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ABSTRACT 

 

Advancements in Monitoring Urban Heat and Vegetation Using Multi-Source Optical and 

Thermal Remote Sensing 

 

by 

 

Michael Alexander Allen 

 

The sensitivity of urban heat and urban vegetation to regional and global climate 

phenomena such as drought, heat waves, and climate change is a key concern in climate 

policy, urban planning, public health, and water and energy use. These signals are often 

difficult to resolve as urban climates vary at fine spatiotemporal scales and have complex 

interactions with land cover, surface morphology, and background climates. In this 

dissertation, I used multi-source airborne and satellite imagery from optical and thermal 

sensors to evaluate urban drought impacts on urban vegetation and climate and to investigate 

the efficacy of a novel spaceborne thermal sensor for fine-scale 24-hour monitoring of urban 

heat and its relationships with environmental and morphological drivers over the course of a 

day. In Chapter 1, I explored interactions between urban vegetation cover and urban heat 

during the 2012 to 2016 California megadrought in urbanized Los Angeles County, CA, 

USA using an 8-year time series of optical and thermal imagery. Over the course of the 

drought, I found strong spatiotemporally variant losses in green vegetation cover and 

complex coupling between losses of green cover and urban heat. In Chapter 2, I exploited the 
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unique orbital characteristics of the NASA ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station (ECOSTRESS) sensor to develop composited 24-hour urban 

land surface temperature (LST) imagery for diurnal analysis of urban heat. I found that 

ECOSTRESS composites were suitable for resolving fine-scale (in both space and time) 

interactions between environmental drivers and urban LST over a full diurnal cycle as well as 

higher order features such as variability in heating and cooling rates based on land cover 

type. Finally, in Chapter 3, I used fine-scale urban surface morphology data from LiDAR 

with a parameterization of subpixel sun-surface-sensor geometry to extract facet-scale urban 

LSTs (e.g., wall, roof, road) from a 2.5-year time series of ECOSTRESS imagery. I then 

tracked the diurnal course of thermal anisotropy in urbanized Los Angeles County and New 

York City, NY, USA finding strong spatiotemporal variability in angular effects on urban 

LST as a function of surface-sensor geometry and surface morphology as well as separation 

in facet-scale LST based on facet orientation and time of day. These findings highlight the 

sensitivity of urban vegetation and climate to drought and potential tradeoffs between efforts 

to increase urban green cover and water conservation needs under a warming and drying 

climate. In addition, this work suggests that satellite platforms with atypical sampling 

regimes (e.g., from a precessing orbit) can provide data that is unique and appropriate for 

characterizing otherwise undersampled dimensions of urban thermal climates.  
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Introduction 

The temperature of the land surface is a key determinant of the surface energy 

balance and of turbulent exchanges of energy, mass, and momentum in the lowest layers of 

the atmosphere (Oke, 1982). Land surface temperature (LST) is also one of the most widely 

measured climate variables, with a host of satellite, airborne, and ground-based sensors 

retrieving image and point-like estimates of LST over a variety of spatial and temporal scales 

and extents. Remote measurements of LST have been used to quantify vegetation function 

(e.g., evapotranspiration, moisture stress), soil water content, heatwave intensity, and snow 

cover (Bergeron and Strachan, 2012; Roberts et al., 2015; Hulley et al., 2019; Still et al., 

2021). In cities, LST imagery has been used extensively to measure spatiotemporal 

variability in the urban heat island effect (UHI), to investigate relationships between land 

cover and temperature, to estimate outdoor water use, and to inform targeted urban heat 

solutions such as siting cooling centers and cool pavement/roof installations (Li et al., 2013; 

Wetherley et al., 2018; Reyes et al., 2020). A key finding from approximately 40 years of 

remotely sensed study of urban thermal climates is the strong relationship between urban 

vegetation cover and urban surface and air temperatures (Weng et al., 2004; Shashua-Bar et 

al., 2011).  

Vegetation provides one of the strongest controls on urban LST as it has direct and 

indirect effects on the surface energy balance. These effects come in many forms and can 

have both amplifying and mitigating effects on spatiotemporal contrasts in urban 

microclimates (Oke et al., 1989). Vegetation directly affects the radiation budget, and in turn 

the energy balance, by modifying the surface albedo. This has variable effects on urban 

microclimates depending on background climate (e.g., temperate, continental, arid, etc.) and 
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the surrounding surface materials (Zhao et al., 2014). For example, urban greening programs 

can result in an increase in overall albedo as dark asphalt is replaced with brighter grass and 

sparse tree cover (Oke, 1987). In contrast, in arid environments, managed vegetation can 

decrease the surface albedo as the albedo of leaves is generally lower than that of dry soils 

and as plant canopies shade the surface (Rose and Levinson, 2013). In addition, plant 

phenology can cause strong seasonal variability in vegetation albedo, resulting in seasonal 

shifts in the radiation budget for urban patches with vegetation cover (Zhang et al., 2004). 

Vegetation also directly impacts the energy balance through evapotranspiration, which 

increases latent heat exchange, reducing subsurface heat storage and changes in 

surface/atmospheric temperatures. Increased surface water availability in vegetated urban 

patches (via irrigation, shading, and transportation of water by plant roots) is associated with 

higher soil moisture, which has further effects on thermal mass, albedo, and latent heat. 

Finally, plants directly modify near-surface turbulence by deflecting near-surface flow and 

decreasing wind velocity. 

These examples highlight the complexity of plant-climate interactions in cities, which 

involve myriad processes at multiple spatial and temporal scales. Despite this complexity, it 

is generally accepted that urban vegetation cover has overall net positive effects for city 

inhabitants (Bolund and Hunhammar, 1999; McPherson et al., 2017), particularly in reducing 

temperature extremes and minimizing microclimatic variability (e.g., spatial hot spots). Thus, 

there is considerable attention paid to the climate impacts of urban vegetation to understand 

and quantify impacts from green space on phenomena such as the UHI and to predict effects 

from planned vegetation plantings. In recent decades, much of this work has integrated 
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remotely sensed thermal imagery as well as methods for describing urban cover and 

morphology (Weng et al., 2004). 

The use of LST imagery in the study of urban climates has increased rapidly over the 

last decade (Zhou et al., 2019) due to increases of computing power that have expanded the 

availability of analysis-ready datasets (e.g., Landsat disaggregated LST products, Moderate 

Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua LST products). However, while 

significant strides have been made in using thermal remote sensing to understand the spatial 

and to some extent temporal (e.g., seasonal, climatological) dimensions of urban LST and 

plant-climate interactions, there remain significant gaps in both data and knowledge at other 

scales and in other dimensions (i.e., geometric). Thermal sensors (and indeed multispectral 

sensors) are primarily launched into polar orbits, which allow for consistent acquisitions at 

specific times of day (e.g., 10:30 local time for Landsat, 1:30 and 13:30 for MODIS Aqua) 

and with overpass cycles that scale inversely with spatial scale and image extent (16 days for 

Landsat at 60-120m, 0.5 days for MODIS at 1000m at nadir). Geostationary orbiting 

satellites add to this array with nearly continuous thermal imagery at coarse spatial scale 

(4000m at nadir for Geostationary Operational Environmental Satellite LST products) and 

near-global coverage, but they are generally too coarse for urban analyses without significant 

downscaling (Sismanidis et al., 2015; Hrisko et al., 2020). Satellite thermal datasets are 

generally paired with multispectral visible-shortwave infrared (VSWIR) imagery, which 

allows for simultaneous and synergistic analyses of form and function with well-integrated 

thermal/VSWIR image products. Planned earth observation missions such as the NASA 

Surface Biology and Geology (SBG) mission operate under the same paradigm with paired 

VSWIR (in SBG’s case, hyperspectral) and thermal imagery on a polar orbit that emphasizes 
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fine spatial scale over fine overpass cycles and large spatial extent (Cawse-Nicholson et al., 

2021).  

These datasets allow for analysis of urban climates and plant-climate interactions 

within a specific spatiotemporal window. This window generally emphasizes either 

temporally coarse and spatially fine scale analyses (e.g., intra-city, seasons to years) or 

spatially coarse and temporally fine scale analyses (e.g., intra-city, weeks to months). Both of 

these windows allow for analysis at only at specific times of the day (or night), and thus they 

cannot characterize diurnal patterns without modeling and/or downscaling. Moreover, 

narrow-field-of-view satellite thermography neglects geometric analysis (i.e., 3-dimensional 

surface temperatures) because no fine-scale sensor exists with a large enough spatial extent 

to facilitate off-nadir sampling for multi-directional sampling. This geometric undersampling 

causes a sampling bias towards horizontally-oriented surfaces and results in LST imagery 

that is fundamentally incomplete (Voogt and Oke, 2003). Because of this sampling bias, 

sensor position and surface morphology exert a strong influence on LST imagery, which 

causes a directional dependence of urban LST termed effective thermal anisotropy.  

Thus, while there is a wealth of data to examine phenomena at specific 

spatiotemporal scales and of specific surfaces (i.e., roads, roofs, tree canopy tops), the scope 

of the available data is arguably quite limited and with respect to the complete 3-dimensional 

form of the surface and outside of spatiotemporal sampling windows. The satellite record of 

urban LST cannot represent many phenomena of interest such as fine-scale heatwave 

impacts, facet-scale temperatures, and diurnal vegetation-LST relationships. These gaps 

represent a significant (and often unquantified) challenge for urban remote sensing and 

undermine the applicability and comparability of urban thermal remote sensing to in-situ and 
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model-based assessments of urban microclimates. In addition, it opens significant potential 

for unconventional satellite platforms, airborne sensors, and novel remote sensing missions 

(such as unmanned aerial vehicles) for investigating the gaps inherent in spatial, temporal, 

and geometric sampling of urban microclimates. I posit that novel remote sensors with 

unconventional orbital/sampling parameters are imperative for justifying the relevancy of 

thermal remote sensing of urban areas, for full integration with in-situ measurements, and for 

uncovering emergent and process-informed relationships that are hidden by gaps in sampling.  

This work has two main goals. First, I used a suite of satellite and airborne 

multispectral and thermal imagery to investigate the drought sensitivity of urban vegetation 

cover and plant-LST relationships. Second, I use data from a new satellite thermal imager 

(ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station, ECOSTRESS), 

which has highly unique orbital parameters and spatiotemporal sampling, to derive two novel 

remotely sensed analyses of urban LST: First, I used composited thermal imagery to derive 

fine-spatial resolution diurnal time series of LST imagery. Second, I developed a rasterized 

sun-surface-sensor parameterization to calculate sub-pixel field-of-view proportions and to 

investigate facet-scale temperatures and diurnal patterns of directional contrasts in urban LST 

(i.e., thermal anisotropy) as a function of urban morphology. These analyses are split into 

three self-contained chapters that are outlined below.  

In Chapter 1, I tracked impacts from the 2012-16 California megadrought on 

vegetation fractional cover and plant-climate interactions in urbanized Los Angeles county, 

USA using monthly estimates of sub-pixel fractional vegetation cover derived from 

multispectral satellite imagery (Landsat 5/8) with satellite/airborne LST imagery at multiple 

scales (MODIS MOD12 8-day LSTE and MASTER HyspIRI LST). Excluding large highly 
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managed vegetation patches, I found strong coupling between vegetation fraction, 

precipitation, and LST. I observed variability in drought impacts based on plant functional 

type, with stronger impacts on grass compared to tree but more lasting impacts in tree-

dominated areas. Finally, I found that drought impacts on urban vegetation and plant-climate 

interactions are sensitive to small inputs of precipitation and while mean impacts were largest 

in the most drought-affected years, fractional vegetation cover often reached pre-drought 

levels following precipitation events. Thus, I posit that consistent time-series sampling is 

needed for comprehensive assessment of drought impacts on urban vegetation and plant-

climate relationships.  

In Chapter 2, I used a time series of ECOSTRESS imagery to derive fine spatial 

resolution diurnal estimates of urban LST and to investigate diurnal relationships between 

LST, sub-pixel fractional land cover, elevation, surface height above ground, and other 

drivers of urban microclimates in urbanized Los Angeles county, USA. I then compared the 

shapes of ECOSTRESS derived diurnal urban LSTs with modeled and in-situ measured 

assessments of diurnal LST curves from the literature finding strong agreement. I conclude 

that ECOSTRESS composites can resolve fine-scale features such as the development of a 

cool island in densely built high rise neighborhoods and asymmetry between morning heating 

rates and afternoon cooling rates. I end Chapter 2 by suggesting optimal diurnal bin sizes and 

positing several research directions for exploiting new diurnally and spatially explicit LST 

information.   

In Chapter 3, I employed a rasterized sun-surface-sensor parameterization to calculate 

sub-pixel field-of-view proportions for a time series of ECOSTRESS imagery. I used these 

along with high resolution LiDAR-derived digital surface models estimate sub-pixel 
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fractional wall LSTs at city scale in urbanized Los Angeles county, USA and New York 

City, NY, USA. I then investigated the diurnal and spatial dimensions of the directional 

dependence of remotely measured LST and its relationship with surface morphology. I end 

Chapter 3 by suggesting surface morphology and surface-sensor geometry thresholds for 

minimizing angular effects on fine scale LST imagery.  
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Chapter 1: Reduced urban green cover and daytime cooling capacity during the 2012-

2016 California drought 

 

With Dar Roberts and Joseph McFadden 
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Abstract 

Urban vegetation mitigates elevated temperatures in cities. Drought presents an important 

challenge to urban heat mitigation as prolonged dry periods cause reduced evapotranspiration 

and losses of green vegetation cover. To measure drought impacts on the urban environment 

and climate, we used visible short-wave infrared satellite imagery acquired throughout the 

2012–16 drought in California to quantify effects on fractional vegetation cover in the Los 

Angeles urbanized region. We then used satellite thermal imagery with repeat high-resolution 

airborne thermal imagery to measure how drought-induced reductions of green vegetation 

cover affected urban land surface temperature (LST) and the cooling effect of urban 

vegetation. Green vegetation cover declined from 29.3% in 2011 to 24.6% in 2016 in urban 

Los Angeles County. Over the drought, the annual mean daytime LST increased from 

34.4 °C in 2010 to 37.1 °C in 2014. Despite the large-scale homogenization of LST, tree- and 

grass-dominated areas differed in how they were affected by the drought, with larger losses 

of vegetation fractional cover and stronger reductions in cooling effect for grass compared to 

tree-covered areas due to different plant physiological responses and irrigation changes. 

Results suggest that drought presents a challenge to urban resiliency, as vegetation is often a 

main component of heat mitigation plans. 
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1. Introduction 

 Vegetation is an important component of the urban environment and a primary driver 

of urban climate. Urban climates typically experience elevated temperatures due to the urban 

heat island effect (UHI), which is caused by modified surface geometry and thermal, 

radiative, and moisture properties in cities (Voogt and Oke, 2003). Urban vegetation is of 

particular importance to the study of urban heat because green vegetation (GV) cover 

mitigates extremes of air (Sailor, 1995; Grimmond et al., 1996) and surface (Aniello et al., 

1995; Leuzinger et al., 2010) temperatures. Cooling by vegetation is driven primarily by 

increased latent heat exchange from plant evapotranspiration and by shading of urban 

surfaces from plant canopies. These effects have been studied extensively using remotely 

sensed measures of vegetation cover and land surface temperature (LST), which have shown 

that the effects of vegetation on LST vary with plant functional type (Wetherley et al., 2018), 

time of day (Crum and Jenerette, 2017), and background climate (Georgescu et al., 2011; 

Bechtel et al., 2019). However, while increasing green vegetation cover has been identified 

as an effective urban heat mitigation strategy, there is little research on the sensitivity of 

cooling by urban green spaces to climate perturbations such as drought.  

Drought affects the extent, composition, and function of vegetation cover. These 

effects have been described for natural and agricultural ecosystems (e.g., Asner et al., 2016; 

Dong et al., 2019; Shivers et al., 2018). However, there are few studies of drought in urban 

environments (e.g. Miller et al., 2020; Quesnel et al., 2019). Drought effects on urban 

vegetation may differ from those observed in natural and agricultural systems due to a 

number of factors: (1) Urban vegetation is commonly mixed with large fractions of 

impervious and constructed materials (Arnold and Gibbons, 1996; Wetherley et al., 2017). 
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(2) Cities are generally warmer and drier than their surroundings, owing to modified surface 

energy and water budgets (Oke, 1982). (3) Plant composition in cities is often different from 

the surrounding natural and agricultural ecosystems (Avolio et al., 2019). (4) Urban 

vegetation is managed and frequently irrigated (Clarke et al., 2013) such that the spatial and 

temporal patterns of vegetation greenness can become decoupled from those of precipitation 

(Chen et al., 2015; Quesnel et al., 2019). In addition, irrigation of urban vegetation has been 

shown to directly impact spatial patterns of urban heat (Reyes et al., 2018). 

The above factors have the capacity to mitigate or exacerbate drought effects in cities, 

but the net effects of drought on urban vegetation and climate are poorly known. In addition, 

these factors are highly variable across a city, which may lead to strong spatial heterogeneity 

of drought impacts on different areas and human populations within a city. Variability in 

drought impacts on urban vegetation is particularly important in the context of climate 

change and urban population growth, the combined effects of which are projected to 

exacerbate the urban heat island effect (UHI) across North American cities (Broadbent et al., 

2020). Urban green spaces are often proposed as a solution for urban heat as they provide 

both heat mitigation and other co-benefits such as storm water retention and recreational 

amenities (Bolund and Hunhammar, 1999). However, the efficacy of urban vegetation for 

providing those benefits may change under altered precipitation and temperature regimes due 

to drought or long term climate change. 

The 2012–2016 mega-drought in California was marked by extremely low 

precipitation and elevated ambient temperatures (AghaKouchak et al., 2014). The year 2014 

was estimated to be the most severe drought in the region in the last ~1200 years (Griffin and 

Anchukaitis, 2014). In natural ecosystems in California, the drought caused record low 
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snowpack and widespread forest mortality (Berg and Hall, 2017; Tane et al., 2018). In urban 

areas, drought caused losses of vegetation cover due to tree canopy dieback and mortality of 

trees and herbaceous vegetation (Miller et al., 2020). In addition, the drought prompted 

policy responses including restrictions on urban water use and incentives for lawn removal 

and xeriscaping (Palazzo et al., 2017).  

To understand how urban vegetation and climate respond to drought, we examined 

the effects of the 2012–2016 California drought on GV fractional cover and LST in 

urbanized Los Angeles county, USA. We used airborne and spaceborne remotely sensed 

imagery to do the following: (1) Document changes in subpixel fractional cover of GV over 

the drought using a time series of Landsat imagery; (2) Measure drought-induced changes in 

urban LST and the cooling effect of urban green cover using Moderate Resolution Imaging 

Spectrometer (MODIS) Aqua thermal imagery; (3) Quantify differences in the drought 

responses of tree- and grass-dominated areas using MODIS/ASTER airborne simulator 

(MASTER) thermal imagery.  

 

2. Methods 

2.1. Changes in fractional cover of vegetation 

To analyze drought-induced changes in fractional cover of GV, we compiled a cloud-

free time series of Landsat 5 and Landsat 8 Analysis Ready Data (ARD) Level-2 surface 

reflectance imagery covering 2011 and 2013 through mid-2019. The year 2012 was omitted 

from this analysis as it represents the gap between the operational periods of Landsat 5 and 

Landsat 8. Landsat 7 data from 2012 were not used because of missing data due to the failure 

of the instrument scan line corrector. After filtering for cloud cover and data quality, a total 
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of 80 Landsat 5 and 8 images were available for use in the study.  The stack of images was 

then clipped to the study area (see “Study area and climate”), resulting in a dataset covering 

1,876 km2 of the urbanized area of the Los Angeles basin. A workflow diagram showing data 

acquisition, processing, and analysis steps is shown in Figure 1. 

 

 

Figure 1: A summary of the workflow.  

 

To derive fractional cover, we used Multiple Endmember Spectral Mixture Analysis 

(MESMA), which decomposes each pixel into its fractional areal components based on a 

comparison of a pixel’s spectra against a library of representative spectra (or endmembers) of 

the target classes (Roberts et al., 1998). We used a spectral library generated from Airborne 

Visible / Infrared Imaging Spectrometer (AVIRIS) imagery convolved to the band passes of 

Landsat Thematic Mapper (Landsat 5) and Landsat Operational Land Imager (Landsat 8) 

(Wetherley et al., 2018). We chose this library because it was composed of spectra from the 
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same domain as our study area that were acquired near the midpoint of the drought in August 

2014.  

Using MESMA, we quantified sub-pixel fractions of GV, non-photosynthetic 

vegetation (i.e. senesced and dead plant material), soil, road, roof, and rock for each cloud-

free Landsat image (Roberts et al., 1993). Each pixel was modeled as the combination of up 

to three endmembers, plus shade. The results were shade normalized by subtracting the shade 

fraction and scaling the sum of all other fractions within each pixel to 100% (Dennison and 

Roberts, 2003). We then extracted the GV fractions for each pixel and averaged them over 

the study area to track drought-induced change in urban GV cover. 

