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ABSTRACT OF THE DISSERTATION

Thermo-physical phase field model of laser powder melting additive manufacturing of

layered stainless steel structures

by

Collin Sebastian Roberts

Doctor of Philosophy in Materials Science and Engineering

University of California, Los Angeles, 2023

Professor Jaime Marian, Chair

The high temperature gradients present in additive manufacturing (AM) processes tend to

produce microstructures in metallic materials that are not seen in other manufacturing pro-

cesses. Large columnar grains oriented parallel to the build direction in AM materials are

an important feature to quantify based on their ability to affect the mechanical properties

of the output material. In this work we present a thermo-physical phase field model that

combines an implicit solution to the heat equation in two dimensions while simultaneously

modeling the explicit heterogeneous nucleation and growth of solidifying material in the ac-

tive build layer. After construction of a simulated bulk material, finite-element analyses can

be performed to determine the expected mechanical properties. Given the varied parameter

space present in AM processes, an efficient method is presented to utilize machine learning

methods to predict the effect of various microstructural features on the output mechanical

properties of yield strength and post-yield hardening rate.
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CHAPTER 1

Introduction

Selective laser melting (SLM) is an additive manufacturing (AM) technique characterized by

layer-by-layer melting of a powdered metal deposited onto a substrate plate that is selectively

fused to the previous layer with a high-power laser [1]. This process allows for the creation

of more geometrically complex parts with less material at faster prototyping cycles than

traditional metal manufacturing techniques involving subtractive manufacturing, forging, or

casting [2]. Additionally, parts made with AM methods can exhibit improved mechanical

properties such as yield strength when compared to reference components made with tradi-

tional methods [3, 4]. However, the high temperature gradients present in SLM processes

have marked effects on the resultant microstructure of the component made. Notable among

these microstructural features is the formation of large columnar grains oriented parallel to

the build direction. Naturally, then, it can be inferred that parts produced with SLM may

show greater anisotropy in mechanical properties than cast alloys with a higher proportion

of equiaxed grains. Analyzing the presence and quantifying the properties of these columnar

grains would lead to better understanding of bulk-scale component performance while also

informing the AM processing parameters needed to achieve the desired mechanical output

of a given component [5, 6].

SLM-AM processing can be slow and costly and is characterized by a large parameter

space. Moreover, slight variations in the parameters involved can have a strong impact on

microstructural outcomes [7]. As such, modeling and simulation has emerged as a useful

tool to efficiently parse through the many degrees of freedom controlling SLM-AM and
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identify those with the highest impact [8–13]. Models that take a physics-based approach

to couple printing parameters (e.g., laser power, scan speed, hatch spacing, layer height) to

solidification characteristics of the deposited material (e.g., specific heat, density, enthalpy,

diffusion rates) can be utilized to predict features of the resulting microstructure, and in some

cases, predict the mechanical behavior of the as-built components. However, high-fidelity

modeling of the additive manufacturing process has proven difficult due to the influence

of multi-scale and multi-physics phenomena such as nucleation and solidification, powder

packing and multi-pass effects, fluid flow and Marangoni effects, martensitic transformations,

as well as the contribution from defects such as key-holing, lack of fusion, vaporization, solute

segregation, and hot cracking. As such, various simulation techniques have been employed

to capture different mechanisms of the fabrication process, including phase field modeling

(PFM) [14–17], kinetic Monte Carlo (kMC) [18, 19], the finite element method (FEM) [12,

20–23], computational fluid dynamics (CFD) [11, 24], and cellular automata (CA) [25–29].

While AM modeling is eminently a three-dimensional process, 3D-approaches are com-

putationally intensive, which limits the time and length scales of what is computationally

achievable [30]. However, it is not clear how 2D simulations can reliably approximate three-

dimensional settings. Only in cases where columnar growth is the operative physical mech-

anism are 2D models suited to simulate AM processes [31]. Indeed, columnar structures

during SLM-AM are often seen in the direction of heat extraction, i.e., when heat flow is

orthogonal to the scan direction [32]. Columnar grains can also appear in laser powder-bed

melting processing when solidified grains are seen to grow along crystal directions dictated

by the underlying substrates or support layer [33, 34]. In such conditions, two-dimensional

models that use the z direction as a boundary condition, both in terms of heat flow and

crystallographic biasing, may be appropriate to simulate SLM-AM processing.

One potential application for SLM manufacturing is titanium alloys which are widely

used in aerospace, biomedical, transportation, and military applications due to their specific

high strength and fracture toughness, corrosion resistance, and high-temperature properties.
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In particular, Ti-6Al-4V is one of the most popular titanium alloys due to the increased

strength achieved with the stabilization of the body-centered cubic (BCC) β phase. The

interplay between the hexagonal close-packed (HCP) α phase and the β phase is the primary

factor dictating the strength of titanium alloys. Though the β phase is thermodynamically

unfavorable below 890◦C in pure titanium [35, 36], metastable dual-phase titanium alloys are

possible through the addition of a mixture of beta-stabilizers (such as silicon and vanadium)

and alpha-stabilizers (such as aluminum or oxygen). One of the primary advantages of α/β

alloys is that they are heat treatable. Heat treating is vital to relieve residual stresses,

remove machining history, or tune the microstructure for the ability of mass-manufacturing

the material, making α/β alloys a continued area of interest for manufacturing and material

science alike.

A number of previous studies have shown that thermo-mechanical processing of α/β

Ti alloys can achieve a particular microstructure-performance combination for various ap-

plications [37]. Dual-phase titanium can exist in a number of microstructures including

equiaxed, duplex, lamellar, intergranular, and lath [38, 39]. In addition, there is interest in

better understanding graded or layered microstructures that may be ideal for lightweight or

directionally-dependent high strength applications [40]. The advantageous properties of tita-

nium alloys make them ideal candidates for many high-performance applications. However,

the parametric space including all property-dependent microstructural features (grain size,

phase fraction, orientation, texture, grain geometry, reinforcement particle size and distribu-

tion, solutes etc.) makes alloy design a multifactorial process of combinatorial proportions.

As such, mapping the effect of one parameter –or of sets of different parameters– to a specific

microstructural property or mechanical response through experimentation alone is thus im-

practical. For this reason, computational modeling and data analysis can become essential

tools to establish direct correlations and narrow down the parametric space in search for

improved alloys via micro- and macrostructural design.

Traditional computational modeling methods, such as crystal plasticity (CP), are ideal

3



counterparts to experimental methods in order to study the various features associated with

the deformation behavior and mechanical coupling between the β and α phases. Indeed,

different variants of the CP method have been applied in recent times to modeling the defor-

mation of dual-phase titanium alloys [41–45]. However, while useful to study specific aspects

of microstructural evolution during alloy deformation, these tools alone cannot capture the

complexities associated with the broad parametric space potentially influencing the material

response. Capturing complex correlations between sets of variables requires using additional

tools of statistical nature.

Advances in computing power and data availability have, among other things, propelled

the widespread use of machine learning (ML) as an additional means of capturing meaning

from data. The materials science modeling community has benefited from the use of machine

learning techniques in studies utilizing density functional theory [46], dislocation dynamics

[47], molecular dynamics [48], crystal plasticity [49], and others [50–52]. The relatively low

cost to entry into the domain of machine learning makes it an ideal resource to complement

data-heavy research processes. Moreover, machine learning techniques are ideal to apply

when constructing a predictor for mechanical behavior because (i) there are often many fea-

tures that affect a material’s mechanical response, and (ii) the property-behavior relationship

of the features tends to be non-linear. Many machine learning models excel at capturing

non-linear behavior and have been successfully applied to build regressors that predict me-

chanical behavior for a wide range of materials including steels [53, 54], composites [55], and

metallic glasses [56–58]. It should be emphasized that while there are constitutive equations

that are used to model the mechanical behavior of alloys, the arbitrary extension of these

expressions to include more (possibly non-linear) variables is not trivial [59, 60]. In this way,

the use of ML as opposed to traditional constitutive expressions also decreases the rigor of

expanding the model to include more feature variables as the data becomes available.

In Chapter 2 we develop a full PFM for simulating layer-by-layer, selective laser-melting

additive manufacturing of 316L stainless steels. Our model starts from an existing substrate
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which acts both as heat sink and as a seed for grain orientation, known as oriented growth.

We solve the full thermo-physical system defined by a phase evolution equation of the Allen-

Cahn type coupled to the heat diffusion equation, using a heterogeneous nucleation and

growth model.

In Chapter 3 we employ several machine learning regression techniques in an exercise to

develop predictive models for the strength and hardening rate of α/β dual-phase polycrystals.

Our microstructure simulator is a crystal plasticity approach based on the work by Admal et

al.[61] adapted to polycrystals with alternating BCC/HCP structures representative of dual-

phase Ti alloys. The CP model is used to generate large data sets relating specific inputs

to objective outputs, and ML regression techniques are then applied to assign importances

and extract correlations.
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CHAPTER 2

Simulating additively manufactured microstructures

2.1 Simulation setup

The basic process to be simulated involves a laser with a finite spot width scanning an area

using an alternating sweep pattern such that every point in the simulation domain is at

least once directly under the laser beam. We assume that the laser always encounters a

thin layer of metal powder upstream. This layer is then molten underneath the laser spot

and re-solidifies dynamically following heat dissipation away from the melt pool. Powders

are always deposited on an existing substrate created by previous sweeps of the laser beam.

Solidification of the molten powders takes place subjected to the microstructural constraints

imposed by the underlying substrate (to be explained below). With each sweep, the to-

tal specimen thickness grows by some amount assumed to be sufficiently thin to guarantee

columnar growth [31]. For this reason, our model can be considered as a ‘2.5-dimensional’ ap-

proach in which 3D information can be extracted from two-dimensional simulations provided

that reasonable validity limits are acknowledged.

2.1.1 Laser spot dynamics

The motion of the laser spot follows the pattern illustrated schematically in Figure 2.1

for every layer of the simulation. Other studies show the effects of laser scan pattern on

defect formation and microstructural evolution [62], but for simplicity this work utilizes a

single laser track pattern. The laser has a spot diameter of dspot moving at a velocity vspot.
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Table 2.1: Laser parameters for AM algorithm iterations.

Parameter Value Units

Tspot 2595 K

vspot 300, 400, 500 mm · s−1

dspot 0.3, 0.4, 0.5 mm

Whatch 1.5rspot, 1.6rspot, 1.7rspot mm

Ṗ 230 W

Each successive pass is spaced by a distance Whatch separating the centers of the laser spot.

Table 2.1 gives the values considered in this work for dspot, Whatch, and vspot. Ṗ is the laser

power, which will be defined below. Simulations take place on a two-dimensional domain

characterized by a square mesh with step size equal to ∆x = ∆y. The distance moved by the

laser is normalized by the time step ∆t and the mesh spacing ∆x so the spot moves an equal

number of mesh spaces per iteration. After crossing the top edge of the simulation space,

the laser is held in a cool-down position outside the mesh, allowing the microstructure to

solidify in the wake of the hot spot. The laser moves in the positive x-direction in sequential

vertical sweeps separated by a full hatch distance. This is repeated until the simulation

domain is swept in its entirety. After a full coverage of the computational domain, the laser

heat source is removed from the simulation and the microstructure is allowed to cool to room

temperature.
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W hatch

Figure 2.1: Schematic representation of laser path in the simulation domain.

2.1.2 Layer-by-layer deposition

Laser heating always occurs over a pre-existing solid substrate with a special texture deter-

mined by the AM process. The initial microstructure (i.e., at t = 0) is a assumed to represent

an equiaxed polycrystal (constructed as described in Sec. 2.2.4) with a prescribed average

grain size and random texture. During each laser sweep, the metal powders deposited on the

substrate melt, after which a nucleation and growth process takes place governed by tem-

perature. As such, suitable simulation methods capable of capturing phase transformation

processes are required to model these processes. These are discussed in Sec. 2.2.1.

