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iVancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, 
Vancouver, BC, Canada

Abstract

Context: Genomic stratification can impact prostate cancer (PC) care through diagnostic, 

prognostic, and predictive biomarkers that aid in clinical decision-making. The temporal and 

spatial genomic heterogeneity of PC together with the challenges of acquiring metastatic tissue 

biopsies hinder implementation of tissue-based molecular profiling in routine clinical practice. 

Blood-based liquid biopsies are an attractive, minimally invasive alternative.

Objective: To review the clinical value of blood-based liquid biopsy assays in PC and identify 

potential applications to accelerate the development of precision medicine.

Evidence acquisition: A systematic review of PubMed/MEDLINE was performed to identify 

relevant literature on blood-based circulating tumor cells (CTCs), circulating tumor DNA 

(ctDNA), and extracellular vesicles (EVs) in PC.

Evidence synthesis: Liquid biopsy has emerged as a practical tool to profile tumor dynamics 

over time, elucidating features that evolve (genome, epigenome, transcriptome, and proteome) 

with tumor progression. Liquid biopsy tests encompass analysis of DNA, RNA, and proteins 

that can be detected in CTCs, ctDNA, or EVs. Blood-based liquid biopsies have demonstrated 

promise in the context of localized tumors (diagnostic signatures, risk stratification, and disease 

monitoring) and advanced disease (response/resistance biomarkers and prognostic markers).

Conclusions: Liquid biopsies have value as a source of prognostic, predictive, and response 

biomarkers in PC. Most clinical applications have been developed in the advanced metastatic 

setting, where CTC and ctDNA yields are significantly higher. However, standardization of assays 

and analytical/clinical validation is necessary prior to clinical implementation

Patient summary:

Traces of tumors can be isolated from blood samples from patients with prostate cancer either 

as whole cells or as DNA fragments. These traces provide information on tumor features. These 

minimally invasive tests can guide diagnosis and treatment selection.

Keywords

Prostate cancer; Genomics; Liquid biopsy; Circulating tumor cell; Circulating tumor DNA; 
Extracellular vesicles; Precision medicine

1. Introduction

Recent studies have provided insight into the molecular landscape of prostate cancer (PC), 

identifying prognostic biomarkers, actionable targets, and drug resistance biomarkers. The 

difficulty of obtaining suitable tumor material for molecular testing is one of the reasons 

hampering clinical implementation of genomic profiling. Primary prostate tumor biopsies, 

although routine, are often scant in yield, and fixation procedures impact DNA quality. 

Biopsies of osteoblastic metastatic lesions, on the contrary, are technically challenging and 
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distressing for the patient. Moreover, PC evolves over time as a consequence of therapy-

induced selective pressure. Secondary resistance to standard-of-care androgen receptor (AR) 

targeting agents often involves genomic changes in a polyclonal manner that may be relevant 

for the selection of subsequent lines of therapy. A single tumor biopsy, from either primary 

or metastatic lesions, is limited in its ability to capture spatial heterogeneity, especially 

for repeated longitudinal assessments. Indeed, primary PC is among the most spatially 

heterogeneous and clonally complex cancer types [1].

The concept of a liquid biopsy encompasses the analysis of tumor material present 

in a bodily fluid [2]. This material can exist as biomolecules (eg, circulating tumor 

DNA [ctDNA], RNA, proteins, and mitochondrial DNA), circulating tumor cells (CTCs), 

or extracellular vesicles (EVs). Liquid biopsies have emerged as an attractive way to 

study tumor molecular landscapes in a minimally invasive manner, allowing for real-time 

snapshots of the overall tumor burden. Additionally, liquid biopsy–based biomarkers could 

serve as early endpoints in clinical trials to expedite drug development [3,4].

We review current knowledge of blood-based liquid biopsy components, their impact on 

clinical decision-making in PC, opportunities for accelerating precision medicine, and the 

challenges of implementing such tests in clinical practice.

