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ABSTRACT

Motivation: As a promising tool for dissecting the genetic basis of

complex traits, expression quantitative trait loci (eQTL) mapping has

attracted increasing research interest. An important issue in eQTL map-

ping is how to effectively integrate networks representing interactions

among genetic markers and genes. Recently, several Lasso-based

methods have been proposed to leverage such network information.

Despite their success, existing methods have three common limita-

tions: (i) a preprocessing step is usually needed to cluster the networks;

(ii) the incompleteness of the networks and the noise in them are not

considered; (iii) other available information, such as location of genetic

markers and pathway information are not integrated.

Results: To address the limitations of the existing methods, we

propose Graph-regularized Dual Lasso (GDL), a robust approach for

eQTL mapping. GDL integrates the correlation structures among

genetic markers and traits simultaneously. It also takes into account

the incompleteness of the networks and is robust to the noise. GDL

utilizes graph-based regularizers to model the prior networks and does

not require an explicit clustering step. Moreover, it enables further

refinement of the partial and noisy networks. We further generalize

GDL to incorporate the location of genetic makers and gene-pathway

information. We perform extensive experimental evaluations using

both simulated and real datasets. Experimental results demonstrate

that the proposed methods can effectively integrate various available

priori knowledge and significantly outperform the state-of-the-art

eQTL mapping methods.

Availability: Software for both C++ version and Matlab version is

available at http://www.cs.unc.edu/�weicheng/.

Contact: weiwang@cs.ucla.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Expression quantitative trait loci (eQTL) mapping aims at iden-

tifying single nucleotide polymorphisms (SNPs) that influence

the expression level of genes. It has been widely applied to dissect

genetic basis of complex traits (Bochner, 2003; Michaelson et al.,

2009). Several important issues need to be considered in eQTL

mapping. First, the number of SNPs is usually much larger than

the number of samples (Tibshirani, 1996). Second, the existence

of confounding factors, such as expression heterogeneity, may

result in spurious associations (Listgarten et al., 2010). Third,

SNPs (and genes) usually work together to cause variation in

complex traits (Michaelson et al., 2009). The interplay among

SNPs and the interplay among genes can be represented as net-

works and used as prior knowledge (Musani et al., 2007; Pujana

et al., 2007). However, such prior knowledge is far from being

complete and may contain a lot of noises. Developing effective

models to address these issues in eQTL studies has recently at-

tracted increasing research interests (Biganzoli et al., 2006; Kim

and Xing, 2012; Lee and Xing, 2012; Lee et al., 2010).
In eQTL studies, two types of networks can be utilized. One is

the genetic interaction network (Charles Boone and Andrews,

2007). Modeling genetic interaction (e.g. epistatic effect between

SNPs) is essential to understanding the genetic basis of common

diseases, since many diseases are complex traits (Lander, 2011).

Another type of network is the network among traits, such as the

protein–protein interaction (PPI) network or the gene co-expres-

sion network. Interacting proteins or genes in a PPI network are

likely to be functionally related, i.e. part of a protein complex or

in the same biological pathway (von Mering et al., 2002).

Effectively utilizing such prior network information can signifi-

cantly improve the performance of eQTL mapping (Lee and

Xing, 2012; Lee et al., 2010).
Figure 1 shows an example of eQTL mapping with prior net-

work knowledge. The interactions among SNPs and genes are

represented by matrices S and G, respectively. The goal of eQTL

mapping is to infer associations between SNPs and genes repre-

sented by the coefficient matrix W. Suppose that SNP ffl is

strongly associated with gene �C. Using the network prior, the

moderate association between SNP ffi and gene �A may be iden-

tified since ffi and ffl;�A and �C have interactions.
To leverage the network prior knowledge, several methods

based on Lasso have been proposed (Biganzoli et al., 2006;

Kim and Xing, 2012; Lee and Xing, 2012; Lee et al., 2010). In

Biganzoli et al. (2006), the group-Lasso penalty is applied to

model the genetic interaction network. In (Kim and Xing,

2012) and (Lee et al., 2010), the authors consider groupings of

genes and apply a multi-task Lasso penalty. In (Lee and Xing,

2012), the authors further extend the model to consider grouping

information of both SNPs and genes. These methods apply a

‘hard’ clustering of SNPs (genes) so that a SNP (gene) cannot

belong to multiple groups. However, a SNP may affect multiple

genes and a gene may function in multiple pathways. To address

this limitation, in (Jenatton et al., 2011), the authors develop a

model allowing overlap between different groups.
Despite their success, there are three common limitations of

these group penalty based approaches. First, a clustering step is

usually needed to obtain the grouping information. To address

this limitation, (Kim and Xing, 2009; Li and Li, 2008) introduce

a network-based fusion penalty on the genes. However, this

method does not consider the genetic-interaction network.