Solidification of the material via nucleation of new grains in the wake of laser melting

is then crystallographically biased by the crystal orientations of the underlying substrate

[63–66]. At the same time, existing grains adjacent to the melt pool can grow into it in the

same crystal orientation of the parent grain. This leads to two competing crystallographic

orientation processes that determine the texture of each successive layer. Next, we provide

further details describing the general procedure to implement these two processes.
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2.1.2.1 Assignment of crystal orientation by nucleation

When a nucleation event takes place (the nucleation criterion is explained in Sec. 2.2.3)

fully inside the melt pool, the nucleated crystal follows the same orientation as the grain

immediately beneath it in the underlying substrate. The process is schematically shown in

Figure 2.2, and effectively replicates the physical process of (quasi)columnar growth. Thus,

although the model may be strictly defined for two dimensions, the relation of the physical

processes in the active layer (denoted by N) to the underlying substrate (N − 1) connects

the simulation with the third (depth) dimension.

N-1

N

Figure 2.2: Examples of mesh points in layer N that have nucleated and are assigned the value of the same mesh point in

layer N − 1.

2.1.2.2 Assignment by growth

When an existing crystal grain grows into the molten region of the active layer, the mesh

elements absorbed by this growth are assigned the same crsytallographic orientation as the

solid grain. In the case of triple junctions, i.e., when a grain boundary moves into the
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molten region with another solid grain as neighbor, the corresponding mesh elements adopt

the orientation of the grain with which it shares the most edges. This is indicated in Figure

2.3, where a mesh element labeled ‘X’ solidifies with two grains A and B as neighbors. In

this case, X is assigned the same crystal orientation as B, as it shares more element edges

with it than with A.

XA B

(a) Mesh point X surveys neighbors for grain values.

A BX

(b) Mesh point X assumes value of grain B.

Figure 2.3: Schematic representation of grain assignment by growth of surrounding grains.

2.2 Numerical models

2.2.1 Phase field model

The phase field method has been extensively used to model various microstructural phenom-

ena including solidification [67], solid-solid phase transformations [68], fatigue crack growth

[2, 69], grain coarsening [30, 70], etc. The model tracks the evolution in time of an order

parameter or phase variable, ϕ, whose values represent different phases of the materials or

substances involved.
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2.2.1.1 Theoretical background

The standard phase-field model is formulated primarily on the basis of appropriately con-

structing the energy landscape to obtain the correct equilibrium response. The evolution of

ϕ follows a steepest descent dynamics, coupled to static or dynamic momentum balance. In

general solidification models, the phase-field variable takes two distinct value, ϕ = 0 to de-

scribe the region of amorphous or untransformed material, and ϕ = 1 to describe the region

of crystallized or transformed material. In order to maintain continuity of the associated

equations at the interface of the two phases, ϕ changes continuously from [0, 1].

Stability of a given phase is determined by the corresponding Gibbs free energy of the

system:

G =

∫
Ω

[gchem(ϕ, T, p, ...) + gdw(ϕ, T, p, ...) + ggrad(∇ϕ)] dΩ (2.1)

where gchem is the chemical free energy density of a given phase, gdw is the ‘double-well’

potential energy density, and ggrad describes the free energy density present due to the diffuse

interfacial regions between the extremes of ϕ. The energy densities used above are defined

as follows:

gchem = p(ϕ)gC + (1 − p(ϕ)) gL = gL − p(ϕ)∆g

gdw = Wq(ϕ)

ggrad =
a2

2
|∇ϕ|2

(2.2)
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where

p(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10)

q(ϕ) = 16ϕ2(1 − ϕ)2

∆g = gC − gL

δ = 4∆x

W =
6bγi
δ

a =

√
3δγi
b

b = 2 tanh−1(1 − 2λ)

(2.3)

Here, p(ϕ) is an interpolation function, q(ϕ) is the double-well potential function, gL and gC

are the Gibbs free energy densities of the liquid and crystalline phases, respectively, which

are taken as constant in this study. W and a describe the height of the energy barrier for the

double-well and the gradient energy coefficient, respectively. In the previous equations, γi is

the interfacial energy between the crystalline and liquid phases [71], δ is the one-dimensional

thickness of the interface, and b is a constant used to adjust the thickness of the diffuse

interfacial region. The parameters used in this simulation are given in Table 2.2.

The time evolution of the free energy equation is modeled with the Allen-Cahn equation

[70, 72]:
∂ϕ

∂t
= −Mϕ(T, ϕ)

δG

δϕ
= Mϕ

(
∂p(ϕ)

∂ϕ
∆g −W

∂q(ϕ)

∂ϕ
+ a2∇2ϕ

)
(2.4)

where Mϕ is a mobility defined as

Mϕ =

√
2W

6a
M(T ) (2.5)

where M(T ) is the physical mobility of the interface, described by an Arrhenius expression:

M(T ) = M0 exp

(
− Qg

kBT

)
(2.6)

where M0 is a constant mobility prefactor, Qg is the activation energy for interface motion,

and kB is Boltzman’s constant. Several studies cite values for M0 spanning orders of magni-

tude, from 10−7 to 10−5, even up to 10−2 m · s−1 [30, 73–76], but in this simulation, the value
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Parameter Value Units

Tm 1730 K

T0 300 K

αS 3.53 × 10−6 m2 · s−1

αL 3.35 × 10−6 m2 · s−1

hl 2.70 × 105 J · kg−1

c 7.27 × 102 J · kg−1 · K−1

ρ 8000 kg · m−3

γi 0.385 J · m−2

Qg 2.19 eV

Qd 1.40 eV

λ 0.1 –

∆x 5.0 × 10−6 m

∆t 2.50 × 10−5 s

M0 4.0 × 10−3 m4 · J−1 · s−1

θc 5.0 deg

Table 2.2: Parameters used in the phase field and temperature simulations.

given in Table 2.2 was chosen and provided stable phase field behavior. The temperature

dependence in the grain mobility allows the phase field model to accurately represent grain

growth under the temperature gradients present during the AM process, with grains growing

preferentially into areas of higher temperature.

2.2.1.2 Phase field explicit solution

The time-discretized solution of the phase field variable is solved with an explicit Euler

discretization scheme in time coupled with a central finite difference method in space. Com-
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bining eqs. (2.2)-(2.6), and using ϕx,y ≡ ϕ for clarity, the discretized form of eq. (2.4) is:

ϕt+∆t = ϕt −Mϕ∆t

[
30(ϕ2

t − ϕt)
2∆g + W (4ϕ3

t − 6ϕ2
t + 2ϕt)

− a2

(∆x)2
(
ϕx−1,y
t + ϕx+1,y

t + ϕx,y−1
t + ϕx,y+1

t − 4ϕt

)]
(2.7)

where the superscripts pertaining to the ϕ values account for periodic boundary conditions.

This equation is solved with an explicit timestep that adheres to Neumann stability condi-

tions:

∆t ≤ (∆x)2

4Mϕa2
(2.8)

The chosen time step that adheres to this stability condition is also applied to the implicit

solution to the heat equation (discussed in Sec. 2.2.2.1), aligning the temporal scale of the

two solvers. In this way, the temperature and phase fields can be solved on the same length

scale, eliminating the need for interpolation or other approximation methods.

2.2.2 Temperature field solution

2.2.2.1 Heat diffusion model

In this work, the motion of the laser beam is simulated assuming a time-dependent tem-

perature field, T (x, y), that mirrors the position of the laser spot. T (x, y) for the liquid is

obtained by solving the heat equation in conjunction with the Allen-Cahn equation:

∂T

∂t
= αL

(
∂2T

∂x2
+

∂2T

∂y2

)
+

hl

c

∂ϕ

∂t
(2.9)

where αL is the thermal diffusivity of the liquid, hl is the latent heat of fusion, and c is

the heat capacity [77–79]. The last term in the r.h.s. of the above equation represents the

injection of heat owing to an exothermic phase transformation to the solid phase (i.e., a

nucleation event, described below). In this work, the above equation is solved during every

iteration after moving the laser spot and fixing the temperature under the spot to a constant

value of Tspot = 1.5Tm, where Tm is the melting point, and then solving eq. (2.9) for the
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new temperature state at all points. In the solid phase, the above equation simplifies to:

Ṫ = αS∇2T . In both cases, we assume that the temperature is constant through the entire

thickness of the powder layer, i.e., along the depth z-dimension.

The laser power, listed in Table 2.1, can be obtained from the following expression:

Ṗ = CραLdspot∆T , where ∆T = Tspot − T0.

2.2.2.2 Implicit solution procedure

Equation (2.9) is solved using an implicit Euler discretization scheme in time coupled with

a finite difference method in space:

T x,y
t+∆t − T x,y

t

∆t
= αϕ

(
T x−1,y
t+∆t − 2T x,y

t+∆t + T x+1,y
t+∆t

∆x2
+

T x,y−1
t+∆t − 2T x,y

t+∆t + T x,y+1
t+∆t

∆y2

)
+

hl

c∆t
(ϕt+∆t − ϕt)

T x,y
t = T x,y

t+∆t −
αϕ∆t

(∆x)2
(
T x−1,y
t+∆t + T x+1,y

t+∆t + T x,y−1
t+∆t + T x,y+1

t+∆t − 4T x,y
t+∆t

)
− hl

c
(ϕt+∆t − ϕt)

(2.10)

where αϕ denotes the thermal diffusivity of the phase present at a given mesh point. This

equation can be written in a matrix form as:[
I − αϕ∆t

(∆x)2
Θ

]
Tt+∆t = Tt +

hl

c
(ϕt+∆t − ϕt) (2.11)

where Θ is a (first-nearest neighbor) square mesh connectivity matrix:

Θij =



−4 i = x, j = y

1 i = x± 1, j = y

1 i = x, j = y ± 1

0 otherwise

This system of equations is computationally solvable with linear algebra methods for the

family of cases represented by Ax = b. Here, the bracketed matrix on the l.h.s. is a sparse

N×N symmetric positive-definite matrix, allowing for fast computational solutions, even for
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large matrices. Here we use a Cholesky factorization to efficiently solve the Ax = b equation

for Tt+∆t based on Tt. The system is assumed to be connected to a 300 K temperature

reservoir by applying Dirichlet boundary conditions to all points on the boundary of the

simulation domain.

An example of the solution for the temperature field in the wake of the moving laser

spot is provided in Figure 2.4. The figure shows a color map of the temperature field,

the temperature profile along the y-direction for x = 200∆x, and several Gaussian profiles

corresponding to several time instances after the laser spot passed.

2.2.3 Nucleation and growth

This section describes the growth of existing grains within the simulation. Nucleation of new

crystal grains takes place within the molten region immediately beneath the laser spot. Note

that, by virtue of the link between eqs. (2.6) and (2.9), grain growth of nucleated grains,

i.e., interfacial motion, is anisotropic due to gradients in the temperature field.

Nucleation is modeled as a Poisson process controlled by the temperature at each respec-

tive mesh point. The critical radius and free energy for homogeneous nucleation is obtained

via classical nucleation theory [80]:

R∗(T ) =
2γi

∆G(T )
=

2γi

ρhl
Tm−T
Tm

=
2γiTm

ρhl∆T

∆G∗
hom(T ) =

16πγ3
i T

2
m

3ρ2h2
l ∆T 2

(2.12)

where ∆T = Tm − T describes the undercooling. ∆T affects both the size of the critical

radius and the free energy barrier for creating such a nucleus. As the undercooling increases

–i.e., if the local temperature decreases–, both the critical radius and free energy barrier

decrease.

In real materials, the nucleation rate is a temperature dependent feature, and homoge-

neous nucleation is effectively impractical on laboratory timescales. Considering that nucle-
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(a) 2D heat diffusion color map from moving laser spot.
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(b) Temperature profile from vertical slice at x = 200∆x.
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(c) Temperature profiles of horizontal slices in wake of laser

spot.

Figure 2.4: Results from test case of implicit heat diffusion solver.

ation in AM processes is expected to occur on an existing substrate, we expect heterogeneous

nucleation in all cases, which reduces the free energy barrier. The reduction in free energy
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depends on the contact angle θc that the nucleus makes with the substrate.