2. Evidence acquisition

A systematic review of the PubMed/MEDLINE database was performed to identify 

literature on CTCs, ctDNA, and EVs in PC, published between 2005 and July 2020. Articles 

involving CTCs, ctDNA, and EVs in blood from PC patients were selected, and references 

cited within them were also considered.

3. Evidence synthesis

3.1. Circulating tumor cells

CTCs are cancerous cells from primary or metastatic lesions that either have been passively 

shed or have actively migrated from the tumor into the circulatory system. They can be 

found as single cells or clusters, the latter having a higher metastatic potential [5].

The half-life of CTCs in circulation is short (<1–2.5 h) [5]. The relatively small number 

of CTCs in blood remains a challenge for a comprehensive molecular analysis. CTC load 

increases with disease progression, being very low or near zero for most localized tumors. 

Typically, CTCs are isolated from a peripheral blood sample of 7.5–10 ml. Nevertheless, 

some studies have successfully pursued peripheral blood aphaeresis to increase the CTC 

yield [6]. It remains unclear, however, whether all tumor foci and lesions are represented in 

the CTC yield.

There are different strategies facilitating CTC isolation from blood samples, based on 

distinct physical or biological characteristics of CTCs (Table 1). Biological criteria–based 

methods for CTC isolation rely on selecting cells that express specific antigens (positive 

selection) and disregarding those that express other antigens (negative selection). This 

strategy is based on immunoaffinity, using antibodies targeting surface markers of epithelial 
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cells such as EpCAM (CD326), for positive selection, while disregarding normal blood 

cells based on leukocyte markers such as CD45, CD16, or CD66b. The Food and Drug 

Administration (FDA)-approved CellSearch system (Menarini-Silicon Biosystems, Castel 

Maggiore, Italy) relies on a positive immunoaffinity assay based on EpCAM expression, 

followed by a semiautomated visual identification process based on immunofluorescence. 

It defines a CTC based on the presence of a DAPI-intact nucleus; lack of expression of 

CD45; expression of the epithelial cell markers EpCAM and cytokeratins (CKs) 8, 18, 

and 19; and a diameter of >4 μm [7]. However, several studies have demonstrated that 

expression of epithelial cell markers varies in CTCs (ie, EpCAM-low cells) [8], indicating 

that a proportion of CTCs may be missed if selection is based only on EpCAM expression. 

Therefore, other platforms use EpCAM-independent methods, such as characterizing all 

nucleated cells and identifying CTCs based on specific tumor-associated protein expression 

(ie, CK8 and AR) and cell morphology [7,9]. CTCs can also be isolated, leveraging 

their distinct physical properties as different deformability, density, surface charge, and 

size compared with nontumoral circulating cells. Several microfluidic devices using this 

approach have been developed (Table 1) [8,10,11]. DNA and RNA from CTCs can 

serve as proxies for tumor genomic characterization. Single CTC studies allow for fine 

dissection of intratumor heterogeneity [12], which might help in understanding therapy 

resistance; however, single-cell characterization is far from being clinically applicable. 

Clonal genome-wide copy numbers can be ascertained relatively inexpensively from single 

nucleotide polymorphism arrays or low-pass whole-genome sequencing (lpWGS). These 

lower-resolution approaches can also identify features of genomic instability associated with 

aggressive phenotypes, such as large-scale transitions [13]. Despite the small amount of 

input material obtained from CTC samples, whole-exome sequencing (WES) approaches to 

identify mutations have been proved to be feasible [10,14].