The use of MESMA-derived fractional cover has several advantages over traditional 

remote sensing methods for tracking vegetation status and vegetation–LST relationships. Per-

pixel GV fraction represents an area on the ground within a given pixel. Spectral indices, 

such as the Normalized Difference Vegetation Index (NDVI) which is frequently used to 

quantify vegetation abundance in urban areas, represent ratios of reflectance rather than 

physical areas, and spectral indices do not scale linearly in areas with high levels of 

heterogeneity. In addition, NDVI is strongly influenced by plant functional type and it 

saturates in areas with high leaf area index (LAI) (Gu et al., 2013). However, by estimating 

sub-pixel fractional cover for a variety of spectrally distinct land cover types, MESMA can 

be used to separate a change in GV cover from a change in non-vegetated land covers and it 

is robust to differences in LAI among plant functional types (Miller et al., 2020). Changes in 

GV cover may be caused by direct effects of drought on plant growth and survival (e.g., 

increased vapor pressure deficit and reduced soil moisture) as well as human responses (e.g., 

landscape irrigation restrictions and lawn replacement programs). By quantifying GV cover 
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change over time, our analyses capture the net effect of these direct impacts and human 

responses over the course of the drought, which we then relate to micro-climatic effects on 

urban LST.  

 

2.2. City-scale land surface temperature changes by time and vegetation type 

To analyze drought-induced changes in urban LST and the cooling effect of urban 

vegetation, we used thermal imagery from MODIS and MASTER. MODIS satellite imagery 

were acquired from the Aqua platform with a daily overpass at ~13:30 PST. We used 

MODIS 8-day composited LST products (MYD11A2 Version 6) at 1 km spatial resolution 

from 2010 through summer 2019. The 8-day composited product was used to minimize 

anisotropic effects and effects from synoptic variability (by averaging over multiple view 

geometries and weather conditions). The MODIS data provided a coarse spatial resolution, 

but fine temporal resolution, view of drought induced changes in urban LST and cooling 

from urban green space. 

MASTER airborne images, providing finer spatial resolution measurements of LST, 

were acquired as a part of the NASA HyspIRI Preparatory Campaign (HPC, Lee et al., 2015) 

with flights over the Los Angeles basin three times per year from 2013 to 2015 (spring, early 

summer, and late summer) and once per year from 2016 to 2018 in summer. MASTER 

imagery was acquired within +/– 3 hours from solar noon at a spatial resolution of 36 m. 

MASTER thermal imagery were processed to LST using temperature-emissivity separation 

by NASA Jet Propulsion Laboratory and clipped to the study. The accuracy of MASTER 

imagery acquired as a part of the HPC was estimated to be ≤0.33 K, with the range of per 

band precision estimated via noise equivalent differential temperature (NEdT) as 0.15–0.74 
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K (Wetherley et al., 2018). To process the imagery, we orthorectified and resampled each 

MASTER image to 36 m using nearest neighbor resampling. We then corrected minor co-

registration errors (maximum 2–3 pixel offset per image) by georectifying each image to 1 m 

National Agricultural Imagery Program (NAIP) imagery acquired in 2014 that was 

aggregated to 36 m.  

The high spatial resolution of the MASTER LST imagery allowed for analysis of 

nearly pure (>80%) grass- and tree-covered pixels, which would not have been possible with 

coarser MODIS LST imagery due to the patchiness of urban vegetation. We selected a 

threshold of 80% pure composition for comparing urban vegetation types because it was the 

best compromise between homogeneity within the pixel and the number of samples of each 

type that would be available for analysis. Fine scale LST imagery also allowed for direct 

spatial comparison of LST against maps of GV fractional cover from Landsat by resampling 

the Landsat GV maps to 36 m using bilinear interpolation. 

To examine drought impacts on LST of tree and grass covered areas, we used a fine 

resolution land cover classification derived from orthophotography (LAR-IAC, see “Urban 

vegetation types” below) to identify and extract LSTs of >80% pure tree and grass covered 

pixels. We used a Kolmogorov-Smirnov (K-S) test to examine differences between 

distributions of tree and grass LSTs over the drought, with higher values indicating larger 

differences between the two distributions of LST. To compare K-S values with changes in 

urban surface cover, we extracted mean fractional GV cover for the same >80% pure tree and 

grass pixels in each Landsat image.  

 

 



 

 17 

2.3. Urban vegetation types 

To analyze drought-induced changes in the cooling effect of urban green cover, we 

used a high spatial resolution (~0.22 m) land cover classification generated by Los Angeles 

Region Imagery Acquisition Consortium (LAR-IAC) near the midpoint of the drought (2014) 

(LAR-IAC, 2015). The classification contains three vegetation cover classes (tree, 

grass/shrub, and tall shrubs) that represent green land cover during non-water-limited 

periods, as well as classes for bare soil, water, and three impervious cover classes. The LAR-

IAC classification was used to generate maps of sub-pixel green cover the same spatial 

resolutions as the Landsat, MODIS, and MASTER imagery. To generate maps of fractional 

cover for each of the green cover classes, the classification map was aggregated to the target 

resolution by dividing the number of pixels of the target class by the total number of pixels. 

Maps of fractional land cover of tree, grass/shrub, and all vegetation (the sum of tree and 

grass/shrub cover fractions) were used to quantify changes in the cooling effect of urban 

green cover over the drought as vegetation responded to reduced precipitation. 

 

2.4. Quantifying Land surface cooling per unit change in green cover 

To assess the cooling effect of urban green cover, we computed linear regressions of 

pixel-level LST (from MODIS or MASTER) versus fractional green cover (from LAR-IAC). 

The slope of this regression represented the amount by which LST decreased as green cover 

fraction increased. By regressing LST values observed during the drought against a fixed 

map of tree and grass cover, we were able to track drought-induced changes in the daytime 

cooling effect of urban green cover resulting from changes in both the form of urban green 

space (e.g. reduced vegetation cover, expressed as reduced GV cover fraction derived from 
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Landsat) and function (e.g. reduced evapotranspiration, expressed in elevated LST measured 

via MODIS and MASTER).  

 

2.5. Study area and climate  

We defined a study area as the portion of MASTER Line 7 of the NASA-HPC 

Southern California flight box (Lee et al., 2015) that fell within the boundaries of Los 

Angeles county (Figure 2). This area covered the majority of urbanized Los Angeles County. 

Large bodies of water and areas outside of the urbanized boundary were excluded from the 

study area. Tree cover in the region is dominated by evergreen trees, with deciduous trees 

comprising 22% of total tree cover within the city of Los Angeles (Nowak et al., 2011; 

Litvak et al., 2017). 
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Figure 2: The Los Angeles County urbanized study area. The study area is bounded by the 

intersection of Los Angeles County with line 7 of the NASA-HPC Southern California flight 

box. Light grey shading indicates urbanized land cover in 2010 (Courtesy of ESRI, USGS, 

and the US Dept of Commerce). Non-urbanized areas within Los Angeles county (e.g. the 

Santa Monica Mountains) were excluded by manually digitizing neighborhood boundaries. 

 

Data from the three imagery sources covered a range of pre-drought, drought, and 

post-drought conditions. The timing of Landsat, MODIS and MASTER imagery relative to 

drought can be shown using the Palmer Drought Stress Index (PDSI; Figure 3). PDSI 

estimates relative dryness using precipitation and temperature data with a range of values 

between –10 (dry) and +10 (wet) (Palmer, 1965).  

Landsat 5 imagery covered pre-drought conditions in 2011. Landsat 8 acquisitions 

began in early 2013 and continue through mid-2019 through a range of drought conditions. 
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PDSI decreased from 2012 through late 2014 indicating increasing drought stress. PDSI 

varied seasonally with negative spikes during the summer months and positive spikes in the 

winter months from small inputs of precipitation. PDSI reached a negative peak in June 2014 

with a gradual positive increase in PDSI in 2015 and early-to-mid 2016. Higher than average 

precipitation in late 2016 and early 2017 caused a strong decrease in drought severity, with 

PDSI increasing to nearly zero in February 2017. A lack of precipitation and high 

temperatures in mid-to-late 2017 and 2018 caused a strong decrease in PDSI. In terms of 

PDSI (and other indicators of climatological and hydrological drought stress), the drought 

ended in January 2019 after heavy rain events in Southern California in December 2018 and 

January 2019. January 2019 represented the first time that PDSI was above zero (indicating 

wet conditions) in seven years. 

The MODIS 8-day composited images were continuous and covered pre-drought, 

drought, and post-drought conditions. We included 2010 in the MODIS time series to 

provide enough time to remove seasonal cycles using an annual moving window average. 

MASTER image dates began in 2013, a year after the start of the drought, and captured a 

range of drought severities and the brief drought recovery in 2017. 
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Figure 3: Monthly Palmer Drought Severity Index (PDSI) for the South Coast drainage basin 

from 2009 through mid-2019. Blue shading indicates relatively wet conditions and red 

shading indicates relatively dry conditions. MASTER, Landsat 5 and 8, and 8-day MODIS 

acquisition dates are shown as ticks in the upper third of the figure. The ticks represent the 

cloud-free, quality-checked data used in this analysis. 

 

3. Results 

3.1. Reduced green vegetation fraction during drought 

Low precipitation and elevated temperatures during the drought period from 2012–

2016 caused a reduction in sub-pixel GV fractional cover (Figure 4A).  In addition, mean GV 

fractions across Los Angeles varied over a larger range during the drought years, likely due 

to a combination of direct drought impacts in unirrigated green spaces, reduced summertime 

irrigation from outdoor water use restrictions, and land cover change from lawn replacement 
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programs. Mean annual GV fraction for the study area decreased from 29.3% in 2011 to a 

minimum of 24.6% in 2016. This corresponded to a change of GV covered area from 549.71 

km2 in 2011 to 461.54 km2 in 2016, a net loss of 88.17 km2. Mean GV fraction increased by 

2.0% between 2016–17 in response to stronger winter precipitation. Drought conditions 

persisted through 2018, resulting in a 2.3% reduction in mean GV fraction. By 2019, mean 

GV fraction had nearly returned to levels observed before the start of the drought (28.6%). 

We observed a positive log relationship between GV fraction and accumulated 

precipitation over the preceding 3 months (Figure 4B, y = 0.008log(x)+0.27, r2 = 0.43). After 

periods of rainfall, GV fraction reached an asymptote representing full coverage of GV in the 

areas available for plant growth in the urban region. Maximum mean GV cover over the time 

series was 31.9%, observed in February 2015 following a total of 12.6 cm of rainfall that 

occurred in December 2014 and January 2015. Our estimate of maximum GV cover is 

consistent with results in McPherson et al., (2017) who estimated that Coastal Southern 

California cities had 13.8% tree cover and that 42% of residential sites in California had 

trees, which would imply a total vegetation cover fraction of 32.9%. The maximum GV 

cover fraction approached the total plantable area in the Los Angeles study area (34.0% 

green land cover estimated from the LAR-IAC classification). 

Drought-induced losses and post-drought recovery in GV fraction varied markedly 

across Los Angeles (Figure 5). The inland San Fernando Valley lost 5.3% GV cover between 

2011–2016 and gained 2.4% between 2016–2019. In contrast, regions <10 km from the coast 

lost 3.1% GV cover between 2011–2016 and gained 3.6% between 2016–2019. This 

indicates that the San Fernando Valley had a net loss of –2.9% GV cover from 2011–2019 

while coastal regions had a net gain of +0.5% GV cover. These net changes are relative to 
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average GV cover in 2011 of 34.6% for the San Fernando Valley and 25.4% for coastal 

regions. A number of factors potentially contributed to the disparity in GV loss/gain 

including (1) lower humidity and higher ambient temperatures in inland areas, (2) spatially 

heterogeneous water conservation, and (3) incentivized lawn removal programs (Pincetl et 

al., 2019). 

 

 

Figure 4: Trends in GV fractional cover over the drought period. (A) Sub-pixel fractional 

cover of GV from Landsat in urban Los Angeles County for all image dates in 2011 and 

January 2013 to August 2019. Box colors represent annual average PDSI, with blue PDSI>0 

indicating no drought, and light red 0>PDSI>–5, and red PDSI<–5 indicating drought 

conditions. Whiskers represent 1.5 times the interquartile range and diamonds are outliers. 

(B) Mean GV fraction for each Landsat image date (n = 80) plotted against the sum of 

precipitation over the preceding three months. 
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Figure 5: Change in mean annual GV fractional cover from 2011 to 2016 (A) and from 2016 

to 2019 (B). GV cover was derived from Landsat 5 and 8 imagery and averaged for each 

year. Results are aggregated to 300m for map display. 

 

3.2. Reductions in the cooling effect of urban green space at the scale of the urban region 

Averaged across the urban region, the drought had a warming effect on urban LST 

and decreased the range of observed LSTs. Figure 6 shows drought impacts on the mean and 

standard deviation of LST and on the cooling effect of urban green cover. Results in Figure 

6B–F were smoothed using an annual moving window average to remove seasonal cycles. 

Mean daytime annual LST in urban Los Angeles County increased by 2.7°C, from 34.4°C in 

2010 to 37.1°C in 2014. The standard deviation of LST decreased by 0.3°C, from 2.6°C in 

2010 to 2.3°C in 2014. In 2018, after the drought had ended, mean LST decreased by 1.0°C 

to 36.1°C. 

We estimated the cooling effect of urban green cover as the average difference in 

LST between pixels with 0% and 100% tree, grass, and vegetation (tree plus grass) land 

cover from the 1km aggregated LAR-IAC fractional cover maps. This is expressed as the 
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slope of a linear regression between land cover fraction of a given class and LST for each 

MODIS image (Figure 6D–F). Larger negative slopes indicate that there was a stronger 

cooling effect associated with increasing per-pixel vegetation, tree, or grass cover. Land 

cover fractions estimated from LAR-IAC are fixed through time and represent cover during 

moist conditions. By using fixed land cover fractions, these results captured changes in 

cooling from both reduced plant evapotranspiration and land cover change (e.g. tree and 

grass mortality). 

To compare the distributions of cooling from all vegetation, tree, and grass cover in 

pre-drought (2010) and drought maximum (2016) years, we extracted slopes of LST vs. 

vegetation cover fraction (and grass and tree only) for both years (Figure 7). Each year is 

represented by 46 slope values, which represent the average difference in LST per unit 

increase in fractional land cover of vegetation, tree, or grass (i.e. the average difference in 

LST between a pixel with 0% vegetation cover and a pixel with 100% vegetation cover) for 

each 8-day composited MODIS LST image. In both 2010 and 2016 for all vegetation cover 

and for trees, the range of observed cooling effects were approximately normally distributed. 

However, for grass, both 2010 and 2016 had right-skewed distributions suggesting that 

cooling from grass had a large amount of seasonal variability, with strong cooling observed 

during the wet winter months and a gradual weakening in cooling during the summer and fall 

dry down. This skewed pattern was less apparent in 2016 indicating more consistently weak 

cooling from grass during the drought and weaker peak cooling during the winter months. 

We calculated the mean annual cooling effect for each year (and each green cover 

type) as the average of the 46 slope values in each year. The mean annual daytime cooling 

effect of all green cover combined decreased from –0.37°C per 10% increase in green cover 
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prior to the drought in 2010, to –0.30°C per 10% increase in green cover at the peak of the 

drought in 2016. The difference in mean annual cooling between 2010 and 2016 was 

significant (Wilcoxon signed-rank test, z = –4.91, p < 0.01, n = 46). This represented a 18.9% 

relative decrease in the cooling effect of all green cover at the peak of the drought.  

Tree covered areas had twice as large of a cooling effect on LST compared to grass 

cover throughout the drought. Between 2010 and 2016 the annual mean cooling effect of tree 

cover fell from –0.52°C per 10% increase in tree cover to –0.44°C per 10% increase in tree 

cover (z = –3.38, p < 0.01, n = 46). Cooling from grass cover changed from –0.25°C per 10% 

increase in grass cover in 2010 to –0.19°C per 10% increase in grass cover in 2016 (z = –

5.03, p < 0.01, n = 46). Thus, annualized daytime cooling from tree cover declined by 15.3% 

compared to 25.0% for grass cover. Grass cover responded more quickly to short term 

additions of precipitation during the drought period, with large increases in grass cooling 

effect after rain events in late 2014 to early 2015, and early 2017.  

While mean LST across the study area approached pre-drought levels in 2019, the 

cooling effect of vegetation remained low, with only a 3.6% increase in the cooling capacity 

of green cover between January 2018 and January 2019. The lag in post-drought recovery of 

vegetation cooling was much larger for tree cover, which increased by only 0.6% over the 

same time period, compared to a 7.9% increase for grass cover. 
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Figure 6: Urban-region-scale drought impacts on urban LST and cooling from urban green 

space. (A) Drought severity expressed in terms of PDSI for the South Coast drainage basin 

and monthly precipitation measured at the Los Angeles Civic Center retrieved from the 
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California Department of Water Resources. (B–C) Mean and standard deviation of MODIS 

LST over the time series. (D–F) Average slopes of a linear regression of per-pixel vegetation, 

tree, and grass cover from the LAR-IAC land cover classification against per-pixel LST. 

Results in (B–F) are smoothed using an annual moving window average to remove seasonal 

variability. Light shading indicates periods in which –5 < PDSI < 0, indicating mild to 

moderate drought. Dark shading indicates periods in which PDSI < –5, indicating severe 

drought. 

 

Figure 7: The distribution of slopes of LST vs. green cover for pre-drought (2010) and 

drought (2016) years for (A) all vegetation, (B) tree, and (C) grass. All differences were 

statistically significant at p < 0.05. 

 

3.3. Differential drought impacts on tree- and grass-dominated areas 

Using high resolution MASTER thermal imagery it was possible to further examine 

differences in drought impacts on LSTs between nearly pure (>80%) tree- versus grass-

covered pixels. Results of a Kolmogorov-Smirnov (K-S) test comparing distributions of tree 

and grass LSTs are shown in Figure 8A. For all images, the distributions of tree and grass 

LSTs differed significantly (p < 0.01), but the magnitude of the LST difference between the 
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two vegetation types varied over the course of the drought. As drought severity and duration 

increased, LSTs of grass and tree diverged, resulting in higher spatial heterogeneity of LST 

within vegetated areas of the urban region. This occurred despite a decrease in the standard 

deviation of LST at the scale of the urban region as a whole across all vegetated and non-

vegetated land cover types. 

The difference between tree and grass LSTs increased following differential losses 

and gains of fractional GV for the two vegetation types. This is shown in Figure 8B using a 

comparison GV cover for nearly pure tree and grass pixels at each measured time point 

during the drought against the mean GV cover for the same pixels in 2011 (representing 

baseline annualized pre-drought conditions). Winter (wet season in our Mediterranean 

climate zone) GV cover during drought years was comparable to non-drought years, however 

the decline in GV cover in subsequent months going into the summer dry season was larger 

during drought years. Variability in GV cover was greater for grass- than tree-covered areas, 

particularly following winter precipitation events, which caused large spikes in GV cover of 

grass. Tree cover in the study area was dominated by evergreen trees (McPherson et al., 

2017) which do not have a winter leaf-off period and experience relatively small increases in 

GV cover following winter rainfall.  

The difference between distributions of tree and grass LST reached a peak in late 

summer 2015. During this time, PDSI was between –6.5 and –7, indicating some of the driest 

conditions over the drought, that were slightly moderated by late season rainfall which likely 

buffered summer losses of tree GV cover.  As a result, late-summer tree GV cover was 5–7% 

higher than the mean observed in 2011, while grass was 6–12% lower than the mean 
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observed in 2011. Divergence in GV cover for tree and grass relative to the 2011 baseline 

likely caused strong deviation between LSTs for the two vegetation types. 

 

Figure 8: Differences between distributions of tree and grass LSTs and tree and grass GV 

fractional cover relative to pre-drought levels. (A) Kolmogorov-Smirnov (K-S) statistic 

calculated from nearly pure (>80%) tree and grass LSTs. Increasing K-S statistic indicates a 

larger difference between the two distributions of LST adjusting for differences in the mean 

and range of LSTs observed in each image. Each dot represents a single image and tests were 

calculated independently for each image. The lines connecting the image K-S values are for 

visualization only. (B) Difference between mean pre-drought GV cover in 2011 and mean 

GV cover for each individual Landsat image for >80% pure tree and grass pixels. Note: Bars 

are not stacked. 
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4. Discussion 

The 2012–2016 mega-drought in California caused a decline in GV cover and a 

decrease in the cooling effect of urban green space across the Los Angeles region. Our results 

are consistent with the expectation that declines in GV cover caused a shift in partitioning of 

net radiation in favor of sensible heat, which resulted in increased daytime LST and near-

surface air temperatures (Best and Grimmond, 2016). This shift in the surface energy balance 

from land cover change was likely exacerbated by decreased irrigation during the drought, 

which was found to strongly influence evapotranspiration and air temperatures at the city 

scale in Los Angeles (Vahmani and Hogue, 2015).  

GV cover did not decline linearly with drought duration or drought severity (i.e., 

PDSI). We observed that all drought years had periods with winter GV fractional cover that 

was in the range of pre-drought levels, while summertime GV cover was often much lower 

compared to non-drought years, thus increasing the annual range of mean GV cover. GV 

cover was particularly variable for grass-dominated areas, which experienced large spikes in 

GV cover following winter rain events during the drought. Despite these occasional winter 

rain events, water storage remained at historic lows through early 2016 and irrigation 

restrictions were not relaxed until June 2016 (Mitchell et al., 2017); therefore, we assume 

that sub-annual increases in GV fractional cover between 2012 and 2016 were driven largely 

by greening after precipitation, rather than by increases in irrigation or new planting.  