∆G∗
het(T ) = ∆G∗

hom(T ) · f(θc) (2.13)

f(θc) =
2 − 3 cos θc + cos3 θc

4
(2.14)

Defined in this way, f(θc) is a positive function between 0 and 1 (at 0◦ and 180◦, respectively)

with zero derivative at both ends [81]. Within classical nucleation theory, the nucleation rate

per unit volume follows a thermally-activated expression [82, 83]:

Jhet(T ) =
kBTNa

h
exp

(
− Qd

kBT

)
exp

(
−∆G∗

het(T )

kBT

)
(2.15)

Here, Na is the atomic density, h is Planck’s constant, and Qd is an activation energy. The

effect of the contact angle θc on the nucleation rate is shown qualitatively in Figure 2.5,

as the curves have been normalized against their respective maxima for better visibility.

Of particular note is the shifting of the peak position due to the contact angle. As the

contact angle approaches 180◦, the peak moves toward the expected position for homogeneous

nucleation, since f(180◦) = 1.

The nucleation rate dictates the likelihood of a nucleation event, i.e., the insertion at

a spatial point belonging to the untransformed region (i.e., with ϕ = 0) of a solid nucleus

with a critical size given by eq. (2.12). Since this is a probabilistic process, the nucleation

probability has to be sampled appropriately at the beginning of each iteration for the volume

of untransformed (superheated liquid) material in the simulation zone where ∆tnuc is the

cumulative time since the last nucleation event took place. The pseudocode representing

this direct nucleation criterion is described in Algorithm 1.
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Figure 2.5: Normalized plots of heterogeneous nucleation rates as a function of temperature and nucleus contact angle with

substrate, θc.

Algorithm 1 : Algorithm describing direct nucleation.

1: Pnuc = Jhet · Vl · ∆tnuc

2: if (Pnuc ≥ 1) then

3: Insert nucleus of size R∗ at random point inside Vl.

4: else if (Pnuc < 1) then

5: Get: ξ ∈ (0, 1]

6: if (Pnuc > ξ) then

7: Insert nucleus of size R∗ at random point inside Vl.

8: Vl = Vl − 4π
3

(R∗)3

9: ∆tnuc = 0

10: else

11: ∆tnuc = ∆tnuc + ∆t

12: end if

13: end if

19



For the procedure in Algorithm 1 to be strictly correct, the mesh size must satisfy ∆x ≤

R∗. Using the parameters given in Table 2.2, this implies considering values of less than 5.0

nm for ∆x. Considering that the laser spot size is ≈ 0.4 mm in diameter, it would require

more than 1010 mesh points to resolve the entire area of the melt pool under the laser, which

is currently beyond our computational means for this work. Consequently, we modify the

above procedure with one where nuclei are inserted with a size equal to that of the mesh,

i.e., ∆x. However, instead of advancing time by the prescribed timestep ∆t, we advance the

simulation clock by an amount commensurate with the length of time needed by the nucleus

to grow from R∗ to ∆x. For this approach to be valid, the growth of critical nuclei from R∗

to ∆x must be much faster than any other process in the system. We believe this adiabatic

approximation to be justified by (i) the large temperature difference between the areas near

the melt pool and those far away from it, and (ii) by the much larger curvature of small

growing nuclei relative to existing interfaces. Accordingly, time is advanced by an amount:

∆tad =
∆x−R∗(T )

vint
=

∆x−R∗(T )

∆GV (T )M(T )
=

(∆x−R∗(T ))Tm

ρhl∆TM(T )
(2.16)

where we have defined the velocity of the nuclei interface, vint, as the product of the interface

mobility times the free energy gain associated with nuclei rapid growth.

20



Figure 2.6: Histogram showing time step used per iteration. ∆tad selected when ∆tad > ∆t.

2.2.4 Initial 2D Voronoi construction

The initial underlying substrate upon which the AM method runs is generated using a

Voronoi tessellation of a N×M discrete square grid populated with K grain centers adhering

to a log-normal distance distribution. Once all K grain centers are set, each mesh point pi

is assigned to the nearest center kj after accounting for periodic boundary conditions where

pgi denotes the grain assignment.

pgi = min
[
dist(pi, k

′
j) : j ∈ {1, ..., K}

]
dist(pi, k

′
j) =

√(
pix − k′

jx

)2
+
(
piy − k′

jy

)2 (2.17)

Here k′
j denotes any of the points in the set of periodic Voronoi centers pertaining to center

kj. An example is shown schematically in Figure 2.7, where mesh point p is assigned to

grain center k1 despite being closer to grain center k2 in the central simulation space. This is

because the distance to the periodic virtual center k′
1 is the shortest distance of those shown.
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After assigning every mesh point to the corresponding grains, we build an orientation map

for the entire structure generated by the so-called de-centered octahedron algorithm [84–86].

This approach is known to favor the formation of commonly observed ⟨100⟩ growth textures

in cubic crystals [87–89]. The orientation map is expressed as Euler angles [ϕ1,Φ, ϕ2] and a

grain identification number for later reference in the algorithm.

Figure 2.7: Schematic representation of periodic distance-checking for Voronoi diagram.

A verification example of a microstructure generated using the procedure just described

is shown in Figures 2.8a and 2.8b.
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Figure 2.8: (a) Example of initial substrate generated for use with first AM iteration. (b) Grain size distribution for substrate

example shown.

2.3 Results

All simulations were run on a square mesh with 250 elements per side representing a total

simulated area of 1.56 mm2. The size of each mesh element and the time step used per

iteration is shown in Table 2.2. The initial Voronoi substrate was created with 1500 centers

to create a distribution with a median grain size of approximately 26.5 microns, which is

consistent with values seen in empirical studies of AM 316L [66, 90]. The size of the mesh

was chosen to balance performance with overall testing area, as the time per iteration scales

quadratically with the mesh size, as shown in Fig. 2.9, where the time reported is averaged

from 500 iterations of the code. Error bars are not shown on the plot as the standard error

of each respective mean was less than 0.4% of the reported value. All simulations were run

on a 3.61GHz Intel i7-12700K processor.

Figure 2.10 shows a series of snapshots detailing the microstructural evolution of the

active layer in the wake of the laser spot for a case with vspot = 300 mm·s−1, dspot = 0.3 mm,

and Whatch = 1.7rspot = 0.255 mm. In Figs. 2.10a, 2.10d, and 2.10g, areas unassigned to any
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Figure 2.9: Time per iteration of code for increasing number of mesh elements in simulation. Time per iteration taken as

average time of 500 iterations for each size shown.

new grains are shown in black, and the colored areas show individual grains (i.e., domains

with the same crystal orientation). Figs. 2.10b, 2.10e, and 2.10h show the corresponding

temperature fields. Nucleation is seen to occur in the wake of the beam as well on the edges of

the boundaries of the heat envelope. These nuclei then grow anisotropically in response to the

temperature gradient from the laser spot (as seen in empirical studies [91–93]). Figs. 2.10c,

2.10f, and 2.10i indicate the extent of the transformed microstructure. After the laser has

fully swept the simulation area, this microstructure is used as the substrate for the next layer.

Each run consisted of 50 laser spot passes to build up a 3D structure analogous to a columnar

material. An example of a finalized microstructure is shown in Figure 2.11, with Fig. 2.11a

showing a 3D perspective of the built microstructure, and 2.11b a cross-sectional cut along

the plane indicated by a dashed white line in 2.11a. The simulated microstructures display

a characteristic columnar structure, with a clear continuity in crystal orientation across the

entire height (build direction) of the system. Similar structures are commonly seen during

directional solidification, and, in the case of layer-by-layer growth, the columnar grains are

seen to grow epitaxially from the previously deposited layer, along the build direction which
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is perpendicular to the bottom of the melt pool [94–97]. In general, the columnar grains

grow as the bottom the melt pool moves upwards during the subsequent cooling process.

Thus, our model can be regarded as replicating a LPBF process with fast-cooling in the

growth direction.

We then carried out 27 independent simulations with different permutations of the values

in Table 2.1. The grain size of each layer was calculated using the linear intercept method

with 50 vertical lines and 50 horizontal lines spaced equally in the mesh. The mean and

standard error of each simulation plotted against the layer number is shown in Figure 2.12.

In the figure, each row pertains to a single value for dspot and each column pertains to a

single vspot value. In all simulations there is a trend showing the average grain size increases

over the course of 50 laser passes, with the average final grain size calculated as 63.4 ± 7.4

µm. The largest grains across all simulations appear in the simulations with the shortest

hatch width of 1.5rspot, while hatch widths 1.6rspot and 1.7rspot are within error of each other

for almost all simulations. Increases in spot velocity tend to suppress grain growth for a

given spot diameter, whereas increasing the spot diameter for a given fixed velocity tends to

increase the maximum final average grain size.

The columnar grain area percentage was also calculated for every simulation per layer.

Referencing the schematic provided in Figure 2.2, this metric was calculated by surveying

each mesh point and counting any point in the active layer, N , that had the same grain

orientation as the corresponding point in the underlying layer, (N −1). This count was then

divided by the number of total mesh points in the simulation to return an area percentage

of the columnar grains. The results are shown in Figure 2.13, where a clear tendency can

be observed for all simulations to increase in columnar grain area fraction, approaching an

average maximum of 0.84 ± 0.01 area fraction. None of the input variables appear to be

strongly correlated to the formation of columnar grains, as the values of all simulations are

roughly similar.
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Figure 2.10: Sequence of simulation snapshots for a case with vspot = 300 mm·s−1, dspot = 0.3 mm, and Whatch = 0.255 mm.

(a), (d), and (g) show the newly created grains and their orientations over the existing substrate. (b), (e), and (h) show the

instantaneous temperature field, and (c), (f), and (i) show the area fraction of the transformed material. Solid nuclei can be

appreciated in the molten region in the wake of the laser spot in (b), (e), and (h).
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Figure 2.11: Subsection of simulation output to highlight (a) 3D microstructure of final material with (b) vertical slice as

shown by black lines.

2.4 Discussion

2.4.1 Simulation results

The present approach is a full thermo-physical phase field model that simulates the growth

of metallic microstructures through additive layer buildup by laser melting. Our model

captures melting, solidification by nucleation in the melt pool, solidification by growth of

existing grains adjacent to the meltpool, and a full treatment of the temperature field by

solving the heat equation coupled to phase field changes. The model is developed in two

dimensions and neglects the granular structure of the powder layer. Instead, we assume that

the unprocessed layer can be described by a uniform medium with a prescribed thickness.

Strictly speaking, the 2D approach is valid when the thickness of the powder layer, ∆h, is

smaller than the characteristic heat diffusion mean free path, λh. In our case:

λh =
√

αL∆t
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Figure 2.12: Average grain size evolution for all permutations of simulations run. All y-axes are set to the same scale for

comparison.

Through eq. (2.8), ∆t is connected to other simulations parameters:

λh <

√
αL(∆x)2

4Mϕa2

which, for the values given in Table 2.2, gives a value of approximately ∆h < 16 microns.

Feedstock powders used as a raw material in LPBF have typical particle sizes ranging between
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Figure 2.13: Interlayer mismatch percentage for all permutations of simulations run. All the vertical axes are set to the same

scale for comparison.

10 and 60 microns [98–100], which then makes our study a valid approximation for powders

with fine particle sizes. Our model can capture processing parameters such as the laser spot

diameter, laser scan speed, and laser spot overlap in subsequent passes (‘cross-hatching’).

As such, we can assess the variables that have the most influence on final microstructure

formation.

29



In particular, the results of the simulations show the effect of the input parameters on

the outputs of grain size and area fraction pertaining to columnar grains. The simulations in

this study only cover a limited section of the available parameter space with respect to both

laser parameters and material properties. From the studies here, three main trends appear to

emerge: (i) decreasing hatch width is positively correlated with increasing grain growth, (ii)

increasing laser spot size is positively correlated with increased grain growth, 3) increasing

laser raster velocity is negatively correlated with increased grain growth. Addressing the first

point, hatch width would reasonably have a positive correlation on grain growth under the

assumption that the active layer has not fully cooled before the next laser pass occurs. Under

the assumption of full cooling, any hatch width would remelt the area under the laser spot,

leaving the surrounding material mostly unaffected. However, in the case of the heat not

fully diffusing before the next laser pass, a smaller hatch width could result in more residual

heat in the simulation, allowing grain growth for a greater percentage of the simulation

iterations. As was described in Section 2.1.1, the cool-down period was imposed to allow

the material to cool to a temperature that inhibited grain growth before the next laser pass.