The study of aberrant AR transcripts in CTCs, particularly those derived from AR splice 

variants, has attracted notable attention due to its potential clinical relevance for AR-

targeting agents [15,16]. Interrogation of specific transcripts using in situ padlock probes 

is an opportunity for targeted transcriptomic approaches [17]. Beyond AR, multiplex assays 

enable comprehensive profiling of tumor transcriptomics from CTCs. These range from 

multiplex quantitative polymerase chain reaction approaches [18,19] to single-cell RNA-seq 

analysis [11]. In addition, methylome analysis in PC CTCs has generated profiles that 

resemble those derived from metastatic biopsies [20]. Lastly, protein expression in CTCs can 

also serve as a putative predictive biomarker. For instance, the detection of nuclear versus 

cytoplasmic AR-V7 has been correlated with a response to AR signaling inhibitors (ARSi) 

[21]. Another example is prostate-specific membrane antigen (PSMA) expression in CTCs 

[22], which could be relevant for the development of PSMA-based radiopharmaceuticals 

[23].

3.2. Circulating tumor DNA

Cell-free DNA (cfDNA) comprises short double-stranded DNA fragments (<200 bp) shed 

into the circulation from apoptosis or necrosis of normal and tumor cells. In healthy 

individuals, cfDNA fragments have a dominant peak at 167 bp, supporting a model where 

cfDNA is associated with the nucleosome core particle and linker histones [24]. In cancer 
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patients, tumor-mutated alleles can be observed in DNA fragments shorter than nucleosomal 

DNA [25]. In the bloodstream, cfDNA has a short half-life estimated between 16 min and a 

few hours [26].

As both normal and tumor cells shed DNA into the blood, tumor DNA is diluted into 

circulating nontumoral DNA primarily coming from hematopoietic cells [24]. The subset 

of cfDNA arising from a tumor is known as ctDNA or “cfDNA tumor fraction” [27]. The 

dilution of ctDNA in nontumoral cfDNA is a significant confounding factor, and tumor 

fraction is likely to be a more reliable biomarker [26]. Several preanalytical conditions are 

required to maximize cfDNA yield and quality [28], as depicted in Figure 1. Once cfDNA 

is isolated and quantified, inference of the tumor fraction relies on computational analysis 

of the frequency of reads that carry tumor-specific aberrations (eg, point mutations, copy 

number alterations, and genomic rearrangements). Fragments of cfDNA originated in the 

tumor tend to have smaller sizes than those of nontumoral cfDNA. Hence, size selection of 

cfDNA can enrich for tumor content in ctDNA analysis [25]. This specific fragmentation 

pattern of cfDNA has also been postulated to be cancer type specific and could potentially 

be used for diagnosis [29].

Tumor fraction in cfDNA usually increases in later disease stages and with a higher tumor 

burden. For example, in two studies of metastatic castration-resistant PC (mCRPC), the 

median ctDNA fraction was in the range of 15–20%, although interpatient variability was 

high [30,31].

The lpWGS uses copy number ratios to calculate tumor fraction, with a lower bound of 

detection of about 3%. However, this method might result in false-negative results for copy 

number–quiet tumors [32,33]. Targeted sequencing approaches, on the contrary, are a more 

affordable strategy to deliver high-read depths at specific regions in the genome but assume 

a priori that at least one somatic mutation would be present within a targeted region to 

infer ctDNA proportion; the probability of detecting mutations increases with the size of the 

targeted region.

Highly sensitive assays, such as droplet digital polymerase chain reaction (ddPCR), can 

detect point mutations with sensitivity ranging from 0.001% to 1%. These assays can detect 

AR mutations [34] and copy number gains [35]. However, its application is limited to the 

analysis of individual or a small set of known mutations (multiplexed ddPCR). These can 

be particularly useful for longitudinally monitoring tumor adaptation to targeted therapies, 

especially for hotspot mutations or for mutations previously determined by larger-scale 

sequencing.