Drought induced losses and post-drought gains of fractional GV cover showed 

markedly different spatial patterns. This was particularly apparent in the contrast between 

inland and coastal regions of the study area. We observed strong GV cover losses and weak 
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post-drought gains in inland areas. In contrast, coastal regions showed a net gain in GV cover 

between 2011–2019. This disparity most likely had a number of causes: (1) inland areas had 

higher air temperature and lower humidity, increasing the soil moisture deficit and causing 

stronger GV losses. (2) Mini et al., (2014) found income driven differences in irrigation in 

the city of Los Angeles, with higher irrigation rates in the more wealthy, coastal regions of 

Los Angeles. (3) The Metropolitan Water District of Southern California incentivized turf 

replacement programs during the drought. These programs were more successful in inland 

areas, particularly in the San Fernando Valley (Pincetl et al., 2019). These results suggest 

that drought may have lasting impacts on the urban environment not only from direct drought 

induced losses of GV cover, but also from public policies and individual decisions in 

response to drought.  

To understand how increases in mean annual LST across the Los Angeles region 

were influenced by losses of GV cover and reduced plant evapotranspiration we calculated 

the mean annual cooling effect of green space aggregated across the urban region for 2011 

and 2016. To calculate the aggregated annual cooling effect of vegetation in 2011 we 

multiplied the mean cooling capacity of green cover (–0.37°C per 10% increase in green 

cover) by the mean annual GV cover (29.3%) in urban Los Angeles County, yielding an 

annualized cooling effect of 1.1°C under pre-drought conditions. In other words, GV cover in 

2011 was responsible for 1.1°C of LST cooling averaged over urban Los Angeles County 

over all seasons. In 2016, this aggregated cooling effect had decreased to 0.7°C. This 

represents a 0.4°C reduction in daytime cooling from green space averaged over the year and 

aggregated over the study area. This is consistent with results in (Vahmani and Ban-Weiss, 

2016), who used a regional climate model to estimate climate impacts of widespread 
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adoption of xeriscaping in Los Angeles, resulting in 1.9°C warming of summertime near-

surface air temperatures during the day. This is proportionally consistent with our annualized 

reduction in daytime cooling (0.4°C) from more modest changes in green vegetation cover 

and plant function (in spite of differences in domain and temperature type). 

Over the same time period, mean LST increased by 2.7°C, from 34.4°C in 2010 to 

37.1°C in 2014. Thus, of the 2.7°C increase in mean LST between 2011–2016, we infer that 

0.4°C was a direct result of decreased GV cover. The remaining 2.3°C likely occurred as a 

result of increased synoptic scale temperatures (Di Lorenzo and Mantua, 2016) and reduced 

plant evapotranspiration in vegetation patches that remained green.  

While LSTs across the Los Angeles urban region became more spatially homogenous 

over the course of the drought, the LSTs of nearly pure tree- and grass-covered pixels 

diverged, thus making the LST within vegetated areas more spatially heterogeneous. Two 

factors contributed to the differences in drought impacts we observed for tree compared to 

grass cover. (1) Trees cool by both evapotranspiration and by shading the surface, whereas 

grasses only cool via evapotranspiration (Shashua-Bar et al., 2011). This difference in 

cooling pathways accounts for both the larger cooling effect and greater resilience in cooling 

observed for trees. (2) By virtue of deeper rooting depth and larger biomass than grass, trees 

are more likely to withstand severe drought conditions and still maintain evapotranspiration, 

even if at reduced rates, whereas lawns senesce or die (Bijoor et al., 2012; Miller et al., 

2020). Drought would have reduced tree evapotranspiration rates, but likely had less of an 

effect on canopy structure and tree shading. In contrast, grasses cool the surface via 

evapotranspiration exclusively, without shading effects on other cover types. The 

evapotranspiration rates of many turfgrasses decline to near zero in as little as four weeks 
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without irrigation (Qian and Fry, 1997). These factors would have contributed to strong 

drought induced variability in GV cover and LST for grass contrasted with relatively resilient 

tree GV cover and LST.  

The timing of GV cover losses and reductions in the cooling effect of grass cover 

indicate that water conservation actions may have exacerbated drought impacts on urban 

vegetation and surface climate. California declared a state of emergency due to drought in 

January 2014. In April 2015, the State Water Board issued a mandatory 25% reduction in 

urban water use (Gonzales and Ajami, 2017; Mitchell et al., 2017). Following the urban 

water use restriction, mean GV cover fell by 3.0% from 27.9% in 2015 to 24.9% in 2016, the 

largest year-to-year decrease in the time series. This also coincided with a period of strong 

differences in drought responses of tree and grass GV cover. Tree cover in mid 2015 to late 

2015 was 5–7% higher compared to its mean cover in 2011, while grass cover was 6–12% 

lower compared to 2011 (Figure 8). Those diverging responses caused a peak in the 

difference between the distributions of tree and grass LST in late 2015. In addition, the 

cooling effect of grass cover fell by 11.0% from March 2015 to January 2016, constituting 

about 40% of the overall drought induced loss in grass cooling. Reduced GV cover at scale 

of the urban region, differential losses of GV cover for grass dominated areas, and reductions 

the cooling effect of grass that we observed during that period, were consistent with the 

results of a widespread reduction of outdoor water use. 

Droughts in the southwest United States are often accompanied by elevated 

temperatures (AghaKouchak et al., 2014). Our analyses showed that a loss of cooling from 

urban green spaces may have contributed to elevated ambient temperatures during drought. 

This additionally suggests that drought stricken cities may become more susceptible to 
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heatwaves. Importantly, drought impacts on the spatial pattern of susceptibility to extreme 

heat across a city may differ according to the spatial pattern of GV reduction. Our results 

suggest that the largest increases of LST with drought may occur in areas that are highly 

vegetated and normally relatively cool because these areas showed larger absolute reductions 

in GV cover. These areas, which experience relatively cooler climates under non-drought 

conditions, are less likely to have residential air conditioning, and may be less equipped to 

withstand extended hot conditions (Fraser et al., 2017). 

 

5. Conclusions 

This study analyzed the impacts of the 2012–16 California drought on GV cover and 

the cooling effect of urban green space in urbanized Los Angeles County using multiple time 

series of satellite and airborne VSWIR and thermal imagery. Results indicate large, spatially 

variable changes in GV cover over the course of the drought concentrated particularly in 

inland areas. These coincided with elevated LST and decreased cooling from urban green 

space, with proportionally larger changes observed for grass- compared to tree-dominated 

green areas. 

As cities grow and prepare for a more variable and warmer climate, many plan to 

expand urban green space and urban forests for heat mitigation as well as other ecosystem 

services such as carbon sequestration (Hutyra et al., 2014) or stormwater runoff mitigation 

(Berland et al., 2017). While our research focuses on the importance of urban green space for 

mitigating urban heat, it also seeks to caution that the ecosystem services provided by urban 

vegetation are not static and but rather are susceptible to climate change and climate 

extremes. Moreover, many tree species planted in cities may not be viable in a drier and 



 

 36 

warmer climate (McPherson et al., 2018). Our results suggest that there may be tradeoffs 

between urban heat mitigation programs and water conservation goals, particularly during 

drought. Thus, it is important to weigh the energy and water use goals of water conservation 

and lawn removal programs with potential urban climate impacts. For example, alternative 

water sources, such as recycled water and captured stormwater, can provide a pathway to 

satisfy both goals, particularly for large green spaces (Quesnel and Ajami, 2019). This is 

particularly important given climate projections, which indicate more frequent and more 

severe drought events in the region (Diffenbaugh et al., 2015).  
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Angeles using a multi-year time series of composited ECOSTRESS imagery 
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Abstract 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) mission has a precessing orbital geometry that allows for frequent temporal 

sampling (every ~3 days) over the full diurnal cycle at a spatial resolution of 70 m. To date, 

no other orbital sensor combines full diurnal sampling with fine spatial resolution. Thus, 

ECOSTRESS is unique and highly desirable in study of urban climates, as patterns of 

temperature, humidity, and turbulence in urban areas are highly heterogeneous across both 

space and time. In this paper we used two years of ECOSTRESS imagery (initial n = 354 

images, final n = 65 images after filtering and pre-processing) of urbanized Los Angeles 

County, USA from 2018-2020 to construct a composite a diurnal time series of urban land 

surface temperature (LST). We then used a high spatial resolution land cover classification 

(~0.2 m) and digital surface model (~0.8m) to investigate sub-pixel relationships between 

environmental drivers of spatiotemporal contrasts in temperature over the course of a full 

diurnal cycle. We found that two years of continuous ECOSTRESS thermal imagery was 

adequate to resolve urban LST at a diurnal time interval of approximately 2 hours with 

accurate representations of the timing of isothermal and heating/cooling periods and the 

timing minimum/maximum temperatures. We used the composited time series of LST to 

compute regressions between environmental drivers and LST over the study area and 

compared the relative strength of land cover, topographic, and morphological drivers over the 

course of a day. Results showed variability in the strength of different environmental drivers. 

For example, stronger reductions in LST were observed for sub-pixel Tree cover (max ΔLST 

= -8.3 ℃ px-1) compared to Grass (max ΔLST = -6.0 ℃ px-1). Contrasts were also observed 

in the timing of maximum effects from environmental drivers, with land cover drivers 
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showing peak effects from 12:00 to 14:00 PST and topographic/morphological drivers 

showing peak effects from 14:00 to 16:00 PST. The results in this study show promise for 

utility and accuracy of ECOSTRESS for resolving small spatiotemporal differences in LST 

in a highly heterogeneous urban environment. In addition, these results suggest that the 

current record of urban temperature from polar orbiting sensors underestimates the range of 

LSTs observed in urban areas by not sampling key points in the diurnal cycle. 
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1. Introduction 

Land surface temperature (LST) is a key determinant of flows of energy, mass, and 

momentum at Earth’s surface. In cities, LST is of particular importance as it is one of the 

most widely available climate measurements and it has strong links to urban energy and 

water use, human health and thermal comfort, and urban ecosystem function (Voogt and 

Oke, 2003). For example, remotely sensed LST data has been used to measure the surface 

urban heat island effect (Clinton and Gong, 2013; Bechtel et al., 2019), the cooling effects of 

urban vegetation (Weng et al., 2004; Wetherley et al., 2018), and the biases and errors 

associated with remote measurement of LST over complex terrain (Roth et al., 1989; Hu et 

al., 2016). These data are particularly topical as problems associated with urban development 

and urban heat are projected to increase both with climate change and with the majority of 

global population growth concentrated in cities (United Nations, 2014; Broadbent et al., 

2020). For example, Hulley et al., (2020) and Zhao et al., (2018) show the potential for 

amplified urban heat islands with large-scale warming trends. Thus, there has been 

significant effort in recent years to use thermal imagery from satellite sensors to understand 

and attribute environmental drivers to spatiotemporal patterns of urban LST and surface 

urban heat islands.  

Most studies of urban LST have relied on data from polar-orbiting satellite sensors 

such as the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High 

Resolution Radiometer (AVHRR), Landsat Enhanced Thematic Mapper (ETM/ETM+), and 

Thermal InfraRed Sensor (TIRS) (Bechtel et al., 2019). These sensors provide instantaneous 

“snapshot” measurements of LST over a wide range of spatial resolutions (60 m to 1 km), 

although, in the case of Landsat, are resampled to 30 m to match reflectance products. 
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However, due to their polar-orbiting geometry, they sample the surface at only one to two 

times of day (e.g., 10:30 and 22:30 local time for Landsat and MODIS Terra, 1:30 and 13:30 

local time for MODIS Aqua) and do not provide information about the diurnal cycle of LST. 

Importantly, only one sensor (MODIS Aqua) measures LST during the hottest part of the 

day, which is most relevant to study of urban heat (Sobrino et al., 2012). This significantly 

limits our understanding of urban LST at neighborhood and sub-neighborhood scales as data 

that cover the full diurnal cycle are limited to LSTs from geostationary satellites which are 

too coarse to resolve intra-urban contrasts in temperature. 

In contrast to polar or geostationary orbiting satellites, the ECOsystem Spaceborne 

Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission has a precessing 

orbit (Fisher et al., 2020). This orbiting geometry allows for fine spatial resolution (70 m) 

and moderate temporal resolution (~3 days) and, most notably, allows for sampling of the 

full diurnal cycle using a single spaceborne sensor without gap filling or downscaling. A 

visual comparison of ECOSTRESS imagery to Landsat 7 ETM+, Landsat 8 TIRS, and 

MODIS Aqua thermal imagery is shown in Figure 1.  

 

Figure 1: A visual comparison of (A) ECOSTRESS, (B) Landsat 7 and (C) 8, and (D) 

MODIS Aqua imagery for a 6 km by 6 km subset of the study area (see Figure 2 for location 
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within the study area). Images were acquired +/- 2 hour from noon PST during August and 

September of 2019. 

 

In this paper, we explore the utility of the unique characteristics of the ECOSTRESS 

sensor by using two years of ECOSTRESS imagery to composite the first fully observational 

satellite-based estimation of the diurnal cycle of urban LST over a 2687 km2 region of Los 

Angeles, California, USA. We used this composited time series with a high spatial resolution 

(~0.2 m) land cover classification and (~0.8 m) digital surface model to map the diurnal 

development of spatial contrasts in LST and to plot diurnal LST curves for common urban 

land cover types. We then quantified diurnal contrasts in relationships between land cover, 

topographic, and morphological drivers and LST.  

 

2. Methods 

2.1. Study Area 

Our study area covers urbanized Los Angeles County, California, USA (Figure 2). 

Los Angeles County has a dry subtropical Mediterranean climate (Köppen class Csb in 

regions near the coast, Csa in inland regions), with a strong coastal gradient in precipitation 

and temperature and a documented urban heat island effect (Hulley et al., 2020). The study 

area was manually digitized using a basemap of composited National Agriculture Imagery 

Program (NAIP) aerial imagery from 2016 and the boundaries of Los Angeles County. We 

selected this region for three reasons: (1) Los Angeles includes a wide range of urban land 

cover/land use types and sociodemographic and economic profiles; (2) Los Angeles has a 

high proportion of clear-sky days, allowing for more frequent and more consistent sampling 
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throughout the year; (3) Los Angeles is ideal for compositing LST images from different 

dates as it has a relatively small annual range in temperature but strong spatial and diurnal 

contrasts in temperature at any given time owing to effects from proximity to coast and 

topography. This means that differences in LST are relatively small between images, but 

relatively large across space within images, which improves the effectiveness of 

compositing.  

 

Figure 2: The urbanized Los Angeles County study area. Mapped reference classes are from 

Demuzere et al., (2020) which used Landsat 8 imagery to map Local Climate Zones (LCZ) – 

which delineate climatically distinct urban land cover/use types – for the continental United 

States. The extent of Figure 1 is outlined by the dashed line.  
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2.2. ECOSTRESS Imagery 

ECOSTRESS is a thermal imager aboard the International Space Station (ISS) with 

five spectral bands covering 8.29 to 12.09 µm. Due to storage and bandwidth constraints, 

only the three bands centered at 8.78, 10.49, and 12.09 µm have been downlinked since May 

15th, 2019 (Silvestri et al., 2020). ECOSTRESS was launched in late-June 2018 and became 

operational in July of 2018. It has a native spatial resolution of 69 x 38 m at nadir, but its 

products are resampled to 70 x 70 m during processing. Level 2 LST and emissivity products 

are generated using temperature-emissivity separation (Gillespie et al., 1998) with a 

radiometric precision and accuracy of 0.15 K and 0.5 K at 300 K respectively, and a 

band averaged Noise Equivalent Differential Temperature (NEDT) of ~0.1 K at 300 K (Hook 

et al., 2020; Hulley et al., 2019). 

For our analyses, we acquired 354 images in total from July 2018 to August 2020. 

Images with <98% coverage of the study area were omitted from further analysis, leaving 

148 images. After pre-processing, the remaining images were then clipped to the study area 

(Figure 2). After clipping, we gridded the imagery to a common 70 m pixel grid (UTM Zone 

11N, WGS-84),   then filtered for cloud cover and image artifacts. Because ECOSTRESS 

downlinks only thermal bands, its cloud mask relies solely on emissivity and temperature 

differences for determining cloud coverage and cloud shadow. In continental areas, this 

likely is a minor issue as cloud-to-ground temperature differences scale with cloud height. 

However, our coastal Los Angeles study area was frequently covered by low, thin clouds, 

and we found that the ECOSTRESS cloud mask underestimated coastal cloud cover, 

particularly morning fog and stratus clouds. To compensate for this, we manually filtered 

each image for cloud cover, omitting images having >5% cloud cover based on visual 
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assessment and an iterative LST thresholding approach. During this process we added 

additional flags for striping and georegistration artifacts, which were identified in 

approximately 15% of the images. Images with severe georegistration errors were omitted 

from the analysis. Images with significant striping were omitted from mapping results, but 

not from regression analyses. After all filtering steps, there were 65 complete, quality and 

cloud filtered images available for further analyses.  

 

2.3. Ancillary data 

We acquired a high spatial resolution land cover classification (~0.2 m) digital 

surface model (DSM, ~0.8 m) from the Los Angeles Region Imagery Acquisition 

Consortium (LARIAC, Los Angeles Region Imagery Acquisition Consortium, 2015). The 

land cover classification includes three vegetation classes (Tree, Grass (which includes 

short/small shrubs), and Tall Shrub) and three impervious classes (Building, Road/Rail, and 

Other Paved) as well as Soil, and Water classes. Both datasets were generated from tiled 

aerial orthophotography and LiDAR in 2014. The DSM was aggregated to 70 m to match 

ECOSTRESS taking mean and standard deviation of the height of all objects above the 

surface level (e.g., buildings, trees, etc.).  

The land cover classification was used to derive sub-pixel fractional cover of each 

class. Sub-pixel fractional cover is highly desirable in this analysis for two reasons: (1) 

Urban cover is highly mixed at 70m (Wetherley et al., 2017). This means that a simple 

majority resample likely represents a plurality, not a majority, as pixels are often covered by 

multiple classes in similar proportions (e.g., road, roof, and vegetation in low-rise residential 

areas). (2) Relationships between sub-pixel land cover fraction and urban LST can be 
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nonlinear (Wetherley et al., 2018), particularly when pixels are mixed with two or more 

classes with diverging thermal properties. Thus, the underlying mixture of surfaces in a pixel 

can potentially be more important than the majority (or plurality) class. To derive fractional 

cover we overlaid the 70 m ECOSTRESS LST grid onto the land cover classification and 

calculated fractions of each cover class in each 70 m grid cell. We generated an Impervious 

fractional map by summing Building, Road/Rail, and Other Paved (which is largely parking 

lots), a Paved fractional map by summing the two paved classes, a Pervious fractional map 

by summing all pervious cover classes, and a Vegetation fractional map by summing Tree 

and Grass.  

To quantify the effects of distance to coast, we computed distances to the nearest 

point on the coast to each cell in the 70 m ECOSTRESS grid using a coastline shapefile from 

the National Atlas of the United States representing the shoreline in 2014. To quantify the 

effects of topography, we used the 30 m National Elevation Dataset from the United States 

Geological Survey (USGS) resampled to the 70 m grid to generate the ground elevation 

maps. Maps of ancillary datasets are shown in Figure S1 of the supplemental materials.  

 

2.4. Data analysis 

For map visualization, we omitted 27 images with mean per-pixel view zenith angle > 

15 degrees as off-nadir views tend to exacerbate minor georegistration errors and issues with 

image sharpness. The remaining 38 images were binned into eight 3-hour bins to visualize 

the spatiotemporal development of LST and into two 4-hour bins to represent day (11:00-

15:00 PST) and night (2:00-6:00 PST) LSTs and to examine spatial patterns in the range of 

LST in urbanized Los Angeles County. We note that this approach is relatively conservative, 
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in non-urban applications and for regions with relatively homogenous land cover, these 

filters could likely be relaxed. 

For analyses of LST in relation to environmental drivers, we used the full set of 65 

images. To quantify diurnal and seasonal variability in cooling from urban vegetation cover, 

we binned the vegetation fractional map into 10% cover bins. We then calculated the 

difference between mean LST for >90% impervious pixels (representing nearly-pure 

impervious LST) and mean LST in each vegetation cover fraction bin. This was repeated for 

each image to plot the diurnal cycle of cooling from urban green cover for spring-summer 

and fall-winter seasons.  

To quantify relationships between LST and distance to coast, topography, and land 

cover drivers we used two approaches: In the first approach, we binned the LST images into 

the same day/night bins as the map-based analysis and computed a per-pixel day/night range 

of LST. We then plotted distance to coast, height above ground level, and green cover 

fraction against the diurnal range of LST to visualize the shape of the relationship between 

microclimatic drivers of LST and the range of LST. In the second approach, we quantified 

the strength and direction of relationships between LST and micro-climatic drivers over the 

course of a diurnal cycle by binning LST images into 2-hour bins and computed linear 

regressions between LST and each driving variable extracting slope and Pearson’s R. 