A two-graph-guided multi-task Lasso approach is developed in

(Chen et al., 2012) to make use of gene co-expression network

and SNP-correlation network. However, this method does not*To whom correspondence should be addressed.
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consider the network prior knowledge. The second limitation of

the existing methods is that they do not take into consideration

the incompleteness of the networks and the noise in them (von

Mering et al., 2002). For example, PPI networks may

contain false interactions and miss true interactions (von

Mering et al., 2002). Directly using the grouping penalty inferred

from the noisy and partial prior networks may introduce new

bias and thus impair the performance. Third, in addition to

the network information, other prior knowledge, such as loca-

tion of genetic markers and gene-pathway information are also

available. The existing methods cannot incorporate such

information.
To address the limitations of the existing methods, we propose

a novel approach, Graph-regularized Dual Lasso (GDL), which

simultaneously learns the association between SNPs and genes

and refines the prior networks. To support ‘soft’ clustering

(allowing genes and SNPs to be members of multiple clusters),

we adopt the graph regularizer to encode structured penalties

from the prior networks. The penalties encourage the connected

nodes (SNPs/genes) to have similar coefficients. This enables us

to find multiple-correlated genetic markers with pleiotropic ef-

fects that affect multiple-correlated genes jointly. To tackle the

problem of noisy and incomplete prior networks, we exploit the

duality between learning the associations and refining the prior

networks to achieve smoother regularization. That is, learning

regression coefficients can help to refine the prior networks, and

vice versa. For example, in Figure 1, if SNPs � and Ð have

strong associations with the same group of genes, they are

likely to have interaction, which is not captured in the prior

network. An ideal model should allow to update the prior net-

work according to the learned regression coefficients. GDL can

also incorporate other available prior knowledge such as the

physical location of SNPs and biology pathways to which the

genes belong. The resultant optimization problem is convex and

can be efficiently solved by using an alternating minimization

procedure. We perform extensive empirical evaluation of the

proposed method using both simulated and real eQTL datasets.

The results demonstrate that GDL is robust to the incomplete

and noisy prior knowledge and can significantly improve the

accuracy of eQTL mapping compared to the state-of-the-art

methods.

2 BACKGROUND: LINEAR REGRESSION WITH
GRAPH REGULARIZER

Throughout the article, we assume that, for each sample, the SNPs

and genes are represented by column vectors. Important notations

are listed in Table 1. Let x=½x1; x2; . . . ; xK�
T represent the K

SNPs in the study, where xi 2 f0; 1; 2g is a random variable cor-

responding to the i-th SNP (e.g. 0, 1, 2 may encode the homozy-

gous major allele, heterozygous allele and homozygous minor

allele, respectively). Let z=½z1; z2; . . . ; zN�
T represent expression

levels of theN genes in the study, where zj is a continuous random

variable corresponding to the j-th gene. The traditional linear re-

gression model for association mapping between x and z is

z=Wx+�+�; ð1Þ

where z is a linear function of xwith coefficient matrixW and � is

an N� 1 translation factor vector. And � is the additive noise of
Gaussian distribution with zero-mean and variance �I; where � is
a scalar. That is, ��Nð0; �IÞ.
The question now is how to define an appropriate objective

function over W that (i) can effectively incorporate the prior

network knowledge, and (ii) is robust to the noise and incom-

pleteness in the prior knowledge. Next, we first briefly review

Lasso and its variations and then introduce the proposed GDL

method.

2.1 Lasso and LORS

Lasso (Tibshirani, 1996) is a method for estimating the regression

coefficients W using ‘1 penalty for sparsity. It has been widely

used for association mapping problems. Let X=fxdj1 � d � Dg

2 R
K�D be the SNP matrix and Z=fzdj1 � d � Dg 2 R

N�D be

the gene-expression matrix. Each column of X and Z stands for

one sample. The objective function of Lasso is

min
W

1

2
jjZ�WX� �1jj2F+�jjWjj1 ð2Þ

Table 1. Summary of notations

Symbols Description

K Number of SNPs

N Number of genes

D Number of samples

X 2 R
K�D The SNP matrix data

Z 2 R
N�D The gene matrix data

L 2 R
N�D A low-rank matrix

S0 2 R
K�K The input affinity matrices of the genetic-interaction

network

G0 2 R
N�N The input affinity matrices of the network of traits

S 2 R
K�K The refined affinity matrices of the genetic-interaction

network

G 2 R
N�N The refined affinity matrices of the network of traits

W 2 R
N�K The coefficient matrix to be inferred

RðSÞ The graph regularizer from the genetic-interaction

network

RðGÞ The graph regularizer from the PPI network

Dð�; �Þ A non-negative distance measure

Fig. 1. Examples of prior knowledge on genetic-interaction network S

and gene–gene interactions represented by PPI network or gene co-

expression network G. W is the regression coefficients to be learned
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where jj � jjF denotes the Frobenius norm, jj � jj1 is the ‘1-norm, 1

is an 1�D vector of all 1’s, � is the empirical parameter for the

‘1 penalty and W is the parameter (also called weight) ma-

trix parameterizing the space of linear functions mapping from

X to Z.
Confounding factors, such as unobserved covariates, experimen-

tal artifacts and unknown environmental perturbations, may

mask real signals and lead to spurious findings. LORS (Yang

et al., 2013) uses a low-rank matrix L 2 R
N�D to account for the

variations caused by hidden factors. The objective function of

LORS is

min
W;�;L

1

2
jjZ�WX� �1� Ljj2F+�jjWjj1+�jjLjj� ð3Þ

where jj � jj� is the nuclear norm, � is the empirical parameter for the

‘1 penalty to control the sparsity of W and � is the regularization

parameter to control the rank ofL.L is a low-rankmatrix assuming

that there are only a small number of hidden factors influencing the

gene-expression levels.

