APOEε4 

(157). Another found no correlation between TOMM40 poly-T repeat length and age of onset of 

AD (158). Finally, a third group found the TOMM40 poly-T polymorphism association did not 

replicate, but reported another TOMM40 polymorphism associated with increasing risk of AD in 

APOEε3 homozygotes, but in the opposite of the expected direction (i.e., increasing length was 

associated with a lower risk of AD) (159).  

Given the various directions of the findings, the true implications of the TOMM40 

polymorphism remain to be determined. One group attempted to elucidate the complicated 

regulation of the relatively small haplotype block that encompasses APOE and TOMM40. The 

authors investigated the effect of putative cis-regulatory haplotypes on in vitro expression driven 

by TOMM40 and APOE promoters, and their results suggest that genetic variation at the 

TOMM40 locus may indeed be associated with late-onset AD, independently of APOE (160). 

More recently, neuroimaging evidence that TOMM40 is not merely a marker of APOE 

genotype has come to light (161). Specifically, TOMM40 was found to have an additive and 

separable effect on the association between hippocampal volume and memory performance on 

a free recall task (161). Another study of healthy older adults who were not carriers of APOEε4 

found a dose-dependent effect of high-risk TOMM40 alleles correlated to decreasing 

performance on retrieval in a verbal memory task (162). The authors also reported a dose-

dependent, high-risk allele correlation with decreasing gray matter volume in the ventral 

posterior cingulate cortex and medial ventral precuneus, both regions that are implicated early 
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in AD pathophysiology. Finally, in a cohort of generally healthy older adults assessed with DWI, 

the authors found significant and independent effects of both the APOEε4 and TOMM40 ‘short’ 

alleles on specific tracts, independent of age, gender, vascular disease and childhood 

intelligence (163). For TOMM40, these tracts were the left uncinate fasciculus, left rostral 

cingulum, and left ventral cingulum. It remains unclear why specific tracts show significant 

deleterious effects of genetic variation at the APOE or TOMM40 loci, but one hypothesis is that 

these late-myelinating tracts are particularly susceptible to injury or pathology (164). Clearly, a 

better understanding of the regulatory mechanisms affecting TOMM40 and APOE will be 

necessary to tease apart their relationships to AD risk. In addition, continuing to measure 

genotype-driven pathological differences in the brain will help resolve whether the two genes 

have an additive effect on disease-related changes. Perhaps by investigating the rare variants 

within each of the genes that are not in linkage disequilibrium but that do associate with AD, it 

could be determined whether the genes exert their effects independently. Only a next 

generation sequencing method would support the large-scale effort required to implement such 

an approach. 

 

TREM2 
 

Triggering receptor expressed on myeloid cells 2 (TREM2) is a gene that has very 

recently been implicated in AD. Two independent studies were published in 2013 that linked a 

SNP (rs75932628) located within TREM2 to AD (165; 166). The first studies quantifying the risk 

conferred by this TREM2 variant have indicated that it could be as strong or stronger than the 

APOEε4 allele, which is, however, much more common. In one study, the allelic odds ratio for 

the TREM2 variant was over 11 (167). For comparison, risk loci identified in genome-wide 

association studies for AD have odds ratios up to 1.5, while the APOE loci is often near or 

above 3 (see next section) (168). The strength of the association to AD in these initial reports 

has given rise to a burst of interest in the neurobiological underpinnings of the relationship.  
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The substitution of a C to a T base-pair results in the substitution of a histidine for 

arginine in the TREM2 protein and has been associated with low cell-surface expression of the 

protein and an increased risk for AD (166). TREM2 is an immune receptor responsible for 

regulating microglial cytokine production and phagocytosis of neuronal elements, neuritic debris, 

and bacteria (167). This protein is expressed in microglia and low cell-surface expression of 

TREM2 in transgenic mouse models of AD is associated with reduced phagocytic functions 

(169; 170). Recent evidence supports the notion that TREM2 is capable of phagocytosing Aβ, 

and mutations in TREM2 may lead to reduced clearance of protein aggregates in the brain 

(169). Additionally, upregulation of TREM2 has been shown to alleviate neuropathological 

symptoms of AD in a transgenic mouse model (171). Interestingly, TREM2 variants have also 

been associated with other neurodegenerative diseases such as Parkinson’s disease, 

frontotemporal dementia, and amyotrophic lateral sclerosis (172–174).  

Despite its association with numerous neurodegenerative diseases, no systematic 

description of the clinical and neuropsychological features of the TREM2 variant has been 

determined, in part due to the rarity of the mutation (175). The infrequency of the variant has 

limited the number of neuroimaging investigations dedicated to investigating the clinical 

presentation and patterns of gray and white matter morphology specific to TREM2 variants. One 

cross-sectional study used voxel-based morphometric analysis to investigate regional patterns 

of gray and white matter loss associated with the at-risk variant (176). The authors found gray 

matter volume loss was largely restricted to frontobasal regions including orbitofrontal cortex 

and anterior cingulate cortex. In another tensor-based morphometry study, Rajagopalan and 

colleagues reported 1.4-3.3% annual rates of increased volume loss of the medial temporal lobe 

in at-risk TREM2 subjects (177). However, no comprehensive whole-brain sMRI study of gray 

and white matter differences in TREM2 variant carriers exists as of yet. Functional studies, 

especially PET imaging work exploring the relationship between TREM2 and Aβ deposition, are 

likely forthcoming.  
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GWAS-Identified Alzheimer’s Disease Risk Genes 
 

Beginning in 2008, several large-scale genome-wide association studies (GWASs) 

examining genetic association with AD were published (168; 178–180). These studies 

confirmed previously identified risk factors (APOE, CLU) and identified new putative genetic risk 

factors for AD (PICALM, CR1, BIN1 and others). Several of the GWAS-identified loci have been 

examined in subsequent studies of quantitative measures of cognitive decline and biomarkers 

for Alzheimer’s disease. These phenotypes can include metrics of cognitive performance, 

functional and structural imaging biomarkers, PET tracer uptake, and CSF analytes. One 

purpose of genotype-driven phenotype studies is to better understand the role of GWAS-

identified genes and their protein product(s) in AD pathogenesis. Neuroimaging data are 

acquired at a resolution much lower than the scale on which proteins act, so these data can 

provide only limited insight into pathogenic processes at the molecular or cellular level. Instead, 

what neuroimaging can do very well is help to assess the clinical utility of AD-associated genetic 

variants. In other words, in a living patient, can low effect size genetic risk factors be combined, 

along with biomarkers, to improve predictions about conversion to MCI and, subsequently, to 

AD? If so, this clinical utilization of GWAS-identified AD risk genes could allow clinical trial 

enrollment to be a more rigorous and specific process, with the ultimate goal of including only 

those individuals who are most likely to respond to the treatment, increasing statistical power to 

show an effect.  

In 2013, the International Genomics of Alzheimer’s Project (IGAP) consortium published 

their first GWAS effort, the largest ever on AD (7). Using a uniquely large cohort of 74,046 

subjects amassed from four smaller data consortia the authors were able to detect 11 new AD 

risk loci, in addition to confirming previously identified loci (Figure 1.4). Using reference 

haplotype data from the 1000 Genomes Project for imputation and a predetermined genome-

wide significance level of p < 5 X 10-8, the stage 1 analysis resulted in 15 genomic regions that 
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showed an association to AD. These regions included 10 previously identified AD genetic risk 

factors, including APOE, and 5 newly implicated loci. The 9 previously identified loci were CR1, 

BIN1, CD2AP, EPHA1, CLU, MS4A6A, PICALM, ABCA7 and CD33. All available neuroimaging 

genetics findings for these loci will be reviewed in the following text. The six new loci were HLA-

DRB5-HLA-DRB1, PTK2B, SORL1, SLC24A4, RIN3 and DSG2. After the stage 2 replication 

analyses there were seven additional loci that reached statistical significance for association: 

INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2 and CASS4. Notably, in the stage 2 

replication analyses there were two loci from stage 1 that did not reach statistical significance: 

CD33 (a previously identified risk locus) and DSG2 (a newly identified locus). This left a total of 

nine fully-replicated, previously identified risk loci, including APOE, as well as 11 newly 

identified potential risk loci (Figure 1.4).  

 

Figure 1.4: Manhattan plot depicting genome-wide associations with Alzheimer’s Disease (17,008 
cases and 37,154 controls). Figure reproduced from Lambert JC, et al. (2013), Nature Genetics. Genes 
that have been identified in previous GWASs are in shown in black and newly associated genes are 
shown in red. Red diamonds indicate loci with the smallest P values in the overall analysis. Reprinted with 
permission from Nature Publishing Group.  
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While this landmark study further complicated the genetic landscape of AD, it has helped 

to provide a more complete picture of the underlying genetics that lead to AD. These findings 

are very exciting to investigators taking an imaging genetics approach because this larger set of 

genetic markers will help to elucidate the role of the field in the future of AD research. Genetic 

risk markers identified in early GWAS studies are featured in a growing number of imaging 

genetics publications. Unfortunately, the new 11 loci described by Lambert and colleagues have 

not yet been queried using a neuroimaging genetics approach. Surely, these studies are 

underway. In several years, it is likely that these newly identified risk loci will also be 

represented in the imaging genetics literature. The remainder of this section will cover the 

published neuroimaging genetics findings for replicated GWAS-identified risk factors, including a 

brief background on each gene.  

 

CLU 
 

The gene clusterin (CLU) is ubiquitously expressed and its protein product has been 

implicated in a plethora of cellular functions, which seem to converge on CLU’s role as a 

chaperone protein (181). Before the advent of the GWAS approach, CLU was already 

implicated in AD. Its potential relationship to the disease was first described by May and 

colleagues in 1990 when they found that CLU expression was significantly increased in the 

hippocampi of AD patients compared to controls (182). However, the coincident implication of 

CLU in two independent GWASs published in 2009 reignited the interest in CLU and its role in 

AD (168; 179). Furthermore, since those two initial reports, the association of a single SNP 

within the CLU gene has been replicated several times, making it a GWAS replication success 

story (183–185). One caveat that is especially important to molecular biologists is that the 

associated SNP (rs11136000) is intronic and therefore is not expected to have an effect on 

protein function (179). The search for the exonic, coding variants that are the true causative 

polymorphisms that underlie the association is ongoing.  
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Compared to other GWAS-identified genetic risk factors, CLU has been afforded the 

most attention in the neuroimaging genetics world. This may be because there was a 

preexisting literature linking CLU and AD and, thus, investigators felt that the CLU association 

was  “real” and represented a signal strong enough to be picked up in neuroimaging 

approaches. The relatively large number of CLU studies may also be due to the highly 

reproduced nature of the genome-wide association with a single locus, again indicating a 

strong, “real” association.  

There is no evidence that CLU genotype is associated with volumetric measures of 

medial temporal lobe structures. In healthy young adults, CLU was specifically shown not to be 

associated with hippocampal or entorhinal cortex volume (186). However, in a study of young 

healthy adults, the CLU risk allele was associated with poorer working memory performance 

and, further, this relationship was mediated by the gray matter volume of a region of the parietal 

lobe (187). The authors also tested for a relationship between APOE, working memory and gray 

matter morphology but found no significant association (187). Using DTI, the CLU risk variant 

has been associated with lower FA in several white matter regions, including the fornix, the 

splenium of the corpus callosum and the cingulum, which are all tracts that contribute directly to 

the structural connectivity of the medial temporal lobe (188). Decreases in FA have emerged in 

the APOE literature as a possible early indication of disease-susceptibility. More work is needed 

to ascertain whether or not there is an additive effect of risk genes on FA, but preliminary efforts 

are promising (189). 

In contrast to findings in gray matter volume described earlier, an fMRI experiment that 

tested for an effect of CLU and/or APOE on brain activity during an executive attention task 

found that the effect of the genes was additive (132). Specifically, the authors found that as 

genetic risk across the two genes increased (represented by the number of risk alleles) the 

activity associated with executive attention decreased in the medial temporal lobe, as well as 

other regions (132). On its own, the CLU AD-risk variant mediated connectivity differences in 
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another fMRI study (190). Healthy carriers of the CLU risk variant showed decreased coupling 

of the hippocampus and prefrontal cortex during memory retrieval tasks (recall and recognition) 

(190) (Figure 1.5). Finally, the functional connectivity of the hippocampus and the relationship of 

this measure to the CLU polymorphism was recently reported in a study of resting state fMRI 

data. Compared to carriers of the protective allele, subjects who were homozygous for the CLU 

risk allele had the same general pattern of positive and negative functional connectivity but the 

magnitude of the connectivity was stronger in both the positive and negative directions (191). 

Taken together, these studies indicate that the BOLD signal as measured by fMRI may be 

modulated by CLU genotype. More studies are needed to confirm the association and define the 

dynamics of the modulation.  
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Figure 1.5: Functional coupling of the hippocampus and frontal cortex in three CLU genotype 
groups. Figure reproduced from Erk S, et al. (2011), The Journal of Neuroscience. A. Carriers of the risk 
allele (C at rs11136000) show decreased, allele dose-dependent coupling of the right DLPFC and the 
right hippocampus during recall (Z = 5.06; p < 0.05, family-wise error corrected for multiple testing across 
the whole brain). Each red dot represents the effect size for one subject and reflects connectivity between 
right DLPFC and the right hippocampal seed region. B. Carriers of risk allele exhibit significantly 
decreased allele dosage-dependent coupling of the right DLPFC with the left hippocampus during 
recognition (Z = 4.73; p < 0.05, family-wise error corrected for multiple testing across the whole brain). 
Each red dot represents the effect size for one subject and reflects connectivity between right DLPFC and 
left hippocampal seed region. Reprinted with permission from The Society for Neuroscience.  
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PICALM 
 

The gene encoding phosphatidylinositol binding clathrin assembly protein (PICALM) was 

identified as an AD risk factor in 2009 (179). The implicated region (rs3851179) was located 

upstream from PICALM, but subsequent studies have not only replicated this finding but also 

identified AD-risk SNPs within the PICALM gene itself (192). PICALM, like CLU, has widespread 

expression in the brain. It is involved in many cellular processes, especially the trafficking of 

proteins and lipids via clathrin mediated endocytosis (193). Lately, this process, essential to 

synaptic transmission, has received increased attention in the study of AD, in part because of 

the strong association of PICALM to AD uncovered in GWASs (194). In terms of reproducibility 

in GWASs, PICALM ranks third after the APOE/TOMM40 locus and CLU (7; 183; 184; 192). 

Perhaps because of this highly reproduced association, PICALM is fairly well-represented in the 

neuroimaging genetics of AD literature. 

A study on older adults who ranged from cognitively healthy to diagnosed with AD 

reported a significant association between PICALM (rs3851179) and hippocampal volume such 

that carriers of the PICALM risk variant had lower hippocampal volume (195). The authors also 

described a similar relationship between PICALM risk and entorhinal cortex thickness. This 

finding has been replicated in another study that found that the PICALM risk allele is associated 

with a thinner entorhinal cortex (196). However, in young adults, PICALM was not associated 

with either hippocampal or entorhinal cortex volume (186). 

The functional connectivity of the hippocampus and the relationship of this measure to 

PICALM was recently reported in a resting state fMRI experiment. Compared to subjects who 

were homozygous for the protective allele, risk allele carriers showed weaker negative 

functional connectivity of the hippocampus to many regions (191). This finding is preliminary 

and needs to be replicated. Lastly, a study of amyloid deposition as measured by florbetapir-

PET found an epistatic effect involving PICALM and BIN1, another AD risk gene (197). This 

study is described later in this chapter (see BIN1).  
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CR1 

 
Unlike CLU and PICALM, expression of complement component (3b/4b) receptor 1 

(CR1) is likely to be low in the brain (198). The CR1 protein’s function is complex and varies by 

cell type, but it is generally involved in the regulation of the complement cascade, a major 

component of the innate immune system that helps to amplify the response of the immune 

system to potential targets. The CR1 protein is involved in transporting opsonized immune 

complexes through the circulatory system for removal (181). Neuroinflammation has been 

associated with AD for many years, but has often been dismissed as a consequence, not a 

cause, of the disease (199). This view is beginning to change and inflammatory processes are 

being studied as potential pathogenic processes in AD (194). One reason that interest in 

neuroinflammation and AD has been renewed is the identification of an association between a 

polymorphism in CR1 and AD in a 2009 GWAS study (168). 

The CR1 risk variant has been shown to be associated with thinner entorhinal cortex in 

healthy older adults (195). Interestingly, there is also evidence that CR1 is associated with lower 

entorhinal cortex volume in young healthy adults, a finding that was confirmed in two 

independent cohorts (200). Additional research is needed to assess whether or not this 

relationship between CR1 and a potential endophenotype of AD is reproducible in larger 

samples.  

 

BIN1 
 

Bridge integrator 1 (BIN1) was conclusively reported as a risk gene for AD in 2010, after 

borderline associations were reported in one of the large 2009 GWASs (179; 183).  Like 

PICALM, BIN1 is associated with the intracellular trafficking of lipids and proteins. BIN1 encodes 

a protein that has at least ten isoforms (181). Each isoform has specific domains that influence 
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the function of the protein. The isoform of BIN1 that is specific to the brain contains the clathrin-

associated protein-binding (CLAP) domain, which plays a role in clathrin mediated endocytosis 

(201). Clathrin mediated endocytosis is an essential process in synaptic vesicle recycling, which 

is a crucial component of efficient synaptic transmission. It is interesting that both PICALM and 

BIN1 are implicated as molecular components of this general cellular process, and it suggests 

that variability in synaptic transmission efficiency may contribute to AD pathology, especially 

during the early phase characterized by synaptic loss and neuronal death (194).  

The convergence of PICALM and BIN1 function led one group to test for epistatic 

genetic effects between the risk loci for each gene identified in GWASs. Hohman and 

colleagues analyzed florbetapir-PET scans from older adults to test for a possible interaction 

effect of BIN1 and PICALM on amyloid deposition (197).  The authors found that there was 

indeed an interaction and that this interaction was reproducible in a second dataset. The BIN1 

risk variant was related to higher levels of amyloid burden, but only in individuals who were 

carriers of the PICALM protective variant. This study is a simple illustration of the weakness of 

candidate gene studies because both BIN1 and PICALM are not related to amyloid deposition 

when tested on their own.  

There is, however, evidence that BIN1 genotype is directly associated with neuroimaging 

biomarkers of AD. Based on the preliminary, non-significant evidence from the 2009 GWASs 

that BIN1 was associated with AD, Biffi and colleagues tested for an association of the BIN1 risk 

variant and a number of neuroimaging phenotypes. The authors found that the BIN1 risk variant 

is associated with thinner temporal pole and entorhinal cortex in healthy older adults (195). The 

same year that paper was published, a BIN1 locus reached genome-wide significance in a new 

AD GWAS (183). 
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ABCA7 
 

ATP-binding cassette, subfamily A, member 7 (ABCA7) is one gene in a group of highly 

conserved transmembrane transporters that participate in active transport of various substrates 

across membranes, both cellular and organelle membranes (202). ABCA transporters have 

been linked to cholesterol and lipid homeostasis, and appear to work directly with APOE by 

transporting lipids out of the cell to APOE for clearance (203).  This coordination with APOE 

may hint at the mechanism of the association between ABCA7 and AD. Still, ABCA7 was first 

directly linked to AD through a GWAS in 2011 (180).  

The ABCA7 locus has been implicated in only one very recent neuroimaging study in 

which the authors were interested in the relationship between cholesterol levels and amyloid 

deposition (204).  Hughes and colleagues described an over 2-fold increased risk of amyloid 

positivity in carriers of the ABCA7 (rs3752246) risk variant.  

 
EphA1 
 

EphA1 was originally named after the cell line it was discovered in, erythropoietin-

producing human hepatocellular carcinoma (181). EphA1 is a member of a superfamily of 

proteins called the receptor tyrosine kinases and is expressed widely in multiple tissues 

including the brain (205; 206).  The Eph-ephrin family of receptors and ligands are all 

membrane bound proteins that are involved in cell adhesion and cell-cell contact mediated 

signaling, like in axonal guidance during development (206). The link between EphA1 and AD 

was first described in two GWASs in 2011 (180; 192). There are few clues as to the 

neurobiological processes that link this gene to AD. It is known that EphA receptors, as a class, 

are highly expressed in the hippocampus, but the expression and function of specifically EphA1 

in the hippocampus is not well understood (207). 

Neuroimaging genetics results describing EphA1 are limited to a single study. Like they 

did for the ABCA7 genetic locus, Hughes and colleagues found that the EphA1 is associated 
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with the likelihood of being amyloid positive, as measured by PiB-PET. In contrast to the 

findings for ABCA7, the authors described decreasing risk of amyloid positivity for each C allele 

of EphA1 (rs11767557) (204). 

 

CD33 
 

Sialic acid binding immunoglobulin-like lectin-3 (CD33) is a membrane-bound receptor 

expressed on immune cells (208). It plays an important role in the differentiation of immature 

immune cells and the signaling of mature immune cells in the innate and adaptive immune 

system (208). Despite strong evidence from several GWASs that CD33 is associated with AD, 

this association was not fully replicated in the second stage of the IGAP consortium GWAS (7; 

180; 192). This may cast some doubt on the strength and reproducibility of this gene’s 

association with AD. Perhaps the association is specific to certain regions and genetic 

backgrounds. In any case, there is some preliminary work using neuroimaging to measure 

neural substrates of CD33 risk.  

A single study examined the relationship between CD33 genotype and a neuroimaging 

phenotype. Bradshaw and colleagues found that the risk variant of CD33 was associated with 

greater, diffuse amyloid deposition as measured with PiB-PET imaging (209). 

 
BDNF 
 

Brain-derived neurotrophic factor (BDNF) is a growth factor that is widely expressed in 

the brain, including nearly all cortical areas. Through signaling with its main receptor 

tropomyosin-related kinase receptor type B (TRKB), BDNF is involved in regulating and 

supporting essential physiological functions in the adult brain. The literature supporting this 

assertion is vast and varied. For example, BDNF has been shown to modulate synaptic 

plasticity and dendritic spine dynamics and morphology (210). BDNF also supports long-term 

potentiation in the hippocampus, a process that is essential for learning and memory (211). 
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Furthermore, it has been suggested that BDNF plays an important role in energy homeostasis, 

providing a link between peripheral glucose metabolism and the brain that might be responsible 

for mediating the cognitive sequelae of physical exercise and a lack thereof (212). On account 

of the role of BDNF in these crucial processes, therapeutic uses of synthetic BDNF are actively 

being explored in a variety of neurological and psychiatric disorders (213). For example, in 

several animal models of AD, ranging from mice to non-human primates, treatment with BDNF 

has been shown to recover lost synapses, promote normal cell signaling and alleviate learning 

and memory deficits (214). Thus, despite the fact that BDNF has not been directly associated 

with AD incidence, there is certainly evidence that BDNF may mediate neuroprotective 

processes that may slow, or even reverse, some aging and AD-related neuronal changes (215).  

There is a common polymorphism within the gene that encodes BDNF that results in a 

methionine substitution for a valine at codon 66 of the protein (Val66Met). The BDNF Met 

variant is expressed at normal levels, but the secretion of the protein from neurons is decreased 

(216). A possible relationship between this polymorphism and neuroimaging endophenotypes of 

AD has been explored in a small number of studies. In a report by Lim and colleagues, healthy 

Met carriers who had high Aβ, as measured by PiB-PET, had higher rates of hippocampal 

volume loss over 3 years than Val/Val homozygotes (217). In addition, the Met carriers with high 

Aβ showed more dramatic decline in cognition, including measures of executive functioning and 

episodic memory. There were no differences between healthy Met carriers and Val/Val 

homozygotes in the low Aβ group. These findings indicate that Met carrier status may help to 

predict decline in individuals who may be in the preclinical phase of AD (217). Another study 

found that Val66Met, as well as other SNPs within the BDNF gene, were associated with 

hippocampal and cortical atrophy over two years in a mixed cohort of healthy adults and 

patients with MCI and AD (218). The authors concluded that though BDNF was not associated 

with AD diagnosis, it is a factor in AD-related neurodegeneration measured by neuroimaging 

(218).  In a study of healthy adults from age 19 to 82, Val66Met interacted with age to predict 
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cortical thinning in the entorhinal cortex and adjacent temporal areas (219). The authors of this 

study also found an Val66Met-age interaction that predicted decreased FA in temporal white 

matter tracts, indicating a loss of white matter integrity in these regions (219). These studies, 

and others, indicate that BDNF variants may modulate the severity of AD-related changes to 

cortical and hippocampal morphology (220). There is also some evidence that the Val66Met 

variant is related to glucose metabolism measured by FDG-PET. One study found decreased 

metabolism in healthy older Met carriers in the right parahippocampal gyrus and the superior 

temporal gyrus (221). The authors also report increased metabolism in healthy Met carriers in 

frontal regions. This pattern of differences was also observed in patients with MCI. Further 

studies examining BDNF variants and FDG-PET imaging are needed to replicate these results, 

as well as to help elucidate whether proposed connections between BDNF and peripheral 

metabolism extend to central glucose metabolism (212). Finally, a recent study by Adamczuk 

and colleagues showed an interesting relationship between APOEε4 and Val66Met, such that 

APOEε4 carriers who were also Met carriers had higher Aβ load than APOEε4 carriers who 

were Val/Val homozygotes (222). However, in APOEε4 non-carriers, there was no association 

between Aβ load and the Val66Met variant. These findings point to a potential interaction 

between APOEε4 and BDNF Met variant. Better characterization of this relationship, as well as 

the other findings described in this section, will be essential to developing potential BDNF-based 

therapies for use in the AD.  

 

Neuroimaging-Identified Alzheimer’s Disease Risk Genes 
 

In addition to APOE, TOMM40, TREM2 and GWAS-identified AD-risk loci, there are 

genes that have been identified as potential risk factors for AD through the use of human 

neuroimaging. This represents a reversal of the types of studies we have covered thus far in this 

chapter, in which genetic associations are discovered via epidemiological studies, molecular 

biology experiments, linkage analyses or GWAS of a disease state, and then the effects of 
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these genetic variants are studied in living humans using neuroimaging. In contrast, the 

following studies use neuroimaging and creative experimental design in order to search for 

genetic associations with disease biomarkers, such as hippocampal atrophy. These studies are 

examples of some of the most exciting work materializing from the field of neuroimaging 

genetics because they are an example of true co-operation of human genetics methods and 

neuroimaging biomarkers/endophenotypes.  

In a creative experiment by Nho and colleagues, a small set of subjects from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) who had experienced either extreme or 

very little hippocampal atrophy over two years were selected and their exomes were sequenced 

(223). Often, the loci identified in genetic association studies are not coding variants, but exome 

sequencing ensures that any associations one finds will be a potentially functional variant.  The 

authors isolated 57 SNP variants that were found in all rapid atrophy subjects and in none of the 

slow atrophy subjects. Next, they used these SNPs and performed a quantitative trait analysis 

on a separate, larger cohort of subjects homozygous for the APOEε3 allele. Two genes, PARP1 

and CARD10, were associated with the rate of hippocampal atrophy in the larger validation 

group. While further research is required to assess the reproducibility and clinical utility of these 

results, this cross-discipline design utilizes large cohort enrollment efforts by selecting for 

extreme cases, advancing human genetics methods for exome sequencing and neuroimaging 

for measurement of a potential biomarker. We believe that experiments like this will become 

more common as neuroimaging genetics methods are further integrated into mainstream 

biomedical research.  

A study by Shen and colleagues, also used ADNI data in order to perform many GWASs 

using a different neuroimaging measure as the target phenotype in each case (224). The 

authors used voxel-based morphometry to define cortical gray matter volume, as well as the 

volume of 43 ROIs in each hemisphere. Freesufer was also used to calculate cortical thickness 

and volume measures for ROIs across the cortical mantle. After an iterative GWAS was 
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performed for each of these potential endophenotypes, it was not surprising that APOE and 

TOMM40 were associated with several ROIs, including bilateral hippocampus and amygdala, 

volume of right cerebral cortex and cortical thickness of left cerebral cortex. Several additional 

genes were implicated, including EphA4, TP63 and NXPH1. Further analyses focused on the 

locus proximal to NXPH1 showed that subjects homozygous for the putative risk allele had 

significantly reduced bilateral hippocampal gray matter density (224).  

Another area of interest in neuroimaging genetics involves testing for the association of 

functional pathways with neuroimaging measures (225; 226). In other words, based on previous 

understanding of protein interactions and signaling, genes that encode proteins in a given 

biological pathway can be assessed for an aggregate association with a phenotype. Putative 

gene pathways are available in a variety of databases including the Molecular Signatures 

Database (227). In a study by Silver and colleagues, the authors present a new statistical 

method for testing biological pathway associations called sparse reduced-rank regression (225).  

Using this method and a voxel-wise measurement of structural change intended to maximize 

the difference in trajectories between normal controls and AD patients, the authors found that 

insulin signaling, vascular smooth muscle contraction and focal adhesion pathways were 

associated with AD-related changes. They then took their analyses a step further and tried to 

identify single SNPs that might be driving the association of these pathways and found nearly 

10 candidates. The authors also found that APOE, TOMM40 and CR1 were associated with 

their voxel-wise endophenotype, suggesting that it captures disease-related structural changes 

in AD (225).  

Thus far, genetic risk factors for AD have predominantly been identified in large cohorts 

of white American or European individuals, with relatively little effort made to replicate findings 

in different ethnoracial groups. In a 2012 study by Melville and colleagues, a specific aim of their 

research was to identify SNPs that associate with neuroimaging phenotypes in both Caucasian 

and African American cohorts (228). The neuroimaging endophenotypes they chose to query 
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were total cerebral volume, hippocampal volume and the volume of white matter 

hyperintensities. SNP associations were evaluated in a 2-stage reproducible analysis, a 

common study design in GWASs. The unique feature of this study was that the stage 1 cohorts 

were Caucasian cohorts and the stage 2 cohort was composed of African American individuals. 