Using targeted sequencing, Wyatt et al [36] showed good concordance between ctDNA 

and metastatic tissue biopsy for alterations in selected PC driver genes. Others have also 

used WES on ctDNA showing high agreement with tissue biopsies, although WES requires 

a minimum tumor fraction, probably above 10% [30,37]. Identification of low-frequency 

events, such as subclonal mutations, is more likely to be masked in samples with a low 

tumor fraction. Indeed, inference of the clonal versus subclonal origin of a mutation requires 

capturing enough ctDNA alleles in order to define clonality thresholds. By allocating 
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sequencing depth to fewer genomic regions, targeted sequencing allows the study of low 

allele frequency events.

Methylation profiling of cfDNA is likely to be more sensitive than somatic alteration 

profiling for the detection of ctDNA, since there are millions of methylation marks available 

to profile but only a few thousand somatic alterations [38]. Recent studies in tumor [39] and 

cfDNA [40,41] samples have identified methylation-based PC subtypes and changes during 

disease progression.

3.3. Extracellular vesicles

EVs are secreted vesicles with a lipid bilayer and a typical size between 50 nm and 1 μm. 

Regarding their origin, EVs usually derive from the plasma membrane (eg, microvesicles) 

or, alternatively, have an endosomal origin (eg, exosomes). Some recent works have also 

described smaller (exomeres, ~35 nm [42]) and larger (oncosomes, 1–10 μm [43]) EVs with 

important roles in cancer. The International Society for EVs (ISEV) recommends that EVs 

be classified according to: (1) size (small [<100 nm], medium [100–200 nm], or large [>200 

nm] EVs), (2) biochemical composition (eg, CD63+/CD81+), or (3) cell of origin [44]. EVs 

can contain proteins, lipids, metabolites, RNA (mRNA and miRNAs), and DNA as cargo. 

EVs play a key role in cell-to-cell communication during cancer progression and metastasis, 

as well as in triggering immune responses [45–47]. In addition, EVs have been associated 

with metastasis or relapse in cancer patients and can serve as diagnostic and prognostic 

markers; these can also be used for detecting therapeutic targets [47]. To date, few studies 

have investigated the relevance of blood EVs in PC [48,49], with most evidence coming 

from urine-derived EV studies [50,51]. EV size poses a significant challenge to the accuracy 

and reliability of their isolation and quantification [52]. Ultracentrifugation is currently 

considered the gold standard method, but to increase specificity, additional techniques such 

as ultrafiltration, density gradients, and chromatography can be implemented [44]. Different 

approaches have been used for the molecular characterization of EVs and their cargo, 

including transcriptomic analysis (ddPCR, real-time PCR, and RNA-seq) for the analysis of 

prostate-specific antigen (PSA), PCA3, ERG, AR, or AR-V7 [50,53,54] as well as WGS of 

larger EVs [43].

3.4. Moving liquid biopsies toward clinical management of PC

3.4.1. Quantitative prognostic and response biomarkers to accelerate drug 
development—Drug approval in the metastatic PC (mPC) setting is based on 

improvements in overall survival (OS) and/or radiographic progression-free survival (rPFS) 

[55]. CTC and cfDNA/ctDNA kinetics have value as prognostic and response biomarkers in 

mPC, offering faster readouts for clinical trials and allowing acceleration of the development 

of the most promising drugs.

Pioneering work by Cristofanilli et al [56] demonstrated the prognostic value of CTC 

enumeration in breast cancer, with an optimal threshold of five or more CTCs in 7.5 ml 

of blood, using the CellSearch system. Two studies in patients with PC prior to initiating 

chemotherapy demonstrated that (1) patients with five or more CTCs per 7.5 ml of blood, 

referred to as an “unfavorable profile” or a “high CTC count”, had shorter OS (prognostic 
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biomarker), and (2) achievement of a decrease in CTC counts after therapy initiation (fewer 

than five CTCs per 7.5 ml; CTC conversion) correlated with OS (response biomarker) and 

was a stronger predictor than PSA changes [57,58]. Using the COU-301 registration trial 

of abiraterone as a model, Scher et al [59] confirmed the value of CTC counts and their 

changes over time, as prognostic and response biomarkers. CTC counts combined with 

lactate dehydrogenase (LDH) levels were shown to be a surrogate of OS, endorsing their use 

as intermediate biomarkers in mPC clinical trials. In a retrospective meta-analysis including 

data from five independent randomized clinical trials, Heller et al [60] demonstrated that 

CTC0 (change from detectable to undetectable CTCs) and CTC conversion consistently 

achieved higher C-index than percentage PSA decreases to discriminate OS, supporting that 

CTC kinetics could outperform PSA changes as a response biomarker.