However, the length of this cool-down was not set to be sufficiently long to allow all residual

heat to dissipate, creating a central area of high temperature in the material. The cases of

laser spot size and velocity have more apparent connections to enabling and inhibiting faster

grain growth, respectively. Increasing the spot size melts more material in an iteration, and

deposits more heat into the material since the temperature under the laser spot is fixed is a

superheated state. On the contrary, increasing the spot velocity results is less residual heat

within the material as the spot travels more during the simulated time step, resulting in

fewer total iterations where the spot is active within the simulation space. Probably, there

is a critical velocity for which the heat dissipation rate is comparable to the laser speed.

Below this velocity heat dissipiation occurs on the same timescale as laser motion, favoring

microstructures with equiaxed grains. Above this critical velocity, the grains are elongated

in the processing plane.
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In terms of the final microstructures obtained (e.g., Fig. 2.11), the columnar morphology

is commonly observed during solidification, in the direction perpendicular to the melt pool’s

interface. With thin active layers, or under high laser power conditions, this growth can

be observed directly along the build direction. Figure 2.14 provides a qualitative compar-

ison between the simulated structures and experimental observations. For example, large

columnar grains with high aspect ratio are seen to form in 316L stainless steel as a result of

epitaxial growth when using a high laser power [101], see Figure 2.14b. Another example is

shown in Figure 2.14c [102] in LBPF-fabricated Al-2.5Fe sample with Ṗ = 204 W and v =

600 mm·s−1 (recall that our values are Ṗ = 230 W and v = 500 mm·s−1, Tables 2.1 and 2.2).

Notwithstanding the uncertainties in some of the computational parameters and the model-

ing assumptions, the level of qualitative agreement in the comparison between our simulated

microstructures and those experimentally observed under similar conditions is encouraging.

Y

Z

250 µm

(a) This work

which is a result of the rapid solidification during
LPBF. The as-built texture depends mostly on the
melt pool size, direction of the local heat flow and
competitive grain growth occurring during manu-
facturing [34]. One can control the texture in AM
through imposing a change in the scanning strategy,
for example rotations between different layers and/
or the so-called point heat source strategy in which
the melted area is patterned in ‘points’, leaving some
space between individual points [35].

AM has made great progress over the past years in
terms of producing high-density parts; however,
defect formation remains a challenge [37]. Porosities,
delamination and balling are known as the most

common types of defects introduced during AM of
metals. Two types of pores have been reported in the
literature: (1) spherical or gas-induced pores and (2)
non-spherical or process-induced pores. The former
ones are believed to be due to the trapped gasses
among the powder particles, which are released
during melting and then locked-in during solidifica-
tion. Another origin of spherical pores arises from
gases being trapped inside the powder feedstock
during the preparing process of the powder materi-
als. This entrapped gas is then transferred into the
part and leads to formation of gas-induced porosity
[38]. On the other hand, non-spherical pores, also
known as irregular-shaped, lack-of-fusion (LOF) or

Figure 1 Typical grain structure of a LPBF 316L austenitic
stainless steel acquired by electron back-scattered diffraction
(EBSD) analysis. a An inverse pole figure (IPF) map of a LPBF
316L austenitic stainless steel processed with a 150 W laser power
along the building direction, x–z plane. b IPF map of the same
specimen shown in (a) but from the transverse (perpendicular to
the building) direction, x–y plane. c IPF map of another LPBF
316L austenitic stainless steel processed with a 1000 W laser

power along the building direction, indicating more elongated,
columnar grains compared to those in the specimen processed with
lower laser power in (a). IPF map of a conventionally processed
316L austenitic stainless steel is also presented in (d) for
comparison purposes. a, b and d have the same scale bars. a, b,
d are adapted from Ref. [36] and c from Ref. [33], with
permission.

J Mater Sci (2021) 56:64–107 67

(b) LPBF 316L steel [101]

like the Al–Si–(Mg) alloys which are so widely studied
in AM. Figure 10 shows a schematic of solidification of
a HiFI alloy vs AA7075, an alloy known to be suscep-
tible to hot tearing. In the AA7075 alloy, long and
narrow interdendritic channels form during the late
stages of solidification, creating barriers to liquid feed-
ing and resulting in hot tear initiation sites between
the dendrites as the temperature drops. In the HiFI

alloy, however, the wider interdendritic regions are
filled with eutectic which solidifies nearly isother-
mally, drastically reducing the tendency for hot tear
formation.

As expected, HiFI alloys are thus amenable to AM
processing. In near-eutectic AM Al-10Ce [124], hot
cracking was not observed at any scan speed (100–
1800 mm s−1) or laser power (200 and 350 W)
studied. Hot cracking was also not reported in near-
eutectic Al–2.5Fe [129]. After optimisation of proces-
sing parameters to reduce residual porosity, part den-
sities >99% were achieved in both alloy systems.
Although additions of elements with a eutectic reac-
tion in Al, such as Si, have been useful for reducing
hot cracking in alloys that are difficult to process
(i.e. Al7075 [4]), their addition is not an a priori indi-
cator of reduced hot tear susceptibility. For example,
the addition of up to 6 wt-% rare earths (RE) La or
Ce, both eutectic in Al, to Al7150 increased the ten-
dency for hot cracking during LRM processing, even
though the additions theoretically reduced the freez-
ing range [96]. Instead, other factors influenced the
hot tear susceptibility, such as the formation of coarser
grains at the MPBs and scavenging of Cu and Zn in the
form of RE-containing intermetallics. Other eutectic-
based alloys such as Al–3Ce–7Cu wt-% [125] and
Al–10Ce–8Mn wt-% [126] have been successfully pro-
duced with minimal defects under optimised

Figure 9. Melt pool structures as imaged along the build direction Z and corresponding grain orientation maps for (a,c) Al–10Ce
[124] and (b,d) Al–2.5Fe [129] alloys manufactured by LPBF. Grain structures are primarily columnar, with individual grains extend-
ing across several melt pools. A single melt pool is denoted by the arrow in (b). Note the difference in scale between a and c. The
box in (a) outlines a region on which further TEM analysis was performed in [124]. Used with permission from Elsevier and Springer
Nature.

Figure 10. (a) Scheil solidification schematic of temperature vs
fraction solidified for a HiFI alloy and AA7075. The large drop
in temperature during late stages of solidification promotes
hot tearing in AA7075; (b) Schematic of solidification micro-
structure for the two alloys, with interdendritic regions in
the HiFI alloy filled with a high volume fraction of eutectic
(after Rappaz et al. [138]).

12 R. A. MICHI ET AL.

(c) LPBF Al-2.5Fe [102]

Figure 2.14: Qualitative comparison between simulated and experimental microstructures. (a) Exemplar of a microstructure

generated in this work. (b) Columnar structure in 316L stainless steel as a result of epitaxial growth under high laser power

[101]. (c) Fabricated Al-2.5Fe sample with Ṗ = 204 W and v = 600 mm·s−1 [102]. The growth direction is the same in all

cases (vertical direction of the paper). All the colors refer to the stereographic triangle shown.

On the topic of parameter variability, investigating the effect of materials properties on

simulation outcomes needs to be a priority of future studies. For example, the effect of the

mobility prefactor M0 on microstructure and columnar grain area fraction is an aspect worth
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studying. Increasing this parameter would make the simulation more growth-dominated, as

the phase field solver would grow into warmer mesh points more readily than the present

study, creating grains with more elongated features. Given the variability reported in the

literature on the value of this prefactor, future studies may compare how well different values

of M0 compare to empirical studies of a given material.

2.4.2 Model limitations

It is valuable to discuss the limitations of the model and avenues for improvement in future

iterations. To begin, the simulated area of the model is on the order of 1 mm2, which is

suitable for incipient studies of bulk microstructure, but requires a coarse mesh size to be

computationally viable. This inherently introduces inaccuracies as the minimum resolution

of the mesh may prohibit the appearance of some microstructural features. Continuing to

consider the time-cost of computation, the code developed for this model was not designed for

parallel computing, but would likely benefit from parallel computing since the calculations

for the phase field and temperature field could be calculated concurrently.

Continuing with the 2D nature of the present model, it is currently not designed to

resolve the shape of a melt pool in three dimensions, the diffusion of heat through the

previously fused metallic layers, or heat diffusion into the atmosphere and the leftover powder

surrounding the fused material.

The model also makes assumptions regarding the behavior of the deposited powder in the

actively melting layer, including (i) the code ignores the granular structure of the powders,

(ii) the powders completely melt into the liquid phase, (iii) there is no incomplete fusion in the

completed layer, all mesh points are assigned a grain ID and orientation. The model therefore

does not account for the defects that can appear in a fused layer as a result of porosity [103,

104], hot cracking [105, 106], balling [107, 108], and lack-of-fusion [109–111]. Including

these types of defects in future iterations of the model would output microstructures that

more accurately represent what is seen in empirical bulk studies. This would also make the
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model suitable for use in studies of mechanical properties, as these defects would introduce

deleterious effects to a components’ mechanical behavior.

In terms of the heat diffusion solver implemented in the model, the only limitation worth

mentioning is that associated with the heterogeneous nucleation provided in the model.

The model assumes all points are subjected to the same nucleation conditions, whereas true

materials would have preferential nucleation sites such as solid grains that did not completely

melt, or areas on the boundary of the melt pool. The melt pool edge behavior is captured

to some degree by the higher probability of nucleation based on temperature as shown in

Figure 2.5, but this behavior is not mathematically modeled in the current program. The

nucleation in this model also does not account for the boundary energy introduced through

preferential cubic crystal orientations like ⟨100⟩, ⟨110⟩, or ⟨111⟩.

2.5 Conclusions

We finalize the paper with our most important conclusions :

1. We have developed a thermally informed phase field model capable of simulating the

heterogeneous nucleation and growth of additively-manufactured metallic materials to

study the presence of columnar grain growth in the build direction.

2. An explicit Euler discretization of the phase field in combination with an implicit Euler

discretization of the heat diffusion equation aligns the iterative solutions in both space

and time, which allows for accurate modeling of the melting and re-solidification of

metal material in the path of a moving laser spot with variable parameters.

3. The model assumes that the layer-by-layer buildup of material follows a crystallo-

graphic continuity along the build direction, enabled by heterogeneous nucleation and

growth of new grains on existing grains in the underlying substrate layer. We find that

the average grain size gradually increases with the build direction (giving a microstruc-
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ture with ‘top-heavy’ columnar grains).

4. We have presented correlations between the input parameters of spot size, scan velocity,

and hatch width on the grain growth seen in successive layers of the simulated material.
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CHAPTER 3

Finite element crystal plasticity simulations

3.1 Numerical model

3.1.1 Diffuse Crystal Interface Plasticity Model

The following is a brief description of the previously-developed diffuse crystal interface plas-

ticity model employed here. The original work can be found in ref.[61]. The basis of the

diffuse-crystal interface model is to identify dislocations as the basic carrier of plastic defor-

mation and build grain boundaries as continuum aggregates of these defects. In this fashion,

grain boundaries are seen as incompatibilities of a plastic rotation field, which –much in the

manner of standard elasto-plastic decompositions– must be closed by defining a special class

of geometrically-necessary dislocations (GND) that habit the GB plane. Crystal deforma-

tion is modeled in the traditional sense, as a multiplicative combination of elastic and plastic

deformations:

F (X, t) = F L (X, t)F P (X, t) (3.1)

where F L and F P are the lattice and plastic components of the total deformation gradient

F , respectively, at time t and position X. The evolution of F P is determined through the

contribution of slip systems via slip rates using the flow rule:

Ḟ P = LPF P (3.2)

Previously published in Computational Materials Science
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LP is the plastic velocity gradient, defined as:

LP (X, t) :=
∑
α=1N

γαsα ⊗mα (3.3)

where sα and nα are unit vectors representing the glide and plane normal directions for slip

system α. The value γα corresponds to the crystallographic slip rate on each slip system.

The additional microscopic force and energy balance considerations are described in ref.[61].