Thus, they reported only genes that were associated with a given phenotype in these two 

different ethnoracial groups. The authors found that loci within APOE, as well as F5/SELP, 

LHFP and GCFC2, were associated with hippocampal volume. In addition, they reported that 

two different SNPs both in the PICALM gene were associated with hippocampal volume in the 

Caucasian and African American cohorts (228). This finding in PICALM is very interesting 

because it indicates that specific risk variants may differ between ethnic or racial groups, even 

within the same risk gene.  

Recently, a new, potential dementia associated gene, SPON1, was shown to be 

associated with the density of structural connections between the left posterior cingulate gyrus 

and the left superior parietal lobe, such that carrying two copies of the minor allele was 

associated with increased structural connectivity (229). Before this relationship was uncovered, 

the authors used their cohort of young adult twins to assess the heritability of a structural 

connectome created using tractography and a common cortical parcellation. This was an 

important step because it indicated that portions of the structural connectome were heritable 

enough to perform genome-wide association scanning. After SPON1 was implicated as a 

genetic factor mediating structural connectivity between two nodes, the authors tested the 

relationship between the putatively protective SPON1 variant and the morphology of the brain, 

finding associations with larger posterior cingulate cortex volume and smaller ventricular size. 

Furthermore, the minor allele was associated with milder dementia as measured by the Clinical 

Dementia Rating scale (229).  

The publications discussed in this section are examples of neuroimaging genetics 

studies that aim to identify genetic risk loci associated with neuroimaging biomarkers or 
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endophenotypes. This requires authors to perform interdisciplinary work that spans the fields of 

human genetics and neuroimaging. It is likely that neuroimaging genetics will move further into 

this interdisciplinary space in the future, with fewer ‘candidate gene’ studies and more 

experiments like those reviewed here. In addition, efforts to develop new methods to statistically 

test the association of many genetic risk factors as a single polygenic risk score or metric are 

sure to be a major focus of the neuroimaging genetics field moving forward. Unfortunately, the 

sample sizes of these kinds of studies are lagging behind those that have been achieved in AD 

GWASs. Although there is evidence that GWASs of neuroimaging endophenotypes are more 

statistically efficient than GWASs based on behavior, sample sizes still need to grow in order to 

ensure generalizability and reproducibility (230). The smaller sample sizes are due in part to 

difficulties in combining neuroimaging datasets caused by differences in acquisition parameters, 

processing and inclusion/exclusion criteria that may produce a confounding affect in a given 

neuroimaging measure. However, data sharing efforts that focus on resolving these issues with 

standardized protocols are gaining ground. One effort that is specifically focused on 

neuroimaging genetics is the Enhancing NeuroImaging Genetics through Meta-Analysis 

(ENIGMA) project (231). The aim of the ENIGMA project is to increase the ability of 

neuroimaging genetics researchers to share their own data, as well as access others’ data in 

order to increase statistical power in their own studies.  

 

Family History of Alzheimer’s Disease 
 

Thus far, we have discussed neuroimaging genetics approaches that focus on either a 

known genetic cause of AD, a known genetic risk factor for AD or identifying new genetic 

associations. Another approach in neuroimaging genetics of AD is to study the effect of a family 

history of the disease. A family history of AD confers a strong predisposition to the disease, 

doubling one’s chances of developing AD (232). A positive family history of AD may indicate 

that a subject carries genetic risk factors for AD perhaps even above and beyond the known 
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susceptibility loci that were covered in previous sections. It can be thought of as a composite 

genetic risk factor that may reflect susceptibility conferred by both known and unknown risk 

genes (88). The risk for AD captured by family history cannot be explained by APOE alone. 

Several studies have found additive effects of family history and APOE (88). This supports the 

idea that family history is a composite measure and cannot be explained or supplanted by even 

the strong genetic association of APOE to AD.  

A positive family history of AD is associated with higher rates of thinning in the 

hippocampus, especially in the entorhinal cortex and subiculum, in cognitively normal, older 

subjects (233). Family history has also been linked to hippocampal volume in middle-aged 

adults, specifically in the left hippocampus (234). Furthermore, cognitively normal, older 

subjects with a family history of AD show more severe whole-brain gray matter volume loss than 

subjects with a negative family history (235). Interestingly, gray matter volume loss was 

significant in the precuneus, parahippocampal gyrus and the hippocampus when subjects with 

only a maternal history of AD were compared to the negative family history group or to the 

paternal family history group (235). This indicates that phenotypic differences ascribed to 

subjects with a family history of AD might actually be driven by subjects with a maternal history 

of AD. Evidence in the literature supports the theory that a maternal history of AD results in 

more severe changes in structural endophenotypes than a paternal history of AD (236; 237). 

There is also evidence that a maternal history of AD is related to Aβ load. PiB tracer uptake in 

people with a maternal history of AD reveals significantly more Aβ in parietal cortex, the 

precuneus, posterior cingulate and sensorimotor cortex when compared to subjects with a 

paternal history of AD (238; 239). The mechanism of this relationship between maternal family 

history of AD and risk for the disease is not known. However, it has been posited that maternal-

lineage inheritance of mitochondrial DNA may play an important role (240). In fact, there is 

preliminary evidence that adult children whose mothers have AD show mitochondrial 
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dysfunction and reduced cytochrome oxidase activity compared to subjects with an affected 

father and to controls with a negative family history (240).  

In a recent study by Mosconi and colleagues, subjects with a family history of AD were 

further subdivided into groups of individuals who had a maternal history of AD, a paternal history 

of AD or both a maternal and paternal history of AD (241). These three groups were then each 

compared to a reference group of age and sex-matched subjects who had a no family history of 

AD. The authors found that the subjects who had a history of AD in both their maternal and 

paternal lineages showed more severe alterations in all of the neuroimaging phenotypes they 

measured. Specifically, these subjects had higher retention of the PiB tracer, indicative of higher 

Aβ load, as well as lower FDG uptake, indicative of hypometabolism. In addition, subjects with a 

history of AD on both sides of their family had more severe gray matter volume reductions 

across the cortex (241).  When the authors examined the subjects with only a maternal history 

of AD, they found intermediate phenotypes, followed by subjects with only a paternal history. 

Their findings are in line with others that reported more severe changes in neuroimaging 

endophenotype measures in people with a maternal family history of AD. The discovery that 

there is an additional additive effect of a maternal and paternal history of AD is a novel finding 

that will certainly be important in designing studies of family history of AD in the future.  

As we have discussed, DMN connectivity is altered in FAD and in APOEε4 carriers of 

varying ages. There is also evidence that DMN connectivity is modulated by family history of AD 

(242; 243). One study found that subjects with a family history of AD (they did not specify 

maternal or paternal lineage) was associated with reduced connectivity between the posterior 

cingulate and the medial temporal lobe (243). Another paper describes a direct comparison of 

the ability of task-based fMRI and resting state fMRI to differentiate between two groups 

stratified by AD risk: subjects with a family history of AD and at least one copy of APOEε4 

versus subjects with no family history and no APOEε4 alleles (242). Comparing DMN average 

connectivity between the two groups was the best differentiator, accounting for 62% of the 
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variance due to risk group membership compared to only 25% accounted for when comparing 

task-related fMRI activations (242). The consistency of the DMN disruption findings across 

different cohorts representing preclinical AD or risk for AD indicates that DMN functional 

connectivity may be a uniquely viable fMRI-based endophenotype for AD.  

 

Future Directions and Challenges 
 

The challenges associated with the neuroimaging genetics field apply to neuroimaging 

genetics of AD with one major exception. As described earlier, APOE accounts for a large 

amount of the genetic variance of AD, more than any single genetic locus in another human 

polygenic disorder. Because of this, there is a particularly large body of work using APOE in 

‘candidate gene’ type neuroimaging experiments. The sheer volume of these studies, although 

not all in agreement, is indicative of the unique position of APOE in the field of human genetics. 

In theory, because APOE is soaking up a good portion of heritability variance in AD, it is 

possible that polygenic risk modeling will be easier in AD than in other common polygenic 

diseases. This makes AD an attractive disease for neuroimaging genetics researchers. Indeed, 

attempts to model multiple genetic risk factors in neuroimaging studies of AD have showed 

promise, predicting conversion from MCI to AD as well as cortical thickness changes in AD-

vulnerable regions (244; 245). 

The causal variants that give rise to the APOEε4 allele, which then confers increased 

risk for AD, are known polymorphisms at rs429358 and rs7412. Variants at these sites alter the 

structure and function of the APOE protein (246). In fact, so-called APOEε4 “structure 

correctors” which make APOEε4 behave like the more common APOE3 are currently being 

developed as a possible treatment for AD (247). In contrast, many of the GWAS-identified AD 

risk loci (CLU, BIN1, ABCA7, EphA1) are located in intronic (CLU, ABCA7) or intragenic (BIN1, 

EphA1) regions with no evidence that variants affect protein structure or function. In general, an 

intragenic region may play some regulatory function, but in the cases of EphA1 and BIN1 there 
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is little evidence of conservation of these intragenic regions, therefore making a regulatory role 

in genetic expression unlikely (181). Thus, the search for the causal variants is still ongoing for 

these genes and, also, for genes implicated in other common disease by GWASs (248). 

Ostensibly, the causal variant for one of these genetic risk loci will be a polymorphism in high 

linkage disequilibrium with the GWAS locus that affects the function of the gene’s protein 

product in some way. It is possible that the polymorphisms driving the signal of these GWAS 

associations are rare variants occurring in less than 5% of people (minor allele frequency <0.05) 

(248). If this is the case, large sample sizes in GWASs will increase our ability to detect rare 

polymorphisms associated with disease. Still, it remains to be seen if the underlying genetics of 

a common disease like AD will be best described as the coincidence of several strong-effect 

rare variants or of many low-effect common variants. In either case, until the casual variants of 

GWAS-identified risk loci are identified, the utility of these risk factors in targeted efforts like 

drug development is minimal.  

From the perspective of neuroimaging, there are advantages and disadvantages to the 

rare-variant or common-variant theory of AD genetics. Obviously, because rare variants occur in 

so few individuals it would be difficult to amass a large enough cohort of carriers to produce 

statistically significant results. However, the field is moving fast toward larger and larger 

datasets through data sharing efforts and multi-center study designs. Access to ever-expanding 

reservoirs of data may mean that reasonably sized samples of individuals with specific rare 

variants may be plausible. The great advantage of studying rare variants with neuroimaging is 

that the effect size of these rare variants is likely to be much larger than common variants, likely 

making differences between carrier groups easier to detect, even at smaller sample sizes. In 

contrast, methods for modeling multiple genetic risk factors in a single experiment are actively 

being developed and may help to exploit the synergistic predictive power of many low-effect-

size common variants.  
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As a final note on GWAS-identified genetic risk factors for AD, it is important to 

recognize that the 20 loci discussed in this chapter were identified using large cohorts of 

Caucasian European or American subjects. There are many reasons the genetic loci implicated 

by these studies might fail to replicate in a cohort of subjects from a different ethnic background, 

including population specific variants, differing patterns of linkage disequilibrium or even a 

heterogeneous genetic basis of AD in different ethnic groups. As an illustrative example, many 

small GWAS studies have tried to replicate the association of CLU with AD in non-Caucasian 

cohorts. The results of these studies tell us that there appears to be an association between 

CLU and AD in Chinese cohorts, but not in cohorts of non-white Americans or Europeans (184; 

249; 250). Clearly, this is a limitation of the published large GWASs in AD and a greater effort 

must be made to amass comparably large samples of different ethnoracial groups for study. It is 

possible that this effort may result in the identification of certain genes that are associated with 

AD regardless of genetic background, and that these genes could then be the focus of 

increased research resources due to their greater generalizability. In addition, further 

exploration of the genetic basis of AD in people of African and Hispanic descent may help 

elucidate epidemiological differences observed in these ethnic groups, including higher 

incidence and earlier onset of AD (251).  

Another challenge in the field is the predominant use of cross-sectional experimental 

designs in trying to elucidate the pathophysiological trajectory of AD. Given the importance of 

early detection in neurodegenerative diseases as well as the published associations of various 

AD risk genes with differences in brain structure and function in young people (even children 

and infants), it is clear that longitudinal mapping of disease progression is essential in the fight 

against AD. A better understanding of how the disease manifests in individuals, each with his or 

her own unique genetic and environmental risk profile, would help clinicians detect preclinical 

AD. As described earlier, preclinical AD, or the phase of AD before changes in behavior and 

symptoms emerge, is believed to provide the best opportunity for treatment, especially with a 
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progression-halting drug. Such a drug is not available yet, but accurate definition of preclinical 

AD will be crucial to the success of any candidates. So how do we design experiments to study 

AD risk and preclinical AD? Overwhelmingly, inferences about the trajectory of AD are made 

from cross-sectional studies in which data are collected from each subject only once and all the 

subjects are randomly distributed across the age range under investigation. This approach is 

problematic because cross-sectional studies are excellent at confounding between-subject and 

within-subject variation (252). In other words, in a cross-sectional study, one loses the ability to 

separate differences mediated by normal variation in a given subject from variation across two 

different subjects, or cohorts of subjects. Thus, drawing longitudinal conclusions based on 

cross-sectional evidence, even based on many cross-sectional studies, is precarious and 

should be done cautiously (253). Longitudinal designs are better for making inferences about 

disease trajectory but they are difficult in practice. Still, multi-cohort longitudinal designs are 

feasible in today’s pro-collaboration atmosphere because many sites can collect longitudinal 

data on a relatively small number of subjects and then, assuming that proper standardization 

and oversight are in place, these subjects can be combined to create a much larger cohort. 

Indeed, ADNI is a good example of this type of effort in neuroimaging genetics of AD. We 

believe that future efforts to define the pathophysiological trajectory of AD through neuroimaging 

genetics should follow this example of a multi-cohort longitudinal design.  

 
Relevance and Impact 
 

Alzheimer’s disease affects more than 13% of individuals aged 65 years and older, a 

subset of the population that is rapidly growing across the world. According to a recent report by 

the United States Census Department, by the benchmark year of 2050 there will be nearly 84 

million people aged 65 years and older, with at least 13 million individuals suffering from AD 

(254; 255). The number is likely to be higher as the risk for AD grows proportionately with age 

and the fraction of the above 65 set who are the oldest old (say, over 95 years, when over 40% 
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of individuals have AD) is continuously growing as people live longer and longer lives (25). 

Although the focus of this chapter is on neuroimaging genetics of AD, age is the most predictive 

risk factor for AD so demographic trends in aging are an important factor to weigh in 

understanding the future need for AD research.  

AD is a debilitating disease that, especially when combined with other age-related health 

struggles, can require years of part or full-time care for a single patient. The economic impact of 

this looming need for elder care providers is difficult to fully grasp. There is, of course, the high 

cost of professional care, either in the home or in an institution, which is prohibitive for many 

older Americans. There is also the economic burden that families will take on to care for aging 

relatives. A large proportion of elder care will be provided wage-free by adult children who, in 

order to be available to ailing parents, may be forced to leave jobs or dip into their own savings.  

The predictions for the future of AD in the United States, and indeed across the world, 

paint a dark picture in which advancing medical care, public health interventions and programs 

and improved healthcare literacy will lead to more and more people reaching extreme old age 

with nothing to protect them from the reality of high AD incidence.  

Imagine a scenario where, in the future, an individual could undergo a battery of non-

invasive tests including cognitive testing, a blood draw for genetic profiling and MR and/or PET 

imaging in order to generate a report or panel detailing the likelihood that he or she will go on to 

develop AD. What if that report could estimate with a high certainty the age of onset? Of course, 

these revelations in the absence of effective treatment would lead to a situation similar to the 

current state of Huntington’s disease (HD) diagnosis. Many at risk for HD choose to learn what 

their genetic fate is but many do not (256). The latter group sees no benefit to knowing their fate 

in advance, especially if that fate is to die of a terrible degenerative disease. Genetic counseling 

is a crucial aspect of these difficult decisions. But even with genetic counseling and support, 

learning that you will one day develop an unpreventable and untreatable disease can hardly be 

argued as universally empowering knowledge.  
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However, the ability to make such predictions and then adjust the predictions when they 

fall short is an important part of clinical trial design. In other words, the better we are at 

estimating, on an individual basis, AD risk or AD clinical stage the better we will be at enrolling a 

homogenous group in treatment trials (see Figure 1.6 for schematic). Phase 3 AD treatment 

trials in humans have almost exclusively failed, even after very promising data in model 

organisms and in earlier trial phases (257; 258). A potential reason for this high failure rate is 

the highly heterogenous nature of the subjects being enrolled in these trials. One problem is 

neuropathological variation. For example, of the people with AD who come to autopsy, up to 

75% of those patients also have vascular pathology severe enough to have contributed to their 

dementia syndrome (259). Before neuropathological processing, it is extremely difficult to 

differentiate so-called “pure AD” from mixed AD and vascular disease. Furthermore, a clinical 

diagnosis of AD corresponds to a neuropathological diagnosis of AD (pure or mixed pathology) 

about 80% of the time (260). These leaves 20% of clinically diagnosed AD subjects who in fact 

had another disease entirely, like frontotemporal lobar degeneration (FTLD) or corticobasal 

degeneration (CBD). It is not unreasonable to assume that subjects with each of these 

diseases, from pure AD and mixed AD pathology to FTLD and CBD, will respond differently (if at 

all) to treatments that target a single molecular species, like Aβ oligomers or plaques. Therefore, 

a concerted effort must be made to minimize incorrect clinical-pathological diagnoses in 

subjects enrolled in clinical trials. Unfortunately, the only way to make a pathological diagnosis 

is by examining the brain tissue at autopsy. Luckily, PET imaging allows clinicians and 

researchers to shed some light on what is inside the black box. Using PET imaging of Aβ and 

tau as a prescreening technique in clinical trials, while expensive, may increase our ability to 

amass a pathologically homogeneous cohort. Indeed, neuropathological prescreening using 

PET imaging has just been implemented for the first time as part of the Anti-Amyloid Treatment 

in Asymptomatic AD (A4) trial which is requiring a positive Aβ florbetapir-PET scan for 

enrollment into the treatment arm of the trial (261).  
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Figure 1.6: Neuroimaging Genetics in the Path to Alzheimer’s Disease Prevention. Neuroimaging 
genetics research characterizing the preclinical phase of AD is aimed at improving our understanding of 
the pathophysiology of AD, specifically the prodrome that precedes memory loss (and other cognitive 
symptoms). Neuroimaging genetics will empower clinical trials by informing enrollment procedures, 
increasing the ability to enroll participants who have preclinical AD, thus increasing AD incidence in the 
cohort. When potential treatments come to clinical trial, neuroimaging genetics approaches will play a 
critical role in prescreening procedures and end point (outcome) definition.  
 

In addition to heterogeneity of neuropathology in clinical trial subjects, we must also 

consider the heterogeneity of the underlying genetics in each individual subject (Figure 1.6). It is 

not a particularly new idea that genetic variation can predispose individuals to respond well or 

less well to pharmacological treatments (262). One well-validated example of this is the 

connection between genetic variation and the efficacy of antidepressants, a class of drugs 

targeted to the brain. Specifically, variants in the FKBP5 gene have been linked to better 

response to antidepressants, especially when given in combination (263).  FKBP5 is a co-

chaperone of the glucocorticoid receptor, which is involved in hypothalamic-pituitary-adrenal 

axis activation, a pathogenic state for depression (263). Given these findings, it is reasonable to 
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assume that there may be variation in drug response in trial participants with different genetic 

risk factors for AD. In order to control for as many of these genetic variables as possible, clinical 

trials should consider implementing genetic prescreening measures that select for participants 

that have certain genetic risk factors for AD. An interesting study by Kohannim and colleagues 

tested the theory that a genetic prescreening protocol would decrease the sample size 

necessary to detect a treatment effect (264). In other words, they were interested in 

understanding how homogenizing the genetic risk profile of trial participants in favor of higher 

risk would affect the statistical power of a hypothetical trial. Specifically, the authors ranked 394 

cognitively healthy and MCI ADNI subjects in order of decreasing genetic risk score, calculated 

based on multiplying risk alleles for APOE, CLU, CR1 and PICALM by the logarithm of the odds 

ratios reported for each gene in GWASs. They found that by selecting only the top 15% of 

subjects in order of highest genetic risk, the required sample size to show differences in 

temporal lobe atrophy decreased from 142 to 69 (264). This provides excellent preliminary 

evidence that genetic pre-screening would increase statistical power in trials. Binning 

participants by genetic risk may very well be the next frontier in AD clinical trial design.  

Let us return to the hypothetical report detailing one’s AD risk and prognosis. The 

measures that will comprise that report are minimally invasive cognitive testing, genetic 

sequencing, CSF analysis and neuroimaging. These are the tools we have available when 

studying living humans. The field of neuroimaging genetics of AD is performing research that 

explicitly combines two of these data types, and often incorporates the others. This research 

has and will continue to lead to the insights needed in order to prescreen participants for clinical 

trials, increasing the ability of those trials to detect the effect of a useful drug. Another important 

role for neuroimaging genetics in the fight against AD is the development of hard (non-cognitive) 

endpoints to assess treatment efficacy in clinical trials (Figure 1.6). Most AD trials to date have 

used soft endpoints like paper-and-pencil memory measures or a composite dementia severity 
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scores (257; 258). These soft endpoints are particularly vulnerable to confounding effects, such 

as the placebo effect and the within-subject variance (the ‘good day, bad day’ phenomenon).  

The proximal goal of an individualized AD risk report based on genetics, neuroimaging 

biomarkers and other measures is the pre-selection of clinical trial participants (Figure 1.6). The 

distal goal is to provide detailed prognoses in the clinic, combined with effective treatment. 

Neuroimaging genetics research in AD will play an essential role in achieving these goals.  
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CHAPTER 2 
 

Altered Memory-Related Functional Connectivity of the Anterior and Posterior 
Hippocampus in Older Adults at Increased Genetic Risk for Alzheimer’s Disease 

	
  
 
Abstract 
 

The hippocampal complex is affected early in Alzheimer’s disease (AD). Increasingly,  

altered functional connectivity of the hippocampus is recognized as an important feature of 

preclinical AD. Carriers of the APOEε4 allele are at an increased risk for AD, which could lead to 

altered hippocampal connectivity even in healthy older adults. To test this hypothesis, we used 

a paired-associates memory task to examine differences in task-dependent functional 

connectivity of the anterior and posterior hippocampus in non-demented APOEε4 carriers 

(n=34, 18F) and non-carriers (n=46, 31F). We examined anterior and posterior portions of the 

hippocampus separately to test the theory that APOEε4-mediated differences would be more 

pronounced in the anterior region, which is affected earlier in the AD course. This study is the 

first to use a psychophysiological interaction approach to query the context-dependent 

connectivity of subregions of the hippocampus during a memory task in adults at increased 

genetic risk for AD. During encoding, APOEε4 carriers had lower functional connectivity change 

compared to baseline between the anterior hippocampus and right precuneus, anterior insula 

and cingulate cortex. During retrieval, bilateral supramarginal gyrus and right precuneus showed 

lower functional connectivity change with anterior hippocampus in carriers. Also during retrieval, 

carriers showed lower connectivity change in the posterior hippocampus with auditory cortex. In 

each case, APOEε4 carriers showed strong negative connectivity changes compared to non-

carriers where positive connectivity change was measured. These differences may represent 

prodromal functional changes mediated in part by APOEε4 and are consistent with the anterior-

to-posterior theory of AD progression in the hippocampus.  
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Introduction 
 

Alzheimer’s disease (AD) is the most common cause of dementia and currently affects 

more than five million Americans. The illness is unique among polygenic human diseases 

because there is a single genetic risk factor, APOE, which accounts for a relatively large portion 

of the variation in heritability, yet is not a causative gene. Specifically, twin studies reveal that 

the heritability of AD may exceed 60-80% (1; 2). APOE was identified as a susceptibility gene 

for AD over 20 years ago and has been studied extensively since (3–5). APOE allele status 

accounts for about 50% of the variation in heritability estimates (6). A single copy of the ε4 allele 

of APOE (APOEε4) increases lifetime risk for AD fourfold, and 2 copies of the allele confer a 10-

fold increase (7). Here, we examined the effect of APOEε4 on the functional connectivity of the 

anterior and posterior hippocampus during encoding and retrieval. This design allowed us to 

interrogate group differences while also testing the theory that APOEε4-mediated differences in 

an asymptomatic cohort would be more severe in the anterior hippocampus, the region of the 

structure where AD pathology first occurs (8).  

One popular method for studying the effects of APOE allele status in humans is task-

based functional magnetic resonance imaging (fMRI). Task-based fMRI allows investigators to 

localize significant increases in the blood-oxygen-level dependent (BOLD) signal associated 

with particular cognitive processes. Because the APOEε4 allele is a strong risk factor for AD, 

there is particular interest in how the neural substrates of memory function are modulated by 

APOE. Since 2000 investigators have attempted to characterize the neural signature of the risk 

conferred by the APOEε4 allele, but results have been contradictory (for a review see 

Trachtenberg, Filippini, and Mackay 2012). Roughly half of memory task-based fMRI studies 

describe significant increases in activity (BOLD signal) in carriers of the APOEε4 allele 

compared to non-carriers, while the other half report the opposite effect. This may be due to the 

heterogeneity of the tasks used in these studies (9). In addition, differences in other non-APOE 
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genetic risk factors (including family history) may affect results, especially in small cohorts 

(Burggren et al. 2002). 	
  

In contrast to task-based fMRI, resting state fMRI (rs-fMRI) measures fluctuations in 

BOLD signal while the subject is at rest, as opposed to performing a specific cognitive task (11). 

rs-fMRI studies have revealed complex differences in functional connectivity mediated by APOE 

allele status in healthy older adults (12–15). These network-based alterations have been 

suggested as a potential early endophenotype for AD (16). This, as well as the inconsistent 

findings in task-based fMRI, has led to the idea that functional connectivity alterations capture 

more of the complex interaction between APOE and brain function than task-induced 

activations. As task-based fMRI analysis methods continue to be improved and refined, we have 

an opportunity to resolve the conflicts in the APOE-fMRI literature. One way to tease out the 

complex relationship between APOEε4 allele and memory function is to measure the context-

dependent functional connectivity of an anatomical region (seed) and a specific task phase 

using a psychophysiological interaction (PPI) model (17). This approach allows investigators to 

examine functional connectivity in the context of specific cognitive processes. In addition, PPI 

modeling requires differences between groups to be limited to the connectivity relationships 

between an a priori seed and regions where activity is mediated or modified by that seed in 

certain behavioral contexts, such as memory encoding or retrieval. Thus, differences between 

groups are differences in functional connectivity of the seed during the particular phase of the 

task that is being modeled. Here, we employ a method of modeling PPIs that has been shown 

to increase the sensitivity and specificity of findings (18).  

Focusing on subregions of the hippocampus during an associative memory task allows 

us to sensitively interrogate the effect of APOEε4 allele on connectivity alterations in functionally 

distinct regions of the hippocampus during specific task phases. One reason we chose to 

examine the anterior portion and the posterior portion of the hippocampus separately is because 

of the known functional and anatomical segregation of the hippocampus along the longitudinal 
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axis (19–22). In general, anterior regions of the hippocampal complex, including the entorhinal 

cortex, are the main input regions and are involved in encoding new memories while posterior 

regions are output regions involved in memory retrieval and consolidation (23–25). At the 

cellular level, the entorhinal cortex is the first area to be affected by AD pathology so we might 

expect that there would be early functional changes in anterior hippocampus before posterior 

regions (8; 26; 27). In fact, structural imaging has revealed that entorhinal cortex is significantly 

thinner in healthy, older APOEε4 carriers than non-carriers (28). Therefore, we were interested 

in interrogating the two active phases of the memory task, encoding and retrieval, and the 

phase-dependent functional connectivity of the anterior and posterior portions of the 

hippocampus in order to better understand memory-induced connectivity of functional 

subregions of the hippocampus.  

This study is the first to examine differences in context-dependent functional connectivity 

of subregions of the hippocampus during the performance of a complex memory task in healthy 

adults. Our participants were non-demented older adults who generally have a high incidence of 

family history of AD and a high carriage rate of AD risk variants such as APOEε4. This allows us 

to examine differences in task-related hippocampal functional connectivity changes between 

well-matched groups of APOEε4 carriers and non-carriers. We specifically compare the 

hippocampal connectivity that is related to either encoding or retrieval processes in APOEε4 

carriers and non-carriers. Recent work at the molecular level has suggested that AD pathology 

moves in a trans-synaptic fashion (29; 30). One of the earliest sites of neurofibrillary tangle 

deposition is the entorhinal cortex, adjacent to the anterior hippocampus (8; 31). Thus, our study 

design was based on a pair of nested hypotheses: first, that carriers in of the APOEε4 allele 

would show decreased context-dependent functional connectivity of the hippocampus with 

cortical regions during a memory task and second, that these differences would be more 

pronounced when interrogating the anterior subregion of the hippocampus. Our findings provide 

evidence from functional imaging in humans that supports the hypothesis that anterior regions 
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of the hippocampus are more susceptible to differences in function based on APOEε4. We 

believe these findings highlight a susceptibility in APOEε4 carriers to AD-related hippocampal 

functional changes (32). Our focus on genetic risk for AD is motivated by the need to better 

understand how risk factors like APOEε4 affect brain function before the onset of symptoms. 

The effects of genetic risk for AD on functional endophenotypes for AD may help to define 

preclinical AD patients who are candidates for preventative therapies.  