To develop a generalizable time course of urban LST for the range of common urban 

land cover types, we binned the composited time series of images into 2-hour bins and 

calculated mean and standard deviation for nearly pure pixels (>90% cover) of each land 

cover class. We also computed change in LST between time bins to compare heating and 

cooling rates for each land cover class over the course of a day.  
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2.5. Corroboration using concurrent MODIS LST Imagery 

As this dataset is unique in its diurnal coverage and spatial resolution, it is difficult to 

directly validate. Ground based thermal measurements have been used to radiometrically 

calibrate the ECOSTRESS thermal sensor and LST retrieval (Hook et al., 2020), but are less 

useful for validating spatial patterns and relationships between LST and surface structure and 

land cover drivers. Direct comparison against other satellite thermal sensors is similarly 

difficult, as it is exceedingly unlikely for an ECOSTRESS image to co-occur with imagery 

from a comparable satellite sensor. Thus, instead of validating using a comparison of 

concurrent images, we compare composited ECOSTRESS LSTs to composited MODIS LST 

images from concurrent time periods (i.e., taken at a similar time of day and similar day of 

year). 

To corroborate the ECOSTRESS composited time series, we downloaded MODIS 

Aqua/Terra LST images (MOD11A1-006 and MYD11A1-006) for July 2018 to August 2020 

and clipped them to the study area. These images represented four times of day including 

1:30, 10:30, 13:30, and 22:30 PST. We then bilinearly resampled the ECOSTRESS images to 

match the MODIS 1 km grid. To match time of day and time of year, we filtered the 

ECOSTRESS images based on time of acquisition to only include images within 1.5 hours of 

the MODIS overpass times and binned them to match the Aqua day/night and Terra 

day/night acquisitions. Next, for each MODIS overpass bin, we used the ECOSTRESS date 

of acquisition to filter the MODIS time series to only include images within 3 days of an 

ECOSTRESS overpass. After binning and filtering, we calculated a per-pixel mean 

ECOSTRESS and MODIS LSTs for each time of day bin. To assess error and correlation, we 
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calculated slope, intercept, root mean square error (RMSE), and coefficient of determination 

(R2) between the four pairs of composited datasets. 

 

3. Results 

3.1. Annual and diurnal timing of the ECOSTRESS catalogue for the Los Angeles, CA, USA 

region 

Figure 3 shows the annual and diurnal timing of each complete image (i.e. >98% 

coverage) that entered the second level of filtering. It is important to note that ECOSTRESS 

is operated as a pseudo-sampler, with target regions and time periods. Thus, unlike MODIS 

or Landsat, images are not necessarily equally distributed through space and time. We found 

that images collected over the study period were biased towards the summer and fall seasons, 

and images were more likely to have been acquired during the nighttime and late evening 

hours than in the morning hours. In addition, due to cloud cover, images were less likely to 

pass the cloud filtering procedure during the winter and spring months.  
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Figure 3: Diurnal and seasonal coverage of the time series of ECOSTRESS imagery in the 

second level (cloud and artifact) of quality control filtering. The inner axis represents hour of 

day in Pacific Standard Time (PST). 

 

3.2. Spatial patterns of diurnal LST development 

Figure 4 shows binned LST measurements over a full diurnal cycle. In Figure 5 we 

show the mean per-pixel diurnal range of LST (ΔLSTd) calculated from the difference in 

mean LST from 11:00 to 15:00 PST (n = 5 images) and mean LST from 2:00 to 6:00 PST (n 

= 6 images). The composited time series of LST showed strong thermal contrasts across the 

study area based on surface composition, distance to coast, and street-grid orientation. 

Highways and dense road grids (particularly those that line up with the image grid) were 

visible as cool spots during the day and hotspots during the night (ΔLSTd = ~23–30 ℃). 

Highly impervious areas showed high LST during the day and low LST at night, resulting in 

a large diurnal range in LST (ΔLSTd = ~30-35 ℃). This is particularly apparent as distance 



 

 51 

to coast increases. A daytime cool island and nighttime heat island was observed for the 

downtown core of Los Angeles (indicated by the region of Compact Highrise land cover near 

the center of the study area). 

Coastal regions were the coolest part of the city during both day and night. This 

resulted in ΔLSTd <20 ℃ for areas near the coast. Areas with surface water had a 

particularly distinctive pattern, with high LST at night and low LST during the day and a 

ΔLSTd similar to coastal regions. A small proximity effect was observed for inland lakes, 

with smaller ranges in LST observed around the perimeter of lakes. Covered reservoirs 

(which are common in the study area) had high LST during the day from strong heating of 

the low-albedo covering materials and anomalously high LST at night as water below 

transferred heat to the covering material. Large areas of green space had relatively low LST 

during both the day and night (ΔLSTd = ~18-23 ℃). This effect was stronger for irrigated 

parks and golf courses compared to unmaintained or senesced vegetation. 
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Figure 4: Mapping the diurnal pattern of urban LST for the study area for 3-hour bins. Color 

bars for each binned image show the range between the 5th and 95th percentile. Each image 
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has a unique colorbar to visualize spatial differences in each binned image, which are not 

visible when using a shared colorbar.  

 

Figure 5: The diurnal range of LST (ΔLSTd) over the study area calculated from the 

difference in mean LST from 11:00-15:00 PST (n = 5 images) and mean LST from 2:00-6:00 

PST (n = 6 images). Composited images include samples from all seasons. 

 

To investigate relative LSTs of different classes, we filtered the 2hr binned images for 

nearly pure pixels of each land cover class (>90% cover) and calculated mean LST for each 

class and each binned time step. The diurnal course of LST for each class as well as 

heating/cooling rates (as dLST/dt in ℃ hr-1) are shown in Figure 6. The number of discrete 

observations in each diurnal bin ranged from 4 to 9 images, with generally lower frequency 

sampling in the morning hours due to frequent fog and stratus clouds in the summer months. 

The time bin covering 6:00 to 8:00 represented an outlier with only two cloud-free samples, 
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one in the winter and another in early-Fall. In addition, we used the same day and night bins 

as in Figure 5 (Day = 11:00 to 15:00 PST, Night = 2:00 to 6:00 PST) to visualize 

distributions of LST for >90% pure pixels of each class in Figure 7.  

As expected, maximum LST was observed near solar noon (between 12:00 and 

14:00) and minimum LST was observed just before sunrise (between 6:00 and 8:00). The 

timing of maximum LST was slightly earlier for pervious materials compared to impervious, 

with dLST/dt > 0 ℃ hr-1 through 12:00 PST for impervious materials. The shapes of morning 

heating rates and afternoon/evening cooling rates were dissimilar, with stronger dLST/dt 

observed in the morning (maximum dLST/dt = 6.9 ℃ hr-1 for Impervious, dLST/dt = 4.9 ℃ 

hr-1 for Water at 8:00 PST) compared to a longer and more shallow cooling curve observed 

after solar noon for all materials (dLST/dt = -6.1 ℃ hr-1 for Impervious, dLST/dt = -4.5 ℃ 

hr-1 for Water at 16:00 PST). At night, dLST/dt converged for all classes and was less 

consistent between time intervals but appeared slightly negative trending towards 0 ℃ hr-1.  

Daytime LST had a much larger range than observations at night, owing to synoptic 

and seasonal contrasts which more strongly affect variability in daytime temperatures. 

Among pervious materials, Tree was coolest (mean LST = 35.4 ℃) compared to 38.9 ℃ and 

40.4 ℃ for Grass and Soil. Among impervious surfaces, the Building class was warmest 

(mean = 43.5 ℃) followed by Other Paved (41.2 ℃) and Road/Rail (40.8 ℃). LST at night 

showed a much smaller range for all classes. The largest ranges in nighttime LST were 

observed for Grass, Water, and Other Paved. Water was the warmest class (mean LST = 16.9 

℃), again owing to a relatively high thermal mass, but also had an anomalously high range 

of LST compared to its spatial coverage. This was likely due to differences in thermal mass 

with water depth. Road/Rail was the warmest non-water class at night (14.8 ℃) compared to 
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means of 13.9 ℃ and 14.7 ℃ for Building and Other Paved impervious classes. For pervious 

classes, nighttime temperatures were slightly cooler than impervious, with means of 12.2 ℃, 

12.9 ℃, and 13.6 ℃ for Tree, Grass, and Soil respectively.  

 

 

Figure 6: (A) Mean LSTs for nearly-pure (>90% cover) aggregated land cover classes 

calculated from binned LST images (2 hour bins). (B) Heating and cooling rates (dLST/dt, 

℃ hr-1) calculated between time bins as the difference in LST between bins divided by dt = 

2.  
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Figure 7: Distributions of LST by class for day (11:00 to 15:00 PST) and night (2:00 to 6:00 

PST) for >90% pure pixels. Boxes indicate 25%, 50%, and 75% quartiles. Whiskers indicate 

1.5 times the interquartile range.  

 

3.3. Environmental drivers of LST 

Relationships between ΔLSTd and distance to coast, elevation, height above ground 

of buildings and trees, and percent green cover are shown in Figure 8. ΔLSTd increased with 

distance to coast increased. We also observed that proximity to coast only moderated LST 

within ~20 km of the coast, with little to no change in LST observed at distances >20 km. In 

addition, the ΔLSTd also decreased with increasing green cover fraction, Vegetation cover 

provided stronger cooling in inland regions compared to coastal areas, as cooling scaled with 

increasing LST, both within and among images. The magnitude of LST modifications from 

distance to coast and green cover were approximately similar (mean ΔLSTd = 5.5 ℃ over 0 

km to 20 km and 4.9 ℃ for 0% to 100% green cover differences respectively). Height above 

ground and elevation had non-significant negative relationships with ΔLSTd. 
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Figure 8: Per-pixel relationships between the ΔLSTd (using the same bins shown in Figure 5) 

and environmental drivers. Dots and error bars are calculated over 10% bins of the range of 

each independent variable. Error bars show the 25th and 75th percentile of LST for each bin.  

 

Figure 9 shows the diurnal course of the difference in mean temperature between 

nearly pure (>90%) impervious pixels and pixels from a gradient of vegetation cover fraction 

(10% bins from 0% cover to 90% cover). During the day, the strength of cooling from urban 

vegetation cover (ΔLSTveg) was most variable for pixels with vegetation cover between 

30% and 70%. In contrast, increasing vegetation cover at low (<30%) and high (>70%) 

vegetation fractions had a relatively weak effect on LST, 

Tracking how cooling from urban vegetation changes through a diurnal cycle reveals 

that ΔLSTveg increased starting from sunrise to a maximum just after solar noon (~13:00 

PST) in both spring-summer and fall-winter. Peak cooling was stronger in spring-summer 

(ΔLSTveg = 7.2 ℃) compared to fall-winter (ΔLSTveg = 3.9 ℃). We found mean ΔLSTveg 

for a given image was positively correlated with mean LST (r = 0.94, p < 0.01, n = 65), with 

stronger cooling observed on warmer days. In spring-summer, ΔLSTveg persisted for a 

longer period than fall-winter, with strong cooling (ΔLSTveg = ~4K) observed through the 
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late-afternoon. In both seasons, ΔLSTveg was near 0 just before sunrise indicating a period 

of relatively equal LST for vegetation and impervious cover. 

 

Figure 9: The diurnal evolution of the cooling effect of urban green cover. For each image, 

we binned the data into 10% green cover bins covering a range of vegetation cover fractions 

from 0% to 90% cover. The mean LST for each green cover bin was then subtracted from the 

mean LST of all >90% impervious covered pixels. The data were plotted separately for the 

spring-summer and fall-winter seasons. Data were smoothed using a gaussian filter with 

sigma = 1. 

 

Figures 10 and 11 show slope and Pearson’s R from linear regressions between 

subpixel fractional cover of land cover classes and topographic environmental drivers and 

LST over the course of a diurnal cycle. Slopes are expressed as the average change in LST 

per unit change in the independent variable. Increasing impervious cover was correlated with 
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warmer LST throughout the day, with a maximum ΔLST of 6.1 ℃ px-1, r = 0.52 from 12:00 

to 14:00 PST. Of impervious subclasses, Other Paved had the strongest daytime maximum 

ΔLST (5.0 ℃ px-1, r = 0.30) followed by Building (ΔLST = 4.1 ℃ px-1, r = 0.19), and 

Road/Rail (ΔLST = 2.18 ℃ px-1, r = 0.11). This likely owes to the fact that the Other Paved 

class was dominated by expansive areas of asphalt cover such as airport tarmac and parking 

lots, which were not shaded during the day and often had very little vegetation cover. In 

contrast, buildings and road/rail were more strongly affected shading and radiation trapping 

by building geometry, and thus more heterogeneity of pixel-to-pixel LST, which resulted in 

weaker positive correlations and lower slopes between increased building and road cover and 

LST.  Throughout the night, ΔLST was low for all impervious materials with weak 

correlation, reaching a minimum just before sunrise (4:00 to 6:00 PST).  

Increasing fractional cover of water bodies such as lakes and reservoirs was 

negatively correlated with daytime LST (max ΔLST = -6.0 ℃ px-1, r = -0.44) and positively 

correlated with nighttime LST (max ΔLST = 2.9 ℃ px-1, r = 0.53) owing primarily to the 

very high specific heat of water, which suppressed heating and cooling rates, and daytime 

heat mitigation from latent heat exchange. Increasing pervious cover was negatively 

correlated with LST throughout the day, particularly during the midday hours from 10:00 to 

14:00 PST (max ΔLST = -6.0 ℃ px-1, r = -0.53). We observed negative ΔLST and strong 

negative correlations for Tree (max ΔLST = -8.3 ℃ px-1, r = -0.37) , which were higher than 

those observed for Grass cover (max ΔLST = -6.0 ℃ px-1, r = -0.28), likely because of the 

wide range of grass conditions found in the study area. Turf grass is more susceptible to 

seasonal variability in precipitation but is also frequently irrigated (e.g. in golf courses). 

Thus, grass has a wide range of thermal mass that is low when grass is senesced and high 
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when grass is irrigated, resulting in strong spatial contrasts in heating/cooling rates for grass 

areas and lower correlation between grass cover and LST. As with impervious cover, weaker 

correlations and slopes near ΔLST = 0 ℃ px-1 were observed for pervious materials, with 

minimums observed just before sunrise. 

Increasing distance to coast had a strong positive correlation with daytime LST (max 

ΔLST = 0.13 ℃ km-1, r = 0.50) with maximum slope/correlation observed two hours later 

than maximum slope/correlation for land cover classes (between 14:00 and 16:00). At night, 

correlations between LST and distance to coast were less consistent owing partially to cloud 

cover prior to the image acquisition, which can reduce cooling/heating rates depending on 

cloud timing. Increasing surface height above ground had a weak negative ΔLST and 

correlation in the afternoon hours (max ΔLST = -0.16 ℃ m-1, r = -0.10) and ΔLST near zero 

with little to no correlation at night. Elevation had negative ΔLST and correlation at night 

(max ΔLST = -0.04 ℃ dam-1, r = -0.46) and positive ΔLST and correlation observed during 

the day (max ΔLST = 0.07 ℃ m-1, r = 0.23). However, this relationship is influenced by the 

fact that higher elevations are generally observed in inland areas, which have strong diurnal 

contrasts in LST.  
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Figure 10: The diurnal evolution of slopes of a linear regression between each independent 

variable and binned mean per-pixel LST. Slopes are reported with units of in per unit change 

in the independent variable (e.g., per 0% to 100% change in cover, or per 1 km change in 

distance to coast). X-axis tick labels indicate time bin centers. “ns” denotes not significant 

based on a threshold of p < 0.01. 
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Figure 11: As in Figure 8, but with correlation coefficients (Pearson’s R) of the same linear 

regression. “ns” denotes not significant based on a threshold of p < 0.01. 

 

To examine differences in diurnal patterns of LST for different building heights, we 

segmented the building class based on mean height above ground using the DSM and took 

the difference between Building LST and Paved LST at each time step (ΔLSTbp, Figure 12). 

Buildings were warmer than paved surfaces during the day, with maximum ΔLSTbp > 2.3 ℃ 

near solar noon (10:00 to 14:00 PST) and cooler during the night, with ΔLSTbp < -1.1 ℃ 

near sunrise (6:00 to 8:00 PST). During the day, increasing building height decreased 
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ΔLSTbp indicating that pixels with taller buildings were relatively cool for most of the day. 

This was particularly apparent for mean building heights > 16m, which showed relatively 

weak late-morning (10:00 to 12:00 PST) heating rates. The relationship between building 

height and LST is less clear in the evening and night, with the tallest class of buildings 

showing persistent heating through the early afternoon (12:00 to 16:00 PST) and warmer 

LST in the evening hours (16:00 to 22:00 PST). At night, mean above ground height had 

little effect on LST. 

 

Figure 12: A comparison of the mean difference in LST between >90% pure Building and 

Paved pixels segmented based on mean building height. 

 

3.4. Comparison to MODIS Aqua/Terra Climatology 

Figure 13 shows the results of the comparison between diurnally and annually 

coincident MODIS and ECOSTRESS images. For both daytime sampling periods we 

observed relatively high correlation between the MODIS and ECOSTRESS composites, with 

slopes near 1 and r2 > 0.75 (p < 0.01), with consistent residuals over the range of observed 

LSTs. A slight warm bias in the ECOSTRESS dataset was observed for relatively cool pixels 

in the Terra daytime comparison (10:30 PST). Daytime RMSEs were on the order of or less 
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than potential uncertainties from emissivity correction, anisotropy, and atmospheric 

correction over similar daytime periods (Hulley et al., 2012; Voogt & Oke, 1998). A smaller 

range of LST and weaker correlations were observed at night over a smaller range of 

temperatures (r2 < 0.5, p < 0.01). A slight cool bias is observed in the Terra nighttime 

comparison (22:30 PST), particularly for relatively cooler pixels. ECOSTRESS sampling 

near 1:30 PST preferentially occurred during the warmer summer and fall months with no 

winter sampling, resulting in higher composited LSTs at 1:30 PST compared to 22:30 PST. 

Residuals in both nighttime cases were non-uniform across the range of LST, however, 

because of the small range in observed LST, RMSE was lower at night.  
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Figure 13: Comparisons of per-pixel composited mean LST from concurrent (within 3 days 

and within 1.5 hours) ECOSTRESS and MODIS Terra/Aqua LST images.  

 

4. Discussion 

In this paper, we used a multi-year time series of filtered ECOSTRESS LST images 

to composite and map a full diurnal cycle of LST in the urbanized Los Angeles, CA, USA 

region. This work presents the first fully observational satellite-based time series of diurnal 

urban LST at fine spatial resolution. First, we used this time series to develop and map a 

generalizable diurnal cycle of LST for common urban land cover types. We found that 
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composited ECOSTRESS images can accurately represent an annually averaged full diurnal 

cycle of LST and can be used to quantify how relationships between LST and environmental 

drivers change over an averaged diurnal cycle. As expected, we found strong and variable 

relationships between LST and proximity to coast, surface thermal and radiative properties 

(which are governed broadly by land cover class), and surface geometry. The relative 

importance of these drivers varied through the course of the day. 

 

4.1. The utility and validity of a composited diurnal cycle of urban LST 

Temporally continuous, fine resolution, spatially extensive measurements of LST 

have long been a goal in urban remote sensing (Voogt & Oke, 2003; Zhou et al., 2013). 

However, because of the tradeoff between spatial coverage, spatial scale, and temporal scale, 

it is difficult, if not impossible, to achieve all of these characteristics with a single sensor. 

Fine-scale thermal remote sensors (e.g. airborne and ground-based thermography) are 

generally accompanied by domain and time restrictions. On the other hand, while coarse-

scale sensors (e.g. MODIS) generally have and more frequent overpass times and wider 

spatial coverage, they cannot represent complex and heterogeneous urban forms well (e.g. 

non orthogonal street grids and highly mixed terrain). These are significant challenges for the 

utility of remotely sensed urban LST, as much of the remotely sensed record of urban LSTs 

is either relatively anecdotal (in space or time) or lacks fine scale representivity (Zhou et al., 

2019). This, we posit, has slowed progress in integrating satellite-based remotely sensed LST 

into urban climate models and into a process-based understanding of urban climate 

phenomena and processes. Thus, we consider the unique properties of ECOSTRSS to be a 

particularly useful source of information to close the gaps in diurnal coverage left by polar 
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orbiting remote sensors and as a tool for forcing and validating downscaling of geostationary 

imagery and Diurnal Temperature Cycle (DTC) models. 

Composited diurnal curves from ECOSTRESS are consistent with curves from 

thermal imagers in Adderley et al., (2015) and Meier et al., (2011), with annual time series 

fixed radiometry in Allen, (2017), and with diurnal curves from DTC models in Sismanidis et 

al., (2016) and Weng & Fu, (2014). ECOSTRESS imagery was able to capture diurnal 

features such as the period of isothermality before sunrise, differences in intensity between 

morning heating rates and afternoon cooling rates, and the development of thermal contrasts 

between different land cover types (e.g. impervious versus vegetation cover) and surface 

morphologies (e.g. shading from building geometry). The composites were also able to 

accurately depict the timing of annually averaged diurnal minimum and maximum LST, with 

minimum LST observed just before sunrise (between 6:00 and 8:00 PST) and maximum LST 

just after solar noon (between 12:00 and 14:00 PST). Our results also support the notion that 

the timing of overpass cycles for Landsat and MODIS Terra, which are commonly used for 

urban thermal remote sensing do not coincide with diurnal extremes of LST (Sobrino et al., 

2012). Indeed, no polar orbiting thermal sensor is able to capture the coolest part of the day 

just before sunrise, which is highly useful for constraining models. Thus, the satellite record 

of urban temperatures likely underestimates the full range of urban LST.  