Using standard crystal plasticity methods, a stress-free single crystal is constructed at t = 0

by requiring that:

F L (X, 0) = F P (X, 0) ≡ I (3.4)

such that F ≡ I. In contrast, the diffuse crystal interface model sets the initial state of the

polycrystal to be:

F L (X, 0) = R0 (X) , F P (X, 0) = R0 (X)T (3.5)

where R0 represent the lattice rotation field in the polycrystal and maintains piecewise-

constant values in each grain and smooth transitions across grain boundaries.

The rotational decomposition expressed in eq.(3.5) is the central framework to the diffuse-

crystal interface plasticity model employed here. Using this decomposition, we can study

polycrystals as a single boundary-value problem. Numerical discontinuities in F L and F P

are avoided by implementing a smoothed step function in the space of the rotational fields.

The remainder of the grain boundary and finite element numerical procedures remain the

same as described in ref.[61]. However, the constitutive equations for plastic flow have been

modified to accommodate the allotropic nature of α/β-Ti and the changes are described in

Section 3.1.2.

3.1.2 Dislocation evolution model

The dual-phase nature of Ti-6Al-4V results in complex plastic deformation mechanisms that

are not easily modeled. The microscopic force balance used here [61] is an extension of the
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approach developed by Barton et al. in [112] for BCC crystals, not applicable to the HCP

α phase. For α-Ti, we adopt the model by Moore et al.[113], which is also based on a

Kocks-Mecking dislocation density evolution law:

ρ̇ = (k1
√
ρ− k2ρ)

N∑
α

|γ̇α| (3.6)

where ρ is the dislocation density, k1 is the hardening parameter, k2 is the recovery parameter,

and
∑N

α |γ̇α| is the total shear rate. Limited hardening has been seen in near-α alloys in

the elasto-plastic transient range [113], and thus we set k2 to zero. The evolving dislocation

density is used to calculate the slip system strength through:

gα = wα (g0 + α̃Gb
√
ρ) (3.7)

where g0 is the lattice resistance, G is the shear modulus, b is the Burgers vector’s modulus,

and α̃ is a material parameter that captures latent hardening. The anisotropy of the HCP

crystal is embodied in the varying weights symbolized by the variable wα which takes values

of 1.0, 1.0, 1.1, and 3.0 for slip on the basal <a>, prismatic <a>, pyramidal <a>, and

pyramidal <c+a>, respectively [114–116]. The inclusion of the slip system weight is one

of the primary modifications to the plasticity model previously used in ref.[61] that enables

extension to an allotropic HCP polycrystal. Lastly, the shear rates follow the standard

strain-rate sensitivity dependence on stress, i.e.:

γ̇α = γ̇0

∣∣∣∣ταgα
∣∣∣∣ 1
m

sign(τα) (3.8)

where γ̇0 is a reference slip rate, τα is the resolved shear stress, gα is the crystal strength,

and m is the strain rate sensitivity exponent. τα is obtained as the Schmid projection on

slip system α of the Cauchy stress, σ:

τα = sα · σ ·mα (3.9)

with:

σ :=
C
2

(
F TF − I

)
(3.10)
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where C is the elasticity matrix. The system of equations provided in eqs. (3.1) to (3.10)

is solved using a finite element approach in systems containing large numbers of grains, as

described in 3.A. A description of the procedure used to construct the crystals is given in

3.B. The relevant modeling parameters used throughout the simulations are given in Table

3.1. The α̇, γo, m, and b parameters were adopted from ref. [113] and ρ0 (initial dislocation

density) was taken as 1012 m−2, which is a reasonable value for the HCP [117] and BCC [61]

phases. The k1 and g0 parameters were used to fit the model to literature data. The use of a

single crystal strength parameter, go, was adopted for model simplicity. While the α and β

slip systems certainly have different crystal strengths the priority of the exercise was to utilize

the CPFE approach to generate adequate data to train a predictive regressor. The result of

Parameter Value Units

k1 700 –

g0 322.2 MPa

b 3 × 10−10 m

ρ0 1012 m−2

α̃ 0.5 –

m 0.02 –

γ0 0.001 s−1

Table 3.1: Simulation parameters used in the finite element simulations.

a simulated tensile test using a 90%/10% α/β equiaxed polycrystal is shown in Figure 3.1a

along with a handful of tensile testing results of Ti-6Al-4V from the literature. The results

of tensile loading a single crystal of α-Ti in the basal, prismatic, and pyramidal orientations

is shown in Fig. 3.1b. The anisotropy of the HCP α phase is clearly demonstrated through

the varying mechanical response to the different loading orientations. As expected, under

basal loading conditions the crystal appears ‘soft’ while under prismatic loading conditions

the crystal appears ‘hard’. As well, the strength for two orientations of β-Ti are also shown,
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a ‘soft’ one (loading along a direction near the middle of the standard triangle) and a ‘hard’

one (a vertex of the triangle). As the results show, the α phase can always produce a harder

response compared to the BCC β one (partly due to an increased number of available slip

systems in the HCP phase, see 3.A). The β phase has similarly been observed to deform

more easily than the α phase in experimental studies [118–120].

A demonstration of the initial configuration of a dual phase crystal is provided in Figure

3.2 as a function of both phase and texture distribution. For clarity, the initial configuration

shown in Fig. 3.2 is not the configuration that was used to find the data shown in Fig. 3.1a.
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Figure 3.1: (a) Stress-strain curves of a simulated 90/10 α/β polycrystal along with a handful of literature results [121–123].

(b) Simulated tensile testing results from an α-Ti single crystal demonstrating the anisotropic mechanical response of the

HCP lattice. Included is a β-Ti single crystal with a random orientation.
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(a) (b)

Figure 3.2: A 90/10 α/β dual-phase microcrystal in which the coloring represents (a) uniquely oriented lamellae layers and

(b) grain composition by color: α (blue) or β (yellow).

For this study we focus on the influence of grain geometry, grain size, strain rate, and

α/β volume fraction as contributing factors to the microstructure-controlled strength. Grain

geometry refers to the α/β ”packets” within the microcrystal. The three grain geometries

considered are equiaxed, platelet, and needle, exemplars of which are shown in Figure 3.3.

Grain size refers to the ”packet size” of α/β lamellae. This is an important distinction as

each packet is composed of many individual lamellae layers that are approximately 0.5-3 µm

thick. For further clarity please refer to the description of the crystal construction in 3.B.

All microstructures were loaded in uniaxial tension along their principal length axis, which

was made to coincide with the x direction, as shown in Figure 3.3.

3.2 Machine Learning Prediction of Strength and Hardening

Modern crystal plasticity finite element (CPFE) models are continuously improved with the

addition of relevant mechanistic information and increased parameter accuracy. These mod-
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Figure 3.3: Examples of the (a) equiaxed, (b) plate, and (c) needle microstructures. Each color represents a single grain that

would contain a packet of uniquely oriented α/β lamellae. All microstructures were placed under uniaxial tension in the x

direction.

els complement and accelerate experimental efforts by providing indications of pathways to

achieve a desired material performance. However, advanced CPFE models are often overly

sensitive to certain input parameters and initial conditions and microstructures, making

it difficult to parse through extended parameter sets and simulation conditions. In addi-

tion, the computational time required to simulate the necessary combinations of unique

initial microstructures is not negligible. Therefore, developing a holistic understanding of

a material’s parametric features is often non-trivial. This effort can be aided by machine

learning where regression techniques can be used to generalize the output of CPFE and pre-

dict desired micromechanical properties of crystals. Machine learning also provides insight

into the importance of different microstructural features to better guide experimental ef-

forts towards the most influential characteristics. In this study we use a supervised machine

learning approach to develop several regression models that can assist in the prediction of

the mechanical response of a dual-phase titanium polycrystal, namely, the yield strength

and hardening rate. Table 3.2 provides a list of the models utilized in this study and their

associated abbreviations. A brief mathematical description of each model is provided in 3.C.

More thorough mathematical descriptions can be found in the references listed in Table 3.2.

Both linear models (e.g., linear regression) and non-linear models (e.g. artificial neural net-
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work) were chosen in order to approach the regression exercise with methods that range in

complexity. In this way, the simple linear models act as a control condition. Moreover, it has

been demonstrated that different regression techniques performer better/worse on different

types of data [124–126]. Prior to running a large scale study it is difficult to assess which

type of model will perform best, and therefore, we opted to include a variety of regression

techniques.

Abbreviation Model References

LR Linear Regression [127]

R-LR Ridge Linear Regression [127]

KNN K-Nearest Neighbors Regression [127]

RT Regression Tree [127]

RF-R Random Forest Regression [128, 129]

XGB XgBoost [124, 130]

GB-R Gradient Booster Regression [131–133]

ANN Artificial Neural Network [134, 135]

Table 3.2: List of the models used and their associated abbreviations.

3.2.1 Evaluation Metrics

Next we define a series of relevant evaluation metrics common to all the regression models:

1. The mean-absolute error (MAE) is the mean of the absolute differences from the pre-

dicted yi, and true ŷ data from a sampling set of size n. The equation is given as:

MAE =
1

n

n∑
i=1

∣∣yi − ŷ
∣∣ (3.11)

2. The root mean-squared error (RMSE) is the mean square difference from the predicted

data and true data. The RMSE is more sensitive to outliers than the MAE and the
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equation is given as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷ)2 (3.12)

3. The R2 score is a general fit of measure from a predicted regression curve to the original

set of data on a scale from 0 (worst) to 1 (perfect). The equation for R2 is:

R2 = 1 −
∑n

i=1 (yi − ŷ)
2∑n

i=1 (yi − ȳ)2
(3.13)

4. Lastly, the Pearson’s correlation coefficient (PCC) is used during the results discussion

and is described here. The PCC describes the linear correlation between two random

variables on a normalized scale between 1 and −1. The measure of 1 being a perfect

positive linear correlation and −1 being a perfect negative linear correlation. PCC

does not capture non-linear relationships. The equation for PCC is:

ρX,Y =
cov(X, Y )

σXσY

=
E[(X − µX)(Y − µY )]

σXσY

(3.14)

where E(x) is the expected value of x, µX and µY are the means of X and Y , and

σX and σY their standard deviations. The expectation operator E here describes the

arithmetic mean of the product of individual differences between the random variables

(X, Y ) and their respective means.

All models were implemented using the scikit-learn library and xgboost library in Python

[130, 136]. 8-fold cross-validation was used during training.

3.3 Results

3.3.1 Plasticity Model Results

Crystals were constructed using a four-dimensional parameter vector whose components

are given in Table 3.3. The matrix of combinations that results from exploring these four
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dimensions amounts to 567 unique points in parameter space (9× 7× 3× 3 matrix), each of

which was run four independent times to ensure numerical consistency and –when relevant–

statistical validity. Thus, a total of 2268 finite element simulations were run over the course

of this work. Data points were generated at random within the intervals specified in Table

3.3.

For each simulation, the yield strength was measured by the 0.2%-strain offset rule and

the hardening rate was determined as the linear slope of stress-strain curve after yield.

Parameter Values Units

β fraction 5, 10, 15, 20, 25, 30, 35, 40, 45 vol.%

Grain Size 10, 12, 14, 17, 23, 25, 30 µm

Strain Rate 1.0, 5.0, 10.0 10−3 s−1

Grain Geometry Equiaxed, needle, platelet –

Table 3.3: Input values for crystal formation used in finite element simulations.

Figure 3.4 shows the distribution of yield strength and hardening rate as a function of

strain rate, β volume fraction, and grain geometry. All subplots contain the same data

though different combinations of the input features are used to demonstrate trends in the

crystal’s mechanical response. In Figure 3.4a, the data show that β fraction and strain rate

both positively correlate to yield strength, as shown by the tendency for larger red circles

on exist the right side of the plot. It is also apparent that the highest hardening rates are

typically observed with the lowest strain rate and highest β fraction samples. Figure 3.4b

demonstrates that the grain size has a definite positive correlation with the hardening rate

for certain samples. The relationship between grain size and yield strength is not discernible

from the data shown. As well, grain geometry does not appear to have a clear correlation

with either hardening rate or yield strength.