 
Materials and Methods 
 
Participants 
 
 Participants were recruited by the UCLA Longevity Center as part of an ongoing initiative 

to study aging, AD genetic risk and dementia. Recruitment efforts included posting flyers in 

older adult communities and adult day care centers, the local Alzheimer’s Association chapter, 

memory groups, and other groups catering to older adults with age-related memory concerns. 

This strategy enabled the recruitment of approximately 40-50% of participants carrying at least 

one copy of the APOEε4 allele, as opposed to the 20-25% that would be expected from a purely 

random recruitment (33; 34). In the present study, all participants were healthy and cognitively 

intact at the time of imaging acquisition. Participants are defined as non-demented in our study 

if they are cognitively intact based on the results of the Mini Mental State Exam (MMSE; for 

gross cognition, threshold≥26) and standard criteria for AAMI (Age Associated Memory 

Impairment); that is, participants were excluded if they had scores more than two standard 

deviations below normal on two or more of the memory tests described below. Finally, 

participants with clinical anxiety, depression or any neuropsychiatric or neurological illness were 

excluded. This study was performed in compliance with the UCLA Institutional Review Board 

(IRB) protocols and approved by the UCLA Human Subjects Protection Committee. All 

participants gave written informed consent in order to enroll in this study.  
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Neuropsychological Assessment 
 
 Participants performed a 3-hour neuropsychological battery including tests of the 

following: General Intelligence (Subtests of the WAIS-III) (35), Fluency (Fruits and Vegetables) 

(36), Attention (Digits Forward and Backward) (35), Language (Boston Naming Test) (37), 

Verbal Memory (Buschke-Fuld Selective Reminding Task) (38), WMS-III Logical Memory and 

Verbal Paired Associates learning (35) and Visual Memory (Rey-Osterrieth Figure test) (39). 

Participants also completed the following: Family history questionnaire (40), memory complaints 

self-report questionnaire (41), Hamilton Depression and Anxiety Inventory (Hamilton 1959; 

Hamilton 1960), Neuropsychiatric Inventory (44) and the MMSE (45).  

 
Genotyping  
 
 A blood sample was drawn from each participant by a trained phlebotomist at the UCLA 

Clinical and Translational Research Laboratory.  Leukocytes from 10ml of the sample were 

frozen and stored at -80°C. 200ug genomic DNA was isolated from the remaining 10ml and 

screened using a PCR-based mutation detection assay and a microsatellite marker based 

genotyping. APOE SNP (rs429358 and rs7412) genotyping was carried out by Real Time PCR 

on an Applied Biosystems 7900HT Real Time PCR machine. In addition to a standard curve 

amplification protocol, an allelic discrimination step was added to facilitate the contrast between 

the two alleles and their respective reporter dyes. These dyes are incorporated into a Taqman 

SNP Genotyping Assay with identification numbers C___3084793_20 and C___904973_10 for 

rs429358 and rs7412, respectively (Applied Biosystems, Foster City, CA). The experiment was 

performed in duplicate to confirm results. SDS software (version 2.3, Applied Biosystems) was 

used to analyze the SNP genotyping data. This program calculates the affinity of the sample to 

one of the two reporter dyes that, in turn, represents one allele over the other. The results of 

these tests are strictly confidential and are never made available to the research participant. 

 



 88 

 
Imaging Acquisition 
 

MRI scanning was conducted using a Siemens 3T Trio magnet located at the UCLA 

Center for Cognitive Neuroscience in the Semel Institute. Whole-brain, structural MRI was 

collected using a 3D T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) 

volumetric scan sequence with axial slicing, TR=1900ms, TE=2.26ms, FOV=250mm x 218mm, 

flip angle=9°, matrix=256x215, 176 slices, slice thickness=1mm, zero-filled to a matrix of 

256x224 resulting in a voxel size=1x0.976x0.976 mm3. To facilitate registration of functional 

images, co-planar, T2-weighted structural images were also acquired in axial slices with 

TR=5000ms, TE=34ms, FOV=200mmx200mm, flip angle=90°, matrix=128x128, 28 slices, slice 

thickness=3mm, interslice gap=1mm and voxel size=1.6x1.6x4mm. Whole-brain, functional MRI 

scans were acquired using a sequence with the following parameters: interleaved axial slices, 

TR=2500ms, TE=21ms, FOV=200mmx200mm, flip angle=75°, matrix=64x64, 33 slices, slice 

thickness=3mm, interslice gap=0.75mm, voxel size=3.125x3.125x3.75mm. This acquisition 

sequence was designed to minimize signal drop-out caused by susceptibility artifact in the 

medial temporal lobes, an area of particular interest in older participants and in the analyses 

described here. The functional imaging data acquired during the course of this study have not 

been analyzed in other publications. Participants were also scanned using a high-resolution 

hippocampal structural sequence that was not analyzed as a part of this study. Some 

participants’ structural imaging data have been used in previous publications (46–51). Previous 

work from our group on the effect of the APOEε4 allele on brain function using whole-brain fMRI 

was completed with a separate, older dataset. The current dataset was collected from Spring 

2006 to Fall 2012. 

 
Memory Task 
 

During the functional scan participants completed a paired-associates memory task that 

has been previously shown to be sensitive to subtle memory impairment in disease and normal 
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aging and to differentiate across APOEε4 carriers and non-carriers (33; 52–54). Participants 

were presented with seven pairs of unrelated words that had to be learned and then recalled 

(Figure 2.1). The task includes six blocks each of alternating encoding and retrieval phases (30 

seconds each) separated by a baseline condition (20 seconds). During encoding, seven 

unrelated word pairs (e.g., clock/green, jazz/beast) were presented sequentially and participants 

were asked to learn the word pairs. Words were presented as simultaneous auditory and visual 

stimuli. Following each encoding block participants completed a baseline control task in which 

they were instructed to fixate on a symbol in the center of the screen (“+” or “o”) and press a 

button every time the symbol changed (55). Next, participants completed a retrieval block in 

which they saw and heard the first word of each pair and were asked to silently recall the 

second word of the pair. Because the retrieval phase of the task requires a spontaneous recall 

response, all participants completed an alternate form of the task outside the scanner where we 

assessed performance using the WMS-III Verbal Paired Associates. This generates a valid 

proxy of in-scanner performance, which is preferable to using a recognition-based response that 

would fundamentally change the nature of the memory task; prior work in our lab has verified 

the comparability of performance in and outside the scanner using this approach (33).   
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Figure 2.1: Unrelated Words, Paired-Associates Memory Task Design. This is a block design task 
that includes six blocks each of alternating encoding and retrieval phases separated by a baseline 
condition. During encoding (30 second block), seven unrelated word pairs (e.g., jazz/beast, clock/green) 
are presented sequentially using both audio and visual stimuli and participants are asked to learn the 
word pairs. Next, during the baseline block (20 second block), participants are instructed to fixate on a 
symbol in the center of the screen (“+” or “o”) and press a button every time the symbol changes. Finally, 
during the retrieval phase (30 second block) participants see and hear the first word of each pair and are 
asked to silently recall the second word of the pair. s = seconds. 
 

 
Statistical and Imaging Analyses  
 
Neuropsychological Performance 
 
 To test whether the APOEε4 carrier and non-carrier groups differed in cognitive ability, 

scores on each neuropsychological test were compared using two-sample, two-tailed t tests. 

Fisher’s exact tests were used to test for group differences in the categorical variables of sex 

and family history of AD.  These tests were completed using tools from R Project for Statistical 

Computing (http://www.r-project.org).    
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Hippocampal Seeds 
 
 A mask of the left hippocampus in each participant’s high resolution structural space was 

created using FSL’s FIRST and a hippocampal model based on 336 subjects as a prior (56).  

We focused our analysis on the left hippocampus because of the preferential engagement of 

left-lateralized hippocampal complex areas during verbal memory tasks (57). Masks were 

checked manually for accuracy, eroded and binarized. Next, for each participant’s unique 

hippocampal mask, the anterior and posterior thirds of the structure were identified using 

custom code in MATLAB (version R2012a) (Figure 2.2). Specifically, the length of the volumetric 

hippocampal mask in the anterior-posterior plane was determined and then used to generate 

coordinates demarking the anterior and posterior thirds of this plane for each participant. Next, 

using FSL tools, we generated anterior and posterior hippocampal mask images based on these 

coordinates. Finally, we transformed the anterior and posterior hippocampal masks into native 

functional space. Using the anterior and posterior thirds prevented signal blurring across the two 

hippocampal seeds after registration to functional space while still allowing us to include the 

majority of the hippocampus in our study. Also, the anterior third of the hippocampus is perfused 

by a different arterial supply (anterior choroidal) than the posterior two thirds (posterior cerebral) 

which may affect BOLD signal (58). We followed the example of previous studies that have also 

examined the anterior and posterior thirds of the hippocampus for these reasons (59; 60).  
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Figure 2.2: Hippocampal Seeds. In native space, a single participant’s anterior hippocampus seed is 
shown in yellow. The posterior hippocampus seed for the same participant is shown in pink. Seeds are 
defined in each participant’s unique structural image and then registered to their functional scan. Seeds 
are never in a standardized space which improves the accuracy of the hippocampal segmentation.  
 
 
Structural Imaging 
 
 Differences in cortical integrity caused by atrophy can confound functional imaging 

studies in older subjects, especially when one group is at increased risk for a neurodegenerative 

disease like AD. To ensure that are were no differences in gray matter thickness between 

APOEε4 carriers and non-carriers in this study, whole-brain structural MRI scans were 

processed using Freesurfer (version 5.1.0 available at freesurfer.net). This computational 

neuroanatomy software suite uses tissue contrast to determine the boundary between gray and 

white matter as well as delineate the pial surface of the brain. A mesh of vertices is plotted 

across each of these boundaries or surfaces. The software calculates the distance between 

each pair of vertices to measure cortical thickness. The details of the FreeSurfer pipeline are 

described in previous publications (61). After completing the FreeSurfer automated pipeline, 
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each participant’s scan was visually checked for accuracy. Minimal manual edits were 

completed when necessary by a single individual (TMH). Vertex-wise general linear models 

(GLMs) were used to compare cortical thickness across groups with a statistical threshold set at 

false discovery rate (FDR) of p<0.05. We also examined differences thresholded at p<0.01, 

uncorrected to check for regions trending toward differences.   

 
Functional Imaging 
 
First-Level Analysis: Preprocessing and Task Activation Model  

Functional imaging preprocessing was completed using FSL (version 6.0: 

http://fsl.fmrib.ox.ac.uk). Preprocessing included skull-stripping and head motion correction (62) 

(63). A Gaussian kernel of FWHM 5mm was applied to the data for spatial smoothing. This 

kernel size is slightly below the 6mm kernel that is recommended based on the Nyquiest 

theorem. However, we chose to use a 5mm kernel due to concern about over-smoothing in the 

hippocampus, which is a structure with a small diameter and very intricate anatomy. Images 

were high-pass filtered at sigma=100s and prewhitened (64). The functional data was registered 

to co-planar T2 structural images with 6 degrees of freedom. The co-planar structural images 

were then registered to each participant’s high-resolution structural image using boundary-

based registration (65). Finally, each high-resolution structural scan was registered to the 

MNI152 standard using 12 parameter affine transformation. A linear transformation was used 

because this method produced more accurate alignment results than the more common non-

linear approach. Within-subjects analysis was completed with a GLM including the two active 

phases of the functional task, 6 motion parameters as well as a regressor for each motion 

outlier volume, as determined by frame displacement (FD) calculations and standard outlier 

identification (75th percentile + 1.5 times the interquartile range; (66)). After these 

preprocessing steps were completed, the denoised average timeseries from both hippocampal 

seeds were extracted for each participant. 
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Mid-Level Analysis: gPPI  

A generalized psychophysiological interaction (gPPI) analysis strategy was used to 

interrogate functional coupling of the hippocampus with the rest of the brain during the active 

phases of the paired associates task. Separate gPPI analyses were run for the anterior and 

posterior hippocampus seeds. A GLM, which included regressors for the encoding and retrieval 

phases of the task, a regressor for the denoised, average timeseries of either the left anterior or 

posterior hippocampal seed and a PPI regressor for each phase of the task was used to 

analyze activation in individual participants. These models also included the motion parameters 

and motion outlier regressors from the first-level analyses. Standard PPI includes a single PPI 

regressor in each GLM. However, by more comprehensively modeling the entire task the gPPI 

method has been shown to more accurately fit the data, leading to improvements in sensitivity 

and specificity (18).  

 
Second-Level Analysis: Group Comparisons 

To compare the context-dependent functional connectivity of the two seeds of interest 

between APOEε4 carriers and non-carriers, individual contrast of parameter estimates maps for 

each of the two PPI regressors in each of the two PPI models were registered from native space 

to MNI space using the registration parameters from the first-level analyses. The PPI regressors 

were seed x encoding and seed x retrieval, the two PPI models were anterior seed and 

posterior seed, and the registration to MNI space used 2mm isotropic voxels. Thus, for each 

participant, 4 statistical maps were examined: anterior seed x encoding, anterior seed x 

retrieval, posterior seed x encoding and posterior seed x retrieval. Unpaired t-tests, with 

memory performance included as regressor, were run in SPM8 comparing APOEε4 carriers to 

non-carriers.  

Significance thresholding for group analyses was carried out using tools available in the 

AFNI software suite. First, spatial smoothness was estimated on the residuals across the whole 
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cohort. Smoothness estimates were extremely similar for each gPPI model and did not differ 

based on the seed included. Thus, for simplicity, a single average smoothness estimate (FWHM 

(x,y,z)= 7.06,  7.11, 6.50) was used in Monte Carlo simulations to estimate cluster extent 

minimums at uncorrected voxel thresholds. After simulations, 3dClustSim creates a table with 

cluster extent estimates at different voxel-wise p-values and cluster-wise alpha values. Thus, 

rather than testing many voxel and cluster threshold combinations, 3dClustSim minimizes 

guesswork and allows the investigators’ hypotheses about cluster size to guide significance 

testing. In the present study, results were thresholded to reveal clusters significant at alpha 

<0.05 with a voxelwise threshold of p<0.005. Using this method and these thresholds, the 

significant cluster size minimum was 108 contiguous voxels. Masks were created from all 

significant clusters in each analysis in order to extract summary statistics from each participant 

to illustrate the shape of the effect.  

 
Results 
 
Participants 

 
For this study 93 non-demented adults aged 55 and older were recruited. Of the 93 

participants, 9 were excluded because they carried at least one ε2 allele (2 ε2/ε2, 5 ε2/ε3, and 2 

ε2/ε4). Another 4 participants were excluded because they were homozygous for the ε4 allele. 

The remaining cohort included 34 APOEε4 carriers (all ε3/ε4) and 46 non-carriers (all ε3/ε3). 

Across the two experimental groups, APOEε4 carriers and non-carriers, there were no 

significant differences in age, sex, education or family history of AD (Table 2.1). Two-sample, 

two-tailed t-tests revealed that the groups did not differ in cognitive ability except in two 

measures of verbal memory: Logical Memory Delay and Verbal Paired Associates Delay. These 

two measures were highly correlated across the entire sample (r=0.43, p<0.0001). To control for 

the differences between groups in verbal memory, performance on Verbal Paired Associates 

was included as a regressor in all higher-level functional analyses. We ran group comparisons 
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without controlling for verbal memory performance in order to determine how performance 

differences might influence the results (Figure 2.3). We also tested for correlations between 

memory performance and the four PPIs that we examined (Figure 2.4).  

 
Table 2.1: Cohort Characteristics. APOEε4 carriers and non-carriers do not significantly differ in age, 
sex, family history of AD or education. Measures of intelligence and cognition did not differ between 
groups, except on two verbal memory tests. As a result, verbal memory performance was regressed out of 
imaging analyses. APOEε4 = apolipoprotein E ε4  MMSE = Mini Mental State Exam; WMS = Wechsler 
Memory Scale; LM = Logical Memory; VP = Verbal Paired Associates; CLTR = Consistent Long-Term 
Retrieval; WAIS = Wechsler Adult Intelligence Scale; * = p<0.05; ** = p<0.01 
 

Characteristic/Test APOEε4 Carriers    
(n=34) 

Non-Carriers    
(n=46) P-value 

Age (yr) 68.1 66.7 0.470 
Sex (M/F) 16 / 18 15 / 31 0.247 
Family History (Yes/No) 26 / 8 30 / 16 0.330 
Education (yr) 17.0 17.2 0.593 
MMSE (0-30) 28.6 28.9 0.390 
Boston Naming (0-60) 56.1 56.0 0.973 
WMS LM Delay Total (0-50) 23.4 28.9 0.007** 
WMS VP Delay (0-10) 6.1 7.1 0.024* 
Buschke CLTR (0-144) 58.2 60.9 0.742 
WAIS Digit Span 18.4 17.6 0.399 
WAIS Digit Symbol 64.1 63.0 0.780 
Fluency: Fruits and Vegs 18.4 19.6 0.294 
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Figure 2.3: PPI analyses with no behavioral covariates. We ran gPPI group comparisons without 
controlling for verbal memory. All other aspects of this analysis were performed as described in the main 
text. Coronal and sagittal views of significant differences between APOEε4 carriers and non-carriers are 
shown (APOEε4 non-carriers > carriers). Relevant plane coordinates are provided. Differences between 
groups were similar in location and direction but greater in extext for the anterior hippocampus seed in 
both task conditions (upper panel). However, there were no significant results in either the encoding or 
retrieval phases using the posterior hippocampus seed (lower panel).  
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Figure 2.4: Main effect of memory performance on PPIs. Coronal and axial views of the whole group 
(APOEε4 carriers and non-carriers) correlation of memory performance and gPPI values. The upper 
panel shows results for the anterior hippocampus seed. Lower panel depicts results for posterior 
hippocampus seed. Maps are thresholded at p<0.05, uncorrected. Regions where there is a positive 
correlation are shown in yellow overlaid with regions where a negative correlation is found, shown in blue.  
 
 
Hippocampal Seeds Volume 
 

We calculated the volume of both the anterior and posterior hippocampal seeds in each 

participant. Two-sample t-tests revealed that there was no significant difference in seed volume 

between APOEε4 carriers and non-carriers for either the anterior (carriers average [SD] = 

1946.6 mm3 [311.0], non-carriers = 1949.8 mm3 [302.6], p=0.96) or posterior hippocampus 

(carriers average [SD] = 1446.6 mm3 [244.3], non-carriers = 1437.3 mm3 [211.1], p=0.86).  
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Cortical Thickness 

 After visual inspection and manual intervention, one participant’s FreeSurfer-processed 

structural scan did not meet our accuracy standards (female, 65-year-old APOEε4 non-carrier). 

This left 79 subjects with usable FreeSurfer data. Cortical thickness did not differ in any region 

of the cortex between the APOEε4 carrier and non-carrier groups at FDR of p<0.05 or at p<0.01 

uncorrected. Additional models were evaluated that accounted for sex and that examined 

differences in age-cortical thickness correlations between APOEε4 carriers and non-carriers. 

There were no significant differences in cortical thickness is any region in these two models at 

either of the two statistical thresholds that were employed.  

 
Head Motion 
 

Differences in head motion between experimental groups may lead to spurious results 

(67). To ensure that the APOEε4 carriers and non-carriers in this study do not differ in head 

motion estimates, we calculated the average FD for each participant’s functional scan. A two-

sample t-test revealed that there was no significant difference in FD between APOEε4 carriers 

and non-carriers (carriers average [SD] = 0.21 mm [0.09], non-carrier = 0.20 mm [0.10], 

p=0.45). 

 
Univariate Task Activation 

 There were no significant differences between APOEε4 carriers and non-carriers in task 

activation during encoding or retrieval. The within-group task activation maps show that the 

occipital lobe, auditory cortex, large regions of parietal lobe, frontal language areas, superior 

temporal gyrus and caudate (more pronounced during retrieval) show significant BOLD signal 

increases during encoding and retrieval in both experimental groups (Figure 2.5).  
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Figure 2.5: Univariate group maps for APOEε4 non-carriers and carriers showing significant 
activity during encoding and retrieval. Coronal and axial views of group average BOLD signal maps in 
APOEε4 non-carriers and carriers in encoding (upper panel) and retrieval (lower panel). Relevant plane 
coordinates are provided. Maps were thresholded at height z=3.0 and cluster corrected for extent at 
p<0.01. Regions in red denote regions where BOLD signal was, on average across the group, 
significantly higher during the active task phase compared to baseline.  
 
 
Task-Dependent Connectivity (PPI): Anterior Seed 
 

Using the anterior left hippocampus as a seed, significant differences between APOEε4 

carriers and non-carriers were found for both encoding and retrieval phases of the task, such 

that APOEε4 non-carriers had more positive task-dependent connectivity change than carriers 

in several cortical regions (Figures 2.6 & 2.9).  In contrast, there were no cortical regions in 

which connectivity change was significantly more positive for APOEε4 carriers compared to 

non-carriers in either task phase. Three clusters in the right hemisphere including the 

precuneus, the anterior insula and an area of anterior middle cingulate differed significantly 
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between APOEε4 carriers and non-carriers for the PPI of the encoding phase with the anterior 

hippocampus seed (Figure 2.6). Each of these clusters was examined as a region of interest 

(ROI) in order to better characterize group differences. The average parameter estimate from 

every participant was extracted from each ROI and then plotted by group (Figure 2.6). These 

plots show that the direction of the difference between APOEε4 carriers and non-carriers is 

consistent across clusters. Specifically, APOEε4 non-carriers on average have a greater-than-

baseline relationship between BOLD activity and the PPI, while APOEε4 carriers have a lower-

than-baseline relationship between BOLD activity and the PPI. This means that in APOEε4 non-

carriers during encoding anterior hippocampus activity predicts higher activity in precuneus, 

anterior insula and a region of the cingulate, while in APOEε4 carriers anterior hippocampus 

activity during encoding predicts lower activity in these regions. One sample t-tests showed that 

within each group these activity-PPI relationships are significantly different from zero (Table 

2.2). In other words, in the regions where significant differences between groups were found, 

the APOEε4 non-carriers show significant increases in activity while APOEε4 carriers show 

significant decreases in activity. The within-group functional connectivity maps show that there 

are no significant increases in functional connectivity of the hippocampal seeds in either 

APOEε4 carriers or non-carriers (Figure 2.7), but there are significant decreases in functional 

connectivity in APOEε4 carriers in each condition and in APOEε4 non-carriers only for posterior 

hippocampus during encoding (Figure 2.8). These maps, in contrast to the univariate activation 

maps which showed no differences, show a divergence between APOEε4 carriers and non-

carriers in how hippocampal functional connectivity changes during a memory task. This 

divergence can be measured as a significant difference in the precuneus, anterior insula and 

the cingulate, as discussed above.  
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Figure 2.6: Anterior hippocampal seed connectivity differences in APOEε4 carriers and non-
carriers during encoding. During encoding, significant differences in anterior hippocampus connectivity 
between APOEε4 carriers and non-carriers were found in right precuneus (blue), right anterior insula 
(pink) as well as right middle cingulate cortex (green). The peak coordinate for each cluster is reported in 
Montreal Neurological Institute (MNI) space, in x, y, z planes (mm). For illustration of the direction and 
magnitude of the difference between groups, contrasts of parameter estimates from each cluster are 
plotted by group in boxplots. The band within the box represents the median while the upper and lower 
edges of the box represent the first and third quartiles, respectively. The whiskers extend up to 1.5 times 
the interquartile range. Data points outside this range are plotted as outliers.  
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Figure 2.7: Hippocampal seeds task-dependent positive functional connectivity change maps. 
Coronal and axial views of group average task-dependent positive functional connectivity change of 
hippocampal subregions in APOEε4 non-carriers and carriers. Task-dependent connectivity of the 
anterior hippocampus seed is shown in the upper panel. The lower panel shows task-dependent 
connectivity maps of the posterior hippocampus. Maps were thresholded at p<0.05, uncorrected. Clusters 
of less than 10 voxels are not shown. Voxels meeting threshold in APOEε4 non-carriers (in red) and 
carriers (in green) are overlaid.  
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Figure 2.8: Hippocampal seeds task-dependent negative functional connectivity change maps. 
Coronal and axial views of group average task-dependent negative functional connectivity change of 
hippocampal subregions in APOEε4 non-carriers and carriers. Task-dependent connectivity of the 
anterior hippocampus seed is shown in the upper panel. The lower panel shows task-dependent 
connectivity maps of the posterior hippocampus. Maps were thresholded at z=2.3, cluster corrected at 
p<0.05. Voxels meeting threshold in APOEε4 non-carriers (in red) and carriers (in green) are overlaid. 
 

The retrieval phase PPI with anterior hippocampus revealed significant group differences 

in three clusters located in bilateral supramarginal (with some angular gyrus in the right 

hemisphere) and right precuneus. ROI analyses of these clusters showed an effect of APOEε4 

carrier status similar to the encoding phase PPI with anterior hippocampus. Specifically, in 

APOEε4 non-carriers activity in the anterior hippocampus positively predicts BOLD signal in 

bilateral supramarginal gyri and right precuneus while in APOEε4 carriers the anterior 

hippocampus shows lower-than-baseline functional connectivity to these regions during retrieval 

(Figure 2.9). Once again, one sample t-tests showed that within each group these BOLD signal-
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PPI relationships are significantly different from zero indicating that the parameter estimates 

represent a significant change from baseline in these regions (Table 2.2).  

Although there were no group differences in age, we did test the main effect of age on 

functional connectivity changes of the anterior hippocampus during encoding and retrieval. 

There were no regions where an effect of age was significant in either phase. We also tested for 

correlations between memory performance and task-related functional connectivity changes and 

found no significant results (Figure 2.4).  

 
 

Figure 2.9: Anterior hippocampal seed connectivity differences in APOEε4 carriers and non-
carriers during retrieval. During retrieval, significant differences between APOEε4 carriers and non-
carriers were found in left supramarginal gyrus (dark blue), right supramarginal/angular junction (orange) 
as well as right precuneus (purple). The peak coordinate for each cluster is reported in MNI space, in x, y, 
z planes (mm). For illustration of the direction and magnitude of the difference between groups, contrasts 
of parameter estimates from each cluster are plotted by group. The band within the box represents the 
median while the upper and lower edges of the box represent the first and third quartiles, respectively. 
The whiskers extend up to 1.5 times the interquartile range. Data points outside this range are plotted as 
outliers. 
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Task-Dependent Connectivity (PPI): Posterior Seed 
 

Using the posterior left hippocampus as a seed, significant group differences were found 

for only the retrieval phase of the unrelated words task. Similar to the results from the anterior 

hippocampus seed, differences were found such that APOEε4 non-carriers had significantly 

higher retrieval-dependent posterior hippocampal connectivity change to cortical areas 

compared to APOEε4 carriers. There were no cortical regions in which connectivity change was 

significantly more positive for APOEε4 carriers compared to non-carriers. The significant cluster, 

in left auditory cortex (transverse temporal gyri) and superior temporal gyrus, was examined as 

an ROI (Figure 2.10). As with the anterior hippocampus seed, APOEε4 non-carriers on average 

have a higher-than-baseline relationship between the PPI of the retrieval phase with the 

posterior hippocampus and BOLD activity in the ROI.  In contrast, APOEε4 carriers have a 

lower-than-baseline relationship between the PPI of the retrieval phase with the posterior 

hippocampus and BOLD activity in the ROI. One sample t-tests showed that within each group 

these BOLD signal-PPI relationships are significantly different from zero (Table 2.2). Finally, 

there were no main effects of age or memory performance on functional connectivity changes of 

the posterior hippocampus during either the encoding or retrieval phase of the memory task.  
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Figure 2.10: Posterior hippocampal seed connectivity differences in APOEε4 carriers and non-
carriers during retrieval. During retrieval, significant differences in posterior hippocampus connectivity 
between APOEε4 carriers and non-carriers were found in a single cluster including left auditory cortex 
and some superior temporal gyrus (teal). The peak coordinate for the cluster is reported in Montreal 
Neurological Institute space, in x, y, z planes (mm). For illustration of the direction and magnitude of the 
difference between groups, contrasts of parameter estimates from each cluster are plotted by group in 
boxplots. The band within the box represents the median while the upper and lower edges of the box 
represent the first and third quartiles, respectively. The whiskers extend up to 1.5 times the interquartile 
range. Data points outside this range are plotted as outliers. 
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Table 2.2: ROI Analyses of Significant Clusters. One sample t-tests show that for each region where 
significant differences between groups were observed APOEε4 carriers’ contrasts of parameter estimates 
were significantly less than 0 while non-carriers’ contrasts of parameter estimates were significantly 
greater than 0. PPI = psychophysiological interaction; MNI = Montreal Neurological Institute; PE = 
parameter estimate * = p<0.05; ** = p<0.01; *** = p<0.001 
 

PPI 

Cluster Peak MNI 
Coordinates (mm) APOEε4 Carriers APOEε4 Non-Carriers 

x y z Average 
Contrast PE 

One Sample 
T-test 

Average 
Contrast PE 

One Sample T-
test 

Anterior x 
Encoding 

14 14 40 -0.237 0.000*** 0.079 0.030* 
14 -52 40 -0.162 0.000*** 0.086 0.001** 
36 4 12 -0.163 0.000*** 0.080 0.001** 

Anterior x 
Retrieval 

38 -48 36 -0.201 0.000*** 0.124 0.000*** 
-60 -44 40 -0.158 0.000*** 0.128 0.000*** 
6 -48 44 -0.218 0.000*** 0.078 0.008** 

Posterior x 
Retrieval -38 -28 10 -0.220 0.000*** 0.077 0.004** 

 
 
Discussion 
 

This study identified differences in task-dependent functional connectivity between 

APOEε4 carriers and non-carriers during memory encoding and retrieval. During both encoding 

and retrieval of word pair associate learning we found significant differences in task-related 

functional connectivity of the hippocampus and several cortical regions. Group differences, 

regardless of task phase or hippocampal seed, were consistent in both direction and magnitude. 