Since then, CTC counts have been incorporated as a biomarker of response in several phase 

II trials, including the proof-of-concept studies for olaparib in PC [61], where CTC kinetics 

strongly correlated with rPFS. Further studies have also shown that relative changes in 

CTC counts (>30% decrease from baseline) could be potential surrogate endpoints [62]. 

Moreover, CTC kinetics could assist in therapy switch decisions as indicators of disease 

progression; increases in CTC counts after 10–12 wk of therapy significantly correlate with 

reduced rPFS and OS [63,64]. Of interest, large tumor–derived EVs expressing the same cell 

surface capture markers as CTCs (ie, EpCAM) can be coisolated with them and studied in 

platforms such as CellSearch. Enumeration of these EpCAM + EV may have a prognostic 

value in mCRPC, to further stratify patients with favorable CTC counts [49]. Additional 

studies are needed to confirm how the combination of different liquid biopsy approaches can 

improve patient stratification.

The cfDNA yield, and in particular ctDNA, increases as cancer progresses, in association 

with markers of overall tumor burden (PSA, LDH, and alkaline phosphatase). In an analysis 

of 571 patients from the FIRSTANA and PROSELICA phase III trials of taxane-based 

therapies [65], cfDNA baseline levels were an independent prognostic factor of rPFS and 

OS. In addition, absolute and relative changes in cfDNA levels on therapy correlated with 

PSA responses. Similarly, in the TOPARP-A trial, a 50% drop in cfDNA levels on olaparib 

therapy strongly correlated with rPFS and OS [66].

In a randomized trial of abiraterone acetate versus enzalutamide, ctDNA was quantifiable 

by WES and deep targeted 72-gene sequencing. Higher ctDNA fractions (>30%) were 

associated with clinical markers of tumor burden, including PSA, LDH, and alkaline 

phosphatase. Tumor fraction was prognostic, with ctDNA >30% presenting the worst rPFS, 

followed by a fraction between 2% and 30%, and patients with no detectable ctDNA 

experiencing longer times to progression [30]. In the hormone-naïve mPC setting, ctDNA 

levels appeared to diminish rapidly during the initial weeks of androgen deprivation therapy 

[67].

3.4.2. Clinical applications in localized prostate cancer—Current models for 

estimating the risk of relapse after definitive local therapy rely on pretreatment serum PSA 

abundance, International Society of Urological Pathology grade on biopsy, and clinical T 

category. Different biomarkers (ie, PTEN status, TP53 mutations, and cribriform histology) 
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and tissue-based molecular signatures (ie, Decipher and Oncotype DX) have been proposed 

to improve patient stratification in localized PC, and in some cases these have been included 

in clinical guidelines, but their impact on therapeutic decision-making is still limited [68]. 

Tools supporting precise stratification of localized PC are needed, particularly in the case 

of longitudinal monitoring of patients on active surveillance protocols. Several studies have 

demonstrated the presence of disseminated cancer cells, particularly in the bone marrow 

[69,70], among patients with localized PC, providing the rationale for studying disease 

dissemination via liquid biopsies. Davis et al [71] studied the presence of CTCs in patients 

with localized PC (n = 97) with the CellSearch platform. CTCs were detected in a similar 

proportion of biopsy-positive patients (21%) to a control cohort of negative biopsy patients 

(20%); moreover, when present, counts were low (fewer than one to three CTCs per sample). 