2.2 Graph-regularized Lasso

To incorporate the network prior knowledge, group sparse Lasso

(Biganzoli et al., 2006), multi-task Lasso (Obozinski and Taskar,

2006) and SIOL(Lee and Xing, 2012) have been proposed. Group

sparse Lasso makes use of grouping information of SNPs; multi-

task Lasso makes use of grouping information of genes, while

SIOL uses information from both networks. A common draw-

back of thesemethods is that the number of groups (SNP and gene

clusters) has to be predetermined. To overcome this drawback, we

propose to use two graph regularizers to encode the prior network

information. Compared with the previous group penalty-based

methods, our method does not need to pre-cluster the networks

and thus may obtain smoother regularization. Moreover, these

methods do not consider confounding factors that may mask

real signals and lead to spurious findings. In this article, we further

incorporate the idea in LORS (Yang et al., 2013) to tackle the

confounding factors simultaneously.

Let S0 2 R
K�K and G0 2 R

N�N be the affinity matrices of the

genetic interaction network (e.g. epistatic effect between SNPs)

and network of traits (e.g. PPI network or gene co-expression

network), and DS0
and DG0

be their degree matrices. Given

the two networks, we can employ a pairwise comparison between

w�i and w�j ð1 � i5j � KÞ : if SNPs i and j are closely related,

jjw�i � w�jjj
2
2 is small. The pairwise comparison can be naturally

encoded in the weighted fusion penalty
X

ij
jjw�i � w�jjj

2
2ðS0Þi;j:

This penalty will enforce jjw�i � w�jjj
2
2=0 for closely related

SNP pairs (with large ðS0Þi;j value). Then, the graph regularizer

from the genetic-interaction network takes the following form

R Sð Þ

=
1

2

X
ij

jjw�i � w�jjj
2
2 S0ð Þi;j

=tr W DS0
� S0

� �
WT

� �
:

ð4Þ

Similarly, the graph regularizer for the network of traits is

RðGÞ=tr WT DG0
�G0

� �
W

� �
: ð5Þ

These two regularizers encourage the connected nodes in a graph

to have similar coefficients. A heavy penalty occurs if the

learned-regression coefficients for neighboring SNPs (genes) are

disparate. ðDS0
� S0Þ and ðDG0

�G0Þ are known as the combina-

torial graph Laplacian, which are positive semi-definite (Chung,

1997). Graph-regularized Lasso (G-Lasso) solves the following

optimization problem

min
W;�;L

1

2
jjZ�WX� �1� Ljj2F

+�jjWjj1+�jjLjj�+�RðSÞ+�R Gð Þ:

ð6Þ

where �; �40 are regularization parameters.

3 GDL

In eQTL studies, the prior knowledge is usually incomplete and

contains noise. It is desirable to refine the prior networks accord-

ing to the learned regression coefficients. There is a duality be-

tween the prior networks and the regression coefficients: learning

coefficients can help to refine the prior networks, and vice versa.

This leads to mutual reinforcement when learning the two parts

simultaneously.
Next, we introduce the GDL. We further relax the constraints

from the prior networks (two graph regularizers) introduced in

Section 2.2, and integrate the G-Lasso and the dual refinement of

graphs into a unified objective function

min
W;�;L;S	0;G	0

1

2
jjZ�WX� �1� Ljj2F+�jjWjj1+�jjLjj�

+�tr
�
WðDS � SÞWT

�
+�tr

�
WTðDG �GÞW

�
+�jjS� S0jj

2
F+	jjG�G0jj

2
F

ð7Þ

where �; 	40 are positive parameters controlling the extent to

which the refined networks should be consistent with the original

prior networks. DS and DG are the degree matrices of S and G.

Note that the objective function considers the non-negativity of S

and G. As an extension, the model can be easily extended to

incorporate prior knowledge from multiple sources. We only

need to revise the last two terms in Equation (7) to

�
Xf

i=1
jjS� Sijj

2
F+	

Pe
i=1 jjG�Gijj

2
F; where f and e are the

number of sources for genetic interaction networks and gene

trait networks, respectively.

3.1 Optimization: an alternating minimization approach

In this section, we present an alternating scheme to optimize the

objective function in Equation (7) based on block coordinate

techniques. We divide the variables into three sets: {L}, {S, G}

and fW; �g: We iteratively update one set of variables while

fixing the other two sets. This procedure continues until conver-

gence. Since the objective function is convex, the algorithm will

converge to a global optima. The optimization process is as fol-

lows. The detailed algorithm is included in the Supplementary

Material (Algorithm 1).

(1) While fixing fW; �g; fS;Gg; optimize fLg using singular

value decomposition (SVD).
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LEMMA 3.1. (Mazumder et al., 2010) Suppose that matrix A has

rank r. The solution to the optimization problem

min
B

1

2
jjA� Bjj2F+�jjBjj� ð8Þ

is given by B̂=H�ðAÞ; where H�ðAÞ=UD�V
T with

D�=diag½ðd1 � �Þ+; :::; ðdr � �Þ+�; UDVTis the Singular Value

Decomposition (SVD) of A; D=diag½d1; :::; dr�, and

ðdi � �Þ+=max ððdi � �Þ; 0Þ; ð1 � i � rÞ:

Thus, for fixed W; �;S;G; the formula for updating L is

L H� Z�WX� �1ð Þ: ð9Þ

(2) While fixing fW; �g; fLg; optimize fS;Gg using semi-

non-negative matrix factorization (semi-NMF) multiplicative

updating on S and G iteratively (Ding et al., 2010). For the op-

timization with non-negative constraints, our updating rule is

based on the following two theorems. The proofs of the theorems

are given in Section 3.2.

THEOREM 3.2. For fixed L; �; W and G, updating S according to

Equation (10) monotonically decreases the value of the objective

function in Equation (7) until convergence.