Specifically, the relationship between the PPI regressor (the interaction of the task phase and 

activity in the hippocampal seed) and cortical activity was higher-than-baseline in APOEε4 non-

carriers and lower-than-baseline in carriers. This consistency across task phase and 

hippocampal seed indicates that there is a characteristic difference between APOEε4 carriers 

and non-carriers in memory-related functional connectivity of the hippocampus and cortex. We 

found evidence of active disengagement in APOEε4 carriers of memory and language cortical 

regions that were positively modulated by the hippocampus in APOEε4 non-carriers during the 

memory task. These regions included right precuneus, right anterior insula, right middle 

cingulate cortex and bilateral supramarginal gyri. Our data suggest that a different functional 
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network could be mediating memory performance in APOEε4 carriers compared to non-carriers. 

Furthermore, APOE group differences in task-dependent functional connectivity change of the 

anterior hippocampus were present in both encoding and retrieval phases of the task. However, 

the posterior hippocampus functional connectivity change was only different between groups 

during the retrieval phase, indicating that the severity of APOEε4 carrier effects is greater in the 

anterior hippocampus.  

rs-fMRI studies suggest that an early endophenotype of AD that is detectable even 

before the onset of clinical symptoms is dysfunction of the default mode network (DMN) (16; 68; 

69). Activity within the DMN is relatively increased when the brain is not engaged in a specific 

cognitive task. The DMN has been linked to introspective processes and includes the 

hippocampus as one the nodes in the network (70). One of the key functions of the 

hippocampus is consolidation, which is a process that occurs when the brain is in a “resting 

state”. This is likely to be one reason why hippocampal activity is correlated with the DMN, as 

measured with rs-fMRI. In healthy older APOEε4 carriers, decreased DMN connectivity has 

been described in several studies (12–15). One theory explaining this DMN dysfunction in 

APOEε4 carriers states that the genetic vulnerability for AD may cause a loss of appropriate 

hippocampal decoupling from cortical DMN regions during active states, like when completing a 

task (71).  This theory is supported by a negative correlation between hippocampus-DMN 

synchronization and performance on a memory test that has been reported (71). It has also 

been shown that greater resting hippocampal connectivity is associated with cognitive decline in 

normal aging (72). Thus, it may be that impairment in switching hippocampal network 

engagement from resting functional connectivity state to task-based functional connectivity state 

recruiting memory-relevant regions underlies the apparent disengagement results described in 

the present study. Dynamic connectivity of hippocampal complex regions and DMN mediated by 

behavior has also been reported in other studies not specifically interested in APOE (73; 74). 
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The strong associations to memory, language and early AD-related changes of the 

regions identified as significantly different between groups in this study converge on the 

potential importance of these regions and the effect of APOEε4 on their function. Specifically, 

we found lower task-dependent connectivity change among APOEε4 carriers between the 

anterior hippocampus and right precuneus, anterior insula and a region of the cingulate during 

encoding. The precuneus is part of the DMN and, like other regions of this network, has high 

metabolic activity at rest (75). In addition, the precuneus is one of the first cortical regions to be 

affected by AD, showing decreased glucose metabolism and amyloid deposition in the earliest 

phases of the disease and in those at increased risk (76; 77). We also found a significant 

difference between APOEε4 carriers and non-carriers in the right precuneus when we examined 

change in functional connectivity of the anterior hippocampus during retrieval. Given these 

findings, it may be that APOEε4 carriers have a strong negative change in task-dependent 

connectivity in this region because of some early AD-related process or a baseline susceptibility 

in this region conferred by APOEε4. The anterior insula, another region where group differences 

were identified for the anterior hippocampus and encoding interaction, is a key region of the 

salience network (78). The anterior insula and its functional network have been previously 

associated with episodic memory decline in patients with mild cognitive impairment (79). 

Similarly, the cingulate has been implicated as a crucial region for normal memory function, 

especially the posterior portion (80). Lastly, in addition to right precuneus, during the retrieval 

phase, we found significant differences in task-dependent functional connectivity changes of the 

anterior hippocampus and bilateral parietal language areas, including supramarginal gyrus. 

These areas are responsible for aspects of language comprehension and repetition (81–83). 

These regions must work in concert with memory systems in order complete verbal memory 

tasks, like the paradigm used in this study. 

The posterior hippocampus is important for episodic memory retrieval. We found no 

significant differences in APOEε4 carriers and non-carriers when we examined coupling of the 
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posterior hippocampus and whole cortex during encoding. This is not surprising given that 

encoding processes have been linked primarily in the anterior portions of the structure (25). 

However, there was a significant difference between groups when we examined change in 

functional connectivity of the posterior hippocampus during retrieval. Specifically, we found 

lower connectivity change of posterior hippocampus with left primary auditory cortex in APOEε4 

carriers. This difference in primary auditory cortex, located along the transverse temporal gyri, 

may be related to the effort of recalling the second word of a word pair (words are 

simultaneously presented as both visual and auditory stimuli). We posit that this area may be 

involved in the active recalling of the spoken word pairs in order to select the appropriate word 

that paired with the retrieval stimulus. This finding, in contrast to those we reported using the 

anterior hippocampus seed, is unique as it involves a primary sensory cortical region, as 

opposed to higher order sensory integration regions. It is also important to note that the 

difference between groups in this region is not significant when verbal memory performance is 

not statistically controlled in the model (Figure 2.3).  Thus, the difference between groups in this 

region may be related to accuracy and performance, but further studies are needed to formally 

test this hypothesis in a new cohort. Within our cohort, we found no significant association 

between memory performance and the PPI of either seed in either encoding or retrieval (Figure 

2.4).  

 A possible limitation of this study is the lack of significant within-group increases in 

functional connectivity of the hippocampal seeds to cortical regions during encoding and 

retrieval (Figure 2.7). However, we do see significant decreases in functional connectivity of the 

hippocampal seeds within group, especially for APOEε4 carriers (Figure 2.8). Certainly, if these 

significant effects were in the positive direction interpretation of the results would be more 

straightforward. However, we believe these results show that there is a disconnection 

phenotype of the hippocampus from cortical regions during active memory function in APOEε4 

carriers and that this finding is valuable in itself. We argue that this might be part of an overall 



 112 

disruption of normal functional connectivity both in resting networks and in response to task 

demands.  

 The participants in this study are older adults and it is likely that some of them have 

begun the process of hippocampal atrophy and dysfunction that is associated with normal aging 

(Small et al. 2011). However, because none of the participants exhibited clinical features of 

cognitive dysfunction, we believe that they are an ideal group in which to examine the effects of 

the APOEε4 allele. Because of our unique recruitment strategy, our APOEε4 non-carrier group 

may be enriched for other genetic risk factors for AD, such as family history of AD, despite their 

lack of an APOEε4 allele. We consider this a strength because our results can be more 

confidently attributed to APOEε4 carrier status because of how closely matched our groups are 

on other factors, including family history of AD, which is usually higher in APOEε4 carriers than 

non-carriers. It is possible that some of our results may be related to amyloid deposition, 

especially in the APOEε4 carriers, but a large portion of our cohort is young enough (average 

age = 67.3) that severe amyloid deposition is not a primary concern. In future follow-up studies 

of these participants as they age, it will be critically important to acquire amyloid imaging. It is 

not known whether the results described here are evidence of a compensatory strategy in 

APOEε4 carriers that affects BOLD activity, nor is there sufficient information to determine 

whether the findings are related to baseline perfusion differences (84; 85).  

The cortical regions where we identified differences between APOEε4 carriers and non-

carriers are all putatively related to task-performance, which indicates our approach was strong 

and our findings are valid. It is also important to note that in this study no masking procedures 

were used to amplify the power of the PPI to detect differences between groups in specific 

areas. While a masking approach is sound and supported when there is a strong hypothesis 

about a specific cortical area, we chose to interrogate the whole brain in order to elucidate 

robust differences between groups without restriction.  
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Conclusion 
 

There is an increasing emphasis on the development of neuroimaging endophenotypes 

for AD. The ultimate goal is to use neuroimaging biomarkers to detect preclinical AD on the 

individual level in order to ensure that preclinical patients receive available interventions or are 

invited to enroll in treatment trials. One way to identify potential neuroimaging endophenotypes 

is to examine groups of participants at increased genetic risk for AD. Our findings suggest that 

there are cortical regions in which APOEε4 carriers and non-carriers show consistent 

differences in task-based hippocampal connectivity. The consistency of these findings across 

memory task phases and hippocampal subregion seeds suggests that task-based hippocampal 

functional connectivity changes differ between APOEε4 carriers and non-carriers at the network 

level, as opposed to in specific, homogenous functional regions. This may be related to the well-

validated dysfunction of the DMN in preclinical AD, as well as cohorts of healthy APOEε4 

carriers (12–15; 86). The results described here are consistent with neuropathological evidence 

suggesting that anterior hippocampus is affected earlier in the course of AD pathophysiology 

and thus may be more susceptible to the earliest preclinical changes. Future studies linking 

task-based functional connectivity changes and rs-fMRI cognitive networks in healthy older 

APOEε4 carriers and non-carriers are necessary to better understand how alterations in 

network connectivity at ‘rest’ influence functional connectivity alterations during a memory task.  
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Supplementary Information 
 
Univariate Analyses 
 
 We ran univariate analyses to create average group activation maps for APOEε4 

carriers and non-carriers during encoding and retrieval (Figure 2.5). Despite previous findings 

from our group and others, there were no significant differences between groups in these 

analyses. We hypothesize that alterations to the task protocol (presenting the stimuli as both 

visual and auditory input when previously the stimuli were auditory only) may have diminished 

task difficulty and made replication of previous results not possible.  

 
Hippocampal Seeds Task-Dependent Connectivity by Group 
 
 After the mid-level of functional imaging processing in which the gPPI models were run 

(described in Methods), we examined the task-dependent connectivity maps of each 

hippocampal seed during encoding and retrieval in both groups, APOEε4 carriers and non-

carriers, separately. There were no regions that reached significance in the group maps 

reporting positive changes in functional connectivity. For illustration, we have included 

hippocampal seed task-dependent connectivity maps not corrected for multiple comparisons 

with p<0.05 and thresholded to only include clusters of 10 or more voxels (Figure 2.7). 

Qualitatively, it can be observed that there are more voxels that reach this uncorrected 

threshold in the APOEε4 non-carriers compared to carriers. We also examined within-group 

task-dependent negative functional connectivity changes and found that in each condition there 

were regions of significant decreases in functional connectivity in APOEε4 carriers (Figure 2.8). 

There are significant decreases in functional connectivity in APOEε4 non-carriers only of the 

posterior hippocampus during encoding. Based on our group comparison findings described in 

the main text, it is not surprising that there are no significant results in group average maps of 

positive changes in functional connectivity as we show that APOEε4 carriers and non-carriers 

have opposite relationships (lower-than-baseline in carriers, higher-than-baseline in non-
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carriers) between the PPI of seed and task phase and the activity in the regions where 

significant group differences are detected.  

 
Group Differences Without Controlling for Memory Performance 
 

We ran gPPI group comparisons between APOEε4 carriers and non-carriers without 

controlling for verbal memory, a cognitive domain where performance differed significantly 

between groups. Differences between groups were similar in location and direction but greater 

in extent for the anterior hippocampus seed in both task conditions (Figure 2.3, upper panel). 

However, there were no significant results in either the encoding or retrieval phases using the 

posterior hippocampus seed (Figure 2.3, lower panel). Thus, the significant difference we detect 

between groups in functional connectivity of the posterior hippocampus to auditory cortex during 

retrieval is dependent on statistical control of group differences in memory performance. 

 
Memory – PPI Correlations 
 
 In order to determine if there is a relationship between memory performance and the 

PPIs explored in this study, we tested for negative and positive correlations between 

performance on Verbal Paired Associates and PPI values. We observed no significant results 

for either positive or negative correlations between memory performance and PPIs. We 

examined these correlations for both positive and negative PPI contrasts. For illustrative 

purposes, we have included a supplemental figure depicting the memory-PPI correlation maps 

thresholded at p<0.05, uncorrected, using the positive PPI contrasts (Figure 2.4). The lack of 

significant findings in these analyses strengthens our focus on the APOEε4 allele as the factor 

mediating differences in memory task-dependent connectivity of the anterior and posterior 

hippocampus in this cohort of cognitively healthy older adults.  
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Task-Dependent Connectivity (PPI): Orbitofrontal ROI 
 
 It is important to consider the possibility that the group differences observed in the PPI 

models are consistent across the entire brain but only reached significance in some regions. To 

address this, we examined a region of interest (ROI) in left orbitofrontal cortex, an area we 

would not expect to be involved in a verbal memory task. The connectivity of the anterior 

hippocampus to this ROI during encoding was estimated as described in Methods. To create 

the ROI, a 6mm sphere was grown around the coordinates [-30, 36, -10] (in mm) and the 

average contrast of parameter estimates within the ROI was extracted for each subject (Figure 

2.11). We plotted these values for each group separately and found that the average for both 

APOEε4 carriers and non-carriers was close to 0 (-0.04 for carriers and -0.009 for non-carriers) 

(Figure 2.11). One sample t-tests empirically showed that contrast of parameter estimates from 

APOEε4 carriers and non-carriers did not differ from 0 (carriers p=0.16; non-carriers p=0.78). 

This is an illustrative control that suggests our main findings are attributable to memory-

dependent hippocampal connectivity differences between APOEε4 carriers and non-carriers.  
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Figure 2.11: Comparison of APOEε4 carriers’ and non-carriers’ anterior hippocampus connectivity 
to an orbitofrontal ROI during encoding. During encoding, anterior hippocampus connectivity to a 6mm 
sphere located in orbitofrontal was compared between APOEε4 carriers and non-carriers. As expected, 
no significant differences were found. The center coordinate for the ROI is reported in Montreal 
Neurological Institute space, in x, y, z planes (mm). For each group, contrasts of parameter estimates 
from the ROI are plotted. The band within the box represents the median while the upper and lower 
edges of the box represent the first and third quartiles, respectively. The whiskers extend up to 1.5 times 
the interquartile range. Data points outside this range are plotted as outliers. Neither group has parameter 
estimates significantly different from zero. 
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Table 2.3: Complete Cluster Peak Information. The complete peak information for each of the 
significant clusters reported in the main text and illustrated in Figures 2.6, 2.9 & 2.10 is included here to 
aid in meta-analyses. We used a freely available SPM8 toolbox to extract these data 
(https://www.nitrc.org/projects/peak_nii). This toolbox is superior to SPM peak output because it reports 
all the peaks within a cluster instead of only three, which is the standard in SPM. We used standard 
parameters and parameters matched to our analyses (voxel threshold p<0.005, cluster minimum at 108 
voxels). PPI = psychophysiological interaction; MNI = Montreal Neurological Institute. 
 

PPI	
   Num.	
  Voxels	
  
in	
  Cluster	
  

T-­‐Statistic	
  of	
  
Peak	
  

MNI	
  Coordinates	
  (mm)	
  
x	
   y	
   z	
  

Anterior x 
Encoding 

171 

4.574 14 -52 40 
4.138 9 -57 30 
3.777 4 -66 29 
3.414 3 -55 36 

115 
4.370 12 16 42 
3.940 22 17 49 
3.616 20 24 46 

180 

4.052 35 1 9 
3.968 26 8 9 
3.796 22 -7 20 
3.780 20 6 20 
3.528 34 14 8 
3.497 18 -4 11 
2.846 16 12 8 

Anterior x 
Retrieval 

241 

4.968 -56 -47 39 
4.289 -67 -44 34 
4.221 -59 -49 24 
3.744 -54 -62 28 
3.566 -48 -44 44 
3.317 -52 -52 32 
2.834 -52 -54 18 

141 

4.618 5 -48 41 
4.429 7 -55 28 
3.952 11 -53 38 
3.859 -6 -54 34 
2.869 10 -44 52 

134 

3.999 44 -47 34 
3.972 63 -42 24 
3.809 62 -48 33 
3.521 52 -54 37 
3.432 49 -59 30 

Posterior x 
Retrieval 147 4.438 -40 -32 12 

3.810 -37 -31 21 
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3.595 -34 -26 4 
3.582 -50 -32 12 
2.947 -54 -39 13 
2.905 -30 -32 12 
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CHAPTER 3 
  

APOEε4 Effects on the Intrinsic Architecture of Neural Networks as Early Risk 
Biomarkers of Alzheimer's Disease 

	
  
 
Abstract 
 
 

Emerging evidence suggests that disruption of intrinsic neural networks associated with 

genetic risk for Alzheimer’s Disease (AD) may be present long before disease onset. Better 

characterization of such neural signatures of genetic risk for AD throughout the lifespan is 

critical to identifying predictive biomarkers to guide intervention. In the present study, resting 

state fMRI data for 570 healthy 18-22 year olds were used to generate intrinsic connectivity 

maps to examine the impact of genetic risk for AD on neural network architecture in early life, 

long before the age of possible AD onset. Graph theoretical analyses were employed to further 

examine network differences. Carriers of the AD risk allele APOEε4 had decreased intrinsic 

connectivity between multiple nodes within the default mode network. In the sensorimotor 

network, APOEε4 carriers also had relatively decreased connectivity between primary motor 

cortex and both presupplemental motor area and anterior insula. Increased connectivity in 

APOEε4 carriers was only observed between frontoinsular cortex of the salience network and 

dorsal posterior cingulate. More broadly, APOEε4 carriers had more negative connectivity 

between task-positive and task-negative networks as well as relatively greater segregation 

between networks. Importantly, there were no significant differences between APOEε4 carriers 

and non-carriers in age, years of education, or IQ. These complimentary analyses of intrinsic 

neural network architecture indicate that decreased connectivity and increased segregation 

between task-negative and task-positive networks in healthy young adult APOEε4 carriers may 

represent early brain biomarkers of increased AD risk in later life. 
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Significance Statement 
 

Studies of early risk biomarkers for Alzheimer’s Disease (AD) have been limited by low 

statistical power to detect small but informative effects.  Here we leverage unprecedented 

statistical power to identify brain biomarkers of genetic risk for AD using neuroimaging and 

genetic data from 570 young adults.  Increased risk conveyed by the APOEε4 allele was 

associated with decreased connectivity and increased segregation between task-positive and 

task-negative neural networks.  The detection of these brain biomarkers early in life (mean age 

= 19.7 years) suggest that characterizing patterns of intrinsic neural network architecture in 

longitudinal research across the lifespan is crucial to tracking gene-biomarker associations and 

identifying changes in these associations that might be signs of imminent clinical decline. 
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Introduction 
 
 As the strongest genetic risk factor for Alzheimer’s Disease (AD), apolipoprotein E 

(APOE) has been studied more than any genomic locus in both elderly and younger cohorts. In 

studies of cognitively healthy elderly cohorts, differences that are associated with the APOE risk 

allele ε4 (APOEε4) are often interpreted as preclinical changes that may indicate incipient AD. 

Importantly, differences in brain structure and function associated with APOEε4 have also been 

uncovered in younger people, from infants to middle-aged adults, well before the possible 

emergence of clinical symptoms(1–3). It is not known, however, if APOE-mediated differences 

in young adults and children are compensatory, beneficial (e.g., supporting a theory of 

antagonistic pleiotropy(4)) or behaviorally neutral susceptibilities to later disease. Thus, 

elucidating the effects of genetic risk factors like APOEε4 throughout the lifespan is necessary 

for interpreting imaging correlates of genetic risk for AD in older adults and for vetting of 

potential risk biomarkers. 

There is increasing interest in utilizing resting state fMRI to capture changes in the 

intrinsic architecture of neural networks (i.e, connectivity) that may be an early biomarker of 

dysfunction in preclinical AD(5; 6). Intrinsic, resting state neural networks, including the default 

mode network (DMN) and the salience network, are comprised of specific regions where 

spontaneous low-frequency fluctuations in the blood-oxygen-level-dependent (BOLD) signal are 

highly correlated. Generally, the DMN is relatively more active when an individual is at rest, and 

less active while an individual is engaged in a task(7). For this reason, the DMN is sometimes 

referred to as the task-negative network. In contrast, task-positive networks are more active in 

response to specific task stimuli and demands than at rest. The salience network, for example, 

is active in response to emotionally and behaviorally relevant stimuli(8). 

DMN function is disrupted in AD and in individuals with mild cognitive impairment(9). It 

has been hypothesized that there may be a relationship between AD and the DMN because the 

constituent regions including the posterior cingulate cortex, precuneus, lateral parietal cortex 
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and medial prefrontal cortex are selectively vulnerable to AD, showing early hypometabolism 

and cortical thinning as well as functional disruption(10–13). Areas defined as functional “hubs” 

overlap with the DMN and are particularly vulnerable to these changes(14). Studies examining 

intrinsic neural network architecture in healthy, older APOEε4 carriers have found decreased 

connectivity within nodes of the DMN in comparison with non-carriers(15; 16). In young people, 

several studies have also reported differences in DMN connectivity based on APOE genotype, 

but these studies are contradictory possibly because they were underpowered to reliably detect 

the likely small effects of genetic risk(17–19). 

In the present study, we aimed to expand this literature in two ways: first, by examining 

not only DMN but also other robust and well-defined task-positive neural networks, including the 

salience and sensorimotor networks, and second, by increasing the participant sample size by 

an order of magnitude to afford necessary statistical power to detect reliable effects. Because 

large data collection efforts in AD have focused on older adults, published studies on younger 

individuals have relatively small sample sizes. In contrast, we utilized a large dataset of 18-22 

year old university students for whom resting state fMRI and APOE data were available 

(n=570). Thus, our current study is the largest to-date focused on genetic risk for AD and 

intrinsic neural network architecture in healthy young adults. We hypothesized, based on the 

most compelling previous research in younger adults, that APOEε4 carriers would show 

relatively increased connectivity within the DMN(17). We also hypothesized APOEε4 carrier 

connectivity in the salience network would be relatively weaker, as the salience network and 

DMN are opposing networks and there is some evidence that alterations in one network may 

impact the connectivity of other, related networks(9). We expected that there would be no 

APOE-related connectivity differences in the sensorimotor network, due to the relatively lower 

order cognitive functions associated with this network. Lastly, we conducted graph theoretical 

analyses to further examine network differences as a function of APOE genotype. 
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Materials and Methods 
 
Participants 
 
 Data were available for 632 participants recruited as part of the ongoing Duke 

Neurogenetics Study (DNS), between January 13, 2012 and July 10, 2014. Each participant 

completed written informed consent in compliance with the Duke University Institutional Review 

Board protocols before their participation. A standardized neuropsychological battery was 

administered to each participant. This battery included measures of intelligence (Wechsler 

Abbreviated Scale of Intelligence Full-Scale IQ [WASI FSIQ](20)), learning and memory 

(California Verbal Learning Test [CVLT](21)), processing speed (Trails B(22)) and working 

memory (digit span(23)).  

Exclusion criteria for the DNS include: 1) medical diagnoses of cancer, stroke, head 

injury with loss of consciousness, untreated migraine headaches, diabetes requiring 

management with insulin, chronic liver or kidney disease or a history of psychosis; 2) use of 

psychotropic, glucocorticoid or hypolipidemic medication; 3) hypertension or other conditions 

affecting cerebral blood flow. Exclusion criteria did not include a past or present Axis I or select 

Axis II (borderline and antisocial personality) disorder as defined by the Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM IV)(24) because the DNS aims to 

include a broad range of cognitive and psychological variability. Incidence of Axis I disorders did 

not differ between APOEε4 carriers and non-carriers (p=0.729). In the whole group, 128 

individuals had either a past or current history of at least one DSM-IV diagnosis, including 75 

with alcohol use disorders, 21 with non-alcohol substance use disorders, 32 with major 

depressive disorders, 25 with bipolar disorders, 8 with panic disorder (no agoraphobia), 9 with 

panic disorder including agoraphobia, 6 with social anxiety disorder, 7 with generalized anxiety 

disorder, 9 with obsessive compulsive disorder, 6 with eating disorders, and 0 with post 

traumatic stress disorder. Participants were asked to report a history of AD in first-degree 
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relatives. Unfortunately, this did not include grandparents and is therefore not a useful measure 

in a cohort aged 18-22 years old.  

All comparisons between groups on demographic and cognitive factors were completed 

using tools from the R Project for Statistical Computing (http://www.r-project.org) 

 
Genotyping 
 
 The DNS works in collaboration with 23andMe, Inc. (Mountain View, CA) in order to 

genotype participants at single nucleotide polymorphisms (SNPs) across the genome. Genomic 

DNA from each participant was isolated from buccal cells derived from Oragene DNA self-

collection kits (DNA Genotek, Inc., Kanata, Canada) that were further customized for 23andMe. 

DNA extraction and subsequent genotyping were performed at the National Genetics Institute, a 

CLIA-certified clinical laboratory.  

Optimal genomic coverage is obtained by using Illumina microarray chips along with 

additional custom SNPs(25; 26). Each participant was genotyped at APOE rs429358 and 

rs7412 and the results were extracted from the master database using PLINK(27). Participants’ 

two APOE alleles were then determined (T/T=ε2, T/C=ε3, C/C=ε4).  

 
Imaging 
 

Participants were scanned on one of two identical research-dedicated GE MR750 3T 

scanners at the Duke-UNC Brain Imaging and Analysis Center.  Before scan acquisition a semi-

automated high-order shimming procedure was used to maximize global field inhomogeneity. 

For each participant, 2 back-to-back 4-minute 16-second resting state functional MRI scans 

were acquired in 34 interleaved axial slices with the following parameters: repetition time 

(TR)=2000ms, echo time (TE)=30ms, flip angle=60°, field of view (FOV)=240 mm, voxel 

size=3.75×3.75×4mm, interslice gap=0. For spatial registration of the functional resting state 

scans to a common coordinate space, 3-dimensional structural MRI scans were acquired in 34 
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axial slices co-planar with the functional scans: TR=7.7s, TE=3.0ms, flip angle=12°, voxel 

size=0.9x0.9x4mm, FOV=240mm, interslice gap=0.  

Participants were instructed to remain awake, with their eyes open during each resting 

state scan. They were shown a blank gray screen and asked to think about nothing in particular. 

Variability in single-subject whole-brain functional volumes was determined using the Artifact 

Recognition Toolbox (http://www.nitrc.org/projects/artifact_detect).  Individual whole-brain BOLD 

fMRI volumes meeting at least one of two criteria were flagged: 1) significant mean-volume 

signal intensity variation (i.e., within volume mean signal greater or less than 4 standard 

deviations of mean signal of all volumes in time series), and 2) individual volumes where scan-

to-scan movement exceeded 2mm translation or 2° rotation in any direction. Participants with 

5% or more flagged volumes were excluded from analysis. Standard resting state fMRI spatial 

preprocessing steps were completed in SPM8 (www.fil.ion.ucl.ac.uk/spm).  

 
Intrinsic Network Connectivity: Seed-Based Analyses 
 

Seed-based correlation maps of the DMN, salience, and sensorimotor networks were 

generated for each participant using the Conn toolbox(28). Individual head motion realignment 

parameters were included as confound regressors to remove the effects of residual head 

motion. Signal from three principal noise components associated with white matter and 

cerebrospinal fluid and one component associated with grey matter were also included. The 

seeds were 5mm radius spheres centered around a coordinate in posterior cingulate cortex 

(PCC) [0 -53 26] for DMN, right frontoinsular cortex [30 20 -12] for salience and right primary 

motor cortex [36 -25 57] for sensorimotor network (adapted from (29–31)). Mean timeseries 

were extracted from each seed and used to create whole brain correlation maps for each 

participant corresponding to the three anatomical seeds. 
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Intrinsic Network Connectivity: Functional Node Set and Graph Theoretical Analyses 
  

Next, we conducted independent analyses using a previously published functional node 

set to define networks with 5mm radius spheres sampled across key regions(32). We focused 

on nodes included in cognitive networks, eliminating any primary sensory resting state 

networks. These included nodes composing the task-negative DMN and task-positive salience, 

cingulo-opercular task control (COT), fronto-parietal task control (FPT), ventral attention (vAtt), 

and dorsal attention (dAtt) networks. After identifying this subset of 135 nodes, we calculated 

mean intra- and inter-network connectivity values for task-positive and task-negative regions. 

For example, intra-network mean connectivity for the DMN is the average of the Pearson 

correlation coefficients for each pair of nodes within the network. Inter-network mean 

connectivity is the average of the Pearson correlation coefficients between each pair of nodes 

across two sets of nodes or networks. 

Graph theory is a branch of mathematics that describes the properties of networks. We 

used specific graph theory metrics to compare global network properties between APOEε4 

carriers and non-carriers. First, a full Pearson correlation coefficient was calculated pairwise 

across our 135 nodes and stored in a unique connectivity matrix for each participant. The top 

30% strongest connections within each matrix were used to calculate graph theory metrics (33; 

34). Measures of clustering, global efficiency and modularity were calculated(35). We examined 

measures of clustering, global efficiency and modularity specifically because these metrics 

could be interpreted as either supporting or rejecting our hypothesis that the strength of task-

negative and task-positive opposition differed between APOEε4 carriers and non-carriers. 

Briefly, clustering coefficient indicates how densely interconnected neighboring regions are. 

Global efficiency is related to how well a given network supports the fast transmission of 

information(36). Finally, modularity is the degree to which a network can be delineated into non-

overlapping groups of regions by maximizing within module connections and minimizing 
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between module connections(37). Greater modularity indicates that modules are more 

segregated from one another within the greater network. 