In a more recent study, Salami et al [72] identified CTCs using the Epic Sciences platform in 

33/45 (73%) patients with high-risk localized PC prior to receiving treatment. Biochemical 

recurrence was associated with higher baseline AR-positive CTC counts. Xu et al [73] 

showed that identification of CTCs and CTCRNA–based signatures could improve detection 

of clinically significant PC. Kuske et al [74] combined three independent CTC assays 

(CellSearch, CellColector, and EPISPOT) and found a cumulative positivity rate of 81% in 

patients with nonmetastatic high-risk PC; however, only 21% harbored five or more CTCs 

per 7.5 ml of blood. This work suggests that composite biomarker assays might increase our 

capacity to interrogate liquid biopsies in localized PC. In sum, the small number of CTCs 

in the blood of patients with clinically localized PC makes potential clinical applications 

challenging.

Similarly, the representation of ctDNA in early disease settings seems extremely low, 

challenging any downstream applicability for clinical testing, although the presence of 

ctDNA in patients with localized PC has been demonstrated in studies of methylation 

[75], allelic imbalance [76], and LOH [77]. The most comprehensive series to date came 

from Hennigan et al [78], in which no significant tumor fraction was detected by lpWGS 

or targeted sequencing, even in patients with high preprostatectomy serum PSA levels 

who subsequently recurred. Lastly, the field of tumor EVs in blood as PC biomarkers 

remains relatively unexplored. Park et al [48] used PSMA expression to enrich for tumor-

derived EVs from patients with either benign prostatic hyperplasia or localized PC tumors. 

Interestingly, concentration of PSMA-positive EVs increased from low- to high-risk PC.

3.4.3. Liquid biopsies for precision use of AR targeting agents—Resistance to 

AR targeting agents typically emerges through multiple alterations affecting AR activity. 

Liquid biopsy can be repeated over time and represents an attractive opportunity for 

biomarker stratification for more precise ARSi use. AR amplification and mutations can 

be detected in ctDNA, and are associated with worse OS, PFS, and PSA response rate 

[31,34,79]. Carreira et al [80] showed that longitudinally acquired plasma samples allow 

monitoring of tumor dynamics and emerging drug resistance mechanisms.

Antonarakis et al [81] provided proof-of-concept evidence for the clinical value of AR-V7 

detection in CTCs. Up to 39% of mCRPC patients treated with enzalutamide and 19% with 

abiraterone had AR-V7–positive CTCs; the presence of AR-V7 in CTCs was associated 

with lower PSA response and shorter biochemical progression-free survival (bPFS). This 
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was further validated in a larger prospective study where mCRPC patients were classified 

as CTC–, CTC+/AR-V7–, and CTC+/AR-V7+. PSA response rates, bPFS, and OS were 

shorter in patients positive for CTCs, and even shorter in those with AR-V7+ CTCs [15]. 

AR-V7 status likely offers both prognostic and predictive information. In particular, nuclear-

specific localization of AR-V7 in CTCs was found to impact OS significantly in preARSi 

blood CTCs but was not associated with differential response to taxanes [21]. The presence 

of AR-V7 in CTCs was further validated as an independent predictor of poor outcome 

in the PROPHECY multicenter prospective trial using two isolation approaches (AdnaTest 

and Epic Sciences assay) [82]. Del Re et al [83] used plasma-derived exosomal RNA 

to detect AR-V7, with AR-V7 exosome-positive patients having a worse prognosis and 

shorter response to treatment. AR profiling in CTCs and ctDNA from the same patient 

offers complementary information that could aid in ARSi treatment decision. However, the 

polyclonal nature and coexistence of multiple AR aberrations (copy number changes, splice 

variants, and mutations) limit the negative predictive value of each assay separately [16].