 

4.2. Limitations 

This analysis has multiple limitations, some shared between all thermal remote 

sensors, and some unique to ECOSTRESS and to the compositing method. All satellite 

remote sensors undersample urban surface geometry, as narrow field-of-view sensors only 
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view a fraction of the urban surface (Voogt and Oke, 2003). This results in a bias towards 

horizontal facets (e.g. roofs and roads) and an effective anisotropy of urban LST, with a 

general overestimation of daytime LST and an underestimation of nighttime LST for nadir 

and near-nadir remote sensors (Voogt and Oke, 1998a). The magnitude of effective 

anisotropy varies with surface morphology and time of day, but is generally largest for 

neighborhoods with height to width ratio between 1.5 and 3 (Krayenhoff and Voogt, 2016) – 

which is common throughout our study area. While ECOSTRESS samples from a wider 

range of sensor zenith/azimuth angles than other fine spatial resolution thermal sensors (e.g., 

Landsat), it does not sample representative proportions of horizontal, vertical, and sloped 

facets, particularly in densely built areas.  

Another prominent limitation results from incomplete diurnal and seasonal sampling. 

While ECOSTRESS samples the surface at a much wider range of times of day compared to 

polar-orbiting satellites, its overpass cycles are not randomly distributed across seasons and 

times of day and are still subject to influence from synoptic conditions. In addition, cloud 

cover was spatially variable and more likely in the coastal regions during May/June and over 

the study area during the winter months. This added additional noise to early morning 

composites as cloud cover is often difficult to detect during isothermal periods of the day and 

because coastal cloud often dissipates just after sunrise, resulting in lower LST for previously 

shaded areas. We anticipate similar impacts from partially cloudy days which would likely 

result in reduced overall LST and reduced spatial contrasts in LSTs across our environmental 

variables. A more robust cloud filtering regime incorporating cloud climatologies from 

ground station data or reanalysis data may provide more explicit cloud impact assessment. 
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However, as LST data scarcity was the main limitation in this study, we chose to filter only 

for cloud intrusion detected in the LST imagery.  

We encountered an additional limitation relating to image quality which varied 

significantly between acquisitions. As is common with other wide-FOV thermal images (e.g. 

MODIS), image sharpness degrades with increasing off nadir view angle as instantaneous 

field of view increased and georegistration error increased. These errors were visible in our 

ECOSTRESS time series as small coregistration errors and image artifacts. Striping and co-

registration errors were also more common in off nadir images. This reduced the number of 

images available for analysis. 

A final limitation to note is that we assumed land cover changes in the study area 

(both from urban development and changes in vegetation cover such as drought-induced 

reductions in green vegetation) were minimal over the time series. In addition, we assumed 

that large scale forcings on LST patterns were similar between years (i.e., “warm” versus 

“cold” years). These assumptions may hold for a relatively short time series of 2.5 years of a 

relatively static study area, but longer analyses and/or analysis rapidly developing areas may 

need adjustment for land cover change/variability and for interannual differences in mean 

temperatures.  

 

4.3. The relative importance of environmental drivers of LST 

Urban vegetation promotes cooler surface temperatures as vegetation shades the 

surface and modifies the surface energy balance by increasing evapotranspiration (Oke et al., 

1989). These two mechanisms reduce the daytime heating rate of urban green spaces, 

resulting in cooler temperatures in vegetated parts of a city. We observed that vegetation 
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cover reduced the average diurnal range of LST by 4.9 ℃, with a maximum ΔLSTveg of 7.3 

℃ near spring-summer solar noon. Our estimate of ΔLSTveg was lower than estimates from 

fine scale airborne sensors measured during the height of the summer (10 to 12 ℃, 

(Wetherley et al., 2018)), but higher than estimates from coarser satellite sensors such as 

MODIS (4 to 5 ℃, (Duncan et al., 2019)). This range of estimates supports results in Hu & 

Brunsell, (2013), which showed effects from spatial scale in measuring contrasts in urban 

LST. Trees maintained strong positive cooling (ΔLST < -4.0 ℃ px-1) for a longer period of 

the day between 8:00 to 16:00 PST compared to 10:00 to 16:00 PST for Grass. Change in 

ΔLSTveg was nonlinear with vegetation cover, with the strongest change in LST observed 

between green cover fractions of 0.3 and 0.7 and weaker change in ΔLSTveg observed at 

more extreme green cover fractions. This suggests that a minimum amount of green space 

per unit urban area is needed to achieve cooling from vegetation (approximately 30%). This 

supports results in (Yan et al., 2019) which showed that cooling from vegetation is highly 

variable based on vegetation patch size and complexity.  

During spring-summer, the diurnal course of ΔLSTveg was also nonlinear. The 

strongest change in ΔLSTveg was observed between 8:00 and 11:00 PST to a peak near solar 

noon, with weaker change in ΔLSTveg in the afternoon. This is consistent with the contrasts 

in dLST/dt intensity observed between morning and afternoon. Thus, we posit that the 

cooling effect of vegetation occurs primarily as a result of suppressed morning heating rates 

for vegetated surfaces but declines more slowly in the afternoon as heat is distributed from 

warmer surfaces and as the surface dries and evapotranspiration rates fall. In fall-winter, the 

time course of ΔLSTveg is more linear with more consistent morning increases in ΔLSTveg 

and symmetrical decreases in ΔLSTveg after solar noon. 
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Surface geometry results in shading, which suppresses daytime heating rates resulting 

in cooler LST for shaded patches. Surface geometry also promotes multiple scattering of 

emitted longwave radiation, which suppresses nighttime cooling by trapping heat near the 

surface. This is a primary driver of both surface and air nighttime urban heat island effects, 

particularly for densely built areas with tall buildings narrow streets (Oke, 1988). At the city 

scale, we observed cooler daytime LST and warmer nighttime LST for frequently shaded 

classes (e.g. Road/Rail, Other Paved), consistent with results in Christen et al., (2012).  

Relatively high daytime LST was observed for buildings as this class was dominated 

by rooftops which are less likely to be shaded and often highly insulated, resulting in high 

LST for the “skin” of the rooftop. However, LST decreased with mean building height, 

indicating that taller buildings (which are, in theory, subject to less shading) have lower 

morning heating rates. This likely occurs because as mean building height increases, so does 

the standard deviation of building height (slope = 0.67 m m-1, r = 0.77, p < 0.01). Increased 

sub-pixel roughness promotes shade and cooler LST.  

In contrast to Crum & Jenerette, (2017) and Wetherley et al., (2018), we found that 

trees were on average 3.5 ℃ cooler than grass by day. This may have been influenced the 

slightly coarser pixel size of our imagery, in which nearly pure tree pixels are dominated by 

large stands of trees and closed canopies, which maintain cooling throughout the day. Street 

trees laid out one-by-one lining a street, for example, may be subject to more intense 

insolation and less shade than closed canopy forest patches, however this may be offset by 

increased turbulent heat transfer and higher sky view factor. We also observed cooler tree 

LST at night compared to grass. This was unexpected as multiple emission by trees causes 

radiation trapping and suppressing nighttime cooling rates in tree canopies. However, most 
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trees in the study area are taller than their surrounding buildings (Wetherley, 2018), leading 

to a larger sky view factor and stronger nighttime cooling. This offsets radiation trapping 

within the canopy as the portion of the tree “seen” by the sensor is open to the sky and cools 

quickly at night. 

Of similar importance to land cover drivers was proximity to water, which strongly 

controlled the range of LST. Proximity to coast reduced the diurnal range of LST on average 

by 5.5 K, primarily from a reduction in daytime LST, with daytime coastal LST on average 

4-7 ℃ cooler than inland areas. LST and the diurnal range of LST increased linearly with 

distance to coast from 0 km to approximately 20 km from the coast, indicating the extent of 

the effect of the sea breeze on the land surface. The effect of distance to coast was strongest 

for North-South oriented coastline. 

 

5. Conclusions 

In this study, we set out to fulfill three goals. First, we sought to map the diurnal 

development of urban LST to identify the development of spatial contrasts in urban LST over 

the course of a day. We found that two years of ECOSTRESS data was sufficient to 

accurately resolve patterns of urban LST at a 2-hour diurnal resolution. Increased uniformity 

in seasonal and diurnal sampling would greatly aid this process, as the minimum time 

interval is determined by the period with least sampling (i.e. the lowest common 

denominator). Second, we used the composited diurnal time series of LST to develop diurnal 

curves of LST for common urban land cover types. This allowed for investigation of relative 

LST and cooling/heating rates over a full diurnal cycle. We found good agreement in the 

timing of minimum/maximum LST and magnitudes of class differences in LST between 
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curves derived from ECOSTRESS data and in-situ and model-assisted diurnal curves. 

Finally, we used a regression analysis to investigate the relative effects of environmental 

drivers on urban LST over the course of a day. We tracked the difference in LST between 

impervious and vegetation cover as a function of season, time of day, and sub-pixel 

vegetation cover to provide a comprehensive analysis of the cooling effect of vegetation over 

space and multiple time scales. We also developed diurnal curves of the forcings exerted by 

different land cover and topographic/morphological drivers on urban LST. 

Urban areas present a particularly difficult set of challenges for thermal remote 

sensing. Significant progress has been made to understand the relationship between satellite 

sampled LST and ground-level air/surface temperature measurements (Stoll and Brazel, 

1992; Schwarz et al., 2012), to estimate errors from atmospheric/emissivity correction and 

from surface geometry (Voogt and Oke, 2003), and to investigate spatial and climatological 

patterns of urban land cover and climate (Zhao et al., 2014). However, there remain large 

gaps in sampling, particularly of urban geometry and of the diurnal cycle of LST. 

ECOSTRESS is well equipped to help to fill those gaps by sampling over a wide range of 

times of day and a wide range of sun-surface-sensor geometries. In addition, ECOSTRESS is 

near-global mission, making it useful for developing comparative climatologies of urban 

temperatures and to predict urban heat vulnerability and energy demand. ECOSTRESS also 

has utility in defining the seasonal and diurnal shape of urban climate phenomena such as the 

surface urban heat island effect and the cooling effect of urban vegetation. This is 

particularly useful as observational and modelling tools for monitoring urban heat, 

forecasting urban weather, and siting heat and pollution mitigation infrastructure become 

more complex and require more detailed spatial and temporal information. 
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In conclusion, the ECOSTRESS mission provides a unique opportunity to investigate 

diurnal patterns of urban climate as it samples urban LST over a wide range of times of day 

at fine spatial resolution. Thus, ECOSTRESS allows for a more complete analysis of diurnal 

and seasonal spatial patterns of urban LST and its relationships with environmental drivers. 

We argue that the ECOSTRESS mission is of particular interest to the urban climate 

community for asking difficult and unresolved questions about spatiotemporal patterns of 

urban climate phenomena and about the driving mechanisms behind urban microclimates.  
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Chapter 3: Using surface-sensor modeling and time-series ECOSTRESS 

imagery to measure facet-scale temperatures and angular effects on urban 

land surface temperature. 

 

With Dar Roberts, Charles Jones, Joseph McFadden 
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Abstract 

Angular effects on urban land surface temperature (LST) are a well-documented source of 

both error and signal in measurement of urban surface climates. In this paper, we used a 

combination of time series ECOSTRESS imagery over New York City, New York, USA and 

Los Angeles County, California, USA with high spatial resolution land cover and surface 

morphology datasets to calculate sub-pixel fractions of “seen” wall for the unique per-pixel 

surface-sensor geometry in each image. We then investigated variability in seen wall 

fractions as a function of image surface-sensor geometry and surface morphology metrics. 

Next, we extracted sub-pixel facet-scale directional wall LSTs and considered the diurnal 

evaluation of wall temperatures compared to other common urban facet types. In addition, 

we binned the time series of ECOSTRESS imagery by surface-sensor geometry and overpass 

time to quantify magnitudes of effective anisotropy as a function of sensor zenith/azimuth 

angles and surface morphology. Finally, we used estimates of effective anisotropy to map the 

spatial distribution of angular effects on measured ECOSTRESS LST at neighborhood scale 

for morning, afternoon, and night overpasses. Results indicate that angular effects are 

minimal for sensor zenith angles < 12 degrees and increase linearly with surface roughness 

(i.e., complete surface area, building height) and sub-pixel wall fraction. Clear separation 

was observed between distributions of roof and road LSTs and directional east- and west-

facing wall fractional LSTs, particularly in afternoon imagery in NYC. Directional contrasts 

in LST contributed to large anisotropies (>1 standard deviation of LST) in measured urban 

LST for images with mean sensor zenith > 12 degrees, with increasingly large angular effects 

with surface complexity and building height. The influence of tree canopy cover, surface 



 

 77 

structure, and street grid orthogonality were readily observed as differences in directional 

LSTs in the afternoon between the two study areas.  
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1. Introduction 

The unique materials and complex geometry of cities result in distinct and highly 

variable urban climates. This leads to a modified surface energy balance and generally higher 

surface and air temperatures in cities (Oke, 1982). Spatial and temporal patterns of urban heat 

are often using thermal imagery from satellite platforms. These measurements are 

particularly useful as land surface temperature (LST) is a key driver of the surface energy 

balance and has an important role in determining energy and water use, human health, and 

turbulence in the surface layer. Remotely sensed LST is most frequently measured using 

satellite-based narrow field-of-view (FOV) thermal scanners. These sensors cover a range of 

spatial and temporal resolutions, from high-frequency coarse-scale imagery (Moderate 

Resolution Imaging Spectroradiometer (MODIS), Geostationary Operational Environmental 

Satellite (GOES)) to low-frequency fine-scale imagery (Landsat). Ease of access, data 

availability, and increased computational power have led to a rapid increase in the use of 

satellite retrieved thermal imagery for measuring phenomena in urban climate, particularly 

over the last decade (Weng, 2009; Zhou et al., 2019). Satellite thermal imagery have been 

used extensively in urban applications such as mapping and tracking the urban heat island 

effect (UHI) (Bechtel et al., 2019), estimating outdoor water use (Reyes et al., 2018; 

Wetherley et al., 2018), land cover change, and vegetation stress (Weng et al., 2004; Allen et 

al., 2021). However, our knowledge of urban LST is biased towards the dimensions and 

times for which data are available (Sobrino et al., 2012). For example, there is far more data 

available to describe inter-/intra-city spatial variability than there is to investigate diurnal 

differences in LST. Thus, there remain significant gaps in our understanding of patterns of 
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urban LST across spatial (e.g. facet-scale variability in LST), temporal, and geometric 

dimensions – particularly with respect to the latter two dimensions (Voogt and Oke, 2003).  

Gaps in spatial and temporal sampling have received significant attention in the 

literature. This has led to the development of empirical time/space downscaling methods 

(e.g., Diurnal Temperature Cycle (DTC) models (Huang et al., 2016), spatial disaggregation 

algorithms (Weng and Fu, 2014; Sismanidis et al., 2017)), the development of harmonized 

and smoothed analysis-ready LST products (e.g., MODIS 8-day LST products, disaggregated 

30 meter Landsat 5/7/8 LST), and more complex retrieval algorithms that account for the 

wide range of urban material properties to constrain and minimize biases from LST retrieval 

(e.g., the MODIS MOD21 LST products, which allow emissivity to vary dynamically 

reducing retrieval error in highly complex urban environments). While these advancements 

have been useful for gap filling in time and space and for constraining retrieval errors, they 

do not address the physical limitations in sensor design that often preclude measurement of 

vertical and sloped facets of the urban surface. This is in spite of the fact that these constitute 

a large proportion of the total urban surface area and, therefore, have a strong effect on 

surface-atmosphere energy exchanges (Voogt, 2000). 

Geometric biases in urban thermal remote sensing arise from limitations inherent in 

the design of satellite remote sensors, which use a narrow-FOV detectors and often 

concentrate sampling to near-nadir views to reduce variance in view angle and ground 

instantaneous FOV (GIFOV) over a scene. In cities, where the surface is dominated by 

complex 3-dimensional geometry, this results in a geometric undersampling of vertical facets 

such as walls, tree canopies, and sloped roofs. This undersampling results in a sampling bias 

towards surfaces that are pointed towards the sensor, and, thus, a directional dependence of 
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measured LST depending on a wide range of factors including surface morphology, time of 

day/season, background climate, and sun-surface-sensor geometries (Lagouarde et al., 2004). 

This effect is conceptually similar to the bidirectional reflectance function in remote sensing 

of reflected solar radiation.  

The directional dependence of remotely measured urban LST is termed effective 

anisotropy as it represents a directionality not of the surface itself, but as a result of a 

combination of surface morphology and narrow-FOV sampling. Effective anisotropy has 

been observed primarily at small scales using ground-based and airborne based 

measurements (e.g., helicopter) or at whole-city-scales. Anisotropy is generally quantified as 

the maximum difference in measured LST of an urban patch depending on view 

zenith/azimuth for a given observation time. Observational studies indicate that the 

magnitude of urban effective anisotropy can be as large as 9-14 K depending on surface 

morphology, land cover/materials, time of day/year, and background climate (Cao et al., 

2019; Hu and Wendel, 2019). Modeled and measured neighborhood-scale assessments of 

urban effective anisotropy show that effects are largest in low-rise, densely built areas 

(height/width ~ 3) during clear, calm summertime conditions approximately 2-3 hours after 

solar noon (Krayenhoff and Voogt, 2016). Anisotropy generally increases over the course of 

a day, particularly in cloud-free weather as clear calm days promote the development of large 

contrasts in facet-scale surface temperature driven by differential illumination (Adderley et 

al., 2015; Morrison et al., 2021). Assessments at similar scale have also observed nighttime 

anisotropy, which generally decreases over the course of the night and has little azimuthal 

variability (Lagouarde et al., 2012). Long-term assessment of city-scale anisotropy using 
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MODIS imagery have shown that anisotropic effects on satellite imagery can be as large as 9 

K and can account for up to 2.3 K of variance in the UHI (Hu et al., 2016).  

Not only does geometric undersampling result in a measurable and potentially 

significant bias in remotely sensed urban LST from anisotropic effects, it also means that the 

temperature measured by a narrow-FOV remote sensor is often incomplete. Moreover, per-

pixel LSTs may represent a different type of temperature based on the collection of facets 

(e.g., walls, roofs, tree canopies, roads, etc.) seen by a sensor for a particular view geometry. 

For example, a narrow-FOV sensor viewing a flat parking lot or grass field samples the full 

surface area of the patch. In this case, the complete LST (i.e., a temperature that represents 

the area-averaged LST of all facets in a pixel) and plan area LST (i.e., a birds-eye-view) 

converge and angular effects are minimal assuming all surfaces are inherently isotropic. In 

contrast, a sensor at nadir viewing a residential neighborhood or downtown core only 

measures plan-area LST, neglecting vertical facets and undersampling sloped facets. This 

leads to a divergence between the complete and plan-area LST based on a pixel’s sun-

surface-sensor geometry.  

This problem grows more complex when we consider the fact that per-pixel zenith 

angle varies both within a scene and, for sensors with wide-swaths and large scene overlap 

such as MODIS, between different scenes. As a result, geometric undersampling affects 

internal (i.e., within scene) and external (i.e., between scenes) comparison of LST. This 

produces a bias as the proportion of seen vertical and sloped facets increases with view 

zenith angle. Moreover, contrasts in facet scale temperatures vary based on time of day/year, 

synoptic effects and view azimuth. Ground-based measurements of facet-scale temperatures 

show strong contrasts in LST based on facet type and orientation and strong variability over 
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the course of a day (Lindberg et al., 2008; Hilland and Voogt, 2020). Thus, it is exceedingly 

difficult to constrain and quantify angular effects on remotely sensed LST. A large amount of 

data is needed to account for and nullify variance from unwanted parameters. For example, 

disentangling spatiotemporal differences in LST at seasonal, synoptic, and diurnal scales 

requires multi-scale thermal imagery, a full cloud climatology, and fine-scale maps of surface 

structure, land cover, and tree canopy.  

Thus, effects from geometric undersampling and effective anisotropy remain 

understudied, particularly at neighborhood-scale, largely due to gaps in data acquisition and 

the large number of free parameters at play in determining the LST of a single pixel. While 

sensors such as MODIS Aqua/Terra view the surface from a wide range of angles (view 

zenith of up to 65 degrees), they lack the spatial resolution to investigate neighborhood-scale 

contrasts and to stratify across driving variables such as surface morphology and land cover. 