 
Results 
 
Participants 
 

For the current study, primary analyses were conducted on data from 570 participants 

(318F, mean age=19.7 years +/- 1.22).  Before primary analyses, data from twenty-three 

participants were excluded due to excessive motion artifact in their resting state functional 

imaging data, and six were excluded due to scanner malfunction and/or other artifact. Data from 

thirty-two additional participants were excluded due to low confidence in genotyping one or both 

of the single nucleotide polymorphism sites within APOE (rs429358 and rs7412) required to 

determine allele type (ε2, ε3 or ε4). For the remaining participants, there was a 25.2% rate of 

carriage of at least one APOEε4 allele, which is consistent with the expected population 

frequency of this AD risk allele (26.5%) (Table 3.1)(38). APOE met Hardy Weinberg equilibrium 

criteria in our sample with a non-significant difference between expected and observed 

genotypes (p=0.142). The frequency of APOEε4 differed across ancestry groups (Table 3.2). 

According to an F-test controlling for multiple comparisons, reported effects did not differ across 

ancestry groups so we present our results for the full sample (Table 3.3). 

 There were no differences between APOEε4 carrier and non-carrier groups in age, sex, 

education, incidence of DSM-IV disorder, full-scale IQ or cognitive performance on tests of 

verbal and working memory as well as processing speed (Table 3.4).  
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Table 3.1: APOE Genotype Frequencies 
 

APOE Allelic Distribution 

Genotype ε2/ε2 ε2/ε3 ε2/ε4 ε3/ε3 ε3/ε4 ε4/ε4 

No. Participants 1 54 14 372 114 15 

Percent (%) of total 0.2 9.5 2.5 65.3 20.0 2.6 

 
 
Table 3.2: Frequency of APOEε4 Within Self-Reported Ancestry Groups 
 

Ancestry No. Carriers / Total % Carriers 
White 76 / 257 29.6% 
Black 25 / 63 39.7% 
Asian 25 / 153 16.3% 
Latino/a 5 / 35 14.2% 
Multi/Other 12 / 62 20.0% 

 
 
Table 3.3: Descriptive Statistics of Experimental Values Within Self-Reported Ancestry Groups. DMN = 
default mode network 
 

  
White 

(n=257) 
Black 
(n=63) 

Asian 
(n=153) 

Latino/a 
(n=35) 

Multi/Other 
(n=62) 

DMN – DMN 
Mean 0.159 0.149 0.146 0.142 0.148 

St. Dev 0.043 0.048 0.041 0.040 0.046 

DMN –  
Task Positive 

Mean -0.061 -0.056 -0.045 -0.055 -0.051 
St. Dev 0.032 0.034 0.034 0.028 0.036 

DMN –  
Task Control 

Mean -0.032 -0.031 -0.019 -0.031 -0.022 
St. Dev 0.039 0.040 0.039 0.039 0.042 

Clustering 
Coefficient 

Mean 0.200 0.193 0.195 0.199 0.193 
St. Dev 0.026 0.030 0.023 0.024 0.024 

Modularity 
Mean 0.479 0.477 0.459 0.475 0.465 

St. Dev 0.053 0.059 0.053 0.054 0.055 
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Table 3.4: Cohort Characteristics. Carriers and non-carriers of APOEε4 do not differ in age, sex, 
education, DSM Axis I disorders, IQ or cognition. DSM-IV = Diagnostic and Statistical Manual of Mental 
Disorders, 4th Edition; WASI FSIQ = Wechsler Abbreviated Scale of Intelligence Full-Scale Intelligence 
Quotient; CVLT = California Verbal Learning Test 
 

Characteristic/Measure Carriers 
(n=143) 

Non-Carriers 
(n=427) p-value 

Age (yrs) 19.72 [1.19] 19.73 [1.24] 0.990 

Sex (M/F) 63 / 80 189 / 238 0.923 

Education (yrs) 13.51 [1.19] 13.55 [1.17] 0.732 

DSM-IV Axis I Disorder (yes/no) 34 / 109 94 / 333 0.729 

WASI FSIQ 122.02 [8.91] 121.03 [8.58] 0.240 

CVLT Long Delay (0-16) 12.44 [2.61] 12.43 [2.49] 0.971 

Digit Span Total (0-48) 32.32 [4.35] 32.38 [5.22] 0.897 

Trails B Time (sec) 47.54 [14.45] 46.19 [13.75] 0.313 

 
 
Intrinsic Network Connectivity: Seed-Based Analyses 
 

We first used a seed-based functional connectivity approach to define three networks of 

interest: DMN, salience network and sensorimotor network. Seed-based correlation maps 

produced robust DMN, salience, and sensorimotor networks across participants (Figure 3.1). 

Comparison of the seed-based DMN maps revealed that APOEε4 carriers had relatively 

reduced intrinsic connectivity between posterior cingulate cortex (PCC) and bilateral medial 

temporal lobe (MTL) (cluster p<0.05, Monte Carlo corrected for each group comparison; Figure 

3.2). Sensorimotor network maps showed carriers had relatively decreased connectivity 

between primary motor cortex and both pre-supplemental motor area and anterior insula. 

Salience network maps revealed that carriers had decreased connectivity between frontoinsular 

cortex and sensorimotor regions. Across all the seed-based analyses, relatively greater intrinsic 

connectivity in carriers was only observed in the salience network between frontoinsular cortex 

and dorsal PCC. Cluster peaks for all regions exhibiting differences are reported in Table 3.5. 
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The center of mass for each significant cluster was used to plot spherical nodes alongside seed 

regions to summarize the seed-based correlation map findings (Figure 3.3).  

 
 
Table 3.5: Cluster Peak Coordinates from Seed-Based Correlation Map Analyses. MTL = medial 
temporal lobe; PCC = posterior cingulate cortex; SMA = supplementary motor area 
 

Network Contrast 
Cluster Coordinates 

(Peaks) Region 
x y z 

DMN NC > C 
-10 -10 -28 Left MTL 

36 -14 -22 Right MTL 

Salience 
NC > C 40 -18 54 Right Postcentral Gyrus 

C > NC 16 -44 26 Bilateral PCC 

Sensorimotor NC > C 
8 12 58 Right Pre. SMA 

36 16 -10 Right Anterior Insula 
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Figure 3.1: Seed-based resting state networks. Seed regions used to produce intrinsic functional 
connectivity maps are showed in the leftmost column (green). Axial and coronal views of the resulting 
default mode (DMN), salience and sensorimotor networks for the whole group (n=570) are provided. 
These maps were corrected for multiple comparisons at FDR p=0.05.   
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Figure 3.2: Significant functional connectivity differences between APOEε4 carriers and non-
carriers in seed-based analyses. For each network, there were two significant clusters (one shown in 
red, one shown in blue). Connectivity is relative to the seed region and summarized in Table 3.5. The 
center of mass of each of these clusters is plotted in Figure 3.3. 
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Figure 3.3: Summary model of results comparing functional connectivity of APOEε4 carriers and 
non-carriers in seed-based correlation map analyses. Significant group differences revealed lower 
functional connectivity in APOEε4 carriers compared to carriers (dark red) except in the case of one 
connection between frontoinsular cortex and PCC (dark green). Seeds used in the seed-based correlation 
maps analyses are demarked by black, dashed circles. The non-seed spheres were plotted based on the 
center of mass of the significant cluster. In general, carriers had relatively lower connectivity between task 
negative (TN) and task positive (TP) regions. 

 
 

Intrinsic Network Connectivity: Functional Node Set and Graph Theoretical Analyses 
 
To be certain that our findings were not biased by the seed-based correlation map 

method, we employed a second network analysis approach to corroborate our findings. Using a 

previously published functional node set, we selected 135 nodes sampled over the regions 

comprising DMN, salience network, dorsal and ventral attention (dAtt, vAtt) networks, cingulo-

opercular task control (COT) network and frontoparietal task control (FPT) network (32). Spatial 

overlap was high between our seed-based resting state networks and the corresponding 

functional node set (Figure 3.4). Analyses of connectivity values within and between task-

positive and task-negative networks revealed no differences in mean intra-network connectivity 
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of the task-negative DMN between APOEε4 carriers and non-carriers (Figure 3.5A). In contrast, 

there was a significant difference in mean connectivity between task-positive networks and task-

negative DMN (Figure 3.5B). Specifically, carriers exhibited significantly greater segregation 

(connectivity was more negative) between task-positive networks (including salience, dAtt, vAtt, 

COT and FPT) and the task-negative DMN compared to non-carriers (p=0.005, Cohen’s 

d=0.24). Further, there was significantly greater segregation between task control regions (COT 

and FPT) and the DMN in carriers (p=0.012, Cohen’s d=0.21).  

 

 

Figure 3.4: Demonstration of high overlap between DMN-assigned nodes from Power and 
colleagues (2011) and DMN from seed-based approach. 57 of 58 total functional nodes assigned to 
the DMN (yellow) overlapped with our seed-based DMN (red). Thus, the spatial overlap of DMN in the 
functional node set with our seed-based DMN was 98%.  
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Figure 3.5: Comparison of APOEε4 carriers (C) and non-carriers (NC) mean inter-network 
connectivity measures shows that carriers have lower connectivity between the task-negative 
DMN and task-positive regions. A) No differences between groups were observed in intra-network 
connectivity in the DMN. B) Carriers had significantly more negative mean connectivity between task-
positive (and a subset of task-control networks) and task-negative DMN. Error bars represent the 95% 
confidence interval.  
 
 

Graph theory is a branch of mathematics that describes of the properties of networks. 

We selected specific graph theory metrics to compare global network properties between 

APOEε4 carriers and non-carriers. First, the full Pearson correlation coefficient was calculated 

pairwise across our 135 nodes and stored in a unique connectivity matrix for each participant. 

The top 30% strongest connections within each matrix were used to calculate graph theory 

metrics (33; 34). We examined measures of clustering, global efficiency and modularity because 

we hypothesized these metrics could be interpreted as either supporting or rejecting our 

hypothesis that the strength of task-negative and task-positive opposition differed between 

APOEε4 carriers and non-carriers. Graph theory analyses revealed that APOEε4 carriers had a 

relatively higher mean clustering coefficient (p=0.043) and higher modularity (p=0.026) which 
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supports the preceding findings that, overall, APOEε4 carriers have more segregated networks 

(Figure 3.6). There were no differences between APOEε4 carriers and non-carriers in global 

efficiency (p=0.12). Spring plots of modules revealed typical organization of modules in both 

APOEε4 carriers and non-carriers with the task-negative DMN segregated from task-positive 

networks (Figure 3.7). 

 

 
 

Figure 3.6: APOEε4 carriers (C) have significantly higher clustering coefficient and modularity 
compared to non-carriers (NC). A) Modularity was higher in carriers of the APOEε4 allele compared to 
non-carriers. B) Mean clustering coefficient across all 135 functional nodes was significantly higher in 
APOEε4 carriers. Violin plots show data probability density on either side of box plots where the white dot 
within the box (red) represents the median while the upper and lower edges of the box represent the first 
and third quartiles, respectively. The whiskers extend up to 1.5 times the interquartile range. 
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Figure 3.7: APOEε4 carriers and non-carriers do not differ in module assignments. As expected, 
spring plots based on modularity and colored by module assignment show DMN (blue) clustering 
separately from task-positive networks in both APOEε4 carriers and non-carriers. This conformation is 
typical in healthy brains.  
 
 
Discussion 
 

Our results provide critical evidence that the intrinsic architecture of neural networks is 

affected by APOEε4 carrier status even in young healthy adults. Specifically, we found across 

complimentary analysis methods that connectivity between task-negative and task-positive 

networks is relatively decreased in carriers of the APOEε4 allele. The two-pronged approach to 

defining networks and the concordance of findings across these methods bolsters our 

conclusion that the APOEε4 risk allele affects the strength of the opposition between task-

positive and task-negative intrinsic neural networks. Broadly, our findings indicate that 

differences based on APOE genotype are not always related to AD, but may reflect lifelong 

differences in brain organization and associated function.  

Our initial hypotheses predicting unique connectivity phenotypes in DMN, salience 

network and sensorimotor network for carriers of APOEε4 were disproven. Instead, our findings 

indicate a more global phenotype related to the connectivity of opposing task-negative and task-

positive regions, regardless of specific network association. Additional analyses using a 

previously published node set support the idea that it is not a solely specific task-positive 
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network like salience network, but task-positive networks in general that show altered 

connectivity to task-negative DMN in APOEε4 carriers. The ability to detect this global effect 

may be due to the large sample in this study, close to 600 young adults, which is uniquely 

powered to investigate possible brain biomarkers of early genetic risk for AD. 

 Previous studies have reported differences in DMN connectivity in young adults at 

increased genetic risk for AD(17; 18; 39). Each of these studies had under 100 participants and 

focused on the DMN, reporting either relative hyper- or hypo-connectivity in APOEε4 carriers. 

Only one study has looked beyond the DMN to other intrinsic networks, reporting differences 

between APOEε4 carriers and non-carriers in a hippocampal network, auditory network and left 

fronto-parietal network, as defined by group independent component analysis (ICA)(18). In 

contrast to the data-driven ICA approach, we chose to limit our analyses to previously defined 

networks that can be reliably compared across different studies. This will make our procedure 

easier to implement with new datasets and will, therefore, facilitate necessary replication efforts. 

Our findings are in line with previous work in older, cognitively intact adults. For 

example, a study that examined the effect of family history of AD on intrinsic connectivity in 

healthy older adults found significantly decreased connectivity between the PCC and the medial 

temporal lobe, key nodes within the DMN(40). In another study of healthy adults aged 30-72 

years old, female APOEε4 carriers had lower intrinsic connectivity between hippocampus and 

PCC(41). Finally, a third study used a seed-based approach to examine connectivity of the 

DMN and found relatively decreased PCC-medial temporal lobe connectivity in APOEε4 

carriers(16). Our large sample size gives us increased power to detect these subtle genetic risk 

effects on DMN intrinsic connectivity even in healthy young adult university students, and 

suggests that a weakened connection between the medial temporal lobes and PCC represents 

a lifelong susceptibility for cognitive decline and development of later AD. 

Functional connectivity differences between groups detected using seed-based 

correlation can only be interpreted in reference to the seed region. To confirm that our findings 
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were not biased by the choice of our seeds, we used a previously published set of neural 

networks, which are applicable to any dataset, to examine mean inter-network connectivity(32). 

APOEε4 carriers showed decreased mean intrinsic connectivity between task-negative and 

task-positive networks. The effect size of this difference falls between a small (d=0.10) and a 

medium (d=0.30) effect with Cohen’s d=0.24. While not specific to a particular functional 

connection, this finding supports the general pattern of decreased connectivity between task-

negative and task-positive network nodes observed in the seed-based analyses. Spring plots 

that show module structure within the larger set of networks illustrate how closely APOEε4 

carriers and non-carriers resemble each other in their healthy, typical neural architecture (Figure 

3.7). However, subtle differences in clustering coefficient and modularity exist and support our 

findings indicating APOEε4 carriers have relatively greater segregation between opposing 

intrinsic connectivity networks. Previous studies have shown that segregation of networks 

decreases across the lifespan and that greater segregation is associated with higher IQ in 

adolescence(42; 43). While there was no significant IQ differences by APOE genotype in our 

cohort, future research will aim to uncover the consequences of relative changes in network 

segregation in general, as well as in the context of specific APOE genotypes. 

 It is important to note that associations between genetic loci and neuroimaging 

phenotypes can be difficult to interpret. In the context of AD research, there is a temptation to 

attribute differences between high and low genetic risk groups to the pathophysiological 

processes in AD. In healthy older adults, differences between high and low genetic risk groups 

are often discussed as possible preclinical, AD-related changes. Another interpretation of 

differences mediated by genetic risk for AD is that the increased genetic risk necessitates 

compensatory mechanisms to support normal, healthy behavior. If the cohort is younger, it 

might be argued that group differences are evidence of antagonistic pleiotropy, or the theory 

that a genetic variant that confers risk in late life may be advantageous earlier in life(4). The 

association also could be driven by neutral neurodevelopmental differences mediated by the 
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risk gene. In the present study, with participants ranging in age from 18-22, we are able to rule 

out preclinical, AD-related changes as underlying our results. Compensation is also very 

unlikely given the age of these participants and the absence of a clear behavioral or network-

efficiency advantage in APOEε4 carriers. After that, however, we are not able to easily rule out 

antagonistic pleiotropy, neutral neurodevelopmental differences or a lifelong susceptibility to 

disease. Nevertheless, our current findings do suggest that an emphasis on assessing these 

patterns of intrinsic neural network architecture in future longitudinal research may be key to 

tracking gene-biomarker associations over time and pinpointing changes in these associations 

that might be signs of imminent clinical decline. 
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CHAPTER 4 
 

An Alzheimer’s Disease Genetic Risk Score Predicts Longitudinal Thinning of 
Hippocampal Complex Subregions in Healthy Older Adults 

 
Abstract 
 

Variants at twenty-one genetic loci have been associated with an increased risk for 

Alzheimer’s disease (AD). An important unresolved question is whether multiple genetic risk 

factors can be combined to increase power to detect changes in neuroimaging biomarkers for 

AD. We acquired high-resolution structural images of the hippocampus in 66 healthy, older 

human subjects. For 45 of these subjects, longitudinal two-year follow-up data were also 

available. We calculated an additive AD genetic risk score for each participant and contrasted 

this with a weighted risk score approach. Each score included APOE, CLU, PICALM and family 

history of AD. Both unweighted (URS) and weighted (WRS) risk scores correlated strongly to 

percent change in thickness across the whole hippocampal complex (URS r=-0.40, p=0.003; 

WRS r=-0.25, p=0.048), driven by a strong relationship to entorhinal cortex thinning (URS r=-

0.35, p=0.009; WRS r=-0.35, p=0.009). By contrast, at baseline the risk scores showed no 

relationship to thickness in any hippocampal complex subregion. These results provide 

compelling evidence that polygenic AD risk scores may be especially sensitive to structural 

change over time in regions affected early in AD, like the hippocampus and adjacent entorhinal 

cortex. This work also supports the paradigm of studying genetic risk for disease in healthy 

volunteers. Together, these findings will inform clinical trial design by supporting the idea that 

genetic prescreening in healthy controls can be useful to maximize the ability to detect an effect 

on a longitudinal neuroimaging endpoint, like hippocampal complex cortical thickness.  
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Significance Statement 
 
 This is the first study to show a relationship between a genetic risk score (GRS) for 

Alzheimer’s disease (AD) and hippocampal thinning in healthy adults. We found that a GRS 

composed of AD risk factors that have been shown to relate to hippocampal structure or 

function in humans predicted thinning of the hippocampal complex. Our ability to interpret these 

findings is bolstered by the association of genetic risk with longitudinal atrophy as opposed to 

cross-sectional morphology, which might be driven by neurodevelopmental differences. This 

work has implications for clinical trials focused on preclinical subjects such that screening by 

polygenic risk might increase the ability to detect an effect of a drug in a trial where hippocampal 

integrity is an endpoint.   
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Introduction 
 
The development of preclinical biomarkers for sporadic, late-onset Alzheimer’s disease 

(AD) is critical for clinical trial design and ultimately disease prevention. Neuronal loss in the 

hippocampus occurs early in the course of AD. This neuronal loss leads to morphological 

changes over time resulting in severe atrophy of the entire hippocampus in advanced AD. The 

hippocampus, however, begins to shrink long before the emergence of clinical symptoms. 

Research on families who carry genetic mutations for dominantly inherited AD has revealed that 

hippocampal volume loss is detectable up to 15 years before the expected onset of symptoms 

(1). Studies have shown that a key difference between normal age-related hippocampal thinning 

and pathological thinning related to AD may be the rate of thinning over time (2; 3). Longitudinal 

data is, therefore, extremely important in predicting trajectories of normal and pathological 

aging.  

Genetic risk for AD is also related to hippocampal thinning. Carriage of the APOEε4 

allele accelerates age-related hippocampal shrinkage in older healthy adults which may make 

individuals more susceptible to AD (4; 5). While APOE is the strongest genetic risk factor for 

AD, at least 20 other genes have been identified as associated with the disease (6). Among 

these non-APOE AD risk genes, clusterin (CLU) and phosphatidylinositol binding clathrin 

assembly protein (PICALM) have been studied using a neuroimaging genetics approach more 

than any other risk genes (7–17). Also, family history of AD can serve as a proxy for genetic risk 

and has been used in neuroimaging genetics studies to identify characteristics of a high risk 

group (Xu et al., 2009; Berti et al., 2011; Honea et al., 2012; Wang et al., 2012). Each of these 

factors, APOE, CLU, PICALM and family history of AD, has been previously shown to be related 

to hippocampal structure or function as measured by MRI-based techniques in humans (10; 12; 

14; 15; 22–24). Thus, we selected these components to calculate a genetic risk score (GRS) 

based on their statistical association with AD risk and their previous association with the 

hippocampus in neuroimaging genetics studies.  
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The use of high-resolution structural MRI to calculate the thickness of the strip of gray 

matter within the convoluted hippocampus allows for sensitive measurement of changes in 

morphology (25). This approach is preferable to measuring the gross volume of the 

hippocampus because it focuses on the compartment of the hippocampal complex where cell 

bodies reside and thus is designed to measure morphological changes that may be related to 

neuronal loss. Using hippocampal thickness measurements, subregions of the hippocampal 

complex including entorhinal cortex, subiculum, CA3 and the dentate gyrus have been shown to 

be thinner in APOEε4 carriers compared to non-carriers (26–28). In this work we take these 

findings further by expanding our focus to include additional genetic risk factors for AD. 

The present study is the first to find evidence of an association of an AD GRS and 

cortical thinning of the hippocampus over time in healthy adults. By focusing our GRS 

development on genetic factors that have been shown to associate with hippocampal structure 

or function in healthy older adults, we were able to boost our power to detect a link between 

genetic risk for AD and changes in hippocampal gray matter. Our findings support the validity of 

a neuroimaging genetics approach to studying genetic risk for disease in healthy, preclinical 

populations. Identifying quantitative neuroimaging endophenotypes associated with genetic risk 

for AD in healthy adults will increase our ability to identify healthy individuals who are at greatest 

risk of developing AD and target them for intervention. In the present study, we hypothesized 

that the AD GRS would be related to baseline hippocampal morphology when controlling for 

confounding factors like age and sex. We further hypothesized that the GRS would predict 

longitudinal thinning in the hippocampal complex, especially the entorhinal cortex and subiculum 

subregions, over two year follow-up.  
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Materials and Methods 
 

Participants 
 
Participants for this study were Caucasian individuals of either sex recruited as part of 

an ongoing initiative to study aging, AD genetic risk and dementia by the UCLA Longevity 

Center. The recruitment strategy focused on older adult community centers, relatives of AD 

patients referred by the local Alzheimer’s Association chapter, memory groups, and other 

groups catering to older adults with age-related memory concerns. This strategy resulted in the 

recruitment of approximately 40-50% of participants carrying at least one copy of the APOEε4 

allele, which is greater than the 20-25% that would be expected from purely random recruitment 

(29; 30). Participants were categorized as having a positive family history of AD if at least one 

first-degree relative had been diagnosed with AD based on standard criteria (31). All 

participants in the present study were healthy and cognitively intact at the time of enrollment. In 

our study, participants were defined as non-demented if they were cognitively intact based on 

clinical examination, the results of the Mini Mental State Exam (MMSE; for gross cognition, 

threshold≥27) and standard criteria for AAMI (Age Associated Memory Impairment); specifically, 

participants were excluded if they had scores more than two standard deviations below normal 

on two or more of the memory tests described in the next section. In addition, participants with 

clinical anxiety, depression or any neuropsychiatric or neurological illness were excluded. This 

study was performed in accordance with UCLA Institutional Review Board (IRB) protocols and 

approved by the UCLA Human Subjects Protection Committee. All participants gave written 

informed consent upon enrollment in this study.  

 
Neuropsychological Assessment 
 

A 3-hour neuropsychological battery was administered to each participant. The battery 

included tests of the following: General Intelligence (Subtests of the WAIS-III) (32), Fluency 

(Fruits and Vegetables) (33), Attention (Digits Forward and Backward) (32), Language (Boston 
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Naming Test) (34), Verbal Memory (Buschke-Fuld Selective Reminding Task) (35), WMS-III 

Logical Memory and Verbal Paired Associates learning (32) and Visual Memory (Rey-Osterrieth 

Figure test) (36). Participants also completed a family history questionnaire (37), a memory 

complaints self-report questionnaire (38), the Hamilton Depression and Anxiety Inventories 

(Hamilton 1959; Hamilton 1960), the Neuropsychiatric Inventory (41) and the MMSE (42). 

 
Genotyping 
 

A trained phlebotomist at the UCLA Clinical and Translational Research Laboratory drew 

a blood sample from each participant.  Leukocytes from 10ml of the sample were frozen and 

stored at -80°C. 200µg of genomic DNA were isolated from the remaining 10ml and screened 

using a PCR-based mutation detection assay and a microsatellite marker based genotyping. 

Real Time PCR on an Applied Biosystems 7900HT Real Time PCR machine was used to 

perform APOE SNP (rs429358 and rs7412) genotyping. In addition to a standard curve 

amplification protocol, an allelic discrimination step was added to facilitate the contrast between 

the two alleles and their respective reporter dyes. These dyes are incorporated into a Taqman 

SNP Genotyping Assay with identification numbers C___3084793_20 and C___904973_10 for 

rs429358 and rs7412, respectively (Applied Biosystems, Foster City, CA). Results were 

confirmed by repeating the experiment. Single nucleotide polymorphism (SNP) genotyping data 

was analyzed using SDS software (version 2.3, Applied Biosystems). This program calculates 

the affinity of the sample to one of the two reporter dyes that, in turn, represents one allele over 

the other. CLU (rs11136000) and PICALM (rs3851179) SNPs were genotyped using iPLEX 

chemistry on the massARRAY platform (Sequenom, San Diego, CA) as per the manufacturer’s 

instructions. The assay was based on primer extension and allowed for a locus specific PCR 

reaction followed by an extension reaction in which the primer anneals immediately upstream of 

the polymorphic site being genotyped. Through the use of MALDI-TOF mass spectrometry, the 

mass of the extended primer is determined. Sequenom Typer software automatically translates 
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the mass of the observed primers into a genotype. Positive controls were included on every chip 

to ensure genotyping accuracy. The results of all genotyping protocols are strictly confidential 

and are never revealed to the research participant. 

 
Genetic Risk Scores 
 
 A GRS for AD was calculated for each participant (Figure 4.1). The GRS measured 

genetic risk load for AD across APOE, CLU and PICALM as well as taking into account family 

history of AD. We calculated two sets of GRS: unweighted and weighted. The unweighted risk 

score (URS) was the sum of risk factors including a family history of AD (0 if negative history or 

1 if positive history), APOEε4 alleles (0, 1, or 2), CLU risk alleles (0, 1, or 2) and PICALM risk 

alleles (0, 1, or 2).  For the weighted risk scores (WRS) we used the logarithm of published odds 

ratios (OR) to weight the relative contribution of these risk factors before summing: positive 

family history OR=2, APOEε4 OR=3, CLU minor allele OR=0.9, PICALM minor allele OR=0.9 

(6). We chose to focus our GRS on these risk factors because they are among the most 

consistently reproduced genetic risk factors associated with late-onset sporadic AD. In addition, 

each of these factors has been previously shown to be related hippocampal structure or function 

as measured using MRI-based techniques in humans (10; 12; 14; 15; 22–24).  
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Figure 4.1: Genetic Risk Score Calculation. An unweighted risk score (URS) for each participant was 
calculated by adding family history of AD (0 if negative history or 1 if positive history), number of APOEε4 
alleles (0,1, or 2), CLU risk alleles (0,1, or 2) and PICALM risk alleles (0,1, or 2). A weighted risk score 
(WRS) for each participant was calculated using the logarithm of published odds ratios (OR) to weight the 
relative contribution of the factors before summing: positive family history OR=2, APOEε4 OR=3, CLU 
minor allele OR=0.9, PICALM minor allele OR=0.9. Possible unweighted risk scores range from 0 to 7 
and weighted risk scores range from -0.18 – 1.25. 
 
 
Imaging Acquisition 
 
 MRI acquisition was completed using a Siemens 3T Trio magnet located at the UCLA 

Staglin IMHRO Center for Cognitive Neuroscience (scans acquired 2010-2012; n=8 baseline, 

n=13 follow-up) or a Siemens Allegra 3T located at the UCLA Brain Mapping Center (scans 

acquired 2006-2010). Whole-brain 3D T1-weighted magnetization prepared rapid acquisition 

gradient-echo (MPRAGE) volumetric scans and high-resolution oblique coronal T2-weighted 

fast spin echo (FSE) sequences were acquired with each participant. Scan parameters are as 

follows for the MPRAGE (Allegra parameters in parentheses): axial slicing, TR=1900ms 

(2300ms), TE=2.26ms (2.93ms), FOV=250x218mm (256x256mm), flip angle=9°, 

matrix=256x215mm, 176 slices (160 slices), slice thickness=1mm, zero-filled to a matrix of 
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256x224 resulting in a voxel size=1x0.976x0.976 mm3 (1x1.3x1.3mm3). For the high-resolution 

hippocampal structural imaging sequence parameters are as follows: TR= 5200ms, TE= 107ms 

(105ms), FOV= 200mmx200mm, flip angle= 139°, matrix=512mmx512mm, slice thickness= 

3mm, spacing 0mm, 19 slices, in-plane voxel size= 0.39x0.39mm. Some participants’ whole 

brain or high-resolution hippocampal structural imaging data have been used in previous 

publications (5; 23; 43–46). 