3.4.4. Predictive biomarkers for targeted therapies—The use of ctDNA as a 

predictive biomarker offers a potential advantage over tissue-based biopsies because ctDNA 

may comprise material shed by different metastatic lesions [41]. In a randomized phase II 

trial of ARSi in mCRPC [30], detection of TP53 mutations, DDR gene alterations, or AR 
amplification in ctDNA was associated with worse outcome. Other studies have confirmed a 

poor prognosis in patients with TP53 alterations in ctDNA [84].

Several clinical trials in mPC are now using panel-based cfDNA next-generation sequencing 

(NGS) to enrich their populations for testing targeted agents. Phase II trials of PARP 

inhibitors, such as TRITON2 (rucaparib) or GALAHAD (niraparib), allowed recruitment 

based on DDR gene alterations in ctDNA. In the TOPARP-A trial of olaparib, a good 

correlation in DDR mutation status between plasma and tumor was observed, with ctDNA 

detecting reversion mutations in BRCA2 and PALB2 upon secondary resistance [66]. 

Relevant to registration trials of AKT inhibitors in PC, recent work by Herberts et al 

[85] identified AKT1 and PIK3CA mutations in ctDNA. In addition, the detection of 

microsatellite instability and tumor somatic hypermutation in ctDNA is associated with 

MMR gene defects, and could be relevant to patient selection for immune checkpoint 

inhibitors [27,86].

Overall, although promising, challenges remain when using ctDNA to identify tumor 

mutations in the clinical setting. For example, a study comparing two different commercially 

available panels revealed discordant results, probably due to different coverage of the panels, 

but also due to different sensitivities and specificities for certain alterations [87]. These 

results highlight the need for pursuing clinical qualification of ctDNA assays in prospective 

trials. Umbrella studies such as PC-BETS (NCT03385655) and ProBio (NCT03903835) are 

now testing the clinical value of ctDNA in multiarm clinical trials.

3.5. Perspectives and future directions

Liquid biopsies can accelerate biomarker development for precision care in PC. As novel 

biomarker-driven therapies are validated, liquid biopsies also represent an inexpensive 
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opportunity to facilitate the implementation of genomic testing into community practice, 

where metastasis biopsies are less common than in academic centers.

The value of CTC counts as prognostic and response biomarkers has clearly been 

demonstrated, offering a surrogate biomarker for accelerating drug development and 

potentially guiding therapeutic decisions. However, cost and access to technology, as well 

as heterogeneity among studies in terms of CTC definitions and isolation platforms, have 

complicated the translation of CTC analysis to routine clinical testing. Preliminary studies 

suggest that ctDNA kinetics may also be a useful prognostic and response biomarker in 

clinical practice, although further qualification in clinical trials is needed. As both CTCs 

and ctDNA yield parallel outcomes in tumor burden, applicability in localized disease 

may be challenging, although as ultrasensitive assays are developed, liquid biopsies might 

have the potential to assist in monitoring patients after radical therapy or to complement 

tissue-based biomarkers to improve patient stratification. The use of EVs in a clinical setting 

holds promise, and could complement CTC and ctDNA analyses, but faces challenges in 

standardization of isolation methods and downstream applications.

Identification of targetable alterations and emerging resistance biomarkers represents an 

attractive feature of liquid biopsies, particularly in the advanced disease setting, and could 

assist in the implementation of precision medicine therapeutics in PC practice. The FDA 

clearance of the CellSearch system for CTC enumeration was a first-in-class achievement. 

The recent FDA approval of the Guardant360 CDx and FoundationOne Liquid CDx as 

cfDNA NGS-based companion diagnostic assays represents a milestone in the field, but also 

a reminder that liquid biopsy assays need to be analytically validated and clinically qualified 

to be endorsed for routine clinical use. Other platforms of CTC characterization or cfDNA 

analysis, as well as assays for cfDNA-based cancer diagnosis are now at different stages of 

clinical validation. Some protocols allow coisolation of CTCs and ctDNA within the same 

blood sample [88]; however, these are not used in clinical-grade tests.