S S 

� WTW
� �+

+2�S0

2�S+� WTW
� ��

+�diag WTW
� �

JK
ð10Þ

where JK is a K� K matrix of all 1’s. 
; ½��
½��

are element-wise

operators. Since WTW may take mixed signs, we denote

WTW=ðWTWÞ+ � ðWTWÞ�; where ðWTWÞ+i;j=ðjðW
TWÞi;jj+

ðWTWÞi;jÞ=2 and ðWTWÞ�i;j=ðjðW
TWÞi;jj � ðW

TWÞi;jÞ=2:

THEOREM 3.3.. For fixed L; �; W and S, updating G according

to Equation (11) monotonically decreases the value of the ob-

jective function in Equation (7) until convergence.

G G 

� WWT
� �+

+2	G0

2	G+� WWT
� ��

+�diag WWT
� �

JN
ð11Þ

where JN is an N�N matrix of all 1’s.

The above two theorems are derived from the Karush–Kuhn–

Tucker (KKT) complementarity condition (Boyd and

Vandenberghe, 2004). We show the updating rule for S below.

The analysis for G is similar and omitted. We first formulate the

Lagrange function of S for optimization

L Sð Þ=�tr W DS � Sð ÞWT
� �

+�jjS� S0jj
2
F: ð12Þ

The partial derivative of the Lagrange function with respect to

S is

rSL=� �W
TW� 2�S0+2�S+�diag WTW

� �
JK: ð13Þ

Using the KKT complementarity condition for the non-

negative constraint on S, we have

rSL 
 S=0: ð14Þ

The above formula leads to the updating rule for S

in Equation (10). It has been shown that the multiplicative

updating algorithm has first order convergence rate (Ding

et al., 2010).
(3) While fixing fLg; fS;Gg; optimize fW; �g using the coord-

inate descent algorithm.
Because we use the ‘1 penalty onW, we can use the coordinate

descent algorithm for the optimization of W, which gives the

following updating formula:

Wi;j=
F m i; jð Þ; �ð Þ

XXT
� �

j;j
+2� DS � Sð Þj;j+2� DG �Gð Þi;i

ð15Þ

where Fðmði; jÞ; �Þ=signðmði; jÞÞmax ðjmði; jÞj � �; 0Þ; and

m i; jð Þ= ZXT
� �

i;j
�
XK
k=1
k 6¼j

Wi;k XXT
� �

k;j

� 2�
XK
k=1
k 6¼j

Wi;k DS � Sð Þk;j � 2�
XN
k=1
k 6¼j

DG �Gð Þi;kWk;j:

ð16Þ

The solution of updating � can be derived by setting

r�Lð�Þ=0; which gives

�=
Z�WXð Þ1T

D
: ð17Þ

3.2 Convergence analysis

In the following, we investigate the convergence of the

algorithm. First, we study the convergence for the second step.

We use the auxiliary-function approach (Lee and Seung, 2000)

to analyze the convergence of the multiplicative updating for-

mulas. Here we first introduce the definition of auxiliary

function.

DEFINITION 3.4. Given a function L(h) of any parameter h,

a function Zðh; ~hÞ is an auxiliary function for L(h) if the condi-

tions

Z h; ~h
� �

	 L hð Þ and Z h; hð Þ=L hð Þ; ð18Þ

are satisfied for any given h; ~h (Lee and Seung, 2000).

LEMMA 3.5. If Z is an auxiliary function for function L(h),

then L(h) is non-increasing under the update (Lee and Seung,

2000).

h t+1ð Þ=argmin
h

Z h; h tð Þ
� �

: ð19Þ

THEOREM 3.6. Let LðSÞ denote the Lagrange function of S for

optimization. The following function
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Z S; ~S
� �

=�
X
ijk

W2
i;j

S2
j;k+

~S
2

j;k

2 ~Sj;k

+�
X
ijk

Wi;jWi;k

� �� S2
j;k+

~S
2

j;k

2 ~Sj;k

� �
X
ijk

Wi;jWi;k

� �+ ~S j;k 1+log
Sj;k

~Sj;k

 !
+�

X
jk

S2
j;k

� 2�
X
jk

S0ð Þj;k
~S j;k 1+log

Sj;k

~Sj;k

 !
+�

X
jk

S0ð Þ
2
j;k:

ð20Þ

is an auxiliary function for LðSÞ: Furthermore, it is a convex

function in S and its global minimum is

S= ~S 

� WTW
� �+

+2�S0

2� ~S+� WTW
� ��

+�diag WTW
� �

JK
: ð21Þ

THEOREM 3.6. can be proved using a similar idea to that in (Ding

et al., 2006) by validating (i) LðSÞ � ZðS; ~SÞ; (ii) LðSÞ=ZðS;SÞ
(iii) ZðS; ~SÞ is convex with respect to S. The formal proof is

provided in the Supplementary Material.

THEOREM 3.7. Updating S using Equation (10) will monotonic-

ally decrease the value of the objective in Equation (7), the ob-

jective is invariant if and only if S is at a stationary point.

PROOF. By Lemma 3.5 and Theorem 3.6, for each subsequent

iteration of updating S, we have LððSÞ0Þ=ZððSÞ0; ðSÞ0Þ 	 ZððSÞ

1; ðSÞ0Þ 	 ZððSÞ1; ðSÞ1Þ=LððSÞ1Þ 	 ::: 	 LððSÞIterÞ. Thus LðSÞ

monotonically decreases. Since the objective function Equation

(7) is obviously bounded below, the correctness of Theorem 3.2 is

proved. Theorem 3.3 can be proved similarly. «

In addition to Theorem 3.7, since the computation of L in the

first step decreases the value of the objective in Equation (7), and

the coordinate descent algorithm for updatingW in the third step

also monotonically decreases the value of the objective, the al-

gorithm is guaranteed to converge.