 
Statistical and Imaging Analyses 
 
Neuropsychological Performance 
 
 To test whether participants in the baseline group differed from the subset with follow-up 

data, two-tailed t-tests were used to examine age, sex, education and general cognition. We 

examined potential relationships between genetic risk load and sex or age using a t-test and 

Pearson correlation, respectively. These tests were completed using tools from R Project for 

Statistical Computing (http://www.r-project.org).    

 
Whole-Brain Structural Imaging 
 
 Whole-brain structural MRI scans were processed using Freesurfer (47). This 

computational neuroanatomy software suite uses tissue contrast to determine the boundary 

between gray and white matter as well as the pial surface of the brain and calculates the 

distance between vertices plotted as a mesh on each surface across the whole cortex. After 

completing the FreeSurfer automated pipeline, each participant’s scan was visually checked for 

accuracy. Minimal manual edits were completed when necessary by a single individual (TMH). 

Intracranial volume (ICV) estimates from FreeSurfer were used to normalize hippocampal 

thickness estimates from baseline scans for baseline only analyses. We used the following 

formula in order to normalize: ICV-corrected thickness = [(thickness in mm / ICV in mm3) * 106]. 

Multiplying the quotient by 106 results in values at the same order of magnitude as the original 

thickness estimates.  
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High-Resolution Hippocampal Structural Imaging 
 
 A cortical segmentation and unfolding procedure was used to measure thickness of the 

gray matter of the hippocampal complex (HC) (23; 25; 26; 45) (Figure 4.2). First, the white 

matter and cerebrospinal fluid (CSF) within the medial temporal lobe (MTL) were manually 

traced on oblique coronal slices. Slices were acquired from the scanner at intervals of 3mm 

perpendicular to the longitudinal axis of the HC to maximize the resolution where anatomical 

variability is greatest. To account for slice thickness, a procedure that creates six linearly 

interpolated slices between each acquired pair was used to increase resolution along the 

longitudinal axis of the HC (48). The interpolation procedure resulted in a final voxel size of 

0.39x0.39x0.43mm (for two subjects final voxel size was 0.39mmx0.39mmx0.56mm due to a 

thicker slice interval of 3.9mm). Next, up to 18 contiguous layers of gray matter were created 

using a region-expansion algorithm starting at the white matter boundary and continuing to the 

CSF boundary. This results in a HC gray matter strip which contains cornu ammonis (CA) fields 

1, 2 and 3, the dentate gyrus (DG), subiculum (SUB), entorhinal cortex (ERC), perirhinal cortex 

(PRC), parahippocampal cortex (PHC), and the fusiform gyrus (FUS). Our resolution is not high 

enough to reliably distinguish between DG and CA fields 2 and 3 so we combine these regions 

into a single subregion denoted CA23DG. Next, gray matter strip was flattened using an 

iterative algorithm based on multidimensional scaling that has been previously used by our 

group (25). Demarcations indicating the boundaries between different HC subregions were 

drawn on each slice based on anatomical landmarks in histological and MRI atlases (49–51). 

Demarcations were placed in accordance with guidelines and findings produced by the 

Hippocampal Subfields Group (52). The demarcations are extended to form continuous 

boundaries between subregions in 2D space. ROIs are drawn in 2D space and transformed 

back into in-plane space where gray matter thickness measurements were calculated. To 

calculate thickness, we computed the distance to the closest non-gray matter voxel. Specifically, 
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in 2D space, for each middle point voxel the maximum distance value for all the corresponding 

3D voxels across the layers of the gray matter strip was multiplied by two. Mean thickness was 

calculated by averaging this value across all the 2D voxels within a given subregion. We 

averaged each subregion across left and right hemispheres as we did not have any specific 

hypotheses regarding the laterality of an association between longitudinal change in 

hippocampal structure and genetic risk for AD. 

Manual segmentations of baseline and follow-up scans for each participant were 

inspected by a single individual (ZM) to ensure consistency and minimize noise in our thickness 

estimates. During image processing, investigators were blinded to the demographic and genetic 

information corresponding to each image.  

 Associations between baseline thickness estimates corrected for ICV and the GRS were 

tested using Pearson correlation. To examine thinning over time, percent change in cortical 

thickness between baseline and follow-up scans was calculated for each participant with 

longitudinal data. The formula for calculating percent change was as follows: [((thickness at 

follow-up / thickness at baseline) - 1) * 100]. Percent change statistics were not corrected for 

ICV as measuring percent change in thickness within subjects obviates the need to control for 

normal variation in brain size. We also calculated partial correlations between GRS and 

baseline thickness or percent change in thickness controlling for the effects of age, sex and time 

between visits, when appropriate.  

 Corrections for multiple comparisons were done within each GRS because they were 

highly correlated and not independent (r=0.72, p<0.0001). We used a Bonferroni correction for 

two independent tests (p = 0.05/2 = 0.025) to control for multiple testing in entorhinal cortex and 

subiculum, the two regions in which we hypothesized thinning would be related to genetic risk 

for AD. These tests were simple effects tests following whole hippocampal complex analysis. 

Because entorhinal cortex and subiculum are subregions of the whole hippocampal complex, 
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these are not independent tests. Tests restricted to subfields other than entorhinal cortex and 

subiculum were exploratory only. 

 

 
 
Figure 4.2: High-Resolution Hippocampal Imaging Processing Steps. A) Manual segmentation 
results in three distinct compartments: cerebrospinal fluid (teal), white matter (pink) and gray matter in 
between. B) The boundaries between hippocampal complex subregions are marked according to 
anatomical landmarks. Demarcations include CA23DG | CA1 (green), CA1 | subiculum (dark blue), 
subiculum | entorhinal cortex (orange), perhinal cortex | entorhinal (light blue), collateral sulcus (red) and 
fusiform gyrus (yellow). C) These demarcations are extended along the longitudinal axis of the 
hippocampal complex to form complete and smooth boundaries between subregions. D) Each subregion 
is then considered separately as a region of interest and average thickness is calculated for each. 
 
 
Results 
 
Participants 

 
In the current study, 66 participants aged 48 and older were recruited. For 45 of our 

participants, two-year follow-up data were available. There were no differences in sex 

composition (p=0.42), age (p=0.95), education (p=0.42) or MMSE (p=0.31) between our larger 

baseline group and the subset with longitudinal data (Table 4.1). In order to ensure there were 
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no confounds of age or sex that would make interpreting the GRS signal difficult, we tested for a 

difference in genetic risk load between men and women (baseline: p=0.82, follow-up: p=0.48) 

and for a correlation between age and risk score (baseline: r=-0.10, p=0.42, follow-up: r=0.01, 

p=0.94) and detected no significant confounds.  

 
Table 4.1: Cohort Characteristics. The cohort with baseline data did not differ from the subset of 
participants with follow-up data in sex, age, education or general cognition. MMSE= Mini Mental State 
Exam 
 

Characteristic Baseline Participants 
(n=66) 

Follow-Up Participants 
(n=45) P-value 

Sex (M/F) 21/45 18/27 0.421 
Age (years; mean+/-SD) 63.0 +/- 10 .4 63.2 +/- 7.8 0.953 
Education (years; mean+/-SD) 16.4 +/- 2.4 18.0 +/- 5.7 0.417 
MMSE (mean+/-SD) 29.2 +/- 0.84 28.9 +/- 0.86 0.313 
Time Between Visits (years; mean+/-SD) N/A 2.12 +/- 0.68 N/A 
 
 
Genetic Risk Scores 
 
 In our cohort URS ranged from 1.0 to 6.0 (Figure 4.3). No participant had zero risk 

factors nor the maximum of 7.0. WRS ranged from -0.09 to 1.15 (Figure 4.3). As expected, 

there was a high correspondence between URS and WRS within subjects (r=0.72, p<0.0001). 

Distributions of risk scores between our baseline group and follow-up group were not 

significantly different. We included the WRS in our analyses for transparency, so the effect of 

weighting could be fairly assessed alongside the additive URS approach. Our focus, however, 

was on the URS as this score is most easily and reliably reproduced across research sites.  

We tested for an association of verbal memory scores (logical memory delay total and 

delay total change over two-years) with GRS and found no significant relationship between 

behavior and URS (baseline: r=0.14, p=0.13; follow-up: r= r=-0.06, p=0.34) or WRS (baseline: 

r=-0.06, p=0.34; follow-up: r=0.05, p=0.37). The lack of an association between cognition and 

genetic risk score highlights the preclinical focus of this work, which is to identify biomarkers that 

are associated with genetic risk for AD in cognitively healthy older adults. 
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Figure 4.3: Distribution of Genetic Risk Scores. Participants risk scores were normally distributed 
across the range of possible scores. No participants had zero genetic risk factors nor did any have the 
maximum of 7 risk factors. There were no differences in either URS or WRS distributions between the 
baseline cohort (n=66) and the subset of participants with longitudinal data (n=45).  
 
 
High Resolution Hippocampal Structural Imaging: Baseline 
 
 Baseline hippocampal complex subfield thickness was corrected for overall differences 

in size by normalizing each participant’s thickness values by their ICV. There was no significant 

relationship between GRS and ICV-normalized thickness across the entire hippocampus (URS: 

r=0.15, p=0.16; WRS: r=0.02, p=0.44) (Figure 4.4). Next, we examined entorhinal cortex and 

subiculum, two regions affected early in AD, and again found no association between GRS and 

ICV-normalized thickness (URS: r=0.14, p=0.13; WRS: r=0.05, p=0.35). As an exploratory 

analysis, we examined the remaining subfields and did not find any significant relationship 

between thickness and genetic risk. Finally, we ran partial correlations controlling for the effects 
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of age and sex in the whole hippocampus and in each subregion individually. These partial 

correlations again showed no significant association between thickness and genetic risk.  

 

 
 

Figure 4.4: Baseline Scatterplots Show No Association Between Genetic Risk Scores and 
Hippocampal Complex Thickness. Baseline whole hippocampal complex thickness estimates were 
corrected for normal variation in size using intracranial volume (ICV). There was no significant correlation 
between unweighted or weighted risk scores and ICV-corrected whole hippocampal complex thickness in 
our baseline cohort of 66 cognitively healthy older adults.  
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Figure 4.5: Longitudinal Hippocampal Complex Gray Matter Thickness. Each participant’s mean 
thickness across the whole hippocampal complex is plotted at baseline and at follow-up. Most subjects 
experienced modest changes in thickness while fewer subjects had more dramatic changes in thickness, 
usually as decreases in thickness. Only one subject had an increase in mean thickness greater than 0.15 
mm.   
 
 
High Resolution Hippocampal Structural Imaging: Longitudinal Change 
 
 Across the entire cohort, the average change in whole hippocampal thickness was -1.91 

(+/- 4.7)% over an average of 2.13 (+/- 0.68) years. This is slightly higher than previously 

published estimates of hippocampal atrophy using volumes estimates, but we are using a more 

sensitive technique and we include perihippocampal cortical regions in our whole hippocampal 

complex average (53; 54). Individual trajectories varied relatively widely, accounting for the 

large standard deviation in thickness percent change. Most people experienced mild changes in 

thickness, but a subset had more dramatic changes, usually thinning over time (Figure 4.5). 

There were some individuals whose thickness increased between baseline and follow-up.  
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 We found a significant negative correlation between increasing GRS and more negative 

percent change in cortical thickness across the entire hippocampal complex (URS: r=-0.40, 

p=0.003; WRS: r=-0.25, p=0.048) (Figure 4.6). We hypothesized that this effect was driven by 

entorhinal cortex and the subiculum, two regions of the hippocampal complex that are affected 

early by AD pathology. In entorhinal cortex, thickness correlated with both GRS types (URS: r=-

0.35, p=0.009; WRS: r=-0.35, p=0.009) (Figure 4.6). In subiculum, the association was 

significant but not as strong (URS: r=-0.31, p=0.01; WRS: r=-0.22, p=0.07). We also ran partial 

correlations controlling for the effects of age, sex and time between baseline and follow-up 

scans. Partial correlation coefficients were still significant for whole hippocampal complex 

cortical thickness and URS (URS: r=-0.34, p=0.028; WRS: r= -0.27 p=0.086) and entorhinal 

cortex thickness with both risk scores (URS: r=-0.32 p=0.038; WRS: r=-0.34 p=0.025). As 

exploratory analyses, we examined each remaining hippocampal complex subfield and found 

additional significant relationships to URS with fusiform gyrus (r=-0.35, p=0.009), 

parahippocampal cortex (r=-0.26, p=0.042), and CA1 (r=-0.25, p=0.048) thickness (Figure 4.7). 

Finally, we compared a multiple regression model using our URS to predict change in whole 

hippocampal complex thickness to a model that included only APOE as the genetic risk 

regressor (homozygous carrier=2, heterozygous carrier=1, non-carrier=0) (Table 4.2). Age, sex 

and time between baseline and follow-up visits were included in both models. We found that the 

URS model overall was highly significant (p<0.001) and that URS was a significant predictor 

within the model (p=0.028), along with time between visits (p=0.002) and a trend for sex 

(p=0.059). In contrast, the APOE-alone overall model was significant (p=0.003) but APOE itself 

was not a significant predictor of thickness (p=0.15). Instead the model was driven by time 

between visits (p=0.002) and sex (p=0.004) (Table 4.2). We used Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) to directly compare models. Comparing the URS 

model to the model with APOE-alone reveals that the URS model is a better fit to our data (URS 

model: AIC=258.0, BIC=268.9; APOE model: AIC=261.2, BIC=272.1). The URS model was also 
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a better fit when compared to a model that used family history (FH) of AD to quantify genetic 

risk (URS model: AIC=258.0, BIC=268.9; FH model: AIC=263.0, BIC=273.9). 
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Table 4.2: Multivariate Models Predicting Percent Change in Hippocampal Complex Thickness.  
 

Model 1: 
Unweighted 
Risk Score 

Predictors 
Coefficients 

t-value p-value 
Betas Std. Error 

(Constant) 17.153 5.994 2.862 0.007** 

Age -0.102 0.079 -1.291 0.204 

Sex -2.730 1.409 -1.938 0.060 

Yrs Btwn Visits -2.863 0.893 -3.207 0.003** 

Unweighted Risk Score -1.322 0.583 -2.270 0.028* 

 

R2 p-value 
0.364 <0.001 

Model 2: 
Weighted 

Risk Score 

Predictors 
Coefficients 

t-value p-value 
Betas Std. Error 

(Constant) 17.032 6.144 2.772 0.008** 

Age -0.144 0.079 -1.826 0.075 

Sex -3.735 1.337 -2.793 0.008** 

Yrs Btwn Visits -2.901 0.915 -3.172 0.003** 

Weighted Risk Score -3.101 1.763 -1.758 0.086 

 

R2 p-value 
0.333 0.002 

Model 3: 
APOE 

Predictors 
Coefficients 

t-value p-value 
Betas Std. Error 

(Constant) 17.227 6.255 2.754 0.009** 

Age -0.150 0.080 -1.872 0.068 

Sex -4.080 1.349 -3.024 0.004** 

Yrs Btwn Visits -2.981 0.932 -3.199 0.003** 

APOE -1.249 0.869 -1.437 0.158 

 

R2 p-value 
0.317 0.003 

Model 4: 
Family 
History 

Predictors 
Coefficients 

t-value p-value 
Betas Std. Error 

(Constant) 15.945 6.310 2.527 0.016* 

Age -0.146 0.082 -1.782 0.082 

Sex -3.702 1.435 -2.579 0.014* 

Yrs Btwn Visits -2.699 0.960 -2.810 0.008** 

FH -0.895 1.404 -0.637 0.528 

 

R2 p-value 
0.289 0.007 
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Figure 4.6: Greater Genetic Risk Score Predicts Thinning Across the Hippocampal Complex and 
Especially in Entorhinal Cortex. There is a significant relationship between both weighted and 
unweighted risk scores and percent change of bilateral hippocampal complex thickness over two years. 
This effect was particularly strong in entorhinal cortex (ERC), a region adjacent to the anterior portion of 
the hippocampus proper that is affected early in the course of AD.  
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Figure 4.7: Hippocampal Complex Unfolded to Reveal Region-Wise Relationships to Unweighted 
Genetic Risk Score. A cortical unfolding procedure is used to produce a flat map of the hippocampal 
complex. Regions are colored according to the statistical strength of the association between unweighted 
risk score (URS) and percent change in thickness between baseline and follow-up scans. In addition to 
entorhinal cortex (ERC), the fusiform gyrus (FUS) showed a significant relationship to URS at p < 0.01. 
Parahippocampal cortex (PHC), subiculum (SUB) and CA1 all showed a significant relationship to URS at 
p < 0.05. The only regions in the hippocampal complex where change in thickness was not associated to 
genetic risk were CA23-dentate gyrus (CA23DG) and perirhinal cortex (PRC).  
 

 
Discussion 

 
We have shown that a GRS for AD is associated with hippocampal thinning over two 

years, but not with baseline morphology, in cognitively healthy older adults. Our findings provide 

evidence that genetic risk screening might be a valuable tool for predicting trajectories of 

endophenotypes and, ultimately, disease. By showing that greater genetic risk is associated 

with greater thinning in the hippocampus, a region that is particularly vulnerable to AD 

pathology, we demonstrate the power of working with a neuroimaging genetics approach in 

cognitively healthy individuals. There were no associations between GRS and baseline 

hippocampal morphology, which was not in line with our hypotheses. This highlights the 

importance of longitudinal data, especially when studying healthy older volunteers, for 

identifying differences in atrophy rates that are likely more sensitive that baseline differences (2; 
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3). There were also no associations between GRS and verbal memory performance in our 

participants, which supports the idea that neuroimaging endophenotypes for AD may be more 

sensitive markers of risk for disease progression during the preclinical phase. Our study 

identified a predictive relationship between genetic risk for AD and hippocampal complex 

thinning that is not mediated by cognition. Thus, our findings demonstrate of a truly preclinical 

potential biomarker for AD.  

Other investigators have taken polygenic AD risk score approaches in neuroimaging 

studies. One of the first of these studies reported that a GRS that included all of the then-known 

AD risk genes predicted cortical thinning in regions particularly vulnerable to AD including 

entorhinal, lateral temporal and posterior cingulate cortices (55). Another more recent study 

used a similar approach, combining all known AD risk genes into a single score, and examined 

several structural measures in a large cohort of cognitively normal subjects (56). The authors 

found that a higher genetic risk score was significantly associated with hippocampal volume, but 

not with intracranial volume or whole brain volume. Our results, like these studies, support the 

existence of a predictive link between genetic risk for AD and hippocampal complex 

morphology.  

The present study design has two unique strengths. The first is the two-level selection 

criteria we used in creating our GRS. While there is certainly a defensible rationale for creating 

risk scores that include every known genetic locus with significant association to disease, we 

argue in favor of a hypothesis driven approach restricted to genes and factors for which 

evidence links them to the biomarker of interest. It unlikely that every genetic risk factor 

associated with AD incidence is also significantly associated with a given AD biomarker, such 

as hippocampal integrity. It is more likely that many of the genetic loci associated with AD 

incidence have non-overlapping molecular mechanisms leading to increased risk for disease 

and, therefore, would likely drive changes in some biomarkers for AD and not others. For 

example, studies have shown that CLU variants are related to structural and functional MRI 
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biomarkers, but no association to positron emission tomography (PET)-measured amyloid 

deposition or to AD-relevant CSF analytes has been reported. Our approach of using only 

genetic variants associated with AD incidence and also hippocampal structure or function 

strengthens our ability to detect a significant association with hippocampal atrophy. A second 

strength of our study is the process by which we measure our biomarker, hippocampal complex 

cortical thickness. Volumetric measurements of the hippocampus based on whole-brain 

structural imaging are less sensitive to subtle changes in gray matter morphology than the semi-

manual hippocampal complex segmentation process with high-resolution, partial-field-of-view 

imaging employed in this work. In preclinical AD, specific cortical laminae experience neuronal 

loss, which affects total volume only subtly while exerting a greater affect on gray matter 

thickness measurements (57; 58). Also, cortical thickness measurements are calculated at 

hundreds of points across the gray matter of the hippocampal complex, making averages more 

robust and less likely to be influenced by noise or error than lower-resolution volume estimates 

that include regions of white matter and, sometimes, CSF.  

Our method of hippocampal subfield segmentation is one of several such techniques. 

There is an ongoing effort to create a harmonized protocol for hippocampal subfield 

segmentation which we are actively supporting (52; 59). These efforts are essential to ensure 

that findings from different research groups are comparable and, therefore, better serve to 

enhance our understanding of hippocampal morphology and pathological changes to 

hippocampal structure. However, our lab has been consistently and successfully using versions 

of our current method for over 10 years and it is the most reliable method available, especially 

as pertains the segmentation of the most anterior hippocampal subfields, including entorhinal 

cortex (5; 25; 45). In future studies, we plan to adopt the automated techniques resulting from 

the Hippocampal Subfields Working Group efforts. In the present study, we chose not to 

interrogate left and right hippocampal complexes separately because we did not have a 
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hypothesis regarding laterality of the association between an AD GRS and hippocampal 

thinning.  

We recognize that the factors included in our genetic risk score are not entirely 

independent. For example, carriers of the APOEε4 allele often have a higher incidence of 

positive family history of AD when compared to APOEε4 non-carriers (60). However, due to our 

recruitment strategy targeting the worried-well and older adults with a family history of AD, 

APOEε4 non-carriers in our cohort are enriched for other genetic risk factors for AD, such as 

family history of AD, despite their lack of an APOEε4 allele. In our cohort, there were no 

significant differences in family history in carriers (60.7% with positive family history) versus 

non-carriers (65.8%) of the APOEε4 allele (p=0.80).  

There are several ways to attempt to identify genetic risk factors associated with a 

particular endophenotype, including data reduction techniques such as principal component 

analysis and regression techniques such as logistic regression in genome-wide association 

studies. In the present study, we chose to use the two-level selection criteria approach due to its 

conceptual novelty. Our use of an OR-weighted GRS and an unweighted GRS side-by-side was 

meant to illustrate the advantage of one over the other, if present. However, we found that in our 

GRS composed of 4 genetic risk factors, it was at least equally effective to use a simple linear 

additive risk score as it was to use a weighted approach. Because odds ratios change slightly 

with each genome-wide associate study (GWAS), a simple additive approach might be best to 

ensure comparability and reliability of a GRS across labs and in clinical trials.   

In addition to hippocampal integrity, another potential biomarker of preclinical AD is 

amyloid and tau deposition as measured by PET. We do not have amyloid- or tau-PET data 

available on these subjects, so it is not possible to rule out the presence of these pathologies in 

these subjects. We are also not able to estimate the tau-positivity rate based on the literature as 

tau-PET is a relatively new tool, but there is evidence that, like amyloid, tau is sometimes 

present in high levels in the brains of clinically normal individuals (61). According to Doraiswamy 
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and colleagues (2014), approximately 14% of cognitively normal older subjects are amyloid 

positive (62). Of course, the cut-off to define amyloid positivity is not precise and varies across 

studies, so this positivity rate is just an estimate. Still, assuming this rate is accurate, it would 

indicate that 9-10 (9.24) participants in our cohort are likely to be amyloid positive. Thus, we feel 

that even with the potential noise introduced into our sample by possibly including subjects with 

amyloid, we still have a large enough sample of amyloid negative participants to detect the 

significant effect between GRS and hippocampal morphology.  

Mechanistic insights from neuroimaging genetics studies are inherently limited by the 

lack of known causal variants driving many of the significant GWAS signals in AD. Saykin and 

colleagues (2015) describe a multi-step process to move from these genetic signals to targeted 

therapeutics (63). In their model genetics and neuroimaging intersect at the first step 

(discovering genetic loci that are robustly associated with a relevant trait) and at the final step 

(identifying individuals most likely to benefit from experimental therapies). The steps linking 

these two together include, first, the identification of causal variants, then testing hypothesized 

mechanisms in model systems and, finally, developing mechanism-targeted therapeutics. In the 

present study we have demonstrated an additive effect of multiple genetic risk factors on an AD 

biomarker, indicating that there might be different mechanisms affecting the same outcome 

measure, in this case hippocampal complex cortical thickness.  

The present study provides the first evidence that a hypothesis-driven AD GRS predicts 

increased hippocampal complex subfield thinning over two years in healthy, older adults. This 

work is extremely relevant to clinical trial design because of the short, two-year follow-up time 

along with the ease of collecting genetic and MRI data. Both are minimally invasive and can be 

repeated as needed. We argue that prescreening preclinical, cognitively normal individuals to 

maximize genetic risk will increase power to detect changes in related biomarkers. Indeed, 

preliminary work designed to assess the increased power of genetic pre-screening in clinically 

impaired cohorts has been promising. Kohannim and colleagues (2013) report up to a 50% 
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decrease in sample size needed to detect an effect in atrophy over two years (64). Genetic pre-

screening paired with neuroimaging-based outcome measures is going to be a critical 

component of future AD clinical trials focused on cognitively healthy, preclinical individuals for 

which traditional pencil-and-paper outcome measures will not be sensitive enough to detect 

drug effects.  
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CHAPTER 5 
  

Discussion: Neuroimaging Genetic Risk for Alzheimer’s Disease in Preclinical Individuals 
 
 
Abstract 
 

Better characterization of the preclinical phase of Alzheimer’s disease (AD) is needed in 

order to develop effective interventions. Neuropathological changes in AD, including neuronal 

loss and the formation of proteinaceous deposits, begin up to 20 years before the onset of 

clinical symptoms. As such, the emergence of cognitive impairment should not be the sole basis 

used to diagnose AD nor to evaluate individuals for enrollment in clinical trials for preventative 

AD treatments. Instead, early preclinical biomarkers of disease and genetic risk should be used 

to determine most likely prognosis and enroll individuals in appropriate clinical trials. 

Neuroimaging-based biomarkers and genetic analysis together present a powerful system for 

classifying preclinical pathology in patients. Disease modifying interventions are more likely to 

produce positive outcomes when administered early in the course of AD. In this review, we 

examine the utility of the neuroimaging genetics field as it applies to AD and early detection 

during the preclinical phase. Neuroimaging studies focused on single genetic risk factors are 

summarized. However, we particularly focus on the recent increased interest in polygenic 

methods and discuss the benefits and disadvantages of these approaches. We discuss 

challenges in the neuroimaging genetics field, including limitations of statistical power arising 

from small effect sizes and the over-use of cross-sectional designs. Despite the limitations, 

neuroimaging genetics has already begun to influence clinical trial design and will play a major 

role in the prevention of AD.    
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Introduction 
 

A long prodrome precedes the emergence of the clinical symptoms of Alzheimer’s 

disease (AD) (1–3). Increasingly, the time between the first silent pathological changes in the 

brain and the earliest stages of cognitive impairment is understood to be a critical window during 

which prevention and treatment strategies may be most effective (4). This preclinical phase of 

AD pathogenesis that occurs before clinical symptoms emerge is not well characterized. By 

definition, individuals with preclinical AD are not aware that they are affected by any 

neurological pathology, nor are their deficits detectable with cognitive testing. Preclinical AD is 

distinct from mild cognitive impairment (MCI), which is characterized by subtle cognitive decline 

and can sometimes progress to a clinical diagnosis of AD (5; 6). In the absence of detectable 

cognitive decline, we have access to a limited set of research tools to explore preclinical AD in 

humans. These include neuroimaging, genetic testing, and biochemical assays of the blood and 

CSF. Thus, neuroimaging genetics research is poised to play a critical role in improving the 

characterization of the earliest phases of AD pathophysiology. In the following sections, we will 

discuss the important role of neuroimaging genetics in AD prevention and treatment with a 

particular focus on the preclinical phase of the disease. Specifically, we will review findings 

resulting from both candidate gene and polygenic approaches to neuroimaging genetics studies 

in AD. The goal of this chapter is to survey the status of the field, including its many limitations, 

and to argue that neuroimaging genetics research utilizing polygenic approaches will lead to 

better characterization of preclinical AD, which is necessary to achieve effective AD prevention.  

 

Neuroimaging Preclinical Alzheimer’s Disease 
 

A common approach for studying preclinical AD is to use a group at increased risk for 

AD as a potential preclinical cohort and compare them to a cohort of controls without the risk 

factor. Increased risk can be defined by the presence of a particular genetic risk variant, such as 

the apolipoprotein E ε4 (APOEε4) allele, a positive family history of AD, subjective memory 
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impairment as well as the presence of an early neuroimaging or cerebral spinal fluid (CSF) 

biomarker. Well validated neuroimaging-based biomarkers for AD in these types of cohorts 

include hippocampal volume loss or thinning, cortical thinning of key AD-related cortical regions, 

beta-amyloid positivity measured by positron emission tomography (PET) and default mode 

network (DMN) dysfunction measured by resting state functional MRI (rs-fMRI) (7–16). There is 

evidence from familial AD patients that these biomarkers precede the emergence of clinical 

symptoms by at least 3-5 and up to 20 years (1). A thorough description of the literature 

supporting these biomarker data is outside our focus and there are many excellent reviews 

available on these topics (17–21). 

Clinical neuroimaging positive for biomarker changes, such as thinning of the 

hippocampus as measured with structural MRI, have been added to the updated AD diagnostic 

criteria (22). The acquisition of MRI-based biomarkers is minimally invasive, making these 

methods preferable to lumbar punctures. Both MRI and PET imaging can and have been used 

in longitudinal studies and provide a quantitative measure of change over time that is not 

influenced by cognitive performance, which can be affected by sleep patterns, illness, stress 

and other confounding factors. However, characteristics of imaging biomarkers are not yet 

sufficient for a preclinical AD diagnosis on the individual level. This is due to several factors, 

including the lack of extensive longitudinal data to map biomarker changes over time in an 

individual as well as the limitations in resolution and measurement of modern imaging 

techniques. Combining known biomarker trajectories with genetic risk stratification may increase 

prediction power, especially in clinical trial settings, giving greater relative importance to 

possible disease-related changes in individuals at the highest genetic risk for AD.  