In contrast, fine-scale ground-based analyses are often site/neighborhood-specific and 

restricted to specific periods in time making it difficult to generalize and scale to satellite-

scale analysis. This gap in spatial/temporal scale remains a significant challenge at precisely 

the scale where that information is most actionable, as angular effects vary based on 

neighborhood- and facet-scale parameters (Voogt and Oke, 1998a, 2003). While modeled 

assessment has helped to fill these gaps by allowing for downscaling and model-assisted 

neighborhood-scale analysis (Yang et al., 2021), we often lack the observational data 

necessary  to estimate errors from parameterization and model-simplification, such as effects 

from translucent materials (such as tree canopies) and sub-facet-scale self-shading and 

atmospheric and emissivity effects (Dyce and Voogt, 2018; Morrison et al., 2020). 
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The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) presents a unique opportunity to bridge gaps in observational assessment of 

angular effects on remotely sensed urban LST. ECOSTRESS is a five-band thermal sensor 

operating from the International Space Station (ISS). The precessing orbital geometry and 

height of the ISS results in diurnally variable overpass times and a 2-5 day overpass cycle 

with a relatively fine spatial resolution (sampling resolution of 69 x 38 m at nadir with 

products resampled to 70 x 70m). In addition, the combination of a relatively wide swath 

(384 km) and low orbital height (400 km) result in per-pixel view zenith angles of up to ~32 

degrees. This produces a potentially large range of angular effects across a single scene and 

between scenes, with the spatial scale necessary to stratify at neighborhood-scale across a 

suite of land cover and surface morphology variables. In this paper, we used a 2.5 year time 

series of ECOSTRESS with high spatial resolution land cover and LiDAR-derived datasets 

to: (1) estimate per-pixel fractions of seen wall using a sun-surface-sensor model and the 

fine-scale LiDAR and land cover information; (2) extract and compare diurnal distributions 

of fractional wall temperatures to other impervious cover types as a function of sun-surface-

sensor geometry; and (3) quantify and map neighborhood-scale anisotropic effects and their 

distributions across metrics of surface morphology. 

 

2. Study Area and Methods 

2.1 Study area 

We defined two study areas shown in Figure 1: New York City, New York, USA; and 

Los Angeles County, California, USA. We chose these two study sites as they are highly 

urbanized and represent a wide range of urban land cover proportions and surface 
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morphologies. New York City (NYC) has a humid subtropical climate (Köppen class: Cfa) 

and is punctuated by very densely built high rise neighborhoods, particularly in the 

downtown core (Manhattan). Los Angeles County (LA County) has a Mediterranean climate 

(Köppen class: Csb) with strong contrasts in temperature and moisture along a coastal 

gradient. LA County is dominated by a mixture of low-rise hardscape dominated 

neighborhoods and highly vegetated neighborhoods near the coast.  

 

Figure 1: (A) New York City study area, (B) Urbanized Los Angeles County study area.  

 

2.2. LST Imagery 

ECOSTRESS has been operational since July 2018. LST products are generated using 

temperature emissivity separation (TES) with precision and accuracy at 300 K of 

approximately 0.15 K and 0.5 K and a band averaged noise equivalent differential 

temperature (NEDT) of ~0.1 K (Hulley et al., 2019; Hook et al., 2020). We used the 

Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) maintained 

by the Land Processes Distributed Active Archive Center (LP DAAC) to download all 

ECOSTRESS geolocation (ECO1BGEO) and level 2 LST, quality control (ECO2LSTE), and 
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cloud (ECO1BCLD) products from July 2018 through mid-January 2021 for both study sites. 

We then used the processing chain described in the following sections to pre-process and 

coregister the time series LST imagery.  

 

2.2.1. Quality Control 

ECOSTRESS products come with radiometric and cloud quality rasters. We used 

these to filter the stack of images based on pixel counts before entering the processing chain. 

To ensure consistent coverage and mask fully clouded imagery, we used counts of quality 

and cloud-free pixels to filter out images with <95% LST coverage and >5% cloud coverage 

within the study area. ECOSTRESS relies solely on emissivity and LST information to 

calculate a cloud mask and is susceptible to false negatives with thin cloud cover and when 

the surface is isothermal. To ensure cloud-free coverage in the remaining images, we 

manually inspected each image and removed images with >5% cloud coverage. During this 

process, we also tagged images for artifacts such as striping (which occurs in 5-10% of 

images) and major coregistration errors (which occur in 15-20% of images). Counts of 

images at each stage of quality control and their seasonal distributions are found in Table 1.  
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Table 1. Counts of images in the three major steps of the pre-processing chain.  

Stage New York City Los Angeles County 

Raw 395 532 
>95% 

Complete 149 206 

<5% Cloud 42 88 

Winter 14 10 

Spring 3 16 

Summer 17 31 

Fall 8 31 

 

 

2.2.2. Spatial Nudging 

Coregistration errors in ECOSTRESS imagery appeared as row/column shifts over 

the scene. These occur because of inconsistencies in the ISS position, which makes stable 

georegistration difficult. While image blur increased with view zenith angle (as is true with 

other wide-swath sensors, such as MODIS), coregistration errors appeared to be randomly 

distributed across sensor-surface geometries but were more common in partially cloud-

contaminated scenes. Row/column shifts were as large as a kilometer but were generally <5 

pixels in either direction. To correct coregistration errors, we implemented a cost-function 

approach, which used a subset of the scene with consistent linear contrast in LST to nudge 

the target poorly coregistered image across rows and columns while seeking to minimize the 

difference in contrast between the target poorly registered image and a reference well-

registered image.  

We first manually identified an approximately 100x100 pixel subset of the image 

with high contrast in LST. We found that the process was most effective when centered over 

complex, high thermal contrast linear features that move diagonally across the scene, as this 
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allowed for simultaneous correction of both row and column shifts. In both NYC and LA 

County, we chose a subset that straddled the coastline. After identifying an image subset, we 

selected a reference scene with good georeferencing by comparing a series of near-nadir 

scenes to a 10m USGS shoreline shapefile.  

Using our image subset and reference image, we then produced a binary 

reclassification of the reference image using the median subset LST as a threshold. As the 

subsets for LA County and NYC were both centered over the coastline with approximately 

equal areas of water and land, their LST distributions are highly bimodal, which allowed for 

easy binary reclassification. After processing the reference subset, we entered the main 

nudging subroutine, which applied the same reclassification steps iteratively to each image 

identified as poorly registered. To account for diurnal and multi-seasonal sampling (in which 

the water and land experience an inversion in LST), we calculated mean LSTs for the left and 

right extremes of the imagery, which in represent average land and water temperatures. If the 

rank order of those LSTs did not match the reference image a flag was raised to invert the 

binary classification. To find the optimal row/column shift, we then nudged the target image 

over the reference image by moving across rows and columns and taking the sum of the 

squared difference between the two binary images. A total of 400 pixel shifts were tested for 

each target image (from a shift of -10 pixels to +10 pixels in both row/column directions) and 

the optimal shift was selected based on minimum sum of squared differences. An example 

subset showing pre-shift and post-shift imagery is included in Figure 2. 
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Figure 2: Pre-shift (A) and post-shift (B) subsets for a representative LA County image. 

Colors are unscaled LST values (purple = cool, yellow = warm). This image had a -3 row, +5 

column shift.  

 

This method for calculating optimal image row/column shifts fails when spatial 

contrasts in LST are too small. Under clear sky conditions this means that the method will 

likely to fail at overpass times close to sunrise and sunset, when the differential 

heating/cooling rates of surfaces of high and low thermal mass force most of the scene close 

to isothermality. The spatial nudging routine also fails on imagery with striping or other 

image artifacts, which causes the algorithm to fail to converge on a reasonable solution. After 

applying the algorithm, the NYC time series had 22 images with pixel shift corrections, with 

an average row shift of 2.9 pixels and an average column shift of 2.9 pixels. The LA County 

time series had 25 images with pixel shift corrections, and an average row shift of 3.3 pixels 

and an average column shift of 4.2 pixels.  
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After spatial nudging, we applied final preprocessing steps to the images by clipping 

and masking for the study area and stacking the imagery with its corresponding metadata. 

 

2.3. Land Cover and LiDAR Data 

 In LA County, land cover information and a digital surface model (DSM) were 

acquired from the Los Angeles Region Imagery Acquisition Consortium (LARIAC) version 

4 datasets, which used a combination of aerial imagery and LiDAR collected in 2014 to 

produce a ~0.2 m land cover classification and a ~0.7 m DSM. Classes include tree canopy, 

grass and short shrub, bare soil, water, building (i.e., rooftops), road/rail, other paved (e.g., 

parking lots, airport runways), and tall shrubs. To pre-process these datasets, we clipped the 

classification and DSM to the study area and reprojected both to EPSG 32611 (WGS-84, 

UTM z11N). We then resampled to 1m using bilinear resampling to allow for fast 

aggregation between the different scales used in the surface-sensor modeling and analysis. 

In NYC, land cover information and a DSM were acquired/produced from datasets 

maintained by the NYC Department of Information Technology and Telecommunications 

(DoITT). DoITT produced an 8-class land cover classification, bare earth digital elevation 

model (DEM), and highest hit DSM from LiDAR flights in 2017-18 at ~0.15 m spatial 

resolution. Classes in the DoITT land cover classification are the same as LARIAC with two 

exceptions: (1) there is no tall shrub class and (2) DoITT produces a separate rail class. Tree 

and grass/shrub in the DoITT classification are distinguished using a 2.4 m height threshold. 

The DoITT DEM and DSM are delivered as irregular tiles and were mosaicked together and 

clipped to the study area, we then took the difference of the two to derive the height above 
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ground DSM used in this study. We reprojected the classification and DSM to EPSG 32618 

(WGS-84, UTM z18N) and resampled to 1 m using bilinear resampling. 

 

2.3.1. Surface Structure/Cover Metrics 

 When aggregated to the scale of a thermal image, LiDAR derived DSMs provide per-

pixel statistical assessments of height above ground (i.e., central tendency, sub-pixel 

variance). Likewise, the aggregated land cover classification may provide a majority class, or 

sub-pixel fractions of land cover. It is often more useful to calculate specific metrics that 

summarize key features of sub-pixel surface structure, such as plan area fraction of 

impervious cover (λi) and complete aspect ratio (λc). When combined, these metrics can be 

used to delineate micro-climatically distinct neighborhoods and are descriptive enough to aid 

in model parameterization of surface cover and structure. To derive λc and λi for the 70 m 

ECOSTRESS grid, we use the two 1 m DSMs and land cover classifications. We calculated 

λc as the ratio of the total 3-dimensional external surface area (i.e., the total surface area of all 

elements including 3-d and 2-d elements) and the planar area of each pixel (70 x 70 m) (Oke 

et al., 2017). For example, λc = 1 for a flat surface and as the quantity and size of elements 

within a pixel increase (e.g., the count and height of buildings), so does λc. We calculated λi 

as the subpixel fractional cover of all impervious surfaces (building, road, other paved, and in 

NYC rail). Figures 3 and 4 show maps of λc and λi for the two study areas.  
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Figure 3: Maps of λi (A) and λc (B) calculated from 1 m DSMs for the 70 m ECOSTRESS 

grid for the NYC study area. 
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Figure 4: Maps of λi (A) and λc (B) calculated from 1 m DSMs for the 70 m ECOSTRESS 

grid for the LA County study area. 

 

2.4. Surface-Sensor Geometry Modeling 

 To calculate and extract sub-pixel fractional wall temperatures, we used a surface-

sensor model that used the fine-scale DSM to tag pixels of the 3-dimensional surface as seen 

or occluded based on each pixel’s height above ground and the sensor view zenith and 

azimuth. To do this, we projected the FOV of the sensor onto the DSM twice, once with the 

direction of the sensor and once with the sensor on the opposite end of the sky (a difference 

in view azimuth of 180 degrees). The former tags pixels of the DSM as in shadow 

(occluded), the latter calculates wall displacements from the foot of each building. We then 

combined these outputs with the land cover classification to compute sub-pixel fractions of 
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seen wall displacement over the ECOSTRESS grid for the unique per-pixel surface-sensor 

geometry of each image.  

To do this, we aggregated the 1m DSM to 5m to reduce noise from very small-scale 

structure (which tends to overamplify the amount of seen/obscured wall) while emphasizing 

the overall structure of the surface. To obtain the sensor view geometry for a given image, we 

extracted per-pixel view zenith and azimuth angles from the pre-processed ECO1BGEO 

layers based on the closest 70 m pixel to the location of the source pixel within the DSM. We 

then projected the sensor line of sight (LOS) from the height of the source pixel onto the 

DSM and calculated the length of shadow from the source pixel (l) at pixel i, j as,  

 

li,j =
hi,j

tan⁡(90 − vzi,j)
 

 

where hi,j is the height of the source pixel, vzi,j is the view zenith angle. l represents the 

shadow length from a given source pixel if the sensor view azimuth is parallel to the pixel 

grid. To discretize and distribute the shadow onto the DSM, we overlaid the shadow length 

from the source pixel as a vector onto the DSM grid with the direction of the view azimuth. 

We then tagged pixels that intersected the vector with the shadow height at their pixel 

centers. These tagged heights were then compared to the DSM. If the height of the shadow 

was greater the height of the corresponding DSM pixel, the pixel was tagged as in the source 

pixel’s shadow. If the shadow height was less than the DSM height, the pixel was left 

untagged and the vector was truncated. This process was repeated for each building pixel > 2 

m in height. 



 

 94 

 After calculating, discretizing, and tagging per-pixel occlusions for each image over 

the DSM, we followed similar steps to calculate wall displacements with the sensor on the 

opposite side of the sky (difference in azimuth of 180 degrees). However, when calculating 

wall displacements, we filtered the DSM using the land cover classification to only run the 

calculation on building pixels and added an additional step to store the per-pixel 

displacement on the source pixel as the sum of the length of the displacement. This 

represents the height of the wall displacement seen by the sensor for each building pixel. 

 Figure 5 shows a schematic of the 5m aggregated land cover classification (A) and 

DSM (B), and the output from the surface-sensor model (C and D) for a ~500 x 500 m subset 

of the NYC study area with sensor zenith angle ~20 degrees and azimuth angle of ~300 

degrees. In (C), shades of blue represent the per-pixel wall displacement length converted to 

meters. Pixels of the DSM tagged as occluded are shaded in the red. To integrate this with 

the ensemble of gridded environmental variables, we combine the 5 m surface-sensor model 

outputs with the 5 m land cover classification by reclassifying pixels that were tagged in the 

model output. Pixels tagged as occluded (e.g., road pixels behind a tall building) are nullified 

and omitted from the aggregated totals. Seen displacement lengths are classified as an 

additional class and are added to the total sub-pixel area. To aggregate to the 70 m 

ECOSTRESS grid, we produce pixel counts of each class (including the seen wall 

displacement) and divide by the total number of seen pixels in each 70 m cell. This produces 

fractional cover of all land cover classes and seen wall displacement for the ECOSTRESS 

grid, with areas obscured by surface cover omitted. In rare cases, the area obscured by 

surface structure is larger than the displaced area seen by the sensor (generally by < 1%). In 
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these instances, we scale land cover fractions of each class linearly so that the sum of 

fractional cover in each pixel is equal to one.   

 

Figure 5: All subplots show the same 490 m area of the NYC study area. X/Y ticks represent 

counts of pixels from the upper left corner. (A) 5 m aggregated land cover classification. (B) 

5 m aggregated height above ground calculated from the DSM. (C) Output from the surface-

sensor model at 5 m for a view zenith angle of ~20 degrees and azimuth angle of ~300 
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degrees. Shades of blue represent seen wall displacement converted to meters. Pixels tagged 

as red are obscured by surface geometry. (D) Fractional seen wall cover at 70 m calculated 

from the land cover classification and surface-sensor outputs.  

 

2.5. Data Integration and Analysis 

 Our analysis has four parts. First, we map and quantify relationships between surface 

structure metrics (namely λc), view zenith angle, and sub-pixel fractional seen wall. To do so, 

we bin pixels based on surface structure metrics and calculate mean wall fractions as a 

function of sensor zenith angle. Second, we extract diurnal distributions of wall temperatures 

for multiple surface-sensor geometries and compare them to distributions of LSTs for other 

facets. Third, we estimate azimuthal variability in directional LSTs at multiple times of day 

using differences in standardized LST over a gradient of λc. Finally, we use relationships 

between effective anisotropy and λc with maps of land cover and surface structure to map the 

spatial distribution of effective anisotropy for the two study areas. In parts two, three, and 

four we standardize LST for each image as,  

 

Zi,j = (LSTi,j − LST̅̅ ̅̅ ̅)/σLST 

 

This Z-score standardization aids in comparison between images as the mean and 

variance of each LST image varies based on time of day/year and synoptic effects, which 

makes direct comparison of distributions of LST between images difficult. In part four, we 

aggregate results to neighborhood-scale using neighborhood shapefiles produced by the New 
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York City Department of City Planning and Los Angeles Times for visualization and to 

reduce pixel scale noise. 

 

3. Results 

3.1. Sub-pixel seen wall fractions 

 Figures 6 and 7 show the spatial distribution of sub-pixel seen wall fractions. In both 

figures, (A) shows sub-pixel seen wall with a small scene-average view zenith angle (i.e., 

near-nadir) and (B) shows a large scene-average view zenith angle (i.e., off-nadir). Seen wall 

fraction increased with sensor zenith angle in both NYC and LA County as the proportion of 

vertical facets in the FOV increased. This occurred both as an increase in seen wall fraction 

for pixels with very high λc and as an increase in the total area with observable seen wall 

fraction. This effect is most obvious in NYC, where the study area contains a large number of 

medium-rise neighborhoods (8 > λc > 4), which have negligible angular effects at view zenith 

angles < 12 degree that strongly increase at view zenith angles > 18 degrees. At large sensor 

zenith angles (> 22 degrees), much of the downtown core of NYC (Manhattan) has seen wall 

fractions > 40%.  

In LA County, tall buildings are found almost exclusively in the downtown core. 

Thus, increasing sensor view zenith resulted in larger seen wall fractions in the downtown 

with minimal increases observed elsewhere. Obstruction by tree canopies (which are on 

average 4.8 m taller than buildings in the urbanized LA region (Wetherley et al., 2021)) 

likely caused a further reduction in seen wall fraction. However, we note that results in Dyce 

& Voogt, (2018) indicate that while tree canopies reduce the fraction of seen wall facets, this 

does not necessarily result in a decrease in overall anisotropy. 
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Figure 6: Sub-pixel fractional wall cover for scene average view zenith angle of (A) 11 

degrees and (B) 25 degrees in the NYC study area. 
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Figure 7: Sub-pixel fractional wall cover for scene average view zenith angle of (A) 11 

degrees and (B) 25 degrees in the LA County study area. 

 

As both λc and per-pixel view zenith angle increase, both NYC and LA County show 

similar patterns of increasing seen wall fraction (Figure 8). Results are less consistent in LA 

County, where n-samples decreases sharply above λc = 20. In both cases, seen wall fraction is 

negligible for λc < 3 and with view zenith < 12 degrees. Results for mean pixel height above 

ground (Figure 9) show slightly more linear increases in seen wall fraction with increasing 

view zenith. No observable relationship was found between λi and seen wall fraction (not 

shown), particularly in LA County, which is dominated by low-rise neighborhoods with high 

λi but relatively low λc.  
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Figure 8: Seen wall fractions as a function of view zenith and binned λc for (A) NYC, and 

(B) LA County. Bins extent from 1 to 64 in increments of 2i. Y-axis labels represent bin 

centers. Results are smoothed using a zero order gaussian filter (sigma = 1) for visualization. 

 

 

Figure 9: Seen wall fractions as a function of view zenith and binned height above ground for 

(A) NYC, and (B) LA County. Bins extent from 1 to 64 in increments of 2i. Y-axis labels 

represent bin centers. Results are smoothed using a zero order gaussian filter (sigma = 1) for 

visualization. 
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3.2. Extracting diurnal patterns of fractional wall LSTs 

To investigate wall temperatures, we first calculate Pearson’s R correlation 

coefficients between per-pixel wall fraction and LSTs (Figure 10). We note that both sub-

pixel wall fraction and LST are allowed to vary for each image (as sensor-surface geometry 

is unique for each overpass and each pixel), so the distribution and total amount of wall 

fractional cover varies significantly for each image. In NYC, we observe positive correlation 

between seen wall fraction and LST at night (mean R = 0.51) and slightly negative 

correlation during the day (mean R = -0.23). This pattern is consistent seasonally and for 

both small and large view zenith angles. In LA County we found no significant relationship 

between wall fraction and LST. This likely occurred because of a combination of highly 

skewed sampling (towards low wall fraction) and because variance in LST in LA County was 

highest at low wall fractions.  
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Figure 10: Correlation coefficients calculated between fractional wall cover and LST for each 

image. Fill colors indicate scene averaged sensor zenith angle.   

 

Figure 11 shows distributions of standardized LSTs stratified based on time of day, 

sensor zenith/azimuth, and wall/roof/road fraction. All distributions are computed from 

pixels with λi > 0.75 to minimize influence from other cover types. Images were filtered to 

separate near-nadir images (scene average sensor zenith < 12 degrees) from off-nadir images 

with the sensor in the eastern half of the sky (zenith > 12 degrees, sensor azimuth < 180 

degrees) and off nadir views the sensor in the western half of the sky (zenith > 12 degrees, 

sensor azimuth > 180 degrees). We stratified nadir views based on road and roof fractional 

cover using a 75% cover threshold. West and east distributions included an additional filter 



 

 103 

to include LSTs of pixels with > 20% remaining wall fraction. We note that similar results 

were observed over a range of wall fraction thresholds, with n-samples decreasing sharply 

above the 20% threshold (particularly in LA County). Details of this sensitivity testing as 

well as pixel and image counts for the range of sampling bins are included in the 

supplemental materials. Morning represented overpass times from sunrise to noon local time, 

afternoon represents overpass times from noon to sunset, and night represents overpass times 

between 2 hours post-sunset and sunrise.  