In addition, research on novel features from liquid biopsy analytes, such as “fragmentomics” 

(based on ctDNA fragment sizes), tissue-of-origin analysis, and methylation profiling, could 

potentially be informative in earlier tumor stages. Importantly, since liquid biopsies can 

reveal a broader landscape of mutations in multiple analytes, integration of these complex 

multidimensional data into composite biomarkers is a current need and an active area of 

research in the field.

4. Conclusions

The field of liquid biopsies in PC has advanced exponentially over the last decade, 

developing prognostic and predictive biomarkers, and holding promise for a minimally 

invasive means of monitoring the genetics of tumor evolution. Liquid biopsies could guide 

therapeutic decisions and accelerate the development of precision medicine in PC. However, 

issues relating to standardization of assay sensitivity and specificity, prospective clinical 

qualification of different assays, as well as cost and accessibility need to be addressed to 

endorse their implementation in routine clinical practice.
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Fig. 1 –. 
Workflow depicting preanalytical, analytical, and postanalytical steps for blood-based 

cfDNA studies. After venipuncture, blood is collected in a tube containing anticoagulants 

(EDTA and citrate are preferred to heparin). The time from sample acquisition to processing 

is critical, as cfDNA degrades within few hours. To overcome this problem, tubes containing 

different DNA stabilizers are available; the use of these tubes is particularly relevant in 

large multicenter studies with centralized analysis, or in general when the sample is not 

processed at the point of collection. A two-step centrifugation process is recommended to 
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separate the plasma component, from which the cfDNA will be extracted. If the cfDNA is 

not extracted immediately, plasma can be stored at −80°C for prolonged periods, although 

repeated freeze-thawing cycles compromise cfDNA quality by increasing the amount of 

nontumor DNA contamination. After cfDNA isolation, quality control (QC) testing to assess 

cfDNA concentration and fragment size is performed prior to characterization. cfDNA = 

cell-free DNA; WES = whole-exome sequencing; WGS = whole-genome sequencing.
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Table 1 –

Isolation platforms for CTCs in PC

Technology CTC definition Application in PC

Antibody-based positive selection

CellSearch EpCAM+, CD45−, CK8+, CK18+, CK19+, DAPI+ [57]

Adna Test EpCAM+, PSA+/PSMA+/EGFR+ [15]

CTC-Chip EpCAM+, specific antigen+ [89]

CTC-iChip >3.8 μm size, EpCAM+ [90]

IsoFlux CD45−, DAPI+, PanCK+, or EpCAM+ [91]

MagSweeper EpCAM+, CD45−, DAPI + [10,92]

CellCollector EpCAM+, CD45−, PanCK+, PSA+, Hoechst+ [74]

NanoVelcro EpCAM+, CD4−, PanCK+, morphological verification [93]

Antibody-based negative selection

EasySep CD45− [94]

RosetteSep CD45−, CD66b−, glycophorin A−, density [74]

EPISPOT CD45−, CD66b−, glycophorin A−, PSA+, FGF2+ [74]

CTC-iChip CD45−, CD16−, CD66b− [90]

Selection free

Epic Sciences PanCK+, CD45−, DAPI+, AR+ [9]

AccuCyte DAPI+, PanCK+, CD45−, CD66b−, CD11b−, CD14−, CD34−, EpCAM+ [95]

Physical properties

ApoStream Dielectrophoretic field flow [96]

Celsee Diagnostics >7.5 μm, deformability [97]

ISET ≥8 μm [95]

CTC = circulating tumor cell; EGFR = epidermal growth factor receptor; PC = prostate cancer; PSA = prostate-specific antigen; PSMA = 
prostate-specific membrane antigen.

Positive (+) and/or negative (−) expression of different capture/detection antigens, or physical properties, is used as a criterion for CTC isolation by 
different technologies or platforms.
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