 

Neuroimaging and AD Candidate Genes 
 

In 2000, the first study to combine neuroimaging and genetic risk for AD in healthy 

subjects found that carriers of the APOEε4 allele had higher activation across several cortical 
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regions during a memory task compared to non-carriers (Figure 5.1; (23)). This approach, 

examining a selected variant(s) within a single gene and the association of that variant with 

brain structure and function, is a type of candidate gene study. Candidate gene studies in 

neuroimaging are very common, but they are controversial due to difficulties in both 

interpretation and replication of results (24). The now common practice of restricting candidates 

to genes for which a disease association has already been demonstrated has helped to make 

findings more robust. Still, a gene with a relatively large effect on disease incidence in a 

genome-wide association study (GWAS) is not necessarily related to neuroimaging phenotypes 

to the same degree. APOE is the most commonly studied candidate gene for AD. Because of 

the large proportion of the variance in AD heritability that is accounted for by APOE, 

investigators have been successful in identifying differences in many neuroimaging modalities 

based on APOE genotype (Figure 5.1; see (17–20); for updated review including recent findings 

see Chapter 1).  
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Figure 5.1: Differences between carriers and non-carriers of the APOE ε4 (APOEε4) allele have 
been shown using both structural and functional neuroimaging. The association between APOEε4 
and AD risk has a moderate effect size. This may increase the likelihood of observing differences in 
neuroimaging phenotypes, which are relatively gross measures of neural structure and function. A) 
Carriers of the APOEε4 risk allele show potentially compensatory cortical activity in language areas 
during the learning and recall phases of a word-based paired-associates task. B) The anterior 
hippocampal network (AHN) and posterior hippocampal network (PHN) connectivity is modulated by 
APOE genotype. Bar graphs represent the network as a region of interest and denotes average 
connectivity in each genotype group. C) Structural MRI shows that healthy older carriers of APOEε4 have 
a greater atrophy rate over time in hippocampus and superior temporal gyrus when compared to non-
carriers. Panels reprinted: A (23), B (95) and C (7). 
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In addition to APOE, other GWAS-identified AD risk genes have been studied using a 

candidate gene approach. These include CLU, PICALM, and CR1 as well as BIN1, ABCA7 and 

EPHA1. Of these genes, the one that has received the most attention in the neuroimaging 

literature is CLU. First linked to AD by May and colleagues in 1990, the coincident discovery of 

CLU in two independent GWASs in 2009 renewed the interest in CLU and its role in AD (25–

27). The association of CLU SNP rs11136000 to AD has been replicated several times (28–30).  

Several functional imaging studies have reported an effect of CLU genotype in both task-

based and resting functional MRI (fMRI) paradigms. One fMRI experiment that tested for 

additive effects of CLU and APOE on blood-oxygen-level dependent (BOLD) signal during an 

executive attention task found a negative correlation between genetic risk and the BOLD signal 

associated with executive attention in the medial temporal lobe, as well as other regions (31). In 

another study, healthy older carriers of the CLU risk variant showed decreased coupling of the 

hippocampus and prefrontal cortex during memory retrieval tasks (recall and recognition) (32). 

In a resting-state fMRI experiment, subjects who were homozygous for the CLU risk allele had 

the same general pattern of positive and negative functional connectivity compared to carriers of 

the protective allele, but the magnitude of the connectivity was stronger in both the positive and 

negative directions (33). Taken together, these studies indicate a modulatory relationship 

between BOLD signal and CLU genotype (Figure 5.2).  
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Figure 5.2: A single nucleotide polymorphism within the gene CLU that is associated with higher 
risk for AD has been associated with decreased functional connectivity of the hippocampus in two 
distinct studies. Functional connectivity between the hippocampus and frontal regions during both recall 
(A) and recognition (B) is modulated by CLU genotype such that individuals who carry the risk allele show 
lower connectivity in a dose-dependent manner. I another study, individuals who are homozygous for the 
CLU risk allele show greater connectivity between left hippocampus and left medial temporal lobe, as well 
as higher connectivity between right hippocampus and angular gyrus (D). Panels A and B reprinted (32). 
Panels C and D reprinted (33). 
 

PICALM, a gene whose protein product is involved in synaptic transmission, has also 

been linked to imaging phenotypes in both structural and functional imaging (33–36). An 

epistatic effect of PICALM and BIN1, another gene involved in synaptic transmission, on 

amyloid deposition has been reported (36). BIN1 was also linked to smaller entorhinal cortex 

and temporal pole volume in a structural imaging study (35). CR1 has been shown in several 

studies to be associated with smaller entorhinal cortex volume in both young and older healthy 

adult subjects (35; 37). Finally, a positron emission tomography (PET) study found that there 

was a relationship between amyloid deposition and polymorphisms in ABCA7 and EPHA1 such 

that carrying the risk variant of ABCA7 increases likelihood of amyloid positivity while the low-

risk polymorphism of EPHA1 decreases likelihood of amyloid positivity (38). A more complete 
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description of imaging studies focused on these GWAS-identified risk genes can be found in 

Table 5.1. See Chapter 1 for more details. 

  
Table 5.1: GWAS-Identified Risk Genes for AD: Neuroimaging Modalities in the Literature and 
Representative References. OR = odds ratio, from (91) ; sMRI = structural magnetic resonance 
imaging; DWI = diffusion weighted imaging; t-fMRI = task-based functional MRI; rs-fMRI = resting state 
functional MRI; PET = positron emission tomography 
 

Gene OR sMRI DWI t-fMRI rs-fMRI PET Comment 

CLU 
0.86 

(0.84 – 
0.89) 

Bralten et al., 
2011a; 

Stevens et 
al., 2014 
(37; 92) 

Braskie et 
al., 2011 

(93) 

Erk et al., 
2011; Green 
et al., 2014 

(31; 32) 

Zhang et 
al., 2014 

(33) 
 

Protein co-
chaperone 

PICALM 
0.87 

(0.85 – 
0.89) 

Biffi et al., 
2010; Bralten 
et al., 2011a; 
Furney et al., 
2011 (34; 35; 

37) 

  
Zhang et 
al., 2014 

(33) 

Hohman 
et al., 

2013 (36) 

Synaptic 
transmission 

CR1 
1.18 

(1.14 – 
1.22) 

Biffi et al., 
2010; Bralten 
et al., 2011b  

(35; 94) 

    Innate immunity 

BIN1 
1.22 

(1.18 – 
1.25) 

Biffi et al., 
2010 (35)    

Hohman 
et al., 

2013 (36) 

Synaptic 
transmission 

ABCA7 
1.15 

(1.11 – 
1.19) 

    
Hughes 
et al., 

2014 (38) 

Lipid 
homeostasis 

EPHA1 
0.90 

(0.88 – 
0.93) 

    
Hughes 
et al., 

2014 (38) 

Adhesion and 
contact 

mediated 
signaling 

 

Relatively little genetic variance is accounted for by differentiating experimental groups based 

on carrier status of a single risk variant. In the next sections, we will cover polygenic scores and 

regression-based polygenic modeling approaches. These efforts aim to measure genetic risk as 

a continuous metric or as a set of predictors capable of revealing important relationships 

between genetic risk, brain structure and function and preclinical AD.  

 

Polygenic Risk Scores 
 

Combining multiple genetic risk loci into a single metric or score is an attractive way to 

modernize the candidate gene approach by using the metric or score as your “candidate” rather 
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than a single gene. Associations between a risk score and, for example, an imaging 

endophenotype cannot be attributed to a single gene, but these associations may be clinically 

useful in the effort to better characterize preclinical AD (39). Such metrics are designed on one 

of two main theoretical bases: first, that multiple risk polymorphisms in the same disease-related 

biological pathway will be more likely to disrupt normal functioning of that pathway; or, second, 

that multiple risk polymorphisms affecting various neuronal functions will together predispose or 

lead to disease. A polygenic risk score (PRS) can be calculated in several ways. Unweighted 

approaches simply tally the number of known risk alleles carried by a given individual. Weighted 

risk scores apply a statistic that captures the strength of the relationship between the genetic 

variant and disease to differentially weight each risk allele. When GWAS data is available, odds 

ratios are often used to weight risk alleles in a polygenic risk score but other effect size 

measures can be used (39). Another method of quantifying polygenic risk is assessing genotype 

patterns and binning subjects by their genotypes at multiple loci. A limitation of this approach is 

that a large sample is needed in order to have large enough sub-groups for meaningful 

statistical analysis. Finally, testing for interaction effects, or epistatic effects, between two or 

more genes is also technically a polygenic approach, although it differs in that risk effects are 

not additive but rather emerge from specific interactions between loci. 

Using a PRS weighted by GWAS-reported odds ratios, Sabuncu and colleagues showed 

that increased genetic risk for AD was associated with decreased cortical thickness in AD-

vulnerable regions, including entorhinal, lateral temporal, inferior parietal and posterior cingulate 

cortices (Figure 5.3; (40)). In another structural imaging study a large cohort of over 8,000 

cognitively healthy older individuals was used to assess the relationship between a GWAS-loci 

based weighted PRS and several measures including intracranial volume, total brain volume, 

and hippocampal volume (41). The authors reported that higher PRS was associated with 

smaller hippocampal volume, a result that remained significant even after removing APOE from 

the PRS. Decreases in fractional anisotropy (FA) have emerged in the APOE literature as a 
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possible early indicator of disease-susceptibility (42; 43). More work is needed to ascertain 

whether there is an additive effect of AD risk genes on FA, but preliminary efforts in polygenic 

approaches to account for white matter integrity are promising (44).  

 

 

Figure 5.3: Polygenic risk scores have been used to show relationships between aggregate 
genetic risk for AD and morphological differences in AD-vulnerable cortical regions. A) A polygenic 
score for AD risk based on 26 common variants was negatively correlated with average thickness in a set 
of AD-vulnerable cortical regions in healthy older adults. The 26 variants, based on closest gene, were 
within or near DAB1, CR1, BIN1, SSB, C6orf155, ARID18, CLU (two SNPs), KCNU1, MS4A6A, 
C11orf30, PICALM, CNTN5, BCL3 (two SNPs), PVRL2 (5 SNPs), TOMM40 (3 SNPs) and APOE (40; see 
Supplementary Table 2). B) The relationship between risk score and cortical thickness was driven by a 
strong age-associated decline in cortical thickness amongst individuals at highest genetic risk for AD. 
Panels reprinted (40).   
 

There is also evidence from the functional imaging literature that epistatic effects are 

detectable. One study tested interactions between single nucleotide polymorphisms (SNPs) 

from 9 AD risk genes identified in GWASs and found that carrying BIN1 risk variants and the 

PICALM protective variant was associated with increased amyloid deposition as measured by 

PET imaging (36). In young adults, it was reported that the effect of APOE and CLU risk on 

BOLD signal during an executive attention task was decreased activation of medial temporal 

structures as genetic risk increased (31). Another study of young adults using resting state fMRI 

found that an interaction effect between PICALM and CLU risk modulated hippocampal 

connectivity (33).  
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Regression Approaches to Polygenic Risk 

 
The use of predictive regression models in clinical biostatistics is extremely common 

(45). Neuroimaging genetics presents a unique problem with millions of genetic markers (in 

whole genome data) that can be used as predictors and many outcome phenotypes of interest. 

Furthermore, linkage disequilibrium, or the tendency of certain genetic loci to be inherited 

together, must be considered when using any regression method since many of these models 

assume that predictors are independent (46). The numerous data reduction or selection 

methods used in regression analyses can be categorized as follows: stepwise regression, 

regularized regression, mixed linear modeling, projection and prior biological knowledge (47–

51). While the methods are too numerous to review in detail, we highlight a few important 

perspectives with respect to AD. 

Stepwise regression optimizes a linear model by successively removing, adding or 

alternating between adding and removing predictors. One study specifically demonstrated there 

is an advantage to using machine-learning based, cross-validated genetic algorithms over 

stepwise regression to predict conversion from MCI to AD (47). Regularized regression is 

similar to stepwise in that it assumes that a small number of the predictors will be the most 

informative. These approaches, like Lasso or sparse regression (e.g., ridge, elastic net), 

penalize larger models in favor of more parsimonious models. Silver and colleagues used 

sparse reduced-rank (Lasso) regression to model groups of SNPs that are all within a single 

biological pathway and calculate the strength of the relationship of that pathway to AD-related 

neuroimaging phenotypes (48). The authors reported that SNPs belonging to insulin signaling, 

vascular smooth muscle contract and focal adhesion pathways were the strongest predictors of 

structural change over 24 months of follow-up. Another study used an elastic net regularization 

method to explore genetic risk factors for AD affecting the hippocampal surface and found that 
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APOE and TOMM40 were associated with hippocampal surface differences in anterior and 

middle regions (52).  

Genome-wide complex trait analysis (GCTA; http://cnsgenomics.com/software/gcta/) is 

an example of an optimized linear modeling approach to polygenic risk for phenotypes. 

Developed to determine the portion of variability of a given trait that can be explained by all 

available SNPs rather than those that survive genome-wide significance, GCTA takes 

advantage of linear mixed effect modeling to combine fixed effects like age and sex with SNPs 

as random effects (53). A recent update to the approach ensures that this procedure can be 

completed in reasonable time despite the high computational demand of considering millions of 

SNPs and many phenotypes (54). The authors of the updated GCTA approach used a cohort of 

1,320 subjects to compute heritability estimates for several structural neuroimaging measures 

including whole-brain cortical thickness (54). Ridge and colleagues used the GCTA approach to 

examine the proportion of the variance in AD status explained by 11 known, common genetic 

risk loci for AD and found that only 8% (standard error 0.03) of phenotypic variance was 

accounted for by these markers, while 33% (standard error 0.0072) of the variance was due to 

common SNPs, known and unknown (49). These results suggest that there are many more 

common AD-associated SNPs that have not been identified yet and that genetic variants that 

explain a large proportion of phenotypic variance are rare.  

To test across many millions of SNP-SNP interactions it is necessary to apply a method 

that is capable of performing the computationally intensive task of high-dimensional predictor 

selection. Hibar and colleagues used a machine learning approach that was designed to 

perform well when the number of predictors is greater than the number of observations, as is 

the case when examining human SNP data, by ranking the normalized predictors by their 

correlation to the dependent variable (55). The authors discovered that the volume of a region of 

the temporal lobe was associated with the interaction between two SNPs across the clinical 

categories in the ADNI sample. Another study, also using ADNI, reduced the number of SNP-
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SNP interactions they tested using a linear regression approach by only testing for interactions 

between SNPs that were members of a common biological pathway, such as calcium signaling 

or axon guidance, which were both associated with entorhinal cortex and hippocampal atrophy 

in their cohort (51). This approach based on prior biological knowledge has been shown to be 

an effective method of predictor selection (56). Similarly, SNP data reduction using projection 

techniques like independent component analysis has been used to identify independent groups 

of genes affecting a given trait (50). Post-hoc pathway analysis of the components then can 

reveal whether they are enriched for genes related to, for example, as Meda and colleagues 

found in their ADNI sample, inflammation, diabetes, obesity and cardiovascular disease (50).  

 

Advanced Association Models 
 

In addition to more traditional regression approaches, advanced association models can 

be used to confront the challenges of working with large datasets in neuroimaging genetics. 

Canonical correlation is a method for interpreting large cross-covariance matrices that 

maximizes correlation between linear combinations of pairs of vectors within a given matrix. 

Sparse canonical correlation takes this process a step further by minimizing the number of 

features used to find the maximum correlation structure using, for example, the well-known least 

squares approach (72). Sparse canonical correlation has been used to explore genetic risk 

factors for AD affecting the hippocampal surface (73). Looking only at AD risk genes as listed in 

the AlzGene database, the authors of that study found that APOE and TOMM40 were 

associated with hippocampal surface differences in sparse regions, including anterior and 

middle areas (73). Variations of the sparse canonical correlation approach have been used in 

two other studies focused on AD (74; 75). The first used a “knowledge-guided” algorithm that 

accounted linkage disequilibrium and genetic co-expression networks and examined the 

relationship between SNPs within APOE and amyloid deposition as measured by florbetapir-

PET (74). This study identified only a single SNP in APOE that was associated with amyloid 
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deposition, but they argue that their method can be scaled up to genome wide studies. The 

second study that used a similar approach and also examined APOE, discovering an 

association between a specific SNP and gray matter density in right hippocampus (75). 

 
Limitations 
 
Power: Effect Sizes and Variant Frequency 
 

A major challenge in neuroimaging genetics is sufficiently powering studies to detect 

hypothesized effects. One problem is the low effect size of common genetic associations to 

disease in human polygenic disorders (57; 58). An exception to this pattern is the APOE locus 

where a commonly occurring variant is strongly associated to increased AD risk. In fact, APOE 

accounts for a larger amount of the variance in AD heritability than any single known genetic 

locus in another human neurobehavioral, polygenic disorder. Theoretically, because APOE 

accounts for a relatively large proportion of the heritability variance in AD, it is possible that 

accurately modeling polygenic risk for AD will be simpler than in other common polygenic 

neurobehavioral diseases. Thus, AD is an attractive neurological disorder to neuroimaging 

genetics investigators who are anxious to demonstrate that their field is uniquely positioned to 

identify early, preclinical predictors of disease.  

Today, it is not clear if the underlying genetics of AD are best described as many high-

effect rare variants (e.g., TREM2 or MAPT) that, in different individuals, each lead to clinical AD 

or many low-effect common variants that together in a single individual can lead to clinical AD. 

To the neuroimaging genetics investigator, there are advantages and disadvantages to a 

common-variant or rare-variant theory of AD genetics. Of course, rare variants occur in so few 

individuals that it is difficult to amass a large cohort of carriers. However, increased emphasis 

on data sharing and access to continuously expanding reservoirs of pooled data means that 

reasonably sized samples of individuals with specific rare variants may be plausible (given a 

minor allele frequency of 0.002, a sample of 20,000 subjects would be needed to identify 40 
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carriers of the TREM2 risk variant) (59). Often, rare variants associated with a particular disease 

have a relatively high effect size, which may make differences between carrier groups easier to 

detect, even at smaller sample sizes. In contrast, carriers of common variants are more easily 

amassed in large numbers, but investigators need extremely large cohorts to detect the low-

effect size association that usually accompanies a disease-related common variant (Figure 5.4). 

As discussed in previous sections, methods for modeling multiple genetic risk factors in a single 

experiment are actively being developed and may help to exploit the synergistic predictive 

power of many low-effect-size common variants. In a thorough analysis of the PRS literature, 

Dudbridge used heritability estimate, sample size, locus significance threshold and PRS 

weighting method to generate formulae that allow investigators to estimate the likelihood that 

future studies will be sufficiently powered (39). The findings indicated that perhaps hundreds of 

thousands of subjects would be required to make PRS useful at the individual level. Sample 

sizes are generally not of this magnitude, but they are increasing quickly. Another simulation-

based study based on 10,000 cases and controls reported that subjects in the top 5% of genetic 

risk for hypothetical disease are three to seven times more likely to be affected (60). A three to 

seven fold increase in risk is certainly clinically useful if not conclusive, as it suggests some 

individuals may be better candidates for clinical trials and that more frequent 

 follow-up assessments are indicated.  
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Figure 5.4: Practical and theoretical parameters of genetic risk factors in AD. The relationships 
between variant/allele frequency, effect size and sample size are such that designing adequately 
powered studies is challenging. CLU, APOE and TREM2 are plotted as representative genes for the 
following three scenarios: first, a commonly occurring risk variant with a small effect size (CLU, risk allele 
is major allele with frequency at 60% and effect size of 0.86 (91)), second, a moderately common risk 
variant with a moderate effect size (APOE ε4 risk allele frequency is 12-14% with an effect size of 2.5 (27; 
91)), and third, a rare variant with a relatively large effect size (TREM2 risk variant is minor allele with a 
frequency of 0.2% and effect size of 3 or more (59; 96)). Note that there are no examples of genes in two 
extremes in this three dimensional space: high frequency variants that have large effect sizes and low 
frequency variants that have very small effect sizes. The lack of risk variants of the latter description could 
be due to the practical difficulties of measuring very small risk effects mediated by very uncommon 
variants.  
 

 

Cross-sectional Versus Longitudinal Designs 
 

Another major challenge in the field of neuroimaging genetics of AD is the predominant 

use of cross-sectional experimental designs to uncover the pathophysiological trajectory of AD. 

In the literature, inferences about the trajectory of AD are overwhelmingly made from cross-

sectional studies in which data is collected from each subject only once and all the subjects are 
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randomly distributed across the age range under investigation with equal number of males and 

females. This approach makes it particularly difficult to make conclusions on the subject level 

because cross-sectional studies confound between-subject and within-subject variation (61). 

Given this limitation, drawing longitudinal conclusions based on cross-sectional evidence, even 

from many studies, is precarious and should be done cautiously (62).  

The importance of early detection in neurodegenerative diseases like AD is illustrated by 

the extensive neuronal loss already present in mildly symptomatic AD patients (63). In addition, 

recent work has established that AD risk genes are associated with differences in brain 

structure and function even in young people, including children and infants (64; 65). In light of 

this, how can investigators optimize experimental design for the study of AD risk and preclinical 

AD? Following subjects in longitudinal designs better allows for making inferences about 

disease trajectory but these studies are difficult in practice. In the modern pro-collaboration 

atmosphere though, multi-cohort longitudinal designs are feasible because many sites can each 

collect longitudinal data on a reasonably small number of subjects and then, assuming proper 

standardization and oversight is in place, these subjects can be combined to create a much 

larger cohort. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a good example of a 

multi-center effort in neuroimaging genetics of AD (66; 67). Optimized longitudinal mapping of 

AD progression will help identify individuals who are in the preclinical phase of AD. These 

individuals are likely to benefit the most from intervention, especially a progression-slowing or 

halting drug. Such a drug is not available today, but the accurate and precise definition of 

preclinical AD will be an essential component to the success of any candidate.  

 

Clinical Utility of GWAS Loci: The Search for Causal Variants 
 

The causal variants that give rise to the APOEε4 allele are known polymorphisms at 

rs429358 and rs7412. Variants at these loci alter the structure and function of the translated 

APOE protein (68). In fact, APOEε4 “structure correctors”, which make protein products of 
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APOEε4 behave like the more common protein products of APOEε3 are currently being 

developed as a possible treatment for AD (69). In contrast, many of the GWAS-identified AD 

risk loci are located in intronic (CLU, ABCA7) or intragenic (BIN1, EPHA1) regions with no 

evidence that variants affect protein structure or function. An intragenic region may play some 

regulatory function, but in the cases of EPHA1 and BIN1 there is little evidence of conservation 

of these intragenic regions, which makes a regulatory role in genetic expression unlikely (70). 

There is even some debate over whether genes are correctly identified when significantly 

associated loci reside in non-coding regions. The common approach is to report the SNP as 

related to the nearest gene, but this is not necessarily the case. The search for the causal 

variants for these genes and for genes implicated in other common disease by GWASs is still 

ongoing (71). Ostensibly, the causal variant for one of these genetic risk loci will be a 

polymorphism in high linkage disequilibrium with the GWAS locus. In addition, the 

polymorphism should affect the downstream structure or function of the gene’s RNA or protein 

product. The utility of GWAS-identified risk genes as potential drug targets is limited without first 

identifying the causal variants driving the association at each locus. One important step in this 

effort is the development of a functionally annotated genome and the tools to explore it, such as 

ENCODE (https://www.encodeproject.org). Using ENCODE investigators can quickly discover 

basic functional information about a locus of interest, perhaps one they identified in a GWAS. 

The functional elements annotated in the ENCODE project help investigators distinguish 

between, for example, regulatory elements, close-range promoters and genes that are likely to 

be transcribed (determined using RNA-seq and similar techniques). ENCODE is an excellent 

example of a large-scale collaborative project that will enhance the scientific community’s ability 

to interpret genetic association signals.  
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Mechanistic Interpretations and Neuroimaging Genetics 
 

The incorporation of human genetics into neuroimaging studies has identified brain traits 

that are associated with specific genetic variants or, more germane to this review, with genetic 

risk scores. However, as described in the text that precedes this section, the genetic loci are 

often identified via GWAS and thus, the causal variant is not known. This inherently limits the 

mechanistic insights researchers are able to gain from neuroimaging genetics studies of this 

kind. For APOE, for which there is no ambiguity about causal variants, neuroimaging has 

revealed that carriage of the APOEε4 allele is related to increased amyloid deposition as 

measured by PET imaging which, in turn, is related to neuronal death and a higher rate of 

cortical thinning in AD-vulnerable regions when compared to matched controls who do not carry 

the risk variant. Saykin and colleagues (2015) describe a multi-step process to move from 

genetic signals to targeted therapeutics in which genetics and neuroimaging intersect at the first 

step (discovering genetic loci that are robustly associated with a relevant trait) and the final step 

(identifying individuals most likely to benefit from experimental therapies) (72). The middle steps 

include identification of causal genes, testing hypothesized mechanisms in model systems and 

developing therapeutics that act on these mechanisms. Thus, we believe the salient point is that 

neuroimaging genetics research is essential to the development and execution of therapeutic 

hypotheses, even if, in isolation, these studies do not always yield new mechanistic insights.  

 

Generalizability Across Ancestries 
 

It is important to recognize that all the largest AD GWASs used large cohorts of 

Caucasian European or American subjects. This creates a potential problem with 

generalizability to other ancestry groups, especially that of African ancestry (73). While there are 

published GWASs examining AD genetics in minority ancestral groups, one only of these, 

focused on African American participants, has topped 1,000 participants in the case and control 

groups ((74); see Table 1 in (75)). Thus, these groups remain understudied compared to the 
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very large GWASs with non-Hispanic Caucasian participants. The genetic loci implicated by 

studies of Caucasians might fail to replicate in a cohort of subjects from a different ethnic 

background due to population specific variants, differing patterns of linkage disequilibrium or 

even a heterogeneous genetic basis of AD in different ethnic groups (76). To illustrate this 

issue, consider that many small GWAS studies have tried to replicate the association of CLU 

with AD in non-Caucasian cohorts. The results of these studies indicate that there is an 

association between CLU and AD in Chinese cohorts, but not in cohorts of non-white Americans 

or Europeans (29; 77; 78). The limited generalization of results from large published GWASs in 

AD is a problem and a greater effort must be made to amass comparably large samples of 

different ancestral groups for new association studies. This effort may lead to the identification 

of certain genes that are associated with AD regardless of genetic background. These genes 

would be good candidates for increased research resources and drug targeting due to their 

greater generalizability. Also, importantly, further exploration of the genetic basis of AD in 

people of African and Hispanic descent may help elucidate any biological bases for the 

epidemiological differences observed in these ethnic groups, including higher incidence and 

earlier onset of AD (79).  

 

Small Sample Sizes: Consequences for Neuroimaging Genetics 
 

As eloquently described by Button and colleagues (2013), small sample sizes in 

neuroimaging studies decrease statistical power which leads to a decreased rate of detectable 

true positive results while leaving the rate of false positives unchanged (80). This has the effect 

of increasing the likelihood that a significant result is, in fact, spurious. Small sample sizes also 

bias studies toward large effect size results, as these are the only results that can be significant 

given the power limitations. The latter phenomenon has been dubbed the “winner’s curse” and 

leads to studies that are very difficult to replicate (80). Given these known problems, why are 

neuroimaging studies with small samples still (albeit less and less so) prevalent? This is related 
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to the relatively high cost of acquisition of neuroimaging data, the currently accepted need to 

“pilot” and publish new paradigms and techniques before formal funding for large-scale studies 

can be won and also immense pressure, especially on young investigators, to publish frequently 

(81). Taken together, it is clear that sample size is a very important consideration when 

performing a neuroimaging genetics study and robust power analyses are a crucial component 

of any research program.  

 

Implications for Clinical Trials 
 

Despite major challenges related to statistical power, polygenic risk modeling and 

generalizability, the field of neuroimaging genetics is poised to play a major role in the 

development of effective treatments for AD. Phase 3 AD treatment trials in humans have all had 

negative outcomes, not meeting endpoints despite promising data in model organisms and in 

preceding trial phases (82; 83). This high failure rate may be the result, in part, of heterogeneity 

across the study participants enrolled in these clinical trials. One source of heterogeneity is 

neuropathological variation. The clinical-neuropathological correspondence of AD (both pure 

and AD-vascular mixed pathology) occurs in about 87% of clinical AD cases that come to 

autopsy (84). Thus, more than 10% of clinically diagnosed AD patients actually suffer from 

some other neurodegenerative disorder, such as frontotemporal lobar degeneration (FTLD) or 

corticobasal degeneration (CBD). It is reasonable to assume that subjects with each of these 

diseases, from pure AD and mixed AD pathology to FTLC and CBD, will respond differently, if at 

all, to potential treatments that target a single molecular species, like Aβ oligomers or plaques. 

One way to help minimize neuropathological heterogeneity is through the use of PET imaging. 

The use of PET imaging of Aβ and tau as a pre-screening technique in clinical trials, while 

costly, will allow investigators to amass a more neuropathologically homogeneous cohort. 

Indeed, neuropathological pre-screening using PET imaging is currently being implemented for 

the first time as part of the Anti-Amyloid Treatment in Asymptomatic AD (A4) trial, the protocol of 
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which requires a positive Aβ florbetapir-PET scan for enrollment into the treatment arm (85). 