 At night in both study areas, off-nadir LSTs were much warmer than nadir roof and 

road LSTs, likely as a result of radiation trapping and reradiation by adjacent vertical facets, 

which also drove slightly warmer road LSTs compared to roof. We observed slightly warmer 

west LSTs compared to east owing to more recent insolation in the afternoon hours. In the 

morning all views and cover types were approximately isothermal. Near-nadir views of road 

and roof were the warmest, followed by off-nadir east walls, and off-nadir west walls. In the 

afternoon, we observed different relationships in NYC and LA County, with much warmer 

west wall LSTs and cool east wall LSTs in NYC, and much warmer near-nadir roof/road 

LSTs and little difference between east and west off-nadir views in LA County. We 

hypothesize that this difference is due to differences in surface structure, street layout, and 

tree canopy; with densely packed orthogonal street grids in NYC leading to strong shading of 

roads and strong insolation of west facing walls. In contrast, lower building heights and a 

generally more open plan area in LA County allow for more direct insolation of roofs and 

roads, while a taller tree canopy and a larger fraction of low-rise residential neighborhoods 

(which are punctuated by strong self shading) reduced LSTs of west facing walls (Hilland 

and Voogt, 2020). 
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Figure 11: Distributions of standardized LSTs for nadir (view zenith < 12 degrees), and two 

off-nadir (view zenith > 12 degrees) sensor positions. Sensor west and Sensor east boxes 

represent distributions of pixels with at least 20% seen fractional wall. Pixels were filtered 

based on an λi threshold of 0.75 to minimize influence from other cover types. Nadir views 

were filtered for >75% Road and Roof cover.  

 

3.3. Estimating anisotropy as a function of time of day and surface morphology 

 We estimate anisotropy as the mean difference in standardized LST between high λc 

neighborhoods (λc > 6 for NYC, λc > 3 for LA County) and low λc neighborhoods (λc < 2) 

(ΔLSTλc). These thresholds roughly approximate the 75th and 25th percentiles of the 

distribution of λc. We calculated ΔLSTλc for each image and binned results based on time of 

day and for four view directions. All images in this analysis had scene-average sensor zenith 

angle greater than 12 degrees. Figures 12 and 13 show ΔLSTλc, with positive ΔLSTλc 

indicating warmer LST for neighborhoods with taller buildings for the specific sun-surface-

sensor setup, and negative ΔLSTλc indicating relatively warmer LST for flatter, low λc 



 

 105 

neighborhoods. Thus, we assume that forcings on measured LST for each view quadrant and 

time of day are approximately the same, so that differences in standardized LST result from a 

combination of illumination and view geometry. To aid interpretation, we note that ΔLSTλc = 

0 indicates minimal differences in LST based on surface morphology, but not necessarily an 

absence of anisotropy. Rather, anisotropy appears as differences in ΔLSTλc across azimuthal 

bins.  

In NYC, anisotropic effects are well defined (Figure 12). In morning acquisitions, 

high λc neighborhoods are cooler when observed from off-nadir sensor positions for NW, 

SW, and SE view quadrants. The opposite was true for NE sensor azimuths, which observed 

warmer LSTs in high λc neighborhoods compared to low high λc. Negative ΔLSTλc in the SE 

view quadrant was unexpected, as facets pointed towards that quadrant had on average been 

illuminated for approximately 2-3 hours. However, the average view azimuth (black “+”) 

was approximately 20 degrees greater than the average sun azimuth (yellow dot). This 

discrepancy may have caused a differential between illuminated vertical facets and seen 

vertical facets, meaning that the vertical facets seen by the sensor had not yet been 

illuminated by the sun. We hypothesize that strong contrasts in angular differences in LST 

based on minute differences in sun-sensor relationships are likely in cities highly linear street 

grids (such as Manhattan). 

 In LA County, anisotropic effects are strong in morning observations but as clearly 

distinguished in afternoon observations. This pattern is consistent with observations of 

fractional wall LSTs in LA County, which were anomalously low in the afternoon compared 

to NYC. In the morning, we observed positive ΔLSTλc for both NE and SE sensor positions, 

owing to strong illumination of vertical facets pointing towards the sensor in those quadrants. 
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In the afternoon, ΔLSTλc was consistently negative for all sensor orientations save NW, 

which does not receive direct illumination until just before sunrise in the summer (and often 

does not receive any direct illumination in the winter months). This pattern in afternoon 

observations from the NW quadrant was also observed in wall LSTs in Section 3.2.  

 

Figure 12: Polar plots of difference in standardized LST (z-score) between high λc (λc > 6) 

and low λc (λc < 2) neighborhoods for the NYC study area (ΔLSTλc). Results are aggregated 

into quartiles of sensor azimuth angle. Red shaded values indicate ΔLSTλc above zero and 

warmer LST in high λc neighborhoods. Blue shaded values indicate ΔLSTλc below zero and 

cooler LST in high λc neighborhoods. Black “+” marks show average quartile sensor azimuth 

relative to the study area. The average solar azimuth is shown as a yellow dot. Grey shaded 

quartiles have n-image < 2 and are omitted.  
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Figure 13: Polar plots of difference in standardized LST (z-score) between high λc (λc > 3) 

and low λc (λc < 2) neighborhoods for the LA County study area (ΔLSTλc). Results are 

aggregated into quartiles of sensor azimuth angle. Red shaded values indicate ΔLSTλc above 

zero and warmer LST in high λc neighborhoods. Blue shaded values indicate ΔLSTλc below 

zero and cooler LST in high λc neighborhoods. Black “+” marks show average quartile 

sensor azimuth relative to the study area. The average solar azimuth is shown as a yellow dot. 

Grey shaded quartiles have n-image < 2 and are omitted.  

 

 To examine the impact of surface morphology, we binned pixels by λc after filtering 

for pixels with λi > 0.75. We then calculated mean Z-score standardized LST for morning, 

afternoon, and night and the same surface-sensor setups used in Section 3.2 (Near-nadir, off-

nadir sensor West, off-nadir sensor East). These are shown in Figure 14 for NYC and Figure 

15 for LA County. We note that similar results were observed when plotted against mean 

height above ground from the DSM, with higher inter-/intra-bin variances in both cities.  
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 In both cities, we observe positive Z-score for open, low λc cover in both morning and 

afternoon owing to increased direct insolation and low shading. In morning observations, 

LST generally decreased with increasing λc. Morning nadir and east views tracked together, 

with divergence and lower standardized LSTs observed for west views in both cities. This 

divergence was particularly large in LA, where west facing LSTs for high λc pixels (Zmax(λc) = 

-0.8) were nearly a standard deviation lower than corresponding nadir/east LSTs (Zmax(λc) = -

0.1). At night results were also similar in both cities, with near-global-mean LSTs observed 

for low λc cover (Zλc<6 = ~0.0) and increasing LSTs with increasing λc. Higher overall 

variances in LST were observed in LA County compared to NYC. 

 Results in LA County and NYC were different in the afternoon. In LA County, LSTs 

from nadir and west sensor orientations tracked downward together with increasing λc (nadir: 

Zmax(λc) = -0.4, west: Zmax(λc) = -0.4).  Slightly lower LSTs were observed for east views (east: 

Zmax(λc) = -0.7), owing to increased shading of east facing facets in the afternoon hours. In 

NYC, LSTs of west views tracked lower for low λc cover, but sharply increased as λc 

increased from λc = 5 to a maximum of Zmax(λc) = 0.8, indicating much warmer LSTs for west 

facing facets in the afternoon. While LSTs of nadir and east views did not show large change 

with increasing λc (nadir: Zmax(λc) = -0.3, east: Zmax(λc) = -0.1). This is consistent with results 

for fractional wall LSTs in NYC observed in Section 3.2. 
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Figure 14: Mean Z-score standardized LST binned based on λc (lines) and interquartile range 

(shading) for NYC. X-axis labels represent bin centers. 
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Figure 15: Mean Z-score standardized LST binned based on λc (lines) and interquartile range 

(shading) for LA County. X-axis labels represent bin centers. 
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3.4. Mapping anisotropy as Z-score divergence based on neighborhood-scale surface 

morphology 

 

The magnitude of effective anisotropy (Ʌ) is generally estimated as maximum 

difference in LST over all view geometries for a single sampling period (Krayenhoff and 

Voogt, 2016). Based on this, we estimate magnitudes of anisotropy based on the maximum 

difference in Z-score standardized LST between the three view geometries for each time of 

day and for each bin of λc (i.e., the absolute values of differences between lines in Figure 14 

and 15) as Ʌ = max(Zλc) – min(Zλc). We then calculate neighborhood λc and λi using zonal 

means and match each neighborhood with its binned estimate of Ʌ. These results are shown 

in Figures 16 and 17. For mapping neighborhood Ʌ estimates, the λi threshold was relaxed to 

0.6 (from 0.75) to account for the fact that many neighborhoods include larger patches of 

vegetation. Grey shaded polygons represent neighborhoods λc < 0.6 which were omitted from 

the sample. 

We observed large neighborhood-scale spatial contrasts in our binned estimates of Ʌ 

as a function of λc in NYC. These are particularly apparent in Manhattan, where many 

neighborhoods are dominated by high λc. Ʌ was highest across the study area in the 

afternoon, with more modest A at night and in the morning. Ʌ > 0.5 was observed 

consistently throughout the day/night in the downtown core of Manhattan (mean polygon λc 

~20-50). A was very low throughout LA County, likely owing partially to the fact that areas 

of high λc (primarily the downtown core) are split between multiple polygons. In spite of this, 

differences in λc across the study area and time-dependent differences in the relationship 
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between λc and LST do force small neighborhood-scale contrasts in Ʌ. In particular, between 

the downtown core and the surrounding lower λc neighborhoods.  

We note that these estimates do not explicitly include anisotropic effects from tree 

cover, as λc is calculated from building heights alone. Thus, we likely underestimate 

anisotropy in tree covered neighborhoods, particularly in LA County where residential 

neighborhoods are often accompanied by tall trees.  

Figure 16: Ʌ estimated at neighborhood scale in NYC from binned estimates of the 

difference between maximum and minimum Z-score standardized LST for different surface-

sensor setups. Grey polygons were omitted based on λi < 0.6. 
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Figure 17: Ʌ estimated at neighborhood scale in LA County from binned estimates of the 

difference between maximum and minimum Z-score standardized LST for different surface-

sensor setups. Grey polygons were omitted based on λi < 0.6. 

 

4. Discussion  

 Inter-facet contrasts in LST form the basis of directional differences in remotely 

sensed LST and are an important driver of exchanges of energy between the surface and the 

atmosphere and within the lowest layers of the boundary layer. While micro- and facet-scale 

contrasts in urban LST have received significant attention in the urban climate literature from 

ground-based and modelled studies (Soux et al., 2004; Christen et al., 2012; Morrison et al., 

2021), they have largely been neglected in satellite-based analysis of urban climate. We posit 

that this, in part, has led to the development of a significant knowledge gap between largely 

empirical satellite remotely sensed study of urban climate (i.e., the forest) and micro-scale 

process-based study of urban climates (i.e., the trees). This gulf in understanding will only 

grow larger as the volume of satellite-based remotely sensed LST data grows and as 

instrument (e.g., handheld thermal scanners) and computational model improvements allow 
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for finer and more accurate portrayals of complex urban form and function. Integrating and 

synthesizing between these perspectives, methods, and independent sets of terminology 

represents a significant challenge for the urban climate community. Unique datasets such as 

that produced by the ECOSTRESS sensor present a highly useful tool for bridging and 

assessing the gaps in observational knowledge and process-based understanding. 

 

4.1. Inferring scene-specific LSTs from Z-score metrics 

 In our analyses we used Z-score standardized LSTs because both the mean and 

standard deviation of LST are scene specific and change based on factors outside of the 

scope of the study (e.g., synoptic and seasonal variability in LST). By converting to Z-score, 

we preserve contrasts in LST (as intra-scene variance) while allowing for direct comparison 

between images from different times of year and with different synoptic setups. However, 

this abstracts the results and requires an additional step to extract actual LSTs or to 

extrapolate results to other contexts. We also note that this standardization is nevertheless 

subject to biases from multi-seasonal compositing (which tends to suppress variance) and 

from land cover change (e.g., drought). These factors are discussed in more depth in Section 

4.4. 

 To aid the conversion of Z-score departures to LST departures, we calculated mean 

and standard deviation of LST for each image, displaying  them in Figures 18 and 19. These 

can be used for rough conversion of Z-score Ʌ magnitudes to LST units. For example, an Ʌ 

of 0.9 in the afternoon in NYC represents a mean magnitude of anisotropy of approximately 

3.0 K calculated between the two most divergent view geometries for high λc pixels. This 

value is averaged over all seasons and measured synoptic conditions (note: we only sample 
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clear sky conditions). Scene specific magnitudes of Ʌ (e.g., for a particularly warm scene) 

can also be inferred by calculating the scene standard deviation and multiplying it by the Z-

score standardized Ʌ. 

 

Figure 18. Mean and standard deviation of LST for the NYC study area. Each dot represents 

one scene.  
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Figure 19. Mean and standard deviation of LST for the LA County study area. Each dot 

represents one scene.  

 

4.2. Wall temperatures 

The complete LST, i.e., a temperature representing an area weighted average of all 

facet-scale temperatures within a pixel or patch of the urban surface is of particular interest 

because it represents the temperature of the surface over the full interface between the 

surface and the atmosphere. While the plan-area LST is a useful substitute and generally has 

some level of internal validity, it has decreasing representivity with respect to the surface 

energy/water balance and human thermal comfort as surface structure (e.g., λc) increases. 

Several studies have attempted to infer complete (or more representative) LSTs from 2-

dimensional radiometric thermal imagery using downscaling and model-assisted assessments 

(Voogt, 2008; Jiang et al., 2018; Hu and Wendel, 2019). However, these studies generally 

rely on micro-scale models that estimate distributions of facet-scale temperatures over 
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simplified, often orthogonal grids. They are also exceedingly difficult to validate at city-scale 

as validation would require a full suite of measured directional LSTs over all sampled 

neighborhood types.  

Thus, we posit that direct extraction of facet-scale LSTs from directional satellite 

imagery is a first step in developing a fully observational assessment of more representative, 

complete satellite urban LSTs. In this paper, we showed that when influence from 

confounding variables is mitigated (in this case, via multi-temporal sampling, diurnal 

binning, and Z-score standardization) we can observe distributions of facet-scale (e.g., wall, 

road, roof) LSTs from ECOSTRESS imagery by modeling the wall seen by the sensor given 

each pixel’s unique surface-sensor geometry and extracting distributions of wall LSTs. As 

this method uses spatially extensive satellite imagery, we are able to extract facet-scale LSTs 

over an extent not possible via ground-based campaigns and with neighborhood-scale 

complexities not often represented in micro-scale models (e.g., influence from tree canopies, 

self-shading). However, we note some major challenges inherent with our approach.  

At 70 m, most pixels are a mixture of multiple surface types. This is particularly 

apparent in densely built areas, where most pixels have fractional cover of at least 3 surface 

types. When combined with inaccuracies in coregistration, this meant that we were not 

confident in our ability to attribute pixel-scale LSTs to specific land cover types, particularly 

for our synthesized wall class, which exhibits strong contrasts at relatively fine scales 

(similar to shadow). Rather, we opted to extract distributions of wall LSTs for pixels with 

non-trivial fractions of seen wall in off-nadir view geometries. In spite of this, we observed 

measurable differences in LST between off-nadir views of wall-influenced impervious pixels 

and nadir views of roof and road pixels, particularly at night and in the afternoon.  
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 Our results suggest that angular effects on the composition of sub-pixel fractional 

cover are minor at view zenith angles < 12 degrees. For pixels with view zenith angle > 12 

degrees seen wall fraction increased linearly with increased surface height and roughness. 

While per-pixel wall fractions could be as high as ~0.95, we found that aggregating to 

neighborhood scale saw a reduction in mean wall fraction to a maximum of ~0.3. Seen wall 

fraction generally decreased with increasing tree cover (not shown) as wall displacement was 

often obscured by shadow from street trees. This was particularly apparent in low-rise 

residential neighborhoods with tight street grids (i.e., height to width ratio ~0.5-2) in LA 

County. 

 Effects on LST from sub-pixel wall fraction were clearly observed in LSTs, even at 

relatively small fractions (e.g., 10% wall fraction). Diurnal patterns were generally similar 

between the two study areas. This was in spite of strong contrasts between the two study 

areas in terms of dominant land cover and surface morphology, shading regimes, and 

regional scale climate forcings.  Results at the city scale were similar to those observed by 

ground-based studies, with warmer wall LSTs at night from multiple emission and absorption 

of thermal radiation by surface structure (i.e., canyon radiation trapping) and cooler wall 

LSTs in the morning hours from minimal direct insolation and surface radiative cooling. 

Nighttime roof LSTs in NYC showed anomalously large variance, likely from exhaust from 

heating/cooling systems. We observed divergence in afternoon observations, with much 

warmer LSTs for west-facing walls and cooler LSTs for east-facing walls in NYC. In LA 

County, we observed much cooler LSTs for all wall influenced view directions compared to 

roof and road LSTs. We posit two factors that caused this discrepancy. First, tree heights in 

urbanized LA County are on average 4.8 m taller than building heights (Wetherley et al., 
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2021), which obscures seen wall fractions (via canopy shading) and lowers overall LSTs for 

off-nadir views as increased LSTs from illuminated wall facets are offset by cooler LSTs 

from increasing tree canopy view fraction. Tree heights in NYC are generally lower than 

building heights (tree: 10.1 m +/- 7.8, building: 11.6 m +/- 15.4), particularly in the 

downtown core (restricted to Manhattan, tree: 11.6 m +/- 9.7, building: 29.3 m +/- 32.8), 

which reverses this effect. Second, the surface morphology in NYC promotes strong facet-

scale contrasts in LST, as the surface is dominated by a regular grid of high-rise densely 

packed buildings with little vegetation cover. This increases angular contrasts in LST as wall 

displacement is rarely obscured by tree cover and is rarely subject to self-shading. In 

addition, we note that this discrepancy is generally consistent with results in (Hilland and 

Voogt, 2020), which showed strong neighborhood-scale contrasts in diurnal patterns of wall 

temperatures depending on surface morphology, self-shading, and tree cover. This 

comparison between two vastly different cities suggests that neighborhood-scale differences 

in facet-scale LSTs based on tree canopy cover observed by ground-based measurements 

may scale up to city-scale satellite observations (Dyce and Voogt, 2018).  

 

4.3. Anisotropy 

In this paper, we show that a combination of high spatial resolution LiDAR-derived 

surface morphology metrics with a time series of ECOSTRESS imagery can be used to 

measure neighborhood-scale patterns of effective anisotropy over the course of a day and 

stratified across driving variables (e.g., λc). The results presented in this study are consistent 

with model- and ground-based assessment of anisotropy both in terms of variance over the 

course of a day and with surface structure metrics (Lagouarde et al., 2012; Krayenhoff and 
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Voogt, 2016), albeit with lower overall magnitudes of Ʌ. We found that anisotropy was 

largest in the afternoon in both cities, but was detectable for high λc neighborhoods at all 

times of day, particularly in NYC (Lagouarde et al., 2010). We observed large spatial 

contrasts in directional LSTs in NYC, which has a surface structure and land cover which 

maximizes detection of angular contrasts in LST (i.e., highly impervious, densely built, high 

λc terrain).  

Anisotropy followed the sun position closely but manifested slightly differently in the 

two study areas. In NYC, where neighborhoods are dominated by densely built high-rise 

buildings and little vegetation, off-nadir views of high λc neighborhoods showed warmer than 

average LSTs (i.e., a hot spot compared to nadir views of flat terrain). In contrast, in LA 

County, which has highly variable cover but is largely dominated by low-rise neighborhoods, 

we observed cooler than average LST for high λc neighborhoods (i.e., a persistent cool spot 

compared to nadir views of flat terrain). Thus, both cities had detectable anisotropy, the 

former observed as a warm departure for sensor azimuths in line with the sun position and 

the latter (in LA County) observed as a cool departure from the nadir view that was less 

severe for sensor azimuths in line with the sun position. We hypothesize that this discrepancy 

was driven by differences in directional wall LSTs, which in turn was forced by differential 

shading by tree canopy cover and by increased tree canopy in the sensor FOV in LA County, 

which offsets increases in LST for illuminated walls. In addition, the regular, largely 

orthogonal street grid in NYC (particularly in the downtown core) decreases shading of tall 

building facets, increasing the purity of illuminated wall facets in off-nadir views.  

We also note that differences in latitude between the two study areas also influenced 

our estimates of anisotropy. NYC has a latitude of approximately 41 degrees. In contrast, LA 
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County has a latitude of approximately 34 degrees and weaker seasonal variability in solar 

azimuth angles. This means that summertime azimuth angles in NYC extent further north 

illuminating northeast-, north-, and northwest-facing walls more strongly for a longer period 

of the day compared to LA county. The opposite is true in winter, with solar azimuths 

restricted to the southern half of the sky in NYC. Combined with differences in surface 

morphology, tree canopy height/cover, and street grid orientation, we posit that the more 

extreme latitude of NYC produced stronger maximum contrasts in LST which resulted in 

larger overall magnitudes of anisotropy and more distinct diurnal patterns of directional wall 

LSTs. 