4 GENERALIZED GDL

In this section, we extend our model to incorporate additional

prior knowledge such as SNP locations and biological pathways.

If the physical locations of two SNPs are close or two genes belong

to the same pathway, they are likely to have interactions.

Such information can be integrated to help refine the prior

networks.
Continue with our example in Figure 1. If SNPs � and Ð

affect the same set of genes (�B and�D), and at the same time, they

are close to each other, then it is likely there exists interaction

between � and Ð.
Formally, we would like to solve the following optimization

problem

min
W;�;L;S	0;G	0

1

2
jjWX� Z� �1� Ljj2F+�jjWjj1+�jjLjj�

+�
X
i;j

Dðw�i;w�jÞSi;j+�
X
i;j

Dðwi�;wj�ÞGi;j:
ð22Þ

Here Dð�; �Þ is a non-negative distance measure. Note that the

Euclidean distance is used in previous sections. S and G are ini-

tially given by inputs S0 and G0: We refer to this generalized

model as the generalized GDL (GGDL). GGDL executes the

following two steps iteratively until the termination condition

is met: (i) update W while fixing S and G and (ii) update

S and G according to W, while guarantee that bothX
i;j
Dðw�i;w�jÞSi;j and

X
i;j
Dðwi�;wj�ÞGi;j decrease.

These two steps are based on the aforementioned duality be-

tween learningW and refining S andG. The detailed algorithm is

provided in the Supplementary Material. Next, we illustrate the

updating process assuming that S and G are unweighted graphs.

It can be easily extended to weighted graphs.
Step 1 can be done by using the coordinate decent algorithm.

In Step 2, to guarantee that both
X

i;j
Dðw�i;w�jÞSi;j and

X
i;j
D

ðwi�;wj�ÞGi;j decrease, we can maintain a fixed number of 1’s in S

and G. Taking G as an example, once Gi;j is selected to change

from 0 to 1, another element Gi0;j0 with Dðwi�;wj�Þ5Dðwi0�;wj0�Þ

should be changed from 1 to 0.
The selection of (i, j) and ði0; j0Þ is based on the ranking of

Dðwi�;wj�Þ (1 � i5j � N). Specifically, we examine 
 pairs (the

choice of 
 depends on the user’s belief in the quality of the prior

network. For example, it can be 5% of all (i, j) pairs) with the

smallest distances. Among them, we pick those having no edges

in G. Let P0 be this set of pairs. Accordingly, we examine 
 pairs
with the largest distances. Among these pairs, we pick up only

those having an edge in G. Let P1 be this set of pairs. The

elements of G corresponding to pairs in P0 are candidates for

updating from 0 to 1, since these pairs of genes are associated

with similar SNPs. Similarly, elements of G corresponding to

pairs in P1 are candidates for updating from 1 to 0.

In this process, the prior knowledge of gene pathways can be

easily incorporated to better refine G. For instance, we can fur-

ther require that only the gene pairs in P0 belonging to the same

pathway are eligible for updating, and only the gene pairs in P1

belonging to different pathways are eligible for updating. We

denote the set of gene pairs eligible for updating by P0
0 and

P1
0; respectively. Then, we choose min ðjP0

0j; jP1
0jÞ pairs in set

P0
0 with smallest Dðwi�;wj�Þ (ði; jÞ 2 P0

0) and update Gi;j from 0

to 1. Similarly, we choose min ðjP0
0j; jP1

0jÞ pairs in set P1
0 with

largest Dðwi0�;wj0�Þ (ði
0; j0Þ 2 P1

0) and update Gi0;j0 from 1 to 0.
Obviously, all Dðwi�;wj�Þ’s are smaller than Dðwi0�;wj0�Þ if


5 NðN�1Þ
4 : Thus,

X
i;j
Dðwi�;wj�ÞGi;j is guaranteed to decrease.

The updating process for S is similar except that we compare

columns rather than rows of W and use SNP locations rather

than pathway information for evaluating the eligibility for updat-

ing. The updating process ends when no such pairs can be found

so that switching their values will result in a decrease of the

objective function.

The convergence of GGDL can be observed as follows. The

decrease of the objective function value in the first step is straight-

forward since we minimize it using coordinate decent. In the

second step, the change of the objective function value is given by

��D w�iS ;w�jS
� �

+�D w�iS 0 ;w�jS 0
� �

��D wiG�;wjG�

� �
+�D wiG

0�;wjG
0�

� � ð23Þ

which is always negative. Thus, in each iteration, the objective
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function value decreases. Since the objective function is non-nega-

tive, the process eventually converges.

THEOREM 4.1. GGDL converges to the global optimum if bothX
i;j
Dðwi�;wj�Þ and

X
i;j
Dðw�i;w�jÞ are convex to W.

PROOF: The last two terms in Equation (22) are linear with re-

spect to S and G, and convex to W according to the conditions

listed. Thus the objective function is convex over all variables. A

convergent result to the global optimum can be guaranteed. «

5 EXPERIMENTS

In this section, we perform extensive experiments to evaluate the

performance of the proposed methods. We use both simulated

datasets and real yeast eQTL dataset (Brem et al., 2005). For

comparison, we select several state-of-the-art methods, including

SIOL (Lee and Xing, 2012), two graph guided multi-task lasso

(mtlasso2G) (Chen et al., 2012), sparse group Lasso (Biganzoli

et al., 2006), sparse multi-task Lasso (Biganzoli et al., 2006),

LORS (Yang et al., 2013) and Lasso (Tibshirani, 1996). For all

the methods, the tuning parameters were learned using cross

validation.