Figure 3.4c reinforces the observations that the lowest β fraction samples exhibit the
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lowest yield strength and hardening rate while the highest β fraction samples exhibit the

highest yield strength and hardening rate. This effect is amplified as the grains get smaller.

Figure 3.5 shows histograms of hardening rate and yield strength for the all data captured

during parametric sweep (data shown in Figs. 3.4a to 3.4c. The mean value of each parameter

is shown, as well as the value of the first three standard deviations. These markers can be

used in coordination with the previous plots to determine the samples that fall more than

three standard deviations from the mean and can therefore be considered outliers. The

hardening rate data shows a measured mean value of 2.69 GPa with a standard deviation

of 1.94 GPa. The yield strength data showed a measured mean value of 883.4 MPa with a

standard deviation of 36.5 MPa. Using these criteria, 18 outliers were found, 13 based on

hardening rate and 5 based on yield strength. Further examination of the outliers showed

each had 4 or fewer grains of 25 µm or larger, 12 had 45% β fraction, 13 had an input strain

rate of 10−3 s−1.

Figure 3.6 shows the yield strength or hardening rate as a function of two input param-

eters. Each row of plots have the same input parameters for ease of comparison. Plots 3.6a

and 3.6b show the yield strength and hardening rate versus strain rate and β fraction. Plots

3.6c and 3.6d show the same outputs as a function of grain size and β fraction. Plots 3.6e

and 3.6f show the outputs versus grain geometry and grain size. Each plot shows all non-zero

data from the simulated data set.

Synthesizing the information shown in Figures 3.6a and 3.6b, we see that increasing the β

fraction and strain rate together results in increasing yield strengths, but does not contribute

to increasing hardening rates. With respect to yield strength, increasing the strain rate from

ε̇ = 0.001 s−1 to ε̇ = 0.005 s−1 has less effect than changing the strain rate the same amount

up to ε̇ = 0.01 s−1. In contrast, the largest increase in hardening rate is seen at high β

percentage and low strain rate. By the information in these two plots, β percentage alone is

not enough to control both the yield strength and post-yield hardening rate. A combination

of β percentage and strain rate would be necessary to tune the output yield strength and
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Figure 3.4: Hardening rate and yield strength distributions for all ”gridded” simulations. Same data displayed for each plot

with color/bubble size discrimination added for (a) strain rate and β fraction, (b) grain size and grain geometry, and (c) grain

size and β fraction.
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Figure 3.5: Histograms for data distribution of (a) hardening rate and (b) yield strength. Flags used to show mean and

standard deviations of data.

hardening rate to desired values.

Using the information shown in Figures 3.6c and 3.6d we can further examine the effect

of grain size on the output yield strength and hardening rate. According to the output

of the simulations, the grain size has little effect on the yield strength until the upper

limit of 30 µm was reached. For these specific samples, increasing the β fraction had a

stronger positive correlation than in samples with more grains. This trend also exists for the

measured hardening rate, as the samples with the fewest grains show a significantly stronger

correlation between hardening rate and β fraction. From these two plots it appears grain

size has a minimal effect on yield strength and hardening rate at least for a fixed simulation

volume (2.7 × 10−14 m3 in our case).

3.3.2 Machine Learning Results

Prior to model fitting we investigated the relative importance of the feature variables. Fea-

ture importance measurement is similar to traditional forms of sensitivity analysis wherein
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Figure 3.6: Yield strength and hardening rate plots versus multiple input parameters
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the emphasis is typically on identifying which features have the most/least impact on the

predicted variable. To do this we trained a random forest regressor and calculated the per-

mutation importance for all features. A random forest was chosen to run the preliminary

analysis because they have proven to be successful at adapting to a diverse set of prob-

lems [137]. The authors refer to the appendix and the attached works for a more thorough

description of the regression technique. The permutation importance is calculated by ran-

domly permuting the row-wise order of a given feature and then re-calculating the prediction

scoring (RMSE, in this case) of the entire set [138, 139]. This procedure is done individ-

ually for all features and the normalized relative importance values are assigned based on

the magnitude of decrease in the scoring for the permuted feature whereby the sum of all

importance values is 1. The feature with the highest permutation importance decreases the

prediction accuracy the greatest (of the feature variables) when its values are randomly per-

muted. The calculation of permutation importance is a common method to down-select from

a high-dimensional feature set [140, 141]. The relative permutation importance values for

both the yield strength and hardening rate models are given in Figure 3.7. For both models

the grain geometry is the feature with the least importance (with values of 0.001 and 0.02

for the strength and hardening rates, respectively). All models were trained with the grain

geometry feature both included and excluded and the better-performing model was selected.

Excluding the grain geometry parameter increased the accuracy of all strength models and

raised the average R2 by 4%. For the hardening rate models the R2 score increased by an

average of 6%.

The skew of the hardening rate and yield strength outputs, 2.56 and 0.60 respectively,

were initially considered as detrimental factors to both models’ performances. However,

re-training with normalized outputs did not meaningfully improve any of the models’ be-

havior. Similarly the 3σ rule was applied to remove outlying data but model performance

worsened across the board. During training all continuous features were normalized and the

grain geometry feature was one-hot encoded (i.e. equiaxed=1, plate=0, needle=-1). Hy-
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perparameter tuning was performed using 5-fold cross-validation and a grid search method.

0.0 0.2 0.4 0.6

β Fraction

Strain Rate

Grain Size

Grain Geometry
Strength Model
Hardening Model

Figure 3.7: Feature importance as calculated by feature permutation with the trained random forest regression model. The

strength model and hardening model correspond to the preliminary random forest regression models trained on the yield

strength and hardening rate data, respectively.

The fitting results for the yield strength-predicting ML models is listed in Table 3.4,

while Figure 3.8 plots the RMSE, MAE, and R2 results for the testing data as well as the

random dataset. All models have R2 of 0.7 or below. The linear models (LR,R-LR) have

performed similarly with R2 values of 0.59 while the other four models (RFR, RFR, XGB,

GB-R, ANN) have R2 values of 0.64 to 0.70. The KNNR method fell in between the two

regions with a R2 value of 0.60. The poor relative performance of the linear models (LR,

R-LR) is expected because the strength-microstructure relationships tend to be nonlinear.

The fitting results for the hardening rate-predicting ML models are given in Table 3.5,

and the associated testing RMSE, MAE, and R2 values are plotted in Figure 3.9. Again

the non-linear models (KNNR, RT, RFR, XGB, GB-R, ANN) outperform the linear models

(LR, R-LR). The hardening rate predictors do not perform as well as the yield strength

predictors and the best hardening rate model (in terms of R2) is RFR with R2=0.62.

The distribution of true and predicted values for the the test evaluation of both the

regularly-spaced and random datasets for several models are provided in Appendix 3.D.
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Model RMSE Test MAE Test R2 RMSE Random

LR 22.3 17.3 0.59 25.4

R-LR 22.3 17.3 0.59 25.3

KNNR 21.4 16.7 0.62 24.8

RT 20.0 15.7 0.67 29.9

RFR 19.6 15.3 0.68 25.4

XGB 19.2 15.3 0.70 25.3

GB-R 19.3 15.2 0.69 25.6

ANN 20.8 15.6 0.64 24.8

Table 3.4: Model performance for predicting yield strength values. RMSE and MAE values are units of MPa.
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Figure 3.8: Performance of the models trained for fitting the strength data. Computed using a randomly selected test set of

100 samples.
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Model RMSE Test MAE Test R2 RMSE Random

LR 1.78 1.26 0.10 1.08

R-LR 1.78 1.24 0.10 1.07

KNNR 1.13 0.86 0.59 1.34

RT 1.12 0.82 0.60 1.44

RFR 1.10 0.81 0.62 1.38

XGB 1.16 0.85 0.57 1.29

GB-R 1.17 0.87 0.57 1.36

ANN 1.34 0.86 0.47 1.16

Table 3.5: Model performance for predicting hardening rates. RMSE and MAE values are in units of GPa.
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Figure 3.9: Performance of the models trained for fitting the strength hardening data. Computed using a randomly selected

test set of 100 samples.
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Figure 3.10 plots the target output of all unique points in the parametric space ordered

from least to greatest for yield strength and hardening rate. The noise to signal ratio, σ/x̄,

is overlaid for each plot as red points. The σ values are the standard deviation of the four

replica simulations run for each point and the x̄ value is the mean that was used for model

training. For the yield stress the signal to noise ratio is consistent for all points at values

between 0.02 to 0.08. In contrast, the signal to noise ratio for the hardening rate data reaches

values as high as 8.0 for the lowest hardening rate samples and and has an average value of

approximately 1.0. The comparatively high σ/x̄ value for the hardening rate data indicates

that the hardening rate replicas had poor agreement with one another. Statistical variation

in the target values is not a detriment to the microstructural model. Rather, it is expected

that the random sampling construction procedure generates a unique microstructure for each

simulation and certain micromechanical responses (e.g., hardening rate) are more sensitive

to the stochastic nature of the construction than others. A detailed investigation of these

parameters is beyond the scope of this paper and will be investigated in future work.
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Figure 3.10: Plot of the mean target value from a unique point in simulation space ordered from least to greatest in terms of

(a) yield strength and (b) hardening rate. Error bars are the standard deviation from 4 replicas simulated at each point. The

red circles are the noise to signal ratio σ/x̄.

Further understanding of the performance can be determined with the evolution of pair-

wise correlations between the feature variables and the target variables based on the number

of simulations conducted. This provides information on how many simulations are needed

before the model reaches a maximum in accuracy for each individual correlation value.

This also provides information about the change in the correlation values, and how many

simulations are needed before reliable information can be obtained from the simulated data
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set. Figure 3.11 shows the Pearson correlation coefficient versus the number of unique

data points simulated for both yield strength and hardening rate based on the four input

parameters. As the figure shows, convergence in the predictors is achieved after 200 samples

approximately. The yield strength plot confirms the positive correlation from β fraction and

strain rate, and the minimal correlation with grain size and geometry. The hardening rate

plot shows the near-zero positive correlation from β fraction and geometry, and the negative

correlation from grain size and strain rate.
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Figure 3.11: Pearson correlation coefficient versus number of samples for (a) yield strength and (b) hardening rate.

3.4 Discussion

The main purpose of this study is to demonstrate how a relative large parameter set (defined

by four microstructural variables, with several values each, 567 distinct simulation conditions
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in total) can be parsed effectively using machine learning techniques to predict useful out-

comes in terms of alloy mechanical properties. Ultimately, studies such as the present one

are aimed at improving and refining the alloy design process to save scarce resources, both in

terms of time and money, and accelerate material characterization and synthesis by focusing

on parameters with the greatest influence. Specifically, we have chosen a system with a

relatively complex microstructure but great metallurgical promise, namely Ti-6Al-4V alloys

with various features. Indeed, Ti-6Al-4V has recently been the subject of design optimiza-

tion efforts using machine learning techniques [142, 143]. Next, we discuss our main findings

and identify the lessons learned and their potential applicability.

3.4.1 Plasticity Model Discussion

The constitutive law and flow rule used in this work have been chosen due to their simplicity

so that –in principle– they lead to uncomplicated material responses to facilitate the extrac-

tion of trends using the machine learning methods. However, they are still grounded on solid

crystal plasticity principles and some interesting results are worth being discussed.

For example, the yield stress displays near-logarithmic growth with strain rate for β

fractions up to roughly 30% vol, as shown in Fig. 3.13a This agrees well with previous Ti-6Al-

4V studies [122, 123, 144] and accurately reflects the basis of a flow stress power law. When

the β fraction is greater than 30%, the σy-ε̇ relationship transitions to being exponential.

The amount of β in the crystal plays an increasingly important role in determining the

magnitude of the yield strength as ε̇ is increased (see Figure 3.6b). The β fraction and σy

relationship is near linear which agrees with previous works [145] and should be expected as

a function of the general rule of mixtures. This is demonstrated in Fig. 3.13b. In a similar

study of Ti-6Al-4V deformed dynamically (at rates larger than those considered here), the

slopes of the β fraction and σy relation were observed to increase with strain rate [145]. In

the crystal plasticity model employed here, neither phase displays intrinsic hardening (recall

that k2 = 0 for both the α and β phases in Table 3.1). Thus, the sole source of hardening is
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given by the value of the resolved shear stress itself, which as a general rule is always higher

for systems with a reduced number of slip systems (and the associated lattice stress). As

indicated in Tables 3.6 and 3.7, the HCP α phase contains a total of 39 independent slip

systems, against the 12 of the BCC β phase. It is thus reasonable to obtain an increase in

the hardening rate as the volume fraction of β increases.
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Figure 3.12: Yield strength as a function of strain rate for this study and experimentally determined values from literature.