Another imaging-based method for neuropathological prescreening is diffusion-weighted MRI 

which can be used to estimate the severity of vascular pathology (86).  

Neuropathological differences are not the only source of heterogeneity in clinical trial 

subjects. It is also important to consider the heterogeneity of the underlying genetics in each 

individual subject. Depending on the mechanism of the candidate drug, it is possible there will 

be some variation of response in trial participants with different genetic risk factors for AD. (87). 

Also, it is likely that by examining genetic risk, the ability to identify asymptomatic individuals 

who will progress to show cognitive decline is improved. Thus, investigators should consider 

implementing genetic prescreening measures that select for clinical trial participants that have 

certain genetic risk factors for AD (72). Clinical trials in AD have already started to use carriage 

of one or two risk variants (APOE, TOMM40) as a prescreening measure (88). Kohannim and 

colleagues published a study in which they tested the hypothesis that a polygenic screening 

protocol would decrease the sample size necessary to detect an effect in a hypothetical trial 

(89). The authors ranked 394 cognitively healthy and MCI ADNI subjects in order of decreasing 

polygenic risk score, calculated based on multiplying risk alleles for APOE, CLU, CR1 and 

PICALM by the logarithm of the odds ratios reported for each gene in GWASs. They found that 

by selecting only the top 15% of subjects with highest genetic risk, the required sample size to 

show differences in temporal lobe atrophy decreased from 142 to 69 (89). This is excellent 

evidence that genetic pre-screening would increase statistical power in trials. Binning 

participants by genetic risk may well be the next frontier in AD clinical trial design. 

Another important role for neuroimaging genetics in clinical trials is the development of 

hard, non-cognitive endpoints to assess treatment efficacy (90). Most AD trials to date have 

used soft endpoints such as paper-and-pencil memory measures or a composite dementia 

severity scores (82; 83). However, as trials shift their focus to preclinical individuals who are 

asymptomatic cognitive endpoints will no longer be appropriate. Thus, neuroimaging-based 
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biomarkers as well as others, such as CSF analyte levels, which capture pathological changes 

that precede cognitive decline, must be refined for use as clinical endpoints (90).  

A neuroimaging genetics approach uses minimally invasive technologies to characterize 

the earliest pathophysiological changes in preclinical AD. In the effort to prevent and treat AD, 

the proximal goal of combining multiple genetic factors, neuroimaging biomarkers and other 

measures to estimate AD-risk is to pre-select clinical trial and research participants. The distal 

goal is to provide more detailed prognoses in the clinic during the preclinical phase that can be 

used to create optimized treatment plans and enroll ideal candidates in specific clinical trials.  
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CONCLUSION 
 

Neurodegenerative diseases present unique challenges in biomedical research. Long 

preclinical prodromes precede the emergence of symptoms and, thus, clinical diagnosis is a 

mid-to-late event in the course of the disease (1). Because of this, there has been a rapid 

expansion of research on the preclinical phase of neurodegenerative diseases. The preclinical 

phase is likely the ideal time to provide interventions and therapy, but in the absence of clinical 

symptoms preclinical disease is difficult to identify. In Alzheimer’s disease (AD), the study the 

dominantly inherited familial AD has been crucial to elucidating the preclinical changes that 

occur in the brain (2).  

Familial AD, however, is much less common than late-onset, sporadic AD which 

accounts for 99% of all AD cases (3). In the research described in this volume, we used genetic 

risk for late-onset, sporadic AD to study healthy people at elevated risk for AD in the future. In 

Chapters 2 and 4 we found that greater genetic risk for AD is associated with functional and 

structural changes in key brain regions known to be involved in the earliest pathological 

changes in AD. The results of these studies, performed with healthy older adult volunteers, may 

be driven by preclinical changes in the elevated AD-risk group. We cannot, however, definitively 

determine the presence preclinical disease in our research participants, which limits our 

interpretation. In Chapter 3, we were able to uncover stable differences in intrinsic connectivity 

architecture in young adults based on genetic risk for AD. These results elucidate the functional 

effects of different APOE genotypes in young people, but they illustrate how challenging it is to 

interpret the results of neuroimaging genetics studies. It is clear, based on the work described in 

this volume, that characterizing patterns of biomarker change in longitudinal research across the 

lifespan is crucial to tracking gene-biomarker associations and identifying changes in these 

associations that might be signs of imminent clinical decline. When we discover the neural 

consequences of genetic risk for AD in young and middle-aged adults we will improve our ability 
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to use a neuroimaging genetics approach in older, healthy adults to identify the preclinical 

phase of AD.  

Delaying or preventing the onset of AD would have a huge impact as AD is an extremely 

costly disease, requiring $226 billion in resources in the United States in 2015 (4). The path to 

effective AD intervention has two key elements: first, the development of effective drugs and 

second, the identification of individuals who will benefit from those drugs.  The latter effort is the 

driving principle of the work described in this volume. By studying genetic risk for disease and 

preclinical populations, we aim to push the threshold for early diagnosis further and further 

toward the true, silent onset of the disease in the brain.  

To best illustrate the pressing need for early diagnosis and effective interventions in AD, 

we must consider the disease in the context of the global aging phenomenon. Globalization and 

the demographics of aging are inextricably intertwined. Economic opportunity, increased 

emphasis on education (especially for women), health literacy and adequate medical care are 

all key features of a developed, globally competitive country. They are also the features that 

lead to rapid aging within a population. In the “developed” environment, fertility rates decline 

while people live increasingly longer lives, creating a population whose older subset is growing 

faster than any other age bracket. This phenomenon has been observed in the United States, 

many European countries and Japan. In addition to their ever-expanding elderly populations, 

these countries also share a method for adapting economically to demographic shifts toward 

older age groups. They look outward and utilize the resources of countries where young, cheap 

workers abound; countries like China and the Philippines, and now India. As these countries, full 

of younger, cheaper labor, reap the benefits of a growing economy, they begin to face some of 

the same aging-related challenges that countries like the United States are currently grappling 

with. China, for one, does not have a social security system and has chosen to not invest 

resources in the care of their elderly. This puts enormous pressure on adult children to provide 

for their aging parents. When these parents have AD or another form of dementia their needs 
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often will become too difficult for their families to manage. Thus, as the population of older 

adults in countries like China and India grows, the AD crisis in the United States and Europe will 

truly become a global crisis.  

As people live longer and longer lives, increasing the expected human lifespan, it is 

essential to focus on increasing the duration of the “healthspan” or the length of time a person 

lives in the absence of severe illness or disability (5). This is the mission of AD researchers, 

advocates and doctors. Our primary aim is not to lengthen the lifespan but rather to prolong the 

healthspan. No person, at any age, should suffer the uniquely terrifying experience of the AD 

patient: the total loss of that which is most precious to us, our memories. 	
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APPENDIX 
 

 A Model For Teaching Advanced Neuroscience Methods: A Student-Run Seminar to 
Increase Practical Understanding and Confidence 

	
  
	
  
	
  
Abstract 
 
 Neuroscience doctoral students must master specific laboratory techniques and 

approaches to complete their thesis work (hands-on learning). Due to the highly interdisciplinary 

nature of the field, learning about a diverse range of methodologies through literature surveys 

and coursework is also necessary for student success (hands-off learning). Traditional 

neuroscience coursework stresses what is known about the nervous system with relatively little 

emphasis on the details of the methods used to obtain this knowledge. Furthermore, hands-off 

learning is made difficult by a lack of detail in methods sections of primary articles, subfield-

specific jargon and vague experimental rationales. We designed a student-taught course to 

enable first-year neuroscience doctoral students to overcome difficulties in hands-off learning by 

introducing a new approach to reading and presenting primary research articles that focuses on 

methodology. In our literature-based course students were encouraged to present a method 

with which they had no previous experience. To facilitate weekly discussions, “experts” were 

invited to class sessions. Experts were advanced graduate students who had hands-on 

experience with the method being covered and served as discussion co-leaders. Self-evaluation 

worksheets were administered on the first and last days of the 10-week course and used to 

assess students’ confidence in discussing research and methods outside of their primary 

research expertise. These evaluations revealed that the course significantly increased the 

students’ confidence in reading, presenting and discussing a wide range of advanced 

neuroscience methods. 
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Introduction 
 

Today, doctoral students in the life sciences are trained in a highly interdisciplinary 

environment that requires mastery of diverse methodologies (1). This represents a departure 

from the traditional model of doctoral education that encouraged specialization (2). However, 

core curricula for doctoral programs rarely include formal, laboratory-based instruction on 

advanced methods. There are several reasons for this, including potentially large investments of 

time and resources required to ensure that each student receives sufficient instruction and 

experience with a given method. At the University of California, Los Angeles, doctoral students 

in neuroscience identified this lack of instruction in methodology as a weakness of the core, 

required curriculum. To help address this weakness, we developed a new seminar course called 

Neuroscientific Methods (hereafter “Methods”) to be integrated into the required first-year 

academic schedule for Neuroscience doctoral students.   

Doctoral students are practically motivated to become experts in several complementary 

approaches to address their research questions. A diverse skillset leads to better outcomes on 

grant applications and in manuscript submissions. One common way to obtain proficiency with a 

research method is through the laboratory training environment. Specifically, students often 

receive instruction from other laboratory members on methods central to the main focus of their 

mentor’s research program. Students will also seek out training in additional techniques in other 

laboratories, especially those of collaborators on their campus.  

It is less common for students to attempt to improve their understanding of techniques in 

the context of the classroom, without hands-on instruction. We believe this is a skill that, like any 

other, must be practiced to be improved. Methods offered an opportunity to introduce students 

to an approach to reading and presenting articles that focused on the methods sections, a part 

of primary research articles that non-experts often skim. The ability to evaluate and present 

unfamiliar topics is a necessary skill in academia where reviewing articles, grants and dossiers 

are required (3). We believe that the Methods course provides a supportive environment for 
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first-year doctoral students to begin to hone this skillset with the help of their peers, as well as 

more advanced students.  

At each meeting of Methods, we invited 1-3 “experts” to join the class to facilitate 

discussion. Experts were advanced graduate students with direct, often current, experience with 

the method being presented that week. Through participation in Methods, experts were able to 

practice discussing their own research and their informal teaching skills. In addition to the 

experts, the course was designed and facilitated by second-year neuroscience graduate 

students. For these aspects of the course, we were inspired by other studies demonstrating that 

graduate student-taught courses are successful models for graduate and upper-level 

undergraduate education (4; 5). In addition, the community-based teaching and support for this 

course gave the experts and facilitators a chance to engage in curriculum design and team-

teaching, both important parts of academic life and professional development that are often 

overlooked in doctoral training (3; 6). Indeed, perceived quality of professional development 

training has been shown to have an effect on self-efficacy measures in graduate teaching 

assistants (7). Coalescing around a community-identified need for further instruction in 

neuroscience methods to keep pace with the highly diverse and interdisciplinary nature of 

neuroscience research has helped foster an environment where UCLA neuroscience doctoral 

students feel that efforts to provide a holistic graduate experience are supported and valued.   

In the present study, we report the rationale, goals, design, implementation and 

assessment of a seminar course focused on increasing student confidence in their ability to 

comprehend new methodologies using a hands-off learning approach. The overarching goals of 

the course guided the design and implementation. Those goals were as follows: 

1. Expose first-year graduate students to a wide range of neuroscience methods with a 

special focus on widely used and newly developed methods featured in recent high-impact 

publications. 
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2. Promote discourse and collaboration between first-year and advanced neuroscience 

doctoral students, especially for learning about new methods that could be applicable to their 

work or for assistance in the process of choosing a dissertation laboratory.  

3. Emphasize practical considerations of experimental design with a focus on the 

advantages and limitations of each method.  

4. Build students’ confidence in their ability to prepare and present material outside their 

areas of first-hand expertise.  

 
 
Materials and Methods 
 
Participants 
 

Methods was created for and has been implemented with first-year neuroscience 

doctoral students enrolled in the UCLA Neuroscience Interdepartmental Graduate Program 

(NSIDP). The course is now part of the required first-year curriculum for the program and is held 

in the winter quarter. In the context of the NSIDP, this is often the quarter when students are 

conducting their first laboratory rotation in search of a suitable mentor and research 

environment for their dissertation work. About 75% of the incoming students in the NSIDP start 

the program the fall after their undergraduate graduation, and most of the remaining incoming 

students are within three years of completion of their undergraduate studies.  

In addition to the students enrolled in the course, Methods drew on the larger 

neuroscience community for participation and support. Two second-year NSIDP students 

served as the course instructors (CRKC, TMH). Their roll included developing the mission and 

goals of the course, creating the syllabus and recruiting advanced graduate students and faculty 

to take part in weekly discussions. The instructors met each week before class to discuss the 

articles that would be covered and to compile lists of questions and comments that might be 

useful in guiding the group discussion. Throughout the course the instructors gave informal 

feedback to students about their presentations. The student creators of the course also acted as 
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mentors for subsequent second-year student facilitators. Finally, Methods was overseen by a 

UCLA faculty member (AMA) who had designed a neuroscience methodology-focused seminar 

course during the previous year. Methods grew out of her course and she guided its year-to-

year development and implementation.  

 
Course Design 
 

Methods was designed for weekly, 2-hour meetings over a 10-week quarter period and 

was listed as a seminar/literature review course. At each weekly session, two to three assigned 

readings were discussed: typically one review article focused on the method of interest and at 

least one experimental paper employing that technique. At the first meeting, the student course 

instructors gave an example presentation covering a review article on optogenetics and a 

primary research article that used an optogenetics study design. The instructors introduced an 

alternate approach to the standard journal-club style presentation that follows the structure of a 

primary research article (e.g., background, methods, results, discussion). Instead, student 

presenters were encouraged to 1) focus on the history, development, application, advantages 

and disadvantages of the assigned method; and 2) provide a critical interpretation of the results 

from the experimental paper (i.e., what might the study results mean in the context of known 

limitations of the method, was the method appropriate for the research question, how could the 

method have been used differently). Students were encouraged to use resources (e.g., JoVE, 

Wikipedia, textbooks) outside of the assigned reading to augment their understanding of the 

method and to prepare their presentations.  

After the example presentation during week 1, students were asked to sign up to present 

on one of weeks 2-9. They were instructed to choose a week covering a method with which they 

had no past hands-on experience. To facilitate discussions, 1-3 “experts” were invited to class 

sessions. Experts were advanced UCLA graduate students who were actively engaged in using 

the method being covered that week. The experts served as co-leaders of the class 
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discussions, provided critical commentary and bridged gaps in understanding. They were also 

valuable for their ability to correct misinformation or misconceptions regarding the use of a 

particular method. Experts’ contact information was made available to student presenters so 

that they could also be consulted during the presentation preparation phase.  

At the last meeting during week 10, students were instructed to prepare a 5-minute long 

“elevator-pitch” style presentation with no more than 5 accompanying slides. For the pitches, 

students focused on a method that they had hands-on experience using either in a previous 

research position or during their concurrent rotation. They were instructed to use their pitch to 

convince the audience that a particular method was the best one to address their research 

question and/or to test their hypotheses. The purpose of the elevator pitches was to encourage 

students to use what they had learned about presenting science from a methods-focused 

perspective. In Methods, we asked the students to tackle the difficult tasks of learning about a 

neuroscience method in a hands-off fashion and then presenting that method to their peers in a 

critical way. We wanted the students to have the opportunity to apply what they learned about 

presenting a method to their own research. Our theory was that critically assessing unfamiliar 

methods would provide new insight into the familiar methods our students use in their 

laboratories. The elevator pitches were an excellent capstone for our students, who found the 

assignment fun and enjoyed hearing brief “pitches” by their peers.  

 
Syllabus 
 

The syllabus for the Methods course was separated into three modules: cellular, 

molecular and systems level neuroscience. Each module featured several corresponding 

neuroscience methods. The outline of the syllabus is included in the text that follows. The 

method discussed each week is underlined for clarity. 

 
Week 1 - Introduction to the course and sample presentation on Optogenetics.  
 
Cellular Module: 
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Week 2 – Innovative Approaches in Electrophysiology 

Week 3 – Two-Photon Microscopy 

 
Molecular Module: 

 Week 4 – Mapping Synaptic Contacts: Fun with Tracers 

 Week 5 – Genetic Manipulation of Model Organisms 

 Week 6 – Genomics and Bioinformatics 

 
Systems Module: 

 Week 7 – Behavioral Assessment in Model Organisms 

 Week 8 – Structural MRI: DTI and Network Analysis 

Week 9 – Functional MRI: The BOLD Signal and the Resting Brain 

 
Week 10 – Elevator Pitches 
 
 
Course Assessment 
 

An anonymous self-evaluation worksheet was prepared to assess students’ confidence 

with discussing research and methods outside of their primary research expertise. These 

worksheets where administered on the first and last day of class and focused on assessing 

each student’s perceived confidence in reading, presenting and discussing advanced 

neuroscience methods. 

 There were 9 items on the self-evaluation and students were asked to use a 10-point 

scale to rate each statement where 1=not at all/little to none/probably not and 

10=very/definitely/very confident. The items were as follows: 

1. I am familiar with a wide variety of methods currently being employed by 

neuroscientists. 

2. I am confident in my ability to decide which methods should be used to address a 

wide variety of neuroscience research questions. 
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3. I understand the relative pros and cons to using competing neuroscience methods to 

address a research question. 

4. I am comfortable approaching posters for studies that use methods outside of my 

particular research experience. 

5. I find the language/terminology used in some neuroscience research papers 

intimidating. 

6. I feel I can read and understand the methods section from journal articles outside of 

my expertise. 

7. I feel comfortable presenting neuroscience journal articles to colleagues/peers. 

8. I am confident in my ability to critically analyze the findings of any neuroscience 

paper. 

9. I am confident in my ability to spot weaknesses in methods outside my own research 

background. 

  Finally, there was a prompt where students were asked at the first meeting to “include 

suggestions and comments about what you would like to get out of this course” and at the last 

meeting to “include any suggestions and comments for improving the course; tell us about what 

you found useful and not so useful; which weeks/topics were your favorite/least favorite?” 

Average ratings for each item on the first (timepoint 1; TP1) and the last day of class 

(timepoint 2; TP2) were compared using Wilcoxon rank sum tests. An average rating for each 

student was also calculated across all the items. Because the worksheets were completed 

anonymously we could not examine change in ratings for specific students. Instead, we used a 

Wilcoxon rank sum test to compare all student average ratings across items at TP1 and TP2. 

For item 5 lower scores indicated greater confidence so this item was reverse scored. All 

statistical analyses were completed using tools from the R Project for Statistical Computing 

(http://www.r-project.org) 
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Results 
 

The data described here were collected during the winter quarter, January - March 2013, 

at UCLA during the first implementation of Methods. We collected self-report worksheets from 

11 students at TP1 and 12 students at TP2. Average ratings on specific items ranged from 5.73 

– 7.0 at TP1 on the 10-point scale. At TP1, average ratings across all the items by a single 

student ranged from 3.67 – 9.67. Thus, we learned that within our class confidence in using, 

understanding and presenting unfamiliar methods varied widely. Interestingly, the highest 

student average at TP2 was 9.11, which may have been the same student who reported the 

highest confidence ratings at TP1. The range in student average scores at TP2 was 5.22 – 9.11. 

We compared students’ average rating across the 9 items at TP1 and TP2 and found that 

students’ average rating increased over the course of Methods (p=0.045). Analysis of the self-

evaluation individual item ratings at TP1 and TP2 revealed that the course significantly 

increased students’ confidence in their familiarity with and ability to evaluate current advanced 

neuroscience methods (Appendix Figure 1). The average rating increased for each item from 

the first meeting to the last meeting of the course, except for item 5.  
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Appendix Figure 1.  Average item ratings for each statement from the first (green, n=11) and last 
(purple, n=12) day of class. Mean ratings increased from the first to the last meeting for all statements 
except for item 5, for which we expected a decrease (see item in Materials and Methods). **p<0.01, 
*p<0.05 
 

In response to our prompt for what students would like to gain from the course, students 

wrote about wanting to start with the basics and build their neuroscience knowledge on a solid 

foundation. One student wrote, “I would like to get a basic understanding of a variety of 

methods. It often seems assumed that we have some background in a variety of techniques for 

which I have no prior knowledge, especially in genetics”. Another student wrote that they hoped 

to gain “A more thorough understanding of the practical details/limitations of the methods we 

discuss”.  

At the final meeting, students were asked what aspects of the course they found useful 

or not useful. In general, the new course was well received and thought to be useful. 

Constructive criticism included some frustration with being asked to learn new methods from 

peers who were not experts themselves. For example, one student wrote, “It was hard to learn 

sometimes from people with little expertise in the research they were presenting. Perhaps 
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assign two presentations to each person - one on a method in which they are expert and one 

where they are not an expert. Then a team of two can work together (one expert, one novice) on 

each methods presentation”. Other students asked for more thorough coverage of certain topics 

they felt were underrepresented, like neurochemical techniques or nanoscience approaches to 

neuroscience topics.  

 
 
Discussion 
 

We have developed and implemented a seminar-style course to teach neuroscience 

methods to first-year doctoral students in a non-laboratory environment. The Methods course is 

student-run by two facilitators and supported by the larger community of neuroscience doctoral 

students at UCLA. This approach with doctoral students learning and teaching together has 

been shown to be effective in other classroom models (4; 5). The Methods course aims to 

augment the traditional curriculum and emphasizes skills critical to the development of 

successful academics. The NSIDP grants doctorates in Neuroscience, a broad and 

interdisciplinary subject that requires concerted effort to familiarize oneself with the breadth of 

the field. Methods quickly gives first-year graduate students an opportunity to span that breadth 

through a presentation and discussion based literature review course.  

Responses from the anonymous self-evaluation worksheets revealed that the course 

was successful in increasing student confidence when presenting and discussing neuroscience 

research and methods outside of their primary research expertise. Across students, the ratings 

for each item improved from the first meeting to the last meeting of the course. The increased 

confidence in exploring unfamiliar methods and topics is anticipated to encourage student 

participation in journal clubs, to motivate communication across disciplines at scientific 

conferences, to encourage rotations in a variety of laboratories, to identify courses in which to 

serve as a teaching assistant and to influence students’ choices to employ a diverse set of 

methodologies in their own research.  
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One limitation of the course assessment was that the self-evaluations were collected 

anonymously with no system to match individual student’s ratings at the first meeting to their 

ratings at the final meeting (e.g., to run paired nonparametric analyses). Another limitation was 

that subsequent Methods course graduate student facilitators have used their own approaches 

to assessing the value and effectiveness of the course (8–10). That said, the focus of this report 

was introduce the novel course design and to include the initial data indicating its success, not 

to perform a meta-analysis. We are partnering with the NSIDP leadership to create a 

standardized Methods evaluation and assessment tool that will be implemented consistently 

and allow for data pooling and analysis across yearly implementations of the course moving 

forward.    

One of the benefits of enabling each pair of facilitators the opportunity to improve and 

expand the course is the increased focus on presentation efficacy and skills. Now, as part of 

Methods, each student receives aggregated feedback from their peers on how clearly and 

effectively they presented their assigned technique. As one of the founding goals of the course 

was to build students’ confidence in their ability to prepare and present material outside their 

areas of first-hand expertise we believe the addition of formal presentation feedback has 

strengthened the course overall. In addition, subsequent iterations of the course have, based on 

class size, required students to make two shorter presentations during the quarter so that 

presentation feedback might be directly applied to the second assignment. Finally, the elevator-

pitch session at the end of the course has been modified to a 3-minute presentation with no 

accompanying slides. This approach encourages students to focus more on the content and 

style of their presentation instead of prepared slides while still allowing them to apply what they 

learned about presenting neuroscience methods to their own research experience.  

The most common criticism of Methods was that a particular technique might have been 

effectively explained and taught by a student that had prior experience using that technique. We 

do not disagree with this feedback; it is true that individuals who have first-hand experience are 
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likely to present on a particular method more easily and effectively. However, the goal of this 

doctoral-level course was to also place students outside of their comfort zone and to illustrate 

how much could be gained by an in-depth and critical examination of an unfamiliar technique. 

Each week, presenters demonstrated an understanding of the basics and, sometimes, the 

subtleties of the method they were assigned. Experts assisted and their participation proved to 

be an effective way to focus the discussion when presenters struggled. We believe the 

challenges that students faced in the Methods course are similar to challenges they will face in 

their professional careers. The opportunity to practice these skills is an important part of the 

doctoral training experience that, if provided in the curriculum, often requires non-traditional 

approaches (4).  

We believe Methods can be adapted to an upper-division undergraduate seminar course 

and would be a valuable addition to undergraduate science curricula. Our suggestions for this 

alternate design are based, in part, on the feedback we received from our first-year doctoral 

students. There is a well-described lack of instruction on the scientific process in undergraduate 

education (11; 12). Methods would serve as many undergraduates’ first exposure to examining 

techniques as a primary aim while gaining exposure to primary research articles. This exposure 

would begin to address the need for a more comprehensive undergraduate science education 

that includes critical evaluation of experimental design and interpretation of data (13). By 

engaging in this type of critical thinking, undergraduates will be mentally stepping into the 

scientific process from the classroom. With graduate student co-facilitators and graduate 

student expert partners, Methods can be brought to a level appropriate for upper-division 

undergraduates. Students could pair or form groups to prepare joint presentations; preparation 

of presentations could be guided by graduate student experts. Thus, the burden of teaching the 

methods would not fall solely to the undergraduates. In addition to being a crucial part of an 

undergraduate version of the Methods course, the communication and discourse between 

doctoral students and undergraduates provides a low-barrier way for younger students to learn 
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more about post-graduate science education and life as a doctoral student.  

We have been gratified to see Methods continue to thrive after its initiation in 2013. 

Beyond this specific course, Methods serves as an example of how existing courses can be 

developed by students into student-led activities. We believe that the process of creating 

curriculum is a social endeavor, with influences from the faculty, the students and the material 

itself (14; 15). In that spirit, each pair of subsequent student co-facilitators has added their own 

unique modifications, improvements and perspective to Methods such that it continues to grow 

organically. However, the founding mission and goals of the course have remained the same: to 

expose students to a diverse set of neuroscience research methods, to promote discourse 

between students at different stages of their degree and professional development, to 

encourage the practical analysis of current research and ultimately, to build student confidence 

in understanding neuroscience research outside their primary areas of expertise.  

 
  



 229 

Appendix References 
 
1. Holley K (2008): The challenge of an interdisciplinary curriculum: A cultural analysis of a 

doctoral-degree program in neuroscience. High Educ 58: 241–255. 
 
2. McBride BB, Brewer CA, Bricker M, Machura M (2011): Training the next generation of 

renaissance scientists: The GK–12 ecologists, educators, and schools program at The 
University of Montana. Bioscience 61: Oxford University Press466–476. 

 
3. Ullrich L, Dumanis SB, Evans TM, Jeannotte AM, Leonard C, Rozzi SJ, et al. (2014): From 

student to steward: The Interdisciplinary Program in Neuroscience at Georgetown 
University as a case study in professional development during doctoral training. Med Educ 
Online 19: 22623. 

 
4. Needelman BA, Ruppert DE (2006): Graduate student–run course framework for 

comprehensive professional development. J Nat Resour Life Sci Educ 35: American 
Society of Agronomy62–71. 

 
5. Ullrich LE, Krafnick AJ, Dumanis SB, Forcelli PA (2012): Drugs, the brain, and behavior: A 

graduate student-run comprehensive course in neuroscience. J Undergrad Neurosci Educ 
10: A105–12. 

 
6. Austin AE (2002): Preparing the next generation of faculty: Graduate school as socialization 

to the academic career. J Higher Educ 73: 94–122. 
 
7. DeChenne SE, Koziol N, Needham M, Enochs L (2015): Modeling sources of teaching self-

efficacy for science, technology, engineering, and mathematics graduate teaching 
assistants. CBE Life Sci Educ 14: . doi: 10.1187/cbe.14-09-0153. 

 
8. Ching CR, Harrison TM, Einstein MC, Bonnano SL, Andrews AM, Levine M (2013): A model 

for teaching advanced neuroscience methods to graduate students: A student-run seminar 
to increase practical understanding and onfidence. . . 2013 Neurosci Meet PlanNew 
Orleans, LA: Society for Neuroscience, 2013. 

 
9. Einstein M, Bonanno S, Ching CR, Harrison TM, Andrews AM (2014): A new model for 

teaching advanced neuroscientific methods to graduate students. . Washington, DC: 
Society for Neuroscience, 2014. 

 
10. DiTullio D, He C, Andrews AM (2015): A student-led graduate seminar familiarizes students 

with neuroscientific techniques and improves oral presentation skills. . Chicago, IL: Society 
for Neuroscience, 2015. 

 
11. Coil D, Wenderoth MP, Cunningham M, Dirks C (2010): Teaching the process of science: 

Faculty perceptions and an effective methodology. CBE Life Sci Educ 9: 524–35. 
 
12. Handelsman J, Ebert-May D, Beichner R, Bruns P, Chang A, DeHaan R, et al. (2004): 

Education. Scientific teaching. Science 304: American Association for the Advancement of 
Science521–2. 

 
13. Kozeracki CA, Carey MF, Colicelli J, Levis-Fitzgerald M, Grossel M (2006): An intensive 

primary-literature-based teaching program directly benefits undergraduate science majors 



 230 

and facilitates their transition to doctoral programs. CBE Life Sci Educ 5: 340–7. 
 
14. Tierney W (1989): Curricular landscapes, democratic vistas: Transformative leadership in 

higher education. . Westport, CY: Praeger Publishers. 
 
15. Lindblom‐Ylänne S, Trigwell K, Nevgi A, Ashwin P (2006): How approaches to teaching are 

affected by discipline and teaching context. Stud High Educ 31: Routledge285–298. 

 