5.1 Simulation study

We first evaluate the performance of the selected methods using

simulation study. Note that GGDL requires additional prior

knowledge and will be evaluated using real dataset.
We adopt the same setup for the simulation study as that in

(Lee and Xing, 2012; Yang et al., 2013) and generate synthetic

datasets as follows. 100 SNPs are randomly selected from the

yeast eQTL dataset (Brem et al., 2005) (112 samples). Ten gene-

expression profiles are generated by Zj�=Wj�X+�j�+Ej�

(1 � j � 10), where Ej��N ð0; �
2IÞ (�=1) denotes Gaussian

noise. �j� is used to model non-genetic effects, which is drawn

from Nð0; �SÞ, where �=0:1. S is generated by MMT, where

M 2 R
D�C and Mij�Nð0; 1Þ: C is the number of hidden factors

and is set to 10 by default. The association matrixW is generated

as follows. Three sets of randomly selected four SNPs are asso-

ciated with three gene clusters (1–3), (4–6), (7–10), respectively.

In addition, one SNP is associated with two gene clusters (1–3)

and (4–6), and one SNP is associated with all genes. The associ-

ation strength is set to 1 for all selected SNPs. The clustering

structures among SNPs and genes serve as the ground truth of the

prior network knowledge. Only two of the three SNP (gene)

clusters are used in W to simulate incomplete prior knowledge.

Figure 2 shows the estimated W matrix by various

methods. The x-axis represents traits (1–10) and y-axis represents

SNPs (1–100). From the figure, we can see that GDL is more

effective than G-Lasso. This is because the dual refinement en-

ables more robust model. G-Lasso outperforms SIOL and

mtlasso2G, indicating that the graph regularizer provides a

smoother regularization than the hard clustering based penalty.

In addition, SIOL and mtlasso2G do not consider confounding

factors. SIOL and mtlasso2G outperform multi-task Lasso and

sparse group Lasso since it uses both SNP and gene grouping

information, while multi-task Lasso and sparse group Lasso only

use one of them. We also observe that all methods utilizing prior

grouping knowledge outperform LORS and Lasso which cannot

incorporate prior knowledge. LORS outperforms Lasso since it

considers the confounding factors.

The ground-truth networks, prior networks and GDL-refined

networks are shown in Figure 3. Note that only a portion of the

ground-truth networks are used as prior networks. In particular,

the information related to gene cluster (7–10) is missing in the

prior networks. We observe that the refined matrix G well cap-

tures the missing grouping information of gene cluster (7–10).

Similarly, many missing pairwise relationships in S are recovered

in the refined matrix (points in red ellipses).

Using 50 simulated datasets with different Gaussian noise

(�2=1 and �2=5Þ; we compare the proposed methods with al-

ternative state-of-the-art approaches. For each setting, we use 30

samples for test and 82 samples for training. We report the aver-

aged result from 50 realizations. Figure 4 shows the ROC curves

of TPR-FPR for performance comparison, together with the

areas under the precision-recall curve (AUCs) (Chen et al.,

2012). The association strengths between SNPs and genes are

set to be 0.1, 1 and 3, respectively. It is clear that GDL outper-

forms all alternative methods by effectively using and refining the

prior network knowledge. We also computed test errors. On

average, GDL achieved the best test error rate of 0.9122, and

the order of the other methods in terms of the test errors is:

G-Lasso (0.9276), SIOL (0.9485), Mtlasso2G (0.9521), Multi-

task Lasso (0.9723), Sparse group Lasso (0.9814), LORS

(1.0429) and Lasso (1.2153).

Fig. 3. The ground truth networks, prior partial networks and the refined

networks

Fig. 2. Ground truth of matrix W and that estimated by different meth-

ods. The x-axis represents traits and y-axis represents SNPs. Normalized

absolute values of regression coefficients are used. Darker color implies

stronger association
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To evaluate the effectiveness of dual refinement, we compare

GDL and G-Lasso since the only difference between these two

methods is whether the prior networks are refined during the

optimization process. We add noises to the prior networks by

randomly shuffling the elements in them. Furthermore, we use

the signal-to-noise ratio defined as SNR=
ffiffiffiffiffiffiffiffiffi
WX

�+E

q
(Yang et al.,

2013) to measure the noise ratio in the eQTL datasets. Here,

we fix C=10; �=0:1; and use different �’s to control SNR.
Figure 5 shows the results for different SNRs. For a fixed

SNR, we vary the percentage of noises in the prior networks

and compare the performance of selected methods. From the

results, we can see that G-Lasso is more sensitive to noises in

the prior networks than GDL is. Moreover, when the SNR is

low, the advantage of GDL is more prominent. These results

indicate using dual refinement can dramatically improve the ac-

curacy of the identified associations.

5.2 Yeast eQTL study

We apply the proposed methods to a yeast (Saccharomyces cer-

evisiae) eQTL dataset of 112 yeast segregants generated from a

cross of two inbred strains (Brem et al., 2005). The dataset ori-

ginally includes expression profiles of 6229 gene-expression traits

and genotype profiles of 2956 SNPs. After removing SNPs with

410% missing values and merging consecutive SNPs high link-

age disequilibrium, we get 1017 SNPs with unique genotypes

(Huang et al., 2009). After removing the ones with missing

values, 4474 expression profiles are selected. The genetic

interaction network is generated as in (Lee and Xing, 2012).