Regarding grain geometry, in this study it was seen to have practically no effect on

the measured yield strength or hardening rate, as shown in Figs. 3.6e and 3.6f. Grain

geometry effects may have been minimized due to the choice to simulate lamellae with

minimal microstructural texture, as opposed to adding texture as another input parameter

and expanding the parameter space. Though each α or β layer had its own unique orientation,

there was no difference in interlayer misorientation between the needle, equiaxed, and plate

geometries. Thus each grain geometry resulted in low texture crystals that differed in grain

shape but conserved grain boundary area and texture. This negates the anisotropy of the

HCP phase, making the simulation volume directionally-independent. This may also explain

the presence of outliers in the simulations with larger grain sizes (25-30 µm) as fewer grains

may randomly be oriented in harder or softer directions. Though beyond the scope of this
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Figure 3.13: (a) A subset of the data partitioned by crystals with β % ≤ 0.3 (in blue) and β % > 0.3 (in red). The crystals

with β % ≤ 0.3 have a logarithmic relationship between σy and ε̇. Meanwhile the crystals with β % > 0.3 follow an

exponential trend for σy and ε̇ for the range explored. (b) Yield strength as a function of β fraction for a subset of

ε̇ = 0.005 s−1 and ε̇ = 0.01 s−1 data plotted alongside data from [145].

59



work, this effect can be corrected by sampling lamellar packets that are constructed with

preferential orientations that consider the grain shape and orientation itself. This type of

adjustment could then provide insight to the difference in mechanical response provided by

plate, needle, and equiaxed structures with lamellar and non-lamellar substructures that are

oriented different ways within the outer grain structures.

The yield strength data produced in this study deviates from the classical Hall-Petch

relationship (see Figure 3.6c) when the dislocation mean free path is considered to be the

grain size. The limited influence of grain size on the strength and hardening is likely a result

of the lamellar substructure. Since the lamellae packing does not differ in terms of spacing or

density between large/small grains the total inter-lamellar distance remains roughly constant

despite variations in the grain size (for the range explored). This effect could be mitigated

by imposing a local hardening condition that is reflective of the dislocation pileup due to

the true grain size of local lamellae packet. Alternatively a non-lamellar substructure (i.e.,

large α and β grains) or Hall-Petch-type strengthening parameter could be used.

Furthermore, is has been experimentally observed that the α/β lamellar thickness and

ratio in Ti-6Al-4V strongly dictates mechanical behavior [151–155]. It is possible that neg-

ligible influence of grain size may, rather, be due to the α/β lamellae width effects having

a dominant influence on strength. Figure 3.14 shows the yield strength as a function of

lamellar spacing and α lamellae width for this study and experimental data found in lit-

erature. Note that since we used constant lamellae packet size (i.e., the width of a single

α/β bilayer) there is a single data point from this work in Figure 3.14a. The Hall-Petch

type relationship is recovered for yield strength when the dislocation free glide distance is

considered to be the α lamellae width, as shown in Figure 3.14b. Considering that BCC β

phase is generally softer than the HCP β phase (see Figure 3.1b), increasing the β content

would be expected, to first order, to lead to a decrease in strength. However, here we see

that the Hall-Petch strengthening achieved through the reduction in the α lamellae widths

more than compensates and increases the strength of the alloy. Future work will include
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refinement of the lamellar spacing/grain size relationship in the context of the dual-phase

CPFE model.

Further improvements can be made to the model by incorporating mechanisms such as

grain boundary strengthening, reinforcement particle strengthening, precipitation/solid solu-

tion strengthening, and temperature effects by modifying the crystal strength and plasticity

expressions (equations 3.6-3.8). Consideration of non-lamellar microstructures and dynamic

loading effects may be beneficial to assist with modeling high-strain rate phenomena.
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Figure 3.14: Yield strength as a function of (a) lamellar spacing and (b) α width for this study and experimentally determined

values from literature. Lamellar spacing is considered the width of a combined α/β bilayer.

3.4.2 Machine Learning Discussion

Multidimensional parametric design spaces can be complex to analyze by ‘hand’ and are

further complicated by non-linear feature behavior. To aid with analysis of these types of

design spaces the ultimate goal of many machine learning regression exercises is to provide a

predictive model for target values learned through example data. In this case, the regression

exercise was aimed at modeling the yield strengths and hardening rate of a dual-phase Ti
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crystal with certain microstructural traits. Several models were trained for both target

values using a uniformly-spaced dataset and then evaluated using both the uniform grid and

random dataset. An ensemble regressor was constructed from all the trained models [159].

An ensemble regressor makes a prediction based off of the weighted average of individual

predictions from several multiple models. In our case, the weight prescribed to each model

was calculated using the arbitrary expression:

wi =
1

3

[(
RMSEi

test∑
RMSEi

test

)−1

+ 2

(
RMSEi

random∑
RMSEi

random

)−1
]

(3.15)

where RMSEi
test and RMSEi

random are the testing root-mean-squared errors calculated using

the test and random datasets, respectively. Because true microstructural traits exist on a

continuum scale, we placed an additional (arbitrary) weight on the performance of the models

on the random dataset. Predicted yield strength and hardening rate values as a function of

the β fraction and grain size from the voting models are given in Figure 3.15. Though it

is beyond the scope of this study, the authors note that the influence of randomly sampled

data on an otherwise uniformly distributed parametric dataset is an interesting premise for

improving a model’s predictive power. That is, how much “non-grid” data should be added

to an otherwise organized dataset in order to achieve an acceptably generalized model.

Lastly, it is important to recognize that the predictive power of the models could un-

doubtedly be improved with more data. Increasing the number of replicas at each point

in parametric space would help further reduce the noise to signal ratio, particularly for the

hardening rate data. This is evidenced by Figure 3.16 which shows the average signal to

noise ratio as a function of the number of replicas. 100 structures were selected at random to

generate a fifth replica. Similarly the models would benefit from a “finer gridded” paramet-

ric space (e.g., simulating structures with ϵ̇ = 0.0075 s−1, ϵ̇ = 0.002 s−1) that would simply

provide a more rich training set.
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Figure 3.15: Predictions of (a)-(b) hardening rate and (c)-(d) yield strength as a function of grain size and β fraction for

weighted voting regressor. Each plot contains three planes are plotted in black, green, and blue that correspond to ϵ̇ values of

0.001, 0.005, and 0.01 s−1, respectively.
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Figure 3.16: Noise to signal ratio as a function of the number of replicas for the yield strength and hardening rate data

3.5 Conclusions

We conclude the paper with our most important findings:

• We have extended a single-crystal plasticity model to study a polycrystal dual phase

material with complex microstructures. The model captures dual-phase BCC/HCP

microstructures using standard dislocation evolution models with features inspired in

experimental behavior.

• Our model agrees with the tensile testing behavior observed in other works and does

well to capture trends in crystal strength.

• Several machine learning regression models were trained on the data to produce en-

semble models that can make quick predictions and generalize the yield strength and

hardening rate CPFE outputs.

• We demonstrated clear trends in yield strength and hardening rate as a function of β

fraction, strain rate, grain geometry, and grain size.

• As general conclusions, (i) the grain shape has practically no bearing on yield strength

and hardening rate outcomes, (ii) the β-phase volume fraction was seen to be the most
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influential feature on both outcomes, (iii) strain rate is a strong predictor of yield

strength but not of hardening rate, while grain size is weakly and negatively correlated

with yield strength and hardening, respectively.

• Future work will be aimed at extending the plasticity model to include temperature,

obstacles, and dynamic loading conditions.

3.A Finite Element Implementation

The finite element implementation in COMSOL5.5 for this study is fully described in [61]. A

MUMPS direct solver and BDF (Backward Differential Formula) time stepping algorithm

were employed. All simulations were performed with a free tetrahedral mesh with 99883

elements and 595620 degrees of freedom. The stiffness matrices for the α and β phases have

been taken from refs.[160–162] and are given below (all values in GPa).

Cα =



169.4 90.0 66.0 0 0 0

90.0 169.4 66.0 0 0 0

66.0 66.0 169.2 0 0 0

0 0 0 7.4 0 0

0 0 0 0 7.4 0

0 0 0 0 0 46.8



Cβ =



119.4 55.7 55.7 0 0 0

55.7 119.4 55.7 0 0 0

55.7 55.7 119.4 0 0 0

0 0 0 31.9 0 0

0 0 0 0 31.9 0

0 0 0 0 0 31.9


The CP model admits slip on basal, prismatic and pyramidal planes for the α phase (3, 11,
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Table 3.6: Conversion from 4-index slip system to 3-index notation

slip system type No.
slip plane slip direction

4-index 3-index 4-index 3-index

basal

1 (0001) (001) [21̄1̄0] [100]

2 (0001) (001) [1̄1̄20] [1̄1̄0]

3 (0001) (001) [1̄21̄0] [010]

prismatic

4 (011̄0) (010) [21̄1̄0] [100]

5 (11̄00) (11̄0) [1̄1̄20] [1̄1̄0]

6 (1̄010) (1̄00) [1̄21̄0] [010]

7 (011̄0) (010) [21̄1̄3] [101]

8 (011̄0) (010) [21̄1̄3̄] [101̄]

9 (11̄00) (11̄0) [1̄1̄23] [1̄1̄1]

10 (11̄00) (11̄0) [1̄1̄23̄] [1̄1̄1̄]

11 (1̄010) (1̄00) [1̄21̄3] [011]

12 (011̄0) (010) [0001] [001]

13 (1̄010) (1̄00) [0001] [001]

14 (11̄00) (11̄0) [0001] [001]

and 25 slip systems respectively), and close-packed slip for the β phase (12 slip systems).

All vectors s and m in eq. (3.3) for the hexagonal phase are expressed in three-component

Miller notation using the conversion introduced by Frank [163]:

[h k i l] → [(h− i) (k − i) l] (3.16)

(h k i l) → (h k l) (3.17)

These expressions satisfy the orthogonality relations between slip direction and slip plane

normal. The slip systems considered in this work are given in Tables 3.6 and 3.7.

The slip systems for BCC crystals capture 1/2⟨111⟩ {110} and are given in past publica-

tions by our group [164, 165].
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Table 3.7: Conversion from 4-index slip system to 3-index notation

slip system type No.
slip plane slip direction

4-index 3-index 4-index 3-index

pyramidal

15 (011̄1) (011) [21̄1̄0] [100]

16 (01̄11) (01̄0) [21̄1̄0] [100]

17 (11̄01) (11̄1) [1̄1̄20] [1̄1̄0]

18 (1̄101) (1̄11) [1̄1̄20] [1̄1̄0]

19 (1̄011) (1̄01) [1̄21̄0] [010]

20 (101̄1) (101) [1̄21̄0] [010]

21 (1̄011) (1̄01) [21̄1̄3] [101]

22 (1̄101) (1̄11) [21̄1̄3] [101]

23 (2̄112) (2̄12) [21̄1̄3] [101]

24 (101̄1) (101) [21̄1̄3̄] [101̄]

25 (11̄01) (11̄1) [21̄1̄3̄] [101̄]

26 (21̄1̄2) (21̄2) [21̄1̄3̄] [101̄]

27 (101̄1) (101) [1̄1̄23] [1̄1̄1]

28 (011̄1) (011) [1̄1̄23] [1̄1̄1]

29 (112̄2) (112) [1̄1̄23] [1̄1̄1]

30 (1̄011) (1̄01) [1̄1̄23̄] [1̄1̄1̄]

31 (01̄11) (01̄1) [1̄1̄23̄] [1̄1̄1̄]

32 (1̄1̄22) (1̄1̄2) [1̄1̄23̄] [1̄1̄1̄]

33 (11̄01) (11̄1) [1̄21̄3] [011]

34 (01̄11) (01̄1) [1̄21̄3] [011]

35 (12̄12) (12̄2) [1̄21̄3] [011]

36 (1̄101) (1̄11) [1̄21̄3̄] [011̄]

37 (011̄1) (011) [1̄21̄3̄] [011̄]

38 (1̄101) (1̄11) [1̄21̄3̄] [011̄]

39 (1̄21̄2) (1̄22) [1̄21̄3̄] [011̄]
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3.B Construction of Dual Phase Lamellar Polycrystals

All grains were constructed as Voronoi tessellations wherein grain centers cj were randomly

selected from a cubic grid and each individual point pi was assigned to the nearest grain

center such that:

pgi = min
(
dist(pi, cj) : j ∈ {1, ..., C}

)
(3.18)

where pgi is the grain assignment for the point pi. Here there are a total of C grain centers

and the function dist(pi, cj) returns the distance between the grid point pi and the grain

center cj. The distance equation is a modified euclidean distance function give as:

dist(pi, cj) =

(
pxi − cxj
sx

)2

+

(
pyi − cyj
sy

)2

+

(
pzi − czj
sz

)2

(3.19)

where sx, sy, and sz are distance scaling factors that enable elongated grains. For this

study the scaling factors for the equiaxed, plate, and needle grains are given in Table 3.8.