In general, our estimates of anisotropy were lower than those observed from ground-

based platforms (Voogt and Oke, 1998a), computational models (Hu and Wendel, 2019), and 

from time series remotely sensed imagery (Hu et al., 2016). We attribute this underestimation 

to two factors. First, our analysis relied on binned averages between images taken from 

different seasons and synoptic setups, which tended to smooth spatial contrasts in LST 

resulting in lower maximum Ʌ values. In addition, we stratified over surface structural 

metrics by binning based on λc values. Both of these result in reduced overall variance in 

LST between different surface-sensor setups as we compared values that have been averaged 

twice. Second, the range of ECOSTRESS view zenith angles is not large enough to capture 

absolute maximums of Ʌ, which generally occur between extreme off nadir views (sensor 

zenith > 60 degrees) (Hu et al., 2016; Krayenhoff and Voogt, 2016). This is compared to a 

maximum per-pixel zenith angle for ECOSTRESS of approximately 32 degrees. 

 

 



 

 122 

4.4. Summarizing major limitations 

This work is subject to three major limitations which restricted the scope of our 

analysis and contributed to uncertainty and error. First, this analysis relied on averaging and 

Z-score standardization to remove influence from synoptic and seasonal variability in LST. 

These, along with the diurnal cycle, often constitute the strongest signals in inter-image 

comparison, but were not variables of interest in this study. While standardization and 

compositing harmonized the central tendency of each image and reduced influence from 

synoptic/seasonal variance, it likely decreased ease of interpretation. Hu et al., (2016) used 

the water-land LST difference to account for non-geometric variance in an analysis of 

angular impacts on MODIS LST. This was advantageous because it allowed the authors to 

directly compute angular effects on urban LST in temperature units (rather than statistical 

differences). However, the land-water differential is likely only appropriate over a long and 

consistent time series, such as those available from the MODIS sensors. In this study, we 

found that a similar approach easily removed seasonal effects on LST but was insufficient to 

remove synoptic impacts because the thermal mass of water makes it slow to respond to 

synoptic variance.  

Moreover, we note that it is likely that the only solution that thoroughly removes 

variance from unwanted parameters is consistent multi-seasonal sampling and/or exceedingly 

large amounts of quality-controlled data, which would allow for the option to exclude 

specific seasons or synoptic setups without sacrificing geometric or diurnal sampling. Based 

on difference in efficacy between LA County and NYC (which had about half the number of 

samples, mostly due to greater cloud contamination), we posit that approximately 150 quality 

controlled ECOSTRESS images is adequate to balance diurnal sampling with removing 
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synoptic/seasonal effects. This corresponds to ~900-1300 raw ECOSTRESS scenes or 4-7 

years of consistent data. Less images are necessary in cloud-free areas or in areas with less 

seasonal or synoptic variance. Increased image quality (i.e., artifact removal, coregistration 

fixes) would drastically lower raw scene count requirements.  

Second, we assume consistent land cover over the time series of LST and assume 

leaf-on conditions year-round for all vegetation. Thus, the inter-scene contrasts we observe 

were likely contaminated by land cover change, either from land conversion, expansion or 

modification of the built environment, or by phenology or seasonal variability in vegetation 

cover. Vegetation cover and particularly tree cover was low for most of the NYC study area 

and was generally restricted to expanses of green space greater that 70 m. As we filtered 

pixels based on thresholds of impervious cover, land cover change and phenology in these 

areas likely had little influence on LST contrasts. In LA County vegetation cover is much 

more dispersed and inter-/intra-seasonal variability in green vegetation cover can be large 

(Wetherley et al., 2018; Allen et al., 2021). Thus, we posit that even with our impervious 

cover threshold, our results were subject to some influence from seasonal vegetation cover 

change. However, approximately 78% of tree cover in the LA County study area is evergreen 

(Nowak et al., 2011), which does not show large variance in tree canopy status over a year. 

Moreover, precipitation in LA County over the study period was in line with climate 

normals, with mild to moderate drought conditions observed in the summer of 2018, which 

likely promoted stable vegetation cover similar to that described in the 2014/15 LARIAC 

datasets.  

As a final and potentially most consequential limitation we were often unable to tie 

the ECOSTRESS imagery to a consistent grid. This resulted in the rejection of some 
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otherwise sound images based on coregistration errors that could not be resolved using the 

spatial nudging routine. Moreover, we found persistent small pixel shifts (1-2 pixels) in many 

images. These shifts had a strong effect on our analysis of wall LSTs as we were only able to 

extract distributions of wall influenced impervious LSTs rather than pure wall LSTs. It also 

hampered our ability to attribute angular effects to seen wall fraction (i.e., per-pixel analysis) 

as wall fractions vary at very small scales (similar to shadowing) and we were not confident 

in the per-pixel geolocation accuracy of each of our images. While we do not believe that 

coregistration errors had a significant effect on our final analyses, it nevertheless impacted 

the types of analyses that we were able to perform. 

 

5. Conclusions  

 In this paper, we used a combination of high spatial resolution land cover and surface 

structure datasets derived from LiDAR and aerial orthophotos to calculate sub-pixel wall 

fractions seen for a time series of ECOSTRESS imagery for a wide range of sun-surface-

sensor geometries. We then used the time series of LST imagery, surface-sensor modeling, 

and cover/height datasets to (1) investigate seen wall fractions as a function of zenith angle 

and surface structure, (2) compare distributions of fractional wall LSTs to LSTs of other 

facets, and to (3) estimate and (4) map magnitudes of urban effective anisotropy. Our 

analyses showed complex relationships between surface structure, sun-surface sensor 

geometry, land cover and remotely measured urban LSTs. What follows is a summary of our 

main conclusions, 

- Seen wall fraction increased linearly with sensor zenith angle and with surface structure 

(mean building height, λc). Seen wall fraction was as large as 0.95 for λc > 50 and sensor 
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zenith > 25, but at the neighborhood scale generally did not increase >0.3. We found that it 

was important to model using per-pixel surface-sensor geometry rather than scene averaged 

values as sensor zenith/azimuth can vary significantly at the scale of a city.  

- Angular effects on LST and seen wall fractions were minimized for sensor zenith angles < 12 

degrees for pixels with λc < ~50. In most cases, these can be considered equivalent to nadir 

imagery, particularly for low- to medium-rise neighborhoods.  

- A combination of nadir and off-nadir views with fine land cover, surface structure, and 

surface-sensor modeling can be used to extract distributions of facet-scale LSTs. NYC and 

LA County showed similar patterns of facet-scale LSTs in the morning hours and at night, 

with differences observed in wall LSTs in the afternoon. 

- Diurnal patterns of directional LSTs followed patterns observed for extracted wall LSTs. 

Contrasts in LSTs across off-nadir view directions increased with surface complexity (i.e., 

λc), particularly in the morning and afternoon hours as did contrasts between nadir views and 

off-nadir views. This supports increasing divergence between plan-area and complete LSTs 

as pixel zenith angle and λc increased, particularly in afternoon imagery. 

- We observed a divergence between the two cities in patterns of directional LSTs and 

effective anisotropy in afternoon observations. West facing walls showed much warmer LSTs 

in NYC, which forced a relative hot spot in directional LSTs for west off-nadir views and 

strong positive anisotropy in the afternoon. In contrast, in LA County we observed cooler off-

nadir LSTs in all directional off-nadir views, with anisotropy observed as slightly warmer 

(but still cooler than average) off-nadir LSTs for northwest sensor positions.  

- Results were limited by incomplete seasonal/diurnal sampling, which restricted our ability to 

stratify across sun-surface-sensor geometries and over a diurnal cycle. This problem was 

most evident in NYC, where seasonal contrasts in LST are large. Inconsistent coregistration 

also presented a major challenge to pixel-scale analysis and while coregistration was 
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improved by implementing a spatial nudging routine, we were often unable to tie the imagery 

to a consistent spatial grid.  

Overall, these results indicate measurable and consistent directional effects on 

ECOSTRESS LSTs that are attributable to neighborhood-scale parameters such as land cover 

and surface morphology. These directional impacts can be construed as a bias (i.e., effective 

anisotropy) or as an additional source of signal (i.e., extracted wall LST distributions). In this 

paper, we investigated and quantified both perspectives using two 2.5 year time series of 

thermal imagery. We present a framework for estimating (and potentially correcting) per-

pixel angular effects on remotely sensed imagery and for extracting otherwise unavailable 

LSTs of vertical facets from imagery at city-scale. As the volume of remotely sensed thermal 

imagery increases and as planners and policymakers increasingly utilize these data to 

measure and project climate impacts on urban populations, it becomes increasingly important 

to bridge the gaps and quantify biases between fine-scale in-situ, modeled, and coarse-scale 

remotely sensed analyses. Sensors with unique orbital characteristics (such as ECOSTRESS) 

are well positioned to offer such capabilities. 
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Conclusions 

This dissertation had two main goals. First, to quantify the sensitivity of urban 

vegetation cover, urban heat, and plant-temperature relationships to drought. Second, to 

exploit the unique orbital/sensor parameters of the new ECOSTRESS dataset to facilitate 

novel satellite-based assessment of fine-scale diurnal patterns of urban land surface 

temperature (LST) and to develop subpixel estimates of facet-scale LSTs (e.g., walls, roofs, 

roads, etc.) and thermal anisotropy over the course of a day and as a function of per-pixel 

surface-sensor relationships and surface morphology. In this final chapter, I begin by 

summarizing the main findings of Chapters 1-3 with respect to the science goals outlined 

above and finish with some concluding thoughts. 

In Chapter 1, I found complex coupling between drought-intensity, GV cover, and 

tree/grass cooling capacity. Mean GV cover decreased by 4.7% over the 2012-16 California 

drought, with stronger reductions in GV cover observed for grass compared to tree. Drought-

forced losses in GV cover were strongest in drier inland regions compared to coastal regions, 

with a net increase in GV cover pre- to post-drought near the coast and sustained losses of 

GV cover in inland regions. Cooling from GV cover decreased similarly, likely via a 

combination of reductions in overall GV cover and reduced evapotranspiration causing a 

shift in energy balance partitioning from latent heat to sensible heat. Reductions in cooling 

occurred faster and were stronger for grass compared to tree, but post-drought increases in 

cooling were stronger for grass, with relatively low cooling observed for tree a year after the 

end of the drought.  

Within the drought itself, I observed strong spikes in GV cover following 

precipitation events. These spikes in GV cover were largely observed in expanses of 
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unmaintained low vegetation (e.g., grasses) rather than neighborhood vegetation (e.g., lawns, 

sparse trees), which translated into weak impacts on urban heat. Strong month-to-month 

variability in GV cover during the drought suggests that care should be taken to select image 

dates that are representative of the climate context, for example to ensure that drought 

sampling periods do not follow (even small) precipitation events. 

In Chapter 2, I developed a fine spatial resolution diurnal time series of urban LST 

imagery using composited ECOSTRESS imagery. This represents the first fully 

observational 24-hour diurnal assessment of urban heat from fine-scale satellite imagery. The 

composited diurnal time series was able to replicate fine-scale and higher order features 

observed in ground-based thermography (e.g., tower-mounted cameras, vehicle traverses) 

including accurately depicting the timing of minimum and maximum temperatures for 

different land cover types and capturing asymmetry in morning heating and afternoon 

cooling rates. I found strong variability in the relative importance of topographic, 

morphological, and environmental drivers of LST over the course of the day. Notably, 

cooling from urban vegetation – which is often posed as an effective tool for heat mitigation 

– showed strong seasonal and diurnal variability in strength and a maximum cooling capacity 

of ~7 °C just after solar noon based on Spring-Summer composited means. Moreover, the 

results in this study show that cooling from vegetation was not detected for tree/grass 

fractions <25%, suggesting a minimum cover threshold for measurable microclimatic 

impacts.  

I found that a two-hour bin size was optimal for a two-year data set of ECOSTRESS 

imagery over study areas (in this case, urbanized Los Angeles County) that were relatively 

seasonally isothermal. For continental climates, which have stronger seasonal contrasts in 
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temperature, the bin sizes will likely need to be wider and stratified by season. Strong 

correlation between concurrent ECOSTRESS and MODIS LSTs and similar diurnal curves 

to those observed from ground-based campaigns suggest that these compositing methods are 

likely generalizable to other cities and non-urban domains.  

In Chapter 3, I used an expanded composited time series of ECOSTRESS imagery to 

investigate the diurnal course of thermal anisotropy of urban LSTs and to extract subpixel 

LSTs for systematically undersampled vertical and sloped facets of the urban surface. To do 

this, I developed a rasterized sun-surface-sensor parameterization to project the field-of-view 

(FOV) of the ECOSTRESS sensor onto a filtered DSM to estimate subpixel “seen” wall 

fractions and occluded surface proportions. These “tagged” subpixel areas were then 

aggregated to fractions at 70m and harmonized with existing fractional land cover datasets. I 

found that significant (>20-30% averaged across the New York City, NY, USA study area) 

proportions of the ECOSTRESS FOV were occupied by vertical facets such as walls, and 

that this proportion varied significantly with surface structure and view zenith angle. By 

estimating per-pixel wall FOV proportions, I was able to extract fractional wall LSTs that 

were distinct from other horizontal facets (and indeed, were district when viewed different 

sun-surface-sensor setups) and followed a similar diurnal pattern at city-scale compared to 

ground-based observations in the literature (Voogt and Oke, 1998b). By binning images 

based on time of day and, I observed strong thermal anisotropy (> 1 std of LST) in both New 

York and urbanized Los Angeles county, which followed slightly different diurnal courses. 

Finally, by stratifying by sub-pixel surface structure, I was also able to define functional 

relationships between surface morphology and average magnitudes of anisotropy for 
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morning, afternoon, and night observation times. Results were consistent with model- and 

ground-based studies of urban anisotropy (albeit slightly lower). 

Taken together, these results raise two main synthesizing points for policymakers and 

for shaping future science missions. First, policymakers at many scales (e.g., municipal, 

state, national, international) are explicitly recognizing that impacts from climate change on 

human health, water/energy use, and livability are near-term problems that require near-term 

solutions (Cutter et al., 2014; Broadbent et al., 2020). In response, many cities include 

vegetation and tree planting as a large part of their climate action plans to mitigate extremes 

of temperature and to reduce disparities in access to green space (Norton et al., 2015). This 

dissertation shows the importance of climate informed decision making, particularly with 

respect to urban vegetation planting, as the needs of water conservation (e.g., restricted 

outdoor irrigation during drought) will likely be at odds with increased water demand in 

newly planted areas in many arid cities. Moreover, I show that small (i.e., <25%) fractions of 

vegetation cover are likely ineffective as a heat mitigation tool. These points highlight the 

complexity of the nexus of climate change, heat mitigation, and water/energy use in cities. 

Effective policy decisions around urban greening must be data driven and account for heat 

mitigation needs, water conservation measures, historical disparities, and climate context 

when selecting sites, plant types, and maintenance regimes.  

In addition, this research suggests that sub-monthly monitoring of urban vegetation 

cover is possible (particularly with satellite clusters, such as commercialized 

multi/hyperspectral VSWIR imagery) and would likely be an effective way to optimize both 

planting measures for reducing urban heat and for identifying areas of significant vegetation 

stress during low precipitation periods. Thermal imagery may be an additional tool for 
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accomplishing both goals as it can be used to measure both the spatial distribution of heat 

and for identifying water stressed vegetation patches.  

Second, this research provides an important bridge between the growing catalogue of 

large-scale empirical studies of urban microclimates and ground-up process-based (often in-

situ or model-based) micro-scale analyses of the same phenomena. My analysis shows that 

fine-scale time series thermal imagery – particularly from platforms with unique orbital 

characteristics – is highly effective for observing micro- and facet-scale functional 

relationships in urban microclimates and for bridging gaps in scale, methods, and 

understanding. However, the findings in Chapters 2 and 3 highlight the fact that many 

questions vis a vis the applicability of thermal remote sensing to study of urban phenomena 

remain unanswered (Roth et al., 1989; Voogt and Oke, 2003). For example, the 

representivity and completeness of LST imagery varies within and between cities based on 

surface structure/materials and with sensor zenith and azimuth angle (which in turn, vary 

within and between images). These factors are generally only mentioned (rather than 

analyzed or corrected) in urban thermal remote sensing and have not been integrated into 

analysis-ready thermal products. While analogous directional impacts on VSWIR imagery 

have received significant attention (e.g., the Bidirectional Reflectance Distribution Function), 

these results reinforce the understanding that thermal remote sensing relies on the same laws 

of physics and is subject to the same effects (e.g., anisotropy) as those affecting VSWIR 

remote sensing. The analysis in Chapter 3 shows that fusing fine-scale thermal imagery with 

surface morphology data may be a first step to providing per-pixel documentation of the type 

of LST in each pixel (e.g., complete, plan-area, angular), sub-pixel proportions of different 

facets, and the range/magnitude of potential angular effects. This information could 
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potentially be delivered in a similar fashion to quality and cloud flags in image metadata and 

quality control rasters.   

Overall, this dissertation highlights the importance of process-based understanding 

and analysis in urban remote sensing. Indeed, urban areas have a different structure, surface 

materials, climate-forcings, and anthropogenic effects compared to adjacent natural 

environments. This study (and many before it) show that these signals are detectable via 

remote sensing at multiple spatial and temporal scales and that accurate detection of different 

environmental, morphological, and anthropogenic signals on phenomena of interest forms the 

basis for comprehensive analysis of urban vegetation and urban microclimates. As the 

quality, granularity, and quality of thermal and VSWIR remotely sensed imagery increases so 

does its explanatory power for informing a process-based understanding of the urban 

environment. These data, when combined with ground-based sensor networks and ever-

increasing computational power, are well positioned to provide key datasets and insights to 

aid in urban planning and in decision making to promote climate resilience and microclimatic 

equity in cities.   
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Appendix 1: Supplemental materials for Chapter 2 

 

Figure S1 shows fractional land cover maps, distance to coast, elevation, and height 

above ground maps for the study area. These are described in the “Ancillary Data” section of 

Methods.  
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Figure S1: Maps of distance to coast, elevation, height above ground, and fractional land 

cover for each land cover class at 70 m for the Los Angeles County urbanized study area. 
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Appendix 2: Supplemental materials for Chapter 3 

 

Sampling and extracting wall facet temperatures requires multi-directional imagery 

(nadir, west-facing off nadir, east-facing off nadir) and stratification for a given image for 

land cover and seen wall fraction. Table S1 shows counts of images for each direction and 

sampling period for both NYC and LA County. Nadir includes all images with mean view 

zenith < 12 degrees. The two off nadir views (east and west) include all images with mean 

view zenith > 12 degrees with sensor azimuth > 180 degrees for west and < 180 degrees for 

east. Morning includes all images from sunrise to noon, afternoon all images from noon to 

sunset, and night all images between 2 hours after sunset and sunrise. 

 

Table S1. Counts of images for the three different binned sensor orientations and sampling 

times for NYC and LA County. 

Direction New York City Los Angeles County 

Nadir   

  Morning 13 8 

  Afternoon 4 15 

  Night 7 21 

Sensor East   

  Morning 3 6 

  Afternoon 2 7 

  Night 3 9 

Sensor West   

  Morning 4 4 

  Afternoon 2 9 

  Night 4 9 
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Table S2 and S3 show pixel counts for sensitivity testing of wall fraction thresholds for 

Section 3.2. While we did not observe significant differences in results when varying wall 

fraction thresholds, we did observe linear reductions in pixel counts with increasing wall 

fraction. For example, separation between fractional wall LSTs and road/roof LSTs over a 

range of wall fraction thresholds (i.e., 0.15 to 0.3) was approximately the same, with 

generally wider distributions of wall LSTs at lower wall fraction thresholds. We ultimately 

chose a threshold of 0.2 to ensure consistent sampling in LA County with large enough wall 

fractional effect to observe the distinct course of west- and east-facing walls in both study 

areas. 

 

Table S2. Counts of pixels for different wall fraction thresholds (0.15, 0.2, 0.3) for off nadir 

sensor orientations in NYC. These fractional thresholds represent the proportion of seen wall 

for pixels with > 75% impervious cover. Nadir Road and Roof counts are also included for 

reference. 

Surface Type Wall > 0.15 Wall > 0.20 Wall > 0.30 

Sensor East 4157 2223 1238 

Sensor West 2559 1046 458 

Roof 5042 5216 5293 

Road 36389 36451 34978 
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Table S3. Counts of pixels for different wall fraction thresholds (0.15, 0.2, 0.3) for off nadir 

sensor orientations in LA County. These fractional thresholds represent the proportion of 

seen wall for pixels with > 75% impervious cover. Nadir Road and Roof counts are also 

included for reference. 

Surface Type Wall > 0.15 Wall > 0.20 Wall > 0.30 

Sensor East 131 59 26 

Sensor West 102 34 10 

Roof 21749 21763 21769 

Road 158176 158182 158187 
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