We use the PPI network downloaded from BioGRID (http://

thebiogrid.org/) to represent the prior network among genes. It

takes �1 day for GGDL, and �10h for GDL to run into

completion.

5.2.1 cis- and trans-enrichment analysis

We follow the standard cis-enrichment analysis (Listgarten et al.,

2010) to compare the performance of two competing models.

The intuition behind cis-enrichment analysis is that more cis-

acting SNPs are expected than trans-acting SNPs. A two-step

procedure is used in the cis-enrichment analysis (Listgarten

et al., 2010): (i) for each model, we apply a one-tailed Mann–

Whitney test on each SNP to test the null hypothesis that the

model ranks its cis hypotheses no better than its trans hypoth-

eses, (ii) for each pair of models compared, we perform a two-

tailed paired Wilcoxon sign-rank test on the P-values obtained

from the previous step. The null hypothesis is that the median

difference of the P-values in the Mann–Whitney test for each

SNP is zero. The trans-enrichment is implemented using similar

strategy (Brem et al., 2003), in which genes regulated by tran-

scription factors (obtained from http://www.yeastract.com/

download.php) are used as trans-acting signals.
In addition to themethods evaluated in the simulation study,GGDL

is also evaluatedhere (with
=100000; �=5; �=8; �=15; �=1) (for

GDL, �=5; �=8; �=15; �=1; �=15; 	=1Þ: The Euclidean

(a) (b)

(c) (d)

Fig. 4. Power curves for synthetic data. The left plots show the ROC curve, where our model GDL achieved maximum power. The black solid line

denotes what random guessing would have achieved. The right plots illustrate the areas under the precision-recall curve (AUCs) of different methods

Fig. 5. The areas under the TPR-FPR curve (AUCs) of Lasso, LORS,

G-Lasso and GDL. In each panel, we vary the percentage of noises in the

prior networks S0 and G0
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distance is used as the distancemetric.We rank pairs of SNPs and genes

according to the learnedW.S is refined if the locations of the two SNPs

are5500bp.G is refined if the two genes are in the same pathway. The

pathway information is downloaded from Saccharomyces Genome

Database [SGD (http://www.yeastgenome.org/)].

The results of pairwise comparison of selected models are

shown in Table 2. In this table, a P-value shows how significant

a method on the left column outperforms a method in the top

row in terms of cis and trans enrichments. We observe that the

proposed GGDL and GDL have significantly better enrichment

scores than the other models. By incorporating genomic location

and pathway information, GGDL performs better than GDL

with P-value50.0001. The effectiveness of the dual refinement

on prior graphs is demonstrated by GDL’s better performance

over G-Lasso. Note that the performance ranking of these

models is consistent with that in the simulation study.
The top-1000 significant associations given by GGDL, GDL

and G-Lasso are shown in Figure 6. We can see that GGDL and

GDL have stronger cis-regulatory signals than G-Lasso does. In

total, these methods each detected �6000 associations according

to non-zero W values. We estimate FDR using 50 permutations

as proposed in (Yang et al., 2013). With FDR � 0.01, GGDL

obtains �4500 significant associations. The plots of all identified

significant associations for different methods are given in the

Supplementary Material.

5.2.2 Refinement of the prior networks

To investigate to what extend GGDL is able to refine the prior

networks and study the effect of different parameter settings on


, we intentionally change 75% elements in the original prior PPI

network and genetic-interaction network to random noises. We

feed the new networks to GGDL and evaluate the refined net-

works. The results are shown in Figure 7. We can see that for

both PPI and genetic-interaction networks, many elements are

recovered by GGDL. This demonstrates the effectiveness of

GGDL. Moreover, when the number of SNP (gene) pairs (
)

examined for updating reaches 100 000, both PPI and genetic-

iteration networks are well refined.

Table 2. Pairwise comparison of different models using cis-enrichment and trans-enrichment analysis

GDL G-Lasso SIOL Mtlasso2G Multi-task Sparse group LORS Lasso

Cis-enrichment

GGDL 0.0003 50.0001 50.0001 50.0001 50.0001 50.0001 50.0001 50.0001

GDL – 0.0009 50.0001 50.0001 50.0001 50.0001 50.0001 50.0001

G-Lasso – – 50.0001 50.0001 50.0001 50.0001 50.0001 50.0001

SIOL – – – 0.1213 0.0331 0.0173 50.0001 50.0001

Mtlasso2G – – – – 0.0487 0.0132 50.0001 50.0001

Multi-task – – – – – 0.4563 0.4132 50.0001

Sparse group – – – – – – 0.4375 50.0001

LORS – – – – – – – 50.0001

Trans-enrichment

GGDL 0.0881 0.0119 0.0102 0.0063 0.0006 0.0003 50.0001 50.0001

GDL – 0.0481 0.0253 0.0211 0.0176 0.0004 50.0001 50.0001

G-Lasso – – 0.0312 0.0253 0.0183 0.0007 50.0001 50.0001

SIOL – – – 0.1976 0.1053 0.0044 0.0005 50.0001

Mtlasso2G – – – – 0.1785 0.0061 0.0009 50.0001

Multi-task – – – – – 0.0235 0.0042 0.0011

Sparse group – – – – – – 0.0075 0.0041

LORS – – – – – – – 0.2059

(a) (b) (c)

Fig. 6. The top-1000 significant associations identified by different methods. In each plot, the x-axis represents SNPs and y-axis represents genes. Both

SNPs and genes are arranged by their locations in the genome
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5.2.3 Hotspots analysis

In this section, we study whether GGDL can help detect more

biologically relevant associations than the alternatives.