To achieve a unique lamellar structure within each grain a set of plate-like grains are first

Grain Geometry sx sy sz

Equiaxed 1 1 1

Needle 1 1 4

Plate 1 4 4

Table 3.8: Grain geometry parameters.

constructed. Grains are assigned to either α or β phase as a function of their the distance

from the x-axis such that:

c(j) =


β phase, if Fβ/G ≤ min

(∣∣Lj − nl
∣∣ : n ∈ {0, ..., G + 1} where G =

⌊
H/l

⌋)
α phase, otherwise

(3.20)

here L is the x coordinate of the grain center, l is the spacing between same-phase lamellae,

Fβ is the β phase fraction out of 100, and H is the total height of the simulation cube. The
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G =
⌊
H/l

⌋
term indicates the number of lamellae layers in each simulated cube while the

Fβ/G term is the thickness of each β layer. Once a plate-like cube was constructed it was

put through a set random rotations across the x, y, and z axis to achieve a unique grain

alignment. For each simulation a set of 20 unique lamellar crystals were constructed and the

sampled from to populate the grain geometry defined by the original Voronoi tesselations

–ultimately leading to equiaxed, needle, or plate-like grain geometries with an intra-grain

α/β lamellar structure.

We recognize that there are various forms of α/β subgrain morphologies but here we

focus on lamellar structures for the purpose of this study.

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Pure lamellar crystals with (a)-(c) outlined phase boundaries and (d)-(f) shading indicating either α (blue) or β

(yellow) phase. All crystals have been put through 3 random rotations across their x, y, and z axes.
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3.C Machine Learning Regression Models

3.C.1 Linear Regression

Given the simple hypothesis function of:

f(θ) = θ0x0 + θ1x1 + ...θnxn (3.21)

where θ are the feature weights and xn are the feature values for n features. Considering

optimizing a least-squares cost function, a direct solution for the optimal θ values can be

expressed as:

θLR =
(
XTX

)−1
XTy (3.22)

where X is the collection of input features and y is the output values for each instance. The

above expression does not hold for other cost functions, but rather, demonstrates the form

of the model.

3.C.2 Ridge Linear Regression

To regularize the traditional linear regression expression in equation 3.22 a complexity

penalty of λ
∑n

i=1 θ
2
j can be added to the least-squares cost function. Because the cost

function is still convex, there is a unique solution:

θRR =
(
XTX + λI

)−1
XTy (3.23)

where λ ∈ [0,∞) is the regularization parameter and I is the identity matrix.

3.C.3 K-Nearest Neighbors Regression

K-nearest neighbors is a non-parametric method that that approximates the value of a new

instance by averaging the target value of observations in the same neighborhood. Given a

new instance, an estimate is calculated by first finding the K-nearest neighbors in Euclidean
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space and then averaging the feature set such that:

yi =
1

k

k∑
j=1

yjwj (3.24)

where k is the number of nearest neighbors, yj is the target value of neighbor j, and wj is a

distance-related weight. The k parameter is typically learned during training.

3.C.4 Regression Tree

Building a decision tree can be thought of as recursively applying the process of dividing a

single parent node into its two child nodes. As such, the process for the division of one node

can be used to fully define the construction process. To find the data points that will be

allocated between the two child nodes the optimal data partition is selected such that the

sum of squares is minimized between the creation of the two new nodes, otherwise expressed

as:

arg min

j∑
i=1

Ni∑
k=1

(yk − ȳi)
2 (3.25)

where i is a new node, j is the total number of new new nodes, k is a data point in the

i partition, Ni is the total number of data points in the partition i, and ȳi is the average

target value of the instances in partition i. A greedy algorithm is commonly used to select

the partitions. The size of the regression tree (e.g. width and depth) is typically set prior

to construction and a full tree is built in the first pass. Estimations are made by taking the

average target value of all data points in a terminal node. Variance and complexity reduction

is then achieved by pruning of the full tree. One possible regression tree cost function can

be given as:

Cα(T ) =
T∑

m=1

Nm∑
k=1

(yk − ȳi)
2 + αT (3.26)

where α is a regularization parameter, Nm is the number of observations in terminal node m,

and T is the number of terminal nodes. Minimization of equation 3.26 is achieved through

collapsing nodes to achieve a sub-tree T such that T ⊂ To where To is the full tree. The
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weakest link approach to pruning is then commonly used: nodes are collapsed by order of

least contribution to Cα(T ) (i.e. lowest residual sum of squares error) such that a set of trees

are produced that are gradually more generalized and can be fit to α.

3.C.5 Random Forest Regression

Random forest regression is an extension of regression trees that utilizes bootstrapping aggre-

gation, that is, the aggregation of many ”weak” regression trees into an ensemble model that

is typically lower variance than its individual components. A random forest is constructed

as:

1. For a training set of size n, set features X, and responses y, select β, the total number

of trees in the forest.

2. Sample a subset of instances of the training data Xt ⊂ X, yt ⊂ y and train a new tree

ft on the data.

3. Repeat step 2 until β trees have been constructed.

To make an estimate using the random forest simply take the average prediction of all trees

in the forest as:

f̂(xi) =
1

β

β∑
i=1

ft(x
i) (3.27)

3.C.6 XgBoost

A complete mathematical description of XgBoost is beyond the scope of this work and a

brief review is given here. XgBoost is an algorithm that applies the gradient tree boosting

method. Gradient tree boosting takes advantage of both ensemble learners and iterative

improvement to a model by means of using the residual loss of the previous iteration to

train a new estimator. Estimators are added to the model such that the predicted result at
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iteration t is:

ŷti = ŷt−1
i + ft(xi) (3.28)

where ft(x) is the new estimator. In the case of XgBoost, the generalized objective function

to optimize during each step can be given as:

obj(t) =
T∑

j=1

(
Gjwj +

1

2
Hjw

2
j

)
+ Ωλγ(T ) (3.29)

where Ω is a model complexity contribution that is a function of the model of all the trees

T with regularization parameters λ and γ. The parameter wj is the leaf weights, and Gj

and Hj are the sum of the first and second order components of the Taylor expansion of the

specified loss function for leaf j, respectively. From here, an expression for a measure of how

“good” a tree structure q(x) is can be written as:

obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (3.30)

We can build a tree that continues to split nodes so long as the “goodness gained” from a

given node split is larger than the regularization parameter γ, as:

Gain =
1

2

(
G2

L

HL + λ
+

G2
R

HR + λ
− (GL + GR)2

HL + HR + λ

)
− γ (3.31)

where the components considered are the gain from the left leaf, the gain from the right leaf,

and the score of the original leaf.

3.C.7 Gradient Boosting Regression

Gradient boosting regression relies on the construction of many weak prediction models that

is built in an iterative process. The weak models in this case, and most often are, decision

trees. A simplified description is provided here. First a base estimator, F0(x), is first trained

on the data:

Fo(x) = arg min
γ

n∑
i=1

L(yi, γ) (3.32)
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where L is a differentiable loss function. The pseudo-residuals, rim, are then calculated for

every data point i:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
(3.33)

Another weak learner, hm(x), is then trained on the pseudo-residuals and the weight asso-

ciated with the model, γm, is calculated using an optimization procedure. Not that here m

indicates the current iteration of a total of M steps. The new model then has the form of:

F̂ (x) =
M∑
i=1

γihi(x) (3.34)

New learners are then added to the model iteratively by re-calculating the pseudo-residuals

to train a weak model and find it weights. This procedure can continue for an arbitrary

number of steps or until a training metric passes a threshold.

3.C.8 Artificial Neural Networks

Fully dense artificial neural networks are composed of a network of many layers of intercon-

nected nodes. Each node is connected to all nodes in the previous and following layers by a

unique weight w. It is easiest to describe a neural network through the behavior of a single

node - a diagram of which is provided in Figure 3.18. The output of node i in layer j is

calculated as:

aij =
n∑

i=1

wixi + b (3.35)

where b is a node-specific constant and there are n nodes feeding into the node aij. The

value that feeds to all nodes in the following layer is then calculated as f(aij), where f is an

activation function such as tan. For a regression problem there is often a final layer with a

single node with no activation function to make predictions. The weights w and constants

b are initially randomized and then learned through the training process. A mathematical

description of the training procedure is beyond the scope of this work. The number of layers,
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activation function, and training procedure are all hyperparameters that can be optimized

to best suit the problem at hand.

a...

b

x1

w1

xn
wn

y := f(a)

Figure 3.18: Diagram of a single neuron in a neural network.

3.D Performance of Machine Learning Models

The prediction accuracy of the various regression models can be shown by comparing the

predicted output parameter versus the true input parameter for each simulation. This com-

parison is shown below in Figure 3.19 for multiple regression models. Each subplot shows

the author-selected input parameter data in red, and the randomly selected input parameter

data in blue. Each subplot also has a dotted line with slope = 1 which can be used to

determine the accuracy of each point. For a given simulation, if the predicted value matched

the true value of the parameter, that point would fall on the dotted line. Therefore, any

points in the upper triangle of a plot have an output parameter that is over-predicted by

the regression model, and any points in the lower triangle have been under-predicted by the

model.
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Figure 3.19: True and predicted yield strength and hardening values for the the several models using the gridded and random

test sets.
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CHAPTER 4

Future work

While the simulation methods described were designed for metals with well-known proper-

ties, the simulations can be easily reformulated to simulate various metals, including new

materials such as high entropy alloys (HEAs). The present additive manufacturing simula-

tion requires various material properties such as density, entropy of fusion, melting point,

and others that could be readily calculated from lab-scale test samples of HEAs. The current

additive manufacturing model could also be expanded to include laser parameters that were

not used in this study. These parameters could include various laser powers, as well as other

manufacture methods entirely like electron beam melting, or additive wire arc manufactur-

ing. Bolstering the simulation with a wider feature set would improve the thermo-physical

simulation of the input material, outputting more accurate microstructures of the final ma-

terial. In consideration of the thermal portion of the model, expansion to a true 3D model

would also improve the microstructural outputs by more accurately modeling the features

of the melt pool and grain growth down through the bulk of the previously fused material.

While the thermo-physical phase field model is currently applicable to many materials,

improvements can be made to better simulate many of the defects that appear in additive

manufacturing processes. Retention of these defects throughout the microstructure would

allow for more accurate finite-element simulations to better determine the expected elastic

modulus, yield strength, hardening rate, and other mechanical properties.

Another potentially interesting application of this model could be used to determine

the feasibility of rapid prototyping HEAs with compositional gradations. Compositionally
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graded materials are well-suited for applications that require a material capable of exhibiting

mechanical properties in specific localized areas. The combination of the advanced proper-

ties seen in HEAs with the complicated geometries producible with additive manufacturing

methods could lead to industrial advances at reduced cost and shorter prototyping cycle

times.
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