Specifically, we examine the hotspots which affect 410 gene

traits (Lee and Xing, 2012). The top-15 hotspots detected by

GGDL are listed in Table 3. The top-15 hotspots detected by

other methods are included in the Supplementary Material.

From Table 3, we observe that for all hotspots, the associated

genes are enriched with at least one GO category. Note that

GGDL and GDL detect one hotspot (12), which cannot be de-

tected by G-Lasso. They also detect one hotspot (6), which can

not be detected by SIOL. The number of hotspots that are sig-

nificant enriched is listed in Table 4. From the table, we can see

that GGDL slightly outperforms GDL since it incorporates the

location of SNPs and gene-pathway information.

6 DISCUSSION

As a promising tool for dissecting the genetic basis of common

diseases, eQTL study has attracted increasing research interest.

The traditional eQTL methods focus on testing the associations

between individual SNPs and gene expression traits. A major

drawback of this approach is that it cannot model the joint

effect of a set of SNPs on a set of genes, which may correspond

to biological pathways.
Recent advancement in high-throughput biology has made a

variety of biological interaction networks available. Effectively

integrating such prior knowledge is essential for accurate and

robust eQTL mapping. However, the prior networks are often

noisy and incomplete. In this article, we propose novel graph-

regularized-regression models to take into account the prior net-

works of SNPs and genes simultaneously. Exploiting the duality

between the learned coefficients and incomplete prior networks

enables more robust model. We also generalize our model to

integrate other types of information, such as SNP locations

and gene pathways. The experimental results on both simulated

Table 3. Summary of the top-15 hotspots detected by GGDL

ID Sizea Locib GOc Hitsd GDL (all)e GDL (hits)f G-Lasso(all)g G-Lasso(hits)h SIOL(all)i SIOL(hits)j LORS(all)k LORS(hits)l

1 31 XII:1056097 (1)*** 7 31 7 32 7 8 6 31 7

2 28 III:81832..92391 (2)** 5 29 5 28 5 58 5 22 4

3 28 XII:1056103 (1)*** 7 29 6 28 6 1 1 2 0

4 27 III:79091 (2)*** 6 29 6 28 6 28 7 10 2

5 27 III:175799..177850 (3)* 3 26 3 23 3 9 2 18 4

6 27 XII:1059925..1059930 (1)*** 7 27 7 27 7 0 0 5 1

7 25 III:105042 (2)*** 6 23 6 25 6 5 3 19 4

8 23 III:201166..201167 (3)*** 3 23 3 22 3 13 2 23 3

9 22 XII:1054278..1054302 (1)*** 7 26 7 24 7 24 5 12 4

10 21 III:100213 (2)** 5 23 5 23 5 5 3 5 1

11 20 III:209932 (3)* 3 21 3 19 3 16 4 15 4

12 20 XII:659357..662627 (4)* 4 19 4 3 0 37 9 36 6

13 19 III:210748..210748 (5)* 4 24 4 18 4 2 3 11 4

14 19 VIII:111679..111680 (6)* 3 20 3 19 3 3 3 12 2

15 19 VIII:111682..111690 (7)** 5 21 5 20 5 57 6 22 3

Total hits 75 74 70 59 49

aNumber of genes associated with the hotspot bThe chromosome position of the hotspot. cThe most significant GO category enriched with the associated gene set. The

enrichment test was performed using DAVID (Huang et al., 2009). The gene function is defined by GO category. The involved GO categories are: (i) telomere maintenance via

recombination; (ii) branched chain family amino acid biosynthetic process; (iii). regulation of mating-type specific transcription, DNA-dependent; (iv) sterol biosynthetic

process; (v) pheromone-dependent signal transduction involved in conjugation with cellular fusion; (vi) cytogamy; (vii) response to pheromone. dNumber of genes that have

enriched GO categories. e,g,I,kNumber of associated genes that can also be identified using GDL, G-Lasso, SIOL and LORS, respectively. f,h,j,lNumber of genes that have

enriched GO categories and can also be identified by GDL, G-Lasso, SIOL and LORS, respectively. Among these hotspots, hotspot (12) in bold cannot be detected by G-

Lasso. Hotspot (6) in italic cannot be detected by SIOL. Hotspot (3) in teletype cannot be detected by LORS. Adjusted P-values using permutation tests. *10–2�10–3,

**10–3�10–5, ***10–5�10–10.

Table 4. Hotspots detected by different methods

GGDL GDL G-Lasso SIOL LORS

Number of hotspots

significantly enriched

(top 15 hotposts)

15 14 13 10 9

Number of total

reported hotspots (size410)

65 82 96 89 64

Number of hotspots

significantly enriched

45 56 61 53 41

Ratio of significantly

enriched hotspots (%)

70 68 64 60 56

Fig. 7. Ratio of correct interactions refined when varying 
. The initial

input networks only contain 25% correct interactions

GDL for robust eQTL mapping

i147

sub
GD-Lasso
more than 
top 
GD-Lasso
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu293/-/DC1
GD-Lasso
GD-Lasso
GD-Lasso
GD-Lasso
gene 
expression quantitative trait loci (
)
paper
graph 
regularized 


and real eQTL datasets demonstrate that our models outperform
alternative methods. In particular, the proposed dual refinement
regularization can significantly improve the performance of
eQTL mapping.
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